[108] | 1 | \documentclass[a4paper,10pt]{article} |
---|
| 2 | %\usepackage{graphicx} |
---|
| 3 | \usepackage{natbib} % si appel à bibtex |
---|
| 4 | %\usepackage[francais]{babel} |
---|
| 5 | %\usepackage[latin1]{inputenc} % accents directs (é...), avec babel |
---|
| 6 | %\usepackage{rotating} |
---|
| 7 | |
---|
| 8 | \setlength{\hoffset}{-1.in} |
---|
| 9 | \setlength{\oddsidemargin}{3.cm} |
---|
| 10 | \setlength{\textwidth}{15.cm} |
---|
| 11 | \setlength{\marginparsep}{0.mm} |
---|
| 12 | \setlength{\marginparwidth}{0.mm} |
---|
| 13 | |
---|
| 14 | \setlength{\voffset}{-1.in} |
---|
| 15 | \setlength{\topmargin}{0.mm} |
---|
| 16 | \setlength{\headheight}{0.mm} |
---|
| 17 | \setlength{\headsep}{30.mm} |
---|
| 18 | \setlength{\textheight}{24.cm} |
---|
| 19 | \setlength{\footskip}{1.cm} |
---|
| 20 | |
---|
| 21 | \setlength{\parindent}{0.mm} |
---|
| 22 | \setlength{\parskip}{1 em} |
---|
| 23 | \newcommand{\ten}[1]{$\times 10^{#1}$~} |
---|
| 24 | \renewcommand{\baselinestretch}{1.} |
---|
| 25 | |
---|
| 26 | \begin{document} |
---|
| 27 | \pagestyle{plain} |
---|
| 28 | |
---|
| 29 | \begin{center} |
---|
| 30 | {\bf \LARGE |
---|
| 31 | Documentation for LMDZ, Planets version |
---|
| 32 | |
---|
| 33 | \vspace{1cm} |
---|
| 34 | \Large |
---|
| 35 | The upper boundary sponge layer |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | \vspace{1cm} |
---|
[1010] | 39 | S\'ebastien Lebonnois , Ehouarn Millour |
---|
[108] | 40 | |
---|
| 41 | \vspace{1cm} |
---|
| 42 | Latest version: \today |
---|
| 43 | \end{center} |
---|
| 44 | |
---|
[1010] | 45 | \section{Theoretical aspects} |
---|
| 46 | Because of the inevitable numerical boundary at the top of the model, |
---|
| 47 | upward travelling waves are found to non-physically reflect down into the |
---|
| 48 | atmosphere. |
---|
| 49 | A common remedy to this unwanted behaviour is to apply a sponge layer near |
---|
| 50 | the top of the model in order to quench these waves and avoid significant |
---|
| 51 | reflection thereof. |
---|
| 52 | In practice such quenching is done by adding a dissipative term which forces |
---|
| 53 | a relaxation of potential temperature and/or winds of the form: |
---|
| 54 | \[ |
---|
| 55 | A(t)=A_m+A_0 \exp(-\lambda t ) |
---|
| 56 | \] |
---|
| 57 | Where $A_m$ is the value towards which $A$ is to asymptotically relax, and |
---|
| 58 | $\lambda$ is the inverse of the characteristic relaxation time scale. |
---|
| 59 | As there is no obvious value of $A_m$ towards which to relax, in practice |
---|
| 60 | it is often chosen to be either the zonal average of $A$ (evaluated at time $t$, |
---|
| 61 | i.e. conveniently ignoring that $A_m$ then is in fact not time-independent), |
---|
| 62 | or zero (at least for winds, since this would have little physical meaning for |
---|
| 63 | potential temperature). |
---|
[108] | 64 | |
---|
| 65 | \section{Pratical aspects in the code} |
---|
| 66 | |
---|
[1012] | 67 | %The sponge layer is applied at the upper boundary when the \textsf{ok\_strato} |
---|
| 68 | %flag is set to {\em True} in \textsf{gcm.def} |
---|
| 69 | %(this parameter also controls the application of a second step in the |
---|
| 70 | %determination of vertical variation of coefficients for |
---|
| 71 | %the horizontal dissipation, see \textsf{inidissip.F} and |
---|
| 72 | %\textsf{disspi\_horiz.pdf} document). |
---|
[108] | 73 | |
---|
| 74 | The tendencies for the upper boundary sponge layer are computed separately in |
---|
[1010] | 75 | the \textsf{top\_bound.F} routine (called from \textsf{leapfrog.F}) and |
---|
| 76 | added in place. |
---|
| 77 | The resulting sponge tendency \textsf{dutop}, in m/s, is also given as an output for |
---|
| 78 | diagnostics. |
---|
[108] | 79 | |
---|
| 80 | Three parameters may be adjusted in the \textsf{gcm.def} file: |
---|
| 81 | \begin{itemize} |
---|
| 82 | \item \textsf{iflag\_top\_bound}: selects the affected layers. |
---|
| 83 | \begin{itemize} |
---|
| 84 | \item 1: only the top 4 layers are affected. In this case, the damping rate |
---|
| 85 | is divided by 2 in the second layer, 4 in the third and 8 in the fourth. |
---|
| 86 | \item 2: layers with pressure lower than 100 times the top pressure. |
---|
| 87 | In this case, the damping rate depends linearly on the pressure. |
---|
| 88 | \end{itemize} |
---|
| 89 | \item \textsf{mode\_top\_bound}: selects how the fields are affected. |
---|
| 90 | \begin{itemize} |
---|
| 91 | \item 0: No sponge layer is applied. |
---|
| 92 | \item 1: Zonal and meridional winds are damped to zero. |
---|
| 93 | \item 2: Zonal and meridional winds are damped to their zonally averaged value. |
---|
| 94 | \item 3: Temperature, zonal and meridional winds are damped to their zonally |
---|
| 95 | averaged value. |
---|
| 96 | \end{itemize} |
---|
[1010] | 97 | \item \textsf{tau\_top\_bound}: damping rate ($\lambda$ in equation above, |
---|
| 98 | expressed in Hz) in the topmost layer. |
---|
[108] | 99 | \end{itemize} |
---|
| 100 | |
---|
| 101 | %\begin{thebibliography}{2} |
---|
| 102 | %\providecommand{\natexlab}[1]{#1} |
---|
| 103 | %\expandafter\ifx\csname urlstyle\endcsname\relax |
---|
| 104 | % \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else |
---|
| 105 | % \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup |
---|
| 106 | % \urlstyle{rm}\Url}\fi |
---|
| 107 | |
---|
| 108 | %\end{thebibliography} |
---|
| 109 | |
---|
| 110 | \end{document} |
---|