1 | \documentclass[a4paper,10pt]{article} |
---|
2 | %\usepackage{graphicx} |
---|
3 | \usepackage{natbib} % si appel à bibtex |
---|
4 | %\usepackage[francais]{babel} |
---|
5 | %\usepackage[latin1]{inputenc} % accents directs (é...), avec babel |
---|
6 | %\usepackage{rotating} |
---|
7 | |
---|
8 | \setlength{\hoffset}{-1.in} |
---|
9 | \setlength{\oddsidemargin}{3.cm} |
---|
10 | \setlength{\textwidth}{15.cm} |
---|
11 | \setlength{\marginparsep}{0.mm} |
---|
12 | \setlength{\marginparwidth}{0.mm} |
---|
13 | |
---|
14 | \setlength{\voffset}{-1.in} |
---|
15 | \setlength{\topmargin}{0.mm} |
---|
16 | \setlength{\headheight}{0.mm} |
---|
17 | \setlength{\headsep}{30.mm} |
---|
18 | \setlength{\textheight}{24.cm} |
---|
19 | \setlength{\footskip}{1.cm} |
---|
20 | |
---|
21 | \setlength{\parindent}{0.mm} |
---|
22 | \setlength{\parskip}{1 em} |
---|
23 | \newcommand{\ten}[1]{$\times 10^{#1}$~} |
---|
24 | \renewcommand{\baselinestretch}{1.} |
---|
25 | |
---|
26 | \begin{document} |
---|
27 | \pagestyle{plain} |
---|
28 | |
---|
29 | \begin{center} |
---|
30 | {\bf \LARGE |
---|
31 | Documentation for LMDZ, Planets version |
---|
32 | |
---|
33 | \vspace{1cm} |
---|
34 | \Large |
---|
35 | How to modify the initial state: the newstart tool |
---|
36 | } |
---|
37 | |
---|
38 | \vspace{1cm} |
---|
39 | S\'ebastien Lebonnois |
---|
40 | |
---|
41 | \vspace{1cm} |
---|
42 | Latest version: \today |
---|
43 | \end{center} |
---|
44 | |
---|
45 | |
---|
46 | \section{First step: \textsf{start\_archive.nc}} |
---|
47 | |
---|
48 | The initial state of a simulation is read by the GCM in the files \textsf{start.nc} and \textsf{startphy.nc}. |
---|
49 | A first step to change these files is first to change them into a \textsf{start\_archive.nc} file. This is coming from the Mars GCM, where this file can include all the \textsf{start*.nc} files for the 12 months of one complete Martian Year. |
---|
50 | |
---|
51 | To do this conversion, you need to use the \textsf{start2archive} tool. |
---|
52 | Currently, this tool is well adapted for Venus and Titan, so the corresponding routine is called \textsf{start2archive-VT.F} |
---|
53 | It is located in the \textsf{dyn3d} directory, and compiled the same way as the GCM. As inputs, it will need the same \textsf{*.def} files as those used during the simulation that created the \textsf{start*.nc} files. It then creates the \textsf{start\_archive.nc} file from \textsf{start.nc} and \textsf{startphy.nc}. |
---|
54 | |
---|
55 | \section{Second step: the \textsf{newstart} tool} |
---|
56 | |
---|
57 | This tool allows many changes in the initial state: |
---|
58 | \begin{itemize} |
---|
59 | \item change in resolution |
---|
60 | \item change in zoom characteristics |
---|
61 | \item change in surface characteristics (topography, albedo) |
---|
62 | \item change in planetary constants |
---|
63 | \end{itemize} |
---|
64 | |
---|
65 | Currently, this tool is well adapted for Venus and Titan, so the corresponding routine is called \textsf{newstart-VT.F}, located in the \textsf{dyn3d} directory. As for the \textsf{start2archive} tool, it is compiled the same way as the GCM. |
---|
66 | |
---|
67 | As inputs, it takes the \textsf{start\_archive.nc} file with the initial state to be modified, and the \textsf{traceur.def} and \textsf{z2sig.def} files. |
---|
68 | It also needs a specific \textsf{run.def} file, taylored to include only the needed changes. |
---|
69 | |
---|
70 | To change the resolution, compile \textsf{newstart-VT} in the new resolution. |
---|
71 | For the topography, the default behaviour will be to use the previous one (from \textsf{start\_archive.nc}) and to interpolate it to the new resolution. |
---|
72 | You may want to use the highest resolution topography file you have to get a finer topography when increasing the resolution. In that case, you can add the line |
---|
73 | |
---|
74 | \textsf{topoflag=y} |
---|
75 | |
---|
76 | in the taylored \textsf{run.def} file. Your topography file should be called \textsf{Relief.nc}. This file must include the variable \textsf{RELIEF}, which is the topography in meters. It will be read by \textsf{newstart} and the new surface geopotential will be computed. |
---|
77 | This may also be used to modify the topography the way you want. |
---|
78 | |
---|
79 | One point concerning Venus topography: it should be reversed in the \textsf{Relief.nc} file, so that the GCM runs as if it was looking at Venus with the South pole upward. |
---|
80 | |
---|
81 | \section{Specific \textsf{run.def} file} |
---|
82 | |
---|
83 | {\bf Zoom} |
---|
84 | |
---|
85 | To make a simulation with a zoom, the grid has to be altered. This needs to be done through \textsf{newstart}, using zoom parameters that will be read from the |
---|
86 | \textsf{run.def} file. |
---|
87 | These parameters include (see specific zoom documentation ?): |
---|
88 | \begin{itemize} |
---|
89 | \item {\it clon,clat}: coordinates of the zoom center (in degrees) |
---|
90 | \item {\it grossismx,grossismy}: resolution increase factor within the zoom area |
---|
91 | \item {\it fxyhypb}: logical. If "y" (True) then hyperbolic function for the transition. |
---|
92 | \item {\it dzoomx,dzoomy}: fraction of the total domain used in the zoom area (used only if {\it fxyhypb}=y) |
---|
93 | \item {\it taux,tauy}: zoom stiffness (in the transition area ?) (used only if {\it fxyhypb}=y) |
---|
94 | \item ysinus: logical (used only if {\it fxyhypb}=n). Use sinus of latitude instead of latitude for the transition. |
---|
95 | \end{itemize} |
---|
96 | |
---|
97 | For Venus, the topography being reversed, {\it clat} and {\it clon} must take this into account when targeting a specific feature ! |
---|
98 | |
---|
99 | {\bf Albedo} |
---|
100 | |
---|
101 | If you want to change the value of the albedo, you can add the lines |
---|
102 | |
---|
103 | \textsf{albedoflag=y} |
---|
104 | |
---|
105 | \textsf{albedo=$<$value$>$} |
---|
106 | |
---|
107 | in \textsf{run.def} to input the new value. |
---|
108 | |
---|
109 | For the albedo, we may want to use a map. This is not yet implemented. When it will be, the file containing this map can be used to change the albedo (as for the topography). |
---|
110 | |
---|
111 | {\bf Other parameters} |
---|
112 | |
---|
113 | It could be possible to include other parameters in the change (, just by adding optional lines in \textsf{run.def}. The reading has to be hardcoded in \textsf{newstart-VT.F} first, but it's easy. |
---|
114 | |
---|
115 | The specific heat is already implemented ({\it cpp}). |
---|
116 | |
---|
117 | \section{Technical aspects} |
---|
118 | |
---|
119 | The subroutines used for the \textsf{start\_archive.nc} and \textsf{newstart} tools are located in the \textsf{phy$<$planet$>$} directory, since they may slightly vary from one planet to the other. |
---|
120 | |
---|
121 | For \textsf{start\_archive.nc}, these routines are: |
---|
122 | \begin{itemize} |
---|
123 | \item \textsf{ini\_archive.F} |
---|
124 | \item \textsf{readstart.F} |
---|
125 | \item \textsf{readstartphy.F} |
---|
126 | \item \textsf{write\_archive.F} |
---|
127 | \end{itemize} |
---|
128 | |
---|
129 | For \textsf{newstart}, they are: |
---|
130 | \begin{itemize} |
---|
131 | \item \textsf{interp\_vert.F} |
---|
132 | \item \textsf{scal\_wind.F} |
---|
133 | \item \textsf{wind\_scal.F} |
---|
134 | \item \textsf{writerestart.F} |
---|
135 | \item \textsf{writerestartphy.F} |
---|
136 | \item \textsf{startvar.F90} and \textsf{grid\_noro.F}, which are used to read the \textsf{Relief.nc} file and compute the surface geopotential and the parameters needed for the orographic gravity wave drag. |
---|
137 | \end{itemize} |
---|
138 | |
---|
139 | \end{document} |
---|