1 | \documentclass[a4paper,10pt]{article} |
---|
2 | %\usepackage{graphicx} |
---|
3 | \usepackage{natbib} % si appel à bibtex |
---|
4 | %\usepackage[francais]{babel} |
---|
5 | %\usepackage[latin1]{inputenc} % accents directs (é...), avec babel |
---|
6 | %\usepackage{rotating} |
---|
7 | |
---|
8 | \setlength{\hoffset}{-1.in} |
---|
9 | \setlength{\oddsidemargin}{3.cm} |
---|
10 | \setlength{\textwidth}{15.cm} |
---|
11 | \setlength{\marginparsep}{0.mm} |
---|
12 | \setlength{\marginparwidth}{0.mm} |
---|
13 | |
---|
14 | \setlength{\voffset}{-1.in} |
---|
15 | \setlength{\topmargin}{0.mm} |
---|
16 | \setlength{\headheight}{0.mm} |
---|
17 | \setlength{\headsep}{30.mm} |
---|
18 | \setlength{\textheight}{24.cm} |
---|
19 | \setlength{\footskip}{1.cm} |
---|
20 | |
---|
21 | \setlength{\parindent}{0.mm} |
---|
22 | \setlength{\parskip}{1 em} |
---|
23 | \newcommand{\ten}[1]{$\times 10^{#1}$~} |
---|
24 | \renewcommand{\baselinestretch}{1.} |
---|
25 | |
---|
26 | \begin{document} |
---|
27 | \pagestyle{plain} |
---|
28 | |
---|
29 | \begin{center} |
---|
30 | {\bf \LARGE |
---|
31 | Documentation for LMDZ, Planets version |
---|
32 | |
---|
33 | \vspace{1cm} |
---|
34 | \Large |
---|
35 | The vertical discretization |
---|
36 | } |
---|
37 | |
---|
38 | \vspace{1cm} |
---|
39 | S\'ebastien Lebonnois, Ehouarn Millour |
---|
40 | |
---|
41 | \vspace{1cm} |
---|
42 | Latest version: \today |
---|
43 | \end{center} |
---|
44 | |
---|
45 | |
---|
46 | \section{Theoretical aspects} |
---|
47 | |
---|
48 | The position of the layers: |
---|
49 | \begin{itemize} |
---|
50 | \item pressure limit between two layers, |
---|
51 | \item pressure within the layers |
---|
52 | \end{itemize} |
---|
53 | |
---|
54 | The Exner function: |
---|
55 | $pk = C_p \times (p/preff)^\kappa$. |
---|
56 | It corresponds to the pressure levels within the layers. |
---|
57 | Used for the computation of the potential temperature. |
---|
58 | For the Earth, we use a specific scheme that computes these positions so that |
---|
59 | it maintains a condition of proportionality between total, |
---|
60 | internal and potential energy (cf. a note from F. Hourdin). |
---|
61 | |
---|
62 | \section{Pratical aspects in the code} |
---|
63 | |
---|
64 | \begin{itemize} |
---|
65 | \item \textsf{disvert\_[no]terre.F[90]}: |
---|
66 | position of the interface pressure levels from an input file |
---|
67 | (several possibilities). |
---|
68 | Definition of ap, bp and presnivs. |
---|
69 | In the planetary version, definition of aps and bps. |
---|
70 | |
---|
71 | This is done only once, called at the beginning from \textsf{iniconst.F}. |
---|
72 | |
---|
73 | In the Earth version the vertical coordinates are hybrid (sigma-pressure), |
---|
74 | and generated automaticaly (or generated from parameters read from file |
---|
75 | \textsf{sigma.def}, if that file is present in the directory where the |
---|
76 | gcm is run). |
---|
77 | |
---|
78 | In the planetary version, the vertical coordinates can be hybrid (default |
---|
79 | behavior) or sigma (set using parameter "hybrid" in \textsf{run.def}; true |
---|
80 | implies hybrid coordinate, false implies sigma coordinate). the distribution |
---|
81 | of model levels is set from file \textsf{esasig.def} or \textsf{z2sig.def}, |
---|
82 | depending on which is present (in the directory where the gcm is run). |
---|
83 | The first line of the \textsf{z2sig.def} file should give the value of the |
---|
84 | reference atmospheric scale height (in km), followed by the (rough estimate) |
---|
85 | of the altitude (in km) of the atmospheric level (one per line of the file). |
---|
86 | |
---|
87 | For planetary applications, the usual way to go is to use \textsf{disvert\_noterre.F} together with \textsf{z2sig.def}. |
---|
88 | The sigma levels are computed as: |
---|
89 | \begin{itemize} |
---|
90 | \item $H$ is the first value in \textsf{z2sig.def}, $zsig$ are the following values in \textsf{z2sig.def} |
---|
91 | \item $\sigma(1)=1$ |
---|
92 | \item l=2 to llm: $\sigma(l)= 0.5 \times (\exp(-zsig(l)/H)+\exp(-zsig(l-1)/H))$ |
---|
93 | \item $\sigma(llm+1)=0$ |
---|
94 | \end{itemize} |
---|
95 | The $ap$ and $bp$ values, defining the interface pressure levels, are then computed using these sigma values, the reference pressure $preff$, and the transition pressure $pa$. The values of $preff$ and $pa$ are read in the \textsf{start.nc} file, in the control array. |
---|
96 | |
---|
97 | \item Interface pressures: |
---|
98 | computed in \textsf{caldyn0.F, caldyn.F, integrd.F, leapfrog.F} |
---|
99 | through the \textsf{pression.F} routine. |
---|
100 | |
---|
101 | \item Exner function (and therefore pressure within the layers): |
---|
102 | computed at three different places in \textsf{leapfrog.F} through the |
---|
103 | \textsf{exner\_[hyb/milieu].F} routine. |
---|
104 | For the Earth, we use \textsf{exner\_hyb.F}, that computes the positions in a |
---|
105 | specific way to maintain a condition of proportionality between total, |
---|
106 | internal and potential energy (cf. a note from F. Hourdin). |
---|
107 | For other planets, we use \textsf{exner\_milieu.F}, that computes the positions |
---|
108 | of these pressure levels exactly in the middle of each layer. |
---|
109 | Though this fails to maintain the previous condition, there is no evidence of |
---|
110 | any significant influence on the results, and it makes it a lot easier to |
---|
111 | define correctly the level positions with the input file. |
---|
112 | \end{itemize} |
---|
113 | |
---|
114 | %\begin{thebibliography}{2} |
---|
115 | %\providecommand{\natexlab}[1]{#1} |
---|
116 | %\expandafter\ifx\csname urlstyle\endcsname\relax |
---|
117 | % \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else |
---|
118 | % \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup |
---|
119 | % \urlstyle{rm}\Url}\fi |
---|
120 | |
---|
121 | %\end{thebibliography} |
---|
122 | |
---|
123 | \end{document} |
---|