\documentclass[a4paper,10pt]{article} %\usepackage{graphicx} \usepackage{natbib} % si appel à bibtex %\usepackage[francais]{babel} %\usepackage[latin1]{inputenc} % accents directs (é...), avec babel %\usepackage{rotating} \setlength{\hoffset}{-1.in} \setlength{\oddsidemargin}{3.cm} \setlength{\textwidth}{15.cm} \setlength{\marginparsep}{0.mm} \setlength{\marginparwidth}{0.mm} \setlength{\voffset}{-1.in} \setlength{\topmargin}{0.mm} \setlength{\headheight}{0.mm} \setlength{\headsep}{30.mm} \setlength{\textheight}{24.cm} \setlength{\footskip}{1.cm} \setlength{\parindent}{0.mm} \setlength{\parskip}{1 em} \newcommand{\ten}[1]{$\times 10^{#1}$~} \renewcommand{\baselinestretch}{1.} \begin{document} \pagestyle{plain} \begin{center} {\bf \LARGE Documentation for LMDZ, Planets version \vspace{1cm} \Large The vertical discretization } \vspace{1cm} S\'ebastien Lebonnois, Ehouarn Millour \vspace{1cm} Latest version: \today \end{center} \section{Theoretical aspects} The position of the layers: \begin{itemize} \item pressure limit between two layers, \item pressure within the layers \end{itemize} The Exner function: definition. It corresponds to the pressure levels within the layers. Used for the computation of the potential temperature. For the Earth, we use a specific scheme that computes these positions so that it maintains a condition of proportionality between total, internal and potential energy (cf. a note from F. Hourdin). \section{Pratical aspects in the code} \begin{itemize} \item \textsf{disvert\_[no]terre.F[90]}: position of the interface pressure levels from an input file (several possibilities). Definition of ap, bp and presnivs. In the planetary version, definition of aps and bps. This is done only once, called at the beginning from \textsf{iniconst.F}. In the Earth version the vertical coordinates are hybrid (sigma-pressure), and generated automaticaly (or generated from parameters read from file \textsf{sigma.def}, if that file is present in the directory where the gcm is run). In the planetary version, the vertical coordinates can be hybrid (default behavior) or sigma (set using parameter "hybrid" in \textsf{run.def}; true implies hybrid coordinate, false implies sigma coordinate). the distribution of model levels is set from file \textsf{esasig.def} or \textsf{z2sig.def}, depending on which is present (in the directory where the gcm is run). The first line of the \textsf{z2sig.def} file should give the value of the reference atmospheric scale height (in km), followed by the (rough estimate) of the altitude (in km) of the atmospheric level (one per line of the file). \item Interface pressures: computed in \textsf{caldyn0.F, caldyn.F, integrd.F, leapfrog.F} through the \textsf{pression.F} routine. \item Exner function (and therefore pressure within the layers): computed at three different places in \textsf{leapfrog.F} through the \textsf{exner\_[hyb/milieu].F} routine. For the Earth, we use \textsf{exner\_hyb.F}, that computes the positions in a specific way to maintain a condition of proportionality between total, internal and potential energy (cf. a note from F. Hourdin). For other planets, we use \textsf{exner\_milieu.F}, that computes the positions of these pressure levels exactly in the middle of each layer. Though this fails to maintain the previous condition, there is no evidence of any significant influence on the results, and it makes it a lot easier to define correctly the level positions with the input file. \end{itemize} %\begin{thebibliography}{2} %\providecommand{\natexlab}[1]{#1} %\expandafter\ifx\csname urlstyle\endcsname\relax % \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else % \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup % \urlstyle{rm}\Url}\fi %\end{thebibliography} \end{document}