1 | \documentclass[a4paper,10pt]{article} |
---|
2 | %\usepackage{graphicx} |
---|
3 | \usepackage{natbib} % si appel à bibtex |
---|
4 | %\usepackage[francais]{babel} |
---|
5 | %\usepackage[latin1]{inputenc} % accents directs (é...), avec babel |
---|
6 | %\usepackage{rotating} |
---|
7 | |
---|
8 | \setlength{\hoffset}{-1.in} |
---|
9 | \setlength{\oddsidemargin}{3.cm} |
---|
10 | \setlength{\textwidth}{15.cm} |
---|
11 | \setlength{\marginparsep}{0.mm} |
---|
12 | \setlength{\marginparwidth}{0.mm} |
---|
13 | |
---|
14 | \setlength{\voffset}{-1.in} |
---|
15 | \setlength{\topmargin}{0.mm} |
---|
16 | \setlength{\headheight}{0.mm} |
---|
17 | \setlength{\headsep}{30.mm} |
---|
18 | \setlength{\textheight}{24.cm} |
---|
19 | \setlength{\footskip}{1.cm} |
---|
20 | |
---|
21 | \setlength{\parindent}{0.mm} |
---|
22 | \setlength{\parskip}{1 em} |
---|
23 | \newcommand{\ten}[1]{$\times 10^{#1}$~} |
---|
24 | \renewcommand{\baselinestretch}{1.} |
---|
25 | |
---|
26 | \begin{document} |
---|
27 | \pagestyle{plain} |
---|
28 | |
---|
29 | \begin{center} |
---|
30 | {\bf \LARGE |
---|
31 | Documentation for LMDZ, Planets version |
---|
32 | |
---|
33 | \vspace{1cm} |
---|
34 | \Large |
---|
35 | The horizontal dissipation |
---|
36 | } |
---|
37 | |
---|
38 | \vspace{1cm} |
---|
39 | S\'ebastien Lebonnois |
---|
40 | |
---|
41 | \vspace{1cm} |
---|
42 | Latest version: \today |
---|
43 | \end{center} |
---|
44 | |
---|
45 | \section{Theoretical aspects} |
---|
46 | |
---|
47 | To be written |
---|
48 | |
---|
49 | \section{Pratical aspects in the code} |
---|
50 | |
---|
51 | The horizontal dissipation parameters are chosen in \textsf{gcm.def}. |
---|
52 | |
---|
53 | {\bf Parameters related to the operators} |
---|
54 | |
---|
55 | \begin{itemize} |
---|
56 | \item \textsf{idissip}: timestep for dissipation. |
---|
57 | Should be equal to \textsf{iperiod}. |
---|
58 | \item \textsf{lstardis}: boolean that indicates |
---|
59 | whether to use a star operator (or not). Usually set to {\em True}. |
---|
60 | \item \textsf{nitergdiv}: number of iterations for the {\em gradiv} operator |
---|
61 | \item \textsf{nitergrot}: number of iterations for the {\em nxgradrot} operator |
---|
62 | \item \textsf{niterh}: number of iterations for the {\em divgrad} operator |
---|
63 | \end{itemize} |
---|
64 | |
---|
65 | {\bf Parameters related to timescales} |
---|
66 | |
---|
67 | \begin{itemize} |
---|
68 | \item \textsf{tetagdiv}: time scale (in s) for the {\em gradiv} operator. |
---|
69 | It corresponds to the attenuation of the smallest wavelengths for u and v |
---|
70 | perturbations. |
---|
71 | \item \textsf{tetagrot}: time scale (in s) for the {\em nxgradrot} operator. |
---|
72 | It corresponds to the attenuation of the smallest wavelengths for u and v |
---|
73 | perturbations. |
---|
74 | \item \textsf{tetatemp}: time scale (in s) for the {\em divgrad} operator. |
---|
75 | It corresponds to the attenuation of the smallest wavelengths for h |
---|
76 | perturbations. |
---|
77 | \end{itemize} |
---|
78 | These timescales are the one for the deep atmosphere. |
---|
79 | However, they are modified by some factors as the pressure decreases. |
---|
80 | For these factors, two steps are implemented: \textsf{dissip\_fac\_mid} and |
---|
81 | \textsf{dissip\_fac\_up} (also chosen in \textsf{gcm.def}). |
---|
82 | The first step is always applied, the second is |
---|
83 | applied only when \textsf{ok\_strato} is set to {\em True}. |
---|
84 | Timescales are divided by the factor $f$ computed as detailed below. |
---|
85 | |
---|
86 | For \textsf{dissip\_fac\_mid} (which is usually equal to 2.), transition is |
---|
87 | computed with: |
---|
88 | \[ |
---|
89 | x = 1. - \frac{{\rm preff}}{p} |
---|
90 | \] |
---|
91 | \[ |
---|
92 | f_1 = {\rm dissip\_fac\_mid} - |
---|
93 | \frac{{\rm dissip\_fac\_mid}-1.}{1.+x^2} |
---|
94 | \] |
---|
95 | |
---|
96 | When applied (\textsf{ok\_strato} set to {\em True}), the transition from |
---|
97 | \textsf{dissip\_fac\_mid} to \textsf{dissip\_fac\_up} is done with a |
---|
98 | $\tanh$ function, using further parameters: |
---|
99 | \begin{itemize} |
---|
100 | \item \textsf{dissip\_deltaz}: altitude range (in km) for the transition. |
---|
101 | \item \textsf{dissip\_hdelta}: scale height (in km) at the altitude of the transition. |
---|
102 | \item \textsf{dissip\_pupstart}: pressure (in Pa) corresponding to the bottom |
---|
103 | of the transition region. |
---|
104 | \end{itemize} |
---|
105 | The function used is: |
---|
106 | \[ |
---|
107 | f_2 = \left[ 1+ |
---|
108 | \left( \frac{{\rm dissip\_fac\_up}}{{\rm dissip\_fac\_mid}} - 1. \right) |
---|
109 | \times \left( 1 - \frac{1 + \tanh X}{2} \right) \right] |
---|
110 | \] |
---|
111 | with |
---|
112 | \[ |
---|
113 | X = \frac{6.\times {\rm dissip\_hdelta}}{{\rm dissip\_deltaz}} |
---|
114 | \log \frac{p}{{\rm dissip\_pupstart} \times |
---|
115 | \exp \left( \frac{-{\rm dissip\_deltaz}}{2 {\rm dissip\_hdelta}} \right)} |
---|
116 | % = \frac{6.\times {\rm dissip\_hdelta}}{{\rm dissip\_deltaz}} |
---|
117 | % \log \frac{p}{{\rm dissip\_pupstart}} + 3. |
---|
118 | \] |
---|
119 | |
---|
120 | {\bf A last parameter\dots} |
---|
121 | |
---|
122 | There is one last coefficient in \textsf{gcm.def} related to dissipation: |
---|
123 | \textsf{coefdis}. |
---|
124 | It is used in \textsf{inigeom.F} to compute \textsf{gamdi\_gdiv, gamdi\_grot, |
---|
125 | gamdi\_h}. Usually put to 0... Should be explained here... |
---|
126 | |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | %\begin{thebibliography}{2} |
---|
131 | %\providecommand{\natexlab}[1]{#1} |
---|
132 | %\expandafter\ifx\csname urlstyle\endcsname\relax |
---|
133 | % \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else |
---|
134 | % \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup |
---|
135 | % \urlstyle{rm}\Url}\fi |
---|
136 | |
---|
137 | %\end{thebibliography} |
---|
138 | |
---|
139 | \end{document} |
---|