!************************************************************************ ! This computer software was prepared by Battelle Memorial Institute, ! hereinafter the Contractor, under Contract No. DE-AC05-76RL0 1830 with ! the Department of Energy (DOE). NEITHER THE GOVERNMENT NOR THE ! CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY ! LIABILITY FOR THE USE OF THIS SOFTWARE. ! ! MOSAIC module: see chem/module_mosaic_driver.F for references and terms ! of use !************************************************************************ MODULE module_mixactivate PRIVATE PUBLIC prescribe_aerosol_mixactivate, mixactivate CONTAINS !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! 06-nov-2005 rce - grid_id & ktau added to arg list ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) subroutine prescribe_aerosol_mixactivate ( & grid_id, ktau, dtstep, naer, & rho_phy, th_phy, pi_phy, w, cldfra, cldfra_old, & z, dz8w, p_at_w, t_at_w, exch_h, & qv, qc, qi, qndrop3d, & nsource, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & f_qc, f_qi ) ! USE module_configure ! wrapper to call mixactivate for mosaic description of aerosol implicit none ! subr arguments integer, intent(in) :: & grid_id, ktau, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte real, intent(in) :: dtstep real, intent(inout) :: naer ! aerosol number (/kg) real, intent(in), & dimension( ims:ime, kms:kme, jms:jme ) :: & rho_phy, th_phy, pi_phy, w, & z, dz8w, p_at_w, t_at_w, exch_h real, intent(inout), & dimension( ims:ime, kms:kme, jms:jme ) :: cldfra, cldfra_old real, intent(in), & dimension( ims:ime, kms:kme, jms:jme ) :: & qv, qc, qi real, intent(inout), & dimension( ims:ime, kms:kme, jms:jme ) :: & qndrop3d real, intent(out), & dimension( ims:ime, kms:kme, jms:jme) :: nsource LOGICAL, OPTIONAL :: f_qc, f_qi ! local vars integer maxd_aphase, maxd_atype, maxd_asize, maxd_acomp, max_chem parameter (maxd_aphase=2,maxd_atype=1,maxd_asize=1,maxd_acomp=1, max_chem=10) real ddvel(its:ite, jts:jte, max_chem) ! dry deposition velosity real qsrflx(ims:ime, jms:jme, max_chem) ! dry deposition flux of aerosol real chem(ims:ime, kms:kme, jms:jme, max_chem) ! chem array integer i,j,k,l,m,n,p real hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk integer ntype_aer, nsize_aer(maxd_atype),ncomp_aer(maxd_atype), nphase_aer integer massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & waterptr_aer( maxd_asize, maxd_atype ), & numptr_aer( maxd_asize, maxd_atype, maxd_aphase ), & ai_phase, cw_phase real dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist dgnum_aer(maxd_asize, maxd_atype), & ! median diameter (cm) of number distrib of mode dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material mw_aer( maxd_acomp, maxd_atype), & ! molecular weight (g/mole) dpvolmean_aer(maxd_asize, maxd_atype) ! mean-volume diameter (cm) of mode ! terminology: (pi/6) * (mean-volume diameter)**3 == ! (volume mixing ratio of section/mode)/(number mixing ratio) real, dimension(ims:ime,kms:kme,jms:jme) :: & ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat integer idrydep_onoff real, dimension(ims:ime,kms:kme,jms:jme) :: t_phy integer msectional integer ptr real maer if(naer.lt.1.)then naer=1000.e6 ! #/kg default value endif ai_phase=1 cw_phase=2 idrydep_onoff = 0 msectional = 0 t_phy(its:ite,kts:kte,jts:jte)=th_phy(its:ite,kts:kte,jts:jte)*pi_phy(its:ite,kts:kte,jts:jte) ntype_aer=maxd_atype do n=1,ntype_aer nsize_aer(n)=maxd_asize ncomp_aer(n)=maxd_acomp end do nphase_aer=maxd_aphase ! set properties for each type and size do n=1,ntype_aer do m=1,nsize_aer(n) dlo_sect( m,n )=0.01e-4 ! minimum size of section (cm) dhi_sect( m,n )=0.5e-4 ! maximum size of section (cm) sigmag_aer(m,n)=2. ! geometric standard deviation of aerosol size dist dgnum_aer(m,n)=0.1e-4 ! median diameter (cm) of number distrib of mode dpvolmean_aer(m,n) = dgnum_aer(m,n) * exp( 1.5 * (log(sigmag_aer(m,n)))**2 ) end do do l=1,ncomp_aer(n) dens_aer( l, n)=1.0 ! density (g/cm3) of material mw_aer( l, n)=132. ! molecular weight (g/mole) end do end do ptr=0 do p=1,nphase_aer do n=1,ntype_aer do m=1,nsize_aer(n) ptr=ptr+1 numptr_aer( m, n, p )=ptr if(p.eq.ai_phase)then chem(its:ite,kts:kte,jts:jte,ptr)=naer else chem(its:ite,kts:kte,jts:jte,ptr)=0. endif end do ! size end do ! type end do ! phase do p=1,maxd_aphase do n=1,ntype_aer do m=1,nsize_aer(n) do l=1,ncomp_aer(n) ptr=ptr+1 if(ptr.gt.max_chem)then write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' call wrf_error_fatal("1") endif massptr_aer(l, m, n, p)=ptr ! maer is ug/kg-air; naer is #/kg-air; dgnum is cm; dens_aer is g/cm3 ! 1.e6 factor converts g to ug maer= 1.0e6 * naer * dens_aer(l,n) * ( (3.1416/6.) * & (dgnum_aer(m,n)**3) * exp( 4.5*((log(sigmag_aer(m,n)))**2) ) ) if(p.eq.ai_phase)then chem(its:ite,kts:kte,jts:jte,ptr)=maer else chem(its:ite,kts:kte,jts:jte,ptr)=0. endif end do end do ! size end do ! type end do ! phase do n=1,ntype_aer do m=1,nsize_aer(n) ptr=ptr+1 if(ptr.gt.max_chem)then write(6,*)'ptr,max_chem=',ptr,max_chem,' in prescribe_aerosol_mixactivate' call wrf_error_fatal("1") endif !wig waterptr_aer(m, n)=ptr waterptr_aer(m, n)=-1 end do ! size end do ! type ddvel(its:ite,jts:jte,:)=0. hygro(its:ite,kts:kte,jts:jte,:,:) = 0.5 ! 06-nov-2005 rce - grid_id & ktau added to arg list call mixactivate( msectional, & chem,max_chem,qv,qc,qi,qndrop3d, & t_phy, w, ddvel, idrydep_onoff, & maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dpvolmean_aer, & dens_aer, mw_aer, & waterptr_aer, hygro, ai_phase, cw_phase, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & rho_phy, z, dz8w, p_at_w, t_at_w, exch_h, & cldfra, cldfra_old, qsrflx, & ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & grid_id, ktau, dtstep, & F_QC=f_qc, F_QI=f_qi ) end subroutine prescribe_aerosol_mixactivate !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! nov-04 sg ! replaced amode with aer and expanded aerosol dimension to include type and phase ! 06-nov-2005 rce - grid_id & ktau added to arg list ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3) subroutine mixactivate( msectional, & chem, num_chem, qv, qc, qi, qndrop3d, & temp, w, ddvel, idrydep_onoff, & maxd_acomp, maxd_asize, maxd_atype, maxd_aphase, & ncomp_aer, nsize_aer, ntype_aer, nphase_aer, & numptr_aer, massptr_aer, dlo_sect, dhi_sect, sigmag_aer, dpvolmean_aer, & dens_aer, mw_aer, & waterptr_aer, hygro, ai_phase, cw_phase, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & rho, zm, dz8w, p_at_w, t_at_w, kvh, & cldfra, cldfra_old, qsrflx, & ccn1, ccn2, ccn3, ccn4, ccn5, ccn6, nsource, & grid_id, ktau, dtstep, & f_qc, f_qi ) ! vertical diffusion and nucleation of cloud droplets ! assume cloud presence controlled by cloud fraction ! doesn't distinguish between warm, cold clouds USE module_model_constants, only: g, rhowater, xlv, cp, rvovrd, r_d, r_v, mwdry, ep_2 USE module_radiation_driver, only: cal_cldfra implicit none ! input INTEGER, intent(in) :: grid_id, ktau INTEGER, intent(in) :: num_chem integer, intent(in) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer maxd_aphase, nphase_aer, maxd_atype, ntype_aer integer maxd_asize, maxd_acomp, nsize_aer(maxd_atype) integer, intent(in) :: & ncomp_aer( maxd_atype ), & massptr_aer( maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ), & waterptr_aer( maxd_asize, maxd_atype ), & numptr_aer( maxd_asize, maxd_atype, maxd_aphase), & ai_phase, cw_phase integer, intent(in) :: msectional ! 1 for sectional, 0 for modal integer, intent(in) :: idrydep_onoff real, intent(in) :: & dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) dhi_sect( maxd_asize, maxd_atype ), & ! maximum size of section (cm) sigmag_aer(maxd_asize, maxd_atype), & ! geometric standard deviation of aerosol size dist dens_aer( maxd_acomp, maxd_atype), & ! density (g/cm3) of material mw_aer( maxd_acomp, maxd_atype), & ! molecular weight (g/mole) dpvolmean_aer(maxd_asize, maxd_atype) ! mean-volume diameter (cm) of mode ! terminology: (pi/6) * (mean-volume diameter)**3 == ! (volume mixing ratio of section/mode)/(number mixing ratio) REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme, num_chem ) :: & chem ! aerosol molar mixing ratio (ug/kg or #/kg) REAL, intent(in), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & qv, qc, qi ! water species (vapor, cloud drops, cloud ice) mixing ratio (g/g) LOGICAL, OPTIONAL :: f_qc, f_qi REAL, intent(inout), DIMENSION( ims:ime, kms:kme, jms:jme ) :: & qndrop3d ! water species mixing ratio (g/g) real, intent(in) :: dtstep ! time step for microphysics (s) real, intent(in) :: temp(ims:ime, kms:kme, jms:jme) ! temperature (K) real, intent(in) :: w(ims:ime, kms:kme, jms:jme) ! vertical velocity (m/s) real, intent(in) :: rho(ims:ime, kms:kme, jms:jme) ! density at mid-level (kg/m3) REAL, intent(in) :: ddvel( its:ite, jts:jte, num_chem ) ! deposition velocity (m/s) real, intent(in) :: zm(ims:ime, kms:kme, jms:jme) ! geopotential height of level (m) real, intent(in) :: dz8w(ims:ime, kms:kme, jms:jme) ! layer thickness (m) real, intent(in) :: p_at_w(ims:ime, kms:kme, jms:jme) ! pressure at layer interface (Pa) real, intent(in) :: t_at_w(ims:ime, kms:kme, jms:jme) ! temperature at layer interface (K) real, intent(in) :: kvh(ims:ime, kms:kme, jms:jme) ! vertical diffusivity (m2/s) real, intent(inout) :: cldfra_old(ims:ime, kms:kme, jms:jme)! cloud fraction on previous time step real, intent(inout) :: cldfra(ims:ime, kms:kme, jms:jme) ! cloud fraction real, intent(in) :: hygro( its:ite, kts:kte, jts:jte, maxd_asize, maxd_atype ) ! bulk hygroscopicity & REAL, intent(out), DIMENSION( ims:ime, jms:jme, num_chem ) :: qsrflx ! dry deposition rate for aerosol real, intent(out), dimension(ims:ime,kms:kme,jms:jme) :: nsource, & ! droplet number source (#/kg/s) ccn1,ccn2,ccn3,ccn4,ccn5,ccn6 ! number conc of aerosols activated at supersat !--------------------Local storage------------------------------------- ! real :: dgnum_aer(maxd_asize, maxd_atype) ! median diameter (cm) of number distrib of mode real :: qndrop(kms:kme) ! cloud droplet number mixing ratio (#/kg) real :: lcldfra(kms:kme) ! liquid cloud fraction real :: lcldfra_old(kms:kme) ! liquid cloud fraction for previous timestep real :: wtke(kms:kme) ! turbulent vertical velocity at base of layer k (m2/s) real zn(kms:kme) ! g/pdel (m2/g) for layer real zs(kms:kme) ! inverse of distance between levels (m) real, parameter :: zkmin = 0.01 real, parameter :: zkmax = 100. real cs(kms:kme) ! air density (kg/m3) at layer center real csbot(kms:kme) ! air density (kg/m3) at layer bottom real csbot_cscen(kms:kme) ! csbot(k)/cs(k) real dz(kms:kme) ! geometric thickness of layers (m) real wdiab ! diabatic vertical velocity ! real, parameter :: wmixmin = 0.1 ! minimum turbulence vertical velocity (m/s) real, parameter :: wmixmin = 0.2 ! minimum turbulence vertical velocity (m/s) ! real, parameter :: wmixmin = 1.0 ! minimum turbulence vertical velocity (m/s) real :: qndrop_new(kms:kme) ! droplet number nucleated on cloud boundaries real :: ekd(kms:kme) ! diffusivity for droplets (m2/s) real :: ekk(kms:kme) ! density*diffusivity for droplets (kg/m3 m2/s) real :: srcn(kms:kme) ! droplet source rate (/s) real, parameter :: sq2pi = 2.5066282746 real dtinv integer km1,kp1 real wbar,wmix,wmin,wmax real dum real tmpa, tmpb, tmpc, tmpc1, tmpc2, tmpd, tmpe, tmpf real tmpcourno real dact real fluxntot ! (#/cm2/s) real fac_srflx real depvel_drop, depvel_tmp real, parameter :: depvel_uplimit = 1.0 ! upper limit for dep vels (m/s) real :: surfrate(num_chem) ! surface exchange rate (/s) real surfratemax ! max surfrate for all species treated here real surfrate_drop ! surfade exchange rate for droplelts real dtmin,tinv,dtt integer nsubmix,nsubmix_bnd integer i,j,k,m,n,nsub real dtmix real alogarg real qcld real pi integer nnew,nsav,ntemp real :: overlapp(kms:kme),overlapm(kms:kme) ! cloud overlap real :: ekkp(kms:kme),ekkm(kms:kme) ! zn*zs*density*diffusivity ! integer, save :: count_submix(100)=0 ! wig: Note that this is a no-no for tile threads with OMP integer lnum,lnumcw,l,lmass,lmasscw,lsfc,lsfccw,ltype,lsig,lwater integer :: ntype(maxd_asize) real :: naerosol(maxd_asize, maxd_atype) ! interstitial aerosol number conc (/m3) real :: naerosolcw(maxd_asize, maxd_atype) ! activated number conc (/m3) real :: maerosol(maxd_acomp,maxd_asize, maxd_atype) ! interstit mass conc (kg/m3) real :: maerosolcw(maxd_acomp,maxd_asize, maxd_atype) ! activated mass conc (kg/m3) real :: maerosol_tot(maxd_asize, maxd_atype) ! species-total interstit mass conc (kg/m3) real :: maerosol_totcw(maxd_asize, maxd_atype) ! species-total activated mass conc (kg/m3) real :: vaerosol(maxd_asize, maxd_atype) ! interstit+activated aerosol volume conc (m3/m3) real :: vaerosolcw(maxd_asize, maxd_atype) ! activated aerosol volume conc (m3/m3) real :: raercol(kms:kme,num_chem,2) ! aerosol mass, number mixing ratios real :: source(kms:kme) ! real :: fn(maxd_asize, maxd_atype) ! activation fraction for aerosol number real :: fs(maxd_asize, maxd_atype) ! activation fraction for aerosol sfcarea real :: fm(maxd_asize, maxd_atype) ! activation fraction for aerosol mass integer :: ncomp(maxd_atype) real :: fluxn(maxd_asize, maxd_atype) ! number activation fraction flux (m/s) real :: fluxs(maxd_asize, maxd_atype) ! sfcarea activation fraction flux (m/s) real :: fluxm(maxd_asize, maxd_atype) ! mass activation fraction flux (m/s) real :: flux_fullact(kms:kme) ! 100% activation fraction flux (m/s) ! note: activation fraction fluxes are defined as ! fluxn = [flux of activated aero. number into cloud (#/m2/s)] ! / [aero. number conc. in updraft, just below cloudbase (#/m3)] real :: nact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. number activation rate (/s) real :: mact(kms:kme,maxd_asize, maxd_atype) ! fractional aero. mass activation rate (/s) real :: npv(maxd_asize, maxd_atype) ! number per volume concentration (/m3) real scale real :: hygro_aer(maxd_asize, maxd_atype) ! hygroscopicity of aerosol mode real :: exp45logsig ! exp(4.5*alogsig**2) real :: alogsig(maxd_asize, maxd_atype) ! natl log of geometric standard dev of aerosol integer, parameter :: psat=6 ! number of supersaturations to calc ccn concentration real ccn(kts:kte,psat) ! number conc of aerosols activated at supersat real, parameter :: supersat(psat)= &! supersaturation (%) to determine ccn concentration (/0.02,0.05,0.1,0.2,0.5,1.0/) real super(psat) ! supersaturation real, parameter :: surften = 0.076 ! surface tension of water w/respect to air (N/m) real :: ccnfact(psat,maxd_asize, maxd_atype) real :: amcube(maxd_asize, maxd_atype) ! cube of dry mode radius (m) real :: argfactor(maxd_asize, maxd_atype) real aten ! surface tension parameter real t0 ! reference temperature real sm ! critical supersaturation real arg integer,parameter :: icheck_colmass = 0 ! icheck_colmass > 0 turns on mass/number conservation checking ! values of 1, 10, 100 produce less to more diagnostics integer :: colmass_worst_ij( 2, 0:maxd_acomp, maxd_asize, maxd_atype ) integer :: colmass_maxworst_i(3) real :: colmass_bgn( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) real :: colmass_end( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) real :: colmass_sfc( 0:maxd_acomp, maxd_asize, maxd_atype, maxd_aphase ) real :: colmass_worst( 0:maxd_acomp, maxd_asize, maxd_atype ) real :: colmass_maxworst_r real :: rhodz( kts:kte ), rhodzsum !!$#if (defined AIX) !!$#define ERF erf !!$#define ERFC erfc !!$#else !!$#define ERF erf !!$ real erf !!$#define ERFC erfc !!$ real erfc !!$#endif character*8, parameter :: ccn_name(psat)=(/'CCN1','CCN2','CCN3','CCN4','CCN5','CCN6'/) colmass_worst(:,:,:) = 0.0 colmass_worst_ij(:,:,:,:) = -1 arg = 1.0 if (abs(0.8427-ERF_ALT(arg))/0.8427>0.001) then write (6,*) 'erf_alt(1.0) = ',ERF_ALT(arg) call wrf_error_fatal('dropmixnuc: Error function error') endif arg = 0.0 if (ERF_ALT(arg) /= 0.0) then write (6,*) 'erf_alt(0.0) = ',ERF_ALT(arg) call wrf_error_fatal('dropmixnuc: Error function error') endif pi = 4.*atan(1.0) dtinv=1./dtstep depvel_drop = 0.1 ! prescribed here rather than getting it from dry_dep_driver if (idrydep_onoff .le. 0) depvel_drop = 0.0 depvel_drop = min(depvel_drop,depvel_uplimit) do n=1,ntype_aer do m=1,nsize_aer(n) ncomp(n)=ncomp_aer(n) alogsig(m,n)=alog(sigmag_aer(m,n)) dgnum_aer(m,n) = dpvolmean_aer(m,n) * exp( -1.5*alogsig(m,n)*alogsig(m,n) ) ! print *,'sigmag_aer,dgnum_aer=',sigmag_aer(m,n),dgnum_aer(m,n) ! npv is used only if number is diagnosed from volume npv(m,n)=6./(pi*(0.01*dgnum_aer(m,n))**3*exp(4.5*alogsig(m,n)*alogsig(m,n))) end do end do t0=273.15 !wig, 1-Mar-2009: Added .15 aten=2.*surften/(r_v*t0*rhowater) super(:)=0.01*supersat(:) do n=1,ntype_aer do m=1,nsize_aer(n) exp45logsig=exp(4.5*alogsig(m,n)*alogsig(m,n)) argfactor(m,n)=2./(3.*sqrt(2.)*alogsig(m,n)) amcube(m,n)=3./(4.*pi*exp45logsig*npv(m,n)) enddo enddo IF( PRESENT(F_QC) .AND. PRESENT ( F_QI ) ) THEN CALL cal_cldfra(CLDFRA,qc,qi,f_qc,f_qi, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) END IF qsrflx(its:ite,jts:jte,:) = 0. ! start loop over columns OVERALL_MAIN_J_LOOP: do j=jts,jte OVERALL_MAIN_I_LOOP: do i=its,ite ! load number nucleated into qndrop on cloud boundaries ! initialization for current i ......................................... do k=kts+1,kte zs(k)=1./(zm(i,k,j)-zm(i,k-1,j)) enddo zs(kts)=zs(kts+1) zs(kte+1)=0. do k=kts,kte !!$ if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then !!$! call wrf_error_fatal("1") !!$ endif if(f_qi)then qcld=qc(i,k,j)+qi(i,k,j) else qcld=qc(i,k,j) endif if(qcld.lt.-1..or.qcld.gt.1.)then write(6,'(a,g12.2,a,3i5)')'qcld=',qcld,' for i,k,j=',i,k,j call wrf_error_fatal("1") endif if(qcld.gt.1.e-20)then lcldfra(k)=cldfra(i,k,j)*qc(i,k,j)/qcld lcldfra_old(k)=cldfra_old(i,k,j)*qc(i,k,j)/qcld else lcldfra(k)=0. lcldfra_old(k)=0. endif qndrop(k)=qndrop3d(i,k,j) ! qndrop(k)=1.e5 cs(k)=rho(i,k,j) ! air density (kg/m3) dz(k)=dz8w(i,k,j) do n=1,ntype_aer do m=1,nsize_aer(n) nact(k,m,n)=0. mact(k,m,n)=0. enddo enddo zn(k)=1./(cs(k)*dz(k)) if(k>kts)then ekd(k)=kvh(i,k,j) ekd(k)=max(ekd(k),zkmin) ekd(k)=min(ekd(k),zkmax) else ekd(k)=0 endif ! diagnose subgrid vertical velocity from diffusivity if(k.eq.kts)then wtke(k)=sq2pi*depvel_drop ! wtke(k)=sq2pi*kvh(i,k,j) ! wtke(k)=max(wtke(k),wmixmin) else wtke(k)=sq2pi*ekd(k)/dz(k) endif wtke(k)=max(wtke(k),wmixmin) nsource(i,k,j)=0. enddo nsource(i,kte+1,j) = 0. qndrop(kte+1) = 0. zn(kte+1) = 0. do k = kts+1, kte tmpa = dz(k-1) ; tmpb = dz(k) tmpc = tmpa/(tmpa + tmpb) csbot(k) = cs(k-1)*(1.0-tmpc) + cs(k)*tmpc csbot_cscen(k) = csbot(k)/cs(k) end do csbot(kts) = cs(kts) csbot_cscen(kts) = 1.0 csbot(kte+1) = cs(kte) csbot_cscen(kte+1) = 1.0 ! calculate surface rate and mass mixing ratio for aerosol surfratemax = 0.0 nsav=1 nnew=2 surfrate_drop=depvel_drop/dz(kts) surfratemax = max( surfratemax, surfrate_drop ) do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum>0)then depvel_tmp = max( 0.0, min( ddvel(i,j,lnum), depvel_uplimit ) ) surfrate(lnum)=depvel_tmp/dz(kts) surfrate(lnumcw)=surfrate_drop surfratemax = max( surfratemax, surfrate(lnum) ) ! scale = 1000./mwdry ! moles/kg scale = 1. raercol(kts:kte,lnumcw,nsav)=chem(i,kts:kte,j,lnumcw)*scale ! #/kg raercol(kts:kte,lnum,nsav)=chem(i,kts:kte,j,lnum)*scale endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) ! scale = mw_aer(l,n)/mwdry scale = 1.e-9 ! kg/ug depvel_tmp = max( 0.0, min( ddvel(i,j,lmass), depvel_uplimit ) ) surfrate(lmass)=depvel_tmp/dz(kts) surfrate(lmasscw)=surfrate_drop surfratemax = max( surfratemax, surfrate(lmass) ) raercol(kts:kte,lmasscw,nsav)=chem(i,kts:kte,j,lmasscw)*scale ! kg/kg raercol(kts:kte,lmass,nsav)=chem(i,kts:kte,j,lmass)*scale ! kg/kg enddo lwater=waterptr_aer(m,n) if(lwater>0)then depvel_tmp = max( 0.0, min( ddvel(i,j,lwater), depvel_uplimit ) ) surfrate(lwater)=depvel_tmp/dz(kts) surfratemax = max( surfratemax, surfrate(lwater) ) raercol(kts:kte,lwater,nsav)=chem(i,kts:kte,j,lwater) ! don't bother to convert units, ! because it doesn't contribute to aerosol mass endif enddo ! size enddo ! type ! mass conservation checking if (icheck_colmass > 0) then ! calc initial column burdens colmass_bgn(:,:,:,:) = 0.0 colmass_end(:,:,:,:) = 0.0 colmass_sfc(:,:,:,:) = 0.0 rhodz(kts:kte) = 1.0/zn(kts:kte) rhodzsum = sum( rhodz(kts:kte) ) do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum>0)then colmass_bgn(0,m,n,1) = sum( chem(i,kts:kte,j,lnum )*rhodz(kts:kte) ) colmass_bgn(0,m,n,2) = sum( chem(i,kts:kte,j,lnumcw)*rhodz(kts:kte) ) endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) colmass_bgn(l,m,n,1) = sum( chem(i,kts:kte,j,lmass )*rhodz(kts:kte) ) colmass_bgn(l,m,n,2) = sum( chem(i,kts:kte,j,lmasscw)*rhodz(kts:kte) ) enddo enddo ! size enddo ! type endif ! (icheck_colmass > 0) ! droplet nucleation/aerosol activation ! k-loop for growing/shrinking cloud calcs ............................. GROW_SHRINK_MAIN_K_LOOP: do k=kts,kte km1=max0(k-1,1) kp1=min0(k+1,kde-1) ! if(lcldfra(k)-lcldfra_old(k).gt.0.01)then ! this line is the "old" criterion ! go to 10 ! growing cloud PLUS ! upwards vertical advection when lcldfra(k-1) < lcldfra(k) ! ! tmpc1 = cloud fraction increase from previous time step tmpc1 = max( (lcldfra(k)-lcldfra_old(k)), 0.0 ) if (k > kts) then ! tmpc2 = fraction of layer for which vertical advection from below ! (over dtstep) displaces cloudy air with clear air ! = (courant number using upwards w at layer bottom)*(difference in cloud fraction) tmpcourno = dtstep*max(w(i,k,j),0.0)/dz(k) tmpc2 = max( (lcldfra(k)-lcldfra(km1)), 0.0 ) * tmpcourno tmpc2 = min( tmpc2, 1.0 ) ! tmpc2 = 0.0 ! this turns off the vertical advect part else tmpc2 = 0.0 endif if ((tmpc1 > 0.001) .or. (tmpc2 > 0.001)) then ! wmix=wtke(k) wbar=w(i,k,j)+wtke(k) wmix=0. wmin=0. ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) wmax=50. wdiab=0 ! load aerosol properties, assuming external mixtures do n=1,ntype_aer do m=1,nsize_aer(n) call loadaer(raercol(1,1,nsav),k,kms,kme,num_chem, & cs(k), npv(m,n), dlo_sect(m,n),dhi_sect(m,n), & maxd_acomp, ncomp(n), & grid_id, ktau, i, j, m, n, & numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & dens_aer(1,n), & massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & maerosol(1,m,n), maerosolcw(1,m,n), & maerosol_tot(m,n), maerosol_totcw(m,n), & naerosol(m,n), naerosolcw(m,n), & vaerosol(m,n), vaerosolcw(m,n) ) hygro_aer(m,n)=hygro(i,k,j,m,n) enddo enddo ! 06-nov-2005 rce - grid_id & ktau added to arg list call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & naerosol, vaerosol, & dlo_sect,dhi_sect,sigmag_aer,hygro_aer, & fn,fs,fm,fluxn,fluxs,fluxm,flux_fullact(k), grid_id, ktau, i, j, k ) do n = 1,ntype_aer do m = 1,nsize_aer(n) lnum = numptr_aer(m,n,ai_phase) lnumcw = numptr_aer(m,n,cw_phase) if (tmpc1 > 0.0) then dact = tmpc1*fn(m,n)*raercol(k,lnum,nsav) ! interstitial only else dact = 0.0 endif if (tmpc2 > 0.0) then dact = dact + tmpc2*fn(m,n)*raercol(km1,lnum,nsav) ! interstitial only endif dact = min( dact, 0.99*raercol(k,lnum,nsav) ) raercol(k,lnumcw,nsav) = raercol(k,lnumcw,nsav)+dact raercol(k,lnum, nsav) = raercol(k,lnum, nsav)-dact qndrop(k) = qndrop(k)+dact nsource(i,k,j) = nsource(i,k,j)+dact*dtinv do l = 1,ncomp(n) lmass = massptr_aer(l,m,n,ai_phase) lmasscw = massptr_aer(l,m,n,cw_phase) if (tmpc1 > 0.0) then dact = tmpc1*fm(m,n)*raercol(k,lmass,nsav) ! interstitial only else dact = 0.0 endif if (tmpc2 > 0.0) then dact = dact + tmpc2*fm(m,n)*raercol(km1,lmass,nsav) ! interstitial only endif dact = min( dact, 0.99*raercol(k,lmass,nsav) ) raercol(k,lmasscw,nsav) = raercol(k,lmasscw,nsav)+dact raercol(k,lmass, nsav) = raercol(k,lmass, nsav)-dact enddo enddo enddo ! 10 continue endif ! ((tmpc1 > 0.001) .or. (tmpc2 > 0.001)) if(lcldfra(k) < lcldfra_old(k) .and. lcldfra_old(k) > 1.e-20)then ! this line is the "old" criterion ! go to 20 ! shrinking cloud ...................................................... ! droplet loss in decaying cloud nsource(i,k,j)=nsource(i,k,j)+qndrop(k)*(lcldfra(k)-lcldfra_old(k))*dtinv qndrop(k)=qndrop(k)*(1.+lcldfra(k)-lcldfra_old(k)) ! convert activated aerosol to interstitial in decaying cloud tmpc = (lcldfra(k)-lcldfra_old(k))/lcldfra_old(k) do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum.gt.0)then dact=raercol(k,lnumcw,nsav)*tmpc raercol(k,lnumcw,nsav)=raercol(k,lnumcw,nsav)+dact raercol(k,lnum,nsav)=raercol(k,lnum,nsav)-dact endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) dact=raercol(k,lmasscw,nsav)*tmpc raercol(k,lmasscw,nsav)=raercol(k,lmasscw,nsav)+dact raercol(k,lmass,nsav)=raercol(k,lmass,nsav)-dact enddo enddo enddo ! 20 continue endif enddo GROW_SHRINK_MAIN_K_LOOP ! end of k-loop for growing/shrinking cloud calcs ...................... ! ...................................................................... ! start of main k-loop for calc of old cloud activation tendencies .......... ! this loop does "set up" for the nsubmix loop ! ! rce-comment ! changed this part of code to use current cloud fraction (lcldfra) exclusively OLD_CLOUD_MAIN_K_LOOP: do k=kts,kte km1=max0(k-1,kts) kp1=min0(k+1,kde-1) flux_fullact(k) = 0.0 if(lcldfra(k).gt.0.01)then ! go to 30 ! old cloud if(lcldfra(k)-lcldfra(km1).gt.0.01.or.k.eq.kts)then ! interior cloud ! cloud base wdiab=0 wmix=wtke(k) ! spectrum of updrafts wbar=w(i,k,j) ! spectrum of updrafts ! wmix=0. ! single updraft ! wbar=wtke(k) ! single updraft ! 06-nov-2005 rce - increase wmax from 10 to 50 (deep convective clouds) wmax=50. ekd(k)=wtke(k)*dz(k)/sq2pi alogarg=max(1.e-20,1/lcldfra(k)-1.) wmin=wbar+wmix*0.25*sq2pi*alog(alogarg) do n=1,ntype_aer do m=1,nsize_aer(n) call loadaer(raercol(1,1,nsav),km1,kms,kme,num_chem, & cs(k), npv(m,n),dlo_sect(m,n),dhi_sect(m,n), & maxd_acomp, ncomp(n), & grid_id, ktau, i, j, m, n, & numptr_aer(m,n,ai_phase),numptr_aer(m,n,cw_phase), & dens_aer(1,n), & massptr_aer(1,m,n,ai_phase), massptr_aer(1,m,n,cw_phase), & maerosol(1,m,n), maerosolcw(1,m,n), & maerosol_tot(m,n), maerosol_totcw(m,n), & naerosol(m,n), naerosolcw(m,n), & vaerosol(m,n), vaerosolcw(m,n) ) hygro_aer(m,n)=hygro(i,k,j,m,n) enddo enddo ! print *,'old cloud wbar,wmix=',wbar,wmix call activate(wbar,wmix,wdiab,wmin,wmax,temp(i,k,j),cs(k), & msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & naerosol, vaerosol, & dlo_sect,dhi_sect, sigmag_aer,hygro_aer, & fn,fs,fm,fluxn,fluxs,fluxm,flux_fullact(k), grid_id, ktau, i, j, k ) ! rce-comment ! the activation-fraction fluxes (fluxn, fluxm) from subr activate assume that ! wbar << wmix, which is valid for global-model scale but not mesoscale ! for wrf-chem application, divide these by flux_fullact to get a ! "flux-weighted-average" activation fraction, then multiply by (ekd(k)*zs(k)) ! which is the local "turbulent vertical-mixing velocity" if (k > kts) then if (flux_fullact(k) > 1.0e-20) then tmpa = ekd(k)*zs(k) tmpf = flux_fullact(k) do n=1,ntype_aer do m=1,nsize_aer(n) tmpb = max( fluxn(m,n), 0.0 ) / max( fluxn(m,n), tmpf ) fluxn(m,n) = tmpa*tmpb tmpb = max( fluxm(m,n), 0.0 ) / max( fluxm(m,n), tmpf ) fluxm(m,n) = tmpa*tmpb enddo enddo else fluxn(:,:) = 0.0 fluxm(:,:) = 0.0 endif endif if(k.gt.kts)then tmpc = lcldfra(k)-lcldfra(km1) else tmpc=lcldfra(k) endif ! rce-comment ! flux of activated mass into layer k (in kg/m2/s) ! = "actmassflux" = dumc*fluxm*raercol(kp1,lmass)*csbot(k) ! source of activated mass (in kg/kg/s) = flux divergence ! = actmassflux/(cs(i,k)*dz(i,k)) ! so need factor of csbot_cscen = csbot(k)/cs(i,k) ! tmpe=1./(dz(k)) tmpe = csbot_cscen(k)/(dz(k)) fluxntot=0. do n=1,ntype_aer do m=1,nsize_aer(n) fluxn(m,n)=fluxn(m,n)*tmpc ! fluxs(m,n)=fluxs(m,n)*tmpc fluxm(m,n)=fluxm(m,n)*tmpc lnum=numptr_aer(m,n,ai_phase) fluxntot=fluxntot+fluxn(m,n)*raercol(km1,lnum,nsav) ! print *,'fn=',fn(m,n),' for m,n=',m,n ! print *,'old cloud tmpc=',tmpc,' fn=',fn(m,n),' for m,n=',m,n nact(k,m,n)=nact(k,m,n)+fluxn(m,n)*tmpe mact(k,m,n)=mact(k,m,n)+fluxm(m,n)*tmpe enddo enddo flux_fullact(k) = flux_fullact(k)*tmpe nsource(i,k,j)=nsource(i,k,j)+fluxntot*zs(k) fluxntot=fluxntot*cs(k) endif ! 30 continue else ! go to 40 ! no cloud if(qndrop(k).gt.10000.e6)then print *,'i,k,j,lcldfra,qndrop=',i,k,j,lcldfra(k),qndrop(k) print *,'cldfra,ql,qi',cldfra(i,k,j),qc(i,k,j),qi(i,k,j) endif nsource(i,k,j)=nsource(i,k,j)-qndrop(k)*dtinv qndrop(k)=0. ! convert activated aerosol to interstitial in decaying cloud do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum.gt.0)then raercol(k,lnum,nsav)=raercol(k,lnum,nsav)+raercol(k,lnumcw,nsav) raercol(k,lnumcw,nsav)=0. endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) raercol(k,lmass,nsav)=raercol(k,lmass,nsav)+raercol(k,lmasscw,nsav) raercol(k,lmasscw,nsav)=0. enddo enddo enddo ! 40 continue endif enddo OLD_CLOUD_MAIN_K_LOOP ! cycle OVERALL_MAIN_I_LOOP ! switch nsav, nnew so that nnew is the updated aerosol ntemp=nsav nsav=nnew nnew=ntemp ! load new droplets in layers above, below clouds dtmin=dtstep ekk(kts)=0.0 ! rce-comment -- ekd(k) is eddy-diffusivity at k/k-1 interface ! want ekk(k) = ekd(k) * (density at k/k-1 interface) do k=kts+1,kte ekk(k)=ekd(k)*csbot(k) enddo ekk(kte+1)=0.0 do k=kts,kte ekkp(k)=zn(k)*ekk(k+1)*zs(k+1) ekkm(k)=zn(k)*ekk(k)*zs(k) tinv=ekkp(k)+ekkm(k) if(k.eq.kts)tinv=tinv+surfratemax if(tinv.gt.1.e-6)then dtt=1./tinv dtmin=min(dtmin,dtt) endif enddo dtmix=0.9*dtmin nsubmix=dtstep/dtmix+1 if(nsubmix>100)then nsubmix_bnd=100 else nsubmix_bnd=nsubmix endif ! count_submix(nsubmix_bnd)=count_submix(nsubmix_bnd)+1 dtmix=dtstep/nsubmix fac_srflx = -1.0/(zn(1)*nsubmix) do k=kts,kte kp1=min(k+1,kde-1) km1=max(k-1,1) if(lcldfra(kp1).gt.0)then overlapp(k)=min(lcldfra(k)/lcldfra(kp1),1.) else overlapp(k)=1. endif if(lcldfra(km1).gt.0)then overlapm(k)=min(lcldfra(k)/lcldfra(km1),1.) else overlapm(k)=1. endif enddo ! ...................................................................... ! start of nsubmix-loop for calc of old cloud activation tendencies .... OLD_CLOUD_NSUBMIX_LOOP: do nsub=1,nsubmix qndrop_new(kts:kte)=qndrop(kts:kte) ! switch nsav, nnew so that nsav is the updated aerosol ntemp=nsav nsav=nnew nnew=ntemp srcn(:)=0.0 do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) ! update droplet source ! rce-comment - activation source in layer k involves particles from k-1 ! srcn(kts :kte)=srcn(kts :kte)+nact(kts :kte,m,n)*(raercol(kts:kte ,lnum,nsav)) srcn(kts+1:kte)=srcn(kts+1:kte)+nact(kts+1:kte,m,n)*(raercol(kts:kte-1,lnum,nsav)) ! rce-comment - new formulation for k=kts should be implemented srcn(kts )=srcn(kts )+nact(kts ,m,n)*(raercol(kts ,lnum,nsav)) enddo enddo call explmix(qndrop,srcn,ekkp,ekkm,overlapp,overlapm, & qndrop_new,surfrate_drop,kms,kme,kts,kte,dtmix,.false.) do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum>0)then ! rce-comment - activation source in layer k involves particles from k-1 ! source(kts :kte)= nact(kts :kte,m,n)*(raercol(kts:kte ,lnum,nsav)) source(kts+1:kte)= nact(kts+1:kte,m,n)*(raercol(kts:kte-1,lnum,nsav)) ! rce-comment - new formulation for k=kts should be implemented source(kts )= nact(kts ,m,n)*(raercol(kts ,lnum,nsav)) call explmix(raercol(1,lnumcw,nnew),source,ekkp,ekkm,overlapp,overlapm, & raercol(1,lnumcw,nsav),surfrate(lnumcw),kms,kme,kts,kte,dtmix,& .false.) call explmix(raercol(1,lnum,nnew),source,ekkp,ekkm,overlapp,overlapm, & raercol(1,lnum,nsav),surfrate(lnum),kms,kme,kts,kte,dtmix, & .true.,raercol(1,lnumcw,nsav)) qsrflx(i,j,lnum) = qsrflx(i,j,lnum) + fac_srflx* & raercol(kts,lnum,nsav)*surfrate(lnum) qsrflx(i,j,lnumcw) = qsrflx(i,j,lnumcw) + fac_srflx* & raercol(kts,lnumcw,nsav)*surfrate(lnumcw) if (icheck_colmass > 0) then tmpf = dtmix*rhodz(kts) colmass_sfc(0,m,n,1) = colmass_sfc(0,m,n,1) & + raercol(kts,lnum ,nsav)*surfrate(lnum )*tmpf colmass_sfc(0,m,n,2) = colmass_sfc(0,m,n,2) & + raercol(kts,lnumcw,nsav)*surfrate(lnumcw)*tmpf endif endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) ! rce-comment - activation source in layer k involves particles from k-1 ! source(kts :kte)= mact(kts :kte,m,n)*(raercol(kts:kte ,lmass,nsav)) source(kts+1:kte)= mact(kts+1:kte,m,n)*(raercol(kts:kte-1,lmass,nsav)) ! rce-comment - new formulation for k=kts should be implemented source(kts )= mact(kts ,m,n)*(raercol(kts ,lmass,nsav)) call explmix(raercol(1,lmasscw,nnew),source,ekkp,ekkm,overlapp,overlapm, & raercol(1,lmasscw,nsav),surfrate(lmasscw),kms,kme,kts,kte,dtmix, & .false.) call explmix(raercol(1,lmass,nnew),source,ekkp,ekkm,overlapp,overlapm, & raercol(1,lmass,nsav),surfrate(lmass),kms,kme,kts,kte,dtmix, & .true.,raercol(1,lmasscw,nsav)) qsrflx(i,j,lmass) = qsrflx(i,j,lmass) + fac_srflx* & raercol(kts,lmass,nsav)*surfrate(lmass) qsrflx(i,j,lmasscw) = qsrflx(i,j,lmasscw) + fac_srflx* & raercol(kts,lmasscw,nsav)*surfrate(lmasscw) if (icheck_colmass > 0) then ! colmass_sfc calculation ! colmass_bgn/end = bgn/end column burden = sum.over.k.of{ rho(k)*dz(k)*chem(k,l) } ! colmass_sfc = surface loss over dtstep ! = sum.over.nsubmix.substeps{ depvel(l)*rho(kts)*chem(kts,l)*dtmix } ! surfrate(l) = depvel(l)/dz(kts) so need to multiply by dz(kts) ! for mass, raercol(k,l) = chem(k,l)*1.0e-9, so need to multiply by 1.0e9 tmpf = dtmix*rhodz(kts)*1.0e9 colmass_sfc(l,m,n,1) = colmass_sfc(l,m,n,1) & + raercol(kts,lmass ,nsav)*surfrate(lmass )*tmpf colmass_sfc(l,m,n,2) = colmass_sfc(l,m,n,2) & + raercol(kts,lmasscw,nsav)*surfrate(lmasscw)*tmpf endif enddo lwater=waterptr_aer(m,n) ! aerosol water if(lwater>0)then source(:)=0. call explmix( raercol(1,lwater,nnew),source,ekkp,ekkm,overlapp,overlapm, & raercol(1,lwater,nsav),surfrate(lwater),kms,kme,kts,kte,dtmix, & .true.,source) endif enddo ! size enddo ! type enddo OLD_CLOUD_NSUBMIX_LOOP ! cycle OVERALL_MAIN_I_LOOP ! evaporate particles again if no cloud do k=kts,kte if(lcldfra(k).eq.0.)then ! no cloud qndrop(k)=0. ! convert activated aerosol to interstitial in decaying cloud do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum.gt.0)then raercol(k,lnum,nnew)=raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew) raercol(k,lnumcw,nnew)=0. endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) raercol(k,lmass,nnew)=raercol(k,lmass,nnew)+raercol(k,lmasscw,nnew) raercol(k,lmasscw,nnew)=0. enddo enddo enddo endif enddo ! cycle OVERALL_MAIN_I_LOOP ! droplet number do k=kts,kte ! if(lcldfra(k).gt.0.1)then ! write(6,'(a,3i5,f12.1)')'i,j,k,qndrop=',i,j,k,qndrop(k) ! endif if(qndrop(k).lt.-10.e6.or.qndrop(k).gt.1.e12)then write(6,'(a,g12.2,a,3i5)')'after qndrop=',qndrop(k),' for i,k,j=',i,k,j endif qndrop3d(i,k,j) = max(qndrop(k),1.e-6) if(qndrop3d(i,k,j).lt.-10.e6.or.qndrop3d(i,k,j).gt.1.E20)then write(6,'(a,g12.2,a,3i5)')'after qndrop3d=',qndrop3d(i,k,j),' for i,k,j=',i,k,j endif if(qc(i,k,j).lt.-1..or.qc(i,k,j).gt.1.)then write(6,'(a,g12.2,a,3i5)')'qc=',qc(i,k,j),' for i,k,j=',i,k,j call wrf_error_fatal("1") endif if(qi(i,k,j).lt.-1..or.qi(i,k,j).gt.1.)then write(6,'(a,g12.2,a,3i5)')'qi=',qi(i,k,j),' for i,k,j=',i,k,j call wrf_error_fatal("1") endif if(qv(i,k,j).lt.-1..or.qv(i,k,j).gt.1.)then write(6,'(a,g12.2,a,3i5)')'qv=',qv(i,k,j),' for i,k,j=',i,k,j call wrf_error_fatal("1") endif cldfra_old(i,k,j) = cldfra(i,k,j) ! if(k.gt.6.and.k.lt.11)cldfra_old(i,k,j)=1. enddo ! cycle OVERALL_MAIN_I_LOOP ! update chem and convert back to mole/mole ccn(:,:) = 0. do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum.gt.0)then ! scale=mwdry*0.001 scale = 1. chem(i,kts:kte,j,lnumcw)= raercol(kts:kte,lnumcw,nnew)*scale chem(i,kts:kte,j,lnum)= raercol(kts:kte,lnum,nnew)*scale endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) ! scale = mwdry/mw_aer(l,n) scale = 1.e9 chem(i,kts:kte,j,lmasscw)=raercol(kts:kte,lmasscw,nnew)*scale ! ug/kg chem(i,kts:kte,j,lmass)=raercol(kts:kte,lmass,nnew)*scale ! ug/kg enddo lwater=waterptr_aer(m,n) if(lwater>0)chem(i,kts:kte,j,lwater)=raercol(kts:kte,lwater,nnew) ! don't convert units do k=kts,kte sm=2.*aten*sqrt(aten/(27.*hygro(i,k,j,m,n)*amcube(m,n))) do l=1,psat arg=argfactor(m,n)*log(sm/super(l)) if(arg<2)then if(arg<-2)then ccnfact(l,m,n)=1.e-6 ! convert from #/m3 to #/cm3 else ccnfact(l,m,n)=1.e-6*0.5*ERFC_NUM_RECIPES(arg) endif else ccnfact(l,m,n) = 0. endif ! ccn concentration as diagnostic ! assume same hygroscopicity and ccnfact for cloud-phase and aerosol phase particles ccn(k,l)=ccn(k,l)+(raercol(k,lnum,nnew)+raercol(k,lnumcw,nnew))*cs(k)*ccnfact(l,m,n) enddo enddo enddo enddo do l=1,psat !wig, 22-Nov-2006: added vertical bounds to prevent out-of-bounds at top if(l.eq.1)ccn1(i,kts:kte,j)=ccn(:,l) if(l.eq.2)ccn2(i,kts:kte,j)=ccn(:,l) if(l.eq.3)ccn3(i,kts:kte,j)=ccn(:,l) if(l.eq.4)ccn4(i,kts:kte,j)=ccn(:,l) if(l.eq.5)ccn5(i,kts:kte,j)=ccn(:,l) if(l.eq.6)ccn6(i,kts:kte,j)=ccn(:,l) end do ! mass conservation checking if (icheck_colmass > 0) then ! calc final column burdens do n=1,ntype_aer do m=1,nsize_aer(n) lnum=numptr_aer(m,n,ai_phase) lnumcw=numptr_aer(m,n,cw_phase) if(lnum>0)then colmass_end(0,m,n,1) = sum( chem(i,kts:kte,j,lnum )*rhodz(kts:kte) ) colmass_end(0,m,n,2) = sum( chem(i,kts:kte,j,lnumcw)*rhodz(kts:kte) ) endif do l=1,ncomp(n) lmass=massptr_aer(l,m,n,ai_phase) lmasscw=massptr_aer(l,m,n,cw_phase) colmass_end(l,m,n,1) = sum( chem(i,kts:kte,j,lmass )*rhodz(kts:kte) ) colmass_end(l,m,n,2) = sum( chem(i,kts:kte,j,lmasscw)*rhodz(kts:kte) ) enddo enddo ! size enddo ! type ! calc burden change errors for each interstitial/activated pair do n=1,ntype_aer do m=1,nsize_aer(n) do l=0,ncomp(n) ! tmpa & tmpb = beginning & ending column burden divided by rhodzsum, ! = beginning & ending column-mean mixing ratios ! tmpc = loss to surface divided by rhodzsum, tmpa = ( colmass_bgn(l,m,n,1) + colmass_bgn(l,m,n,2) )/rhodzsum tmpb = ( colmass_end(l,m,n,1) + colmass_end(l,m,n,2) )/rhodzsum tmpc = ( colmass_sfc(l,m,n,1) + colmass_sfc(l,m,n,2) )/rhodzsum ! tmpd = ((final burden) + (sfc loss)) - (initial burden) ! = burden change error tmpd = (tmpb + tmpc) - tmpa tmpe = max( tmpa, 1.0e-20 ) ! tmpf = (burden change error) / (initial burden) if (abs(tmpd) < 1.0e5*tmpe) then tmpf = tmpd/tmpe else if (tmpf < 0.0) then tmpf = -1.0e5 else tmpf = 1.0e5 end if if (abs(tmpf) > abs(colmass_worst(l,m,n))) then colmass_worst(l,m,n) = tmpf colmass_worst_ij(1,l,m,n) = i colmass_worst_ij(2,l,m,n) = j endif enddo enddo ! size enddo ! type endif ! (icheck_colmass > 0) enddo OVERALL_MAIN_I_LOOP ! end of main loop over i enddo OVERALL_MAIN_J_LOOP ! end of main loop over j ! mass conservation checking if (icheck_colmass > 0) then if (icheck_colmass >= 100) write(*,'(a)') & 'mixactivate colmass worst errors bgn - type, size, comp, err, i, j' colmass_maxworst_r = 0.0 colmass_maxworst_i(:) = -1 do n=1,ntype_aer do m=1,nsize_aer(n) do l=0,ncomp(n) if (icheck_colmass >= 100) & write(*,'(3i3,1p,e10.2,2i4)') n, m, l, & colmass_worst(l,m,n), colmass_worst_ij(1:2,l,m,n) if (abs(colmass_worst(l,m,n)) > abs(colmass_maxworst_r)) then colmass_maxworst_r = colmass_worst(l,m,n) colmass_maxworst_i(1) = n colmass_maxworst_i(2) = m colmass_maxworst_i(3) = l end if enddo enddo ! size enddo ! type if ((icheck_colmass >= 10) .or. (abs(colmass_maxworst_r) >= 1.0e-6)) & write(*,'(a,3i3,1p,e10.2)') 'mixactivate colmass maxworst', & colmass_maxworst_i(1:3), colmass_maxworst_r endif ! (icheck_colmass > 0) return end subroutine mixactivate !---------------------------------------------------------------------- !---------------------------------------------------------------------- subroutine explmix( q, src, ekkp, ekkm, overlapp, overlapm, & qold, surfrate, kms, kme, kts, kte, dt, & is_unact, qactold ) ! explicit integration of droplet/aerosol mixing ! with source due to activation/nucleation implicit none integer, intent(in) :: kms,kme ! number of levels for array definition integer, intent(in) :: kts,kte ! number of levels for looping real, intent(inout) :: q(kms:kme) ! mixing ratio to be updated real, intent(in) :: qold(kms:kme) ! mixing ratio from previous time step real, intent(in) :: src(kms:kme) ! source due to activation/nucleation (/s) real, intent(in) :: ekkp(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface ! below layer k (k,k+1 interface) real, intent(in) :: ekkm(kms:kme) ! zn*zs*density*diffusivity (kg/m3 m2/s) at interface ! above layer k (k,k+1 interface) real, intent(in) :: overlapp(kms:kme) ! cloud overlap below real, intent(in) :: overlapm(kms:kme) ! cloud overlap above real, intent(in) :: surfrate ! surface exchange rate (/s) real, intent(in) :: dt ! time step (s) logical, intent(in) :: is_unact ! true if this is an unactivated species real, intent(in),optional :: qactold(kms:kme) ! mixing ratio of ACTIVATED species from previous step ! *** this should only be present ! if the current species is unactivated number/sfc/mass integer k,kp1,km1 if ( is_unact ) then ! the qactold*(1-overlap) terms are resuspension of activated material do k=kts,kte kp1=min(k+1,kte) km1=max(k-1,kts) q(k) = qold(k) + dt*( - src(k) + ekkp(k)*(qold(kp1) - qold(k) + & qactold(kp1)*(1.0-overlapp(k))) & + ekkm(k)*(qold(km1) - qold(k) + & qactold(km1)*(1.0-overlapm(k))) ) ! if(q(k)<-1.e-30)then ! force to non-negative ! print *,'q=',q(k),' in explmix' q(k)=max(q(k),0.) ! endif end do else do k=kts,kte kp1=min(k+1,kte) km1=max(k-1,kts) q(k) = qold(k) + dt*(src(k) + ekkp(k)*(overlapp(k)*qold(kp1)-qold(k)) + & ekkm(k)*(overlapm(k)*qold(km1)-qold(k)) ) ! if(q(k)<-1.e-30)then ! force to non-negative ! print *,'q=',q(k),' in explmix' q(k)=max(q(k),0.) ! endif end do end if ! dry deposition loss at base of lowest layer q(kts)=q(kts)-surfrate*qold(kts)*dt ! if(q(kts)<-1.e-30)then ! force to non-negative ! print *,'q=',q(kts),' in explmix' q(kts)=max(q(kts),0.) ! endif return end subroutine explmix !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! 06-nov-2005 rce - grid_id & ktau added to arg list subroutine activate(wbar, sigw, wdiab, wminf, wmaxf, tair, rhoair, & msectional, maxd_atype, ntype_aer, maxd_asize, nsize_aer, & na, volc, dlo_sect,dhi_sect,sigman, hygro, & fn, fs, fm, fluxn, fluxs, fluxm, flux_fullact, & grid_id, ktau, ii, jj, kk ) ! calculates number, surface, and mass fraction of aerosols activated as CCN ! calculates flux of cloud droplets, surface area, and aerosol mass into cloud ! assumes an internal mixture within each of aerosol mode. ! A sectional treatment within each type is assumed if ntype_aer >7. ! A gaussiam spectrum of updrafts can be treated. ! mks units ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. USE module_model_constants, only: g,rhowater, xlv, cp, rvovrd, r_d, r_v, & mwdry,svp1,svp2,svp3,ep_2 implicit none ! input integer,intent(in) :: maxd_atype ! dimension of types integer,intent(in) :: maxd_asize ! dimension of sizes integer,intent(in) :: ntype_aer ! number of types integer,intent(in) :: nsize_aer(maxd_atype) ! number of sizes for type integer,intent(in) :: msectional ! 1 for sectional, 0 for modal integer,intent(in) :: grid_id ! WRF grid%id integer,intent(in) :: ktau ! WRF time step count integer,intent(in) :: ii, jj, kk ! i,j,k of current grid cell real,intent(in) :: wbar ! grid cell mean vertical velocity (m/s) real,intent(in) :: sigw ! subgrid standard deviation of vertical vel (m/s) real,intent(in) :: wdiab ! diabatic vertical velocity (0 if adiabatic) real,intent(in) :: wminf ! minimum updraft velocity for integration (m/s) real,intent(in) :: wmaxf ! maximum updraft velocity for integration (m/s) real,intent(in) :: tair ! air temperature (K) real,intent(in) :: rhoair ! air density (kg/m3) real,intent(in) :: na(maxd_asize,maxd_atype) ! aerosol number concentration (/m3) real,intent(in) :: sigman(maxd_asize,maxd_atype) ! geometric standard deviation of aerosol size distribution real,intent(in) :: hygro(maxd_asize,maxd_atype) ! bulk hygroscopicity of aerosol mode real,intent(in) :: volc(maxd_asize,maxd_atype) ! total aerosol volume concentration (m3/m3) real,intent(in) :: dlo_sect( maxd_asize, maxd_atype ), & ! minimum size of section (cm) dhi_sect( maxd_asize, maxd_atype ) ! maximum size of section (cm) ! output real,intent(inout) :: fn(maxd_asize,maxd_atype) ! number fraction of aerosols activated real,intent(inout) :: fs(maxd_asize,maxd_atype) ! surface fraction of aerosols activated real,intent(inout) :: fm(maxd_asize,maxd_atype) ! mass fraction of aerosols activated real,intent(inout) :: fluxn(maxd_asize,maxd_atype) ! flux of activated aerosol number fraction into cloud (m/s) real,intent(inout) :: fluxs(maxd_asize,maxd_atype) ! flux of activated aerosol surface fraction (m/s) real,intent(inout) :: fluxm(maxd_asize,maxd_atype) ! flux of activated aerosol mass fraction into cloud (m/s) real,intent(inout) :: flux_fullact ! flux when activation fraction = 100% (m/s) ! local !!$ external erf,erfc !!$ real erf,erfc ! external qsat_water integer, parameter:: nx=200 integer iquasisect_option, isectional real integ,integf real, parameter :: surften = 0.076 ! surface tension of water w/respect to air (N/m) real, parameter :: p0 = 1013.25e2 ! reference pressure (Pa) real, parameter :: t0 = 273.15 ! reference temperature (K) real ylo(maxd_asize,maxd_atype),yhi(maxd_asize,maxd_atype) ! 1-particle volume at section interfaces real ymean(maxd_asize,maxd_atype) ! 1-particle volume at r=rmean real ycut, lnycut, betayy, betayy2, gammayy, phiyy real surfc(maxd_asize,maxd_atype) ! surface concentration (m2/m3) real sign(maxd_asize,maxd_atype) ! geometric standard deviation of size distribution real alnsign(maxd_asize,maxd_atype) ! natl log of geometric standard dev of aerosol real am(maxd_asize,maxd_atype) ! number mode radius of dry aerosol (m) real lnhygro(maxd_asize,maxd_atype) ! ln(b) real f1(maxd_asize,maxd_atype) ! array to hold parameter for maxsat real pres ! pressure (Pa) real path ! mean free path (m) real diff ! diffusivity (m2/s) real conduct ! thermal conductivity (Joule/m/sec/deg) real diff0,conduct0 real es ! saturation vapor pressure real qs ! water vapor saturation mixing ratio real dqsdt ! change in qs with temperature real dqsdp ! change in qs with pressure real gg ! thermodynamic function (m2/s) real sqrtg ! sqrt(gg) real sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius real lnsm(maxd_asize,maxd_atype) ! ln( sm ) real zeta, eta(maxd_asize,maxd_atype) real lnsmax ! ln(smax) real alpha real gamma real beta real gaus logical :: top ! true if cloud top, false if cloud base or new cloud real asub(maxd_asize,maxd_atype),bsub(maxd_asize,maxd_atype) ! coefficients of submode size distribution N=a+bx real totn(maxd_atype) ! total aerosol number concentration real aten ! surface tension parameter real gmrad(maxd_atype) ! geometric mean radius real gmradsq(maxd_atype) ! geometric mean of radius squared real gmlnsig(maxd_atype) ! geometric standard deviation real gmsm(maxd_atype) ! critical supersaturation at radius gmrad real sumflxn(maxd_asize,maxd_atype) real sumflxs(maxd_asize,maxd_atype) real sumflxm(maxd_asize,maxd_atype) real sumflx_fullact real sumfn(maxd_asize,maxd_atype) real sumfs(maxd_asize,maxd_atype) real sumfm(maxd_asize,maxd_atype) real sumns(maxd_atype) real fnold(maxd_asize,maxd_atype) ! number fraction activated real fsold(maxd_asize,maxd_atype) ! surface fraction activated real fmold(maxd_asize,maxd_atype) ! mass fraction activated real wold,gold real alogten,alog2,alog3,alogaten real alogam real rlo(maxd_asize,maxd_atype), rhi(maxd_asize,maxd_atype) real rmean(maxd_asize,maxd_atype) ! mean radius (m) for the section (not used with modal) ! calculated from current volume & number real ccc real dumaa,dumbb real wmin,wmax,w,dw,dwmax,dwmin,wnuc,dwnew,wb real dfmin,dfmax,fnew,fold,fnmin,fnbar,fsbar,fmbar real alw,sqrtalw real smax real x,arg real xmincoeff,xcut real z,z1,z2,wf1,wf2,zf1,zf2,gf1,gf2,gf real etafactor1,etafactor2(maxd_asize,maxd_atype),etafactor2max integer m,n,nw,nwmax ! numerical integration parameters real, parameter :: eps = 0.3 real, parameter :: fmax = 0.99 real, parameter :: sds = 3. ! mathematical constants real third, twothird, sixth, zero, one, two, three real, parameter :: sq2 = 1.4142135624 real, parameter :: sqpi = 1.7724538509 real, parameter :: pi = 3.1415926536 ! integer, save :: ndist(nx) ! accumulates frequency distribution of integration bins required ! data ndist/nx*0/ ! for nsize_aer>7, a sectional approach is used and isectional = iquasisect_option ! activation fractions (fn,fs,fm) are computed as follows ! iquasisect_option = 1,3 - each section treated as a narrow lognormal ! iquasisect_option = 2,4 - within-section dn/dx = a + b*x, x = ln(r) ! smax is computed as follows (when explicit activation is OFF) ! iquasisect_option = 1,2 - razzak-ghan modal parameterization with ! single mode having same ntot, dgnum, sigmag as the combined sections ! iquasisect_option = 3,4 - razzak-ghan sectional parameterization ! for nsize_aer=<9, a modal approach is used and isectional = 0 ! rce 08-jul-2005 ! if either (na(n,m) < nsmall) or (volc(n,m) < vsmall) ! then treat bin/mode (n,m) as being empty, and set its fn/fs/fm=0.0 ! (for single precision, gradual underflow starts around 1.0e-38, ! and strange things can happen when in that region) real, parameter :: nsmall = 1.0e-20 ! aer number conc in #/m3 real, parameter :: vsmall = 1.0e-37 ! aer volume conc in m3/m3 logical bin_is_empty(maxd_asize,maxd_atype), all_bins_empty logical bin_is_narrow(maxd_asize,maxd_atype) integer idiagaa, ipass_nwloop integer idiag_dndy_neg, idiag_fnsm_prob ! The flag for cloud top is no longer used so set it to false. This is an ! antiquated feature related to radiation enhancing mass fluxes at cloud ! top. It is currently, as of Feb. 2009, set to false in the CAM version ! as well. top = .false. !....................................................................... ! ! start calc. of modal or sectional activation properties (start of section 1) ! !....................................................................... idiag_dndy_neg = 1 ! set this to 0 to turn off ! warnings about dn/dy < 0 idiag_fnsm_prob = 1 ! set this to 0 to turn off ! warnings about fn/fs/fm misbehavior iquasisect_option = 2 if(msectional.gt.0)then isectional = iquasisect_option else isectional = 0 endif do n=1,ntype_aer ! print *,'ntype_aer,n,nsize_aer(n)=',ntype_aer,n,nsize_aer(n) if(ntype_aer.eq.1.and.nsize_aer(n).eq.1.and.na(1,1).lt.1.e-20)then fn(1,1)=0. fs(1,1)=0. fm(1,1)=0. fluxn(1,1)=0. fluxs(1,1)=0. fluxm(1,1)=0. flux_fullact=0. return endif enddo zero = 0.0 one = 1.0 two = 2.0 three = 3.0 third = 1.0/3.0 twothird = 2.0/3.0 !wig, 1-Mar-2009: Corrected value from 2/6 sixth = 1.0/6.0 pres=r_d*rhoair*tair diff0=0.211e-4*(p0/pres)*(tair/t0)**1.94 conduct0=(5.69+0.017*(tair-t0))*4.186e2*1.e-5 ! convert to J/m/s/deg es=1000.*svp1*exp( svp2*(tair-t0)/(tair-svp3) ) qs=ep_2*es/(pres-es) dqsdt=xlv/(r_v*tair*tair)*qs alpha=g*(xlv/(cp*r_v*tair*tair)-1./(r_d*tair)) gamma=(1+xlv/cp*dqsdt)/(rhoair*qs) gg=1./(rhowater/(diff0*rhoair*qs)+xlv*rhowater/(conduct0*tair)*(xlv/(r_v*tair)-1.)) sqrtg=sqrt(gg) beta=4.*pi*rhowater*gg*gamma aten=2.*surften/(r_v*tair*rhowater) alogaten=log(aten) alog2=log(two) alog3=log(three) ccc=4.*pi*third etafactor2max=1.e10/(alpha*wmaxf)**1.5 ! this should make eta big if na is very small. all_bins_empty = .true. do n=1,ntype_aer totn(n)=0. gmrad(n)=0. gmradsq(n)=0. sumns(n)=0. do m=1,nsize_aer(n) alnsign(m,n)=log(sigman(m,n)) ! internal mixture of aerosols bin_is_empty(m,n) = .true. if (volc(m,n).gt.vsmall .and. na(m,n).gt.nsmall) then bin_is_empty(m,n) = .false. all_bins_empty = .false. lnhygro(m,n)=log(hygro(m,n)) ! number mode radius (m,n) ! write(6,*)'alnsign,volc,na=',alnsign(m,n),volc(m,n),na(m,n) am(m,n)=exp(-1.5*alnsign(m,n)*alnsign(m,n))* & (3.*volc(m,n)/(4.*pi*na(m,n)))**third if (isectional .gt. 0) then ! sectional model. ! need to use bulk properties because parameterization doesn't ! work well for narrow bins. totn(n)=totn(n)+na(m,n) alogam=log(am(m,n)) gmrad(n)=gmrad(n)+na(m,n)*alogam gmradsq(n)=gmradsq(n)+na(m,n)*alogam*alogam endif etafactor2(m,n)=1./(na(m,n)*beta*sqrtg) if(hygro(m,n).gt.1.e-10)then sm(m,n)=2.*aten/(3.*am(m,n))*sqrt(aten/(3.*hygro(m,n)*am(m,n))) else sm(m,n)=100. endif ! write(6,*)'sm,hygro,am=',sm(m,n),hygro(m,n),am(m,n) else sm(m,n)=1. etafactor2(m,n)=etafactor2max ! this should make eta big if na is very small. endif lnsm(m,n)=log(sm(m,n)) if ((isectional .eq. 3) .or. (isectional .eq. 4)) then sumns(n)=sumns(n)+na(m,n)/sm(m,n)**twothird endif ! write(6,'(a,i4,6g12.2)')'m,na,am,hygro,lnhygro,sm,lnsm=',m,na(m,n),am(m,n),hygro(m,n),lnhygro(m,n),sm(m,n),lnsm(m,n) end do ! size end do ! type ! if all bins are empty, set all activation fractions to zero and exit if ( all_bins_empty ) then do n=1,ntype_aer do m=1,nsize_aer(n) fluxn(m,n)=0. fn(m,n)=0. fluxs(m,n)=0. fs(m,n)=0. fluxm(m,n)=0. fm(m,n)=0. end do end do flux_fullact=0. return endif if (isectional .le. 0) then ! Initialize maxsat at this cell and timestep for the ! modal setup (the sectional case is handled below). call maxsat_init(maxd_atype, ntype_aer, & maxd_asize, nsize_aer, alnsign, f1) goto 30000 end if do n=1,ntype_aer !wig 19-Oct-2006: Add zero trap based May 2006 e-mail from !Ghan. Transport can clear out a cell leading to !inconsistencies with the mass. gmrad(n)=gmrad(n)/max(totn(n),1e-20) gmlnsig=gmradsq(n)/totn(n)-gmrad(n)*gmrad(n) ! [ln(sigmag)]**2 gmlnsig(n)=sqrt( max( 1.e-4, gmlnsig(n) ) ) gmrad(n)=exp(gmrad(n)) if ((isectional .eq. 3) .or. (isectional .eq. 4)) then gmsm(n)=totn(n)/sumns(n) gmsm(n)=gmsm(n)*gmsm(n)*gmsm(n) gmsm(n)=sqrt(gmsm(n)) else ! gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(1,n)*gmrad(n))) gmsm(n)=2.*aten/(3.*gmrad(n))*sqrt(aten/(3.*hygro(nsize_aer(n),n)*gmrad(n))) endif enddo ! Initialize maxsat at this cell and timestep for the ! sectional setup (the modal case is handled above)... call maxsat_init(maxd_atype, ntype_aer, & maxd_asize, (/1/), gmlnsig, f1) !....................................................................... ! calculate sectional "sub-bin" size distribution ! ! dn/dy = nt*( a + b*y ) for ylo < y < yhi ! ! nt = na(m,n) = number mixing ratio of the bin ! y = v/vhi ! v = (4pi/3)*r**3 = particle volume ! vhi = v at r=rhi (upper bin boundary) ! ylo = y at lower bin boundary = vlo/vhi = (rlo/rhi)**3 ! yhi = y at upper bin boundary = 1.0 ! ! dv/dy = v * dn/dy = nt*vhi*( a*y + b*y*y ) ! !....................................................................... ! 02-may-2006 - this dn/dy replaces the previous ! dn/dx = a + b*x where l = ln(r) ! the old dn/dx was overly complicated for cases of rmean near rlo or rhi ! the new dn/dy is consistent with that used in the movesect routine, ! which does continuous growth by condensation and aqueous chemistry !....................................................................... do 25002 n = 1,ntype_aer do 25000 m = 1,nsize_aer(n) ! convert from diameter in cm to radius in m rlo(m,n) = 0.5*0.01*dlo_sect(m,n) rhi(m,n) = 0.5*0.01*dhi_sect(m,n) ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 yhi(m,n) = 1.0 ! 04-nov-2005 - extremely narrow bins will be treated using 0/1 activation ! this is to avoid potential numerical problems bin_is_narrow(m,n) = .false. if ((rhi(m,n)/rlo(m,n)) .le. 1.01) bin_is_narrow(m,n) = .true. ! rmean is mass mean radius for the bin; xmean = log(rmean) ! just use section midpoint if bin is empty if ( bin_is_empty(m,n) ) then rmean(m,n) = sqrt(rlo(m,n)*rhi(m,n)) ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 goto 25000 end if rmean(m,n) = (volc(m,n)/(ccc*na(m,n)))**third rmean(m,n) = max( rlo(m,n), min( rhi(m,n), rmean(m,n) ) ) ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 if ( bin_is_narrow(m,n) ) goto 25000 ! if rmean is extremely close to either rlo or rhi, ! treat the bin as extremely narrow if ((rhi(m,n)/rmean(m,n)) .le. 1.01) then bin_is_narrow(m,n) = .true. rlo(m,n) = min( rmean(m,n), (rhi(m,n)/1.01) ) ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 goto 25000 else if ((rmean(m,n)/rlo(m,n)) .le. 1.01) then bin_is_narrow(m,n) = .true. rhi(m,n) = max( rmean(m,n), (rlo(m,n)*1.01) ) ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 goto 25000 endif ! if rmean is somewhat close to either rlo or rhi, then dn/dy will be ! negative near the upper or lower bin boundary ! in these cases, assume that all the particles are in a subset of the full bin, ! and adjust rlo or rhi so that rmean will be near the center of this subset ! note that the bin is made narrower LOCALLY/TEMPORARILY, ! just for the purposes of the activation calculation gammayy = (ymean(m,n)-ylo(m,n)) / (yhi(m,n)-ylo(m,n)) if (gammayy .lt. 0.34) then dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*(gammayy/0.34) rhi(m,n) = rhi(m,n)*(dumaa**third) ylo(m,n) = (rlo(m,n)/rhi(m,n))**3 ymean(m,n) = (rmean(m,n)/rhi(m,n))**3 else if (gammayy .ge. 0.66) then dumaa = ylo(m,n) + (yhi(m,n)-ylo(m,n))*((gammayy-0.66)/0.34) ylo(m,n) = dumaa rlo(m,n) = rhi(m,n)*(dumaa**third) end if if ((rhi(m,n)/rlo(m,n)) .le. 1.01) then bin_is_narrow(m,n) = .true. goto 25000 end if betayy = ylo(m,n)/yhi(m,n) betayy2 = betayy*betayy bsub(m,n) = (12.0*ymean(m,n) - 6.0*(1.0+betayy)) / & (4.0*(1.0-betayy2*betayy) - 3.0*(1.0-betayy2)*(1.0+betayy)) asub(m,n) = (1.0 - bsub(m,n)*(1.0-betayy2)*0.5) / (1.0-betayy) if ( asub(m,n)+bsub(m,n)*ylo(m,n) .lt. 0. ) then if (idiag_dndy_neg .gt. 0) then print *,'dndy<0 at lower boundary' print *,'n,m=',n,m print *,'na=',na(m,n),' volc=',volc(m,n) print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) print *,'dlo_sect/2,dhi_sect/2=', & (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) print *,'asub+bsub*ylo=', & (asub(m,n)+bsub(m,n)*ylo(m,n)) print *,'subr activate error 11 - i,j,k =', ii, jj, kk endif endif if ( asub(m,n)+bsub(m,n)*yhi(m,n) .lt. 0. ) then if (idiag_dndy_neg .gt. 0) then print *,'dndy<0 at upper boundary' print *,'n,m=',n,m print *,'na=',na(m,n),' volc=',volc(m,n) print *,'volc/(na*pi*4/3)=', (volc(m,n)/(na(m,n)*ccc)) print *,'rlo(m,n),rhi(m,n)=',rlo(m,n),rhi(m,n) print *,'dlo_sect/2,dhi_sect/2=', & (0.005*dlo_sect(m,n)),(0.005*dhi_sect(m,n)) print *,'asub,bsub,ylo,yhi=',asub(m,n),bsub(m,n),ylo(m,n),yhi(m,n) print *,'asub+bsub*yhi=', & (asub(m,n)+bsub(m,n)*yhi(m,n)) print *,'subr activate error 12 - i,j,k =', ii, jj, kk endif endif 25000 continue ! m=1,nsize_aer(n) 25002 continue ! n=1,ntype_aer 30000 continue !....................................................................... ! ! end calc. of modal or sectional activation properties (end of section 1) ! !....................................................................... ! sjg 7-16-98 upward ! print *,'wbar,sigw=',wbar,sigw if(sigw.le.1.e-5) goto 50000 !....................................................................... ! ! start calc. of activation fractions/fluxes ! for spectrum of updrafts (start of section 2) ! !....................................................................... ipass_nwloop = 1 idiagaa = 0 ! 06-nov-2005 rce - set idiagaa=1 for testing/debugging ! if ((grid_id.eq.1) .and. (ktau.eq.167) .and. & ! (ii.eq.24) .and. (jj.eq. 1) .and. (kk.eq.14)) idiagaa = 1 40000 continue if(top)then wmax=0. wmin=min(zero,-wdiab) else wmax=min(wmaxf,wbar+sds*sigw) wmin=max(wminf,-wdiab) endif wmin=max(wmin,wbar-sds*sigw) w=wmin dwmax=eps*sigw dw=dwmax dfmax=0.2 dfmin=0.1 if(wmax.le.w)then do n=1,ntype_aer do m=1,nsize_aer(n) fluxn(m,n)=0. fn(m,n)=0. fluxs(m,n)=0. fs(m,n)=0. fluxm(m,n)=0. fm(m,n)=0. end do end do flux_fullact=0. return endif do n=1,ntype_aer do m=1,nsize_aer(n) sumflxn(m,n)=0. sumfn(m,n)=0. fnold(m,n)=0. sumflxs(m,n)=0. sumfs(m,n)=0. fsold(m,n)=0. sumflxm(m,n)=0. sumfm(m,n)=0. fmold(m,n)=0. enddo enddo sumflx_fullact=0. fold=0 gold=0 ! 06-nov-2005 rce - set wold=w here ! wold=0 wold=w ! 06-nov-2005 rce - define nwmax; calc dwmin from nwmax nwmax = 200 ! dwmin = min( dwmax, 0.01 ) dwmin = (wmax - wmin)/(nwmax-1) dwmin = min( dwmax, dwmin ) dwmin = max( 0.01, dwmin ) ! ! loop over updrafts, incrementing sums as you go ! the "200" is (arbitrary) upper limit for number of updrafts ! if integration finishes before this, OK; otherwise, ERROR ! if (idiagaa.gt.0) then write(*,94700) ktau, grid_id, ii, jj, kk, nwmax write(*,94710) 'wbar,sigw,wdiab=', wbar, sigw, wdiab write(*,94710) 'wmin,wmax,dwmin,dwmax=', wmin, wmax, dwmin, dwmax write(*,94720) -1, w, wold, dw end if 94700 format( / 'activate 47000 - ktau,id,ii,jj,kk,nwmax=', 6i5 ) 94710 format( 'activate 47000 - ', a, 6(1x,f11.5) ) 94720 format( 'activate 47000 - nw,w,wold,dw=', i5, 3(1x,f11.5) ) do 47000 nw = 1, nwmax 41000 wnuc=w+wdiab if (idiagaa.gt.0) write(*,94720) nw, w, wold, dw ! write(6,*)'wnuc=',wnuc alw=alpha*wnuc sqrtalw=sqrt(alw) zeta=2.*sqrtalw*aten/(3.*sqrtg) etafactor1=2.*alw*sqrtalw if (isectional .gt. 0) then ! sectional model. ! use bulk properties do n=1,ntype_aer if(totn(n).gt.1.e-10)then eta(1,n)=etafactor1/(totn(n)*beta*sqrtg) else eta(1,n)=1.e10 endif enddo call maxsat(zeta,eta,maxd_atype,ntype_aer, & maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) lnsmax=log(smax) x=2*(log(gmsm(1))-lnsmax)/(3*sq2*gmlnsig(1)) fnew=0.5*(1.-ERF_ALT(x)) else do n=1,ntype_aer do m=1,nsize_aer(n) eta(m,n)=etafactor1*etafactor2(m,n) enddo enddo call maxsat(zeta,eta,maxd_atype,ntype_aer, & maxd_asize,nsize_aer,sm,alnsign,f1,smax) ! write(6,*)'w,smax=',w,smax lnsmax=log(smax) x=2*(lnsm(nsize_aer(1),1)-lnsmax)/(3*sq2*alnsign(nsize_aer(1),1)) fnew=0.5*(1.-ERF_ALT(x)) endif dwnew = dw ! 06-nov-2005 rce - "n" here should be "nw" (?) ! if(fnew-fold.gt.dfmax.and.n.gt.1)then if(fnew-fold.gt.dfmax.and.nw.gt.1)then ! reduce updraft increment for greater accuracy in integration if (dw .gt. 1.01*dwmin) then dw=0.7*dw dw=max(dw,dwmin) w=wold+dw go to 41000 else dwnew = dwmin endif endif if(fnew-fold.lt.dfmin)then ! increase updraft increment to accelerate integration dwnew=min(1.5*dw,dwmax) endif fold=fnew z=(w-wbar)/(sigw*sq2) gaus=exp(-z*z) fnmin=1. xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 ! write(6,*)'xmincoeff=',xmincoeff do 44002 n=1,ntype_aer do 44000 m=1,nsize_aer(n) if ( bin_is_empty(m,n) ) then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then ! sectional ! within-section dn/dx = a + b*x xcut=xmincoeff-third*lnhygro(m,n) ! ycut=(exp(xcut)/rhi(m,n))**3 ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 ! if (ycut > yhi), then actual value of ycut is unimportant, ! so do the following to avoid overflow lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) ycut=exp(lnycut) ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) ! if(lnsmax.lt.lnsmn(m,n))then if(ycut.gt.yhi(m,n))then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. elseif(ycut.lt.ylo(m,n))then fn(m,n)=1. fs(m,n)=1. fm(m,n)=1. elseif ( bin_is_narrow(m,n) ) then ! 04-nov-2005 rce - for extremely narrow bins, ! do zero activation if xcut>xmean, 100% activation otherwise if (ycut.gt.ymean(m,n)) then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. else fn(m,n)=1. fs(m,n)=1. fm(m,n)=1. endif else phiyy=ycut/yhi(m,n) fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then if (idiag_fnsm_prob .gt. 0) then print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' print *,'na,volc =', na(m,n), volc(m,n) print *,'asub,bsub =', asub(m,n), bsub(m,n) print *,'yhi,ycut =', yhi(m,n), ycut endif endif if (fn(m,n) .le. zero) then ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 fn(m,n)=zero fs(m,n)=zero fm(m,n)=zero else if (fn(m,n) .ge. one) then ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 fn(m,n)=one fs(m,n)=one fm(m,n)=one else ! 10-nov-2005 rce - otherwise, calc fm and check it fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then if (idiag_fnsm_prob .gt. 0) then print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) print *,'asub,bsub =', asub(m,n), bsub(m,n) print *,'yhi,ycut =', yhi(m,n), ycut endif endif if (fm(m,n) .le. fn(m,n)) then ! 10-nov-2005 rce - if fm=fn, then fs must =fn fm(m,n)=fn(m,n) fs(m,n)=fn(m,n) else if (fm(m,n) .ge. one) then ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 fm(m,n)=one fs(m,n)=one fn(m,n)=one else ! 10-nov-2005 rce - these two checks assure that the mean size ! of the activated & interstitial particles will be between rlo & rhi dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) fm(m,n) = min( fm(m,n), dumaa ) dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) fm(m,n) = min( fm(m,n), dumaa ) ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm betayy = ylo(m,n)/yhi(m,n) dumaa = phiyy**twothird dumbb = betayy**twothird fs(m,n) = & (asub(m,n)*(1.0-phiyy*dumaa) + & 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & (asub(m,n)*(1.0-betayy*dumbb) + & 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) fs(m,n)=max(fs(m,n),fn(m,n)) fs(m,n)=min(fs(m,n),fm(m,n)) endif endif endif else ! modal x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) fn(m,n)=0.5*(1.-ERF_ALT(x)) arg=x-sq2*alnsign(m,n) fs(m,n)=0.5*(1.-ERF_ALT(arg)) arg=x-1.5*sq2*alnsign(m,n) fm(m,n)=0.5*(1.-ERF_ALT(arg)) ! print *,'w,x,fn,fs,fm=',w,x,fn(m,n),fs(m,n),fm(m,n) endif ! fn(m,n)=1. !test ! fs(m,n)=1. ! fm(m,n)=1. fnmin=min(fn(m,n),fnmin) ! integration is second order accurate ! assumes linear variation of f*gaus with w wb=(w+wold) fnbar=(fn(m,n)*gaus+fnold(m,n)*gold) fsbar=(fs(m,n)*gaus+fsold(m,n)*gold) fmbar=(fm(m,n)*gaus+fmold(m,n)*gold) if((top.and.w.lt.0.).or.(.not.top.and.w.gt.0.))then sumflxn(m,n)=sumflxn(m,n)+sixth*(wb*fnbar & +(fn(m,n)*gaus*w+fnold(m,n)*gold*wold))*dw sumflxs(m,n)=sumflxs(m,n)+sixth*(wb*fsbar & +(fs(m,n)*gaus*w+fsold(m,n)*gold*wold))*dw sumflxm(m,n)=sumflxm(m,n)+sixth*(wb*fmbar & +(fm(m,n)*gaus*w+fmold(m,n)*gold*wold))*dw endif sumfn(m,n)=sumfn(m,n)+0.5*fnbar*dw ! write(6,'(a,9g10.2)')'lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw=', & ! lnsmax,lnsm(m,n),x,fn(m,n),fnold(m,n),g,gold,fnbar,dw fnold(m,n)=fn(m,n) sumfs(m,n)=sumfs(m,n)+0.5*fsbar*dw fsold(m,n)=fs(m,n) sumfm(m,n)=sumfm(m,n)+0.5*fmbar*dw fmold(m,n)=fm(m,n) 44000 continue ! m=1,nsize_aer(n) 44002 continue ! n=1,ntype_aer ! same form as sumflxm(m,n) but replace the fm/fmold(m,n) with 1.0 sumflx_fullact = sumflx_fullact & + sixth*(wb*(gaus+gold) + (gaus*w + gold*wold))*dw ! sumg=sumg+0.5*(gaus+gold)*dw gold=gaus wold=w dw=dwnew if(nw.gt.1.and.(w.gt.wmax.or.fnmin.gt.fmax))go to 48000 w=w+dw 47000 continue ! nw = 1, nwmax print *,'do loop is too short in activate' print *,'wmin=',wmin,' w=',w,' wmax=',wmax,' dw=',dw print *,'wbar=',wbar,' sigw=',sigw,' wdiab=',wdiab print *,'wnuc=',wnuc do n=1,ntype_aer print *,'ntype=',n print *,'na=',(na(m,n),m=1,nsize_aer(n)) print *,'fn=',(fn(m,n),m=1,nsize_aer(n)) end do ! dump all subr parameters to allow testing with standalone code ! (build a driver that will read input and call activate) print *,'top,wbar,sigw,wdiab,tair,rhoair,ntype_aer=' print *, top,wbar,sigw,wdiab,tair,rhoair,ntype_aer print *,'na=' print *, na print *,'volc=' print *, volc print *,'sigman=' print *, sigman print *,'hygro=' print *, hygro print *,'subr activate error 31 - i,j,k =', ii, jj, kk ! 06-nov-2005 rce - if integration fails, repeat it once with additional diagnostics if (ipass_nwloop .eq. 1) then ipass_nwloop = 2 idiagaa = 2 goto 40000 end if call wrf_error_fatal("STOP: activate before 48000") 48000 continue ! ndist(n)=ndist(n)+1 if(.not.top.and.w.lt.wmaxf)then ! contribution from all updrafts stronger than wmax ! assuming constant f (close to fmax) wnuc=w+wdiab z1=(w-wbar)/(sigw*sq2) z2=(wmaxf-wbar)/(sigw*sq2) integ=sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(z1)-ERFC_NUM_RECIPES(z2)) ! consider only upward flow into cloud base when estimating flux wf1=max(w,zero) zf1=(wf1-wbar)/(sigw*sq2) gf1=exp(-zf1*zf1) wf2=max(wmaxf,zero) zf2=(wf2-wbar)/(sigw*sq2) gf2=exp(-zf2*zf2) gf=(gf1-gf2) integf=wbar*sigw*0.5*sq2*sqpi*(ERFC_NUM_RECIPES(zf1)-ERFC_NUM_RECIPES(zf2))+sigw*sigw*gf do n=1,ntype_aer do m=1,nsize_aer(n) sumflxn(m,n)=sumflxn(m,n)+integf*fn(m,n) sumfn(m,n)=sumfn(m,n)+fn(m,n)*integ sumflxs(m,n)=sumflxs(m,n)+integf*fs(m,n) sumfs(m,n)=sumfs(m,n)+fs(m,n)*integ sumflxm(m,n)=sumflxm(m,n)+integf*fm(m,n) sumfm(m,n)=sumfm(m,n)+fm(m,n)*integ end do end do ! same form as sumflxm(m,n) but replace the fm(m,n) with 1.0 sumflx_fullact = sumflx_fullact + integf ! sumg=sumg+integ endif do n=1,ntype_aer do m=1,nsize_aer(n) ! fn(m,n)=sumfn(m,n)/(sumg) fn(m,n)=sumfn(m,n)/(sq2*sqpi*sigw) fluxn(m,n)=sumflxn(m,n)/(sq2*sqpi*sigw) if(fn(m,n).gt.1.01)then if (idiag_fnsm_prob .gt. 0) then print *,'fn=',fn(m,n),' > 1 - activate err41' print *,'w,m,n,na,am=',w,m,n,na(m,n),am(m,n) print *,'integ,sumfn,sigw=',integ,sumfn(m,n),sigw print *,'subr activate error - i,j,k =', ii, jj, kk endif fluxn(m,n) = fluxn(m,n)/fn(m,n) endif fs(m,n)=sumfs(m,n)/(sq2*sqpi*sigw) fluxs(m,n)=sumflxs(m,n)/(sq2*sqpi*sigw) if(fs(m,n).gt.1.01)then if (idiag_fnsm_prob .gt. 0) then print *,'fs=',fs(m,n),' > 1 - activate err42' print *,'m,n,isectional=',m,n,isectional print *,'alnsign(m,n)=',alnsign(m,n) print *,'rcut,rlo(m,n),rhi(m,n)',exp(xcut),rlo(m,n),rhi(m,n) print *,'w,m,na,am=',w,m,na(m,n),am(m,n) print *,'integ,sumfs,sigw=',integ,sumfs(m,n),sigw endif fluxs(m,n) = fluxs(m,n)/fs(m,n) endif ! fm(m,n)=sumfm(m,n)/(sumg) fm(m,n)=sumfm(m,n)/(sq2*sqpi*sigw) fluxm(m,n)=sumflxm(m,n)/(sq2*sqpi*sigw) if(fm(m,n).gt.1.01)then if (idiag_fnsm_prob .gt. 0) then print *,'fm(',m,n,')=',fm(m,n),' > 1 - activate err43' endif fluxm(m,n) = fluxm(m,n)/fm(m,n) endif end do end do ! same form as fluxm(m,n) flux_fullact = sumflx_fullact/(sq2*sqpi*sigw) goto 60000 !....................................................................... ! ! end calc. of activation fractions/fluxes ! for spectrum of updrafts (end of section 2) ! !....................................................................... !....................................................................... ! ! start calc. of activation fractions/fluxes ! for (single) uniform updraft (start of section 3) ! !....................................................................... 50000 continue wnuc=wbar+wdiab ! write(6,*)'uniform updraft =',wnuc ! 04-nov-2005 rce - moved the code for "wnuc.le.0" code to here if(wnuc.le.0.)then do n=1,ntype_aer do m=1,nsize_aer(n) fn(m,n)=0 fluxn(m,n)=0 fs(m,n)=0 fluxs(m,n)=0 fm(m,n)=0 fluxm(m,n)=0 end do end do flux_fullact=0. return endif w=wbar alw=alpha*wnuc sqrtalw=sqrt(alw) zeta=2.*sqrtalw*aten/(3.*sqrtg) if (isectional .gt. 0) then ! sectional model. ! use bulk properties do n=1,ntype_aer if(totn(n).gt.1.e-10)then eta(1,n)=2*alw*sqrtalw/(totn(n)*beta*sqrtg) else eta(1,n)=1.e10 endif end do call maxsat(zeta,eta,maxd_atype,ntype_aer, & maxd_asize,(/1/),gmsm,gmlnsig,f1,smax) else do n=1,ntype_aer do m=1,nsize_aer(n) if(na(m,n).gt.1.e-10)then eta(m,n)=2*alw*sqrtalw/(na(m,n)*beta*sqrtg) else eta(m,n)=1.e10 endif end do end do call maxsat(zeta,eta,maxd_atype,ntype_aer, & maxd_asize,nsize_aer,sm,alnsign,f1,smax) endif lnsmax=log(smax) xmincoeff=alogaten-2.*third*(lnsmax-alog2)-alog3 do 55002 n=1,ntype_aer do 55000 m=1,nsize_aer(n) ! 04-nov-2005 rce - check for bin_is_empty here too, just like earlier if ( bin_is_empty(m,n) ) then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. else if ((isectional .eq. 2) .or. (isectional .eq. 4)) then ! sectional ! within-section dn/dx = a + b*x xcut=xmincoeff-third*lnhygro(m,n) ! ycut=(exp(xcut)/rhi(m,n))**3 ! 07-jul-2006 rce - the above line gave a (rare) overflow when smax=1.0e-20 ! if (ycut > yhi), then actual value of ycut is unimportant, ! so do the following to avoid overflow lnycut = 3.0 * ( xcut - log(rhi(m,n)) ) lnycut = min( lnycut, log(yhi(m,n)*1.0e5) ) ycut=exp(lnycut) ! write(6,*)'m,n,rcut,rlo,rhi=',m,n,exp(xcut),rlo(m,n),rhi(m,n) ! if(lnsmax.lt.lnsmn(m,n))then if(ycut.gt.yhi(m,n))then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. ! elseif(lnsmax.gt.lnsmx(m,n))then elseif(ycut.lt.ylo(m,n))then fn(m,n)=1. fs(m,n)=1. fm(m,n)=1. elseif ( bin_is_narrow(m,n) ) then ! 04-nov-2005 rce - for extremely narrow bins, ! do zero activation if xcut>xmean, 100% activation otherwise if (ycut.gt.ymean(m,n)) then fn(m,n)=0. fs(m,n)=0. fm(m,n)=0. else fn(m,n)=1. fs(m,n)=1. fm(m,n)=1. endif else phiyy=ycut/yhi(m,n) fn(m,n) = asub(m,n)*(1.0-phiyy) + 0.5*bsub(m,n)*(1.0-phiyy*phiyy) if (fn(m,n).lt.zero .or. fn(m,n).gt.one) then if (idiag_fnsm_prob .gt. 0) then print *,'fn(',m,n,')=',fn(m,n),' outside 0,1 - activate err21' print *,'na,volc =', na(m,n), volc(m,n) print *,'asub,bsub =', asub(m,n), bsub(m,n) print *,'yhi,ycut =', yhi(m,n), ycut endif endif if (fn(m,n) .le. zero) then ! 10-nov-2005 rce - if fn=0, then fs & fm must be 0 fn(m,n)=zero fs(m,n)=zero fm(m,n)=zero else if (fn(m,n) .ge. one) then ! 10-nov-2005 rce - if fn=1, then fs & fm must be 1 fn(m,n)=one fs(m,n)=one fm(m,n)=one else ! 10-nov-2005 rce - otherwise, calc fm and check it fm(m,n) = (yhi(m,n)/ymean(m,n)) * (0.5*asub(m,n)*(1.0-phiyy*phiyy) + & third*bsub(m,n)*(1.0-phiyy*phiyy*phiyy)) if (fm(m,n).lt.fn(m,n) .or. fm(m,n).gt.one) then if (idiag_fnsm_prob .gt. 0) then print *,'fm(',m,n,')=',fm(m,n),' outside fn,1 - activate err22' print *,'na,volc,fn =', na(m,n), volc(m,n), fn(m,n) print *,'asub,bsub =', asub(m,n), bsub(m,n) print *,'yhi,ycut =', yhi(m,n), ycut endif endif if (fm(m,n) .le. fn(m,n)) then ! 10-nov-2005 rce - if fm=fn, then fs must =fn fm(m,n)=fn(m,n) fs(m,n)=fn(m,n) else if (fm(m,n) .ge. one) then ! 10-nov-2005 rce - if fm=1, then fs & fn must be 1 fm(m,n)=one fs(m,n)=one fn(m,n)=one else ! 10-nov-2005 rce - these two checks assure that the mean size ! of the activated & interstitial particles will be between rlo & rhi dumaa = fn(m,n)*(yhi(m,n)/ymean(m,n)) fm(m,n) = min( fm(m,n), dumaa ) dumaa = 1.0 + (fn(m,n)-1.0)*(ylo(m,n)/ymean(m,n)) fm(m,n) = min( fm(m,n), dumaa ) ! 10-nov-2005 rce - now calculate fs and bound it by fn, fm betayy = ylo(m,n)/yhi(m,n) dumaa = phiyy**twothird dumbb = betayy**twothird fs(m,n) = & (asub(m,n)*(1.0-phiyy*dumaa) + & 0.625*bsub(m,n)*(1.0-phiyy*phiyy*dumaa)) / & (asub(m,n)*(1.0-betayy*dumbb) + & 0.625*bsub(m,n)*(1.0-betayy*betayy*dumbb)) fs(m,n)=max(fs(m,n),fn(m,n)) fs(m,n)=min(fs(m,n),fm(m,n)) endif endif endif else ! modal x=2*(lnsm(m,n)-lnsmax)/(3*sq2*alnsign(m,n)) fn(m,n)=0.5*(1.-ERF_ALT(x)) arg=x-sq2*alnsign(m,n) fs(m,n)=0.5*(1.-ERF_ALT(arg)) arg=x-1.5*sq2*alnsign(m,n) fm(m,n)=0.5*(1.-ERF_ALT(arg)) endif ! fn(m,n)=1. ! test ! fs(m,n)=1. ! fm(m,n)=1. if((top.and.wbar.lt.0.).or.(.not.top.and.wbar.gt.0.))then fluxn(m,n)=fn(m,n)*w fluxs(m,n)=fs(m,n)*w fluxm(m,n)=fm(m,n)*w else fluxn(m,n)=0 fluxs(m,n)=0 fluxm(m,n)=0 endif 55000 continue ! m=1,nsize_aer(n) 55002 continue ! n=1,ntype_aer if((top.and.wbar.lt.0.).or.(.not.top.and.wbar.gt.0.))then flux_fullact = w else flux_fullact = 0.0 endif ! 04-nov-2005 rce - moved the code for "wnuc.le.0" from here ! to near the start the uniform undraft section !....................................................................... ! ! end calc. of activation fractions/fluxes ! for (single) uniform updraft (end of section 3) ! !....................................................................... 60000 continue ! do n=1,ntype_aer ! do m=1,nsize_aer(n) ! write(6,'(a,2i3,5e10.1)')'n,m,na,wbar,sigw,fn,fm=',n,m,na(m,n),wbar,sigw,fn(m,n),fm(m,n) ! end do ! end do return end subroutine activate !---------------------------------------------------------------------- !---------------------------------------------------------------------- subroutine maxsat(zeta,eta, & maxd_atype,ntype_aer,maxd_asize,nsize_aer, & sm,alnsign,f1,smax) ! Calculates maximum supersaturation for multiple competing aerosol ! modes. Note that maxsat_init must be called before calling this ! subroutine. ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. implicit none integer, intent(in) :: maxd_atype integer, intent(in) :: ntype_aer integer, intent(in) :: maxd_asize integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins real, intent(in) :: sm(maxd_asize,maxd_atype) ! critical supersaturation for number mode radius real, intent(in) :: zeta, eta(maxd_asize,maxd_atype) real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) real, intent(in) :: f1(maxd_asize,maxd_atype) real, intent(out) :: smax ! maximum supersaturation real :: g1, g2 real thesum integer m ! size index integer n ! type index do n=1,ntype_aer do m=1,nsize_aer(n) if(zeta.gt.1.e5*eta(m,n) .or. & sm(m,n)*sm(m,n).gt.1.e5*eta(m,n))then ! weak forcing. essentially none activated smax=1.e-20 else ! significant activation of this mode. calc activation all modes. go to 1 endif end do end do return 1 continue thesum=0 do n=1,ntype_aer do m=1,nsize_aer(n) if(eta(m,n).gt.1.e-20)then g1=sqrt(zeta/eta(m,n)) g1=g1*g1*g1 g2=sm(m,n)/sqrt(eta(m,n)+3*zeta) g2=sqrt(g2) g2=g2*g2*g2 thesum=thesum + & (f1(m,n)*g1+(1.+0.25*alnsign(m,n))*g2)/(sm(m,n)*sm(m,n)) else thesum=1.e20 endif end do end do smax=1./sqrt(thesum) return end subroutine maxsat !---------------------------------------------------------------------- !---------------------------------------------------------------------- subroutine maxsat_init(maxd_atype, ntype_aer, & maxd_asize, nsize_aer, alnsign, f1) ! Calculates the f1 paramter needed by maxsat. ! Abdul-Razzak and Ghan, A parameterization of aerosol activation. ! 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844. implicit none integer, intent(in) :: maxd_atype integer, intent(in) :: ntype_aer ! number of aerosol types integer, intent(in) :: maxd_asize integer, intent(in) :: nsize_aer(maxd_atype) ! number of size bins real, intent(in) :: alnsign(maxd_asize,maxd_atype) ! ln(sigma) real, intent(out) :: f1(maxd_asize,maxd_atype) integer m ! size index integer n ! type index ! calculate and save f1(sigma), assumes sigma is invariant ! between calls to this init routine do n=1,ntype_aer do m=1,nsize_aer(n) f1(m,n)=0.5*exp(2.5*alnsign(m,n)*alnsign(m,n)) end do end do end subroutine maxsat_init !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! 25-apr-2006 rce - dens_aer is (g/cm3), NOT (kg/m3); ! grid_id, ktau, i, j, isize, itype added to arg list to assist debugging subroutine loadaer(chem,k,kmn,kmx,num_chem,cs,npv, & dlo_sect,dhi_sect,maxd_acomp, ncomp, & grid_id, ktau, i, j, isize, itype, & numptr_aer, numptrcw_aer, dens_aer, & massptr_aer, massptrcw_aer, & maerosol, maerosolcw, & maerosol_tot, maerosol_totcw, & naerosol, naerosolcw, & vaerosol, vaerosolcw) implicit none ! load aerosol number, surface, mass concentrations ! input integer, intent(in) :: num_chem ! maximum number of consituents integer, intent(in) :: k,kmn,kmx real, intent(in) :: chem(kmn:kmx,num_chem) ! aerosol mass, number mixing ratios real, intent(in) :: cs ! air density (kg/m3) real, intent(in) :: npv ! number per volume concentration (/m3) integer, intent(in) :: maxd_acomp,ncomp integer, intent(in) :: numptr_aer,numptrcw_aer integer, intent(in) :: massptr_aer(maxd_acomp), massptrcw_aer(maxd_acomp) real, intent(in) :: dens_aer(maxd_acomp) ! aerosol material density (g/cm3) real, intent(in) :: dlo_sect,dhi_sect ! minimum, maximum diameter of section (cm) integer, intent(in) :: grid_id, ktau, i, j, isize, itype ! output real, intent(out) :: naerosol ! interstitial number conc (/m3) real, intent(out) :: naerosolcw ! activated number conc (/m3) real, intent(out) :: maerosol(maxd_acomp) ! interstitial mass conc (kg/m3) real, intent(out) :: maerosolcw(maxd_acomp) ! activated mass conc (kg/m3) real, intent(out) :: maerosol_tot ! total-over-species interstitial mass conc (kg/m3) real, intent(out) :: maerosol_totcw ! total-over-species activated mass conc (kg/m3) real, intent(out) :: vaerosol ! interstitial volume conc (m3/m3) real, intent(out) :: vaerosolcw ! activated volume conc (m3/m3) ! internal integer lnum,lnumcw,l,ltype,lmass,lmasscw,lsfc,lsfccw real num_at_dhi, num_at_dlo real npv_at_dhi, npv_at_dlo real, parameter :: pi = 3.1415926526 real specvol ! inverse aerosol material density (m3/kg) lnum=numptr_aer lnumcw=numptrcw_aer maerosol_tot=0. maerosol_totcw=0. vaerosol=0. vaerosolcw=0. do l=1,ncomp lmass=massptr_aer(l) lmasscw=massptrcw_aer(l) maerosol(l)=chem(k,lmass)*cs maerosol(l)=max(maerosol(l),0.) maerosolcw(l)=chem(k,lmasscw)*cs maerosolcw(l)=max(maerosolcw(l),0.) maerosol_tot=maerosol_tot+maerosol(l) maerosol_totcw=maerosol_totcw+maerosolcw(l) ! [ 1.e-3 factor because dens_aer is (g/cm3), specvol is (m3/kg) ] specvol=1.0e-3/dens_aer(l) vaerosol=vaerosol+maerosol(l)*specvol vaerosolcw=vaerosolcw+maerosolcw(l)*specvol ! write(6,'(a,3e12.2)')'maerosol,dens_aer,vaerosol=',maerosol(l),dens_aer(l),vaerosol enddo if(lnum.gt.0)then ! aerosol number predicted ! [ 1.0e6 factor because because dhi_ & dlo_sect are (cm), vaerosol is (m3) ] npv_at_dhi = 6.0e6/(pi*dhi_sect*dhi_sect*dhi_sect) npv_at_dlo = 6.0e6/(pi*dlo_sect*dlo_sect*dlo_sect) naerosol=chem(k,lnum)*cs naerosolcw=chem(k,lnumcw)*cs num_at_dhi = vaerosol*npv_at_dhi num_at_dlo = vaerosol*npv_at_dlo naerosol = max( num_at_dhi, min( num_at_dlo, naerosol ) ) ! write(6,'(a,5e10.1)')'naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect', & ! naerosol,num_at_dhi,num_at_dlo,dhi_sect,dlo_sect num_at_dhi = vaerosolcw*npv_at_dhi num_at_dlo = vaerosolcw*npv_at_dlo naerosolcw = max( num_at_dhi, min( num_at_dlo, naerosolcw ) ) else ! aerosol number diagnosed from mass and prescribed size naerosol=vaerosol*npv naerosol=max(naerosol,0.) naerosolcw=vaerosolcw*npv naerosolcw=max(naerosolcw,0.) endif return end subroutine loadaer !----------------------------------------------------------------------- real function erfc_num_recipes( x ) ! ! from press et al, numerical recipes, 1990, page 164 ! implicit none real x double precision erfc_dbl, dum, t, zz zz = abs(x) t = 1.0/(1.0 + 0.5*zz) ! erfc_num_recipes = ! & t*exp( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + ! & t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + ! & t*(-1.13520398 + ! & t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) dum = ( -zz*zz - 1.26551223 + t*(1.00002368 + t*(0.37409196 + & t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + & t*(-1.13520398 + & t*(1.48851587 + t*(-0.82215223 + t*0.17087277 ))))))))) erfc_dbl = t * exp(dum) if (x .lt. 0.0) erfc_dbl = 2.0d0 - erfc_dbl erfc_num_recipes = erfc_dbl return end function erfc_num_recipes !----------------------------------------------------------------------- real function erf_alt( x ) implicit none real,intent(in) :: x erf_alt = 1. - erfc_num_recipes(x) end function erf_alt END MODULE module_mixactivate