! Create an initial data set for the WRF model based on real data. This ! program is specifically set up for the Eulerian, mass-based coordinate. PROGRAM tc_data USE module_machine USE module_domain, ONLY : domain, alloc_and_configure_domain, & domain_clock_set, head_grid, program_name, domain_clockprint, & set_current_grid_ptr USE module_io_domain USE module_initialize_real, ONLY : wrfu_initialize USE module_driver_constants USE module_configure, ONLY : grid_config_rec_type, model_config_rec, & initial_config, get_config_as_buffer, set_config_as_buffer USE module_timing USE module_state_description, ONLY : realonly USE module_symbols_util, ONLY: wrfu_cal_gregorian USE module_utility, ONLY : WRFU_finalize IMPLICIT NONE REAL :: time , bdyfrq INTEGER :: loop , levels_to_process , debug_level TYPE(domain) , POINTER :: null_domain TYPE(domain) , POINTER :: grid , another_grid TYPE(domain) , POINTER :: grid_ptr , grid_ptr2 TYPE (grid_config_rec_type) :: config_flags INTEGER :: number_at_same_level INTEGER :: max_dom, domain_id , grid_id , parent_id , parent_id1 , id INTEGER :: e_we , e_sn , i_parent_start , j_parent_start INTEGER :: idum1, idum2 #ifdef DM_PARALLEL INTEGER :: nbytes INTEGER, PARAMETER :: configbuflen = 4* CONFIG_BUF_LEN INTEGER :: configbuf( configbuflen ) LOGICAL , EXTERNAL :: wrf_dm_on_monitor #endif LOGICAL found_the_id INTEGER :: ids , ide , jds , jde , kds , kde INTEGER :: ims , ime , jms , jme , kms , kme INTEGER :: ips , ipe , jps , jpe , kps , kpe INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: i , j , k , idts, rc INTEGER :: sibling_count , parent_id_hold , dom_loop CHARACTER (LEN=80) :: message INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop, bogus_id, storm real::t1,t2 real :: latc_loc(max_bogus),lonc_loc(max_bogus),vmax(max_bogus),rmax(max_bogus) real :: rankine_lid INTERFACE SUBROUTINE Setup_Timekeeping( grid ) USE module_domain, ONLY : domain TYPE(domain), POINTER :: grid END SUBROUTINE Setup_Timekeeping END INTERFACE #include "version_decl" ! Define the name of this program (program_name defined in module_domain) program_name = "TC_EM " // TRIM(release_version) // " PREPROCESSOR" ! The TC bogus algorithm assumes that the user defines a central point, and then ! allows the program to remove a typhoon based on a distance in km. This is ! implemented on a single processor only. #ifdef DM_PARALLEL IF ( .NOT. wrf_dm_on_monitor() ) THEN CALL wrf_error_fatal( 'TC bogus must run with a single processor only, re-run with num procs set to 1' ) END IF #endif #ifdef DM_PARALLEL CALL disable_quilting #endif ! Initialize the modules used by the WRF system. Many of the CALLs made from the ! init_modules routine are NO-OPs. Typical initializations are: the size of a ! REAL, setting the file handles to a pre-use value, defining moisture and ! chemistry indices, etc. CALL wrf_debug ( 100 , 'real_em: calling init_modules ' ) CALL init_modules(1) ! Phase 1 returns after MPI_INIT() (if it is called) #ifdef NO_LEAP_CALENDAR CALL WRFU_Initialize( defaultCalendar=WRFU_CAL_NOLEAP, rc=rc ) #else CALL WRFU_Initialize( defaultCalendar=WRFU_CAL_GREGORIAN, rc=rc ) #endif CALL init_modules(2) ! Phase 2 resumes after MPI_INIT() (if it is called) ! The configuration switches mostly come from the NAMELIST input. #ifdef DM_PARALLEL IF ( wrf_dm_on_monitor() ) THEN CALL initial_config END IF CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) ! CALL wrf_dm_initialize #else CALL initial_config #endif CALL nl_get_debug_level ( 1, debug_level ) CALL set_wrf_debug_level ( debug_level ) CALL wrf_message ( program_name ) ! There are variables in the Registry that are only required for the real ! program, fields that come from the WPS package. We define the run-time ! flag that says to allocate space for these input-from-WPS-only arrays. CALL nl_set_use_wps_input ( 1 , REALONLY ) ! Allocate the space for the mother of all domains. NULLIFY( null_domain ) CALL wrf_debug ( 100 , 'real_em: calling alloc_and_configure_domain ' ) CALL alloc_and_configure_domain ( domain_id = 1 , & grid = head_grid , & parent = null_domain , & kid = -1 ) grid => head_grid CALL nl_get_max_dom ( 1 , max_dom ) IF ( model_config_rec%interval_seconds .LE. 0 ) THEN CALL wrf_error_fatal( 'namelist value for interval_seconds must be > 0') END IF all_domains : DO domain_id = 1 , max_dom IF ( ( model_config_rec%input_from_file(domain_id) ) .OR. & ( domain_id .EQ. 1 ) ) THEN CALL Setup_Timekeeping ( grid ) CALL set_current_grid_ptr( grid ) CALL domain_clockprint ( 150, grid, & 'DEBUG real: clock after Setup_Timekeeping,' ) CALL domain_clock_set( grid, & time_step_seconds=model_config_rec%interval_seconds ) CALL domain_clockprint ( 150, grid, & 'DEBUG real: clock after timeStep set,' ) CALL wrf_debug ( 100 , 'tc_em: calling set_scalar_indices_from_config ' ) CALL set_scalar_indices_from_config ( grid%id , idum1, idum2 ) !This is goofy but we need to loop through the number of storms to get !the namelist variables for the tc_bogus. But then we need to !call model_to_grid_config_rec with the grid%id = to 1 in order to !reset to the correct information. CALL wrf_debug ( 100 , 'tc_em: calling model_to_grid_config_rec ' ) lonc_loc(:) = -999. latc_loc(:) = -999. vmax(:) = -999. rmax(:) = -999. CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) lonc_loc(1) = config_flags%lonc_loc latc_loc(1) = config_flags%latc_loc vmax(1) = config_flags%vmax_meters_per_second rmax(1) = config_flags%rmax rankine_lid = config_flags%rankine_lid do storm = 2,config_flags%num_storm bogus_id = storm CALL model_to_grid_config_rec ( bogus_id , model_config_rec , config_flags ) lonc_loc(storm) = config_flags%lonc_loc latc_loc(storm) = config_flags%latc_loc vmax(storm) = config_flags%vmax_meters_per_second rmax(storm) = config_flags%rmax ! print *,"in loop ",storm,lonc_loc(storm),latc_loc(storm),vmax(storm),rmax(storm) end do CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! Initialize the WRF IO: open files, init file handles, etc. CALL wrf_debug ( 100 , 'tc_em: calling init_wrfio' ) CALL init_wrfio ! Some of the configuration values may have been modified from the initial READ ! of the NAMELIST, so we re-broadcast the configuration records. #ifdef DM_PARALLEL CALL wrf_debug ( 100 , 'tc_em: re-broadcast the configuration records' ) CALL get_config_as_buffer( configbuf, configbuflen, nbytes ) CALL wrf_dm_bcast_bytes( configbuf, nbytes ) CALL set_config_as_buffer( configbuf, configbuflen ) #endif ! No looping in this layer. CALL wrf_debug ( 100 , 'calling tc_med_sidata_input' ) CALL tc_med_sidata_input ( grid , config_flags, latc_loc, lonc_loc, & vmax,rmax,rankine_lid) CALL wrf_debug ( 100 , 'backfrom tc_med_sidata_input' ) ELSE CYCLE all_domains END IF END DO all_domains CALL set_current_grid_ptr( head_grid ) ! We are done. CALL wrf_debug ( 0 , 'tc_em: SUCCESS COMPLETE TC BOGUS' ) CALL wrf_shutdown CALL WRFU_Finalize( rc=rc ) END PROGRAM tc_data !----------------------------------------------------------------- SUBROUTINE tc_med_sidata_input ( grid , config_flags, latc_loc, lonc_loc, & vmax, rmax,rankine_lid) ! Driver layer USE module_domain USE module_io_domain ! Model layer USE module_configure USE module_bc_time_utilities USE module_optional_input USE module_date_time USE module_utility IMPLICIT NONE ! Interface INTERFACE SUBROUTINE start_domain ( grid , allowed_to_read ) ! comes from module_start in appropriate dyn_ directory USE module_domain TYPE (domain) grid LOGICAL, INTENT(IN) :: allowed_to_read END SUBROUTINE start_domain END INTERFACE ! Arguments TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags ! Local INTEGER :: time_step_begin_restart INTEGER :: idsi , ierr , myproc, internal_time_loop,iflag ! Declarations for the netcdf routines. INTEGER ::nf_inq ! CHARACTER (LEN=80) :: si_inpname CHARACTER (LEN=80) :: message CHARACTER(LEN=19) :: start_date_char , end_date_char , current_date_char , next_date_char CHARACTER(LEN=8) :: flag_name INTEGER :: time_loop_max , loop, rc,icnt,itmp INTEGER :: julyr , julday ,metndims, metnvars, metngatts, nunlimdimid,rcode REAL :: gmt real :: t1,t2,t3,t4 real :: latc_loc(max_bogus), lonc_loc(max_bogus) real :: vmax(max_bogus),rmax(max_bogus),rankine_lid grid%input_from_file = .true. grid%input_from_file = .false. CALL tc_compute_si_start ( model_config_rec%start_year (grid%id) , & model_config_rec%start_month (grid%id) , & model_config_rec%start_day (grid%id) , & model_config_rec%start_hour (grid%id) , & model_config_rec%start_minute(grid%id) , & model_config_rec%start_second(grid%id) , & model_config_rec%interval_seconds , & model_config_rec%real_data_init_type , & start_date_char) end_date_char = start_date_char IF ( end_date_char .LT. start_date_char ) THEN CALL wrf_error_fatal( 'Ending date in namelist ' // end_date_char // ' prior to beginning date ' // start_date_char ) END IF print *,"the start date char ",start_date_char print *,"the end date char ",end_date_char time_loop_max = 1 ! Override stop time with value computed above. CALL domain_clock_set( grid, stop_timestr=end_date_char ) ! TBH: for now, turn off stop time and let it run data-driven CALL WRFU_ClockStopTimeDisable( grid%domain_clock, rc=rc ) CALL wrf_check_error( WRFU_SUCCESS, rc, & 'WRFU_ClockStopTimeDisable(grid%domain_clock) FAILED', & __FILE__ , & __LINE__ ) CALL domain_clockprint ( 150, grid, & 'DEBUG med_sidata_input: clock after stopTime set,' ) ! Here we define the initial time to process, for later use by the code. current_date_char = start_date_char start_date = start_date_char // '.0000' current_date = start_date CALL nl_set_bdyfrq ( grid%id , REAL(model_config_rec%interval_seconds) ) CALL cpu_time ( t1 ) DO loop = 1 , time_loop_max internal_time_loop = loop IF ( ( grid%id .GT. 1 ) .AND. ( loop .GT. 1 ) .AND. & ( model_config_rec%grid_fdda(grid%id) .EQ. 0 ) .AND. & ( model_config_rec%sst_update .EQ. 0 ) ) EXIT print *,' ' print *,'-----------------------------------------------------------------------------' print *,' ' print '(A,I2,A,A,A,I4,A,I4)' , & ' Domain ',grid%id,': Current date being processed: ',current_date, ', which is loop #',loop,' out of ',time_loop_max ! After current_date has been set, fill in the julgmt stuff. CALL geth_julgmt ( config_flags%julyr , config_flags%julday , config_flags%gmt ) print *,'configflags%julyr, %julday, %gmt:',config_flags%julyr, config_flags%julday, config_flags%gmt ! Now that the specific Julian info is available, save these in the model config record. CALL nl_set_gmt (grid%id, config_flags%gmt) CALL nl_set_julyr (grid%id, config_flags%julyr) CALL nl_set_julday (grid%id, config_flags%julday) ! Open the input file for tc stuff. Either the "new" one or the "old" one. The "new" one could have ! a suffix for the type of the data format. Check to see if either is around. CALL cpu_time ( t3 ) WRITE ( wrf_err_message , FMT='(A,A)' )'med_sidata_input: calling open_r_dataset for ', & TRIM(config_flags%auxinput1_inname) CALL wrf_debug ( 100 , wrf_err_message ) IF ( config_flags%auxinput1_inname(1:8) .NE. 'wrf_real' ) THEN CALL construct_filename4a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , & current_date_char , config_flags%io_form_auxinput1 ) ELSE CALL construct_filename2a( si_inpname , config_flags%auxinput1_inname , grid%id , 2 , & current_date_char ) END IF CALL open_r_dataset ( idsi, TRIM(si_inpname) , grid , config_flags , "DATASET=AUXINPUT1", ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'error opening ' // TRIM(si_inpname) // & ' for input; bad date in namelist or file not in directory' ) END IF ! Input data. CALL wrf_debug ( 100 , 'med_sidata_input: calling input_auxinput1' ) CALL input_auxinput1 ( idsi , grid , config_flags , ierr ) WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for input ',NINT(t4-t3) ,' s.' CALL wrf_debug( 0, wrf_err_message ) ! Possible optional SI input. This sets flags used by init_domain. CALL cpu_time ( t3 ) CALL wrf_debug ( 100 , 'med_sidata_input: calling init_module_optional_input' ) CALL init_module_optional_input ( grid , config_flags ) CALL wrf_debug ( 100 , 'med_sidata_input: calling optional_input' ) CALL optional_input ( grid , idsi , config_flags ) !Here we check the flags yet again. The flags are checked in optional_input but !the grid% flags are not set. flag_name(1:8) = 'SM000010' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_sm000010 = 1 end if flag_name(1:8) = 'SM010040' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_sm010040 = 1 end if flag_name(1:8) = 'SM040100' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_sm040100 = itmp end if flag_name(1:8) = 'SM100200' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_sm100200 = itmp end if ! flag_name(1:8) = 'SM010200' ! CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) ! IF ( ierr .EQ. 0 ) THEN ! config_flags%flag_sm010200 = itmp ! print *,"found the flag_sm010200 " ! end if !Now the soil temperature flags flag_name(1:8) = 'ST000010' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_st000010 = 1 END IF flag_name(1:8) = 'ST010040' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_st010040 = 1 END IF flag_name(1:8) = 'ST040100' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_st040100 = 1 END IF flag_name(1:8) = 'ST100200' CALL wrf_get_dom_ti_integer ( idsi, 'FLAG_' // flag_name, itmp, 1, icnt, ierr ) IF ( ierr .EQ. 0 ) THEN grid%flag_st100200 = 1 END IF CALL close_dataset ( idsi , config_flags , "DATASET=AUXINPUT1" ) CALL cpu_time ( t4 ) ! Possible optional SI input. This sets flags used by init_domain. ! We need to call the optional input routines to get the flags that ! are in the metgrid output file so they can be put in the tc bogus ! output file for real to read. CALL cpu_time ( t3 ) already_been_here = .FALSE. CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) CALL cpu_time ( t3 ) CALL assemble_output ( grid , config_flags , loop , time_loop_max, current_date_char, & latc_loc, lonc_loc, vmax, rmax, rankine_lid,si_inpname) CALL cpu_time ( t4 ) WRITE ( wrf_err_message , FMT='(A,I10,A)' ) 'Timing for output ',NINT(t4-t3) ,' s.' CALL wrf_debug( 0, wrf_err_message ) CALL cpu_time ( t2 ) WRITE ( wrf_err_message , FMT='(A,I4,A,I10,A)' ) 'Timing for loop # ',loop,' = ',NINT(t2-t1) ,' s.' CALL wrf_debug( 0, wrf_err_message ) CALL cpu_time ( t1 ) END DO END SUBROUTINE tc_med_sidata_input !------------------------------------------------------------------------------------- SUBROUTINE tc_compute_si_start( & start_year , start_month , start_day , start_hour , start_minute , start_second , & interval_seconds , real_data_init_type , & start_date_char) USE module_date_time IMPLICIT NONE INTEGER :: start_year , start_month , start_day , start_hour , start_minute , start_second INTEGER :: end_year , end_month , end_day , end_hour , end_minute , end_second INTEGER :: interval_seconds , real_data_init_type INTEGER :: time_loop_max , time_loop CHARACTER(LEN=19) :: current_date_char , start_date_char , end_date_char , next_date_char #ifdef PLANET WRITE ( start_date_char , FMT = '(I4.4,"-",I5.5,"_",I2.2,":",I2.2,":",I2.2)' ) & start_year,start_day,start_hour,start_minute,start_second #else WRITE ( start_date_char , FMT = '(I4.4,"-",I2.2,"-",I2.2,"_",I2.2,":",I2.2,":",I2.2)' ) & start_year,start_month,start_day,start_hour,start_minute,start_second #endif END SUBROUTINE tc_compute_si_start !----------------------------------------------------------------------- SUBROUTINE assemble_output ( grid , config_flags , loop , time_loop_max,current_date_char, & latc_loc, lonc_loc,vmax,rmax,rankine_lid,si_inpname) USE module_big_step_utilities_em USE module_domain USE module_io_domain USE module_configure USE module_date_time USE module_bc IMPLICIT NONE TYPE(domain) :: grid TYPE (grid_config_rec_type) :: config_flags INTEGER , INTENT(IN) :: loop , time_loop_max !These values are in the name list and are avaiable from !from the config_flags. real :: vmax(max_bogus),vmax_ratio,rankine_lid real :: rmax(max_bogus),stand_lon,cen_lat,ptop_in_pa real :: latc_loc(max_bogus),lonc_loc(max_bogus) INTEGER :: ijds , ijde , spec_bdy_width INTEGER :: i , j , k , idts,map_proj,remove_only,storms INTEGER :: id1 , interval_seconds , ierr, rc, sst_update, grid_fdda INTEGER , SAVE :: id, id2, id4 CHARACTER (LEN=80) :: tcoutname , bdyname,si_inpname CHARACTER(LEN= 4) :: loop_char CHARACTER(LEN=19) :: current_date_char character *19 :: temp19 character *24 :: temp24 , temp24b real::t1,t2,truelat1,truelat2 ! Boundary width, scalar value. spec_bdy_width = model_config_rec%spec_bdy_width interval_seconds = model_config_rec%interval_seconds sst_update = model_config_rec%sst_update grid_fdda = model_config_rec%grid_fdda(grid%id) truelat1 = config_flags%truelat1 truelat2 = config_flags%truelat2 stand_lon = config_flags%stand_lon cen_lat = config_flags%cen_lat map_proj = config_flags%map_proj vmax_ratio = config_flags%vmax_ratio ptop_in_pa = config_flags%p_top_requested remove_only = 0 if(config_flags%remove_storm) then remove_only = 1 end if storms = config_flags%num_storm print *,"number of storms ",config_flags%num_storm call tc_bogus(cen_lat,stand_lon,map_proj,truelat1,truelat2, & grid%dx,grid%e_we,grid%e_sn,grid%num_metgrid_levels,ptop_in_pa, & rankine_lid,latc_loc,lonc_loc,vmax,vmax_ratio,rmax,remove_only, & storms,grid) ! Open the tc bogused output file. cd CALL construct_filename4a( tcoutname , config_flags%auxinput1_outname , grid%id , 2 , & current_date_char , config_flags%io_form_auxinput1 ) print *,"outfile name from construct filename ",tcoutname CALL open_w_dataset ( id1, TRIM(tcoutname) , grid , config_flags ,output_auxinput1,"DATASET=AUXINPUT1",ierr ) IF ( ierr .NE. 0 ) THEN CALL wrf_error_fatal( 'tc_em: error opening tc bogus file for writing' ) END IF CALL output_auxinput1( id1, grid , config_flags , ierr ) CALL close_dataset ( id1 , config_flags , "DATASET=AUXINPUT1" ) END SUBROUTINE assemble_output !---------------------------------------------------------------------------------------------- SUBROUTINE tc_bogus(centerlat,stdlon,nproj,truelat1,truelat2,dsm,ew,ns,nz,ptop_in_pa, & rankine_lid,latc_loc,lonc_loc,vmax,vmax_ratio,rmax,remove_only, & storms,grid) !!Original Author Dave Gill. Modified by Sherrie Fredrick !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !These are read in from the netcdf file. !centerlat The center latitude from the global attributes in the netcdf file. !stdlon The center longitude from the global attributes in the netcdf file. !nproj The map projection from the global attributes in the netcdf file. !dsm The spacing in meters from the global attributes in the netcdf file. !ew The west_east_stag from the dimensions in the netcdf file.. !ns The south_north_stag from the dimensions in the netcdf file. . !nz The number of metgrid levels from the dimensions in the netcdf file. !ptop_in_pa This is part of the namelist.input file under the &domains section. !These values are part of the namelist.input file under the &tc section specifically !for the tc bogus code. !NOTES: There can be up to five bogus storms. The variable max_bogus is set in !the WRF subroutine called module_driver_constants.F in the ./WRFV3/frame directory. !latc_loc The center latitude of the bogus strorm. This is an array dimensioned max_bogus. !lonc_loc The center longitude of the bogus strorm. This is an array dimensioned max_bogus. !vmax The max vortex in meters/second it comes from the namelist entry. ! This is an array dimensioned max_bogus. !vmax_ratio This comes from the namelist entry. !rmax The maximum radius this comes from the namelist entry. ! This is an array dimensioned max_bogus !remove_only If this is set to true in the namelist.input file a value of 0.1 ! is automatically assigned to vmax. !rankine_lid This comes from the namelist entry. It can be used to determine ! what model levels the bogus storm affects. !storms The number of bogus storms. !grid This is a Fortran structure which holds all of the field data values ! for the netcdf that was read in. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !module_llxy resides in the share directory. USE module_llxy !This is for the large structure (grid) USE module_domain IMPLICIT NONE TYPE(domain) :: grid integer ew,ns,nz integer nproj integer storms,nstrm real :: centerlat,stdlon,conef,truelat1,truelat2,dsm,dx,rankine_lid real :: latc_loc(max_bogus),lonc_loc(max_bogus),vmax(max_bogus),vmax_ratio,rmax(max_bogus) real :: press(ew-1,nz,ns-1),rhmx(nz), vwgt(nz),old_slp(ew-1,ns-1) real, dimension(:,:,:) , allocatable :: u11,v11,t11,rh11,phi11 real, dimension(:,:,:) , allocatable :: u1 , v1 , t1 , rh1 , phi1 real, dimension(ew-1,ns-1) :: lond,terrain,cor,pslx !The map scale factors. real, dimension(ew,ns-1) :: msfu !The mapscale factor for the ew wind staggered grid real, dimension(ew-1,ns) :: msfv !The mapscale factor for the ns wind staggered grid real, dimension(ew-1,ns-1) :: msfm !The mapscale factor for the unstaggered grid. CHARACTER*2 jproj LOGICAL :: l_tcbogus real :: r_search,r_vor,beta,devps,humidity_max real :: devpc,const,r_vor2,cnst,alphar,epsilon,vormx , rad , sum_q real :: avg_q ,q_old,ror,q_new,dph,dphx0 real :: rh_max,min_RH_value,ps integer :: vert_variation integer :: i,k,j,kx,remove_only integer :: k00,kfrm ,kto ,k85,n_iter,ew_mvc,ns_mvc,nct,itr integer :: strmci(nz), strmcj(nz) real :: disx,disy,alpha,degran,pie,rovcp,cp REAL :: rho,pprm,phip0,x0,y0,vmx,xico,xjco,xicn,xjcn,p85,xlo,rconst,ew_gcntr,ns_gcntr real :: ptop_in_pa,themax,themin real :: latinc,loninc real :: rtemp,colat0,colat REAL :: q1(ew-1,nz,ns-1), psi1(ew-1,nz,ns-1) ! This is the entire map projection enchilada. TYPE(proj_info) :: proj REAL :: lat1 , lon1 ! These values are read in from the data set. real :: knowni,knownj ! TC bogus REAL utcr(ew,nz,ns-1), vtcr(ew-1,nz,ns) REAL utcp(ew,nz,ns-1), vtcp(ew-1,nz,ns) REAL psitc(ew-1,nz,ns-1), psiv(nz) REAL vortc(ew-1,nz,ns-1), vorv(nz) REAL tptc(ew-1,nz,ns-1) REAL phiptc(ew-1,nz,ns-1) ! Work arrays REAL uuwork(nz), vvwork(nz), temp2(ew,ns) REAL vort(ew-1,nz,ns-1), div(ew-1,nz,ns-1) REAL vortsv(ew-1,nz,ns-1) REAL theta(ew-1,nz,ns-1), t_reduce(ew-1,nz,ns-1) REAL ug(ew,nz,ns-1), vg(ew-1,nz,ns), vorg(ew-1,nz,ns-1) REAL delpx(ew-1,ns-1) !subroutines for relaxation REAL outold(ew-1,ns-1) REAL rd(ew-1,ns-1), ff(ew-1,ns-1) REAL tmp1(ew-1,ns-1), tmp2(ew-1,ns-1) ! Background fields. REAL , DIMENSION (ew-1,nz,ns-1) :: t0, t00, rh0, q0, phi0, psi0, chi ! Perturbations REAL , DIMENSION (ew-1,nz,ns-1) :: psipos, tpos, psi ,phipos, phip ! Final fields. REAL u2(ew,nz,ns-1), v2(ew-1,nz,ns) REAL t2(ew-1,nz,ns-1),z2(ew-1,nz,ns-1) REAL phi2(ew-1,nz,ns-1),rh2(ew-1,nz,ns-1) print *,"the dimensions: north-south = ",ns," east-west =",ew IF (nproj .EQ. 1) THEN jproj = 'LC' print *,"Lambert Conformal projection" ELSE IF (nproj .EQ. 2) THEN jproj = 'ST' ELSE IF (nproj .EQ. 3) THEN jproj = 'ME' print *,"A mercator projection" END IF knowni = 1. knownj = 1. pie = 3.141592653589793 degran = pie/180. rconst = 287.04 min_RH_value = 5.0 cp = 1004.0 rovcp = rconst/cp r_search = 400000.0 r_vor = 300000.0 r_vor2 = r_vor * 4 beta = 0.5 devpc= 40.0 vert_variation = 1 humidity_max = 95.0 alphar = 1.8 latinc = -999. loninc = -999. if(remove_only .eq. 1) then do nstrm=1,storms vmax(nstrm) = 0.1 end do end if ! Set up initializations for map projection so that the lat/lon ! of the tropical storm can be put into model (i,j) space. This needs to be done once per ! map projection definition. Since this is the domain that we are "GOING TO", it is a once ! per regridder requirement. If the user somehow ends up calling this routine for several ! time periods, there is no problemos, just a bit of overhead with redundant calls. dx = dsm lat1 = grid%xlat_gc(1,1) lon1 = grid%xlong_gc(1,1) IF( jproj .EQ. 'ME' )THEN IF ( lon1 .LT. -180. ) lon1 = lon1 + 360. IF ( lon1 .GT. 180. ) lon1 = lon1 - 360. IF ( stdlon .LT. -180. ) stdlon = stdlon + 360. IF ( stdlon .GT. 180. ) stdlon = stdlon - 360. CALL map_set ( proj_merc, proj, lat1, lon1, lat1, lon1, knowni, knownj, dx, & latinc,loninc,stdlon , truelat1 , truelat2) conef = 0. ELSE IF ( jproj .EQ. 'LC' ) THEN if((truelat1 .eq. 0.0) .and. (truelat2 .eq. 0.0)) then print *,"Truelat1 and Truelat2 are both 0" stop end if CALL map_set (proj_lc,proj, lat1, lon1, lat1, lon1, knowni, knownj, dx, & latinc,loninc,stdlon , truelat1 , truelat2) conef = proj%cone ELSE IF ( jproj .EQ. 'ST' ) THEN conef = 1. CALL map_set ( proj_ps,proj,lat1, lon1, lat1, lon1, knowni, knownj, dx, & latinc,loninc,stdlon , truelat1 , truelat2) END IF ! Load the pressure array. kx = nz do j = 1,ns-1 do k = 1,nz do i = 1,ew-1 press(i,k,j) = grid%p_gc(i,k,j)*0.01 end do end do end do ! Initialize the vertical profiles for humidity and weighting. !The ptop variable will be read in from the namelist IF ( ( ptop_in_pa .EQ. 40000. ) .OR. ( ptop_in_pa .EQ. 60000. ) ) THEN PRINT '(A)','Hold on pardner, your value for PTOP is gonna cause problems for the TC bogus option.' PRINT '(A)','Make it higher up than 400 mb.' STOP 'ptop_woes_for_tc_bogus' END IF IF ( vert_variation .EQ. 1 ) THEN DO k=1,kx IF ( press(1,k,1) .GT. 400. ) THEN rhmx(k) = humidity_max ELSE rhmx(k) = humidity_max * MAX( 0.1 , (press(1,k,1) - ptop_in_pa/100.)/(400.-ptop_in_pa/100.) ) END IF IF ( press(1,k,1) .GT. 600. ) THEN vwgt(k) = 1.0 ELSE IF ( press(1,k,1) .LE. 100. ) THEN vwgt(k) = 0.0001 ELSE vwgt(k) = MAX ( 0.0001 , (press(1,k,1)-ptop_in_pa/100.)/(600.-ptop_in_pa/100.) ) END IF END DO ELSE IF ( vert_variation .EQ. 2 ) THEN IF ( kx .eq. 24 ) THEN rhmx = (/ 95., 95., 95., 95., 95., 95., 95., 95., & 95., 95., 95., 95., 95., 90., 85., 80., 75., & 70., 66., 60., 39., 10., 10., 10./) vwgt = (/ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.9850, & 0.9680, 0.9500, 0.9290, 0.9060, 0.8810, 0.8500, 0.7580, 0.6500, 0.5100, & 0.3500, 0.2120, 0.0500, 0.0270, 0.0001, 0.0001, 0.0001/) ELSE PRINT '(A)','Number of vertical levels assumed to be 24 for AFWA TC bogus option' STOP 'AFWA_TC_BOGUS_LEVEL_ERROR' END IF END IF !Remember that ns = the north south staggered. This is one more than the ns mass point grid. ! ew = the east west staggered. This is one more than the ew mass point grid. !Put the U and V into the new arrays. !Remember that the WRF ordering is ew,vert level,ns !Vorticity and Divergence calculatins are done on !the staggered grids so the winds are not destaggered allocate(u11 (1:ew, 1:nz, 1:ns-1)) allocate(u1 (1:ew, 1:nz, 1:ns-1)) allocate(v11 (1:ew-1, 1:nz, 1:ns)) allocate(v1 (1:ew-1, 1:nz, 1:ns)) do j = 1,ns-1 do k = 1,nz do i = 1,ew u11(i,k,j) = grid%u_gc(i,k,j) u1(i,k,j) = grid%u_gc(i,k,j) msfu(i,j) = grid%msfu(i,j) !map scale factor on the U staggered grid end do end do end do do j = 1,ns do k = 1,nz do i = 1,ew-1 v11(i,k,j) = grid%v_gc(i,k,j) v1(i,k,j) = grid%v_gc(i,k,j) msfv(i,j) = grid%msfv(i,j) !map scale factor on the V staggered grid end do end do end do !Put the temperature, relative humidity and height fields !into arrays. Save the initial fields also. !These arrays are on the WRF mass points allocate(t11 (1:ew-1, 1:nz, 1:ns-1)) allocate(t1 (1:ew-1, 1:nz, 1:ns-1)) allocate(rh11 (1:ew-1, 1:nz, 1:ns-1)) allocate(rh1 (1:ew-1, 1:nz, 1:ns-1)) allocate(phi11(1:ew-1, 1:nz, 1:ns-1)) allocate(phi1 (1:ew-1, 1:nz, 1:ns-1)) do j = 1,ns-1 do k = 1,nz do i = 1,ew-1 t11(i,k,j) = grid%t_gc(i,k,j) t1(i,k,j) = grid%t_gc(i,k,j) rh11(i,k,j) = grid%rh_gc(i,k,j) rh1(i,k,j) = grid%rh_gc(i,k,j) msfm(i,j) = grid%msft(i,j) if(k .eq. 1)then phi11(i,k,j) = grid%ht_gc(i,j) phi1(i,k,j) = grid%ht_gc(i,j) * 9.81 else phi11(i,k,j) = grid%ght_gc(i,k,j) phi1(i,k,j) = grid%ght_gc(i,k,j) * 9.81 end if end do end do end do !The two D fields !The terrain soil height is from ght at level 1 do j = 1,ns-1 do i = 1,ew-1 pslx(i,j) = grid%pslv_gc(i,j) * 0.01 cor(i,j) = grid%f(i,j) !coreolous lond(i,j) = grid%xlong_gc(i,j) terrain(i,j) = grid%ht_gc(i,j) old_slp(i,j) = grid%pslv_gc(i,j) end do end do ! Loop over the number of storms to process. l_tcbogus = .FALSE. all_storms : DO nstrm=1,storms !Make sure the user has defined the rmax variable if(rmax(nstrm) .eq. -999.) then print *,"Please enter a value for rmax in the namelist" stop end if k00 = 2 kfrm = k00 p85 = 850. kto = kfrm DO k=kfrm+1,kx IF ( press(1,k,1) .GE. p85 ) THEN kto = kto + 1 END IF END DO k85 = kto ! Parameters for max wind rho = 1.2 pprm = devpc*100. phip0= pprm/rho !latc_loc and lonc_loc come in from the namelist. !These x0 and y0 points are relative to the mass points. CALL latlon_to_ij ( proj , latc_loc(nstrm) , lonc_loc(nstrm) , x0 , y0 ) IF ( ( x0 .LT. 1. ) .OR. ( x0 .GT. REAL(ew-1) ) .OR. & ( y0 .LT. 1. ) .OR. ( y0 .GT. REAL(ns-1) ) ) THEN PRINT '(A,I3,A,A,A)',' Storm position is outside the computational domain.' PRINT '(A,2F6.2,A)' ,' Storm postion: (x,y) = ',x0,y0,'.' stop END IF l_tcbogus = .TRUE. ! Bogus vortex specifications, vmax (m/s); rmax (m); vmx = vmax(nstrm) * vmax_ratio IF ( latc_loc(nstrm) .LT. 0. ) THEN vmx = -vmx END IF IF ( vmax(nstrm) .LE. 0. ) THEN vmx = SQRT( 2.*(1-beta)*ABS(phip0) ) END IF ew_gcntr = x0 !ew center grid location ns_gcntr = y0 !ns center grid location !For right now we are adding 0.5 to the grid location this !makes the output of the wrf tc_bogus scheme analogous to the !ouput of the MM5 tc_bogus scheme. ew_gcntr = x0 + 0.5 ns_gcntr = y0 + 0.5 n_iter = 1 ! Start computing. PRINT '(/,A,I3,A,A,A)' ,'---> TC: Processing storm number= ',nstrm PRINT '(A,F6.2,A,F7.2,A)' ,' Storm center lat= ',latc_loc(nstrm),' lon= ',lonc_loc(nstrm),'.' PRINT '(A,2F6.2,A)' ,' Storm center grid position (x,y)= ',ew_gcntr,ns_gcntr,'.' PRINT '(A,F5.2,F9.2,A)' ,' Storm max wind (m/s) and max radius (m)= ',vmx,rmax(nstrm),'.' PRINT '(A,F5.2,A)' ,' Estimated central press dev (mb)= ',devpc,'.' ! Initialize storm center to (1,1) DO k=1,kx strmci(k) = 1 strmcj(k) = 1 END DO ! Define complete field of bogus storm !Note dx is spacing in meters. !The output arrays from the rankine subroutine vvwork,uuwork,psiv and vorv !are defined on the WRF mass points. utcp(:,:,:) = 0.0 vtcp(:,:,:) = 0.0 print *,"nstrm ",rmax(nstrm),ew_gcntr,ns_gcntr DO j=1,ns-1 DO i=1,ew-1 disx = REAL(i) - ew_gcntr disy = REAL(j) - ns_gcntr CALL rankine(disx,disy,dx,kx,vwgt,rmax(nstrm),vmx,uuwork,vvwork,psiv,vorv) DO k=1,kx utcp(i,k,j) = uuwork(k) vtcp(i,k,j) = vvwork(k) psitc(i,k,j) = psiv(k) vortc(i,k,j) = vorv(k) END DO END DO END DO call stagger_rankine_winds(utcp,vtcp,ew,ns,nz) utcr(:,:,:) = 0.0 vtcr(:,:,:) = 0.0 ! dave Rotate wind to map proj, on the correct staggering DO j=1,ns-1 DO i=2,ew-1 xlo = stdlon-grid%xlong_u(i,j) IF ( xlo .GT. 180.)xlo = xlo-360. IF ( xlo .LT.-180.)xlo = xlo+360. alpha = xlo*conef*degran*SIGN(1.,centerlat) DO k=1,kx utcr(i,k,j) = (vtcp(i-1,k,j)+vtcp(i,k,j)+vtcp(i,k,j+1)+vtcp(i-1,k,j+1))/4 *SIN(alpha)+utcp(i,k,j)*COS(alpha) if(utcr(i,k,j) .gt. 300.) then print *,i,k,j,"a very bad value of utcr" stop end if END DO END DO END DO DO j=2,ns-1 DO i=1,ew-1 xlo = stdlon-grid%xlong_v(i,j) IF ( xlo .GT. 180.)xlo = xlo-360. IF ( xlo .LT.-180.)xlo = xlo+360. alpha = xlo*conef*degran*SIGN(1.,centerlat) DO k=1,kx vtcr(i,k,j) = vtcp(i,k,j)*COS(alpha)-(utcp(i,k,j-1)+utcp(i+1,k,j-1)+utcp(i+1,k,j)+utcp(i,k,j))/4*SIN(alpha) if(vtcr(i,k,j) .gt. 300.) then print *,i,k,j,"a very bad value of vtcr" stop end if END DO END DO END DO !Fill in UTCR's along the left and right side. do j = 1,ns-1 utcr(1,:,j) = utcr(2,:,j) utcr(ew,:,j) = utcr(ew-1,:,j) end do !Fill in V's along the bottom and top. do i = 1,ew-1 vtcr(i,:,1) = vtcr(i,:,2) vtcr(i,:,ns) = vtcr(i,:,ns-1) end do ! Compute vorticity of FG. This is the vorticity of the original winds ! on the staggered grid. The vorticity and divergence are defined at ! the mass points when done. CALL vor(u1,v1,msfu,msfv,msfm,ew,ns,kx,dx,vort) ! Compute divergence of FG CALL diverg(u1,v1,msfu,msfv,msfm,ew,ns,kx,dx,div) ! Compute mixing ratio of FG CALL mxratprs(rh1,t1,press*100.,ew,ns,kx,q1,min_RH_value) q1(:,1,:) = q1(:,2,:) ! Compute initial streamfunction - PSI1 vortsv = vort q0 = q1 ! Solve for streamfunction. DO k=1,kx DO j=1,ns-1 DO i=1,ew-1 ff(i,j) = vort(i,k,j) tmp1(i,j)= 0.0 END DO END DO epsilon = 1.E-2 CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar) DO j=1,ns-1 DO i=1,ew-1 psi1(i,k,j) = tmp1(i,j) END DO END DO END DO DO k=1,kx !start of the k loop IF ( latc_loc(nstrm) .GE. 0. ) THEN vormx = -1.e10 ELSE vormx = 1.e10 END IF ew_mvc = 1 ns_mvc = 1 DO j=1,ns-1 DO i=1,ew-1 rad = SQRT((REAL(i)-ew_gcntr)**2.+(REAL(j)-ns_gcntr)**2.)*dx IF ( rad .LE. r_search ) THEN IF ( latc_loc(nstrm) .GE. 0. ) THEN IF ( vortsv(i,k,j) .GT. vormx ) THEN vormx = vortsv(i,k,j) ew_mvc = i ns_mvc = j END IF ELSE IF (latc_loc(nstrm) .LT. 0. ) THEN IF ( vortsv(i,k,j) .LT. vormx ) THEN vormx = vortsv(i,k,j) ew_mvc = i ns_mvc = j END IF END IF END IF END DO END DO strmci(k) = ew_mvc strmcj(k) = ns_mvc DO j=1,ns-1 DO i=1,ew-1 rad = SQRT(REAL((i-ew_mvc)**2.+(j-ns_mvc)**2.))*dx IF ( rad .GT. r_vor ) THEN vort(i,k,j) = 0. div(i,k,j) = 0. END IF END DO END DO DO itr=1,n_iter sum_q = 0. nct = 0 DO j=1,ns-1 DO i=1,ew-1 rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx IF ( (rad .LT. r_vor2).AND.(rad .GE. 0.8*r_vor2) ) THEN sum_q = sum_q + q0(i,k,j) nct = nct + 1 END IF END DO END DO avg_q = sum_q/MAX(REAL(nct),1.) DO j=1,ns-1 DO i=1,ew-1 q_old = q0(i,k,j) rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx IF ( rad .LT. r_vor2 ) THEN ror = rad/r_vor2 q_new = ((1.-ror)*avg_q) + (ror*q_old) q0(i,k,j) = q_new END IF END DO END DO END DO !end of itr loop END DO !of the k loop ! Compute divergent wind (chi) at the mass points DO k=1,kx DO j=1,ns-1 DO i=1,ew-1 ff(i,j) = div(i,k,j) tmp1(i,j)= 0.0 END DO END DO epsilon = 1.e-2 CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar) DO j=1,ns-1 DO i=1,ew-1 chi(i,k,j) = tmp1(i,j) END DO END DO END DO !of the k loop for divergent winds ! Compute background streamfunction (PSI0) and perturbation field (PSI) ! print *,"perturbation field (PSI) relax three" DO k=1,kx DO j=1,ns-1 DO i=1,ew-1 ff(i,j)=vort(i,k,j) tmp1(i,j)=0.0 END DO END DO epsilon = 1.e-2 CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar) DO j=1,ns-1 DO i=1,ew-1 psi(i,k,j)=tmp1(i,j) END DO END DO END DO !We can now calculate the final wind fields. call final_ew_velocity(u2,u1,chi,psi,utcr,dx,ew,ns,nz) call final_ns_velocity(v2,v1,chi,psi,vtcr,dx,ew,ns,nz) DO k=1,kx DO j=1,ns-1 DO i=1,ew-1 psi0(i,k,j) = psi1(i,k,j)-psi(i,k,j) END DO END DO END DO DO k=k00,kx DO j=1,ns-1 DO i=1,ew-1 psipos(i,k,j)=psi(i,k,j) END DO END DO END DO ! Geostrophic vorticity. !We calculate the ug and vg on the wrf U and V staggered grids !since this is where the vorticity subroutine expects them. CALL geowind(phi1,ew,ns,kx,dx,ug,vg) CALL vor(ug,vg,msfu,msfv,msfm,ew,ns,kx,dx,vorg) DO k=1,kx ew_mvc = strmci(k) ns_mvc = strmcj(k) DO j=1,ns-1 DO i=1,ew-1 rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx IF ( rad .GT. r_vor ) THEN vorg(i,k,j) = 0. END IF END DO END DO END DO DO k=k00,kx DO j=1,ns-1 DO i=1,ew-1 ff(i,j) = vorg(i,k,j) tmp1(i,j)= 0.0 END DO END DO epsilon = 1.e-3 CALL relax(tmp1,ff,rd,ew,ns,dx,epsilon,alphar) DO j=1,ns-1 DO i=1,ew-1 phip(i,k,j) = tmp1(i,j) END DO END DO END DO ! Background geopotential. DO k=k00,kx DO j=1,ns-1 DO i=1,ew-1 phi0(i,k,j) = phi1(i,k,j) - phip(i,k,j) END DO END DO END DO ! Background temperature DO k=k00,kx DO j=1,ns-1 DO i=1,ew-1 IF( k .EQ. 2 ) THEN tpos(i,k,j) = (-1./rconst)*(phip(i,k+1,j)-phip(i,k,j ))/LOG(press(i,k+1,j)/press(i,k,j)) ELSE IF ( k .EQ. kx ) THEN tpos(i,k,j) = (-1./rconst)*(phip(i,k ,j)-phip(i,k-1,j))/LOG(press(i,k,j )/press(i,k-1,j)) ELSE tpos(i,k,j) = (-1./rconst)*(phip(i,k+1,j)-phip(i,k-1,j))/LOG(press(i,k+1,j)/press(i,k-1,j)) END IF t0(i,k,j) = t1(i,k,j)-tpos(i,k,j) t00(i,k,j) = t0(i,k,j) if(t0(i,k,j) .gt. 400) then print *,"interesting temperature ",t0(i,k,j)," at ",i,j,k stop end if END DO END DO END DO ! New RH. CALL qvtorh (q0,t0,press*100.,k00,ew,ns,kx,rh0,min_RH_value) call final_RH(rh2,rh0,rhmx,strmci,strmcj,rmax(nstrm),ew,ns,nz,k00,dx,ew_gcntr,ns_gcntr,r_vor2) ! adjust T0 DO k=k00,kx DO j=1,ns-1 DO i=1,ew-1 theta(i,k,j) = t1(i,k,j)*(1000./press(i,k,j))**rovcp END DO END DO END DO ew_mvc = strmci(k00) ns_mvc = strmcj(k00) DO k=kfrm,kto DO j=1,ns-1 DO i=1,ew-1 rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx IF ( rad .LT. r_vor2 ) THEN t_reduce(i,k,j) = theta(i,k85,j)-0.03*(press(i,k,j)-press(i,k85,j)) t0(i,k,j) = t00(i,k,j)*(rad/r_vor2) + (((press(i,k,j)/1000.)**rovcp)*t_reduce(i,k,j))*(1.-(rad/r_vor2)) END IF END DO END DO END DO ! Geopotential perturbation DO k=1,kx DO j=1,ns-1 DO i=1,ew-1 tmp1(i,j)=psitc(i,k,j) END DO END DO CALL balance(cor,tmp1,ew,ns,dx,outold) DO j=1,ns-1 DO i=1,ew-1 ff(i,j)=outold(i,j) tmp1(i,j)=0.0 END DO END DO epsilon = 1.e-3 CALL relax (tmp1,ff,rd,ew,ns,dx,epsilon,alphar) DO j=1,ns-1 DO i=1,ew-1 phiptc(i,k,j) = tmp1(i,j) END DO END DO END DO ! New geopotential field. DO j=1,ns-1 DO k=1,kx DO i=1,ew-1 phi2(i,k,j) = phi0(i,k,j) + phiptc(i,k,j) END DO END DO END DO ! New temperature field. DO j=1,ns-1 DO k=k00,kx DO i=1,ew-1 IF( k .EQ. 2 ) THEN tptc(i,k,j)=(-1./rconst)*(phiptc(i,k+1,j)-phiptc(i,k,j ))/LOG(press(i,k+1,j)/press(i,k,j)) ELSE IF ( k .EQ. kx ) THEN tptc(i,k,j)=(-1./rconst)*(phiptc(i,k,j )-phiptc(i,k-1,j))/LOG(press(i,k,j)/press(i,k-1,j)) ELSE tptc(i,k,j)=(-1./rconst)*(phiptc(i,k+1,j)-phiptc(i,k-1,j))/LOG(press(i,k+1,j)/press(i,k-1,j)) END IF t2(i,k,j) = t0(i,k,j) + tptc(i,k,j) if(t2(i,k,j) .gt. 400) then print *,"interesting temperature " print *,t2(i,k,j),i,k,j,tptc(i,k,j) stop end if END DO END DO END DO ! Sea level pressure change. DO j=1,ns-1 DO i=1,ew-1 dph = phi2(i,k00,j)-phi1(i,k00,j) delpx(i,j) = rho*dph*0.01 END DO END DO ! New SLP. ! print *,"new slp",nstrm DO j=1,ns-1 DO i=1,ew-1 pslx(i,j) = pslx(i,j)+delpx(i,j) grid%pslv_gc(i,j) = pslx(i,j) * 100. ! print *,pslx(i,j) END DO END DO ! Set new geopotential at surface to terrain elevation. DO j=1,ns-1 DO i=1,ew-1 z2(i,1,j) = terrain(i,j) END DO END DO ! Geopotential back to height. DO j=1,ns-1 DO k=k00,kx DO i=1,ew-1 z2(i,k,j) = phi2(i,k,j)/9.81 END DO END DO END DO ! New surface temperature, assuming same theta as from 1000 mb. ! print *,"new surface temperature" DO j=1,ns-1 DO i=1,ew-1 ps = pslx(i,j) t2(i,1,j) = t2(i,k00,j)*((ps/1000.)**rovcp) if(t2(i,1,j) .gt. 400) then print *,"Interesting surface temperature" print *,t2(i,1,j),t2(i,k00,j),ps,i,j stop end if END DO END DO ! Set surface RH to the value from 1000 mb. DO j=1,ns-1 DO i=1,ew-1 rh2(i,1,j) = rh2(i,k00,j) END DO END DO ! Modification of tropical storm complete. PRINT '(A,I3,A)' ,' Bogus storm number ',nstrm,' completed.' do j = 1,ns-1 do k = 1,nz do i = 1,ew u1(i,k,j) = u2(i,k,j) grid%u_gc(i,k,j) = u2(i,k,j) end do end do end do do j = 1,ns do k = 1,nz do i = 1,ew-1 v1(i,k,j) = v2(i,k,j) grid%v_gc(i,k,j) = v2(i,k,j) end do end do end do do j = 1,ns-1 do k = 1,nz do i = 1,ew-1 t1(i,k,j) = t2(i,k,j) grid%t_gc(i,k,j) = t2(i,k,j) rh1(i,k,j) = rh2(i,k,j) grid%rh_gc(i,k,j) = rh2(i,k,j) phi1(i,k,j) = phi2(i,k,j) grid%ght_gc(i,k,j) = z2(i,k,j) END DO END DO END DO END DO all_storms deallocate(u11) deallocate(v11) deallocate(t11) deallocate(rh11) deallocate(phi11) deallocate(u1) deallocate(v1) deallocate(t1) deallocate(rh1) deallocate(phi1) do j = 1,ns-1 do i = 1,ew-1 if(grid%ht_gc(i,j) .gt. 1) then grid%p_gc(i,1,j) = grid%p_gc(i,1,j) + (pslx(i,j) * 100. - old_slp(i,j)) grid%psfc(i,j) = grid%psfc(i,j) + (pslx(i,j) * 100. - old_slp(i,j)) else grid%p_gc(i,1,j) = pslx(i,j) * 100. grid%psfc(i,j) = pslx(i,j) * 100. end if end do end do END SUBROUTINE tc_bogus !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE rankine(dx,dy,ds,nlvl,vwgt,rmax,vmax,uu,vv,psi,vor) ! Define analytical bogus vortex IMPLICIT NONE INTEGER nlvl REAL , DIMENSION(nlvl) :: uu, vv, psi, vor REAL , DIMENSION(nlvl) :: vwgt REAL :: dx,dy,ds,rmax,vmax REAL , PARAMETER :: alpha1= 1. REAL , PARAMETER :: alpha2= -0.75 real :: pi INTEGER :: k REAL :: vr , ang , rr , term1 , bb , term2 , alpha pi = 3.141592653589793 ! Wind component DO k=1,nlvl rr = SQRT(dx**2+dy**2)*ds IF ( rr .LT. rmax ) THEN alpha = 1. ELSE IF ( rr .GE. rmax ) THEN alpha = alpha2 END IF vr = vmax * (rr/rmax)**(alpha) IF ( dx.GE.0. ) THEN ang = (pi/2.) - ATAN2(dy,MAX(dx,1.e-6)) uu(k) = vwgt(k)*(-vr*COS(ang)) vv(k) = vwgt(k)*( vr*SIN(ang)) ELSE IF ( dx.LT.0. ) THEN ang = ((3.*pi)/2.) + ATAN2(dy,dx) uu(k) = vwgt(k)*(-vr*COS(ang)) vv(k) = vwgt(k)*(-vr*SIN(ang)) END IF END DO ! psi DO k=1,nlvl rr = SQRT(dx**2+dy**2)*ds IF ( rr .LT. rmax ) THEN psi(k) = vwgt(k) * (vmax*rr*rr)/(2.*rmax) ELSE IF ( rr .GE. rmax ) THEN IF (alpha1.EQ.1.0 .AND. alpha2.eq.-1.0) THEN psi(k) = vwgt(k) * vmax*rmax*(0.5+LOG(rr/rmax)) ELSE IF (alpha1.EQ.1.0 .AND. alpha2.NE.-1.0) THEN term1 = vmax/(rmax**alpha1)*(rmax**(alpha1+1)/(alpha1+1)) bb = (rr**(alpha2+1)/(alpha2+1))-(rmax**(alpha2+1))/(alpha2+1) term2 = vmax/(rmax**alpha2)*bb psi(k) = vwgt(k) * (term1 + term2) END IF END IF END DO ! vort DO k=1,nlvl rr = SQRT(dx**2+dy**2)*ds IF ( rr .LT. rmax ) THEN vor(k) = vwgt(k) * (2.*vmax)/rmax ELSE IF ( rr .GE. rmax ) THEN vor(k) = vwgt(k) * ( (vmax/rmax**alpha2)*(rr**(alpha2-1.))*(1.+alpha2) ) END IF END DO END SUBROUTINE rankine !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE vor(uin,vin,msfu,msfv,msfm,ew,ns,nz,ds,vort) !Here we assume that the U and V's are still on the WRF staggered grid. !The vorticity is then calculated at the mass points on the WRF grid. IMPLICIT NONE INTEGER :: jp1,jm1,ip1,im1,i,j,k INTEGER :: ns, ew, nz, k1 REAL , DIMENSION(ew,nz,ns-1) :: uin !u values on unstaggered U grid REAL , DIMENSION(ew-1,nz,ns) :: vin !v values on unstaggered V grid REAL , DIMENSION(ew-1,nz,ns-1) :: vort !vort is defined on the mass points REAL , DIMENSION(ew,ns-1) :: msfu !map scale factors on U staggered grid REAL , DIMENSION(ew-1,ns) :: msfv !map scale factors on V staggered grid REAL , DIMENSION(ew-1,ns-1) :: msfm !map scale factors on unstaggered grid real :: u(ew,ns-1),v(ew-1,ns) REAL :: ds REAL :: dsx,dsy , u1 , u2 , u3 , u4 , v1 , v2 , v3 , v4 real :: dudy,dvdx,mm vort(:,:,:) = -999. do k = 1,nz do j = 1,ns-1 do i = 1,ew u(i,j) = uin(i,k,j) end do end do do j = 1,ns do i = 1,ew-1 v(i,j) = vin(i,k,j) end do end do !Our indicies are from 2 to ns-2 and ew-2. This is because out !map scale factors are not defined for the entire grid. do j = 2,ns-2 do i = 2,ew-2 mm = msfm(i,j) * msfm(i,j) u1 = u(i ,j-1)/msfu(i ,j-1) u2 = u(i+1,j-1)/msfu(i+1,j-1) u3 = u(i+1,j+1)/msfu(i+1,j+1) u4 = u(i ,j+1)/msfu(i ,j+1) dudy = mm * (u4 + u3 -(u1 + u2)) /(4*ds) v1 = v(i-1,j )/msfv(i-1,j) v2 = v(i+1,j )/msfv(i+1,j) v3 = v(i-1 ,j+1)/msfv(i-1,j+1) v4 = v(i+1,j+1)/msfv(i+1,j+1) dvdx = mm * (v4 + v2 - (v1 + v3))/(4*ds) vort(i,k,j) = dvdx - dudy end do end do !Our vorticity array goes out to ew-1 and ns-1 which is the !mass point grid dimensions. do i = 2,ew-2 vort(i,k,1) = vort(i,k,2) !bottom not corners vort(i,k,ns-1) = vort(i,k,ns-2) !top not corners end do do j = 1,ns-1 vort(ew-1,k,j) = vort(ew-2,k,j) !right side including corners vort(1,k,j) = vort(2,k,j) !left side including corners end do end do ! this is the k loop end END SUBROUTINE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE diverg(uin,vin,msfu,msfv,msfm,ew,ns,nz,ds,div) ! Computes divergence on unstaggered grid. The divergence is calculated ! at the mass points on the WRF grid. ! div = m*m (du/dx + dv/dy) IMPLICIT NONE INTEGER :: jp1,jm1,ip1,im1,i,j,k INTEGER :: ns, ew, nz, k1 REAL , DIMENSION(ew,nz,ns-1) :: uin !u values on unstaggered U grid REAL , DIMENSION(ew-1,nz,ns) :: vin !v values on unstaggered V grid REAL , DIMENSION(ew-1,nz,ns-1) :: div !divergence is calculate on the mass points REAL , DIMENSION(ew,ns-1) :: msfu !map scale factors on U staggered grid REAL , DIMENSION(ew-1,ns) :: msfv !map scale factors on V staggered grid REAL , DIMENSION(ew-1,ns-1) :: msfm !map scale factors on unstaggered grid real :: u(ew,ns-1),v(ew-1,ns) REAL :: ds REAL :: dsr,u1,u2,v1,v2 real :: dudx,dvdy,mm,arg1,arg2 dsr = 1/ds do k = 1,nz do j = 1,ns-1 do i = 1,ew u(i,j) = uin(i,k,j) end do end do do j = 1,ns do i = 1,ew-1 v(i,j) = vin(i,k,j) end do end do !Our indicies are from 2 to ns-2 and ew-2. This is because out !map scale factors are not defined for the entire grid. do j = 2,ns-2 do i = 2,ew-2 mm = msfm(i,j) * msfm(i,j) u1 = u(i+1,j)/msfu(i+1,j) u2 = u(i ,j)/msfu(i ,j) v1 = v(i,j+1)/msfv(i,j+1) v2 = v(i,j) /msfv(i,j) div(i,k,j) = mm * (u1 - u2 + v1 - v2) * dsr end do end do !Our divergence array is defined on the mass points. do i = 2,ew-2 div(i,k,1) = div(i,k,2) !bottom not corners div(i,k,ns-1) = div(i,k,ns-2) !top not corners end do do j = 1,ns-1 div(ew-1,k,j) = div(ew-2,k,j) !right side including corners div(1,k,j) = div(2,k,j) !left side including corners end do end do !end for the k loop END SUBROUTINE diverg !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE mxratprs (rh, t, ppa, ew, ns, nz, q, min_RH_value) IMPLICIT NONE INTEGER :: i , ew , j , ns , k , nz REAL :: min_RH_value REAL :: ppa(ew-1,nz,ns-1) REAL :: p( ew-1,nz,ns-1 ) REAL :: q (ew-1,nz,ns-1),rh(ew-1,nz,ns-1),t(ew-1,nz,ns-1) REAL :: es REAL :: qs REAL :: cp = 1004.0 REAL :: svp1,svp2,svp3 REAL :: celkel REAL :: eps ! This function is designed to compute (q) from basic variables ! p (mb), t(K) and rh(0-100%) to give (q) in (kg/kg). p = ppa * 0.01 DO j = 1, ns - 1 DO k = 1, nz DO i = 1, ew - 1 rh(i,k,j) = MIN ( MAX ( rh(i,k,j) ,min_RH_value ) , 100. ) END DO END DO END DO svp3 = 29.65 svp1 = 0.6112 svp2 = 17.67 celkel = 273.15 eps = 0.622 DO j = 1, ns-1 DO k = 1, nz DO i = 1,ew-1 es = svp1 * 10. * EXP(svp2 * (t(i,k,j) - celkel ) / (t(i,k,j) - svp3 )) qs = eps * es / (p(i,k,j) - es) q(i,k,j) = MAX(0.01 * rh(i,k,j) * qs,0.0) END DO END DO END DO END SUBROUTINE mxratprs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE mass2_Ustag(field,dim1,dim2,dim3) IMPLICIT NONE INTEGER :: dim1 , dim2 , dim3 REAL , DIMENSION(dim1,dim2,dim3) :: field,dummy dummy = 0.0 dummy(:,2:dim2-1,:) = ( field(:,1:dim2-2,:) + & field(:,2:dim2-1,:) ) * 0.5 dummy(:,1,:) = field(:,1,:) dummy(:,dim2,:) = field(:,dim2-1,:) field = dummy END SUBROUTINE mass2_Ustag !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE mass2_Vstag(field,dim1,dim2,dim3) IMPLICIT NONE INTEGER :: dim1 , dim2 , dim3 REAL , DIMENSION(dim1,dim2,dim3) :: field,dummy dummy = 0.0 dummy(2:dim1-1,:,:) = ( field(1:dim1-2,:,:) + & field(2:dim1-1,:,:) ) * 0.5 dummy(1,:,:) = field(1,:,:) dummy(dim1,:,:) = field(dim1-1,:,:) field = dummy END SUBROUTINE mass2_Vstag !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE relax (chi, ff, rd, ew, ns, ds, smallres, alpha) IMPLICIT NONE INTEGER, PARAMETER :: mm = 20000 INTEGER :: i INTEGER :: ie INTEGER :: ew !ew direction INTEGER :: iter INTEGER :: j INTEGER :: je INTEGER :: jm INTEGER :: ns !ns direction INTEGER :: mi REAL :: alpha REAL :: alphaov4 REAL :: chi(ew-1,ns-1) REAL :: chimx(ns-1) REAL :: ds REAL :: epx REAL :: fac REAL :: ff(ew-1,ns-1) REAL :: rd(ew-1,ns-1) REAL :: rdmax(ns-1) REAL :: smallres LOGICAL :: converged = .FALSE. fac = ds * ds alphaov4 = alpha * 0.25 ie=ew-2 je=ns-2 DO j = 1, ns-1 DO i = 1, ew-1 ff(i,j) = fac * ff(i,j) rd(i,j) = 0.0 END DO END DO iter_loop : DO iter = 1, mm mi = iter chimx = 0.0 DO j = 2, ns-1 DO i = 2, ew-1 chimx(j) = MAX(ABS(chi(i,j)),chimx(j)) END DO END DO epx = MAXVAL(chimx) * SMALLRES * 4.0 / alpha DO j = 2, ns-2 DO i = 2, ew-2 rd(i,j) = chi(i,j+1) + chi(i,j-1) + chi(i+1,j) + chi(i-1,j) - 4.0 * chi(i,j) - ff(i,j) chi(i,j) = chi(i,j) + rd(i,j) * alphaov4 END DO END DO rdmax = 0.0 DO j = 2, ns-2 DO i = 2, ew-2 rdmax(j) = MAX(ABS(rd(i,j)),rdmax(j)) END DO END DO IF (MAXVAL(rdmax) .lt. epx) THEN converged = .TRUE. EXIT iter_loop END IF END DO iter_loop IF (converged ) THEN ! PRINT '(A,I5,A)','Relaxation converged in ',mi,' iterations.' ELSE PRINT '(A,I5,A)','Relaxation did not converge in',mm,' iterations.' STOP 'no_converge' END IF do i = 2,ew-2 chi(i,ns-1) = chi(i,ns-2) !top not including corners chi(i,1) = chi(i,2) !bottom not including corners end do do j = 2,ns-2 chi(ew-1,j) = chi(ew-2,j) !right side not including corners chi(1,j) = chi(2,j) !left side not including corners end do !Fill in the corners chi(1,1) = chi(2,1) chi(ew-1,1) = chi(ew-2,1) chi(1,ns-1) = chi(2,ns-1) chi(ew-1,ns-1) = chi(ew-2,ns-1) END SUBROUTINE relax !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE geowind(height,ew,ns,nz,ds,ug,vg) IMPLICIT NONE ! input height geopotential on wrf mass grid points ! ns wrf staggered V dimension n-s ! ew wrf staggered U dimension e-w ! nz number of vertical levels ! ! output ug u component of geo wind on wrf staggered V points ! vg v component of geo wind on wrf staggered U points INTEGER :: ew , ns , nz REAL :: ds REAL , DIMENSION(ew-1,nz,ns-1) :: height REAL , DIMENSION(ew,nz,ns-1) :: ug REAL , DIMENSION(ew-1,nz,ns) :: vg REAL :: ds2r , h1 , h2 , h3 , h4, ds4r INTEGER :: i , j , k ds4r=1./(4.*ds) ! The height field comes in on the WRF mass points. ! ug is the derivative of height in the ns direction ug = -dheight/dy ug(:,:,:) = -999. do j=2,ns-2 do k=1,nz do i=2,ew-1 h1 = height(i,k,j+1) h2 = height(i-1,k,j+1) h3 = height(i ,k,j-1) h4 = height(i-1,k,j-1) ug(i,k,j) = -( (h1 + h2) - ( h3 + h4) ) * ds4r end do end do end do do i = 2,ew-1 ug(i,:,1) = ug(i,:,2) !bottom not including corner points ug(i,:,ns-1) = ug(i,:,ns-2) !top not including corner points end do do j = 2,ns-2 ug(1,:,j) = ug(2,:,j) !left side ug(ew,:,j) = ug(ew-1,:,j) !right side end do ug(1,:,1) = ug(2,:,1) !Lower left hand corner ug(1,:,ns-1) = ug(2,:,ns-1) !upper left hand corner ug(ew,:,1) = ug(ew-1,:,1) !Lower right hand corner ug(ew,:,ns-1) = ug(ew-1,:,ns-1) !upper right hand corner ! ug is the derivative of height in the ns direction vg = dheight/dx vg(:,:,:) = -999. DO j=2,ns-1 DO k=1,nz DO i=2,ew-2 h1 = height(i+1,k,j) h2 = height(i-1,k,j) h3 = height(i+1,k,j-1) h4 = height(i-1,k,j-1) vg(i,k,j) = ( (h1 + h3) - ( h2 + h4) ) * ds4r end do end do end do do i = 2,ew-2 vg(i,:,1) = vg(i,:,2) !bottom not including corner points vg(i,:,ns) = vg(i,:,ns-1) !top not including corner points end do do j = 2,ns-1 vg(1,:,j) = vg(2,:,j) !left side not including corner points vg(ew-1,:,j) = vg(ew-2,:,j) !right side not including corner points end do vg(1,:,1) = vg(2,:,1) !Lower left hand corner vg(1,:,ns) = vg(2,:,ns) !upper left hand corner vg(ew-1,:,1) = vg(ew-2,:,1) !Lower right hand corner vg(ew-1,:,ns) = vg(ew-2,:,ns) !upper right hand corner END SUBROUTINE geowind !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE balance (f,psi,ew,ns,ds,out) ! Calculates the forcing terms in balance equation IMPLICIT NONE ! f coriolis force ! psi stream function ! ew, ns grid points in east west, north south direction, respectively ! ds grid distance ! out output array INTEGER :: ew , ns,nslast,ewlast,ifill REAL , DIMENSION(ew-1,ns-1) :: f,psi,out REAL :: ds REAL :: psixx , psiyy , psiy , psix, psixy REAL :: dssq , ds2 , dssq4,arg1,arg2,arg3,arg4 INTEGER :: i , j dssq = ds * ds ds2 = ds * 2. dssq4 = ds * ds * 4. !The forcing terms are calculated on the WRF mass points. out(:,:) = -999.0 DO j=2,ns-2 DO i=2,ew-2 psiyy = ( psi(i,j+1) + psi(i,j-1) - 2.*psi(i,j) ) / dssq psixx = ( psi(i+1,j) + psi(i-1,j) - 2.*psi(i,j) ) / dssq psiy = ( psi(i,j+1) - psi(i,j-1) ) / ds2 psix = ( psi(i+1,j) - psi(i-1,j) ) / ds2 psixy = ( psi(i+1,j+1)+psi(i-1,j-1)-psi(i-1,j+1)-psi(i+1,j-1)) / dssq4 arg1 = f(i,j)* (psixx+psiyy) arg2 = ( ( f(i,j+1) - f(i,j-1)) / ds2 ) * psiy arg3 = ( ( f(i+1,j) - f(i-1,j)) / ds2 ) * psix arg4 = 2 *(psixy*psixy-psixx*psiyy) out(i,j)= arg1 + arg2 + arg3 - arg4 END DO END DO do i = 2,ew-2 out(i,ns-1) = out(i,ns-2) !top not including corners out(i,1) = out(i,2) !bottom not including corners end do do j = 2,ns-2 out(ew-1,j) = out(ew-2,j) !right side not including corners out(1,j) = out(2,j) !left side not including corners end do !Fill in the corners out(1,1) = out(2,1) out(ew-1,1) = out(ew-2,1) out(1,ns-1) = out(2,ns-1) out(ew-1,ns-1) = out(ew-2,ns-1) END SUBROUTINE balance !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE qvtorh ( q , t , p , k00, ew , ns , nz , rh, min_RH_value ) IMPLICIT NONE INTEGER , INTENT(IN) :: ew , ns , nz , k00 REAL , INTENT(IN) , DIMENSION(ew-1,nz,ns-1) :: q ,t, p REAL , INTENT(OUT) , DIMENSION(ew-1,nz,ns-1) :: rh real min_RH_value ! Local variables. INTEGER :: i , j , k,fill REAL :: es REAL :: qs REAL :: cp = 1004.0 REAL :: svp1,svp2,svp3 REAL :: celkel REAL :: eps svp3 = 29.65 svp1 = 0.6112 svp2 = 17.67 celkel = 273.15 eps = 0.622 DO j = 1 , ns - 1 DO k = k00 , nz DO i = 1 , ew -1 es = svp1 * 10. * EXP(svp2 * (t(i,k,j) - celkel ) / (t(i,k,j) - svp3 )) qs = eps*es/(0.01*p(i,k,j) - es) rh(i,k,j) = MIN ( 100. , MAX ( 100.*q(i,k,j)/qs , min_RH_value ) ) END DO END DO END DO END SUBROUTINE qvtorh !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE stagger_rankine_winds(utcp,vtcp,ew,ns,nz) !utcp and vtcp are the output winds of the rankine subroutine !The winds are calculated on the mass points of the WRF grid !so they need to be staggered out to the WRF staggering. !The utcp is placed on the staggered ew wind grid. !The vtcp is placed on the staggered ns wind grid. !ew is the full grid dimension in the ew direction. !ns is the full grid dimension in the ns direction. !nz is the number of vertical levels. INTEGER :: ew, ns, nz, i,k,j REAL utcp(ew,nz,ns-1), vtcp(ew-1,nz,ns) !---------------------------------------------------- !Stagger UTCP DO j=1,ns-1 DO i=2,ew-1 DO k=1,nz utcp(i,k,j) = ( utcp(i-1,k,j) + utcp(i,k,j) ) /2 end do end do end do !Fill in U's along the left and right side. do j = 1,ns utcp(1,:,j) = utcp(2,:,j) utcp(ew,:,j) = utcp(ew-1,:,j) end do !Stagger VTCP DO j=2,ns-1 DO i=1,ew-1 DO k=1,nz vtcp(i,k,j) = ( vtcp(i,k,j+1) + vtcp(i,k,j-1) ) /2 end do end do end do !Fill in V's along the bottom and bottom. do i = 1,ew vtcp(i,:,1) = vtcp(i,:,2) vtcp(i,:,ns) = vtcp(i,:,ns-1) end do END SUBROUTINE stagger_rankine_winds !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine final_ew_velocity(u2,u1,chi,psi,utcr,dx,ew,ns,nz) integer :: ew,ns,nz,i,j,k real :: u1(ew,nz,ns-1),utcr(ew,nz,ns-1) real :: psi(ew-1,nz,ns-1),chi(ew-1,nz,ns-1) ! input arrays: ! u1 is the original wind coming in from the metgrid file. ! utcr is the rankine winds rotated to the map projection put on u WRF staggered grid points. ! psi comes in on the WRF mass points. psi is the perturbation field ! calculated from the relaxation of the vorticity. ! chi is the relaxation of the divergent winds on WRF mass points. ! ew is the grid dimension of the WRF ew staggered wind ! ns is the grid dimension of the WRF ns staggered wind ! nz is the number of vertical levels ! dx is the grid spacing !------------------------------------------------------------------------------------------- real :: u2(ew,nz,ns-1) ! output array u2 is the new wind in the ew direction. Is is on WRF staggering. !------------------------------------------------------------------------------------------- real upos(ew,nz,ns-1),u0(ew,nz,ns-1),uchi(ew,nz,ns-1) ! upos is the derivative of psi in the ns direction u = -dpsi/dy ! u0 is the background ew velocity ! uchi is the array chi on the u staggered grid. real :: dx,arg1,arg2 !------------------------------------------------------------- !Take the derivative of chi in the ew direction. uchi(:,:,:) = -999. DO k=1,nz !start of k loop DO j=1,ns-1 DO i=2,ew-1 uchi(i,k,j) = ( chi(i,k,j) - chi(i-1,k,j) )/dx END DO END DO do j = 1,ns-1 uchi(1,k,j) = uchi(2,k,j) !fill in the left side uchi(ew,k,j) = uchi(ew-1,k,j) !fill in the right side end do end do !k loop !----------------------------------------------------------------------------------------- ! Take the derivative of psi in the ns direction. upos = - dpsi/dy upos(:,:,:) = -999. DO k=1,nz DO j=2,ns-2 DO i=2,ew-1 arg1 = psi(i,k,j+1) + psi(i-1,k,j+1) arg2 = psi(i,k,j-1) + psi(i-1,k,j-1) upos(i,k,j) = -( arg1 - arg2 )/(4.*dx) END DO END DO do i = 2,ew-1 upos(i,k,1) = upos(i,k,2) !bottom not including corner points upos(i,k,ns-1) = upos(i,k,ns-2) !top not including corner points end do do j = 1,ns-2 upos(1,k,j) = upos(2,k,j) !left side not including corners upos(ew,k,j) = upos(ew-1,k,j) !right side not including corners end do upos(1,k,1) = upos(2,k,1) !Lower left hand corner upos(1,k,ns-1) = upos(2,k,ns-1) !upper left hand corner upos(ew,k,1) = upos(ew-1,k,1) !Lower right hand corner upos(ew,k,ns-1) = upos(ew-1,k,ns-1) !upper right hand corner end do !k loop for dspi/dy !----------------------------------------------------------------------------------------- ! Background u field. ! Subtract the first quess wind field from the original winds. do j=1,ns-1 do k=1,nz do i=1,ew u0(i,k,j) = u1(i,k,j)-(upos(i,k,j)+uchi(i,k,j)) end do end do end do ! Calculate the final velocity do j=1,ns-1 do k=1,nz do i=1,ew u2(i,k,j) = u0(i,k,j)+utcr(i,k,j) end do end do end do end subroutine final_ew_velocity !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine final_ns_velocity(v2,v1,chi,psi,vtcr,dx,ew,ns,nz) integer :: ew,ns,nz,i,j,k real :: v1(ew-1,nz,ns),vtcr(ew-1,nz,ns) real :: psi(ew-1,nz,ns-1),chi(ew-1,nz,ns-1) ! input arrays: ! v1 is the original wind coming in from the metgrid file. ! vtcr is the is the rankine winds rotated to the map projection put on v WRF staggered grid points. ! psi comes on the WRF mass points. psi is the perturbation field ! calculated from the relaxation of the vorticity. ! chi is the relaxation of the divergent winds on WRF mass points. ! ew is the grid dimension of the WRF ew staggered wind ! ns is the grid dimension of the WRF ns staggered wind ! nz is the number of vertical levels real :: v2(ew-1,nz,ns) ! output array v2 is the new wind in the ns direction. Is is on WRF staggering. real vpos(ew-1,nz,ns),v0(ew-1,nz,ns),vchi(ew-1,nz,ns) ! vpos is the derivative of psi in the ew direction v = dpsi/dx ! v0 is the background ns velocity ! vchi is the relaxation of the divergent wind put on v WRF staggered grid points. real :: dx,arg1,arg2 !----------------------------------------------------------------------------------------- vchi(:,:,:) = -999.0 !The derivative dchi in the ns direction. do k = 1,nz DO j=2,ns-1 DO i=1,ew-1 vchi(i,k,j) = ( chi(i,k,j) - chi(i,k,j-1))/dx END DO END DO do i = 1,ew-1 vchi(i,k,1) = vchi(i,k,2) vchi(i,k,ns) = vchi(i,k,ns-1) end do end do !end of k loop !----------------------------------------------------------------------------------------- !Take the derivative of psi in the ew direction. vpos(:,:,:) = -999. DO k=1,nz DO j=2,ns-1 DO i=2,ew-2 arg1 = psi(i+1,k,j) + psi(i+1,k,j-1) arg2 = psi(i-1,k,j) + psi(i-1,k,j-1) vpos(i,k,j) = ( arg1 - arg2 )/(4.*dx) END DO END DO do i = 2,ew-2 vpos(i,k,1) = vpos(i,k,2) !bottom not including corner points vpos(i,k,ns) = vpos(i,k,ns-1) !top not including corner points end do do j = 1,ns vpos(1,k,j) = vpos(2,k,j) !left side not including corner points vpos(ew-1,k,j) = vpos(ew-2,k,j) !right side not including corner points end do vpos(1,k,1) = vpos(2,k,1) !Lower left hand corner vpos(1,k,ns) = vpos(2,k,ns) !upper left hand corner vpos(ew-1,k,1) = vpos(ew-2,k,1) !Lower right hand corner vpos(ew-1,k,ns) = vpos(ew-2,k,ns) !upper right hand corner END DO!k loop for dspi/dx do j=1,ns do k=1,nz do i=1,ew-1 v0(i,k,j) = v1(i,k,j)-(vpos(i,k,j)+vchi(i,k,j)) if( v0(i,k,j) .gt. 100.) then print *,vchi(i,k,j),i,k,j stop end if end do end do end do ! Calculate the final velocity do j=1,ns do k=1,nz do i=1,ew-1 v2(i,k,j) = v0(i,k,j)+vtcr(i,k,j) end do end do end do end subroutine final_ns_velocity !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine final_RH(rh2,rh0,rhmx,strmci,strmcj,rmax_nstrm,ew,ns,nz,k00, & dx,ew_gcntr,ns_gcntr,r_vor2) integer :: ew,ns,nz real :: rh2(ew-1,nz,ns-1) !The final output relative humidity. real :: rh0(ew-1,nz,ns-1) !First quess rh read from the metgrid input file. real :: rhmx(nz) real :: ew_gcntr !ew grid center as returned from the map projection routines. real :: ns_gcntr !ns grid center as returned from the map projection routines. real :: dx !grid spacing real :: rmax_nstrm !Local real variables real :: sum_rh,avg_rh,rh_min,rhbkg,rhbog,r_ratio real :: rad real :: rhtc(ew-1,nz,ns-1) integer :: nct,k00,i,j,k,ew_mvc,ns_mvc integer :: strmci(nz), strmcj(nz) !----------------------------------------------------------------------- DO k=k00,nz rh_max= rhmx(k) ew_mvc = strmci(k) ns_mvc = strmcj(k) sum_rh = 0. nct = 0 DO j=1,ns-1 DO i=1,ew-1 rad = SQRT(REAL(i-ew_mvc)**2.+REAL(j-ns_mvc)**2.)*dx IF ( (rad .LT. r_vor2).AND.(rad .GE. 0.8*r_vor2) ) THEN sum_rh = sum_rh + rh0(i,k,j) nct = nct + 1 END IF END DO END DO avg_rh = sum_rh/MAX(REAL(nct),1.) DO j=1,ns-1 DO i=1,ew-1 rh_min = avg_rh rad = SQRT((REAL(i)-ew_gcntr)**2.+(REAL(j)-ns_gcntr)**2.)*dx IF ( rad .LE. rmax_nstrm ) THEN rhtc(i,k,j) = rh_max ELSE rhtc(i,k,j) = (rmax_nstrm/rad)*rh_max+(1.-(rmax_nstrm/rad))*rh_min END IF END DO END DO END DO ! New RH. DO j=1,ns-1 DO k=k00,nz DO i=1,ew-1 rhbkg = rh0(i,k,j) rhbog = rhtc(i,k,j) rad = SQRT((REAL(i)-ew_mvc)**2.+(REAL(j)-ns_mvc)**2.)*dx IF ( (rad.GT.rmax_nstrm) .AND. (rad.LE.r_vor2) ) THEN r_ratio = (rad-rmax_nstrm)/(r_vor2-rmax_nstrm) rh2(i,k,j) = ((1.-r_ratio)*rhbog) + (r_ratio*rhbkg) ELSE IF (rad .LE. rmax_nstrm ) THEN rh2(i,k,j) = rhbog ELSE rh2(i,k,j) = rhbkg END IF END DO END DO END DO end subroutine final_RH !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!