#if ( RWORDSIZE == 4 ) # define VREC vsrec # define VSQRT vssqrt #else # define VREC vrec # define VSQRT vsqrt #endif MODULE module_mp_wdm6 ! ! ! REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain REAL, PARAMETER, PRIVATE :: n0g = 4.e6 ! intercept parameter graupel REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow REAL, PARAMETER, PRIVATE :: avtg = 330. ! a constant for terminal velocity of graupel REAL, PARAMETER, PRIVATE :: bvtg = 0.8 ! a constant for terminal velocity of graupel REAL, PARAMETER, PRIVATE :: deng = 500. ! density of graupel REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency REAL, PARAMETER, PRIVATE :: dens = 100.0 ! Density of snow REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! threshold amount for aggretion to occur ! REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation ! 1.008 for maritime /1.0048 for conti REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops REAL, PARAMETER, PRIVATE :: di2000 = 2000.e-6 ! parameter related with accretion and collection of cloud drops REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter ! REAL, SAVE :: & qc0,qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4,bvtr5, & bvtr6,bvtr7, bvtr2o5,bvtr3o5, & g1pbr,g2pbr,g3pbr,g4pbr,g5pbr,g6pbr,g7pbr, & g5pbro2,g7pbro2,pi, & pvtr,pvtrn,eacrr,pacrr,pidn0r,pidnr, & precr1,precr2,xmmax,roqimax,bvts1,bvts2, & bvts3,bvts4,g1pbs,g3pbs,g4pbs,g5pbso2, & pvts,pacrs,precs1,precs2,pidn0s,xlv1,pacrc, & bvtg1,bvtg2,bvtg3,bvtg4,g1pbg,g3pbg,g4pbg, & g5pbgo2,pvtg,pacrg,precg1,precg2,pidn0g, & rslopecmax,rslopec2max,rslopec3max, & rslopermax,rslopesmax,rslopegmax, & rsloperbmax,rslopesbmax,rslopegbmax, & rsloper2max,rslopes2max,rslopeg2max, & rsloper3max,rslopes3max,rslopeg3max CONTAINS !=================================================================== ! SUBROUTINE wdm6(th, q, qc, qr, qi, qs, qg, & nn, nc, nr, & den, pii, p, delz, & delt,g, cpd, cpv, ccn0, rd, rv, t0c, & ep1, ep2, qmin, & XLS, XLV0, XLF0, den0, denr, & cliq,cice,psat, & rain, rainncv, & snow, snowncv, & sr, & graupel, graupelncv, & itimestep, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! ! This code is a WRF double-moment 6-class GRAUPEL phase ! microphyiscs scheme (WDM6). The WDM microphysics scheme predicts ! number concentrations for warm rain species including clouds and ! rain. cloud condensation nuclei (CCN) is also predicted. ! The cold rain species including ice, snow, graupel follow the ! WRF single-moment 6-class microphysics (WSM6, Hong and Lim 2006) ! in which theoretical background for WSM ice phase microphysics is ! based on Hong et al. (2004). A new mixed-phase terminal velocity ! for precipitating ice is introduced in WSM6 (Dudhia et al. 2008). ! The WDM scheme is described in Lim and Hong (2010). ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. ! ! WDM6 cloud scheme ! ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008 ! ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008 ! ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev. ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc. ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev. ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan ! ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & th, & q, & qc, & qi, & qr, & qs, & qg, & nn, & nc, & nr REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(IN ) :: & den, & pii, & p, & delz REAL, INTENT(IN ) :: delt, & g, & rd, & rv, & t0c, & den0, & cpd, & cpv, & ccn0, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr INTEGER, INTENT(IN ) :: itimestep REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: rain, & rainncv, & sr REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & INTENT(INOUT) :: snow, & snowncv REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & INTENT(INOUT) :: graupel, & graupelncv ! LOCAL VAR REAL, DIMENSION( its:ite , kts:kte ) :: t REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs, ncr INTEGER :: i,j,k !------------------------------------------------------------------- IF (itimestep .eq. 1) THEN DO j=jms,jme DO k=kms,kme DO i=ims,ime nn(i,k,j) = ccn0 ENDDO ENDDO ENDDO ENDIF ! DO j=jts,jte DO k=kts,kte DO i=its,ite t(i,k)=th(i,k,j)*pii(i,k,j) qci(i,k,1) = qc(i,k,j) qci(i,k,2) = qi(i,k,j) qrs(i,k,1) = qr(i,k,j) qrs(i,k,2) = qs(i,k,j) qrs(i,k,3) = qg(i,k,j) ncr(i,k,1) = nn(i,k,j) ncr(i,k,2) = nc(i,k,j) ncr(i,k,3) = nr(i,k,j) ENDDO ENDDO ! Sending array starting locations of optional variables may cause ! troubles, so we explicitly change the call. CALL wdm62D(t, q(ims,kms,j), qci, qrs, ncr & ,den(ims,kms,j) & ,p(ims,kms,j), delz(ims,kms,j) & ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,j & ,rain(ims,j),rainncv(ims,j) & ,sr(ims,j) & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ,snow(ims,j),snowncv(ims,j) & ,graupel(ims,j),graupelncv(ims,j) & ) DO K=kts,kte DO I=its,ite th(i,k,j)=t(i,k)/pii(i,k,j) qc(i,k,j) = qci(i,k,1) qi(i,k,j) = qci(i,k,2) qr(i,k,j) = qrs(i,k,1) qs(i,k,j) = qrs(i,k,2) qg(i,k,j) = qrs(i,k,3) nn(i,k,j) = ncr(i,k,1) nc(i,k,j) = ncr(i,k,2) nr(i,k,j) = ncr(i,k,3) ENDDO ENDDO ENDDO END SUBROUTINE wdm6 !=================================================================== ! SUBROUTINE wdm62D(t, q, qci, qrs, ncr, den, p, delz & ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,lat & ,rain,rainncv & ,sr & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ,snow,snowncv & ,graupel,graupelncv & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte , & lat REAL, DIMENSION( its:ite , kts:kte ), & INTENT(INOUT) :: & t REAL, DIMENSION( its:ite , kts:kte, 2 ), & INTENT(INOUT) :: & qci REAL, DIMENSION( its:ite , kts:kte, 3 ), & INTENT(INOUT) :: & qrs, & ncr REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(INOUT) :: & q REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(IN ) :: & den, & p, & delz REAL, INTENT(IN ) :: delt, & g, & cpd, & cpv, & ccn0, & t0c, & den0, & rd, & rv, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr REAL, DIMENSION( ims:ime ), & INTENT(INOUT) :: rain, & rainncv, & sr REAL, DIMENSION( ims:ime ), OPTIONAL, & INTENT(INOUT) :: snow, & snowncv REAL, DIMENSION( ims:ime ), OPTIONAL, & INTENT(INOUT) :: graupel, & graupelncv ! LOCAL VAR REAL, DIMENSION( its:ite , kts:kte , 3) :: & rh, qs, rslope, rslope2, rslope3, rslopeb, & falk, fall, work1, qrs_tmp REAL, DIMENSION( its:ite , kts:kte ) :: & rslopec, rslopec2,rslopec3 REAL, DIMENSION( its:ite , kts:kte, 2) :: & avedia REAL, DIMENSION( its:ite , kts:kte ) :: & workn,falln,falkn REAL, DIMENSION( its:ite , kts:kte ) :: & worka,workr REAL, DIMENSION( its:ite , kts:kte ) :: & den_tmp, delz_tmp, ncr_tmp REAL, DIMENSION( its:ite , kts:kte ) :: & falkc, work1c, work2c, fallc REAL, DIMENSION( its:ite , kts:kte ) :: & pcact, prevp, psdep, pgdep, praut, psaut, pgaut, & pracw, psacw, pgacw, pgacr, pgacs, psaci, pgmlt, praci, & piacr, pracs, psacr, pgaci, pseml, pgeml REAL, DIMENSION( its:ite , kts:kte ) :: paacw REAL, DIMENSION( its:ite , kts:kte ) :: & nraut, nracw, ncevp, nccol, nrcol, & nsacw, ngacw, niacr, nsacr, ngacr, naacw, & nseml, ngeml, ncact REAL, DIMENSION( its:ite , kts:kte ) :: & pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, & denfac, xni, pgevp,n0sfac, qsum, & denqrs1, denqr1, denqrs2, denqrs3, denncr3, denqci REAL, DIMENSION( its:ite ) :: & delqrs1, delqrs2, delqrs3, delncr3, delqi REAL, DIMENSION( its:ite ) :: tstepsnow, tstepgraup REAL :: gfac, sfac ! variables for optimization REAL, DIMENSION( its:ite ) :: tvec1 REAL :: temp INTEGER, DIMENSION( its:ite ) :: mnstep, numndt INTEGER, DIMENSION( its:ite ) :: mstep, numdt LOGICAL, DIMENSION( its:ite ) :: flgcld REAL :: & cpmcal, xlcal, lamdac, & diffus, & viscos, xka, venfac, conden, diffac, & x, y, z, a, b, c, d, e, & ndt, qdt, holdrr, holdrs, holdrg, supcol, supcolt, & pvt, coeres, supsat, dtcld, xmi, eacrs, satdt, & qimax, diameter, xni0, roqi0, & fallsum, fallsum_qsi, fallsum_qg, & vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, & xlwork2, factor, source, value, coecol, & nfrzdtr, nfrzdtc, & taucon, lencon, lenconcr, & xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3 REAL :: vt2ave REAL :: holdc, holdci ! INTEGER :: i, j, k, mstepmax, & iprt, latd, lond, loop, loops, ifsat, n, idim, kdim ! Temporaries used for inlining fpvs function REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp ! !================================================================= ! compute internal functions ! cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv xlcal(x) = xlv0-xlv1*(x-t0c) !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. ! ! Optimizatin : A**B => exp(log(A)*(B)) lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333))) !---------------------------------------------------------------- ! diffus: diffusion coefficient of the water vapor ! viscos: kinematic viscosity(m2s-1) ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y xka(x,y) = 1.414e3*viscos(x,y)*y diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) ! idim = ite-its+1 kdim = kte-kts+1 ! !---------------------------------------------------------------- ! paddint 0 for negative values generated by dynamics ! do k = kts, kte do i = its, ite qci(i,k,1) = max(qci(i,k,1),0.0) qrs(i,k,1) = max(qrs(i,k,1),0.0) qci(i,k,2) = max(qci(i,k,2),0.0) qrs(i,k,2) = max(qrs(i,k,2),0.0) qrs(i,k,3) = max(qrs(i,k,3),0.0) ncr(i,k,1) = max(ncr(i,k,1),0.0) ncr(i,k,2) = max(ncr(i,k,2),0.0) ncr(i,k,3) = max(ncr(i,k,3),0.0) enddo enddo ! !---------------------------------------------------------------- ! latent heat for phase changes and heat capacity. neglect the ! changes during microphysical process calculation ! emanuel(1994) ! do k = kts, kte do i = its, ite cpm(i,k) = cpmcal(q(i,k)) xl(i,k) = xlcal(t(i,k)) enddo enddo do k = kts, kte do i = its, ite delz_tmp(i,k) = delz(i,k) den_tmp(i,k) = den(i,k) enddo enddo ! !---------------------------------------------------------------- ! initialize the surface rain, snow, graupel ! do i = its, ite rainncv(i) = 0. if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i) = 0. sr(i) = 0. ! new local array to catch step snow and graupel tstepsnow(i) = 0. tstepgraup(i) = 0. enddo ! !---------------------------------------------------------------- ! compute the minor time steps. ! loops = max(nint(delt/dtcldcr),1) dtcld = delt/loops if(delt.le.dtcldcr) dtcld = delt ! do loop = 1,loops ! !---------------------------------------------------------------- ! initialize the large scale variables ! do i = its, ite mstep(i) = 1 mnstep(i) = 1 flgcld(i) = .true. enddo ! do k = kts, kte CALL VREC( tvec1(its), den(its,k), ite-its+1) do i = its, ite tvec1(i) = tvec1(i)*den0 enddo CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) enddo ! ! Inline expansion for fpvs ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) hsub = xls hvap = xlv0 cvap = cpv ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) do k = kts, kte do i = its, ite tr=ttp/t(i,k) qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) qs(i,k,1) = max(qs(i,k,1),qmin) rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) tr=ttp/t(i,k) if(t(i,k).lt.ttp) then qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) else qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) endif qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) qs(i,k,2) = max(qs(i,k,2),qmin) rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) enddo enddo ! !---------------------------------------------------------------- ! initialize the variables for microphysical physics ! ! do k = kts, kte do i = its, ite prevp(i,k) = 0. psdep(i,k) = 0. pgdep(i,k) = 0. praut(i,k) = 0. psaut(i,k) = 0. pgaut(i,k) = 0. pracw(i,k) = 0. praci(i,k) = 0. piacr(i,k) = 0. psaci(i,k) = 0. psacw(i,k) = 0. pracs(i,k) = 0. psacr(i,k) = 0. pgacw(i,k) = 0. paacw(i,k) = 0. pgaci(i,k) = 0. pgacr(i,k) = 0. pgacs(i,k) = 0. pigen(i,k) = 0. pidep(i,k) = 0. pcond(i,k) = 0. psmlt(i,k) = 0. pgmlt(i,k) = 0. pseml(i,k) = 0. pgeml(i,k) = 0. psevp(i,k) = 0. pgevp(i,k) = 0. pcact(i,k) = 0. falk(i,k,1) = 0. falk(i,k,2) = 0. falk(i,k,3) = 0. fall(i,k,1) = 0. fall(i,k,2) = 0. fall(i,k,3) = 0. fallc(i,k) = 0. falkc(i,k) = 0. falln(i,k) =0. falkn(i,k) =0. xni(i,k) = 1.e3 nsacw(i,k) = 0. ngacw(i,k) = 0. naacw(i,k) = 0. niacr(i,k) = 0. nsacr(i,k) = 0. ngacr(i,k) = 0. nseml(i,k) = 0. ngeml(i,k) = 0. nracw(i,k) = 0. nccol(i,k) = 0. nrcol(i,k) = 0. ncact(i,k) = 0. nraut(i,k) = 0. ncevp(i,k) = 0. enddo enddo do k = kts, kte do i = its, ite if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin ) then rslopec(i,k) = rslopecmax rslopec2(i,k) = rslopec2max rslopec3(i,k) = rslopec3max else rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) endif !------------------------------------------------------------- ! Ni: ice crystal number concentraiton [HDC 5c] !------------------------------------------------------------- temp = (den(i,k)*max(qci(i,k,2),qmin)) temp = sqrt(sqrt(temp*temp*temp)) xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) enddo enddo !---------------------------------------------------------------- ! compute the fallout term: ! first, vertical terminal velosity for minor loops !---------------------------------------------------------------- do k = kts, kte do i = its, ite qrs_tmp(i,k,1) = qrs(i,k,1) qrs_tmp(i,k,2) = qrs(i,k,2) qrs_tmp(i,k,3) = qrs(i,k,3) ncr_tmp(i,k) = ncr(i,k,3) enddo enddo call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & rslope3,work1,workn,its,ite,kts,kte) ! ! vt update for qr and nr mstepmax = 1 numdt = 1 do k = kte, kts, -1 do i = its, ite work1(i,k,1) = work1(i,k,1)/delz(i,k) workn(i,k) = workn(i,k)/delz(i,k) numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1) if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) enddo enddo do i = its, ite if(mstepmax.le.mstep(i)) mstepmax = mstep(i) enddo ! do n = 1, mstepmax k = kte do i = its, ite if(n.le.mstep(i)) then falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) fall(i,k,1) = fall(i,k,1)+falk(i,k,1) falln(i,k) = falln(i,k)+falkn(i,k) qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.) endif enddo do k = kte-1, kts, -1 do i = its, ite if(n.le.mstep(i)) then falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) fall(i,k,1) = fall(i,k,1)+falk(i,k,1) falln(i,k) = falln(i,k)+falkn(i,k) qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) & /delz(i,k))*dtcld,0.) endif enddo enddo do k = kts, kte do i = its, ite qrs_tmp(i,k,1) = qrs(i,k,1) ncr_tmp(i,k) = ncr(i,k,3) enddo enddo call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & rslope3,work1,workn,its,ite,kts,kte) do k = kte, kts, -1 do i = its, ite work1(i,k,1) = work1(i,k,1)/delz(i,k) workn(i,k) = workn(i,k)/delz(i,k) enddo enddo enddo ! for semi do k = kte, kts, -1 do i = its, ite qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) if(qsum(i,k) .gt. 1.e-15 ) then worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) & /qsum(i,k) else worka(i,k) = 0. endif denqrs2(i,k) = den(i,k)*qrs(i,k,2) denqrs3(i,k) = den(i,k)*qrs(i,k,3) enddo enddo call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka, & denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1) do k = kts, kte do i = its, ite qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.) qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.) fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k) fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k) enddo enddo do i = its, ite fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld enddo do k = kts, kte do i = its, ite qrs_tmp(i,k,1) = qrs(i,k,1) qrs_tmp(i,k,2) = qrs(i,k,2) qrs_tmp(i,k,3) = qrs(i,k,3) ncr_tmp(i,k) = ncr(i,k,3) enddo enddo call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & rslope3,work1,workn,its,ite,kts,kte) ! do k = kte, kts, -1 do i = its, ite supcol = t0c-t(i,k) n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) if(t(i,k).gt.t0c) then !--------------------------------------------------------------- ! psmlt: melting of snow [HL A33] [RH83 A25] ! (T>T0: QS->QR) !--------------------------------------------------------------- xlf = xlf0 work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) if(qrs(i,k,2).gt.0.) then coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & *n0sfac(i,k)*(precs1*rslope2(i,k,2) & +precs2*work2(i,k)*coeres) psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) & /mstep(i)),0.) qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) !------------------------------------------------------------------- ! nsmlt: melting of snow [LH A27] ! (T>T0: ->NR) !------------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin) then sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k) endif t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) endif !--------------------------------------------------------------- ! pgmlt: melting of graupel [HL A23] [LFO 47] ! (T>T0: QG->QR) !--------------------------------------------------------------- if(qrs(i,k,3).gt.0.) then coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*(precg1 & *rslope2(i,k,3) + precg2*work2(i,k)*coeres) pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), & -qrs(i,k,3)/mstep(i)),0.) qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k) qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k) !------------------------------------------------------------------- ! ngmlt: melting of graupel [LH A28] ! (T>T0: ->NR) !------------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin) then gfac = rslope(i,k,3)*n0g/qrs(i,k,3) ncr(i,k,3) = ncr(i,k,3) - gfac*pgmlt(i,k) endif t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k) endif endif enddo enddo !--------------------------------------------------------------- ! Vice [ms-1] : fallout of ice crystal [HDC 5a] !--------------------------------------------------------------- do k = kte, kts, -1 do i = its, ite if(qci(i,k,2).le.0.) then work1c(i,k) = 0. else xmi = den(i,k)*qci(i,k,2)/xni(i,k) diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) endif enddo enddo ! ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) ! do k = kte, kts, -1 do i = its, ite denqci(i,k) = den(i,k)*qci(i,k,2) enddo enddo call nislfv_rain_plmr(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci,denqci, & delqi,dtcld,1,0,0) do k = kts, kte do i = its, ite qci(i,k,2) = max(denqci(i,k)/den(i,k),0.) enddo enddo do i = its, ite fallc(i,1) = delqi(i)/delz(i,1)/dtcld enddo ! !---------------------------------------------------------------- ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf ! do i = its, ite fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts) fallsum_qsi = fall(i,kts,2)+fallc(i,kts) fallsum_qg = fall(i,kts,3) if(fallsum.gt.0.) then rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i) rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i) endif if(fallsum_qsi.gt.0.) then tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i) IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) ENDIF endif if(fallsum_qg.gt.0.) then tstepgraup(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & + tstepgraup(i) IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN graupelncv(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & + graupelncv(i) graupel(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i) ENDIF endif ! if(fallsum.gt.0.) sr(i) = (snowncv(i) + graupelncv(i)) & if(fallsum.gt.0.) sr(i) = (tstepsnow(i) + tstepgraup(i)) & /(rainncv(i)+1.e-12) enddo ! !--------------------------------------------------------------- ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] ! (T>T0: QI->QC) !--------------------------------------------------------------- do k = kts, kte do i = its, ite supcol = t0c-t(i,k) xlf = xls-xl(i,k) if(supcol.lt.0.) xlf = xlf0 if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then qci(i,k,1) = qci(i,k,1) + qci(i,k,2) !--------------------------------------------------------------- ! nimlt: instantaneous melting of cloud ice [LH A18] ! (T>T0: ->NC) !-------------------------------------------------------------- ncr(i,k,2) = ncr(i,k,2) + xni(i,k) t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) qci(i,k,2) = 0. endif !--------------------------------------------------------------- ! pihmf: homogeneous of cloud water below -40c [HL A45] ! (T<-40C: QC->QI) !--------------------------------------------------------------- if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then qci(i,k,2) = qci(i,k,2) + qci(i,k,1) !--------------------------------------------------------------- ! nihmf: homogeneous of cloud water below -40c [LH A17] ! (T<-40C: NC->) !--------------------------------------------------------------- if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0. t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) qci(i,k,1) = 0. endif !--------------------------------------------------------------- ! pihtf: heterogeneous of cloud water [HL A44] ! (T0>T>-40C: QC->QI) !--------------------------------------------------------------- if(supcol.gt.0. .and. qci(i,k,1).gt.qmin) then supcolt=min(supcol,70.) pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) & *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld & ,qci(i,k,1)) !--------------------------------------------------------------- ! nihtf: heterogeneous of cloud water [LH A16] ! (T0>T>-40C: NC->) !--------------------------------------------------------------- if(ncr(i,k,2).gt.ncmin) then nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) & *rslopec3(i,k)/6.*dtcld,ncr(i,k,2)) ncr(i,k,2) = ncr(i,k,2) - nfrzdtc endif qci(i,k,2) = qci(i,k,2) + pfrzdtc t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc qci(i,k,1) = qci(i,k,1)-pfrzdtc endif !--------------------------------------------------------------- ! pgfrz: freezing of rain water [HL A20] [LFO 45] ! (TQG) !--------------------------------------------------------------- if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then supcolt=min(supcol,70.) pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) & *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) & *dtcld,qrs(i,k,1)) !--------------------------------------------------------------- ! ngfrz: freezing of rain water [LH A26] ! (T ) !--------------------------------------------------------------- if(ncr(i,k,3).gt.nrmin) then nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) & *rslope3(i,k,1)*dtcld, ncr(i,k,3)) ncr(i,k,3) = ncr(i,k,3) - nfrzdtr endif qrs(i,k,3) = qrs(i,k,3) + pfrzdtr t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr qrs(i,k,1) = qrs(i,k,1) - pfrzdtr endif enddo enddo ! do k = kts, kte do i = its, ite ncr(i,k,2) = max(ncr(i,k,2),0.0) ncr(i,k,3) = max(ncr(i,k,3),0.0) enddo enddo ! !---------------------------------------------------------------- ! update the slope parameters for microphysics computation ! do k = kts, kte do i = its, ite qrs_tmp(i,k,1) = qrs(i,k,1) qrs_tmp(i,k,2) = qrs(i,k,2) qrs_tmp(i,k,3) = qrs(i,k,3) ncr_tmp(i,k) = ncr(i,k,3) enddo enddo call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & rslope3,work1,workn,its,ite,kts,kte) do k = kts, kte do i = its, ite !----------------------------------------------------------------- ! compute the mean-volume drop diameter [LH A10] ! for raindrop distribution !----------------------------------------------------------------- avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) ! if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then rslopec(i,k) = rslopecmax rslopec2(i,k) = rslopec2max rslopec3(i,k) = rslopec3max else rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) endif !-------------------------------------------------------------------- ! compute the mean-volume drop diameter [LH A7] ! for cloud-droplet distribution !-------------------------------------------------------------------- avedia(i,k,1) = rslopec(i,k) enddo enddo ! do k = kts, kte do i = its, ite work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) enddo enddo ! !=============================================================== ! ! warm rain processes ! ! - follows the double-moment processes in Lim and Hong ! !=============================================================== ! do k = kts, kte do i = its, ite supsat = max(q(i,k),qmin)-qs(i,k,1) satdt = supsat/dtcld !--------------------------------------------------------------- ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17] ! (QC->QR) !-------------------------------------------------------------- lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) & *rslopec2(i,k)-0.4) lenconcr = max(1.2*lencon, qcrmin) if(avedia(i,k,1).gt.di15) then taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5) praut(i,k) = lencon/taucon praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld) !--------------------------------------------------------------- ! nraut: auto conversion rate from cloud to rain [LH A6] [CP 18 & 19] ! (NC->NR) !--------------------------------------------------------------- nraut(i,k) = 3.5e9*den(i,k)*praut(i,k) if(qrs(i,k,1).gt.lenconcr) & nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k) nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld) endif !--------------------------------------------------------------- ! pracw: accretion of cloud water by rain [LH 10] [CP 22 & 23] ! (QC->QR) ! nracw: accretion of cloud water by rain [LH A9] ! (NC->) !--------------------------------------------------------------- if(qrs(i,k,1).ge.lenconcr) then if(avedia(i,k,2).ge.di100) then nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) & + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld) pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) & *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) & + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld) else nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) & *rslopec3(i,k)+5040.*rslope3(i,k,1) & *rslope3(i,k,1)),ncr(i,k,2)/dtcld) pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) & *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) & *rslopec3(i,k)+5040.*rslope3(i,k,1)*rslope3(i,k,1)) & ,qci(i,k,1)/dtcld) endif endif !---------------------------------------------------------------- ! nccol: self collection of cloud water [LH A8] [CP 24 & 25] ! (NC->) !---------------------------------------------------------------- if(avedia(i,k,1).ge.di100) then nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) else nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) & *rslopec3(i,k) endif !---------------------------------------------------------------- ! nrcol: self collection of rain-drops and break-up [LH A21] [CP 24 & 25] ! (NR->) !---------------------------------------------------------------- if(qrs(i,k,1).ge.lenconcr) then if(avedia(i,k,2).lt.di100) then nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) & *rslope3(i,k,1) elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then coecol = -2.5e3*(avedia(i,k,2)-di600) nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) & *rslope3(i,k,1) else nrcol(i,k) = 0. endif endif !--------------------------------------------------------------- ! prevp: evaporation/condensation rate of rain [HL A41] ! (QV->QR or QR->QV) !--------------------------------------------------------------- if(qrs(i,k,1).gt.0.) then coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) & + precr2*work2(i,k)*coeres)/work1(i,k,1) if(prevp(i,k).lt.0.) then prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) prevp(i,k) = max(prevp(i,k),satdt/2) !---------------------------------------------------------------- ! Nrevp: evaporation/condensation rate of rain [LH A14] ! (NR->NCCN) !---------------------------------------------------------------- if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,3) ncr(i,k,3) = 0. endif else ! prevp(i,k) = min(prevp(i,k),satdt/2) endif endif enddo enddo ! !=============================================================== ! ! cold rain processes ! ! - follows the revised ice microphysics processes in HDC ! - the processes same as in RH83 and RH84 and LFO behave ! following ice crystal hapits defined in HDC, inclduing ! intercept parameter for snow (n0s), ice crystal number ! concentration (ni), ice nuclei number concentration ! (n0i), ice diameter (d) ! !=============================================================== ! do k = kts, kte do i = its, ite supcol = t0c-t(i,k) n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) supsat = max(q(i,k),qmin)-qs(i,k,2) satdt = supsat/dtcld ifsat = 0 !------------------------------------------------------------- ! Ni: ice crystal number concentraiton [HDC 5c] !------------------------------------------------------------- ! xni(i,k) = min(max(5.38e7*(den(i,k) & ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) temp = (den(i,k)*max(qci(i,k,2),qmin)) temp = sqrt(sqrt(temp*temp*temp)) xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) eacrs = exp(0.07*(-supcol)) ! xmi = den(i,k)*qci(i,k,2)/xni(i,k) diameter = min(dicon * sqrt(xmi),dimax) vt2i = 1.49e4*diameter**1.31 vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k) vt2s=pvts*rslopeb(i,k,2)*denfac(i,k) vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k) qsum(i,k) = max((qrs(i,k,2)+qrs(i,k,3)),1.e-15) if(qsum(i,k) .gt. 1.e-15) then vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k)) else vt2ave=0. endif if(supcol.gt.0. .and. qci(i,k,2).gt.qmin) then if(qrs(i,k,1).gt.qcrmin) then !------------------------------------------------------------- ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] ! (TQR) !------------------------------------------------------------- acrfac = 6.*rslope2(i,k,1)+4.*diameter*rslope(i,k,1) + diameter**2 praci(i,k) = pi*qci(i,k,2)*ncr(i,k,3)*abs(vt2r-vt2i)*acrfac/4. praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld) !------------------------------------------------------------- ! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26] ! (TQS or QR->QG) !------------------------------------------------------------- piacr(i,k) = pi*pi*avtr*ncr(i,k,3)*denr*xni(i,k)*denfac(i,k) & *g7pbr*rslope3(i,k,1)*rslope2(i,k,1)*rslopeb(i,k,1) & /24./den(i,k) piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld) endif !------------------------------------------------------------- ! niacr: Accretion of rain by cloud ice [LH A25] ! (T) !------------------------------------------------------------- if(ncr(i,k,3).gt.nrmin) then niacr(i,k) = pi*avtr*ncr(i,k,3)*xni(i,k)*denfac(i,k)*g4pbr & *rslope2(i,k,1)*rslopeb(i,k,1)/4. niacr(i,k) = min(niacr(i,k),ncr(i,k,3)/dtcld) endif !------------------------------------------------------------- ! psaci: Accretion of cloud ice by snow [HDC 10] ! (TQS) !------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin) then acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & + diameter**2*rslope(i,k,2) psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & *abs(vt2ave-vt2i)*acrfac/4. psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld) endif !------------------------------------------------------------- ! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41] ! (TQG) !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin) then egi = exp(0.07*(-supcol)) acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3) & + diameter**2*rslope(i,k,3) pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4. pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld) endif endif !------------------------------------------------------------- ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] ! (TQS, and T>=T0: QC->QR) !------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,1).gt.qmin) then psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) endif !------------------------------------------------------------- ! nsacw: Accretion of cloud water by snow [LH A12] ! (NC ->) !------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then nsacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & *ncr(i,k,2)*denfac(i,k),ncr(i,k,2)/dtcld) endif !------------------------------------------------------------- ! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40] ! (TQG, and T>=T0: QC->QR) !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin .and. qci(i,k,1).gt.qmin) then pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*qci(i,k,1) & *denfac(i,k),qci(i,k,1)/dtcld) endif !------------------------------------------------------------- ! ngacw: Accretion of cloud water by graupel [LH A13] ! (NC-> !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then ngacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*ncr(i,k,2) & *denfac(i,k),ncr(i,k,2)/dtcld) endif !------------------------------------------------------------- ! paacw: Accretion of cloud water by averaged snow/graupel ! (TQG or QS, and T>=T0: QC->QR) !------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,3).gt.qcrmin) then paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k))/(qsum(i,k)) !------------------------------------------------------------- ! naacw: Accretion of cloud water by averaged snow/graupel ! (Nc->) !------------------------------------------------------------- naacw(i,k) = (qrs(i,k,2)*nsacw(i,k)+qrs(i,k,3)*ngacw(i,k))/(qsum(i,k)) endif !------------------------------------------------------------- ! pracs: Accretion of snow by rain [HL A11] [LFO 27] ! (TQG) !------------------------------------------------------------- if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then if(supcol.gt.0) then acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2) & + 4.*rslope3(i,k,2)*rslope2(i,k,2)*rslope(i,k,1) & + 1.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) pracs(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2r-vt2ave) & *(dens/den(i,k))*acrfac pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld) endif !------------------------------------------------------------- ! psacr: Accretion of rain by snow [HL A10] [LFO 28] ! (TQS or QR->QG) (T>=T0: enhance melting of snow) !------------------------------------------------------------- acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,2) & + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) & + 2.*rslope3(i,k,1)*rslope3(i,k,2) psacr(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & *(denr/den(i,k))*acrfac psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld) endif if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then !------------------------------------------------------------- ! nsacr: Accretion of rain by snow [LH A23] ! (T) !------------------------------------------------------------- acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,2) & + 1.0*rslope(i,k,1)*rslope2(i,k,2)+.5*rslope3(i,k,2) nsacr(i,k) = pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & *acrfac nsacr(i,k) = min(nsacr(i,k),ncr(i,k,3)/dtcld) endif !------------------------------------------------------------- ! pgacr: Accretion of rain by graupel [HL A12] [LFO 42] ! (TQG) (T>=T0: enhance melting of graupel) !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,3) & + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) & + 2.*rslope3(i,k,1)*rslope3(i,k,3) pgacr(i,k) = pi*pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*(denr/den(i,k)) & *acrfac pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld) endif !------------------------------------------------------------- ! ngacr: Accretion of rain by graupel [LH A24] ! (T) !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,3) & + 1.0*rslope(i,k,1)*rslope2(i,k,3) + .5*rslope3(i,k,3) ngacr(i,k) = pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*acrfac ngacr(i,k) = min(ngacr(i,k),ncr(i,k,3)/dtcld) endif ! !------------------------------------------------------------- ! pgacs: Accretion of snow by graupel [HL A13] [LFO 29] ! (QS->QG) : This process is eliminated in V3.0 with the ! new combined snow/graupel fall speeds !------------------------------------------------------------- if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,2).gt.qcrmin) then pgacs(i,k) = 0. endif if(supcol.le.0) then xlf = xlf0 !------------------------------------------------------------- ! pseml: Enhanced melting of snow by accretion of water [HL A34] ! (T>=T0: QS->QR) !------------------------------------------------------------- if(qrs(i,k,2).gt.0.) & pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k)) & /xlf,-qrs(i,k,2)/dtcld),0.) !-------------------------------------------------------------- ! nseml: Enhanced melting of snow by accretion of water [LH A29] ! (T>=T0: ->NR) !-------------------------------------------------------------- if (qrs(i,k,2).gt.qcrmin) then sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) nseml(i,k) = -sfac*pseml(i,k) endif !------------------------------------------------------------- ! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22] ! (T>=T0: QG->QR) !------------------------------------------------------------- if(qrs(i,k,3).gt.0.) & pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k))/xlf & ,-qrs(i,k,3)/dtcld),0.) !-------------------------------------------------------------- ! ngeml: Enhanced melting of graupel by accretion of water [LH A30] ! (T>=T0: -> NR) !-------------------------------------------------------------- if (qrs(i,k,3).gt.qcrmin) then gfac = rslope(i,k,3)*n0g/qrs(i,k,3) ngeml(i,k) = -gfac*pgeml(i,k) endif endif if(supcol.gt.0) then !------------------------------------------------------------- ! pidep: Deposition/Sublimation rate of ice [HDC 9] ! (TQI or QI->QV) !------------------------------------------------------------- if(qci(i,k,2).gt.0. .and. ifsat.ne.1) then pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) supice = satdt-prevp(i,k) if(pidep(i,k).lt.0.) then pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) else pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) endif if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 endif !------------------------------------------------------------- ! psdep: deposition/sublimation rate of snow [HDC 14] ! (TQS or QS->QV) !------------------------------------------------------------- if(qrs(i,k,2).gt.0. .and. ifsat.ne.1) then coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & + precs2*work2(i,k)*coeres)/work1(i,k,2) supice = satdt-prevp(i,k)-pidep(i,k) if(psdep(i,k).lt.0.) then psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) else psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) endif if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) ifsat = 1 endif !------------------------------------------------------------- ! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46] ! (TQG or QG->QV) !------------------------------------------------------------- if(qrs(i,k,3).gt.0. .and. ifsat.ne.1) then coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) & + precg2*work2(i,k)*coeres)/work1(i,k,2) supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) if(pgdep(i,k).lt.0.) then pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld) pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice) else pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice) endif if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge. & abs(satdt)) ifsat = 1 endif !------------------------------------------------------------- ! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8] ! (TQI) !------------------------------------------------------------- if(supsat.gt.0. .and. ifsat.ne.1) then supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k) xni0 = 1.e3*exp(0.1*supcol) roqi0 = 4.92e-11*xni0**1.33 pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))/dtcld) pigen(i,k) = min(min(pigen(i,k),satdt),supice) endif ! !------------------------------------------------------------- ! psaut: conversion(aggregation) of ice to snow [HDC 12] ! (TQS) !------------------------------------------------------------- if(qci(i,k,2).gt.0.) then qimax = roqimax/den(i,k) psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) endif ! !------------------------------------------------------------- ! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37] ! (TQG) !------------------------------------------------------------- if(qrs(i,k,2).gt.0.) then alpha2 = 1.e-3*exp(0.09*(-supcol)) pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)),qrs(i,k,2)/dtcld) endif endif ! !------------------------------------------------------------- ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] ! (T>=T0: QS->QV) !------------------------------------------------------------- if(supcol.lt.0.) then if(qrs(i,k,2).gt.0. .and. rh(i,k,1).lt.1.) then coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & +precs2*work2(i,k)*coeres)/work1(i,k,1) psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) endif !------------------------------------------------------------- ! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19] ! (T>=T0: QG->QV) !------------------------------------------------------------- if(qrs(i,k,3).gt.0. .and. rh(i,k,1).lt.1.) then coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) & + precg2*work2(i,k)*coeres)/work1(i,k,1) pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.) endif endif enddo enddo ! ! !---------------------------------------------------------------- ! check mass conservation of generation terms and feedback to the ! large scale ! do k = kts, kte do i = its, ite ! delta2=0. delta3=0. if(qrs(i,k,1).lt.1.e-4 .and. qrs(i,k,2).lt.1.e-4) delta2=1. if(qrs(i,k,1).lt.1.e-4) delta3=1. if(t(i,k).le.t0c) then ! ! cloud water ! value = max(qmin,qci(i,k,1)) source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))& *dtcld if (source.gt.value) then factor = value/source praut(i,k) = praut(i,k)*factor pracw(i,k) = pracw(i,k)*factor paacw(i,k) = paacw(i,k)*factor endif ! ! cloud ice ! value = max(qmin,qci(i,k,2)) source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k)+psaci(i,k) & +pgaci(i,k))*dtcld if (source.gt.value) then factor = value/source psaut(i,k) = psaut(i,k)*factor pigen(i,k) = pigen(i,k)*factor pidep(i,k) = pidep(i,k)*factor praci(i,k) = praci(i,k)*factor psaci(i,k) = psaci(i,k)*factor pgaci(i,k) = pgaci(i,k)*factor endif ! ! rain ! value = max(qmin,qrs(i,k,1)) source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k) & +psacr(i,k)+pgacr(i,k))*dtcld if (source.gt.value) then factor = value/source praut(i,k) = praut(i,k)*factor prevp(i,k) = prevp(i,k)*factor pracw(i,k) = pracw(i,k)*factor piacr(i,k) = piacr(i,k)*factor psacr(i,k) = psacr(i,k)*factor pgacr(i,k) = pgacr(i,k)*factor endif ! ! snow ! value = max(qmin,qrs(i,k,2)) source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k) & +piacr(i,k)*delta3+praci(i,k)*delta3 & -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2 & +psaci(i,k)-pgacs(i,k) )*dtcld if (source.gt.value) then factor = value/source psdep(i,k) = psdep(i,k)*factor psaut(i,k) = psaut(i,k)*factor pgaut(i,k) = pgaut(i,k)*factor paacw(i,k) = paacw(i,k)*factor piacr(i,k) = piacr(i,k)*factor praci(i,k) = praci(i,k)*factor psaci(i,k) = psaci(i,k)*factor pracs(i,k) = pracs(i,k)*factor psacr(i,k) = psacr(i,k)*factor pgacs(i,k) = pgacs(i,k)*factor endif ! ! graupel ! value = max(qmin,qrs(i,k,3)) source = -(pgdep(i,k)+pgaut(i,k) & +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) & +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) & +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld if (source.gt.value) then factor = value/source pgdep(i,k) = pgdep(i,k)*factor pgaut(i,k) = pgaut(i,k)*factor piacr(i,k) = piacr(i,k)*factor praci(i,k) = praci(i,k)*factor psacr(i,k) = psacr(i,k)*factor pracs(i,k) = pracs(i,k)*factor paacw(i,k) = paacw(i,k)*factor pgaci(i,k) = pgaci(i,k)*factor pgacr(i,k) = pgacr(i,k)*factor pgacs(i,k) = pgacs(i,k)*factor endif ! ! cloud ! value = max(ncmin,ncr(i,k,2)) source = (nraut(i,k)+nccol(i,k)+nracw(i,k) & +naacw(i,k)+naacw(i,k))*dtcld if (source.gt.value) then factor = value/source nraut(i,k) = nraut(i,k)*factor nccol(i,k) = nccol(i,k)*factor nracw(i,k) = nracw(i,k)*factor naacw(i,k) = naacw(i,k)*factor endif ! ! rain ! value = max(nrmin,ncr(i,k,3)) source = (-nraut(i,k)+nrcol(i,k)+niacr(i,k)+nsacr(i,k)+ngacr(i,k) & )*dtcld if (source.gt.value) then factor = value/source nraut(i,k) = nraut(i,k)*factor nrcol(i,k) = nrcol(i,k)*factor niacr(i,k) = niacr(i,k)*factor nsacr(i,k) = nsacr(i,k)*factor ngacr(i,k) = ngacr(i,k)*factor endif ! work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k)+pidep(i,k)) ! update q(i,k) = q(i,k)+work2(i,k)*dtcld qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & +paacw(i,k)+paacw(i,k))*dtcld,0.) qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & +prevp(i,k)-piacr(i,k)-pgacr(i,k) & -psacr(i,k))*dtcld,0.) qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k) & +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k)) & *dtcld,0.) qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k) & -pgaut(i,k)+piacr(i,k)*delta3 & +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) & -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) & *dtcld,0.) qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k) & +piacr(i,k)*(1.-delta3) & +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2) & +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k) & +pgacr(i,k)+pgacs(i,k))*dtcld,0.) ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & -naacw(i,k)-naacw(i,k))*dtcld,0.) ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)-niacr(i,k) & -nsacr(i,k)-ngacr(i,k))*dtcld,0.) xlf = xls-xl(i,k) xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k)) & -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k) & +paacw(i,k)+pgacr(i,k)+psacr(i,k)) t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld else ! ! cloud water ! value = max(qmin,qci(i,k,1)) source= (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k)) & *dtcld if (source.gt.value) then factor = value/source praut(i,k) = praut(i,k)*factor pracw(i,k) = pracw(i,k)*factor paacw(i,k) = paacw(i,k)*factor endif ! ! rain ! value = max(qmin,qrs(i,k,1)) source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k) & -pracw(i,k)-paacw(i,k)-prevp(i,k))*dtcld if (source.gt.value) then factor = value/source praut(i,k) = praut(i,k)*factor prevp(i,k) = prevp(i,k)*factor pracw(i,k) = pracw(i,k)*factor paacw(i,k) = paacw(i,k)*factor pseml(i,k) = pseml(i,k)*factor pgeml(i,k) = pgeml(i,k)*factor endif ! ! snow ! value = max(qcrmin,qrs(i,k,2)) source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld if (source.gt.value) then factor = value/source pgacs(i,k) = pgacs(i,k)*factor psevp(i,k) = psevp(i,k)*factor pseml(i,k) = pseml(i,k)*factor endif ! ! graupel ! value = max(qcrmin,qrs(i,k,3)) source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld if (source.gt.value) then factor = value/source pgacs(i,k) = pgacs(i,k)*factor pgevp(i,k) = pgevp(i,k)*factor pgeml(i,k) = pgeml(i,k)*factor endif ! ! cloud ! value = max(ncmin,ncr(i,k,2)) source = (+nraut(i,k)+nccol(i,k)+nracw(i,k)+naacw(i,k) & +naacw(i,k))*dtcld if (source.gt.value) then factor = value/source nraut(i,k) = nraut(i,k)*factor nccol(i,k) = nccol(i,k)*factor nracw(i,k) = nracw(i,k)*factor naacw(i,k) = naacw(i,k)*factor endif ! ! rain ! value = max(nrmin,ncr(i,k,3)) source = (-nraut(i,k)+nrcol(i,k)-nseml(i,k)-ngeml(i,k) & )*dtcld if (source.gt.value) then factor = value/source nraut(i,k) = nraut(i,k)*factor nrcol(i,k) = nrcol(i,k)*factor nseml(i,k) = nseml(i,k)*factor ngeml(i,k) = ngeml(i,k)*factor endif ! work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k)) ! update q(i,k) = q(i,k)+work2(i,k)*dtcld qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & +paacw(i,k)+paacw(i,k))*dtcld,0.) qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k) & -pgeml(i,k))*dtcld,0.) qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k) & +pseml(i,k))*dtcld,0.) qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k) & +pgeml(i,k))*dtcld,0.) ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & -naacw(i,k)-naacw(i,k))*dtcld,0.) ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)+nseml(i,k) & +ngeml(i,k))*dtcld,0.) xlf = xls-xl(i,k) xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k)) & -xlf*(pseml(i,k)+pgeml(i,k)) t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld endif enddo enddo ! ! Inline expansion for fpvs ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) hsub = xls hvap = xlv0 cvap = cpv ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) do k = kts, kte do i = its, ite tr=ttp/t(i,k) qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) qs(i,k,1) = max(qs(i,k,1),qmin) tr=ttp/t(i,k) if(t(i,k).lt.ttp) then qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) else qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) endif qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) qs(i,k,2) = max(qs(i,k,2),qmin) rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) enddo enddo ! call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & rslope3,work1,workn,its,ite,kts,kte) do k = kts, kte do i = its, ite !----------------------------------------------------------------- ! re-compute the mean-volume drop diameter [LH A10] ! for raindrop distribution !----------------------------------------------------------------- avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) !---------------------------------------------------------------- ! Nrevp_s: evaporation/condensation rate of rain [LH A14] ! (NR->NC) !---------------------------------------------------------------- if(avedia(i,k,2).le.di82) then ncr(i,k,2) = ncr(i,k,2)+ncr(i,k,3) ncr(i,k,3) = 0. !---------------------------------------------------------------- ! Prevp_s: evaporation/condensation rate of rain [LH A15] [KK 23] ! (QR->QC) !---------------------------------------------------------------- qci(i,k,1) = qci(i,k,1)+qrs(i,k,1) qrs(i,k,1) = 0. endif enddo enddo ! do k = kts, kte do i = its, ite !--------------------------------------------------------------- ! rate of change of cloud drop concentration due to CCN activation ! pcact: QV -> QC [LH 8] [KK 14] ! ncact: NCCN -> NC [LH A2] [KK 12] !--------------------------------------------------------------- if(rh(i,k,1).gt.1.) then ncact(i,k) = max(0.,((ncr(i,k,1)+ncr(i,k,2)) & *min(1.,(rh(i,k,1)/satmax)**actk) - ncr(i,k,2)))/dtcld ncact(i,k) =min(ncact(i,k),max(ncr(i,k,1),0.)/dtcld) pcact(i,k) = min(4.*pi*denr*(actr*1.E-6)**3*ncact(i,k)/ & (3.*den(i,k)),max(q(i,k),0.)/dtcld) q(i,k) = max(q(i,k)-pcact(i,k)*dtcld,0.) qci(i,k,1) = max(qci(i,k,1)+pcact(i,k)*dtcld,0.) ncr(i,k,1) = max(ncr(i,k,1)-ncact(i,k)*dtcld,0.) ncr(i,k,2) = max(ncr(i,k,2)+ncact(i,k)*dtcld,0.) t(i,k) = t(i,k)+pcact(i,k)*xl(i,k)/cpm(i,k)*dtcld endif !--------------------------------------------------------------- ! pcond:condensational/evaporational rate of cloud water [HL A46] [RH83 A6] ! if there exists additional water vapor condensated/if ! evaporation of cloud water is not enough to remove subsaturation ! (QV->QC or QC->QV) !--------------------------------------------------------------- tr=ttp/t(i,k) qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) qs(i,k,1) = max(qs(i,k,1),qmin) work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) work2(i,k) = qci(i,k,1)+work1(i,k,1) pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) if(qci(i,k,1).gt.0. .and. work1(i,k,1).lt.0.) & pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld !---------------------------------------------------------------- ! ncevp: evpration of Cloud number concentration [LH A3] ! (NC->NCCN) !---------------------------------------------------------------- if(pcond(i,k).eq.-qci(i,k,1)/dtcld) then ncr(i,k,2) = 0. ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,2) endif ! q(i,k) = q(i,k)-pcond(i,k)*dtcld qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld enddo enddo ! !---------------------------------------------------------------- ! padding for small values ! do k = kts, kte do i = its, ite if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 enddo enddo enddo ! big loops END SUBROUTINE wdm62d ! ................................................................... REAL FUNCTION rgmma(x) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! rgmma function: use infinite product form REAL :: euler PARAMETER (euler=0.577215664901532) REAL :: x, y INTEGER :: i if(x.eq.1.)then rgmma=0. else rgmma=x*exp(euler*x) do i=1,10000 y=float(i) rgmma=rgmma*(1.000+x/y)*exp(-x/y) enddo rgmma=1./rgmma endif END FUNCTION rgmma ! !-------------------------------------------------------------------------- REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) !-------------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------------- REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & xai,xbi,ttp,tr INTEGER ice ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) tr=ttp/t if(t.lt.ttp .and. ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END FUNCTION fpvs !------------------------------------------------------------------- SUBROUTINE wdm6init(den0,denr,dens,cl,cpv, ccn0, allowed_to_read) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- !.... constants which may not be tunable REAL, INTENT(IN) :: den0,denr,dens,cl,cpv,ccn0 LOGICAL, INTENT(IN) :: allowed_to_read ! pi = 4.*atan(1.) xlv1 = cl-cpv ! qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 pidnc = pi*denr/6. ! bvtr1 = 1.+bvtr bvtr2 = 2.+bvtr bvtr3 = 3.+bvtr bvtr4 = 4.+bvtr bvtr5 = 5.+bvtr bvtr6 = 6.+bvtr bvtr7 = 7.+bvtr bvtr2o5 = 2.5+.5*bvtr bvtr3o5 = 3.5+.5*bvtr g1pbr = rgmma(bvtr1) g2pbr = rgmma(bvtr2) g3pbr = rgmma(bvtr3) g4pbr = rgmma(bvtr4) ! 17.837825 g5pbr = rgmma(bvtr5) g6pbr = rgmma(bvtr6) g7pbr = rgmma(bvtr7) g5pbro2 = rgmma(bvtr2o5) g7pbro2 = rgmma(bvtr3o5) pvtr = avtr*g5pbr/24. pvtrn = avtr*g2pbr eacrr = 1.0 pacrr = pi*n0r*avtr*g3pbr*.25*eacrr precr1 = 2.*pi*1.56 precr2 = 2.*pi*.31*avtr**.5*g7pbro2 pidn0r = pi*denr*n0r pidnr = 4.*pi*denr ! xmmax = (dimax/dicon)**2 roqimax = 2.08e22*dimax**8 ! bvts1 = 1.+bvts bvts2 = 2.5+.5*bvts bvts3 = 3.+bvts bvts4 = 4.+bvts g1pbs = rgmma(bvts1) !.8875 g3pbs = rgmma(bvts3) g4pbs = rgmma(bvts4) ! 12.0786 g5pbso2 = rgmma(bvts2) pvts = avts*g4pbs/6. pacrs = pi*n0s*avts*g3pbs*.25 precs1 = 4.*n0s*.65 precs2 = 4.*n0s*.44*avts**.5*g5pbso2 pidn0s = pi*dens*n0s ! pacrc = pi*n0s*avts*g3pbs*.25*eacrc ! bvtg1 = 1.+bvtg bvtg2 = 2.5+.5*bvtg bvtg3 = 3.+bvtg bvtg4 = 4.+bvtg g1pbg = rgmma(bvtg1) g3pbg = rgmma(bvtg3) g4pbg = rgmma(bvtg4) g5pbgo2 = rgmma(bvtg2) pacrg = pi*n0g*avtg*g3pbg*.25 pvtg = avtg*g4pbg/6. precg1 = 2.*pi*n0g*.78 precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2 pidn0g = pi*deng*n0g ! rslopecmax = 1./lamdacmax rslopermax = 1./lamdarmax rslopesmax = 1./lamdasmax rslopegmax = 1./lamdagmax rsloperbmax = rslopermax ** bvtr rslopesbmax = rslopesmax ** bvts rslopegbmax = rslopegmax ** bvtg rslopec2max = rslopecmax * rslopecmax rsloper2max = rslopermax * rslopermax rslopes2max = rslopesmax * rslopesmax rslopeg2max = rslopegmax * rslopegmax rslopec3max = rslopec2max * rslopecmax rsloper3max = rsloper2max * rslopermax rslopes3max = rslopes2max * rslopesmax rslopeg3max = rslopeg2max * rslopegmax ! END SUBROUTINE wdm6init !------------------------------------------------------------------------------ subroutine slope_wdm6(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & vt,vtn,its,ite,kts,kte) IMPLICIT NONE INTEGER :: its,ite, jts,jte, kts,kte REAL, DIMENSION( its:ite , kts:kte,3) :: & qrs, & rslope, & rslopeb, & rslope2, & rslope3, & vt REAL, DIMENSION( its:ite , kts:kte) :: & ncr, & vtn, & den, & denfac, & t REAL, PARAMETER :: t0c = 273.15 REAL, DIMENSION( its:ite , kts:kte ) :: & n0sfac REAL :: lamdar, lamdas, lamdag, x, y, z, supcol integer :: i, j, k !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. ! ! Optimizatin : A**B => exp(log(A)*(B)) lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 ! do k = kts, kte do i = its, ite supcol = t0c-t(i,k) !--------------------------------------------------------------- ! n0s: Intercept parameter for snow [m-4] [HDC 6] !--------------------------------------------------------------- n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) if(qrs(i,k,1).le.qcrmin .or. ncr(i,k).le.nrmin ) then rslope(i,k,1) = rslopermax rslopeb(i,k,1) = rsloperbmax rslope2(i,k,1) = rsloper2max rslope3(i,k,1) = rsloper3max else rslope(i,k,1) = min(1./lamdar(qrs(i,k,1),den(i,k),ncr(i,k)),1.e-3) rslopeb(i,k,1) = rslope(i,k,1)**bvtr rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) endif if(qrs(i,k,2).le.qcrmin) then rslope(i,k,2) = rslopesmax rslopeb(i,k,2) = rslopesbmax rslope2(i,k,2) = rslopes2max rslope3(i,k,2) = rslopes3max else rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) rslopeb(i,k,2) = rslope(i,k,2)**bvts rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) endif if(qrs(i,k,3).le.qcrmin) then rslope(i,k,3) = rslopegmax rslopeb(i,k,3) = rslopegbmax rslope2(i,k,3) = rslopeg2max rslope3(i,k,3) = rslopeg3max else rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) rslopeb(i,k,3) = rslope(i,k,3)**bvtg rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) endif vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k) vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k) vt(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k) vtn(i,k) = pvtrn*rslopeb(i,k,1)*denfac(i,k) if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0 if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0 if(qrs(i,k,3).le.0.0) vt(i,k,3) = 0.0 if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 enddo enddo END subroutine slope_wdm6 !----------------------------------------------------------------------------- subroutine slope_rain(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & vt,vtn,its,ite,kts,kte) IMPLICIT NONE INTEGER :: its,ite, jts,jte, kts,kte REAL, DIMENSION( its:ite , kts:kte) :: & qrs, & ncr, & rslope, & rslopeb, & rslope2, & rslope3, & vt, & vtn, & den, & denfac, & t REAL, PARAMETER :: t0c = 273.15 REAL, DIMENSION( its:ite , kts:kte ) :: & n0sfac REAL :: lamdar, x, y, z, supcol integer :: i, j, k !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) ! do k = kts, kte do i = its, ite if(qrs(i,k).le.qcrmin .or. ncr(i,k).le.nrmin) then rslope(i,k) = rslopermax rslopeb(i,k) = rsloperbmax rslope2(i,k) = rsloper2max rslope3(i,k) = rsloper3max else rslope(i,k) = min(1./lamdar(qrs(i,k),den(i,k),ncr(i,k)),1.e-3) rslopeb(i,k) = rslope(i,k)**bvtr rslope2(i,k) = rslope(i,k)*rslope(i,k) rslope3(i,k) = rslope2(i,k)*rslope(i,k) endif vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k) vtn(i,k) = pvtrn*rslopeb(i,k)*denfac(i,k) if(qrs(i,k).le.0.0) vt(i,k) = 0.0 if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 enddo enddo END subroutine slope_rain !------------------------------------------------------------------------------ subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & vt,its,ite,kts,kte) IMPLICIT NONE INTEGER :: its,ite, jts,jte, kts,kte REAL, DIMENSION( its:ite , kts:kte) :: & qrs, & rslope, & rslopeb, & rslope2, & rslope3, & vt, & den, & denfac, & t REAL, PARAMETER :: t0c = 273.15 REAL, DIMENSION( its:ite , kts:kte ) :: & n0sfac REAL :: lamdas, x, y, z, supcol integer :: i, j, k !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 ! do k = kts, kte do i = its, ite supcol = t0c-t(i,k) !--------------------------------------------------------------- ! n0s: Intercept parameter for snow [m-4] [HDC 6] !--------------------------------------------------------------- n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) if(qrs(i,k).le.qcrmin)then rslope(i,k) = rslopesmax rslopeb(i,k) = rslopesbmax rslope2(i,k) = rslopes2max rslope3(i,k) = rslopes3max else rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) rslopeb(i,k) = rslope(i,k)**bvts rslope2(i,k) = rslope(i,k)*rslope(i,k) rslope3(i,k) = rslope2(i,k)*rslope(i,k) endif vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k) if(qrs(i,k).le.0.0) vt(i,k) = 0.0 enddo enddo END subroutine slope_snow !---------------------------------------------------------------------------------- subroutine slope_graup(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & vt,its,ite,kts,kte) IMPLICIT NONE INTEGER :: its,ite, jts,jte, kts,kte REAL, DIMENSION( its:ite , kts:kte) :: & qrs, & rslope, & rslopeb, & rslope2, & rslope3, & vt, & den, & denfac, & t REAL, PARAMETER :: t0c = 273.15 REAL, DIMENSION( its:ite , kts:kte ) :: & n0sfac REAL :: lamdag, x, y, z, supcol integer :: i, j, k !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 ! do k = kts, kte do i = its, ite !--------------------------------------------------------------- ! n0s: Intercept parameter for snow [m-4] [HDC 6] !--------------------------------------------------------------- if(qrs(i,k).le.qcrmin)then rslope(i,k) = rslopegmax rslopeb(i,k) = rslopegbmax rslope2(i,k) = rslopeg2max rslope3(i,k) = rslopeg3max else rslope(i,k) = 1./lamdag(qrs(i,k),den(i,k)) rslopeb(i,k) = rslope(i,k)**bvtg rslope2(i,k) = rslope(i,k)*rslope(i,k) rslope3(i,k) = rslope2(i,k)*rslope(i,k) endif vt(i,k) = pvtg*rslopeb(i,k)*denfac(i,k) if(qrs(i,k).le.0.0) vt(i,k) = 0.0 enddo enddo END subroutine slope_graup !--------------------------------------------------------------------------------- !------------------------------------------------------------------- SUBROUTINE nislfv_rain_plmr(im,km,denl,denfacl,tkl,dzl,wwl,rql,rnl,precip,dt,id,iter,rid) !------------------------------------------------------------------- ! ! for non-iteration semi-Lagrangain forward advection for cloud ! with mass conservation and positive definite advection ! 2nd order interpolation with monotonic piecewise linear method ! this routine is under assumption of decfl < 1 for semi_Lagrangian ! ! dzl depth of model layer in meter ! wwl terminal velocity at model layer m/s ! rql cloud density*mixing ration ! precip precipitation ! dt time step ! id kind of precip: 0 test case; 1 raindrop ! iter how many time to guess mean terminal velocity: 0 pure forward. ! 0 : use departure wind for advection ! 1 : use mean wind for advection ! > 1 : use mean wind after iter-1 iterations ! rid : 1 for number 0 for mixing ratio ! ! author: hann-ming henry juang ! implemented by song-you hong ! implicit none integer im,km,id real dt real dzl(im,km),wwl(im,km),rql(im,km),rnl(im,km),precip(im) real denl(im,km),denfacl(im,km),tkl(im,km) ! integer i,k,n,m,kk,kb,kt,iter,rid real tl,tl2,qql,dql,qqd real th,th2,qqh,dqh real zsum,qsum,dim,dip,c1,con1,fa1,fa2 real allold, allnew, zz, dzamin, cflmax, decfl real dz(km), ww(km), qq(km), nr(km), wd(km), wa(km), wa2(km), was(km) real den(km), denfac(km), tk(km) real wi(km+1), zi(km+1), za(km+1) real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) ! precip(:) = 0.0 ! i_loop : do i=1,im ! ----------------------------------- dz(:) = dzl(i,:) qq(:) = rql(i,:) nr(:) = rnl(i,:) if(rid .eq. 1) nr(:) = rnl(i,:)/denl(i,:) ww(:) = wwl(i,:) den(:) = denl(i,:) denfac(:) = denfacl(i,:) tk(:) = tkl(i,:) ! skip for no precipitation for all layers allold = 0.0 do k=1,km allold = allold + qq(k) enddo if(allold.le.0.0) then cycle i_loop endif ! ! compute interface values zi(1)=0.0 do k=1,km zi(k+1) = zi(k)+dz(k) enddo ! ! save departure wind wd(:) = ww(:) n=1 100 continue ! plm is 2nd order, we can use 2nd order wi or 3rd order wi ! 2nd order interpolation to get wi wi(1) = ww(1) wi(km+1) = ww(km) do k=2,km wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) enddo ! 3rd order interpolation to get wi fa1 = 9./16. fa2 = 1./16. wi(1) = ww(1) wi(2) = 0.5*(ww(2)+ww(1)) do k=3,km-1 wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) enddo wi(km) = 0.5*(ww(km)+ww(km-1)) wi(km+1) = ww(km) ! ! terminate of top of raingroup do k=2,km if( ww(k).eq.0.0 ) wi(k)=ww(k-1) enddo ! ! diffusivity of wi con1 = 0.05 do k=km,1,-1 decfl = (wi(k+1)-wi(k))*dt/dz(k) if( decfl .gt. con1 ) then wi(k) = wi(k+1) - con1*dz(k)/dt endif enddo ! compute arrival point do k=1,km+1 za(k) = zi(k) - wi(k)*dt enddo ! do k=1,km dza(k) = za(k+1)-za(k) enddo dza(km+1) = zi(km+1) - za(km+1) ! ! computer deformation at arrival point do k=1,km qa(k) = qq(k)*dz(k)/dza(k) qr(k) = qa(k)/den(k) if(rid .eq. 1) qr(k) = qa(K) enddo qa(km+1) = 0.0 ! call maxmin(km,1,qa,' arrival points ') ! ! compute arrival terminal velocity, and estimate mean terminal velocity ! then back to use mean terminal velocity if( n.le.iter ) then if(rid.eq.1) then call slope_rain(nr,qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) else call slope_rain(qr,nr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) endif if(rid.eq.1) wa(:) = wa2(:) if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) do k=1,km !#ifdef DEBUG ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) !#endif ! mean wind is average of departure and new arrival winds ww(k) = 0.5* ( wd(k)+wa(k) ) enddo was(:) = wa(:) n=n+1 go to 100 endif ! ! estimate values at arrival cell interface with monotone do k=2,km dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) if( dip*dim.le.0.0 ) then qmi(k)=qa(k) qpi(k)=qa(k) else qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) qmi(k)=2.0*qa(k)-qpi(k) if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then qpi(k) = qa(k) qmi(k) = qa(k) endif endif enddo qpi(1)=qa(1) qmi(1)=qa(1) qmi(km+1)=qa(km+1) qpi(km+1)=qa(km+1) ! ! interpolation to regular point qn = 0.0 kb=1 kt=1 intp : do k=1,km kb=max(kb-1,1) kt=max(kt-1,1) ! find kb and kt if( zi(k).ge.za(km+1) ) then exit intp else find_kb : do kk=kb,km if( zi(k).le.za(kk+1) ) then kb = kk exit find_kb else cycle find_kb endif enddo find_kb find_kt : do kk=kt,km if( zi(k+1).le.za(kk) ) then kt = kk exit find_kt else cycle find_kt endif enddo find_kt kt = kt - 1 ! compute q with piecewise constant method if( kt.eq.kb ) then tl=(zi(k)-za(kb))/dza(kb) th=(zi(k+1)-za(kb))/dza(kb) tl2=tl*tl th2=th*th qqd=0.5*(qpi(kb)-qmi(kb)) qqh=qqd*th2+qmi(kb)*th qql=qqd*tl2+qmi(kb)*tl qn(k) = (qqh-qql)/(th-tl) else if( kt.gt.kb ) then tl=(zi(k)-za(kb))/dza(kb) tl2=tl*tl qqd=0.5*(qpi(kb)-qmi(kb)) qql=qqd*tl2+qmi(kb)*tl dql = qa(kb)-qql zsum = (1.-tl)*dza(kb) qsum = dql*dza(kb) if( kt-kb.gt.1 ) then do m=kb+1,kt-1 zsum = zsum + dza(m) qsum = qsum + qa(m) * dza(m) enddo endif th=(zi(k+1)-za(kt))/dza(kt) th2=th*th qqd=0.5*(qpi(kt)-qmi(kt)) dqh=qqd*th2+qmi(kt)*th zsum = zsum + th*dza(kt) qsum = qsum + dqh*dza(kt) qn(k) = qsum/zsum endif cycle intp endif ! enddo intp ! ! rain out sum_precip: do k=1,km if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then precip(i) = precip(i) + qa(k)*dza(k) cycle sum_precip else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then precip(i) = precip(i) + qa(k)*(0.0-za(k)) exit sum_precip endif exit sum_precip enddo sum_precip ! ! replace the new values rql(i,:) = qn(:) ! ! ---------------------------------- enddo i_loop ! END SUBROUTINE nislfv_rain_plmr !------------------------------------------------------------------- SUBROUTINE nislfv_rain_plm6(im,km,denl,denfacl,tkl,dzl,wwl,rql,rql2, precip1, precip2,dt,id,iter) !------------------------------------------------------------------- ! ! for non-iteration semi-Lagrangain forward advection for cloud ! with mass conservation and positive definite advection ! 2nd order interpolation with monotonic piecewise linear method ! this routine is under assumption of decfl < 1 for semi_Lagrangian ! ! dzl depth of model layer in meter ! wwl terminal velocity at model layer m/s ! rql cloud density*mixing ration ! precip precipitation ! dt time step ! id kind of precip: 0 test case; 1 raindrop ! iter how many time to guess mean terminal velocity: 0 pure forward. ! 0 : use departure wind for advection ! 1 : use mean wind for advection ! > 1 : use mean wind after iter-1 iterations ! ! author: hann-ming henry juang ! implemented by song-you hong ! implicit none integer im,km,id real dt real dzl(im,km),wwl(im,km),rql(im,km),rql2(im,km),precip(im),precip1(im),precip2(im) real denl(im,km),denfacl(im,km),tkl(im,km) ! integer i,k,n,m,kk,kb,kt,iter,ist real tl,tl2,qql,dql,qqd real th,th2,qqh,dqh real zsum,qsum,dim,dip,c1,con1,fa1,fa2 real allold, allnew, zz, dzamin, cflmax, decfl real dz(km), ww(km), qq(km), qq2(km), wd(km), wa(km), wa2(km), was(km) real den(km), denfac(km), tk(km) real wi(km+1), zi(km+1), za(km+1) real qn(km), qr(km),qr2(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) real dza(km+1), qa(km+1), qa2(km+1),qmi(km+1), qpi(km+1) ! precip(:) = 0.0 precip1(:) = 0.0 precip2(:) = 0.0 ! i_loop : do i=1,im ! ----------------------------------- dz(:) = dzl(i,:) qq(:) = rql(i,:) qq2(:) = rql2(i,:) ww(:) = wwl(i,:) den(:) = denl(i,:) denfac(:) = denfacl(i,:) tk(:) = tkl(i,:) ! skip for no precipitation for all layers allold = 0.0 do k=1,km allold = allold + qq(k) enddo if(allold.le.0.0) then cycle i_loop endif ! ! compute interface values zi(1)=0.0 do k=1,km zi(k+1) = zi(k)+dz(k) enddo ! ! save departure wind wd(:) = ww(:) n=1 100 continue ! plm is 2nd order, we can use 2nd order wi or 3rd order wi ! 2nd order interpolation to get wi wi(1) = ww(1) wi(km+1) = ww(km) do k=2,km wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) enddo ! 3rd order interpolation to get wi fa1 = 9./16. fa2 = 1./16. wi(1) = ww(1) wi(2) = 0.5*(ww(2)+ww(1)) do k=3,km-1 wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) enddo wi(km) = 0.5*(ww(km)+ww(km-1)) wi(km+1) = ww(km) ! ! terminate of top of raingroup do k=2,km if( ww(k).eq.0.0 ) wi(k)=ww(k-1) enddo ! ! diffusivity of wi con1 = 0.05 do k=km,1,-1 decfl = (wi(k+1)-wi(k))*dt/dz(k) if( decfl .gt. con1 ) then wi(k) = wi(k+1) - con1*dz(k)/dt endif enddo ! compute arrival point do k=1,km+1 za(k) = zi(k) - wi(k)*dt enddo ! do k=1,km dza(k) = za(k+1)-za(k) enddo dza(km+1) = zi(km+1) - za(km+1) ! ! computer deformation at arrival point do k=1,km qa(k) = qq(k)*dz(k)/dza(k) qa2(k) = qq2(k)*dz(k)/dza(k) qr(k) = qa(k)/den(k) qr2(k) = qa2(k)/den(k) enddo qa(km+1) = 0.0 qa2(km+1) = 0.0 ! call maxmin(km,1,qa,' arrival points ') ! ! compute arrival terminal velocity, and estimate mean terminal velocity ! then back to use mean terminal velocity if( n.le.iter ) then call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) call slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1,km) do k = 1, km tmp(k) = max((qr(k)+qr2(k)), 1.E-15) IF ( tmp(k) .gt. 1.e-15 ) THEN wa(k) = (wa(k)*qr(k) + wa2(k)*qr2(k))/tmp(k) ELSE wa(k) = 0. ENDIF enddo if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) do k=1,km !#ifdef DEBUG ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k), & ! ww(k),wa(k) !#endif ! mean wind is average of departure and new arrival winds ww(k) = 0.5* ( wd(k)+wa(k) ) enddo was(:) = wa(:) n=n+1 go to 100 endif ist_loop : do ist = 1, 2 if (ist.eq.2) then qa(:) = qa2(:) endif ! precip(i) = 0. ! ! estimate values at arrival cell interface with monotone do k=2,km dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) if( dip*dim.le.0.0 ) then qmi(k)=qa(k) qpi(k)=qa(k) else qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) qmi(k)=2.0*qa(k)-qpi(k) if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then qpi(k) = qa(k) qmi(k) = qa(k) endif endif enddo qpi(1)=qa(1) qmi(1)=qa(1) qmi(km+1)=qa(km+1) qpi(km+1)=qa(km+1) ! ! interpolation to regular point qn = 0.0 kb=1 kt=1 intp : do k=1,km kb=max(kb-1,1) kt=max(kt-1,1) ! find kb and kt if( zi(k).ge.za(km+1) ) then exit intp else find_kb : do kk=kb,km if( zi(k).le.za(kk+1) ) then kb = kk exit find_kb else cycle find_kb endif enddo find_kb find_kt : do kk=kt,km if( zi(k+1).le.za(kk) ) then kt = kk exit find_kt else cycle find_kt endif enddo find_kt kt = kt - 1 ! compute q with piecewise constant method if( kt.eq.kb ) then tl=(zi(k)-za(kb))/dza(kb) th=(zi(k+1)-za(kb))/dza(kb) tl2=tl*tl th2=th*th qqd=0.5*(qpi(kb)-qmi(kb)) qqh=qqd*th2+qmi(kb)*th qql=qqd*tl2+qmi(kb)*tl qn(k) = (qqh-qql)/(th-tl) else if( kt.gt.kb ) then tl=(zi(k)-za(kb))/dza(kb) tl2=tl*tl qqd=0.5*(qpi(kb)-qmi(kb)) qql=qqd*tl2+qmi(kb)*tl dql = qa(kb)-qql zsum = (1.-tl)*dza(kb) qsum = dql*dza(kb) if( kt-kb.gt.1 ) then do m=kb+1,kt-1 zsum = zsum + dza(m) qsum = qsum + qa(m) * dza(m) enddo endif th=(zi(k+1)-za(kt))/dza(kt) th2=th*th qqd=0.5*(qpi(kt)-qmi(kt)) dqh=qqd*th2+qmi(kt)*th zsum = zsum + th*dza(kt) qsum = qsum + dqh*dza(kt) qn(k) = qsum/zsum endif cycle intp endif ! enddo intp ! ! rain out sum_precip: do k=1,km if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then precip(i) = precip(i) + qa(k)*dza(k) cycle sum_precip else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then precip(i) = precip(i) + qa(k)*(0.0-za(k)) exit sum_precip endif exit sum_precip enddo sum_precip ! ! replace the new values if(ist.eq.1) then rql(i,:) = qn(:) precip1(i) = precip(i) else rql2(i,:) = qn(:) precip2(i) = precip(i) endif enddo ist_loop ! ! ---------------------------------- enddo i_loop ! END SUBROUTINE nislfv_rain_plm6 END MODULE module_mp_wdm6