!WRF:MODEL_LAYER:PHYSICS ! MODULE module_cu_kf USE module_wrf_error REAL , PARAMETER :: RAD = 1500. CONTAINS !------------------------------------------------------------- SUBROUTINE KFCPS( & ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ,DT,KTAU,DX,CUDT,CURR_SECS,ADAPT_STEP_FLAG & ,rho & ,RAINCV,PRATEC,NCA & ,U,V,TH,T,W,QV,dz8w,Pcps,pi & ,W0AVG,XLV0,XLV1,XLS0,XLS1,CP,R,G,EP1 & ,EP2,SVP1,SVP2,SVP3,SVPT0 & ,STEPCU,CU_ACT_FLAG,warm_rain & ! optional arguments ,F_QV ,F_QC ,F_QR ,F_QI ,F_QS & ,RQVCUTEN,RQCCUTEN,RQRCUTEN,RQICUTEN,RQSCUTEN & ,RTHCUTEN & ) !------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------- INTEGER, INTENT(IN ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte INTEGER, INTENT(IN ) :: STEPCU LOGICAL, INTENT(IN ) :: warm_rain REAL, INTENT(IN ) :: XLV0,XLV1,XLS0,XLS1 REAL, INTENT(IN ) :: CP,R,G,EP1,EP2 REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0 INTEGER, INTENT(IN ) :: KTAU REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , & INTENT(IN ) :: & U, & V, & W, & TH, & QV, & T, & dz8w, & Pcps, & rho, & pi ! REAL, INTENT(IN ) :: DT, DX REAL, INTENT(IN ) :: CUDT REAL, INTENT(IN ) :: CURR_SECS LOGICAL,INTENT(IN ) :: ADAPT_STEP_FLAG REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: & RAINCV & ,PRATEC & , NCA REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & W0AVG LOGICAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: CU_ACT_FLAG ! ! Optional arguments ! REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & OPTIONAL, & INTENT(INOUT) :: & RTHCUTEN & ,RQVCUTEN & ,RQCCUTEN & ,RQRCUTEN & ,RQICUTEN & ,RQSCUTEN ! ! Flags relating to the optional tendency arrays declared above ! Models that carry the optional tendencies will provdide the ! optional arguments at compile time; these flags all the model ! to determine at run-time whether a particular tracer is in ! use or not. ! LOGICAL, OPTIONAL :: & F_QV & ,F_QC & ,F_QR & ,F_QI & ,F_QS ! LOCAL VARS REAL, DIMENSION( kts:kte ) :: & U1D, & V1D, & T1D, & DZ1D, & QV1D, & P1D, & RHO1D, & W0AVG1D REAL, DIMENSION( kts:kte ):: & DQDT, & DQIDT, & DQCDT, & DQRDT, & DQSDT, & DTDT REAL :: TST,tv,PRS,RHOE,W0,SCR1,DXSQ,tmp INTEGER :: i,j,k,NTST,ICLDCK LOGICAL :: qi_flag , qs_flag ! adjustable time step changes REAL :: lastdt = -1.0 REAL :: W0AVGfctr, W0fctr, W0den LOGICAL :: run_param !---------------------------------------------------------------------- !--- CALL CUMULUS PARAMETERIZATION ! !...TST IS THE NUMBER OF TIME STEPS IN 10 MINUTES...W0AVG IS CLOSE TO A !...RUNNING MEAN VERTICAL VELOCITY...NOTE THAT IF YOU CHANGE TST, IT WIL !...CHANGE THE FREQUENCY OF THE CONVECTIVE INTITIATION CHECK (SEE BELOW) !...NOTE THAT THE ORDERING OF VERTICAL LAYERS MUST BE REVERSED FOR W0AVG !...BECAUSE THE ORDERING IS REVERSED IN KFPARA... ! DXSQ=DX*DX qi_flag = .FALSE. qs_flag = .FALSE. IF ( PRESENT( F_QI ) ) qi_flag = f_qi IF ( PRESENT( F_QS ) ) qs_flag = f_qs !---------------------- NTST=STEPCU TST=float(NTST*2) !---------------------- ! NTST=NINT(1200./(DT*2.)) ! TST=float(NTST) ! NTST=NINT(0.5*TST) ! NTST=MAX0(NTST,1) !---------------------- ! ICLDCK=MOD(KTAU,NTST) !---------------------- ! write(0,*) 'DT = ',DT,' KTAU = ',KTAU,' DX = ',DX ! write(0,*) 'CUDT = ',CUDT,' CURR_SECS = ',CURR_SECS ! write(0,*) 'ADAPT_STEP_FLAG = ',ADAPT_STEP_FLAG,' IDS = ',IDS ! write(0,*) 'STEPCU = ',STEPCU,' warm_rain = ',warm_rain ! write(0,*) 'F_QV = ',F_QV,' F_QC = ',F_QV ! write(0,*) 'F_QI = ',F_QI,' F_QS = ',F_QS ! write(0,*) 'F_QR = ',F_QR ! stop if (lastdt < 0) then lastdt = dt endif if (ADAPT_STEP_FLAG) then W0AVGfctr = 2 * MAX(CUDT*60,dt) - dt W0fctr = dt W0den = 2 * MAX(CUDT*60,dt) else W0AVGfctr = (TST-1.) W0fctr = 1. W0den = TST endif DO J = jts,jte DO K=kts,kte DO I= its,ite ! SCR1=-5.0E-4*G*rho(I,K,J)*(w(I,K,J)+w(I,K+1,J)) ! TV=T(I,K,J)*(1.+EP1*QV(I,K,J)) ! RHOE=Pcps(I,K,J)/(R*TV) ! W0=-101.9368*SCR1/RHOE W0=0.5*(w(I,K,J)+w(I,K+1,J)) ! Old: ! ! W0AVG(I,K,J)=(W0AVG(I,K,J)*(TST-1.)+W0)/TST ! New, to support adaptive time step: ! W0AVG(I,K,J) = ( W0AVG(I,K,J) * W0AVGfctr + W0 * W0fctr ) / W0den ENDDO ENDDO ENDDO lastdt = dt ! !...CHECK FOR CONVECTIVE INITIATION EVERY 5 MINUTES (OR NTST/2)... ! ! ! Modified for adaptive time step ! if (ADAPT_STEP_FLAG) then if ( (KTAU .eq. 1) .or. (cudt .eq. 0) .or. & ( CURR_SECS + dt >= & ( int( CURR_SECS / ( cudt * 60 ) ) + 1 ) * cudt * 60 ) ) then run_param = .TRUE. else run_param = .FALSE. endif else if (MOD(KTAU,NTST) .EQ. 0 .or. KTAU .eq. 1) then run_param = .TRUE. else run_param = .FALSE. endif endif IF (run_param) then DO J = jts,jte DO I= its,ite CU_ACT_FLAG(i,j) = .true. ENDDO ENDDO DO J = jts,jte DO I=its,ite ! if (i.eq. 110 .and. j .eq. 59 ) then ! write(0,*) 'nca = ',nca(i,j),' CU_ACT_FLAG = ',CU_ACT_FLAG(i,j) ! write(0,*) 'dt = ',dt,' ADAPT_STEP_FLAG = ',ADAPT_STEP_FLAG ! endif ! IF ( NINT(NCA(I,J)) .gt. 0 ) then IF ( NCA(I,J) .gt. 0.5*DT ) then CU_ACT_FLAG(i,j) = .false. ELSE DO k=kts,kte DQDT(k)=0. DQIDT(k)=0. DQCDT(k)=0. DQRDT(k)=0. DQSDT(k)=0. DTDT(k)=0. ENDDO RAINCV(I,J)=0. PRATEC(I,J)=0. ! ! assign vars from 3D to 1D DO K=kts,kte U1D(K) =U(I,K,J) V1D(K) =V(I,K,J) T1D(K) =T(I,K,J) RHO1D(K) =rho(I,K,J) QV1D(K)=QV(I,K,J) P1D(K) =Pcps(I,K,J) W0AVG1D(K) =W0AVG(I,K,J) DZ1D(k)=dz8w(I,K,J) ENDDO ! CALL KFPARA(I, J, & U1D,V1D,T1D,QV1D,P1D,DZ1D, & W0AVG1D,DT,DX,DXSQ,RHO1D, & XLV0,XLV1,XLS0,XLS1,CP,R,G, & EP2,SVP1,SVP2,SVP3,SVPT0, & DQDT,DQIDT,DQCDT,DQRDT,DQSDT,DTDT, & RAINCV,PRATEC,NCA, & warm_rain,qi_flag,qs_flag, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IF ( PRESENT( RTHCUTEN ) .AND. PRESENT( RQVCUTEN ) ) THEN DO K=kts,kte RTHCUTEN(I,K,J)=DTDT(K)/pi(I,K,J) RQVCUTEN(I,K,J)=DQDT(K) ENDDO ENDIF IF( PRESENT(RQRCUTEN) .AND. PRESENT(RQCCUTEN) .AND. & PRESENT(F_QR) ) THEN IF ( F_QR ) THEN DO K=kts,kte RQRCUTEN(I,K,J)=DQRDT(K) RQCCUTEN(I,K,J)=DQCDT(K) ENDDO ELSE ! This is the case for Eta microphysics without 3d rain field DO K=kts,kte RQRCUTEN(I,K,J)=0. RQCCUTEN(I,K,J)=DQRDT(K)+DQCDT(K) ENDDO ENDIF ENDIF !...... QSTEN STORES GRAUPEL TENDENCY IF IT EXISTS, OTHERISE SNOW (V2) IF( PRESENT( RQICUTEN ) .AND. qi_flag )THEN DO K=kts,kte RQICUTEN(I,K,J)=DQIDT(K) ENDDO ENDIF IF( PRESENT ( RQSCUTEN ) .AND. qs_flag )THEN DO K=kts,kte RQSCUTEN(I,K,J)=DQSDT(K) ENDDO ENDIF ! ENDIF ENDDO ENDDO ENDIF END SUBROUTINE KFCPS !----------------------------------------------------------- SUBROUTINE KFPARA (I, J, & U0,V0,T0,QV0,P0,DZQ,W0AVG1D, & DT,DX,DXSQ,rho, & XLV0,XLV1,XLS0,XLS1,CP,R,G, & EP2,SVP1,SVP2,SVP3,SVPT0, & DQDT,DQIDT,DQCDT,DQRDT,DQSDT,DTDT, & RAINCV,PRATEC,NCA, & warm_rain,qi_flag,qs_flag, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & I,J LOGICAL, INTENT(IN ) :: warm_rain LOGICAL :: qi_flag, qs_flag ! REAL, DIMENSION( kts:kte ), & INTENT(IN ) :: U0, & V0, & T0, & QV0, & P0, & rho, & DZQ, & W0AVG1D ! REAL, INTENT(IN ) :: DT,DX,DXSQ ! REAL, INTENT(IN ) :: XLV0,XLV1,XLS0,XLS1,CP,R,G REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 ! REAL, DIMENSION( kts:kte ), INTENT(INOUT) :: & DQDT, & DQIDT, & DQCDT, & DQRDT, & DQSDT, & DTDT REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: RAINCV, & PRATEC, & NCA ! !...DEFINE LOCAL VARIABLES... ! REAL, DIMENSION( kts:kte ) :: & Q0,Z0,TV0,TU,TVU,QU,TZ,TVD, & QD,QES,THTES,TG,TVG,QG,WU,WD,W0,EMS,EMSD, & UMF,UER,UDR,DMF,DER,DDR,UMF2,UER2, & UDR2,DMF2,DER2,DDR2,DZA,THTA0,THETEE, & THTAU,THETEU,THTAD,THETED,QLIQ,QICE, & QLQOUT,QICOUT,PPTLIQ,PPTICE,DETLQ,DETIC, & DETLQ2,DETIC2,RATIO,RATIO2 REAL, DIMENSION( kts:kte ) :: & DOMGDP,EXN,RHOE,TVQU,DP,RH,EQFRC,WSPD, & QDT,FXM,THTAG,THTESG,THPA,THFXTOP, & THFXBOT,QPA,QFXTOP,QFXBOT,QLPA,QLFXIN, & QLFXOUT,QIPA,QIFXIN,QIFXOUT,QRPA, & QRFXIN,QRFXOUT,QSPA,QSFXIN,QSFXOUT, & QL0,QLG,QI0,QIG,QR0,QRG,QS0,QSG REAL, DIMENSION( kts:kte+1 ) :: OMG REAL, DIMENSION( kts:kte ) :: RAINFB,SNOWFB ! LOCAL VARS REAL :: P00,T00,CV,B61,RLF,RHIC,RHBC,PIE, & TTFRZ,TBFRZ,C5,RATE REAL :: GDRY,ROCP,ALIQ,BLIQ, & CLIQ,DLIQ,AICE,BICE,CICE,DICE REAL :: FBFRC,P300,DPTHMX,THMIX,QMIX,ZMIX,PMIX, & ROCPQ,TMIX,EMIX,TLOG,TDPT,TLCL,TVLCL, & CPORQ,PLCL,ES,DLP,TENV,QENV,TVEN,TVBAR, & ZLCL,WKL,WABS,TRPPT,WSIGNE,DTLCL,GDT,WLCL,& TVAVG,QESE,WTW,RHOLCL,AU0,VMFLCL,UPOLD, & UPNEW,ABE,WKLCL,THTUDL,TUDL,TTEMP,FRC1, & QNEWIC,RL,R1,QNWFRZ,EFFQ,BE,BOTERM,ENTERM,& DZZ,WSQ,UDLBE,REI,EE2,UD2,TTMP,F1,F2, & THTTMP,QTMP,TMPLIQ,TMPICE,TU95,TU10,EE1, & UD1,CLDHGT,DPTT,QNEWLQ,DUMFDP,EE,TSAT, & THTA,P150,USR,VCONV,TIMEC,SHSIGN,VWS,PEF, & CBH,RCBH,PEFCBH,PEFF,PEFF2,TDER,THTMIN, & DTMLTD,QS,TADVEC,DPDD,FRC,DPT,RDD,A1, & DSSDT,DTMP,T1RH,QSRH,PPTFLX,CPR,CNDTNF, & UPDINC,AINCM2,DEVDMF,PPR,RCED,DPPTDF, & DMFLFS,DMFLFS2,RCED2,DDINC,AINCMX,AINCM1, & AINC,TDER2,PPTFL2,FABE,STAB,DTT,DTT1, & DTIME,TMA,TMB,TMM,BCOEFF,ACOEFF,QVDIFF, & TOPOMG,CPM,DQ,ABEG,DABE,DFDA,FRC2,DR, & UDFRC,TUC,QGS,RH0,RHG,QINIT,QFNL,ERR2, & RELERR,RLC,RLS,RNC,FABEOLD,AINCOLD,UEFRC, & DDFRC,TDC,DEFRC INTEGER :: KX,K,KL ! INTEGER :: ISTOP,ML,L5,L4,KMIX,LOW, & LC,MXLAYR,LLFC,NLAYRS,NK, & KPBL,KLCL,LCL,LET,IFLAG, & KFRZ,NK1,LTOP,NJ,LTOP1, & LTOPM1,LVF,KSTART,KMIN,LFS, & ND,NIC,LDB,LDT,ND1,NDK, & NM,LMAX,NCOUNT,NOITR, & NSTEP,NTC ! DATA P00,T00/1.E5,273.16/ DATA CV,B61,RLF/717.,0.608,3.339E5/ DATA RHIC,RHBC/1.,0.90/ DATA PIE,TTFRZ,TBFRZ,C5/3.141592654,268.16,248.16,1.0723E-3/ DATA RATE/0.01/ !----------------------------------------------------------- GDRY=-G/CP ROCP=R/CP KL=kte KX=kte ! ! ALIQ = 613.3 ! BLIQ = 17.502 ! CLIQ = 4780.8 ! DLIQ = 32.19 ALIQ = SVP1*1000. BLIQ = SVP2 CLIQ = SVP2*SVPT0 DLIQ = SVP3 AICE = 613.2 BICE = 22.452 CICE = 6133.0 DICE = 0.61 ! !...OPTION TO FEED CONVECTIVELY GENERATED RAINWATER !...INTO GRID-RESOLVED RAINWATER (OR SNOW/GRAUPEL) !...FIELD. 'FBFRC' IS THE FRACTION OF AVAILABLE !...PRECIPITATION TO BE FED BACK (0.0 - 1.0)... ! FBFRC=0.0 ! !...SCHEME IS CALLED ONCE ON EACH NORTH-SOUTH SLICE, THE LOOP BELOW !...CHECKS FOR THE POSSIBILITY OF INITIATING PARAMETERIZED !...CONVECTION AT EACH POINT WITHIN THE SLICE ! !...SEE IF IT IS NECESSARY TO CHECK FOR CONVECTIVE TRIGGERING AT THIS !...GRID POINT. IF NCA>0, CONVECTION IS ALREADY ACTIVE AT THIS POINT, !...JUST FEED BACK THE TENDENCIES SAVED FROM THE TIME WHEN CONVECTION !...WAS INITIATED. IF NCA<0, CONVECTION IS NOT ACTIVE !...AND YOU MAY WANT TO CHECK TO SEE IF IT CAN BE ACTIVATED FOR THE !...CURRENT CONDITIONS. IN PREVIOUS APLICATIONS OF THIS SCHEME, !...THE VARIABLE ICLDCK WAS USED BELOW TO SAVE TIME BY ONLY CHECKING !...FOR THE POSSIBILITY OF CONVECTIVE INITIATION EVERY 5 OR 10 !...MINUTES... ! ! 10 CONTINUE !SUE P300=1000.*(PSB(I,J)*A(KL)+PTOP-30.)+PP3D(I,J,KL) P300=P0(1)-30000. ! !...PRESSURE PERTURBATION TERM IS ONLY DEFINED AT MID-POINT OF !...VERTICAL LAYERS...SINCE TOTAL PRESSURE IS NEEDED AT THE TOP AND !...BOTTOM OF LAYERS BELOW, DO AN INTERPOLATION... ! !...INPUT A VERTICAL SOUNDING ... NOTE THAT MODEL LAYERS ARE NUMBERED !...FROM BOTTOM-UP IN THE KF SCHEME... ! ML=0 !SUE tmprpsb=1./PSB(I,J) !SUE CELL=PTOP*tmprpsb DO 15 K=1,KX !SUE P0(K)=1.E3*(A(NK)*PSB(I,J)+PTOP)+PP3D(I,J,NK) ! !...IF Q0 IS ABOVE SATURATION VALUE, REDUCE IT TO SATURATION LEVEL... ! ES=ALIQ*EXP((BLIQ*T0(K)-CLIQ)/(T0(K)-DLIQ)) QES(K)=EP2*ES/(P0(K)-ES) Q0(K)=AMIN1(QES(K),QV0(K)) Q0(K)=AMAX1(0.000001,Q0(K)) QL0(K)=0. QI0(K)=0. QR0(K)=0. QS0(K)=0. TV0(K)=T0(K)*(1.+B61*Q0(K)) RHOE(K)=P0(K)/(R*TV0(K)) DP(K)=rho(k)*g*DZQ(k) ! !...DZQ IS DZ BETWEEN SIGMA SURFACES, DZA IS DZ BETWEEN MODEL HALF LEVEL ! DP IS THE PRESSURE INTERVAL BETWEEN FULL SIGMA LEVELS... ! IF(P0(K).GE.500E2)L5=K IF(P0(K).GE.400E2)L4=K IF(P0(K).GE.P300)LLFC=K IF(T0(K).GT.T00)ML=K 15 CONTINUE Z0(1)=.5*DZQ(1) DO 20 K=2,KL Z0(K)=Z0(K-1)+.5*(DZQ(K)+DZQ(K-1)) DZA(K-1)=Z0(K)-Z0(K-1) 20 CONTINUE DZA(KL)=0. KMIX=1 25 LOW=KMIX IF(LOW.GT.LLFC)GOTO 325 LC=LOW MXLAYR=0 ! !...ASSUME THAT IN ORDER TO SUPPORT A DEEP UPDRAFT YOU NEED A LAYER OF !...UNSTABLE AIR 50 TO 100 mb DEEP...TO APPROXIMATE THIS, ISOLATE A !...GROUP OF ADJACENT INDIVIDUAL MODEL LAYERS, WITH THE BASE AT LEVEL !...LC, SUCH THAT THE COMBINED DEPTH OF THESE LAYERS IS AT LEAST 60 mb.. ! NLAYRS=0 DPTHMX=0. DO 63 NK=LC,KX DPTHMX=DPTHMX+DP(NK) NLAYRS=NLAYRS+1 63 IF(DPTHMX.GT.6.E3)GOTO 64 GOTO 325 64 KPBL=LC+NLAYRS-1 KMIX=LC+1 18 THMIX=0. QMIX=0. ZMIX=0. PMIX=0. DPTHMX=0. ! !...FIND THE THERMODYNAMIC CHARACTERISTICS OF THE LAYER BY !...MASS-WEIGHTING THE CHARACTERISTICS OF THE INDIVIDUAL MODEL !...LAYERS... ! DO 17 NK=LC,KPBL DPTHMX=DPTHMX+DP(NK) ROCPQ=0.2854*(1.-0.28*Q0(NK)) THMIX=THMIX+DP(NK)*T0(NK)*(P00/P0(NK))**ROCPQ QMIX=QMIX+DP(NK)*Q0(NK) ZMIX=ZMIX+DP(NK)*Z0(NK) 17 PMIX=PMIX+DP(NK)*P0(NK) THMIX=THMIX/DPTHMX QMIX=QMIX/DPTHMX ZMIX=ZMIX/DPTHMX PMIX=PMIX/DPTHMX ROCPQ=0.2854*(1.-0.28*QMIX) TMIX=THMIX*(PMIX/P00)**ROCPQ EMIX=QMIX*PMIX/(EP2+QMIX) ! !...FIND THE TEMPERATURE OF THE MIXTURE AT ITS LCL, PRESSURE !...LEVEL OF LCL... ! TLOG=ALOG(EMIX/ALIQ) TDPT=(CLIQ-DLIQ*TLOG)/(BLIQ-TLOG) TLCL=TDPT-(.212+1.571E-3*(TDPT-T00)-4.36E-4*(TMIX-T00))*(TMIX- & TDPT) TLCL=AMIN1(TLCL,TMIX) TVLCL=TLCL*(1.+0.608*QMIX) CPORQ=1./ROCPQ PLCL=P00*(TLCL/THMIX)**CPORQ DO 29 NK=LC,KL KLCL=NK IF(PLCL.GE.P0(NK))GOTO 35 29 CONTINUE GOTO 325 35 K=KLCL-1 DLP=ALOG(PLCL/P0(K))/ALOG(P0(KLCL)/P0(K)) ! !...ESTIMATE ENVIRONMENTAL TEMPERATURE AND MIXING RATIO AT THE LCL... ! TENV=T0(K)+(T0(KLCL)-T0(K))*DLP QENV=Q0(K)+(Q0(KLCL)-Q0(K))*DLP TVEN=TENV*(1.+0.608*QENV) TVBAR=0.5*(TV0(K)+TVEN) ! ZLCL=Z0(K)+R*TVBAR*ALOG(P0(K)/PLCL)/G ZLCL=Z0(K)+(Z0(KLCL)-Z0(K))*DLP ! !...CHECK TO SEE IF CLOUD IS BUOYANT USING FRITSCH-CHAPPELL TRIGGER !...FUNCTION DESCRIBED IN KAIN AND FRITSCH (1992)...W0AVG IS AN !...APROXIMATE VALUE FOR THE RUNNING-MEAN GRID-SCALE VERTICAL !...VELOCITY, WHICH GIVES SMOOTHER FIELDS OF CONVECTIVE INITIATION !...THAN THE INSTANTANEOUS VALUE...FORMULA RELATING TEMPERATURE !...PERTURBATION TO VERTICAL VELOCITY HAS BEEN USED WITH THE MOST !...SUCCESS AT GRID LENGTHS NEAR 25 km. FOR DIFFERENT GRID-LENGTHS, !...ADJUST VERTICAL VELOCITY TO EQUIVALENT VALUE FOR 25 KM GRID !...LENGTH, ASSUMING LINEAR DEPENDENCE OF W ON GRID LENGTH... ! WKLCL=0.02*ZLCL/2.5E3 WKL=(W0AVG1D(K)+(W0AVG1D(KLCL)-W0AVG1D(K))*DLP)*DX/25.E3- & WKLCL WABS=ABS(WKL)+1.E-10 WSIGNE=WKL/WABS DTLCL=4.64*WSIGNE*WABS**0.33 GDT=G*DTLCL*(ZLCL-Z0(LC))/(TV0(LC)+TVEN) WLCL=1.+.5*WSIGNE*SQRT(ABS(GDT)+1.E-10) IF(TLCL+DTLCL.GT.TENV)GOTO 45 IF(KPBL.GE.LLFC)GOTO 325 GOTO 25 ! !...CONVECTIVE TRIGGERING CRITERIA HAS BEEN SATISFIED...COMPUTE !...EQUIVALENT POTENTIAL TEMPERATURE !...(THETEU) AND VERTICAL VELOCITY OF THE RISING PARCEL AT THE LCL... ! 45 THETEU(K)=TMIX*(1.E5/PMIX)**(0.2854*(1.-0.28*QMIX))* & EXP((3374.6525/TLCL-2.5403)*QMIX*(1.+0.81*QMIX)) ES=ALIQ*EXP((TENV*BLIQ-CLIQ)/(TENV-DLIQ)) TVAVG=0.5*(TV0(KLCL)+TENV*(1.+0.608*QENV)) PLCL=P0(KLCL)*EXP(G/(R*TVAVG)*(Z0(KLCL)-ZLCL)) QESE=EP2*ES/(PLCL-ES) GDT=G*DTLCL*(ZLCL-Z0(LC))/(TV0(LC)+TVEN) WLCL=1.+.5*WSIGNE*SQRT(ABS(GDT)+1.E-10) THTES(K)=TENV*(1.E5/PLCL)**(0.2854*(1.-0.28*QESE))* & EXP((3374.6525/TENV-2.5403)*QESE*(1.+0.81*QESE)) WTW=WLCL*WLCL IF(WLCL.LT.0.)GOTO 25 TVLCL=TLCL*(1.+0.608*QMIX) RHOLCL=PLCL/(R*TVLCL) ! LCL=KLCL LET=LCL ! !******************************************************************* ! * ! COMPUTE UPDRAFT PROPERTIES * ! * !******************************************************************* ! ! !...ESTIMATE INITIAL UPDRAFT MASS FLUX (UMF(K))... ! WU(K)=WLCL AU0=PIE*RAD*RAD UMF(K)=RHOLCL*AU0 VMFLCL=UMF(K) UPOLD=VMFLCL UPNEW=UPOLD ! !...RATIO2 IS THE DEGREE OF GLACIATION IN THE CLOUD (0 TO 1), !...UER IS THE ENVIR ENTRAINMENT RATE, ABE IS AVAILABLE BUOYANT ENERGY, ! TRPPT IS THE TOTAL RATE OF PRECIPITATION PRODUCTION... ! RATIO2(K)=0. UER(K)=0. ABE=0. TRPPT=0. TU(K)=TLCL TVU(K)=TVLCL QU(K)=QMIX EQFRC(K)=1. QLIQ(K)=0. QICE(K)=0. QLQOUT(K)=0. QICOUT(K)=0. DETLQ(K)=0. DETIC(K)=0. PPTLIQ(K)=0. PPTICE(K)=0. IFLAG=0 KFRZ=LC ! !...THE AMOUNT OF CONV AVAIL POT ENERGY (CAPE) IS CALCULATED WITH ! RESPECT TO UNDILUTE PARCEL ASCENT; EQ POT TEMP OF UNDILUTE ! PARCEL IS THTUDL, UNDILUTE TEMPERATURE IS GIVEN BY TUDL... ! THTUDL=THETEU(K) TUDL=TLCL ! !...TTEMP IS USED DURING CALCULATION OF THE LINEAR GLACIATION ! PROCESS; IT IS INITIALLY SET TO THE TEMPERATURE AT WHICH ! FREEZING IS SPECIFIED TO BEGIN. WITHIN THE GLACIATION ! INTERVAL, IT IS SET EQUAL TO THE UPDRAFT TEMP AT THE ! PREVIOUS MODEL LEVEL... ! TTEMP=TTFRZ ! !...ENTER THE LOOP FOR UPDRAFT CALCULATIONS...CALCULATE UPDRAFT TEMP, ! MIXING RATIO, VERTICAL MASS FLUX, LATERAL DETRAINMENT OF MASS AND ! MOISTURE, PRECIPITATION RATES AT EACH MODEL LEVEL... ! DO 60 NK=K,KL-1 NK1=NK+1 RATIO2(NK1)=RATIO2(NK) ! !...UPDATE UPDRAFT PROPERTIES AT THE NEXT MODEL LVL TO REFLECT ! ENTRAINMENT OF ENVIRONMENTAL AIR... ! FRC1=0. TU(NK1)=T0(NK1) THETEU(NK1)=THETEU(NK) QU(NK1)=QU(NK) QLIQ(NK1)=QLIQ(NK) QICE(NK1)=QICE(NK) CALL TPMIX(P0(NK1),THETEU(NK1),TU(NK1),QU(NK1),QLIQ(NK1), & QICE(NK1),QNEWLQ,QNEWIC,RATIO2(NK1),RL,XLV0,XLV1,XLS0, & XLS1,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) TVU(NK1)=TU(NK1)*(1.+0.608*QU(NK1)) ! !...CHECK TO SEE IF UPDRAFT TEMP IS WITHIN THE FREEZING INTERVAL, ! IF IT IS, CALCULATE THE FRACTIONAL CONVERSION TO GLACIATION ! AND ADJUST QNEWLQ TO REFLECT THE GRADUAL CHANGE IN THETAU ! SINCE THE LAST MODEL LEVEL...THE GLACIATION EFFECTS WILL BE ! DETERMINED AFTER THE AMOUNT OF CONDENSATE AVAILABLE AFTER ! PRECIP FALLOUT IS DETERMINED...TTFRZ IS THE TEMP AT WHICH ! GLACIATION BEGINS, TBFRZ THE TEMP AT WHICH IT ENDS... ! IF(TU(NK1).LE.TTFRZ.AND.IFLAG.LT.1)THEN IF(TU(NK1).GT.TBFRZ)THEN IF(TTEMP.GT.TTFRZ)TTEMP=TTFRZ FRC1=(TTEMP-TU(NK1))/(TTFRZ-TBFRZ) R1=(TTEMP-TU(NK1))/(TTEMP-TBFRZ) ELSE FRC1=(TTEMP-TBFRZ)/(TTFRZ-TBFRZ) R1=1. IFLAG=1 ENDIF QNWFRZ=QNEWLQ QNEWIC=QNEWIC+QNEWLQ*R1*0.5 QNEWLQ=QNEWLQ-QNEWLQ*R1*0.5 EFFQ=(TTFRZ-TBFRZ)/(TTEMP-TBFRZ) TTEMP=TU(NK1) ENDIF ! ! CALCULATE UPDRAFT VERTICAL VELOCITY AND PRECIPITATION FALLOUT... ! IF(NK.EQ.K)THEN BE=(TVLCL+TVU(NK1))/(TVEN+TV0(NK1))-1. BOTERM=2.*(Z0(NK1)-ZLCL)*G*BE/1.5 ENTERM=0. DZZ=Z0(NK1)-ZLCL ELSE BE=(TVU(NK)+TVU(NK1))/(TV0(NK)+TV0(NK1))-1. BOTERM=2.*DZA(NK)*G*BE/1.5 ENTERM=2.*UER(NK)*WTW/UPOLD DZZ=DZA(NK) ENDIF WSQ=WTW CALL CONDLOAD(QLIQ(NK1),QICE(NK1),WTW,DZZ,BOTERM,ENTERM,RATE, & QNEWLQ,QNEWIC,QLQOUT(NK1),QICOUT(NK1), G) !...IF VERT VELOCITY IS LESS THAN ZERO, EXIT THE UPDRAFT LOOP AND, ! IF CLOUD IS TALL ENOUGH, FINALIZE UPDRAFT CALCULATIONS... ! IF(WTW.LE.0.)GOTO 65 WABS=SQRT(ABS(WTW)) WU(NK1)=WTW/WABS ! ! UPDATE THE ABE FOR UNDILUTE ASCENT... ! THTES(NK1)=T0(NK1)*(1.E5/P0(NK1))**(0.2854*(1.-0.28*QES(NK1))) & * & EXP((3374.6525/T0(NK1)-2.5403)*QES(NK1)*(1.+0.81* & QES(NK1))) UDLBE=((2.*THTUDL)/(THTES(NK)+THTES(NK1))-1.)*DZZ IF(UDLBE.GT.0.)ABE=ABE+UDLBE*G ! ! DETERMINE THE EFFECTS OF CLOUD GLACIATION IF WITHIN THE SPECIFIED ! TEMP INTERVAL... ! IF(FRC1.GT.1.E-6)THEN CALL DTFRZNEW(TU(NK1),P0(NK1),THETEU(NK1),QU(NK1),QLIQ(NK1), & QICE(NK1),RATIO2(NK1),TTFRZ,TBFRZ,QNWFRZ,RL,FRC1,EFFQ, & IFLAG,XLV0,XLV1,XLS0,XLS1,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE & ,CICE,DICE) ENDIF ! ! CALL SUBROUTINE TO CALCULATE ENVIRONMENTAL EQUIVALENT POTENTIAL TEMP. ! WITHIN GLACIATION INTERVAL, THETAE MUST BE CALCULATED WITH RESPECT TO ! SAME DEGREE OF GLACIATION FOR ALL ENTRAINING AIR... ! CALL ENVIRTHT(P0(NK1),T0(NK1),Q0(NK1),THETEE(NK1),RATIO2(NK1), & RL,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) !...REI IS THE RATE OF ENVIRONMENTAL INFLOW... ! REI=VMFLCL*DP(NK1)*0.03/RAD TVQU(NK1)=TU(NK1)*(1.+0.608*QU(NK1)-QLIQ(NK1)-QICE(NK1)) ! !...IF CLOUD PARCELS ARE VIRTUALLY COLDER THAN THE ENVIRONMENT, NO ! ENTRAINMENT IS ALLOWED AT THIS LEVEL... ! IF(TVQU(NK1).LE.TV0(NK1))THEN UER(NK1)=0.0 UDR(NK1)=REI EE2=0. UD2=1. EQFRC(NK1)=0. GOTO 55 ENDIF LET=NK1 TTMP=TVQU(NK1) ! !...DETERMINE THE CRITICAL MIXED FRACTION OF UPDRAFT AND ENVIRONMENTAL ! AIR FOR ESTIMATION OF ENTRAINMENT AND DETRAINMENT RATES... ! F1=0.95 F2=1.-F1 THTTMP=F1*THETEE(NK1)+F2*THETEU(NK1) QTMP=F1*Q0(NK1)+F2*QU(NK1) TMPLIQ=F2*QLIQ(NK1) TMPICE=F2*QICE(NK1) CALL TPMIX(P0(NK1),THTTMP,TTMP,QTMP,TMPLIQ,TMPICE,QNEWLQ, & QNEWIC,RATIO2(NK1),RL,XLV0,XLV1,XLS0,XLS1,EP2,ALIQ,BLIQ,CLIQ, & DLIQ,AICE,BICE,CICE,DICE) TU95=TTMP*(1.+0.608*QTMP-TMPLIQ-TMPICE) IF(TU95.GT.TV0(NK1))THEN EE2=1. UD2=0. EQFRC(NK1)=1.0 GOTO 50 ENDIF F1=0.10 F2=1.-F1 THTTMP=F1*THETEE(NK1)+F2*THETEU(NK1) QTMP=F1*Q0(NK1)+F2*QU(NK1) TMPLIQ=F2*QLIQ(NK1) TMPICE=F2*QICE(NK1) CALL TPMIX(P0(NK1),THTTMP,TTMP,QTMP,TMPLIQ,TMPICE,QNEWLQ, & QNEWIC,RATIO2(NK1),RL,XLV0,XLV1,XLS0,XLS1,EP2,ALIQ,BLIQ,CLIQ, & DLIQ,AICE,BICE,CICE,DICE) TU10=TTMP*(1.+0.608*QTMP-TMPLIQ-TMPICE) IF(TU10.EQ.TVQU(NK1))THEN EE2=1. UD2=0. EQFRC(NK1)=1.0 GOTO 50 ENDIF EQFRC(NK1)=(TV0(NK1)-TVQU(NK1))*F1/(TU10-TVQU(NK1)) EQFRC(NK1)=AMAX1(0.0,EQFRC(NK1)) EQFRC(NK1)=AMIN1(1.0,EQFRC(NK1)) IF(EQFRC(NK1).EQ.1)THEN EE2=1. UD2=0. GOTO 50 ELSEIF(EQFRC(NK1).EQ.0.)THEN EE2=0. UD2=1. GOTO 50 ELSE ! !...SUBROUTINE PROF5 INTEGRATES OVER THE GAUSSIAN DIST TO DETERMINE THE ! FRACTIONAL ENTRAINMENT AND DETRAINMENT RATES... ! CALL PROF5(EQFRC(NK1),EE2,UD2) ENDIF ! 50 IF(NK.EQ.K)THEN EE1=1. UD1=0. ENDIF ! !...NET ENTRAINMENT AND DETRAINMENT RATES ARE GIVEN BY THE AVERAGE ! FRACTIONAL VALUES IN THE LAYER... ! UER(NK1)=0.5*REI*(EE1+EE2) UDR(NK1)=0.5*REI*(UD1+UD2) ! !...IF THE CALCULATED UPDRAFT DETRAINMENT RATE IS GREATER THAN THE TOTAL ! UPDRAFT MASS FLUX, ALL CLOUD MASS DETRAINS, EXIT UPDRAFT CALCULATION ! 55 IF(UMF(NK)-UDR(NK1).LT.10.)THEN ! !...IF THE CALCULATED DETRAINED MASS FLUX IS GREATER THAN THE TOTAL ! UPDRAFT FLUX, IMPOSE TOTAL DETRAINMENT OF UPDRAFT MASS AT THE ! PREVIOUS MODEL ! IF(UDLBE.GT.0.)ABE=ABE-UDLBE*G LET=NK ! WRITE(98,1015)P0(NK1)/100. GOTO 65 ENDIF EE1=EE2 UD1=UD2 UPOLD=UMF(NK)-UDR(NK1) UPNEW=UPOLD+UER(NK1) UMF(NK1)=UPNEW ! !...DETLQ AND DETIC ARE THE RATES OF DETRAINMENT OF LIQUID AND ICE IN ! THE DETRAINING UPDRAFT MASS... ! DETLQ(NK1)=QLIQ(NK1)*UDR(NK1) DETIC(NK1)=QICE(NK1)*UDR(NK1) QDT(NK1)=QU(NK1) QU(NK1)=(UPOLD*QU(NK1)+UER(NK1)*Q0(NK1))/UPNEW THETEU(NK1)=(THETEU(NK1)*UPOLD+THETEE(NK1)*UER(NK1))/UPNEW QLIQ(NK1)=QLIQ(NK1)*UPOLD/UPNEW QICE(NK1)=QICE(NK1)*UPOLD/UPNEW ! !...KFRZ IS THE HIGHEST MODEL LEVEL AT WHICH LIQUID CONDENSATE IS ! GENERATING PPTLIQ IS THE RATE OF GENERATION (FALLOUT) OF LIQUID ! PRECIP AT A GIVING MODEL LVL, PPTICE THE SAME FOR ICE, TRPPT IS ! THE TOTAL RATE OF PRODUCTION OF PRECIP UP TO THE CURRENT MODEL LEVEL ! IF(ABS(RATIO2(NK1)-1.).GT.1.E-6)KFRZ=NK1 PPTLIQ(NK1)=QLQOUT(NK1)*(UMF(NK)-UDR(NK1)) PPTICE(NK1)=QICOUT(NK1)*(UMF(NK)-UDR(NK1)) TRPPT=TRPPT+PPTLIQ(NK1)+PPTICE(NK1) IF(NK1.LE.KPBL)UER(NK1)=UER(NK1)+VMFLCL*DP(NK1)/DPTHMX 60 CONTINUE ! !...CHECK CLOUD DEPTH...IF CLOUD IS TALL ENOUGH, ESTIMATE THE EQUILIBRIU ! TEMPERATURE LEVEL (LET) AND ADJUST MASS FLUX PROFILE AT CLOUD TOP SO ! THAT MASS FLUX DECREASES TO ZERO AS A LINEAR FUNCTION OF PRESSURE ! BETWEEN THE LET AND CLOUD TOP... ! !...LTOP IS THE MODEL LEVEL JUST BELOW THE LEVEL AT WHICH VERTICAL ! VELOCITY FIRST BECOMES NEGATIVE... ! 65 LTOP=NK CLDHGT=Z0(LTOP)-ZLCL ! !...IF CLOUD TOP HGT IS LESS THAN SPECIFIED MINIMUM HEIGHT, GO BACK AND ! THE NEXT HIGHEST 60MB LAYER TO SEE IF A BIGGER CLOUD CAN BE OBTAINED ! THAT SOURCE AIR... ! ! IF(CLDHGT.LT.4.E3.OR.ABE.LT.1.)THEN IF(CLDHGT.LT.3.E3.OR.ABE.LT.1.)THEN DO 70 NK=K,LTOP UMF(NK)=0. UDR(NK)=0. UER(NK)=0. DETLQ(NK)=0. DETIC(NK)=0. PPTLIQ(NK)=0. 70 PPTICE(NK)=0. GOTO 25 ENDIF ! !...IF THE LET AND LTOP ARE THE SAME, DETRAIN ALL OF THE UPDRAFT MASS ! FLUX THIS LEVEL... ! IF(LET.EQ.LTOP)THEN UDR(LTOP)=UMF(LTOP)+UDR(LTOP)-UER(LTOP) DETLQ(LTOP)=QLIQ(LTOP)*UDR(LTOP)*UPNEW/UPOLD DETIC(LTOP)=QICE(LTOP)*UDR(LTOP)*UPNEW/UPOLD TRPPT=TRPPT-(PPTLIQ(LTOP)+PPTICE(LTOP)) UER(LTOP)=0. UMF(LTOP)=0. GOTO 85 ENDIF ! ! BEGIN TOTAL DETRAINMENT AT THE LEVEL ABOVE THE LET... ! DPTT=0. DO 71 NJ=LET+1,LTOP 71 DPTT=DPTT+DP(NJ) DUMFDP=UMF(LET)/DPTT ! !...ADJUST MASS FLUX PROFILES, DETRAINMENT RATES, AND PRECIPITATION FALL ! RATES TO REFLECT THE LINEAR DECREASE IN MASS FLX BETWEEN THE LET AND ! PTOP ! DO 75 NK=LET+1,LTOP UDR(NK)=DP(NK)*DUMFDP UMF(NK)=UMF(NK-1)-UDR(NK) DETLQ(NK)=QLIQ(NK)*UDR(NK) DETIC(NK)=QICE(NK)*UDR(NK) TRPPT=TRPPT-PPTLIQ(NK)-PPTICE(NK) PPTLIQ(NK)=(UMF(NK-1)-UDR(NK))*QLQOUT(NK) PPTICE(NK)=(UMF(NK-1)-UDR(NK))*QICOUT(NK) TRPPT=TRPPT+PPTLIQ(NK)+PPTICE(NK) 75 CONTINUE ! !...SEND UPDRAFT CHARACTERISTICS TO OUTPUT FILES... ! 85 CONTINUE ! !...EXTEND THE UPDRAFT MASS FLUX PROFILE DOWN TO THE SOURCE LAYER FOR ! THE UPDRAFT AIR...ALSO, DEFINE THETAE FOR LEVELS BELOW THE LCL... ! DO 90 NK=1,K IF(NK.GE.LC)THEN IF(NK.EQ.LC)THEN UMF(NK)=VMFLCL*DP(NK)/DPTHMX UER(NK)=VMFLCL*DP(NK)/DPTHMX ELSEIF(NK.LE.KPBL)THEN UER(NK)=VMFLCL*DP(NK)/DPTHMX UMF(NK)=UMF(NK-1)+UER(NK) ELSE UMF(NK)=VMFLCL UER(NK)=0. ENDIF TU(NK)=TMIX+(Z0(NK)-ZMIX)*GDRY QU(NK)=QMIX WU(NK)=WLCL ELSE TU(NK)=0. QU(NK)=0. UMF(NK)=0. WU(NK)=0. UER(NK)=0. ENDIF UDR(NK)=0. QDT(NK)=0. QLIQ(NK)=0. QICE(NK)=0. QLQOUT(NK)=0. QICOUT(NK)=0. PPTLIQ(NK)=0. PPTICE(NK)=0. DETLQ(NK)=0. DETIC(NK)=0. RATIO2(NK)=0. EE=Q0(NK)*P0(NK)/(EP2+Q0(NK)) TLOG=ALOG(EE/ALIQ) TDPT=(CLIQ-DLIQ*TLOG)/(BLIQ-TLOG) TSAT=TDPT-(.212+1.571E-3*(TDPT-T00)-4.36E-4*(T0(NK)-T00))*( & T0(NK)-TDPT) THTA=T0(NK)*(1.E5/P0(NK))**(0.2854*(1.-0.28*Q0(NK))) THETEE(NK)=THTA* & EXP((3374.6525/TSAT-2.5403)*Q0(NK)*(1.+0.81*Q0(NK)) & ) THTES(NK)=THTA* & EXP((3374.6525/T0(NK)-2.5403)*QES(NK)*(1.+0.81* & QES(NK))) EQFRC(NK)=1.0 90 CONTINUE ! LTOP1=LTOP+1 LTOPM1=LTOP-1 ! !...DEFINE VARIABLES ABOVE CLOUD TOP... ! DO 95 NK=LTOP1,KX UMF(NK)=0. UDR(NK)=0. UER(NK)=0. QDT(NK)=0. QLIQ(NK)=0. QICE(NK)=0. QLQOUT(NK)=0. QICOUT(NK)=0. DETLQ(NK)=0. DETIC(NK)=0. PPTLIQ(NK)=0. PPTICE(NK)=0. IF(NK.GT.LTOP1)THEN TU(NK)=0. QU(NK)=0. WU(NK)=0. ENDIF THTA0(NK)=0. THTAU(NK)=0. EMS(NK)=DP(NK)*DXSQ/G EMSD(NK)=1./EMS(NK) TG(NK)=T0(NK) QG(NK)=Q0(NK) QLG(NK)=0. QIG(NK)=0. QRG(NK)=0. QSG(NK)=0. 95 OMG(NK)=0. OMG(KL+1)=0. P150=P0(KLCL)-1.50E4 DO 100 NK=1,LTOP THTAD(NK)=0. EMS(NK)=DP(NK)*DXSQ/G EMSD(NK)=1./EMS(NK) ! !...INITIALIZE SOME VARIABLES TO BE USED LATER IN THE VERT ADVECTION ! SCHEME ! EXN(NK)=(P00/P0(NK))**(0.2854*(1.-0.28*QDT(NK))) THTAU(NK)=TU(NK)*EXN(NK) EXN(NK)=(P00/P0(NK))**(0.2854*(1.-0.28*Q0(NK))) THTA0(NK)=T0(NK)*EXN(NK) ! !...LVF IS THE LEVEL AT WHICH MOISTURE FLUX IS ESTIMATED AS THE BASIS !...FOR PRECIPITATION EFFICIENCY CALCULATIONS... ! IF(P0(NK).GT.P150)LVF=NK 100 OMG(NK)=0. LVF=MIN0(LVF,LET) USR=UMF(LVF+1)*(QU(LVF+1)+QLIQ(LVF+1)+QICE(LVF+1)) USR=AMIN1(USR,TRPPT) IF(USR.LT.1.E-8)USR=TRPPT ! ! WRITE(98,1025)KLCL,ZLCL,DTLCL,LTOP,P0(LTOP),IFLAG, ! * TMIX-T00,PMIX,QMIX,ABE ! WRITE(98,1030)P0(LET)/100.,P0(LTOP)/100.,VMFLCL,PLCL/100., ! * WLCL,CLDHGT ! !...COMPUTE CONVECTIVE TIME SCALE(TIMEC). THE MEAN WIND AT THE LCL !...AND MIDTROPOSPHERE IS USED. ! WSPD(KLCL)=SQRT(U0(KLCL)*U0(KLCL)+V0(KLCL)*V0(KLCL)) WSPD(L5)=SQRT(U0(L5)*U0(L5)+V0(L5)*V0(L5)) WSPD(LTOP)=SQRT(U0(LTOP)*U0(LTOP)+V0(LTOP)*V0(LTOP)) VCONV=.5*(WSPD(KLCL)+WSPD(L5)) if (VCONV .gt. 0.) then TIMEC=DX/VCONV else TIMEC=3600. endif ! TIMEC=DX/VCONV TADVEC=TIMEC TIMEC=AMAX1(1800.,TIMEC) TIMEC=AMIN1(3600.,TIMEC) NIC=NINT(TIMEC/DT) TIMEC=FLOAT(NIC)*DT ! !...COMPUTE WIND SHEAR AND PRECIPITATION EFFICIENCY. ! ! SHSIGN = CVMGT(1.,-1.,WSPD(LTOP).GT.WSPD(KLCL)) IF(WSPD(LTOP).GT.WSPD(KLCL))THEN SHSIGN=1. ELSE SHSIGN=-1. ENDIF VWS=(U0(LTOP)-U0(KLCL))*(U0(LTOP)-U0(KLCL))+(V0(LTOP)-V0(KLCL))* & (V0(LTOP)-V0(KLCL)) VWS=1.E3*SHSIGN*SQRT(VWS)/(Z0(LTOP)-Z0(LCL)) PEF=1.591+VWS*(-.639+VWS*(9.53E-2-VWS*4.96E-3)) PEF=AMAX1(PEF,.2) PEF=AMIN1(PEF,.9) ! !...PRECIPITATION EFFICIENCY IS A FUNCTION OF THE HEIGHT OF CLOUD BASE. ! CBH=(ZLCL-Z0(1))*3.281E-3 IF(CBH.LT.3.)THEN RCBH=.02 ELSE RCBH=.96729352+CBH*(-.70034167+CBH*(.162179896+CBH*(- & 1.2569798E-2+CBH*(4.2772E-4-CBH*5.44E-6)))) ENDIF IF(CBH.GT.25)RCBH=2.4 PEFCBH=1./(1.+RCBH) PEFCBH=AMIN1(PEFCBH,.9) ! !... MEAN PEF. IS USED TO COMPUTE RAINFALL. ! PEFF=.5*(PEF+PEFCBH) PEFF2=PEFF ! WRITE(98,1035)PEF,PEFCBH,LC,LET,WKL,VWS ! !***************************************************************** ! * ! COMPUTE DOWNDRAFT PROPERTIES * ! * !***************************************************************** ! !...LET DOWNDRAFT ORIGINATE AT THE LEVEL OF MINIMUM SATURATION EQUIVALEN !...POTENTIAL TEMPERATURE (SEQT) IN THE CLOUD LAYER, EXTEND DOWNWARD TO !...SURFACE, OR TO THE LAYER BELOW CLOUD BASE AT WHICH ENVIR SEQT IS LES !...THAN MIN SEQT IN THE CLOUD LAYER...LET DOWNDRAFT DETRAIN OVER A LAYE !...OF SPECIFIED PRESSURE-DEPTH (DPDD)... ! TDER=0. KSTART=MAX0(KPBL,KLCL) THTMIN=THTES(KSTART+1) KMIN=KSTART+1 DO 104 NK=KSTART+2,LTOP-1 THTMIN=AMIN1(THTMIN,THTES(NK)) IF(THTMIN.EQ.THTES(NK))KMIN=NK 104 CONTINUE LFS=KMIN IF(RATIO2(LFS).GT.0.)CALL ENVIRTHT(P0(LFS),T0(LFS),Q0(LFS), & THETEE(LFS),0.,RL,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) EQFRC(LFS)=(THTES(LFS)-THETEU(LFS))/(THETEE(LFS)-THETEU(LFS)) EQFRC(LFS)=AMAX1(EQFRC(LFS),0.) EQFRC(LFS)=AMIN1(EQFRC(LFS),1.) THETED(LFS)=THTES(LFS) ! !...ESTIMATE THE EFFECT OF MELTING PRECIPITATION IN THE DOWNDRAFT... ! IF(ML.GT.0)THEN DTMLTD=0.5*(QU(KLCL)-QU(LTOP))*RLF/CP ELSE DTMLTD=0. ENDIF TZ(LFS)=T0(LFS)-DTMLTD ES=ALIQ*EXP((TZ(LFS)*BLIQ-CLIQ)/(TZ(LFS)-DLIQ)) QS=EP2*ES/(P0(LFS)-ES) QD(LFS)=EQFRC(LFS)*Q0(LFS)+(1.-EQFRC(LFS))*QU(LFS) THTAD(LFS)=TZ(LFS)*(P00/P0(LFS))**(0.2854*(1.-0.28*QD(LFS))) IF(QD(LFS).GE.QS)THEN THETED(LFS)=THTAD(LFS)* & EXP((3374.6525/TZ(LFS)-2.5403)*QS*(1.+0.81*QS)) ELSE CALL ENVIRTHT(P0(LFS),TZ(LFS),QD(LFS),THETED(LFS),0.,RL,EP2,ALIQ, & BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) ENDIF DO 107 NK=1,LFS ND=LFS-NK IF(THETED(LFS).GT.THTES(ND).OR.ND.EQ.1)THEN LDB=ND ! !...IF DOWNDRAFT NEVER BECOMES NEGATIVELY BUOYANT OR IF IT !...IS SHALLOWER 50 mb, DON'T ALLOW IT TO OCCUR AT ALL... ! IF(NK.EQ.1.OR.(P0(LDB)-P0(LFS)).LT.50.E2)GOTO 141 ! testing ---- no downdraft ! GOTO 141 GOTO 110 ENDIF 107 CONTINUE ! !...ALLOW DOWNDRAFT TO DETRAIN IN A SINGLE LAYER, BUT WITH DOWNDRAFT AIR !...TYPICALLY FLUSHED UP INTO HIGHER LAYERS AS ALLOWED IN THE TOTAL !...VERTICAL ADVECTION CALCULATIONS FARTHER DOWN IN THE CODE... ! 110 DPDD=DP(LDB) LDT=LDB FRC=1. DPT=0. ! DO 115 NK=LDB,LFS ! DPT=DPT+DP(NK) ! IF(DPT.GT.DPDD)THEN ! LDT=NK ! FRC=(DPDD+DP(NK)-DPT)/DP(NK) ! GOTO 120 ! ENDIF ! IF(NK.EQ.LFS-1)THEN ! LDT=NK ! FRC=1. ! DPDD=DPT ! GOTO 120 ! ENDIF !115 CONTINUE 120 CONTINUE ! !...TAKE A FIRST GUESS AT THE INITIAL DOWNDRAFT MASS FLUX.. ! TVD(LFS)=T0(LFS)*(1.+0.608*QES(LFS)) RDD=P0(LFS)/(R*TVD(LFS)) A1=(1.-PEFF)*AU0 DMF(LFS)=-A1*RDD DER(LFS)=EQFRC(LFS)*DMF(LFS) DDR(LFS)=0. DO 140 ND=LFS-1,LDB,-1 ND1=ND+1 IF(ND.LE.LDT)THEN DER(ND)=0. DDR(ND)=-DMF(LDT+1)*DP(ND)*FRC/DPDD DMF(ND)=DMF(ND1)+DDR(ND) FRC=1. THETED(ND)=THETED(ND1) QD(ND)=QD(ND1) ELSE DER(ND)=DMF(LFS)*0.03*DP(ND)/RAD DDR(ND)=0. DMF(ND)=DMF(ND1)+DER(ND) IF(RATIO2(ND).GT.0.)CALL ENVIRTHT(P0(ND),T0(ND),Q0(ND), & THETEE(ND),0.,RL,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) THETED(ND)=(THETED(ND1)*DMF(ND1)+THETEE(ND)*DER(ND))/DMF(ND) QD(ND)=(QD(ND1)*DMF(ND1)+Q0(ND)*DER(ND))/DMF(ND) ENDIF 140 CONTINUE TDER=0. ! !...CALCULATION AN EVAPORATION RATE FOR GIVEN MASS FLUX... ! DO 135 ND=LDB,LDT TZ(ND)= & TPDD(P0(ND),THETED(LDT),T0(ND),QS,QD(ND),1.0,XLV0,XLV1, & EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE) ES=ALIQ*EXP((TZ(ND)*BLIQ-CLIQ)/(TZ(ND)-DLIQ)) QS=EP2*ES/(P0(ND)-ES) DSSDT=(CLIQ-BLIQ*DLIQ)/((TZ(ND)-DLIQ)*(TZ(ND)-DLIQ)) RL=XLV0-XLV1*TZ(ND) DTMP=RL*QS*(1.-RHBC)/(CP+RL*RHBC*QS*DSSDT) T1RH=TZ(ND)+DTMP ES=RHBC*ALIQ*EXP((BLIQ*T1RH-CLIQ)/(T1RH-DLIQ)) QSRH=EP2*ES/(P0(ND)-ES) ! !...CHECK TO SEE IF MIXING RATIO AT SPECIFIED RH IS LESS THAN ACTUAL !...MIXING RATIO...IF SO, ADJUST TO GIVE ZERO EVAPORATION... ! IF(QSRH.LT.QD(ND))THEN QSRH=QD(ND) ! T1RH=T1+(QS-QSRH)*RL/CP T1RH=TZ(ND) ENDIF TZ(ND)=T1RH QS=QSRH TDER=TDER+(QS-QD(ND))*DDR(ND) QD(ND)=QS 135 THTAD(ND)=TZ(ND)*(P00/P0(ND))**(0.2854*(1.-0.28*QD(ND))) ! !...IF DOWNDRAFT DOES NOT EVAPORATE ANY WATER FOR SPECIFIED RELATIVE !...HUMIDITY, NO DOWNDRAFT IS ALLOWED... ! 141 IF(TDER.LT.1.)THEN ! WRITE(98,3004)I,J 3004 FORMAT(' ','I=',I3,2X,'J=',I3) PPTFLX=TRPPT CPR=TRPPT TDER=0. CNDTNF=0. UPDINC=1. LDB=LFS DO 117 NDK=1,LTOP DMF(NDK)=0. DER(NDK)=0. DDR(NDK)=0. THTAD(NDK)=0. WD(NDK)=0. TZ(NDK)=0. 117 QD(NDK)=0. AINCM2=100. GOTO 165 ENDIF ! !...ADJUST DOWNDRAFT MASS FLUX SO THAT EVAPORATION RATE IN DOWNDRAFT IS !...CONSISTENT WITH PRECIPITATION EFFICIENCY RELATIONSHIP... ! DEVDMF=TDER/DMF(LFS) PPR=0. PPTFLX=PEFF*USR RCED=TRPPT-PPTFLX ! !...PPR IS THE TOTAL AMOUNT OF PRECIPITATION THAT FALLS OUT OF THE !...UPDRAFT FROM CLOUD BASE TO THE LFS...UPDRAFT MASS FLUX WILL BE !...INCREASED UP TO THE LFS TO ACCOUNT FOR UPDRAFT AIR MIXING WITH !...ENVIRONMENTAL AIR TO THE UPDRAFT, SO PPR WILL INCREASE !...PROPORTIONATELY... ! DO 132 NM=KLCL,LFS 132 PPR=PPR+PPTLIQ(NM)+PPTICE(NM) IF(LFS.GE.KLCL)THEN DPPTDF=(1.-PEFF)*PPR*(1.-EQFRC(LFS))/UMF(LFS) ELSE DPPTDF=0. ENDIF ! !...CNDTNF IS THE AMOUNT OF CONDENSATE TRANSFERRED ALONG WITH UPDRAFT !...MASS THE DOWNDRAFT AT THE LFS... ! CNDTNF=(QLIQ(LFS)+QICE(LFS))*(1.-EQFRC(LFS)) DMFLFS=RCED/(DEVDMF+DPPTDF+CNDTNF) IF(DMFLFS.GT.0.)THEN TDER=0. GOTO 141 ENDIF ! !...DDINC IS THE FACTOR BY WHICH TO INCREASE THE FIRST-GUESS DOWNDRAFT !...MASS FLUX TO SATISFY THE PRECIP EFFICIENCY RELATIONSHIP, UPDINC IS T !...WHICH TO INCREASE THE UPDRAFT MASS FLUX BELOW THE LFS TO ACCOUNT FOR !...TRANSFER OF MASS FROM UPDRAFT TO DOWNDRAFT... ! ! DDINC=DMFLFS/DMF(LFS) IF(LFS.GE.KLCL)THEN UPDINC=(UMF(LFS)-(1.-EQFRC(LFS))*DMFLFS)/UMF(LFS) ! !...LIMIT UPDINC TO LESS THAN OR EQUAL TO 1.5... ! IF(UPDINC.GT.1.5)THEN UPDINC=1.5 DMFLFS2=UMF(LFS)*(UPDINC-1.)/(EQFRC(LFS)-1.) RCED2=DMFLFS2*(DEVDMF+DPPTDF+CNDTNF) PPTFLX=PPTFLX+(RCED-RCED2) PEFF2=PPTFLX/USR RCED=RCED2 DMFLFS=DMFLFS2 ENDIF ELSE UPDINC=1. ENDIF DDINC=DMFLFS/DMF(LFS) DO 149 NK=LDB,LFS DMF(NK)=DMF(NK)*DDINC DER(NK)=DER(NK)*DDINC DDR(NK)=DDR(NK)*DDINC 149 CONTINUE CPR=TRPPT+PPR*(UPDINC-1.) PPTFLX=PPTFLX+PEFF*PPR*(UPDINC-1.) PEFF=PEFF2 TDER=TDER*DDINC ! !...ADJUST UPDRAFT MASS FLUX, MASS DETRAINMENT RATE, AND LIQUID WATER AN ! DETRAINMENT RATES TO BE CONSISTENT WITH THE TRANSFER OF THE ESTIMATE ! FROM THE UPDRAFT TO THE DOWNDRAFT AT THE LFS... ! DO 155 NK=LC,LFS UMF(NK)=UMF(NK)*UPDINC UDR(NK)=UDR(NK)*UPDINC UER(NK)=UER(NK)*UPDINC PPTLIQ(NK)=PPTLIQ(NK)*UPDINC PPTICE(NK)=PPTICE(NK)*UPDINC DETLQ(NK)=DETLQ(NK)*UPDINC 155 DETIC(NK)=DETIC(NK)*UPDINC ! !...ZERO OUT THE ARRAYS FOR DOWNDRAFT DATA AT LEVELS ABOVE AND BELOW THE !...DOWNDRAFT... ! IF(LDB.GT.1)THEN DO 156 NK=1,LDB-1 DMF(NK)=0. DER(NK)=0. DDR(NK)=0. WD(NK)=0. TZ(NK)=0. QD(NK)=0. THTAD(NK)=0. 156 CONTINUE ENDIF DO 157 NK=LFS+1,KX DMF(NK)=0. DER(NK)=0. DDR(NK)=0. WD(NK)=0. TZ(NK)=0. QD(NK)=0. THTAD(NK)=0. 157 CONTINUE DO 158 NK=LDT+1,LFS-1 TZ(NK)=0. QD(NK)=0. 158 CONTINUE ! ! !...SET LIMITS ON THE UPDRAFT AND DOWNDRAFT MASS FLUXES SO THAT THE ! INFLOW INTO CONVECTIVE DRAFTS FROM A GIVEN LAYER IS NO MORE THAN ! IS AVAILABLE IN THAT LAYER INITIALLY... ! 165 AINCMX=1000. LMAX=MAX0(KLCL,LFS) DO 166 NK=LC,LMAX IF((UER(NK)-DER(NK)).GT.0.)AINCM1=EMS(NK)/((UER(NK)-DER(NK))* & TIMEC) AINCMX=AMIN1(AINCMX,AINCM1) 166 CONTINUE AINC=1. IF(AINCMX.LT.AINC)AINC=AINCMX ! !...SAVE THE RELEVENT VARIABLES FOR A UNIT UPDRFT AND DOWNDRFT...THEY !...WILL ITERATIVELY ADJUSTED BY THE FACTOR AINC TO SATISFY THE !...STABILIZATION CLOSURE... ! NCOUNT=0 TDER2=TDER PPTFL2=PPTFLX DO 170 NK=1,LTOP DETLQ2(NK)=DETLQ(NK) DETIC2(NK)=DETIC(NK) UDR2(NK)=UDR(NK) UER2(NK)=UER(NK) DDR2(NK)=DDR(NK) DER2(NK)=DER(NK) UMF2(NK)=UMF(NK) DMF2(NK)=DMF(NK) 170 CONTINUE FABE=1. STAB=0.95 NOITR=0 IF(AINC/AINCMX.GT.0.999)THEN NCOUNT=0 GOTO 255 ENDIF ISTOP=0 175 NCOUNT=NCOUNT+1 ! !***************************************************************** ! * ! COMPUTE PROPERTIES FOR COMPENSATIONAL SUBSIDENCE * ! * !***************************************************************** ! !...DETERMINE OMEGA VALUE NECESSARY AT TOP AND BOTTOM OF EACH LAYER TO !...SATISFY MASS CONTINUITY... ! 185 CONTINUE DTT=TIMEC DO 200 NK=1,LTOP DOMGDP(NK)=-(UER(NK)-DER(NK)-UDR(NK)-DDR(NK))*EMSD(NK) IF(NK.GT.1)THEN OMG(NK)=OMG(NK-1)-DP(NK-1)*DOMGDP(NK-1) DTT1=0.75*DP(NK-1)/(ABS(OMG(NK))+1.E-10) DTT=AMIN1(DTT,DTT1) ENDIF 200 CONTINUE DO 488 NK=1,LTOP THPA(NK)=THTA0(NK) QPA(NK)=Q0(NK) NSTEP=NINT(TIMEC/DTT+1) DTIME=TIMEC/FLOAT(NSTEP) FXM(NK)=OMG(NK)*DXSQ/G 488 CONTINUE ! !...DO AN UPSTREAM/FORWARD-IN-TIME ADVECTION OF THETA, QV... ! DO 495 NTC=1,NSTEP ! !...ASSIGN THETA AND Q VALUES AT THE TOP AND BOTTOM OF EACH LAYER BASED !...SIGN OF OMEGA... ! DO 493 NK=1,LTOP THFXTOP(NK)=0. THFXBOT(NK)=0. QFXTOP(NK)=0. 493 QFXBOT(NK)=0. DO 494 NK=2,LTOP IF(OMG(NK).LE.0.)THEN THFXBOT(NK)=-FXM(NK)*THPA(NK-1) QFXBOT(NK)=-FXM(NK)*QPA(NK-1) THFXTOP(NK-1)=THFXTOP(NK-1)-THFXBOT(NK) QFXTOP(NK-1)=QFXTOP(NK-1)-QFXBOT(NK) ELSE THFXBOT(NK)=-FXM(NK)*THPA(NK) QFXBOT(NK)=-FXM(NK)*QPA(NK) THFXTOP(NK-1)=THFXTOP(NK-1)-THFXBOT(NK) QFXTOP(NK-1)=QFXTOP(NK-1)-QFXBOT(NK) ENDIF 494 CONTINUE ! !...UPDATE THE THETA AND QV VALUES AT EACH LEVEL.. ! DO 492 NK=1,LTOP THPA(NK)=THPA(NK)+(THFXBOT(NK)+UDR(NK)*THTAU(NK)+DDR(NK)* & THTAD(NK)+THFXTOP(NK)-(UER(NK)-DER(NK))*THTA0(NK))* & DTIME*EMSD(NK) QPA(NK)=QPA(NK)+(QFXBOT(NK)+UDR(NK)*QDT(NK)+DDR(NK)*QD(NK)+ & QFXTOP(NK)-(UER(NK)-DER(NK))*Q0(NK))*DTIME*EMSD(NK) 492 CONTINUE 495 CONTINUE DO 498 NK=1,LTOP THTAG(NK)=THPA(NK) QG(NK)=QPA(NK) 498 CONTINUE ! !...CHECK TO SEE IF MIXING RATIO DIPS BELOW ZERO ANYWHERE; IF SO, !...BORROW MOISTURE FROM ADJACENT LAYERS TO BRING IT BACK UP ABOVE ZERO. ! DO 499 NK=1,LTOP IF(QG(NK).LT.0.)THEN IF(NK.EQ.1)THEN CALL wrf_error_fatal ( 'module_cu_kf.F: problem with kf scheme: qg = 0 at the surface' ) ENDIF NK1=NK+1 IF(NK.EQ.LTOP)NK1=KLCL TMA=QG(NK1)*EMS(NK1) TMB=QG(NK-1)*EMS(NK-1) TMM=(QG(NK)-1.E-9)*EMS(NK) BCOEFF=-TMM/((TMA*TMA)/TMB+TMB) ACOEFF=BCOEFF*TMA/TMB TMB=TMB*(1.-BCOEFF) TMA=TMA*(1.-ACOEFF) IF(NK.EQ.LTOP)THEN QVDIFF=(QG(NK1)-TMA*EMSD(NK1))*100./QG(NK1) IF(ABS(QVDIFF).GT.1.)THEN PRINT *,'--WARNING-- CLOUD BASE WATER VAPOR CHANGES BY ', & QVDIFF, & ' PERCENT WHEN MOISTURE IS BORROWED TO PREVENT NEG VALUES', & ' IN KAIN-FRITSCH' ENDIF ENDIF QG(NK)=1.E-9 QG(NK1)=TMA*EMSD(NK1) QG(NK-1)=TMB*EMSD(NK-1) ENDIF 499 CONTINUE TOPOMG=(UDR(LTOP)-UER(LTOP))*DP(LTOP)*EMSD(LTOP) IF(ABS(TOPOMG-OMG(LTOP)).GT.1.E-3)THEN ! WRITE(98,*)'ERROR: MASS DOES NOT BALANCE IN KF SCHEME;' ! * ,'TOPOMG, OMG =',TOPOMG,OMG(LTOP) WRITE(6,*)'ERROR: MASS DOES NOT BALANCE IN KF SCHEME;' & ,'TOPOMG, OMG =',TOPOMG,OMG(LTOP) ISTOP=1 GOTO 265 ENDIF ! !...CONVERT THETA TO T... ! ! PAY ATTENTION ... ! DO 230 NK=1,LTOP EXN(NK)=(P00/P0(NK))**(0.2854*(1.-0.28*QG(NK))) TG(NK)=THTAG(NK)/EXN(NK) TVG(NK)=TG(NK)*(1.+0.608*QG(NK)) 230 CONTINUE ! !******************************************************************* ! * ! COMPUTE NEW CLOUD AND CHANGE IN AVAILABLE BUOYANT ENERGY. * ! * !******************************************************************* ! !...THE FOLLOWING COMPUTATIONS ARE SIMILAR TO THAT FOR UPDRAFT ! THMIX=0. QMIX=0. PMIX=0. DO 217 NK=LC,KPBL ROCPQ=0.2854*(1.-0.28*QG(NK)) THMIX=THMIX+DP(NK)*TG(NK)*(P00/P0(NK))**ROCPQ QMIX=QMIX+DP(NK)*QG(NK) 217 PMIX=PMIX+DP(NK)*P0(NK) THMIX=THMIX/DPTHMX QMIX=QMIX/DPTHMX PMIX=PMIX/DPTHMX ROCPQ=0.2854*(1.-0.28*QMIX) TMIX=THMIX*(PMIX/P00)**ROCPQ ES=ALIQ*EXP((TMIX*BLIQ-CLIQ)/(TMIX-DLIQ)) QS=EP2*ES/(PMIX-ES) ! !...REMOVE SUPERSATURATION FOR DIAGNOSTIC PURPOSES, IF NECESSARY... ! IF(QMIX.GT.QS)THEN RL=XLV0-XLV1*TMIX CPM=CP*(1.+0.887*QMIX) DSSDT=QS*(CLIQ-BLIQ*DLIQ)/((TMIX-DLIQ)*(TMIX-DLIQ)) DQ=(QMIX-QS)/(1.+RL*DSSDT/CPM) TMIX=TMIX+RL/CP*DQ QMIX=QMIX-DQ ROCPQ=0.2854*(1.-0.28*QMIX) THMIX=TMIX*(P00/PMIX)**ROCPQ TLCL=TMIX PLCL=PMIX ELSE QMIX=AMAX1(QMIX,0.) EMIX=QMIX*PMIX/(EP2+QMIX) TLOG=ALOG(EMIX/ALIQ) TDPT=(CLIQ-DLIQ*TLOG)/(BLIQ-TLOG) TLCL=TDPT-(.212+1.571E-3*(TDPT-T00)-4.36E-4*(TMIX-T00))*(TMIX- & TDPT) TLCL=AMIN1(TLCL,TMIX) CPORQ=1./ROCPQ PLCL=P00*(TLCL/THMIX)**CPORQ ENDIF TVLCL=TLCL*(1.+0.608*QMIX) DO 235 NK=LC,KL KLCL=NK 235 IF(PLCL.GE.P0(NK))GOTO 240 240 K=KLCL-1 DLP=ALOG(PLCL/P0(K))/ALOG(P0(KLCL)/P0(K)) ! !...ESTIMATE ENVIRONMENTAL TEMPERATURE AND MIXING RATIO AT THE LCL... ! TENV=TG(K)+(TG(KLCL)-TG(K))*DLP QENV=QG(K)+(QG(KLCL)-QG(K))*DLP TVEN=TENV*(1.+0.608*QENV) TVBAR=0.5*(TVG(K)+TVEN) ! ZLCL=Z0(K)+R*TVBAR*ALOG(P0(K)/PLCL)/G ZLCL=Z0(K)+(Z0(KLCL)-Z0(K))*DLP TVAVG=0.5*(TVEN+TG(KLCL)*(1.+0.608*QG(KLCL))) PLCL=P0(KLCL)*EXP(G/(R*TVAVG)*(Z0(KLCL)-ZLCL)) THETEU(K)=TMIX*(1.E5/PMIX)**(0.2854*(1.-0.28*QMIX))* & EXP((3374.6525/TLCL-2.5403)*QMIX*(1.+0.81*QMIX)) ES=ALIQ*EXP((TENV*BLIQ-CLIQ)/(TENV-DLIQ)) QESE=EP2*ES/(PLCL-ES) THTESG(K)=TENV*(1.E5/PLCL)**(0.2854*(1.-0.28*QESE))* & EXP((3374.6525/TENV-2.5403)*QESE*(1.+0.81*QESE)) ! !...COMPUTE ADJUSTED ABE(ABEG). ! ABEG=0. THTUDL=THETEU(K) DO 245 NK=K,LTOPM1 NK1=NK+1 ES=ALIQ*EXP((TG(NK1)*BLIQ-CLIQ)/(TG(NK1)-DLIQ)) QESE=EP2*ES/(P0(NK1)-ES) THTESG(NK1)=TG(NK1)*(1.E5/P0(NK1))**(0.2854*(1.-0.28*QESE))* & EXP((3374.6525/TG(NK1)-2.5403)*QESE*(1.+0.81*QESE) & ) ! DZZ=CVMGT(Z0(KLCL)-ZLCL,DZA(NK),NK.EQ.K) IF(NK.EQ.K)THEN DZZ=Z0(KLCL)-ZLCL ELSE DZZ=DZA(NK) ENDIF BE=((2.*THTUDL)/(THTESG(NK1)+THTESG(NK))-1.)*DZZ 245 IF(BE.GT.0.)ABEG=ABEG+BE*G ! !...ASSUME AT LEAST 90% OF CAPE (ABE) IS REMOVED BY CONVECTION DURING !...THE PERIOD TIMEC... ! IF(NOITR.EQ.1)THEN ! WRITE(98,1060)FABE GOTO 265 ENDIF DABE=AMAX1(ABE-ABEG,0.1*ABE) FABE=ABEG/(ABE+1.E-8) IF(FABE.GT.1.)THEN ! WRITE(98,*)'UPDRAFT/DOWNDRAFT COUPLET INCREASES CAPE AT THIS ' ! *,'GRID POINT; NO CONVECTION ALLOWED!' GOTO 325 ENDIF IF(NCOUNT.NE.1)THEN DFDA=(FABE-FABEOLD)/(AINC-AINCOLD) IF(DFDA.GT.0.)THEN NOITR=1 AINC=AINCOLD GOTO 255 ENDIF ENDIF AINCOLD=AINC FABEOLD=FABE IF(AINC/AINCMX.GT.0.999.AND.FABE.GT.1.05-STAB)THEN ! WRITE(98,1055)FABE GOTO 265 ENDIF IF(FABE.LE.1.05-STAB.AND.FABE.GE.0.95-STAB)GOTO 265 IF(NCOUNT.GT.10)THEN ! WRITE(98,1060)FABE GOTO 265 ENDIF ! !...IF MORE THAN 10% OF THE ORIGINAL CAPE REMAINS, INCREASE THE !...CONVECTIVE MASS FLUX BY THE FACTOR AINC: ! IF(FABE.EQ.0.)THEN AINC=AINC*0.5 ELSE AINC=AINC*STAB*ABE/(DABE+1.E-8) ENDIF 255 AINC=AMIN1(AINCMX,AINC) !...IF AINC BECOMES VERY SMALL, EFFECTS OF CONVECTION !...WILL BE MINIMAL SO JUST IGNORE IT... IF(AINC.LT.0.05)GOTO 325 ! AINC=AMAX1(AINC,0.05) TDER=TDER2*AINC PPTFLX=PPTFL2*AINC ! WRITE(98,1080)LFS,LDB,LDT,TIMEC,NSTEP,NCOUNT,FABEOLD,AINCOLD DO 260 NK=1,LTOP UMF(NK)=UMF2(NK)*AINC DMF(NK)=DMF2(NK)*AINC DETLQ(NK)=DETLQ2(NK)*AINC DETIC(NK)=DETIC2(NK)*AINC UDR(NK)=UDR2(NK)*AINC UER(NK)=UER2(NK)*AINC DER(NK)=DER2(NK)*AINC DDR(NK)=DDR2(NK)*AINC 260 CONTINUE ! !...GO BACK UP FOR ANOTHER ITERATION... ! GOTO 175 265 CONTINUE ! !...CLEAN THINGS UP, CALCULATE CONVECTIVE FEEDBACK TENDENCIES FOR THIS !...GRID POINT... ! !...COMPUTE HYDROMETEOR TENDENCIES AS IS DONE FOR T, QV... ! !...FRC2 IS THE FRACTION OF TOTAL CONDENSATE !...GENERATED THAT GOES INTO PRECIPITIATION FRC2=PPTFLX/(CPR*AINC) DO 270 NK=1,LTOP QLPA(NK)=QL0(NK) QIPA(NK)=QI0(NK) QRPA(NK)=QR0(NK) QSPA(NK)=QS0(NK) RAINFB(NK)=PPTLIQ(NK)*AINC*FBFRC*FRC2 SNOWFB(NK)=PPTICE(NK)*AINC*FBFRC*FRC2 270 CONTINUE DO 290 NTC=1,NSTEP ! !...ASSIGN HYDROMETEORS CONCENTRATIONS AT THE TOP AND BOTTOM OF EACH !...LAYER BASED ON THE SIGN OF OMEGA... ! DO 275 NK=1,LTOP QLFXIN(NK)=0. QLFXOUT(NK)=0. QIFXIN(NK)=0. QIFXOUT(NK)=0. QRFXIN(NK)=0. QRFXOUT(NK)=0. QSFXIN(NK)=0. QSFXOUT(NK)=0. 275 CONTINUE DO 280 NK=2,LTOP IF(OMG(NK).LE.0.)THEN QLFXIN(NK)=-FXM(NK)*QLPA(NK-1) QIFXIN(NK)=-FXM(NK)*QIPA(NK-1) QRFXIN(NK)=-FXM(NK)*QRPA(NK-1) QSFXIN(NK)=-FXM(NK)*QSPA(NK-1) QLFXOUT(NK-1)=QLFXOUT(NK-1)+QLFXIN(NK) QIFXOUT(NK-1)=QIFXOUT(NK-1)+QIFXIN(NK) QRFXOUT(NK-1)=QRFXOUT(NK-1)+QRFXIN(NK) QSFXOUT(NK-1)=QSFXOUT(NK-1)+QSFXIN(NK) ELSE QLFXOUT(NK)=FXM(NK)*QLPA(NK) QIFXOUT(NK)=FXM(NK)*QIPA(NK) QRFXOUT(NK)=FXM(NK)*QRPA(NK) QSFXOUT(NK)=FXM(NK)*QSPA(NK) QLFXIN(NK-1)=QLFXIN(NK-1)+QLFXOUT(NK) QIFXIN(NK-1)=QIFXIN(NK-1)+QIFXOUT(NK) QRFXIN(NK-1)=QRFXIN(NK-1)+QRFXOUT(NK) QSFXIN(NK-1)=QSFXIN(NK-1)+QSFXOUT(NK) ENDIF 280 CONTINUE ! !...UPDATE THE HYDROMETEOR CONCENTRATION VALUES AT EACH LEVEL... ! DO 285 NK=1,LTOP QLPA(NK)=QLPA(NK)+(QLFXIN(NK)+DETLQ(NK)-QLFXOUT(NK))*DTIME* & EMSD(NK) QIPA(NK)=QIPA(NK)+(QIFXIN(NK)+DETIC(NK)-QIFXOUT(NK))*DTIME* & EMSD(NK) QRPA(NK)=QRPA(NK)+(QRFXIN(NK)+QLQOUT(NK)*UDR(NK)-QRFXOUT(NK) & +RAINFB(NK))*DTIME*EMSD(NK) QSPA(NK)=QSPA(NK)+(QSFXIN(NK)+QICOUT(NK)*UDR(NK)-QSFXOUT(NK) & +SNOWFB(NK))*DTIME*EMSD(NK) 285 CONTINUE 290 CONTINUE DO 295 NK=1,LTOP QLG(NK)=QLPA(NK) QIG(NK)=QIPA(NK) QRG(NK)=QRPA(NK) QSG(NK)=QSPA(NK) 295 CONTINUE ! WRITE(98,1080)LFS,LDB,LDT,TIMEC,NSTEP,NCOUNT,FABE,AINC ! !...SEND FINAL PARAMETERIZED VALUES TO OUTPUT FILES... ! IF(ISTOP.EQ.1)THEN WRITE(6,1070)' P ',' DP ',' DT K/D ',' DR K/D ',' OMG ', & ' DOMGDP ',' UMF ',' UER ',' UDR ',' DMF ',' DER ' & ,' DDR ',' EMS ',' W0 ',' DETLQ ',' DETIC ' DO 300 K=LTOP,1,-1 DTT=(TG(K)-T0(K))*86400./TIMEC RL=XLV0-XLV1*TG(K) DR=-(QG(K)-Q0(K))*RL*86400./(TIMEC*CP) UDFRC=UDR(K)*TIMEC*EMSD(K) UEFRC=UER(K)*TIMEC*EMSD(K) DDFRC=DDR(K)*TIMEC*EMSD(K) DEFRC=-DER(K)*TIMEC*EMSD(K) WRITE (6,1075)P0(K)/100.,DP(K)/100.,DTT,DR,OMG(K),DOMGDP(K)* & 1.E4,UMF(K)/1.E6,UEFRC,UDFRC,DMF(K)/1.E6,DEFRC & ,DDFRC,EMS(K)/1.E11,W0AVG1D(K)*1.E2,DETLQ(K) & *TIMEC*EMSD(K)*1.E3,DETIC(K)*TIMEC*EMSD(K)* & 1.E3 300 CONTINUE WRITE(6,1085)'K','P','Z','T0','TG','DT','TU','TD','Q0','QG', & 'DQ','QU','QD','QLG','QIG','QRG','QSG','RH0','RHG' DO 305 K=KX,1,-1 DTT=TG(K)-T0(K) TUC=TU(K)-T00 IF(K.LT.LC.OR.K.GT.LTOP)TUC=0. TDC=TZ(K)-T00 IF((K.LT.LDB.OR.K.GT.LDT).AND.K.NE.LFS)TDC=0. ES=ALIQ*EXP((BLIQ*TG(K)-CLIQ)/(TG(K)-DLIQ)) QGS=ES*EP2/(P0(K)-ES) RH0=Q0(K)/QES(K) RHG=QG(K)/QGS WRITE (6,1090)K,P0(K)/100.,Z0(K),T0(K)-T00,TG(K)-T00,DTT,TUC & ,TDC,Q0(K)*1000.,QG(K)*1000.,(QG(K)-Q0(K))* & 1000.,QU(K)*1000.,QD(K)*1000.,QLG(K)*1000., & QIG(K)*1000.,QRG(K)*1000.,QSG(K)*1000.,RH0,RHG 305 CONTINUE ! !...IF CALCULATIONS ABOVE SHOW AN ERROR IN THE MASS BUDGET, PRINT OUT A !...TO BE USED LATER FOR DIAGNOSTIC PURPOSES, THEN ABORT RUN... ! IF(ISTOP.EQ.1)THEN DO 310 K=1,KX WRITE ( wrf_err_message , 1115 ) & Z0(K),P0(K)/100.,T0(K)-273.16,Q0(K)*1000., & U0(K),V0(K),DP(K)/100.,W0AVG1D(K) CALL wrf_message ( TRIM( wrf_err_message ) ) 310 CONTINUE CALL wrf_error_fatal ( 'module_cu_kf.F: KAIN-FRITSCH' ) ENDIF ENDIF CNDTNF=(1.-EQFRC(LFS))*(QLIQ(LFS)+QICE(LFS))*DMF(LFS) ! WRITE(98,1095)CPR*AINC,TDER+PPTFLX+CNDTNF ! ! EVALUATE MOISTURE BUDGET... ! QINIT=0. QFNL=0. DPT=0. DO 315 NK=1,LTOP DPT=DPT+DP(NK) QINIT=QINIT+Q0(NK)*EMS(NK) QFNL=QFNL+QG(NK)*EMS(NK) QFNL=QFNL+(QLG(NK)+QIG(NK)+QRG(NK)+QSG(NK))*EMS(NK) 315 CONTINUE QFNL=QFNL+PPTFLX*TIMEC*(1.-FBFRC) ERR2=(QFNL-QINIT)*100./QINIT ! WRITE(98,1110)QINIT,QFNL,ERR2 ! IF(ABS(ERR2).GT.0.05)STOP 'QVERR' IF(ABS(ERR2).GT.0.05)CALL wrf_error_fatal( 'module_cu_kf.F: QVERR' ) RELERR=ERR2*QINIT/(PPTFLX*TIMEC+1.E-10) ! WRITE(98,1120)RELERR ! WRITE(98,*)'TDER, CPR, USR, TRPPT =', ! *TDER,CPR*AINC,USR*AINC,TRPPT*AINC ! !...FEEDBACK TO RESOLVABLE SCALE TENDENCIES. ! !...IF THE ADVECTIVE TIME PERIOD (TADVEC) IS LESS THAN SPECIFIED MINIMUM !...TIMEC, ALLOW FEEDBACK TO OCCUR ONLY DURING TADVEC... ! IF(TADVEC.LT.TIMEC)NIC=NINT(TADVEC/DT) NCA(I,J)=FLOAT(NIC)*DT DO 320 K=1,KX ! IF(IMOIST.NE.2)THEN ! !...IF HYDROMETEORS ARE NOT ALLOWED, THEY MUST BE EVAPORATED OR SUBLIMAT !...AND FED BACK AS VAPOR, ALONG WITH ASSOCIATED CHANGES IN TEMPERATURE. !...NOTE: THIS WILL INTRODUCE CHANGES IN THE CONVECTIVE TEMPERATURE AND !...WATER VAPOR FEEDBACK TENDENCIES AND MAY LEAD TO SUPERSATURATED VALUE !...OF QG... ! ! RLC=XLV0-XLV1*TG(K) ! RLS=XLS0-XLS1*TG(K) ! CPM=CP*(1.+0.887*QG(K)) ! TG(K)=TG(K)-(RLC*(QLG(K)+QRG(K))+RLS*(QIG(K)+QSG(K)))/CPM ! QG(K)=QG(K)+(QLG(K)+QRG(K)+QIG(K)+QSG(K)) ! DQCDT(K)=0. ! DQIDT(K)=0. ! DQRDT(K)=0. ! DQSDT(K)=0. ! ELSE IF(.NOT. qi_flag .and. warm_rain)THEN ! !...IF ICE PHASE IS NOT ALLOWED, MELT ALL FROZEN HYDROMETEORS... ! CPM=CP*(1.+0.887*QG(K)) TG(K)=TG(K)-(QIG(K)+QSG(K))*RLF/CPM DQCDT(K)=(QLG(K)+QIG(K)-QL0(K)-QI0(K))/TIMEC DQIDT(K)=0. DQRDT(K)=(QRG(K)+QSG(K)-QR0(K)-QS0(K))/TIMEC DQSDT(K)=0. ELSEIF(.NOT. qi_flag .and. .not. warm_rain)THEN ! !...IF ICE PHASE IS ALLOWED, BUT MIXED PHASE IS NOT, MELT FROZEN HYDROME !...BELOW THE MELTING LEVEL, FREEZE LIQUID WATER ABOVE THE MELTING LEVEL ! CPM=CP*(1.+0.887*QG(K)) IF(K.LE.ML)THEN TG(K)=TG(K)-(QIG(K)+QSG(K))*RLF/CPM ELSEIF(K.GT.ML)THEN TG(K)=TG(K)+(QLG(K)+QRG(K))*RLF/CPM ENDIF DQCDT(K)=(QLG(K)+QIG(K)-QL0(K)-QI0(K))/TIMEC DQIDT(K)=0. DQRDT(K)=(QRG(K)+QSG(K)-QR0(K)-QS0(K))/TIMEC DQSDT(K)=0. ELSEIF(qi_flag) THEN ! !...IF MIXED PHASE HYDROMETEORS ARE ALLOWED, FEED BACK CONVECTIVE !...TENDENCY OF HYDROMETEORS DIRECTLY... ! DQCDT(K)=(QLG(K)-QL0(K))/TIMEC DQIDT(K)=(QIG(K)-QI0(K))/TIMEC DQRDT(K)=(QRG(K)-QR0(K))/TIMEC IF (qs_flag ) THEN DQSDT(K)=(QSG(K)-QS0(K))/TIMEC ELSE DQIDT(K)=DQIDT(K)+(QSG(K)-QS0(K))/TIMEC ENDIF ELSE CALL wrf_error_fatal ( 'module_cu_kf: THIS COMBINATION OF IMOIST, IICE NOT ALLOWED' ) ENDIF ! ENDIF DTDT(K)=(TG(K)-T0(K))/TIMEC DQDT(K)=(QG(K)-Q0(K))/TIMEC 320 CONTINUE ! RAINCV is in the unit of mm PRATEC(I,J)=PPTFLX*(1.-FBFRC)/DXSQ RAINCV(I,J)=DT*PRATEC(I,J) RNC=RAINCV(I,J)*NIC ! WRITE(98,909)RNC 909 FORMAT(' CONVECTIVE RAINFALL =',F8.4,' CM') 325 CONTINUE 1000 FORMAT(' ',10A8) 1005 FORMAT(' ',F6.0,2X,F6.4,2X,F7.3,1X,F6.4,2X,4(F6.3,2X),2(F7.3,1X)) 1010 FORMAT(' ',' VERTICAL VELOCITY IS NEGATIVE AT ',F4.0,' MB') 1015 FORMAT(' ','ALL REMAINING MASS DETRAINS BELOW ',F4.0,' MB') 1025 FORMAT(5X,' KLCL=',I2,' ZLCL=',F7.1,'M', & ' DTLCL=',F5.2,' LTOP=',I2,' P0(LTOP)=',-2PF5.1,'MB FRZ LV=', & I2,' TMIX=',0PF4.1,1X,'PMIX=',-2PF6.1,' QMIX=',3PF5.1, & ' CAPE=',0PF7.1) 1030 FORMAT(' ',' P0(LET) = ',F6.1,' P0(LTOP) = ',F6.1,' VMFLCL =', & E12.3,' PLCL =',F6.1,' WLCL =',F6.3,' CLDHGT =', & F8.1) 1035 FORMAT(1X,'PEF(WS)=',F4.2,'(CB)=',F4.2,'LC,LET=',2I3,'WKL=' & ,F6.3,'VWS=',F5.2) 1040 FORMAT(' ','PRECIP EFF = 100%, ENVIR CANNOT SUPPORT DOWND' & ,'RAFTS') !1045 FORMAT('NUMBER OF DOWNDRAFT ITERATIONS EXCEEDS 10...PPTFLX' & ! ' IS DIFFERENT FROM THAT GIVEN BY PRECIP EFF RELATION') ! FLIC HAS TROUBLE WITH THIS ONE. 1045 FORMAT('NUMBER OF DOWNDRAFT ITERATIONS EXCEEDS 10') 1050 FORMAT(' ','LCOUNT= ',I3,' PPTFLX/CPR, PEFF= ',F5.3,1X,F5.3, & 'DMF(LFS)/UMF(LCL)= ',F5.3) 1055 FORMAT(/'*** DEGREE OF STABILIZATION =',F5.3,', NO MORE MASS F' & ,'LUX IS ALLOWED') !1060 FORMAT(/' ITERATION DOES NOT CONVERGE TO GIVE THE SPECIFIED ' & ! 'DEGREE OF STABILIZATION! FABE= ',F6.4) 1060 FORMAT(/' ITERATION DOES NOT CONVERGE. FABE= ',F6.4) 1070 FORMAT (16A8) 1075 FORMAT (F8.2,3(F8.2),2(F8.3),F8.2,2F8.3,F8.2,6F8.3) 1080 FORMAT(2X,'LFS,LDB,LDT =',3I3,' TIMEC, NSTEP=',F5.0,I3, & 'NCOUNT, FABE, AINC=',I2,1X,F5.3,F6.2) 1085 FORMAT (A3,16A7,2A8) 1090 FORMAT (I3,F7.2,F7.0,10F7.2,4F7.3,2F8.3) 1095 FORMAT(' ',' PPT PRODUCTION RATE= ',F10.0,' TOTAL EVAP+PPT= ', & F10.0) 1105 FORMAT(' ','NET LATENT HEAT RELEASE =',E12.5,' ACTUAL HEATING =', & E12.5,' J/KG-S, DIFFERENCE = ',F9.3,'PERCENT') 1110 FORMAT(' ','INITIAL WATER =',E12.5,' FINAL WATER =',E12.5, & ' TOTAL WATER CHANGE =',F8.2,'PERCENT') 1115 FORMAT (2X,F6.0,2X,F7.2,2X,F5.1,2X,F6.3,2(2X,F5.1),2X,F7.2,2X,F7.4 & ) 1120 FORMAT(' ','MOISTURE ERROR AS FUNCTION OF TOTAL PPT =',F9.3, & 'PERCENT') END SUBROUTINE KFPARA !----------------------------------------------------------------------- SUBROUTINE CONDLOAD(QLIQ,QICE,WTW,DZ,BOTERM,ENTERM,RATE,QNEWLQ, & QNEWIC,QLQOUT,QICOUT,G) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- ! 9/18/88...THIS PRECIPITATION FALLOUT SCHEME IS BASED ON THE SCHEME US ! BY OGURA AND CHO (1973). LIQUID WATER FALLOUT FROM A PARCEL IS CAL- ! CULATED USING THE EQUATION DQ=-RATE*Q*DT, BUT TO SIMULATE A QUASI- ! CONTINUOUS PROCESS, AND TO ELIMINATE A DEPENDENCY ON VERTICAL ! RESOLUTION THIS IS EXPRESSED AS Q=Q*EXP(-RATE*DZ). REAL, INTENT(IN ) :: G REAL, INTENT(IN ) :: DZ,BOTERM,ENTERM,RATE REAL, INTENT(INOUT) :: QLQOUT,QICOUT,WTW,QLIQ,QICE,QNEWLQ,QNEWIC REAL :: QTOT,QNEW,QEST,G1,WAVG,CONV,RATIO3,OLDQ,RATIO4,DQ,PPTDRG QTOT=QLIQ+QICE QNEW=QNEWLQ+QNEWIC ! ! ESTIMATE THE VERTICAL VELOCITY SO THAT AN AVERAGE VERTICAL VELOCITY C ! BE CALCULATED TO ESTIMATE THE TIME REQUIRED FOR ASCENT BETWEEN MODEL ! LEVELS... ! QEST=0.5*(QTOT+QNEW) G1=WTW+BOTERM-ENTERM-2.*G*DZ*QEST/1.5 IF(G1.LT.0.0)G1=0. WAVG=(SQRT(WTW)+SQRT(G1))/2. CONV=RATE*DZ/WAVG ! ! RATIO3 IS THE FRACTION OF LIQUID WATER IN FRESH CONDENSATE, RATIO4 IS ! THE FRACTION OF LIQUID WATER IN THE TOTAL AMOUNT OF CONDENSATE INVOLV ! IN THE PRECIPITATION PROCESS - NOTE THAT ONLY 60% OF THE FRESH CONDEN ! SATE IS IS ALLOWED TO PARTICIPATE IN THE CONVERSION PROCESS... ! RATIO3=QNEWLQ/(QNEW+1.E-10) ! OLDQ=QTOT QTOT=QTOT+0.6*QNEW OLDQ=QTOT RATIO4=(0.6*QNEWLQ+QLIQ)/(QTOT+1.E-10) QTOT=QTOT*EXP(-CONV) ! ! DETERMINE THE AMOUNT OF PRECIPITATION THAT FALLS OUT OF THE UPDRAFT ! PARCEL AT THIS LEVEL... ! DQ=OLDQ-QTOT QLQOUT=RATIO4*DQ QICOUT=(1.-RATIO4)*DQ ! ! ESTIMATE THE MEAN LOAD OF CONDENSATE ON THE UPDRAFT IN THE LAYER, CAL ! LATE VERTICAL VELOCITY ! PPTDRG=0.5*(OLDQ+QTOT-0.2*QNEW) WTW=WTW+BOTERM-ENTERM-2.*G*DZ*PPTDRG/1.5 ! ! DETERMINE THE NEW LIQUID WATER AND ICE CONCENTRATIONS INCLUDING LOSSE ! DUE TO PRECIPITATION AND GAINS FROM CONDENSATION... ! QLIQ=RATIO4*QTOT+RATIO3*0.4*QNEW QICE=(1.-RATIO4)*QTOT+(1.-RATIO3)*0.4*QNEW QNEWLQ=0. QNEWIC=0. END SUBROUTINE CONDLOAD !----------------------------------------------------------------------- SUBROUTINE DTFRZNEW(TU,P,THTEU,QVAP,QLIQ,QICE,RATIO2,TTFRZ,TBFRZ, & QNWFRZ,RL,FRC1,EFFQ,IFLAG,XLV0,XLV1,XLS0,XLS1, & EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- REAL, INTENT(IN ) :: XLV0,XLV1 REAL, INTENT(IN ) :: P,TTFRZ,TBFRZ,EFFQ,XLS0,XLS1,EP2,ALIQ, & BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE REAL, INTENT(INOUT) :: TU,THTEU,QVAP,QLIQ,QICE,RATIO2, & FRC1,RL,QNWFRZ INTEGER, INTENT(INOUT) :: IFLAG REAL :: CCP,RV,C5,QLQFRZ,QNEW,ESLIQ,ESICE,RLC,RLS,PI,ES,RLF,A, & B,C,DQVAP,DTFRZ,TU1,QVAP1 !----------------------------------------------------------------------- ! !...ALLOW GLACIATION OF THE UPDRAFT TO OCCUR AS AN APPROXIMATELY LINEAR ! FUNCTION OF TEMPERATURE IN THE TEMPERATURE RANGE TTFRZ TO TBFRZ... ! RV=461.5 C5=1.0723E-3 ! !...ADJUST THE LIQUID WATER CONCENTRATIONS FROM FRESH CONDENSATE AND THA ! BROUGHT UP FROM LOWER LEVELS TO AN AMOUNT THAT WOULD BE PRESENT IF N ! LIQUID WATER HAD FROZEN THUS FAR...THIS IS NECESSARY BECAUSE THE ! EXPRESSION FOR TEMP CHANGE IS MULTIPLIED BY THE FRACTION EQUAL TO TH ! PARCEL TEMP DECREASE SINCE THE LAST MODEL LEVEL DIVIDED BY THE TOTAL ! GLACIATION INTERVAL, SO THAT EFFECTIVELY THIS APPROXIMATELY ALLOWS A ! AMOUNT OF LIQUID WATER TO FREEZE WHICH IS EQUAL TO THIS SAME FRACTIO ! OF THE LIQUID WATER THAT WAS PRESENT BEFORE THE GLACIATION PROCESS W ! INITIATED...ALSO, TO ALLOW THETAU TO CONVERT APPROXIMATELY LINEARLY ! ITS VALUE WITH RESPECT TO ICE, WE NEED TO ALLOW A PORTION OF THE FRE ! CONDENSATE TO CONTRIBUTE TO THE GLACIATION PROCESS; THE FRACTIONAL ! AMOUNT THAT APPLIES TO THIS PORTION IS 1/2 OF THE FRACTIONAL AMOUNT ! FROZEN OF THE "OLD" CONDENSATE BECAUSE THIS FRESH CONDENSATE IS ONLY ! PRODUCED GRADUALLY OVER THE LAYER...NOTE THAT IN TERMS OF THE DYNAMI ! OF THE PRECIPITATION PROCESS, IE. PRECIPITATION FALLOUT, THIS FRACTI ! AMNT OF FRESH CONDENSATE HAS ALREADY BEEN INCLUDED IN THE ICE CATEGO ! QLQFRZ=QLIQ*EFFQ QNEW=QNWFRZ*EFFQ*0.5 ESLIQ=ALIQ*EXP((BLIQ*TU-CLIQ)/(TU-DLIQ)) ESICE=AICE*EXP((BICE*TU-CICE)/(TU-DICE)) RLC=2.5E6-2369.276*(TU-273.16) RLS=2833922.-259.532*(TU-273.16) RLF=RLS-RLC CCP=1005.7*(1.+0.89*QVAP) ! ! A = D(ES)/DT IS THAT CALCULATED FROM BUCK`S (1981) EMPIRICAL FORMULAS ! FOR SATURATION VAPOR PRESSURE... ! A=(CICE-BICE*DICE)/((TU-DICE)*(TU-DICE)) B=RLS*EP2/P C=A*B*ESICE/CCP DQVAP=B*(ESLIQ-ESICE)/(RLS+RLS*C)-RLF*(QLQFRZ+QNEW)/(RLS+RLS/C) DTFRZ=(RLF*(QLQFRZ+QNEW)+B*(ESLIQ-ESICE))/(CCP+A*B*ESICE) TU1=TU QVAP1=QVAP TU=TU+FRC1*DTFRZ QVAP=QVAP-FRC1*DQVAP ES=QVAP*P/(EP2+QVAP) ESLIQ=ALIQ*EXP((BLIQ*TU-CLIQ)/(TU-DLIQ)) ESICE=AICE*EXP((BICE*TU-CICE)/(TU-DICE)) RATIO2=(ESLIQ-ES)/(ESLIQ-ESICE) ! ! TYPICALLY, RATIO2 IS VERY CLOSE TO (TTFRZ-TU)/(TTFRZ-TBFRZ), USUALLY ! WITHIN 1% (USING TU BEFORE GALCIATION EFFECTS ARE APPLIED); IF THE ! INITIAL UPDRAFT TEMP IS BELOW TBFRZ AND RATIO2 IS STILL LESS THAN 1, ! AN ADJUSTMENT TO FRC1 AND RATIO2 IS INTRODUCED SO THAT GLACIATION ! EFFECTS ARE NOT UNDERESTIMATED; CONVERSELY, IF RATIO2 IS GREATER THAN ! FRC1 IS ADJUSTED SO THAT GLACIATION EFFECTS ARE NOT OVERESTIMATED... ! IF(IFLAG.GT.0.AND.RATIO2.LT.1)THEN FRC1=FRC1+(1.-RATIO2) TU=TU1+FRC1*DTFRZ QVAP=QVAP1-FRC1*DQVAP RATIO2=1. IFLAG=1 GOTO 20 ENDIF IF(RATIO2.GT.1.)THEN FRC1=FRC1-(RATIO2-1.) FRC1=AMAX1(0.0,FRC1) TU=TU1+FRC1*DTFRZ QVAP=QVAP1-FRC1*DQVAP RATIO2=1. IFLAG=1 ENDIF ! ! CALCULATE A HYBRID VALUE OF THETAU, ASSUMING THAT THE LATENT HEAT OF ! VAPORIZATION/SUBLIMATION CAN BE ESTIMATED USING THE SAME WEIGHTING ! FUNCTION AS THAT USED TO CALCULATE SATURATION VAPOR PRESSURE, CALCU- ! LATE NEW LIQUID WATER AND ICE CONCENTRATIONS... ! 20 RLC=XLV0-XLV1*TU RLS=XLS0-XLS1*TU RL=RATIO2*RLS+(1.-RATIO2)*RLC PI=(1.E5/P)**(0.2854*(1.-0.28*QVAP)) THTEU=TU*PI*EXP(RL*QVAP*C5/TU*(1.+0.81*QVAP)) IF(IFLAG.EQ.1)THEN QICE=QICE+FRC1*DQVAP+QLIQ QLIQ=0. ELSE QICE=QICE+FRC1*(DQVAP+QLQFRZ) QLIQ=QLIQ-FRC1*QLQFRZ ENDIF QNWFRZ=0. END SUBROUTINE DTFRZNEW !----------------------------------------------------------------------- !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ! THIS SUBROUTINE INTEGRATES THE AREA UNDER THE CURVE IN THE GAUSSIAN ! DISTRIBUTION...THE NUMERICAL APPROXIMATION TO THE INTEGRAL IS TAKEN F ! HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS AND MATHEMA ! TABLES ED. BY ABRAMOWITZ AND STEGUN, NAT L BUREAU OF STANDARDS APPLI ! MATHEMATICS SERIES. JUNE, 1964., MAY, 1968. ! JACK KAIN ! 7/6/89 !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC !*********************************************************************** !***** GAUSSIAN TYPE MIXING PROFILE....****************************** SUBROUTINE PROF5(EQ,EE,UD) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- REAL, INTENT(IN ) :: EQ REAL, INTENT(INOUT) :: EE,UD REAL :: SQRT2P,A1,A2,A3,P,SIGMA,FE,X,Y,EY,E45,T1,T2,C1,C2 DATA SQRT2P,A1,A2,A3,P,SIGMA,FE/2.506628,0.4361836,-0.1201676, & 0.9372980,0.33267,0.166666667,0.202765151/ X=(EQ-0.5)/SIGMA Y=6.*EQ-3. EY=EXP(Y*Y/(-2)) E45=EXP(-4.5) T2=1./(1.+P*ABS(Y)) T1=0.500498 C1=A1*T1+A2*T1*T1+A3*T1*T1*T1 C2=A1*T2+A2*T2*T2+A3*T2*T2*T2 IF(Y.GE.0.)THEN EE=SIGMA*(0.5*(SQRT2P-E45*C1-EY*C2)+SIGMA*(E45-EY))-E45*EQ*EQ/2. UD=SIGMA*(0.5*(EY*C2-E45*C1)+SIGMA*(E45-EY))-E45*(0.5+EQ*EQ/2.- & EQ) ELSE EE=SIGMA*(0.5*(EY*C2-E45*C1)+SIGMA*(E45-EY))-E45*EQ*EQ/2. UD=SIGMA*(0.5*(SQRT2P-E45*C1-EY*C2)+SIGMA*(E45-EY))-E45*(0.5+EQ* & EQ/2.-EQ) ENDIF EE=EE/FE UD=UD/FE END SUBROUTINE PROF5 !----------------------------------------------------------------------- SUBROUTINE TPMIX(P,THTU,TU,QU,QLIQ,QICE,QNEWLQ,QNEWIC,RATIO2,RL, & XLV0,XLV1,XLS0,XLS1, & EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- REAL, INTENT(IN ) :: XLV0,XLV1 REAL, INTENT(IN ) :: P,THTU,RATIO2,RL,XLS0, & XLS1,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,& CICE,DICE REAL, INTENT(INOUT) :: QU,QLIQ,QICE,TU,QNEWLQ,QNEWIC REAL :: ES,QS,PI,THTGS,F0,T1,T0,C5,RV,ESLIQ,ESICE,F1,DT,QNEW, & DQ, QTOT,DQICE,DQLIQ,RLL,CCP INTEGER :: ITCNT !----------------------------------------------------------------------- ! !...THIS SUBROUTINE ITERATIVELY EXTRACTS WET-BULB TEMPERATURE FROM EQUIV ! POTENTIAL TEMPERATURE, THEN CHECKS TO SEE IF SUFFICIENT MOISTURE IS ! AVAILABLE TO ACHIEVE SATURATION...IF NOT, TEMPERATURE IS ADJUSTED ! ACCORDINGLY, IF SO, THE RESIDUAL LIQUID WATER/ICE CONCENTRATION IS ! DETERMINED... ! C5=1.0723E-3 RV=461.5 ! ! ITERATE TO FIND WET BULB TEMPERATURE AS A FUNCTION OF EQUIVALENT POT ! TEMP AND PRS, ASSUMING SATURATION VAPOR PRESSURE...RATIO2 IS THE DEG ! OF GLACIATION... ! IF(RATIO2.LT.1.E-6)THEN ES=ALIQ*EXP((BLIQ*TU-CLIQ)/(TU-DLIQ)) QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=TU*PI*EXP((3374.6525/TU-2.5403)*QS*(1.+0.81*QS)) ELSEIF(ABS(RATIO2-1.).LT.1.E-6)THEN ES=AICE*EXP((BICE*TU-CICE)/(TU-DICE)) QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=TU*PI*EXP((3114.834/TU-0.278296)*QS*(1.+0.81*QS)) ELSE ESLIQ=ALIQ*EXP((BLIQ*TU-CLIQ)/(TU-DLIQ)) ESICE=AICE*EXP((BICE*TU-CICE)/(TU-DICE)) ES=(1.-RATIO2)*ESLIQ+RATIO2*ESICE QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=TU*PI*EXP(RL*QS*C5/TU*(1.+0.81*QS)) ENDIF F0=THTGS-THTU T1=TU-0.5*F0 T0=TU ITCNT=0 90 IF(RATIO2.LT.1.E-6)THEN ES=ALIQ*EXP((BLIQ*T1-CLIQ)/(T1-DLIQ)) QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=T1*PI*EXP((3374.6525/T1-2.5403)*QS*(1.+0.81*QS)) ELSEIF(ABS(RATIO2-1.).LT.1.E-6)THEN ES=AICE*EXP((BICE*T1-CICE)/(T1-DICE)) QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=T1*PI*EXP((3114.834/T1-0.278296)*QS*(1.+0.81*QS)) ELSE ESLIQ=ALIQ*EXP((BLIQ*T1-CLIQ)/(T1-DLIQ)) ESICE=AICE*EXP((BICE*T1-CICE)/(T1-DICE)) ES=(1.-RATIO2)*ESLIQ+RATIO2*ESICE QS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*QS)) THTGS=T1*PI*EXP(RL*QS*C5/T1*(1.+0.81*QS)) ENDIF F1=THTGS-THTU IF(ABS(F1).LT.0.01)GOTO 50 ITCNT=ITCNT+1 IF(ITCNT.GT.10)GOTO 50 DT=F1*(T1-T0)/(F1-F0) T0=T1 F0=F1 T1=T1-DT GOTO 90 ! ! IF THE PARCEL IS SUPERSATURATED, CALCULATE CONCENTRATION OF FRESH ! CONDENSATE... ! 50 IF(QS.LE.QU)THEN QNEW=QU-QS QU=QS GOTO 96 ENDIF ! ! IF THE PARCEL IS SUBSATURATED, TEMPERATURE AND MIXING RATIO MUST BE ! ADJUSTED...IF LIQUID WATER OR ICE IS PRESENT, IT IS ALLOWED TO EVAPO ! SUBLIMATE. ! QNEW=0. DQ=QS-QU QTOT=QLIQ+QICE ! ! IF THERE IS ENOUGH LIQUID OR ICE TO SATURATE THE PARCEL, TEMP STAYS ! WET BULB VALUE, VAPOR MIXING RATIO IS AT SATURATED LEVEL, AND THE MI ! RATIOS OF LIQUID AND ICE ARE ADJUSTED TO MAKE UP THE ORIGINAL SATURA ! DEFICIT... OTHERWISE, ANY AVAILABLE LIQ OR ICE VAPORIZES AND APPROPR ! ADJUSTMENTS TO PARCEL TEMP; VAPOR, LIQUID, AND ICE MIXING RATIOS ARE ! !...NOTE THAT THE LIQ AND ICE MAY BE PRESENT IN PROPORTIONS SLIGHTLY DIF ! THAN SUGGESTED BY THE VALUE OF RATIO2...CHECK TO MAKE SURE THAT LIQ ! ICE CONCENTRATIONS ARE NOT REDUCED TO BELOW ZERO WHEN EVAPORATION/ ! SUBLIMATION OCCURS... ! IF(QTOT.GE.DQ)THEN DQICE=0.0 DQLIQ=0.0 QLIQ=QLIQ-(1.-RATIO2)*DQ IF(QLIQ.LT.0.)THEN DQICE=0.0-QLIQ QLIQ=0.0 ENDIF QICE=QICE-RATIO2*DQ+DQICE IF(QICE.LT.0.)THEN DQLIQ=0.0-QICE QICE=0.0 ENDIF QLIQ=QLIQ+DQLIQ QU=QS GOTO 96 ELSE IF(RATIO2.LT.1.E-6)THEN RLL=XLV0-XLV1*T1 ELSEIF(ABS(RATIO2-1.).LT.1.E-6)THEN RLL=XLS0-XLS1*T1 ELSE RLL=RL ENDIF CCP=1005.7*(1.+0.89*QU) IF(QTOT.LT.1.E-10)THEN ! !...IF NO LIQUID WATER OR ICE IS AVAILABLE, TEMPERATURE IS GIVEN BY: T1=T1+RLL*(DQ/(1.+DQ))/CCP GOTO 96 ELSE ! !...IF SOME LIQ WATER/ICE IS AVAILABLE, BUT NOT ENOUGH TO ACHIEVE SATURA ! THE TEMPERATURE IS GIVEN BY: T1=T1+RLL*((DQ-QTOT)/(1+DQ-QTOT))/CCP QU=QU+QTOT QTOT=0. ENDIF QLIQ=0 QICE=0. ENDIF 96 TU=T1 QNEWLQ=(1.-RATIO2)*QNEW QNEWIC=RATIO2*QNEW IF(ITCNT.GT.10)PRINT*,'***** NUMBER OF ITERATIONS IN TPMIX =', & ITCNT END SUBROUTINE TPMIX !----------------------------------------------------------------------- SUBROUTINE ENVIRTHT(P1,T1,Q1,THT1,R1,RL, & EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- REAL, INTENT(IN ) :: P1,T1,Q1,R1,RL,EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,& BICE,CICE,DICE REAL, INTENT(INOUT) :: THT1 REAL:: T00,P00,C1,C2,C3,C4,C5,EE,TLOG,TDPT,TSAT,THT,TFPT,TLOGIC, & TSATLQ,TSATIC DATA T00,P00,C1,C2,C3,C4,C5/273.16,1.E5,3374.6525,2.5403,3114.834,& 0.278296,1.0723E-3/ ! ! CALCULATE ENVIRONMENTAL EQUIVALENT POTENTIAL TEMPERATURE... ! IF(R1.LT.1.E-6)THEN EE=Q1*P1/(EP2+Q1) TLOG=ALOG(EE/ALIQ) TDPT=(CLIQ-DLIQ*TLOG)/(BLIQ-TLOG) TSAT=TDPT-(.212+1.571E-3*(TDPT-T00)-4.36E-4*(T1-T00))*(T1-TDPT) THT=T1*(P00/P1)**(0.2854*(1.-0.28*Q1)) THT1=THT*EXP((C1/TSAT-C2)*Q1*(1.+0.81*Q1)) ELSEIF(ABS(R1-1.).LT.1.E-6)THEN EE=Q1*P1/(EP2+Q1) TLOG=ALOG(EE/AICE) TFPT=(CICE-DICE*TLOG)/(BICE-TLOG) THT=T1*(P00/P1)**(0.2854*(1.-0.28*Q1)) TSAT=TFPT-(.182+1.13E-3*(TFPT-T00)-3.58E-4*(T1-T00))*(T1-TFPT) THT1=THT*EXP((C3/TSAT-C4)*Q1*(1.+0.81*Q1)) ELSE EE=Q1*P1/(EP2+Q1) TLOG=ALOG(EE/ALIQ) TDPT=(CLIQ-DLIQ*TLOG)/(BLIQ-TLOG) TLOGIC=ALOG(EE/AICE) TFPT=(CICE-DICE*TLOGIC)/(BICE-TLOGIC) THT=T1*(P00/P1)**(0.2854*(1.-0.28*Q1)) TSATLQ=TDPT-(.212+1.571E-3*(TDPT-T00)-4.36E-4*(T1-T00))*(T1-TDPT) TSATIC=TFPT-(.182+1.13E-3*(TFPT-T00)-3.58E-4*(T1-T00))*(T1-TFPT) TSAT=R1*TSATIC+(1.-R1)*TSATLQ THT1=THT*EXP(RL*Q1*C5/TSAT*(1.+0.81*Q1)) ENDIF END SUBROUTINE ENVIRTHT !----------------------------------------------------------------------- !************************* TPDD.FOR ************************************ ! THIS SUBROUTINE ITERATIVELY EXTRACTS TEMPERATURE FROM EQUIVALENT * ! POTENTIAL TEMP. IT IS DESIGNED FOR USE WITH DOWNDRAFT CALCULATIONS. ! IF RELATIVE HUMIDITY IS SPECIFIED TO BE LESS THAN 100%, PARCEL * ! TEMP, SPECIFIC HUMIDITY, AND LIQUID WATER CONTENT ARE ITERATIVELY * ! CALCULATED. * !*********************************************************************** FUNCTION TPDD(P,THTED,TGS,RS,RD,RH,XLV0,XLV1, & EP2,ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- REAL, INTENT(IN ) :: XLV0,XLV1 REAL, INTENT(IN ) :: P,THTED,TGS,RD,RH,EP2,ALIQ,BLIQ, & CLIQ,DLIQ,AICE,BICE,CICE,DICE REAL, INTENT(INOUT) :: RS REAL :: TPDD,ES,PI,THTGS,F0,T1,T0,CCP,F1,DT,RL,DSSDT,T1RH,RSRH INTEGER :: ITCNT !----------------------------------------------------------------------- ES=ALIQ*EXP((BLIQ*TGS-CLIQ)/(TGS-DLIQ)) RS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*RS)) THTGS=TGS*PI*EXP((3374.6525/TGS-2.5403)*RS*(1.+0.81*RS)) F0=THTGS-THTED T1=TGS-0.5*F0 T0=TGS CCP=1005.7 ! !...ITERATE TO FIND WET-BULB TEMPERATURE... ! ITCNT=0 90 ES=ALIQ*EXP((BLIQ*T1-CLIQ)/(T1-DLIQ)) RS=EP2*ES/(P-ES) PI=(1.E5/P)**(0.2854*(1.-0.28*RS)) THTGS=T1*PI*EXP((3374.6525/T1-2.5403)*RS*(1.+0.81*RS)) F1=THTGS-THTED IF(ABS(F1).LT.0.05)GOTO 50 ITCNT=ITCNT+1 IF(ITCNT.GT.10)GOTO 50 DT=F1*(T1-T0)/(F1-F0) T0=T1 F0=F1 T1=T1-DT GOTO 90 50 RL=XLV0-XLV1*T1 ! !...IF RELATIVE HUMIDITY IS SPECIFIED TO BE LESS THAN 100%, ESTIMATE THE ! TEMPERATURE AND MIXING RATIO WHICH WILL YIELD THE APPROPRIATE VALUE. ! IF(RH.EQ.1.)GOTO 110 DSSDT=(CLIQ-BLIQ*DLIQ)/((T1-DLIQ)*(T1-DLIQ)) DT=RL*RS*(1.-RH)/(CCP+RL*RH*RS*DSSDT) T1RH=T1+DT ES=RH*ALIQ*EXP((BLIQ*T1RH-CLIQ)/(T1RH-DLIQ)) RSRH=EP2*ES/(P-ES) ! !...CHECK TO SEE IF MIXING RATIO AT SPECIFIED RH IS LESS THAN ACTUAL !...MIXING RATIO...IF SO, ADJUST TO GIVE ZERO EVAPORATION... ! IF(RSRH.LT.RD)THEN RSRH=RD T1RH=T1+(RS-RSRH)*RL/CCP ENDIF T1=T1RH RS=RSRH 110 TPDD=T1 IF(ITCNT.GT.10)PRINT*,'***** NUMBER OF ITERATIONS IN TPDD = ', & ITCNT END FUNCTION TPDD !==================================================================== SUBROUTINE kfinit(RTHCUTEN,RQVCUTEN,RQCCUTEN,RQRCUTEN, & RQICUTEN,RQSCUTEN,NCA,W0AVG,P_QI,P_QS, & P_FIRST_SCALAR,restart,allowed_to_read, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !-------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------- LOGICAL , INTENT(IN) :: restart, allowed_to_read INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN) :: P_QI,P_QS,P_FIRST_SCALAR REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: & RTHCUTEN, & RQVCUTEN, & RQCCUTEN, & RQRCUTEN, & RQICUTEN, & RQSCUTEN REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: W0AVG REAL, DIMENSION( ims:ime , jms:jme ), INTENT(INOUT):: NCA INTEGER :: i, j, k, itf, jtf, ktf jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) IF(.not.restart)THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RTHCUTEN(i,k,j)=0. RQVCUTEN(i,k,j)=0. RQCCUTEN(i,k,j)=0. RQRCUTEN(i,k,j)=0. ENDDO ENDDO ENDDO IF (P_QI .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQICUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF IF (P_QS .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQSCUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF DO j=jts,jtf DO i=its,itf NCA(i,j)=-100. ENDDO ENDDO DO j=jts,jtf DO k=kts,ktf DO i=its,itf W0AVG(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF END SUBROUTINE kfinit !------------------------------------------------------- END MODULE module_cu_kf