!WRF:MODEL_LAYER:PHYSICS ! MODULE module_cu_gd CONTAINS !------------------------------------------------------------- SUBROUTINE GRELLDRV( & DT,itimestep,DX & ,rho,RAINCV,PRATEC & ,U,V,t,W,q,p,pi & ,dz8w,p8w,XLV,CP,G,r_v & ,STEPCU,htop,hbot & ,CU_ACT_FLAG,warm_rain & ,APR_GR,APR_W,APR_MC,APR_ST,APR_AS & ,APR_CAPMA,APR_CAPME,APR_CAPMI & ,MASS_FLUX,XF_ENS,PR_ENS,HT,XLAND,gsw & ,GDC,GDC2 & ,ensdim,maxiens,maxens,maxens2,maxens3 & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ,periodic_x,periodic_y & ,RQVCUTEN,RQCCUTEN,RQICUTEN & ,RQVFTEN,RQVBLTEN & ,RTHFTEN,RTHCUTEN,RTHRATEN,RTHBLTEN & ,F_QV ,F_QC ,F_QR ,F_QI ,F_QS & ,CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,f_flux ) !------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------- INTEGER, INTENT(IN ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte LOGICAL periodic_x,periodic_y integer, intent (in ) :: & ensdim,maxiens,maxens,maxens2,maxens3 INTEGER, INTENT(IN ) :: STEPCU, ITIMESTEP LOGICAL, INTENT(IN ) :: warm_rain REAL, INTENT(IN ) :: XLV, R_v REAL, INTENT(IN ) :: CP,G REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , & INTENT(IN ) :: & U, & V, & W, & pi, & t, & q, & p, & dz8w, & p8w, & rho REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , & OPTIONAL , & INTENT(INOUT ) :: & GDC,GDC2 REAL, DIMENSION( ims:ime , jms:jme ),INTENT(IN) :: GSW,HT,XLAND ! REAL, INTENT(IN ) :: DT, DX ! REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: RAINCV, PRATEC, MASS_FLUX, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI,htop,hbot !+lxz ! REAL, DIMENSION( ims:ime , jms:jme ) :: & !, INTENT(INOUT) :: & ! HTOP, &! highest model layer penetrated by cumulus since last reset in radiation_driver ! HBOT ! lowest model layer penetrated by cumulus since last reset in radiation_driver ! ! HBOT>HTOP follow physics leveling convention LOGICAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: CU_ACT_FLAG ! ! Optionals ! REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & OPTIONAL, & INTENT(INOUT) :: RTHFTEN, & RQVFTEN REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & OPTIONAL, & INTENT(IN ) :: & RTHRATEN, & RTHBLTEN, & RQVBLTEN REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & OPTIONAL, & INTENT(INOUT) :: & RTHCUTEN, & RQVCUTEN, & RQCCUTEN, & RQICUTEN REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & OPTIONAL, & INTENT(INOUT) :: & CFU1, & CFD1, & DFU1, & EFU1, & DFD1, & EFD1 ! ! Flags relating to the optional tendency arrays declared above ! Models that carry the optional tendencies will provdide the ! optional arguments at compile time; these flags all the model ! to determine at run-time whether a particular tracer is in ! use or not. ! LOGICAL, OPTIONAL :: & F_QV & ,F_QC & ,F_QR & ,F_QI & ,F_QS LOGICAL, intent(in), OPTIONAL :: f_flux ! LOCAL VARS real, dimension ( ims:ime , jms:jme , 1:ensdim) :: & massfln,xf_ens,pr_ens real, dimension (its:ite,kts:kte+1) :: & OUTT,OUTQ,OUTQC,phh,cupclw, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1 logical :: l_flux real, dimension (its:ite) :: & pret, ter11, aa0, fp !+lxz integer, dimension (its:ite) :: & kbcon, ktop !.lxz integer, dimension (its:ite,jts:jte) :: & iact_old_gr integer :: ichoice,iens,ibeg,iend,jbeg,jend ! ! basic environmental input includes moisture convergence (mconv) ! omega (omeg), windspeed (us,vs), and a flag (aaeq) to turn off ! convection for this call only and at that particular gridpoint ! real, dimension (its:ite,kts:kte+1) :: & T2d,TN,q2d,qo,PO,P2d,US,VS,omeg real, dimension (its:ite) :: & Z1,PSUR,AAEQ,direction,mconv,cuten,umean,vmean,pmean INTEGER :: i,j,k,ICLDCK,ipr,jpr REAL :: tcrit,dp,dq INTEGER :: itf,jtf,ktf REAL :: rkbcon,rktop !-lxz l_flux=.FALSE. if (present(f_flux)) l_flux=f_flux if (l_flux) then l_flux = l_flux .and. present(cfu1) .and. present(cfd1) & .and. present(dfu1) .and. present(efu1) & .and. present(dfd1) .and. present(efd1) endif ichoice=0 iens=1 ipr=0 jpr=0 IF ( periodic_x ) THEN ibeg=max(its,ids) iend=min(ite,ide-1) ELSE ibeg=max(its,ids+4) iend=min(ite,ide-5) END IF IF ( periodic_y ) THEN jbeg=max(jts,jds) jend=min(jte,jde-1) ELSE jbeg=max(jts,jds+4) jend=min(jte,jde-5) END IF tcrit=258. itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) jtf=MIN(jte,jde-1) ! DO 100 J = jts,jtf DO I= its,itf cuten(i)=0. iact_old_gr(i,j)=0 mass_flux(i,j)=0. pratec(i,j) = 0. raincv(i,j)=0. CU_ACT_FLAG(i,j) = .true. ENDDO DO k=1,ensdim DO I= its,itf massfln(i,j,k)=0. ENDDO ENDDO #if ( EM_CORE == 1 ) DO k= kts,ktf DO I= its,itf RTHFTEN(i,k,j)=(RTHFTEN(i,k,j)+RTHRATEN(i,k,j)+RTHBLTEN(i,k,j))*pi(i,k,j) RQVFTEN(i,k,j)=RQVFTEN(i,k,j)+RQVBLTEN(i,k,j) ENDDO ENDDO #endif ! put hydrostatic pressure on half levels DO K=kts,ktf DO I=ITS,ITF phh(i,k) = p(i,k,j) ENDDO ENDDO DO I=ITS,ITF PSUR(I)=p8w(I,1,J)*.01 TER11(I)=HT(i,j) mconv(i)=0. aaeq(i)=0. direction(i)=0. pret(i)=0. umean(i)=0. vmean(i)=0. pmean(i)=0. ENDDO DO K=kts,ktf DO I=ITS,ITF omeg(i,k)=0. ! cupclw(i,k)=0. po(i,k)=phh(i,k)*.01 P2d(I,K)=PO(i,k) US(I,K) =u(i,k,j) VS(I,K) =v(i,k,j) T2d(I,K)=t(i,k,j) q2d(I,K)=q(i,k,j) omeg(I,K)= -g*rho(i,k,j)*w(i,k,j) TN(I,K)=t2d(i,k)+RTHFTEN(i,k,j)*dt IF(TN(I,K).LT.200.)TN(I,K)=T2d(I,K) QO(I,K)=q2d(i,k)+RQVFTEN(i,k,j)*dt IF(Q2d(I,K).LT.1.E-08)Q2d(I,K)=1.E-08 IF(QO(I,K).LT.1.E-08)QO(I,K)=1.E-08 OUTT(I,K)=0. OUTQ(I,K)=0. OUTQC(I,K)=0. ! RTHFTEN(i,k,j)=0. ! RQVFTEN(i,k,j)=0. ENDDO ENDDO do k= kts+1,ktf-1 DO I = its,itf if((p2d(i,1)-p2d(i,k)).gt.150.and.p2d(i,k).gt.300)then dp=-.5*(p2d(i,k+1)-p2d(i,k-1)) umean(i)=umean(i)+us(i,k)*dp vmean(i)=vmean(i)+vs(i,k)*dp pmean(i)=pmean(i)+dp endif enddo enddo DO I = its,itf umean(i)=umean(i)/pmean(i) vmean(i)=vmean(i)/pmean(i) direction(i)=(atan2(umean(i),vmean(i))+3.1415926)*57.29578 if(direction(i).gt.360.)direction(i)=direction(i)-360. ENDDO DO K=kts,ktf-1 DO I = its,itf dq=(q2d(i,k+1)-q2d(i,k)) mconv(i)=mconv(i)+omeg(i,k)*dq/g ENDDO ENDDO DO I = its,itf if(mconv(i).lt.0.)mconv(i)=0. ENDDO ! !---- CALL CUMULUS PARAMETERIZATION ! CALL CUP_enss(outqc,j,AAEQ,T2d,Q2d,TER11,TN,QO,PO,PRET, & P2d,OUTT,OUTQ,DT,PSUR,US,VS,tcrit,iens, & mconv,massfln,iact_old_gr,omeg,direction,MASS_FLUX, & maxiens,maxens,maxens2,maxens3,ensdim, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI,kbcon,ktop, & xf_ens,pr_ens,XLAND,gsw,cupclw, & xlv,r_v,cp,g,ichoice,ipr,jpr, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1,l_flux,& ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) CALL neg_check(dt,q2d,outq,outt,outqc,pret,its,ite,kts,kte,itf,ktf) if(j.ge.jbeg.and.j.le.jend)then DO I=its,itf ! cuten(i)=0. if(i.ge.ibeg.and.i.le.iend)then if(pret(i).gt.0.)then pratec(i,j)=pret(i) raincv(i,j)=pret(i)*dt cuten(i)=1. rkbcon = kte+kts - kbcon(i) rktop = kte+kts - ktop(i) if (ktop(i) > HTOP(i,j)) HTOP(i,j) = ktop(i)+.001 if (kbcon(i) < HBOT(i,j)) HBOT(i,j) = kbcon(i)+.001 endif else pret(i)=0. endif ENDDO DO K=kts,ktf DO I=its,itf RTHCUTEN(I,K,J)=outt(i,k)*cuten(i)/pi(i,k,j) RQVCUTEN(I,K,J)=outq(i,k)*cuten(i) ENDDO ENDDO IF(PRESENT(RQCCUTEN)) THEN IF ( F_QC ) THEN DO K=kts,ktf DO I=its,itf RQCCUTEN(I,K,J)=outqc(I,K)*cuten(i) IF ( PRESENT( GDC ) ) GDC(I,K,J)=CUPCLW(I,K)*cuten(i) IF ( PRESENT( GDC2 ) ) GDC2(I,K,J)=0. ENDDO ENDDO ENDIF ENDIF !...... QSTEN STORES GRAUPEL TENDENCY IF IT EXISTS, OTHERISE SNOW (V2) IF(PRESENT(RQICUTEN).AND.PRESENT(RQCCUTEN))THEN IF (F_QI) THEN DO K=kts,ktf DO I=its,itf if(t2d(i,k).lt.258.)then RQICUTEN(I,K,J)=outqc(I,K)*cuten(i) RQCCUTEN(I,K,J)=0. IF ( PRESENT( GDC2 ) ) GDC2(I,K,J)=CUPCLW(I,K)*cuten(i) else RQICUTEN(I,K,J)=0. RQCCUTEN(I,K,J)=outqc(I,K)*cuten(i) IF ( PRESENT( GDC ) ) GDC(I,K,J)=CUPCLW(I,K)*cuten(i) endif ENDDO ENDDO ENDIF ENDIF if (l_flux) then DO K=kts,ktf DO I=its,itf cfu1(i,k,j)=outcfu1(i,k)*cuten(i) cfd1(i,k,j)=outcfd1(i,k)*cuten(i) dfu1(i,k,j)=outdfu1(i,k)*cuten(i) efu1(i,k,j)=outefu1(i,k)*cuten(i) dfd1(i,k,j)=outdfd1(i,k)*cuten(i) efd1(i,k,j)=outefd1(i,k)*cuten(i) enddo enddo endif endif !jbeg,jend 100 continue END SUBROUTINE GRELLDRV SUBROUTINE CUP_enss(OUTQC,J,AAEQ,T,Q,Z1, & TN,QO,PO,PRE,P,OUTT,OUTQ,DTIME,PSUR,US,VS, & TCRIT,iens,mconv,massfln,iact, & omeg,direction,massflx,maxiens, & maxens,maxens2,maxens3,ensdim, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI,kbcon,ktop, & !-lxz xf_ens,pr_ens,xland,gsw,cupclw, & xl,rv,cp,g,ichoice,ipr,jpr, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1,l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte,ipr,jpr integer, intent (in ) :: & j,ensdim,maxiens,maxens,maxens2,maxens3,ichoice,iens ! ! ! real, dimension (ims:ime,jms:jme,1:ensdim) & ,intent (inout) :: & massfln,xf_ens,pr_ens real, dimension (ims:ime,jms:jme) & ,intent (inout ) :: & APR_GR,APR_W,APR_MC,APR_ST,APR_AS,APR_CAPMA, & APR_CAPME,APR_CAPMI,massflx real, dimension (ims:ime,jms:jme) & ,intent (in ) :: & xland,gsw integer, dimension (its:ite,jts:jte) & ,intent (in ) :: & iact ! outtem = output temp tendency (per s) ! outq = output q tendency (per s) ! outqc = output qc tendency (per s) ! pre = output precip real, dimension (its:ite,kts:kte) & ,intent (out ) :: & OUTT,OUTQ,OUTQC,CUPCLW, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1 logical, intent(in) :: l_flux real, dimension (its:ite) & ,intent (out ) :: & pre !+lxz integer, dimension (its:ite) & ,intent (out ) :: & kbcon,ktop !.lxz ! ! basic environmental input includes moisture convergence (mconv) ! omega (omeg), windspeed (us,vs), and a flag (aaeq) to turn off ! convection for this call only and at that particular gridpoint ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & T,TN,PO,P,US,VS,omeg real, dimension (its:ite,kts:kte) & ,intent (inout) :: & Q,QO real, dimension (its:ite) & ,intent (in ) :: & Z1,PSUR,AAEQ,direction,mconv real & ,intent (in ) :: & dtime,tcrit,xl,cp,rv,g ! ! local ensemble dependent variables in this routine ! real, dimension (its:ite,1:maxens) :: & xaa0_ens real, dimension (1:maxens) :: & mbdt_ens real, dimension (1:maxens2) :: & edt_ens real, dimension (its:ite,1:maxens2) :: & edtc real, dimension (its:ite,kts:kte,1:maxens2) :: & dellat_ens,dellaqc_ens,dellaq_ens,pwo_ens real, dimension (its:ite,kts:kte,1:maxens2) :: & CFU1_ens,CFD1_ens,DFU1_ens,EFU1_ens,DFD1_ens,EFD1_ens ! ! ! !***************** the following are your basic environmental ! variables. They carry a "_cup" if they are ! on model cloud levels (staggered). They carry ! an "o"-ending (z becomes zo), if they are the forced ! variables. They are preceded by x (z becomes xz) ! to indicate modification by some typ of cloud ! ! z = heights of model levels ! q = environmental mixing ratio ! qes = environmental saturation mixing ratio ! t = environmental temp ! p = environmental pressure ! he = environmental moist static energy ! hes = environmental saturation moist static energy ! z_cup = heights of model cloud levels ! q_cup = environmental q on model cloud levels ! qes_cup = saturation q on model cloud levels ! t_cup = temperature (Kelvin) on model cloud levels ! p_cup = environmental pressure ! he_cup = moist static energy on model cloud levels ! hes_cup = saturation moist static energy on model cloud levels ! gamma_cup = gamma on model cloud levels ! ! ! hcd = moist static energy in downdraft ! zd normalized downdraft mass flux ! dby = buoancy term ! entr = entrainment rate ! zd = downdraft normalized mass flux ! entr= entrainment rate ! hcd = h in model cloud ! bu = buoancy term ! zd = normalized downdraft mass flux ! gamma_cup = gamma on model cloud levels ! mentr_rate = entrainment rate ! qcd = cloud q (including liquid water) after entrainment ! qrch = saturation q in cloud ! pwd = evaporate at that level ! pwev = total normalized integrated evaoprate (I2) ! entr= entrainment rate ! z1 = terrain elevation ! entr = downdraft entrainment rate ! jmin = downdraft originating level ! kdet = level above ground where downdraft start detraining ! psur = surface pressure ! z1 = terrain elevation ! pr_ens = precipitation ensemble ! xf_ens = mass flux ensembles ! massfln = downdraft mass flux ensembles used in next timestep ! omeg = omega from large scale model ! mconv = moisture convergence from large scale model ! zd = downdraft normalized mass flux ! zu = updraft normalized mass flux ! dir = "storm motion" ! mbdt = arbitrary numerical parameter ! dtime = dt over which forcing is applied ! iact_gr_old = flag to tell where convection was active ! kbcon = LFC of parcel from k22 ! k22 = updraft originating level ! icoic = flag if only want one closure (usually set to zero!) ! dby = buoancy term ! ktop = cloud top (output) ! xmb = total base mass flux ! hc = cloud moist static energy ! hkb = moist static energy at originating level ! mentr_rate = entrainment rate real, dimension (its:ite,kts:kte) :: & he,hes,qes,z, & heo,heso,qeso,zo, & xhe,xhes,xqes,xz,xt,xq, & qes_cup,q_cup,he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup, & qeso_cup,qo_cup,heo_cup,heso_cup,zo_cup,po_cup,gammao_cup, & tn_cup, & xqes_cup,xq_cup,xhe_cup,xhes_cup,xz_cup,xp_cup,xgamma_cup, & xt_cup, & dby,qc,qrcd,pwd,pw,hcd,qcd,dbyd,hc,qrc,zu,zd,clw_all, & dbyo,qco,qrcdo,pwdo,pwo,hcdo,qcdo,dbydo,hco,qrco,zuo,zdo, & xdby,xqc,xqrcd,xpwd,xpw,xhcd,xqcd,xhc,xqrc,xzu,xzd, & ! cd = detrainment function for updraft ! cdd = detrainment function for downdraft ! dellat = change of temperature per unit mass flux of cloud ensemble ! dellaq = change of q per unit mass flux of cloud ensemble ! dellaqc = change of qc per unit mass flux of cloud ensemble cd,cdd,scr1,DELLAH,DELLAQ,DELLAT,DELLAQC, & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1 ! aa0 cloud work function for downdraft ! edt = epsilon ! aa0 = cloud work function without forcing effects ! aa1 = cloud work function with forcing effects ! xaa0 = cloud work function with cloud effects (ensemble dependent) ! edt = epsilon real, dimension (its:ite) :: & edt,edto,edtx,AA1,AA0,XAA0,HKB,HKBO,aad,XHKB,QKB,QKBO, & XMB,XPWAV,XPWEV,PWAV,PWEV,PWAVO,PWEVO,BU,BUO,cap_max,xland1, & cap_max_increment,closure_n integer, dimension (its:ite) :: & kzdown,KDET,K22,KB,JMIN,kstabi,kstabm,K22x, & !-lxz KBCONx,KBx,KTOPx,ierr,ierr2,ierr3,KBMAX integer :: & nall,iedt,nens,nens3,ki,I,K,KK,iresult real :: & day,dz,mbdt,entr_rate,radius,entrd_rate,mentr_rate,mentrd_rate, & zcutdown,edtmax,edtmin,depth_min,zkbmax,z_detr,zktop, & massfld,dh,cap_maxs integer :: itf,jtf,ktf integer :: jmini logical :: keep_going itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) jtf=MIN(jte,jde-1) !sms$distribute end day=86400. do i=its,itf closure_n(i)=16. xland1(i)=1. if(xland(i,j).gt.1.5)xland1(i)=0. cap_max_increment(i)=25. enddo ! !--- specify entrainmentrate and detrainmentrate ! if(iens.le.4)then radius=14000.-float(iens)*2000. else radius=12000. endif ! !--- gross entrainment rate (these may be changed later on in the !--- program, depending what your detrainment is!!) ! entr_rate=.2/radius ! !--- entrainment of mass ! mentrd_rate=0. mentr_rate=entr_rate ! !--- initial detrainmentrates ! do k=kts,ktf do i=its,itf cupclw(i,k)=0. cd(i,k)=0.1*entr_rate cdd(i,k)=0. enddo enddo ! !--- max/min allowed value for epsilon (ratio downdraft base mass flux/updraft ! base mass flux ! edtmax=.8 edtmin=.2 ! !--- minimum depth (m), clouds must have ! depth_min=500. ! !--- maximum depth (mb) of capping !--- inversion (larger cap = no convection) ! cap_maxs=75. !sms$to_local(grid_dh: <1, mix :size>, <2, mjx :size>) begin DO 7 i=its,itf kbmax(i)=1 aa0(i)=0. aa1(i)=0. aad(i)=0. edt(i)=0. kstabm(i)=ktf-1 IERR(i)=0 IERR2(i)=0 IERR3(i)=0 if(aaeq(i).lt.-1.)then ierr(i)=20 endif 7 CONTINUE ! !--- first check for upstream convection ! do i=its,itf cap_max(i)=cap_maxs ! if(tkmax(i,j).lt.2.)cap_max(i)=25. if(gsw(i,j).lt.1.)cap_max(i)=25. iresult=0 ! massfld=0. ! call cup_direction2(i,j,direction,iact, & ! cu_mfx,iresult,0,massfld, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) ! cap_max(i)=cap_maxs if(iresult.eq.1)then cap_max(i)=cap_maxs+20. endif ! endif enddo ! !--- max height(m) above ground where updraft air can originate ! zkbmax=4000. ! !--- height(m) above which no downdrafts are allowed to originate ! zcutdown=3000. ! !--- depth(m) over which downdraft detrains all its mass ! z_detr=1250. ! do nens=1,maxens mbdt_ens(nens)=(float(nens)-3.)*dtime*1.e-3+dtime*5.E-03 enddo do nens=1,maxens2 edt_ens(nens)=.95-float(nens)*.01 enddo ! if(j.eq.jpr)then ! print *,'radius ensemble ',iens,radius ! print *,mbdt_ens ! print *,edt_ens ! endif ! !--- environmental conditions, FIRST HEIGHTS ! do i=its,itf if(ierr(i).ne.20)then do k=1,maxens*maxens2*maxens3 xf_ens(i,j,(iens-1)*maxens*maxens2*maxens3+k)=0. pr_ens(i,j,(iens-1)*maxens*maxens2*maxens3+k)=0. enddo endif enddo ! !--- calculate moist static energy, heights, qes ! call cup_env(z,qes,he,hes,t,q,p,z1, & psur,ierr,tcrit,0,xl,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_env(zo,qeso,heo,heso,tn,qo,po,z1, & psur,ierr,tcrit,0,xl,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- environmental values on cloud levels ! call cup_env_clev(t,qes,q,he,hes,z,p,qes_cup,q_cup,he_cup, & hes_cup,z_cup,p_cup,gamma_cup,t_cup,psur, & ierr,z1,xl,rv,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_env_clev(tn,qeso,qo,heo,heso,zo,po,qeso_cup,qo_cup, & heo_cup,heso_cup,zo_cup,po_cup,gammao_cup,tn_cup,psur, & ierr,z1,xl,rv,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do i=its,itf if(ierr(i).eq.0)then ! do k=kts,ktf-2 if(zo_cup(i,k).gt.zkbmax+z1(i))then kbmax(i)=k go to 25 endif enddo 25 continue ! ! !--- level where detrainment for downdraft starts ! do k=kts,ktf if(zo_cup(i,k).gt.z_detr+z1(i))then kdet(i)=k go to 26 endif enddo 26 continue ! endif enddo ! ! ! !------- DETERMINE LEVEL WITH HIGHEST MOIST STATIC ENERGY CONTENT - K22 ! CALL cup_MAXIMI(HEO_CUP,3,KBMAX,K22,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) DO 36 i=its,itf IF(ierr(I).eq.0.)THEN IF(K22(I).GE.KBMAX(i))ierr(i)=2 endif 36 CONTINUE ! !--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON ! call cup_kbcon(cap_max_increment,1,k22,kbcon,heo_cup,heso_cup, & ierr,kbmax,po_cup,cap_max, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! call cup_kbcon_cin(1,k22,kbcon,heo_cup,heso_cup,z,tn_cup, & ! qeso_cup,ierr,kbmax,po_cup,cap_max,xl,cp,& ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) ! !--- increase detrainment in stable layers ! CALL cup_minimi(HEso_cup,Kbcon,kstabm,kstabi,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do i=its,itf IF(ierr(I).eq.0.)THEN if(kstabm(i)-1.gt.kstabi(i))then do k=kstabi(i),kstabm(i)-1 cd(i,k)=cd(i,k-1)+1.5*entr_rate if(cd(i,k).gt.10.0*entr_rate)cd(i,k)=10.0*entr_rate enddo ENDIF ENDIF ENDDO ! !--- calculate incloud moist static energy ! call cup_up_he(k22,hkb,z_cup,cd,mentr_rate,he_cup,hc, & kbcon,ierr,dby,he,hes_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_up_he(k22,hkbo,zo_cup,cd,mentr_rate,heo_cup,hco, & kbcon,ierr,dbyo,heo,heso_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) !--- DETERMINE CLOUD TOP - KTOP ! call cup_ktop(1,dbyo,kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) DO 37 i=its,itf kzdown(i)=0 if(ierr(i).eq.0)then zktop=(zo_cup(i,ktop(i))-z1(i))*.6 zktop=min(zktop+z1(i),zcutdown+z1(i)) do k=kts,kte if(zo_cup(i,k).gt.zktop)then kzdown(i)=k go to 37 endif enddo endif 37 CONTINUE ! !--- DOWNDRAFT ORIGINATING LEVEL - JMIN ! call cup_minimi(HEso_cup,K22,kzdown,JMIN,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) DO 100 i=its,ite IF(ierr(I).eq.0.)THEN ! !--- check whether it would have buoyancy, if there where !--- no entrainment/detrainment ! !jm begin 20061212: the following code replaces code that ! was too complex and causing problem for optimization. ! Done in consultation with G. Grell. jmini = jmin(i) keep_going = .TRUE. DO WHILE ( keep_going ) keep_going = .FALSE. if ( jmini - 1 .lt. kdet(i) ) kdet(i) = jmini-1 if ( jmini .ge. ktop(i)-1 ) jmini = ktop(i) - 2 ki = jmini hcdo(i,ki)=heso_cup(i,ki) DZ=Zo_cup(i,Ki+1)-Zo_cup(i,Ki) dh=0. DO k=ki-1,1,-1 hcdo(i,k)=heso_cup(i,jmini) DZ=Zo_cup(i,K+1)-Zo_cup(i,K) dh=dh+dz*(HCDo(i,K)-heso_cup(i,k)) IF(dh.gt.0.)THEN jmini=jmini-1 IF ( jmini .gt. 3 ) THEN keep_going = .TRUE. ELSE ierr(i) = 9 EXIT ENDIF ENDIF ENDDO ENDDO jmin(i) = jmini IF ( jmini .le. 3 ) THEN ierr(i)=4 ENDIF !jm end 20061212 ENDIF 100 CONTINUE ! ! - Must have at least depth_min m between cloud convective base ! and cloud top. ! do i=its,itf IF(ierr(I).eq.0.)THEN IF(-zo_cup(I,KBCON(I))+zo_cup(I,KTOP(I)).LT.depth_min)then ierr(i)=6 endif endif enddo ! !c--- normalized updraft mass flux profile ! call cup_up_nms(zu,z_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_up_nms(zuo,zo_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !c--- normalized downdraft mass flux profile,also work on bottom detrainment !--- in this routine ! call cup_dd_nms(zd,z_cup,cdd,mentrd_rate,jmin,ierr, & 0,kdet,z1, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dd_nms(zdo,zo_cup,cdd,mentrd_rate,jmin,ierr, & 1,kdet,z1, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- downdraft moist static energy ! call cup_dd_he(hes_cup,zd,hcd,z_cup,cdd,mentrd_rate, & jmin,ierr,he,dbyd,he_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dd_he(heso_cup,zdo,hcdo,zo_cup,cdd,mentrd_rate, & jmin,ierr,heo,dbydo,he_cup,& ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- calculate moisture properties of downdraft ! call cup_dd_moisture(zd,hcd,hes_cup,qcd,qes_cup, & pwd,q_cup,z_cup,cdd,mentrd_rate,jmin,ierr,gamma_cup, & pwev,bu,qrcd,q,he,t_cup,2,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dd_moisture(zdo,hcdo,heso_cup,qcdo,qeso_cup, & pwdo,qo_cup,zo_cup,cdd,mentrd_rate,jmin,ierr,gammao_cup, & pwevo,bu,qrcdo,qo,heo,tn_cup,1,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- calculate moisture properties of updraft ! call cup_up_moisture(ierr,z_cup,qc,qrc,pw,pwav, & kbcon,ktop,cd,dby,mentr_rate,clw_all, & q,GAMMA_cup,zu,qes_cup,k22,q_cup,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do k=kts,ktf do i=its,itf cupclw(i,k)=qrc(i,k) enddo enddo call cup_up_moisture(ierr,zo_cup,qco,qrco,pwo,pwavo, & kbcon,ktop,cd,dbyo,mentr_rate,clw_all, & qo,GAMMAo_cup,zuo,qeso_cup,k22,qo_cup,xl,& ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- calculate workfunctions for updrafts ! call cup_up_aa0(aa0,z,zu,dby,GAMMA_CUP,t_cup, & kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_up_aa0(aa1,zo,zuo,dbyo,GAMMAo_CUP,tn_cup, & kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do i=its,itf if(ierr(i).eq.0)then if(aa1(i).eq.0.)then ierr(i)=17 endif endif enddo ! !--- DETERMINE DOWNDRAFT STRENGTH IN TERMS OF WINDSHEAR ! call cup_dd_edt(ierr,us,vs,zo,ktop,kbcon,edt,po,pwavo, & pwevo,edtmax,edtmin,maxens2,edtc, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do 250 iedt=1,maxens2 do i=its,itf if(ierr(i).eq.0)then edt(i)=edtc(i,iedt) edto(i)=edtc(i,iedt) edtx(i)=edtc(i,iedt) endif enddo do k=kts,ktf do i=its,itf dellat_ens(i,k,iedt)=0. dellaq_ens(i,k,iedt)=0. dellaqc_ens(i,k,iedt)=0. pwo_ens(i,k,iedt)=0. enddo enddo if (l_flux) then do k=kts,ktf do i=its,itf cfu1_ens(i,k,iedt)=0. cfd1_ens(i,k,iedt)=0. dfu1_ens(i,k,iedt)=0. efu1_ens(i,k,iedt)=0. dfd1_ens(i,k,iedt)=0. efd1_ens(i,k,iedt)=0. enddo enddo endif ! do i=its,itf aad(i)=0. enddo ! do i=its,itf ! if(ierr(i).eq.0)then ! eddt(i,j)=edt(i) ! EDTX(I)=EDT(I) ! BU(I)=0. ! BUO(I)=0. ! endif ! enddo ! !---downdraft workfunctions ! ! call cup_dd_aa0(edt,ierr,aa0,jmin,gamma_cup,t_cup, & ! hcd,hes_cup,z,zd, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) ! call cup_dd_aa0(edto,ierr,aad,jmin,gammao_cup,tn_cup, & ! hcdo,heso_cup,zo,zdo, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) ! !--- change per unit mass that a model cloud would modify the environment ! !--- 1. in bottom layer ! call cup_dellabot(ipr,jpr,heo_cup,ierr,zo_cup,po,hcdo,edto, & zuo,zdo,cdd,heo,dellah,j,mentrd_rate,zo,g, & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dellabot(ipr,jpr,qo_cup,ierr,zo_cup,po,qrcdo,edto, & zuo,zdo,cdd,qo,dellaq,j,mentrd_rate,zo,g,& CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,.FALSE., & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- 2. everywhere else ! call cup_dellas(ierr,zo_cup,po_cup,hcdo,edto,zdo,cdd, & heo,dellah,j,mentrd_rate,zuo,g, & cd,hco,ktop,k22,kbcon,mentr_rate,jmin,heo_cup,kdet, & k22,ipr,jpr,'deep', & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !-- take out cloud liquid water for detrainment ! !?? do k=kts,ktf do k=kts,ktf-1 do i=its,itf scr1(i,k)=0. dellaqc(i,k)=0. if(ierr(i).eq.0)then ! print *,'in vupnewg, after della ',ierr(i),aa0(i),i,j scr1(i,k)=qco(i,k)-qrco(i,k) if(k.eq.ktop(i)-0)dellaqc(i,k)= & .01*zuo(i,ktop(i))*qrco(i,ktop(i))* & 9.81/(po_cup(i,k)-po_cup(i,k+1)) if(k.lt.ktop(i).and.k.gt.kbcon(i))then dz=zo_cup(i,k+1)-zo_cup(i,k) dellaqc(i,k)=.01*9.81*cd(i,k)*dz*zuo(i,k) & *.5*(qrco(i,k)+qrco(i,k+1))/ & (po_cup(i,k)-po_cup(i,k+1)) endif endif enddo enddo call cup_dellas(ierr,zo_cup,po_cup,qrcdo,edto,zdo,cdd, & qo,dellaq,j,mentrd_rate,zuo,g, & cd,scr1,ktop,k22,kbcon,mentr_rate,jmin,qo_cup,kdet, & k22,ipr,jpr,'deep', & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,.FALSE., & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) ! !--- using dellas, calculate changed environmental profiles ! ! do 200 nens=1,maxens mbdt=mbdt_ens(2) do i=its,itf xaa0_ens(i,1)=0. xaa0_ens(i,2)=0. xaa0_ens(i,3)=0. enddo ! mbdt=mbdt_ens(nens) ! do i=its,itf ! xaa0_ens(i,nens)=0. ! enddo do k=kts,ktf do i=its,itf dellat(i,k)=0. if(ierr(i).eq.0)then XHE(I,K)=DELLAH(I,K)*MBDT+HEO(I,K) XQ(I,K)=DELLAQ(I,K)*MBDT+QO(I,K) DELLAT(I,K)=(1./cp)*(DELLAH(I,K)-xl*DELLAQ(I,K)) XT(I,K)= DELLAT(I,K)*MBDT+TN(I,K) IF(XQ(I,K).LE.0.)XQ(I,K)=1.E-08 ! if(i.eq.ipr.and.j.eq.jpr)then ! print *,k,DELLAH(I,K),DELLAQ(I,K),DELLAT(I,K) ! endif ENDIF enddo enddo do i=its,itf if(ierr(i).eq.0)then XHE(I,ktf)=HEO(I,ktf) XQ(I,ktf)=QO(I,ktf) XT(I,ktf)=TN(I,ktf) IF(XQ(I,ktf).LE.0.)XQ(I,ktf)=1.E-08 endif enddo ! !--- calculate moist static energy, heights, qes ! call cup_env(xz,xqes,xhe,xhes,xt,xq,po,z1, & psur,ierr,tcrit,2,xl,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- environmental values on cloud levels ! call cup_env_clev(xt,xqes,xq,xhe,xhes,xz,po,xqes_cup,xq_cup, & xhe_cup,xhes_cup,xz_cup,po_cup,gamma_cup,xt_cup,psur, & ierr,z1,xl,rv,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! ! !**************************** static control ! !--- moist static energy inside cloud ! do i=its,itf if(ierr(i).eq.0)then xhkb(i)=xhe(i,k22(i)) endif enddo call cup_up_he(k22,xhkb,xz_cup,cd,mentr_rate,xhe_cup,xhc, & kbcon,ierr,xdby,xhe,xhes_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !c--- normalized mass flux profile ! call cup_up_nms(xzu,xz_cup,mentr_rate,cd,kbcon,ktop,ierr,k22, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- moisture downdraft ! call cup_dd_nms(xzd,xz_cup,cdd,mentrd_rate,jmin,ierr, & 1,kdet,z1, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dd_he(xhes_cup,xzd,xhcd,xz_cup,cdd,mentrd_rate, & jmin,ierr,xhe,dbyd,xhe_cup,& ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_dd_moisture(xzd,xhcd,xhes_cup,xqcd,xqes_cup, & xpwd,xq_cup,xz_cup,cdd,mentrd_rate,jmin,ierr,gamma_cup, & xpwev,bu,xqrcd,xq,xhe,xt_cup,3,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !------- MOISTURE updraft ! call cup_up_moisture(ierr,xz_cup,xqc,xqrc,xpw,xpwav, & kbcon,ktop,cd,xdby,mentr_rate,clw_all, & xq,GAMMA_cup,xzu,xqes_cup,k22,xq_cup,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- workfunctions for updraft ! call cup_up_aa0(xaa0,xz,xzu,xdby,GAMMA_CUP,xt_cup, & kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- workfunctions for downdraft ! ! ! call cup_dd_aa0(edtx,ierr,xaa0,jmin,gamma_cup,xt_cup, & ! xhcd,xhes_cup,xz,xzd, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) do 200 nens=1,maxens do i=its,itf if(ierr(i).eq.0)then xaa0_ens(i,nens)=xaa0(i) nall=(iens-1)*maxens3*maxens*maxens2 & +(iedt-1)*maxens*maxens3 & +(nens-1)*maxens3 do k=kts,ktf if(k.le.ktop(i))then do nens3=1,maxens3 if(nens3.eq.7)then !--- b=0 pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ & pwo(i,k) ! +edto(i)*pwdo(i,k) !--- b=beta else if(nens3.eq.8)then pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ & pwo(i,k) !--- b=beta/2 else if(nens3.eq.9)then pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ & pwo(i,k) ! +.5*edto(i)*pwdo(i,k) else pr_ens(i,j,nall+nens3)=pr_ens(i,j,nall+nens3)+ & pwo(i,k)+edto(i)*pwdo(i,k) endif enddo endif enddo if(pr_ens(i,j,nall+7).lt.1.e-6)then ierr(i)=18 do nens3=1,maxens3 pr_ens(i,j,nall+nens3)=0. enddo endif do nens3=1,maxens3 if(pr_ens(i,j,nall+nens3).lt.1.e-4)then pr_ens(i,j,nall+nens3)=0. endif enddo endif enddo 200 continue ! !--- LARGE SCALE FORCING ! ! !------- CHECK wether aa0 should have been zero ! ! CALL cup_MAXIMI(HEO_CUP,3,KBMAX,K22x,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do i=its,itf ierr2(i)=ierr(i) ierr3(i)=ierr(i) enddo call cup_kbcon(cap_max_increment,2,k22x,kbconx,heo_cup, & heso_cup,ierr2,kbmax,po_cup,cap_max, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) call cup_kbcon(cap_max_increment,3,k22x,kbconx,heo_cup, & heso_cup,ierr3,kbmax,po_cup,cap_max, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! !--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON ! call cup_forcing_ens(closure_n,xland1,aa0,aa1,xaa0_ens,mbdt_ens,dtime, & ierr,ierr2,ierr3,xf_ens,j,'deeps', & maxens,iens,iedt,maxens2,maxens3,mconv, & po_cup,ktop,omeg,zdo,k22,zuo,pr_ens,edto,kbcon, & massflx,iact,direction,ensdim,massfln,ichoice, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) ! do k=kts,ktf do i=its,itf if(ierr(i).eq.0)then dellat_ens(i,k,iedt)=dellat(i,k) dellaq_ens(i,k,iedt)=dellaq(i,k) dellaqc_ens(i,k,iedt)=dellaqc(i,k) pwo_ens(i,k,iedt)=pwo(i,k)+edt(i)*pwdo(i,k) else dellat_ens(i,k,iedt)=0. dellaq_ens(i,k,iedt)=0. dellaqc_ens(i,k,iedt)=0. pwo_ens(i,k,iedt)=0. endif ! if(i.eq.ipr.and.j.eq.jpr)then ! print *,iens,iedt,dellat(i,k),dellat_ens(i,k,iedt), & ! dellaq(i,k), dellaqc(i,k) ! endif enddo enddo if (l_flux) then do k=kts,ktf do i=its,itf if(ierr(i).eq.0)then cfu1_ens(i,k,iedt)=cfu1(i,k) cfd1_ens(i,k,iedt)=cfd1(i,k) dfu1_ens(i,k,iedt)=dfu1(i,k) efu1_ens(i,k,iedt)=efu1(i,k) dfd1_ens(i,k,iedt)=dfd1(i,k) efd1_ens(i,k,iedt)=efd1(i,k) else cfu1_ens(i,k,iedt)=0. cfd1_ens(i,k,iedt)=0. dfu1_ens(i,k,iedt)=0. efu1_ens(i,k,iedt)=0. dfd1_ens(i,k,iedt)=0. efd1_ens(i,k,iedt)=0. end if end do end do end if 250 continue ! !--- FEEDBACK ! call cup_output_ens(xf_ens,ierr,dellat_ens,dellaq_ens, & dellaqc_ens,outt,outq,outqc,pre,pwo_ens,xmb,ktop, & j,'deep',maxens2,maxens,iens,ierr2,ierr3, & pr_ens,maxens3,ensdim,massfln, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI,closure_n,xland1, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1, & CFU1_ens,CFD1_ens,DFU1_ens,EFU1_ens,DFD1_ens,EFD1_ens, & l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) do i=its,itf PRE(I)=MAX(PRE(I),0.) enddo ! !---------------------------done------------------------------ ! END SUBROUTINE CUP_enss SUBROUTINE cup_dd_aa0(edt,ierr,aa0,jmin,gamma_cup,t_cup, & hcd,hes_cup,z,zd, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! aa0 cloud work function for downdraft ! gamma_cup = gamma on model cloud levels ! t_cup = temperature (Kelvin) on model cloud levels ! hes_cup = saturation moist static energy on model cloud levels ! hcd = moist static energy in downdraft ! edt = epsilon ! zd normalized downdraft mass flux ! z = heights of model levels ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z,zd,gamma_cup,t_cup,hes_cup,hcd real, dimension (its:ite) & ,intent (in ) :: & edt integer, dimension (its:ite) & ,intent (in ) :: & jmin ! ! input and output ! integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite) & ,intent (out ) :: & aa0 ! ! local variables in this routine ! integer :: & i,k,kk real :: & dz ! integer :: itf, ktf ! itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! !?? DO k=kts,kte-1 DO k=kts,ktf-1 do i=its,itf IF(ierr(I).eq.0.and.k.lt.jmin(i))then KK=JMIN(I)-K ! !--- ORIGINAL ! DZ=(Z(I,KK)-Z(I,KK+1)) AA0(I)=AA0(I)+zd(i,kk)*EDT(I)*DZ*(9.81/(1004.*T_cup(I,KK))) & *((hcd(i,kk)-hes_cup(i,kk))/(1.+GAMMA_cup(i,kk))) endif enddo enddo END SUBROUTINE CUP_dd_aa0 SUBROUTINE cup_dd_edt(ierr,us,vs,z,ktop,kbcon,edt,p,pwav, & pwev,edtmax,edtmin,maxens2,edtc, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & maxens2 ! ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & us,vs,z,p real, dimension (its:ite,1:maxens2) & ,intent (out ) :: & edtc real, dimension (its:ite) & ,intent (out ) :: & edt real, dimension (its:ite) & ,intent (in ) :: & pwav,pwev real & ,intent (in ) :: & edtmax,edtmin integer, dimension (its:ite) & ,intent (in ) :: & ktop,kbcon integer, dimension (its:ite) & ,intent (inout) :: & ierr ! ! local variables in this routine ! integer i,k,kk real einc,pef,pefb,prezk,zkbc real, dimension (its:ite) :: & vshear,sdp,vws integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! !--- DETERMINE DOWNDRAFT STRENGTH IN TERMS OF WINDSHEAR ! ! */ calculate an average wind shear over the depth of the cloud ! do i=its,itf edt(i)=0. vws(i)=0. sdp(i)=0. vshear(i)=0. enddo do kk = kts,ktf-1 do 62 i=its,itf IF(ierr(i).ne.0)GO TO 62 if (kk .le. min0(ktop(i),ktf) .and. kk .ge. kbcon(i)) then vws(i) = vws(i)+ & (abs((us(i,kk+1)-us(i,kk))/(z(i,kk+1)-z(i,kk))) & + abs((vs(i,kk+1)-vs(i,kk))/(z(i,kk+1)-z(i,kk)))) * & (p(i,kk) - p(i,kk+1)) sdp(i) = sdp(i) + p(i,kk) - p(i,kk+1) endif if (kk .eq. ktf-1)vshear(i) = 1.e3 * vws(i) / sdp(i) 62 continue end do do i=its,itf IF(ierr(i).eq.0)then pef=(1.591-.639*VSHEAR(I)+.0953*(VSHEAR(I)**2) & -.00496*(VSHEAR(I)**3)) if(pef.gt.edtmax)pef=edtmax if(pef.lt.edtmin)pef=edtmin ! !--- cloud base precip efficiency ! zkbc=z(i,kbcon(i))*3.281e-3 prezk=.02 if(zkbc.gt.3.)then prezk=.96729352+zkbc*(-.70034167+zkbc*(.162179896+zkbc & *(- 1.2569798E-2+zkbc*(4.2772E-4-zkbc*5.44E-6)))) endif if(zkbc.gt.25)then prezk=2.4 endif pefb=1./(1.+prezk) if(pefb.gt.edtmax)pefb=edtmax if(pefb.lt.edtmin)pefb=edtmin EDT(I)=1.-.5*(pefb+pef) !--- edt here is 1-precipeff! ! einc=(1.-edt(i))/float(maxens2) ! einc=edt(i)/float(maxens2+1) !--- 20 percent einc=.2*edt(i) do k=1,maxens2 edtc(i,k)=edt(i)+float(k-2)*einc enddo endif enddo do i=its,itf IF(ierr(i).eq.0)then do k=1,maxens2 EDTC(I,K)=-EDTC(I,K)*PWAV(I)/PWEV(I) IF(EDTC(I,K).GT.edtmax)EDTC(I,K)=edtmax IF(EDTC(I,K).LT.edtmin)EDTC(I,K)=edtmin enddo endif enddo END SUBROUTINE cup_dd_edt SUBROUTINE cup_dd_he(hes_cup,zd,hcd,z_cup,cdd,entr, & jmin,ierr,he,dby,he_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! hcd = downdraft moist static energy ! he = moist static energy on model levels ! he_cup = moist static energy on model cloud levels ! hes_cup = saturation moist static energy on model cloud levels ! dby = buoancy term ! cdd= detrainment function ! z_cup = heights of model cloud levels ! entr = entrainment rate ! zd = downdraft normalized mass flux ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & he,he_cup,hes_cup,z_cup,cdd,zd ! entr= entrainment rate real & ,intent (in ) :: & entr integer, dimension (its:ite) & ,intent (in ) :: & jmin ! ! input and output ! ! ierr error value, maybe modified in this routine integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite,kts:kte) & ,intent (out ) :: & hcd,dby ! ! local variables in this routine ! integer :: & i,k,ki real :: & dz integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) do k=kts+1,ktf do i=its,itf dby(i,k)=0. IF(ierr(I).eq.0)then hcd(i,k)=hes_cup(i,k) endif enddo enddo ! do 100 i=its,itf IF(ierr(I).eq.0)then k=jmin(i) hcd(i,k)=hes_cup(i,k) dby(i,k)=hcd(i,jmin(i))-hes_cup(i,k) ! do ki=jmin(i)-1,1,-1 DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki) HCD(i,Ki)=(HCD(i,Ki+1)*(1.-.5*CDD(i,Ki)*DZ) & +entr*DZ*HE(i,Ki) & )/(1.+entr*DZ-.5*CDD(i,Ki)*DZ) dby(i,ki)=HCD(i,Ki)-hes_cup(i,ki) enddo ! endif !--- end loop over i 100 continue END SUBROUTINE cup_dd_he SUBROUTINE cup_dd_moisture(zd,hcd,hes_cup,qcd,qes_cup, & pwd,q_cup,z_cup,cdd,entr,jmin,ierr, & gamma_cup,pwev,bu,qrcd, & q,he,t_cup,iloop,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! cdd= detrainment function ! q = environmental q on model levels ! q_cup = environmental q on model cloud levels ! qes_cup = saturation q on model cloud levels ! hes_cup = saturation h on model cloud levels ! hcd = h in model cloud ! bu = buoancy term ! zd = normalized downdraft mass flux ! gamma_cup = gamma on model cloud levels ! mentr_rate = entrainment rate ! qcd = cloud q (including liquid water) after entrainment ! qrch = saturation q in cloud ! pwd = evaporate at that level ! pwev = total normalized integrated evaoprate (I2) ! entr= entrainment rate ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & zd,t_cup,hes_cup,hcd,qes_cup,q_cup,z_cup,cdd,gamma_cup,q,he real & ,intent (in ) :: & entr,xl integer & ,intent (in ) :: & iloop integer, dimension (its:ite) & ,intent (in ) :: & jmin integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite,kts:kte) & ,intent (out ) :: & qcd,qrcd,pwd real, dimension (its:ite) & ,intent (out ) :: & pwev,bu ! ! local variables in this routine ! integer :: & i,k,ki real :: & dh,dz,dqeva integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) do i=its,itf bu(i)=0. pwev(i)=0. enddo do k=kts,ktf do i=its,itf qcd(i,k)=0. qrcd(i,k)=0. pwd(i,k)=0. enddo enddo ! ! ! do 100 i=its,itf IF(ierr(I).eq.0)then k=jmin(i) DZ=Z_cup(i,K+1)-Z_cup(i,K) qcd(i,k)=q_cup(i,k) ! qcd(i,k)=.5*(qes_cup(i,k)+q_cup(i,k)) qrcd(i,k)=qes_cup(i,k) pwd(i,jmin(i))=min(0.,qcd(i,k)-qrcd(i,k)) pwev(i)=pwev(i)+pwd(i,jmin(i)) qcd(i,k)=qes_cup(i,k) ! DH=HCD(I,k)-HES_cup(I,K) bu(i)=dz*dh do ki=jmin(i)-1,1,-1 DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki) QCD(i,Ki)=(qCD(i,Ki+1)*(1.-.5*CDD(i,Ki)*DZ) & +entr*DZ*q(i,Ki) & )/(1.+entr*DZ-.5*CDD(i,Ki)*DZ) ! !--- to be negatively buoyant, hcd should be smaller than hes! ! DH=HCD(I,ki)-HES_cup(I,Ki) bu(i)=bu(i)+dz*dh QRCD(I,Ki)=qes_cup(i,ki)+(1./XL)*(GAMMA_cup(i,ki) & /(1.+GAMMA_cup(i,ki)))*DH dqeva=qcd(i,ki)-qrcd(i,ki) if(dqeva.gt.0.)dqeva=0. pwd(i,ki)=zd(i,ki)*dqeva qcd(i,ki)=qrcd(i,ki) pwev(i)=pwev(i)+pwd(i,ki) ! if(iloop.eq.1.and.i.eq.102.and.j.eq.62)then ! print *,'in cup_dd_moi ', hcd(i,ki),HES_cup(I,Ki),dh,dqeva ! endif enddo ! !--- end loop over i if(pwev(I).eq.0.and.iloop.eq.1)then ! print *,'problem with buoy in cup_dd_moisture',i ierr(i)=7 endif if(BU(I).GE.0.and.iloop.eq.1)then ! print *,'problem with buoy in cup_dd_moisture',i ierr(i)=7 endif endif 100 continue END SUBROUTINE cup_dd_moisture SUBROUTINE cup_dd_nms(zd,z_cup,cdd,entr,jmin,ierr, & itest,kdet,z1, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! z_cup = height of cloud model level ! z1 = terrain elevation ! entr = downdraft entrainment rate ! jmin = downdraft originating level ! kdet = level above ground where downdraft start detraining ! itest = flag to whether to calculate cdd real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z_cup real, dimension (its:ite) & ,intent (in ) :: & z1 real & ,intent (in ) :: & entr integer, dimension (its:ite) & ,intent (in ) :: & jmin,kdet integer & ,intent (in ) :: & itest ! ! input and output ! ! ierr error value, maybe modified in this routine integer, dimension (its:ite) & ,intent (inout) :: & ierr ! zd is the normalized downdraft mass flux ! cdd is the downdraft detrainmen function real, dimension (its:ite,kts:kte) & ,intent (out ) :: & zd real, dimension (its:ite,kts:kte) & ,intent (inout) :: & cdd ! ! local variables in this routine ! integer :: & i,k,ki real :: & a,perc,dz integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! !--- perc is the percentage of mass left when hitting the ground ! perc=.03 do k=kts,ktf do i=its,itf zd(i,k)=0. if(itest.eq.0)cdd(i,k)=0. enddo enddo a=1.-perc ! ! ! do 100 i=its,itf IF(ierr(I).eq.0)then zd(i,jmin(i))=1. ! !--- integrate downward, specify detrainment(cdd)! ! do ki=jmin(i)-1,1,-1 DZ=Z_cup(i,Ki+1)-Z_cup(i,Ki) if(ki.le.kdet(i).and.itest.eq.0)then cdd(i,ki)=entr+(1.- (a*(z_cup(i,ki)-z1(i)) & +perc*(z_cup(i,kdet(i))-z1(i)) ) & /(a*(z_cup(i,ki+1)-z1(i)) & +perc*(z_cup(i,kdet(i))-z1(i))))/dz endif zd(i,ki)=zd(i,ki+1)*(1.+(entr-cdd(i,ki))*dz) enddo ! endif !--- end loop over i 100 continue END SUBROUTINE cup_dd_nms SUBROUTINE cup_dellabot(ipr,jpr,he_cup,ierr,z_cup,p_cup, & hcd,edt,zu,zd,cdd,he,della,j,mentrd_rate,z,g, & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & j,ipr,jpr ! ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (out ) :: & della real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z_cup,p_cup,hcd,zu,zd,cdd,he,z,he_cup real, dimension (its:ite) & ,intent (in ) :: & edt real & ,intent (in ) :: & g,mentrd_rate integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite,kts:kte) & ,intent (inout ) :: & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1 logical, intent(in) :: l_flux ! ! local variables in this routine ! integer i real detdo,detdo1,detdo2,entdo,dp,dz,subin, & totmas ! integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! ! ! if(j.eq.jpr)print *,'in cup dellabot ' do 100 i=its,itf if (l_flux) then cfu1(i,1)=0. cfd1(i,1)=0. cfu1(i,2)=0. cfd1(i,2)=0. dfu1(i,1)=0. efu1(i,1)=0. dfd1(i,1)=0. efd1(i,1)=0. endif della(i,1)=0. if(ierr(i).ne.0)go to 100 dz=z_cup(i,2)-z_cup(i,1) DP=100.*(p_cup(i,1)-P_cup(i,2)) detdo1=edt(i)*zd(i,2)*CDD(i,1)*DZ detdo2=edt(i)*zd(i,1) entdo=edt(i)*zd(i,2)*mentrd_rate*dz subin=-EDT(I)*zd(i,2) detdo=detdo1+detdo2-entdo+subin DELLA(I,1)=(detdo1*.5*(HCD(i,1)+HCD(i,2)) & +detdo2*hcd(i,1) & +subin*he_cup(i,2) & -entdo*he(i,1))*g/dp if (l_flux) then cfd1(i,2) = -edt(i)*zd(i,2) !only contribution to subin, subdown=0 dfd1(i,1) = detdo1+detdo2 efd1(i,1) = -entdo endif 100 CONTINUE END SUBROUTINE cup_dellabot SUBROUTINE cup_dellas(ierr,z_cup,p_cup,hcd,edt,zd,cdd, & he,della,j,mentrd_rate,zu,g, & cd,hc,ktop,k22,kbcon,mentr_rate,jmin,he_cup,kdet,kpbl, & ipr,jpr,name, & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1,l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & j,ipr,jpr ! ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (out ) :: & della real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z_cup,p_cup,hcd,zd,cdd,he,hc,cd,zu,he_cup real, dimension (its:ite) & ,intent (in ) :: & edt real & ,intent (in ) :: & g,mentrd_rate,mentr_rate integer, dimension (its:ite) & ,intent (in ) :: & kbcon,ktop,k22,jmin,kdet,kpbl integer, dimension (its:ite) & ,intent (inout) :: & ierr character *(*), intent (in) :: & name real, dimension (its:ite,kts:kte) & ,intent (inout ) :: & CFU1,CFD1,DFU1,EFU1,DFD1,EFD1 logical, intent(in) :: l_flux ! ! local variables in this routine ! integer i,k real detdo1,detdo2,entdo,dp,dz,subin,detdo,entup, & detup,subdown,entdoj,entupk,detupk,totmas ! integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! ! i=ipr ! if(j.eq.jpr)then ! print *,'in dellas kpbl(i),k22(i),kbcon(i),ktop(i),jmin(i)' ! print *,kpbl(i),k22(i),kbcon(i),ktop(i),jmin(i) ! endif DO K=kts+1,ktf do i=its,itf della(i,k)=0. enddo enddo if (l_flux) then DO K=kts+1,ktf-1 do i=its,itf cfu1(i,k+1)=0. cfd1(i,k+1)=0. enddo enddo DO K=kts+1,ktf do i=its,itf dfu1(i,k)=0. efu1(i,k)=0. dfd1(i,k)=0. efd1(i,k)=0. enddo enddo endif ! DO 100 k=kts+1,ktf-1 DO 100 i=its,ite IF(ierr(i).ne.0)GO TO 100 IF(K.Gt.KTOP(I))GO TO 100 ! !--- SPECIFY DETRAINMENT OF DOWNDRAFT, HAS TO BE CONSISTENT !--- WITH ZD CALCULATIONS IN SOUNDD. ! DZ=Z_cup(I,K+1)-Z_cup(I,K) detdo=edt(i)*CDD(i,K)*DZ*ZD(i,k+1) entdo=edt(i)*mentrd_rate*dz*zd(i,k+1) subin=zu(i,k+1)-zd(i,k+1)*edt(i) entup=0. detup=0. if(k.ge.kbcon(i).and.k.lt.ktop(i))then entup=mentr_rate*dz*zu(i,k) detup=CD(i,K+1)*DZ*ZU(i,k) endif subdown=(zu(i,k)-zd(i,k)*edt(i)) entdoj=0. entupk=0. detupk=0. ! if(k.eq.jmin(i))then entdoj=edt(i)*zd(i,k) endif if(k.eq.k22(i)-1)then entupk=zu(i,kpbl(i)) endif if(k.gt.kdet(i))then detdo=0. endif if(k.eq.ktop(i)-0)then detupk=zu(i,ktop(i)) subin=0. endif if(k.lt.kbcon(i))then detup=0. endif if (l_flux) then ! z_cup(k+1): zu(k+1), -zd(k+1) ==> subin ==> cf[du]1 (k+1) (full-eta level k+1) ! ! z(k) : detup, detdo, entup, entdo ==> [de]f[du]1 (k) (half-eta level k ) ! ! z_cup(k) : zu(k), -zd(k) ==> subdown ==> cf[du]1 (k) (full-eta level k ) ! Store downdraft/updraft mass fluxes at full eta level k (z_cup(k)) in cf[ud]1(k): cfu1(i,k+1) = zu(i,k+1) cfd1(i,k+1) = -edt(i)*zd(i,k+1) ! Store detrainment/entrainment mass fluxes at half eta level k (z(k)) in [de]f[du]1(k): dfu1(i,k) = detup+detupk efu1(i,k) = -(entup+entupk) dfd1(i,k) = detdo efd1(i,k) = -(entdo+entdoj) endif !C !C--- CHANGED DUE TO SUBSIDENCE AND ENTRAINMENT !C totmas=subin-subdown+detup-entup-entdo+ & detdo-entupk-entdoj+detupk ! if(j.eq.jpr.and.i.eq.ipr)print *,'k,totmas,sui,sud = ',k, ! 1 totmas,subin,subdown ! if(j.eq.jpr.and.i.eq.ipr)print *,'updr stuff = ',detup, ! 1 entup,entupk,detupk ! if(j.eq.jpr.and.i.eq.ipr)print *,'dddr stuff = ',entdo, ! 1 detdo,entdoj if(abs(totmas).gt.1.e-6)then ! print *,'*********************',i,j,k,totmas,name ! print *,kpbl(i),k22(i),kbcon(i),ktop(i) !c print *,'updr stuff = ',subin, !c 1 subdown,detup,entup,entupk,detupk !c print *,'dddr stuff = ',entdo, !c 1 detdo,entdoj ! call wrf_error_fatal ( 'totmas .gt.1.e-6' ) endif dp=100.*(p_cup(i,k-1)-p_cup(i,k)) della(i,k)=(subin*he_cup(i,k+1) & -subdown*he_cup(i,k) & +detup*.5*(HC(i,K+1)+HC(i,K)) & +detdo*.5*(HCD(i,K+1)+HCD(i,K)) & -entup*he(i,k) & -entdo*he(i,k) & -entupk*he_cup(i,k22(i)) & -entdoj*he_cup(i,jmin(i)) & +detupk*hc(i,ktop(i)) & )*g/dp ! if(i.eq.ipr.and.j.eq.jpr)then ! print *,k,della(i,k),subin*he_cup(i,k+1),subdown*he_cup(i,k), ! 1 detdo*.5*(HCD(i,K+1)+HCD(i,K)) ! print *,k,detup*.5*(HC(i,K+1)+HC(i,K)),detupk*hc(i,ktop(i)), ! 1 entup*he(i,k),entdo*he(i,k) ! print *,k,he_cup(i,k+1),he_cup(i,k),entupk*he_cup(i,k) ! endif 100 CONTINUE END SUBROUTINE cup_dellas SUBROUTINE cup_direction2(i,j,dir,id,massflx, & iresult,imass,massfld, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & i,j,imass integer, intent (out ) :: & iresult ! ! ierr error value, maybe modified in this routine ! integer, dimension (ims:ime,jms:jme) & ,intent (in ) :: & id real, dimension (ims:ime,jms:jme) & ,intent (in ) :: & massflx real, dimension (its:ite) & ,intent (inout) :: & dir real & ,intent (out ) :: & massfld ! ! local variables in this routine ! integer k,ia,ja,ib,jb real diff ! ! ! if(imass.eq.1)then massfld=massflx(i,j) endif iresult=0 ! return diff=22.5 if(dir(i).lt.22.5)dir(i)=360.+dir(i) if(id(i,j).eq.1)iresult=1 ! ja=max(2,j-1) ! ia=max(2,i-1) ! jb=min(mjx-1,j+1) ! ib=min(mix-1,i+1) ja=j-1 ia=i-1 jb=j+1 ib=i+1 if(dir(i).gt.90.-diff.and.dir(i).le.90.+diff)then !--- steering flow from the east if(id(ib,j).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ib,j),massflx(i,j)) endif return endif else if(dir(i).gt.135.-diff.and.dir(i).le.135.+diff)then !--- steering flow from the south-east if(id(ib,ja).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ib,ja),massflx(i,j)) endif return endif !--- steering flow from the south else if(dir(i).gt.180.-diff.and.dir(i).le.180.+diff)then if(id(i,ja).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(i,ja),massflx(i,j)) endif return endif !--- steering flow from the south west else if(dir(i).gt.225.-diff.and.dir(i).le.225.+diff)then if(id(ia,ja).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ia,ja),massflx(i,j)) endif return endif !--- steering flow from the west else if(dir(i).gt.270.-diff.and.dir(i).le.270.+diff)then if(id(ia,j).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ia,j),massflx(i,j)) endif return endif !--- steering flow from the north-west else if(dir(i).gt.305.-diff.and.dir(i).le.305.+diff)then if(id(ia,jb).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ia,jb),massflx(i,j)) endif return endif !--- steering flow from the north else if(dir(i).gt.360.-diff.and.dir(i).le.360.+diff)then if(id(i,jb).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(i,jb),massflx(i,j)) endif return endif !--- steering flow from the north-east else if(dir(i).gt.45.-diff.and.dir(i).le.45.+diff)then if(id(ib,jb).eq.1)then iresult=1 if(imass.eq.1)then massfld=max(massflx(ib,jb),massflx(i,j)) endif return endif endif END SUBROUTINE cup_direction2 SUBROUTINE cup_env(z,qes,he,hes,t,q,p,z1, & psur,ierr,tcrit,itest,xl,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! ! ierr error value, maybe modified in this routine ! q = environmental mixing ratio ! qes = environmental saturation mixing ratio ! t = environmental temp ! tv = environmental virtual temp ! p = environmental pressure ! z = environmental heights ! he = environmental moist static energy ! hes = environmental saturation moist static energy ! psur = surface pressure ! z1 = terrain elevation ! ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & p,t real, dimension (its:ite,kts:kte) & ,intent (out ) :: & he,hes,qes real, dimension (its:ite,kts:kte) & ,intent (inout) :: & z,q real, dimension (its:ite) & ,intent (in ) :: & psur,z1 real & ,intent (in ) :: & xl,cp integer, dimension (its:ite) & ,intent (inout) :: & ierr integer & ,intent (in ) :: & itest ! ! local variables in this routine ! integer :: & i,k,iph real, dimension (1:2) :: AE,BE,HT real, dimension (its:ite,kts:kte) :: tv real :: tcrit,e,tvbar integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) HT(1)=XL/CP HT(2)=2.834E6/CP BE(1)=.622*HT(1)/.286 AE(1)=BE(1)/273.+ALOG(610.71) BE(2)=.622*HT(2)/.286 AE(2)=BE(2)/273.+ALOG(610.71) ! print *, 'TCRIT = ', tcrit,its,ite DO k=kts,ktf do i=its,itf if(ierr(i).eq.0)then !Csgb - IPH is for phase, dependent on TCRIT (water or ice) IPH=1 IF(T(I,K).LE.TCRIT)IPH=2 ! print *, 'AE(IPH),BE(IPH) = ',AE(IPH),BE(IPH),AE(IPH)-BE(IPH),T(i,k),i,k E=EXP(AE(IPH)-BE(IPH)/T(I,K)) ! print *, 'P, E = ', P(I,K), E QES(I,K)=.622*E/(100.*P(I,K)-E) IF(QES(I,K).LE.1.E-08)QES(I,K)=1.E-08 IF(Q(I,K).GT.QES(I,K))Q(I,K)=QES(I,K) TV(I,K)=T(I,K)+.608*Q(I,K)*T(I,K) endif enddo enddo ! !--- z's are calculated with changed h's and q's and t's !--- if itest=2 ! if(itest.ne.2)then do i=its,itf if(ierr(i).eq.0)then Z(I,1)=max(0.,Z1(I))-(ALOG(P(I,1))- & ALOG(PSUR(I)))*287.*TV(I,1)/9.81 endif enddo ! --- calculate heights DO K=kts+1,ktf do i=its,itf if(ierr(i).eq.0)then TVBAR=.5*TV(I,K)+.5*TV(I,K-1) Z(I,K)=Z(I,K-1)-(ALOG(P(I,K))- & ALOG(P(I,K-1)))*287.*TVBAR/9.81 endif enddo enddo else do k=kts,ktf do i=its,itf if(ierr(i).eq.0)then z(i,k)=(he(i,k)-1004.*t(i,k)-2.5e6*q(i,k))/9.81 z(i,k)=max(1.e-3,z(i,k)) endif enddo enddo endif ! !--- calculate moist static energy - HE ! saturated moist static energy - HES ! DO k=kts,ktf do i=its,itf if(ierr(i).eq.0)then if(itest.eq.0)HE(I,K)=9.81*Z(I,K)+1004.*T(I,K)+2.5E06*Q(I,K) HES(I,K)=9.81*Z(I,K)+1004.*T(I,K)+2.5E06*QES(I,K) IF(HE(I,K).GE.HES(I,K))HE(I,K)=HES(I,K) ! if(i.eq.2)then ! print *,k,z(i,k),t(i,k),p(i,k),he(i,k),hes(i,k) ! endif endif enddo enddo END SUBROUTINE cup_env SUBROUTINE cup_env_clev(t,qes,q,he,hes,z,p,qes_cup,q_cup, & he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup,psur, & ierr,z1,xl,rv,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! ! ierr error value, maybe modified in this routine ! q = environmental mixing ratio ! q_cup = environmental mixing ratio on cloud levels ! qes = environmental saturation mixing ratio ! qes_cup = environmental saturation mixing ratio on cloud levels ! t = environmental temp ! t_cup = environmental temp on cloud levels ! p = environmental pressure ! p_cup = environmental pressure on cloud levels ! z = environmental heights ! z_cup = environmental heights on cloud levels ! he = environmental moist static energy ! he_cup = environmental moist static energy on cloud levels ! hes = environmental saturation moist static energy ! hes_cup = environmental saturation moist static energy on cloud levels ! gamma_cup = gamma on cloud levels ! psur = surface pressure ! z1 = terrain elevation ! ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & qes,q,he,hes,z,p,t real, dimension (its:ite,kts:kte) & ,intent (out ) :: & qes_cup,q_cup,he_cup,hes_cup,z_cup,p_cup,gamma_cup,t_cup real, dimension (its:ite) & ,intent (in ) :: & psur,z1 real & ,intent (in ) :: & xl,rv,cp integer, dimension (its:ite) & ,intent (inout) :: & ierr ! ! local variables in this routine ! integer :: & i,k integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) do k=kts+1,ktf do i=its,itf if(ierr(i).eq.0)then qes_cup(i,k)=.5*(qes(i,k-1)+qes(i,k)) q_cup(i,k)=.5*(q(i,k-1)+q(i,k)) hes_cup(i,k)=.5*(hes(i,k-1)+hes(i,k)) he_cup(i,k)=.5*(he(i,k-1)+he(i,k)) if(he_cup(i,k).gt.hes_cup(i,k))he_cup(i,k)=hes_cup(i,k) z_cup(i,k)=.5*(z(i,k-1)+z(i,k)) p_cup(i,k)=.5*(p(i,k-1)+p(i,k)) t_cup(i,k)=.5*(t(i,k-1)+t(i,k)) gamma_cup(i,k)=(xl/cp)*(xl/(rv*t_cup(i,k) & *t_cup(i,k)))*qes_cup(i,k) endif enddo enddo do i=its,itf if(ierr(i).eq.0)then qes_cup(i,1)=qes(i,1) q_cup(i,1)=q(i,1) hes_cup(i,1)=hes(i,1) he_cup(i,1)=he(i,1) z_cup(i,1)=.5*(z(i,1)+z1(i)) p_cup(i,1)=.5*(p(i,1)+psur(i)) t_cup(i,1)=t(i,1) gamma_cup(i,1)=xl/cp*(xl/(rv*t_cup(i,1) & *t_cup(i,1)))*qes_cup(i,1) endif enddo END SUBROUTINE cup_env_clev SUBROUTINE cup_forcing_ens(closure_n,xland,aa0,aa1,xaa0,mbdt,dtime,ierr,ierr2,ierr3,& xf_ens,j,name,maxens,iens,iedt,maxens2,maxens3,mconv, & p_cup,ktop,omeg,zd,k22,zu,pr_ens,edt,kbcon,massflx, & iact_old_gr,dir,ensdim,massfln,icoic, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & j,ensdim,maxens,iens,iedt,maxens2,maxens3 ! ! ierr error value, maybe modified in this routine ! pr_ens = precipitation ensemble ! xf_ens = mass flux ensembles ! massfln = downdraft mass flux ensembles used in next timestep ! omeg = omega from large scale model ! mconv = moisture convergence from large scale model ! zd = downdraft normalized mass flux ! zu = updraft normalized mass flux ! aa0 = cloud work function without forcing effects ! aa1 = cloud work function with forcing effects ! xaa0 = cloud work function with cloud effects (ensemble dependent) ! edt = epsilon ! dir = "storm motion" ! mbdt = arbitrary numerical parameter ! dtime = dt over which forcing is applied ! iact_gr_old = flag to tell where convection was active ! kbcon = LFC of parcel from k22 ! k22 = updraft originating level ! icoic = flag if only want one closure (usually set to zero!) ! name = deep or shallow convection flag ! real, dimension (ims:ime,jms:jme,1:ensdim) & ,intent (inout) :: & pr_ens real, dimension (ims:ime,jms:jme,1:ensdim) & ,intent (out ) :: & xf_ens,massfln real, dimension (ims:ime,jms:jme) & ,intent (in ) :: & massflx real, dimension (its:ite,kts:kte) & ,intent (in ) :: & omeg,zd,zu,p_cup real, dimension (its:ite,1:maxens) & ,intent (in ) :: & xaa0 real, dimension (its:ite) & ,intent (in ) :: & aa1,edt,dir,mconv,xland real, dimension (its:ite) & ,intent (inout) :: & aa0,closure_n real, dimension (1:maxens) & ,intent (in ) :: & mbdt real & ,intent (in ) :: & dtime integer, dimension (its:ite,jts:jte) & ,intent (in ) :: & iact_old_gr integer, dimension (its:ite) & ,intent (in ) :: & k22,kbcon,ktop integer, dimension (its:ite) & ,intent (inout) :: & ierr,ierr2,ierr3 integer & ,intent (in ) :: & icoic character *(*), intent (in) :: & name ! ! local variables in this routine ! real, dimension (1:maxens3) :: & xff_ens3 real, dimension (1:maxens) :: & xk integer :: & i,k,nall,n,ne,nens,nens3,iresult,iresultd,iresulte,mkxcrt,kclim parameter (mkxcrt=15) real :: & a1,massfld,xff0,xomg,aclim1,aclim2,aclim3,aclim4 real, dimension(1:mkxcrt) :: & pcrit,acrit,acritt integer :: itf,nall2 itf=MIN(ite,ide-1) DATA PCRIT/850.,800.,750.,700.,650.,600.,550.,500.,450.,400., & 350.,300.,250.,200.,150./ DATA ACRIT/.0633,.0445,.0553,.0664,.075,.1082,.1521,.2216, & .3151,.3677,.41,.5255,.7663,1.1686,1.6851/ ! GDAS DERIVED ACRIT DATA ACRITT/.203,.515,.521,.566,.625,.665,.659,.688, & .743,.813,.886,.947,1.138,1.377,1.896/ ! nens=0 !--- LARGE SCALE FORCING ! DO 100 i=its,itf ! if(i.eq.ipr.and.j.eq.jpr)print *,'ierr = ',ierr(i) if(name.eq.'deeps'.and.ierr(i).gt.995)then ! print *,i,j,ierr(i),aa0(i) aa0(i)=0. ierr(i)=0 endif IF(ierr(i).eq.0)then ! kclim=0 do k=mkxcrt,1,-1 if(p_cup(i,ktop(i)).lt.pcrit(k))then kclim=k go to 9 endif enddo if(p_cup(i,ktop(i)).ge.pcrit(1))kclim=1 9 continue kclim=max(kclim,1) k=max(kclim-1,1) aclim1=acrit(kclim)*1.e3 aclim2=acrit(k)*1.e3 aclim3=acritt(kclim)*1.e3 aclim4=acritt(k)*1.e3 ! print *,'p_cup(ktop(i)),kclim,pcrit(kclim)' ! print *,p_cup(i,ktop(i)),kclim,pcrit(kclim) ! print *,'aclim1,aclim2,aclim3,aclim4' ! print *,aclim1,aclim2,aclim3,aclim4 ! print *,dtime,name,ierr(i),aa1(i),aa0(i) ! print *,dtime,name,ierr(i),aa1(i),aa0(i) ! !--- treatment different for this closure ! if(name.eq.'deeps')then ! xff0= (AA1(I)-AA0(I))/DTIME xff_ens3(1)=(AA1(I)-AA0(I))/dtime xff_ens3(2)=.9*xff_ens3(1) xff_ens3(3)=1.1*xff_ens3(1) ! !--- more original Arakawa-Schubert (climatologic value of aa0) ! ! !--- omeg is in bar/s, mconv done with omeg in Pa/s ! more like Brown (1979), or Frank-Cohen (199?) ! xff_ens3(4)=-omeg(i,k22(i))/9.81 xff_ens3(5)=-omeg(i,kbcon(i))/9.81 xff_ens3(6)=-omeg(i,1)/9.81 do k=2,kbcon(i)-1 xomg=-omeg(i,k)/9.81 if(xomg.gt.xff_ens3(6))xff_ens3(6)=xomg enddo ! !--- more like Krishnamurti et al. ! xff_ens3(7)=mconv(i) xff_ens3(8)=mconv(i) xff_ens3(9)=mconv(i) ! !--- more like Fritsch Chappel or Kain Fritsch (plus triggers) ! xff_ens3(10)=AA1(I)/(60.*20.) xff_ens3(11)=AA1(I)/(60.*30.) xff_ens3(12)=AA1(I)/(60.*40.) ! !--- more original Arakawa-Schubert (climatologic value of aa0) ! xff_ens3(13)=max(0.,(AA1(I)-aclim1)/dtime) xff_ens3(14)=max(0.,(AA1(I)-aclim2)/dtime) xff_ens3(15)=max(0.,(AA1(I)-aclim3)/dtime) xff_ens3(16)=max(0.,(AA1(I)-aclim4)/dtime) ! if(ierr2(i).gt.0.or.ierr3(i).gt.0)then ! xff_ens3(10)=0. ! xff_ens3(11)=0. ! xff_ens3(12)=0. ! xff_ens3(13)=0. ! xff_ens3(14)=0. ! xff_ens3(15)=0. ! xff_ens3(16)=0. ! endif do nens=1,maxens XK(nens)=(XAA0(I,nens)-AA1(I))/MBDT(2) if(xk(nens).le.0.and.xk(nens).gt.-1.e-6) & xk(nens)=-1.e-6 if(xk(nens).gt.0.and.xk(nens).lt.1.e-6) & xk(nens)=1.e-6 enddo ! !--- add up all ensembles ! do 350 ne=1,maxens ! !--- for every xk, we have maxens3 xffs !--- iens is from outermost ensemble (most expensive! ! !--- iedt (maxens2 belongs to it) !--- is from second, next outermost, not so expensive ! !--- so, for every outermost loop, we have maxens*maxens2*3 !--- ensembles!!! nall would be 0, if everything is on first !--- loop index, then ne would start counting, then iedt, then iens.... ! iresult=0 iresultd=0 iresulte=0 nall=(iens-1)*maxens3*maxens*maxens2 & +(iedt-1)*maxens*maxens3 & +(ne-1)*maxens3 ! ! over water, enfor!e small cap for some of the closures ! if(xland(i).lt.0.1)then if(ierr2(i).gt.0.or.ierr3(i).gt.0)then ! - ierr2 - 75 mb cap thickness, ierr3 - 125 cap thickness ! - for larger cap, set Grell closure to zero xff_ens3(1) =0. massfln(i,j,nall+1)=0. xff_ens3(2) =0. massfln(i,j,nall+2)=0. xff_ens3(3) =0. massfln(i,j,nall+3)=0. closure_n(i)=closure_n(i)-1. xff_ens3(7) =0. massfln(i,j,nall+7)=0. xff_ens3(8) =0. massfln(i,j,nall+8)=0. xff_ens3(9) =0. ! massfln(i,j,nall+9)=0. closure_n(i)=closure_n(i)-1. endif ! ! also take out some closures in general ! xff_ens3(4) =0. massfln(i,j,nall+4)=0. xff_ens3(5) =0. massfln(i,j,nall+5)=0. xff_ens3(6) =0. massfln(i,j,nall+6)=0. closure_n(i)=closure_n(i)-3. xff_ens3(10)=0. massfln(i,j,nall+10)=0. xff_ens3(11)=0. massfln(i,j,nall+11)=0. xff_ens3(12)=0. massfln(i,j,nall+12)=0. if(ne.eq.1)closure_n(i)=closure_n(i)-3 xff_ens3(13)=0. massfln(i,j,nall+13)=0. xff_ens3(14)=0. massfln(i,j,nall+14)=0. xff_ens3(15)=0. massfln(i,j,nall+15)=0. massfln(i,j,nall+16)=0. if(ne.eq.1)closure_n(i)=closure_n(i)-4 endif ! ! end water treatment ! !--- check for upwind convection ! iresult=0 massfld=0. ! call cup_direction2(i,j,dir,iact_old_gr, & ! massflx,iresult,1, & ! massfld, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte ) ! if(i.eq.ipr.and.j.eq.jpr.and.iedt.eq.1.and.ne.eq.1)then ! if(iedt.eq.1.and.ne.eq.1)then ! print *,massfld,ne,iedt,iens ! print *,xk(ne),xff_ens3(1),xff_ens3(2),xff_ens3(3) ! endif ! print *,i,j,massfld,aa0(i),aa1(i) IF(XK(ne).lt.0.and.xff0.gt.0.)iresultd=1 iresulte=max(iresult,iresultd) iresulte=1 if(iresulte.eq.1)then ! !--- special treatment for stability closures ! if(xff0.gt.0.)then xf_ens(i,j,nall+1)=max(0.,-xff_ens3(1)/xk(ne)) & +massfld xf_ens(i,j,nall+2)=max(0.,-xff_ens3(2)/xk(ne)) & +massfld xf_ens(i,j,nall+3)=max(0.,-xff_ens3(3)/xk(ne)) & +massfld xf_ens(i,j,nall+13)=max(0.,-xff_ens3(13)/xk(ne)) & +massfld xf_ens(i,j,nall+14)=max(0.,-xff_ens3(14)/xk(ne)) & +massfld xf_ens(i,j,nall+15)=max(0.,-xff_ens3(15)/xk(ne)) & +massfld xf_ens(i,j,nall+16)=max(0.,-xff_ens3(16)/xk(ne)) & +massfld else xf_ens(i,j,nall+1)=massfld xf_ens(i,j,nall+2)=massfld xf_ens(i,j,nall+3)=massfld xf_ens(i,j,nall+13)=massfld xf_ens(i,j,nall+14)=massfld xf_ens(i,j,nall+15)=massfld xf_ens(i,j,nall+16)=massfld endif ! !--- if iresult.eq.1, following independent of xff0 ! xf_ens(i,j,nall+4)=max(0.,xff_ens3(4) & +massfld) xf_ens(i,j,nall+5)=max(0.,xff_ens3(5) & +massfld) xf_ens(i,j,nall+6)=max(0.,xff_ens3(6) & +massfld) a1=max(1.e-3,pr_ens(i,j,nall+7)) xf_ens(i,j,nall+7)=max(0.,xff_ens3(7) & /a1) a1=max(1.e-3,pr_ens(i,j,nall+8)) xf_ens(i,j,nall+8)=max(0.,xff_ens3(8) & /a1) a1=max(1.e-3,pr_ens(i,j,nall+9)) xf_ens(i,j,nall+9)=max(0.,xff_ens3(9) & /a1) if(XK(ne).lt.0.)then xf_ens(i,j,nall+10)=max(0., & -xff_ens3(10)/xk(ne)) & +massfld xf_ens(i,j,nall+11)=max(0., & -xff_ens3(11)/xk(ne)) & +massfld xf_ens(i,j,nall+12)=max(0., & -xff_ens3(12)/xk(ne)) & +massfld else xf_ens(i,j,nall+10)=massfld xf_ens(i,j,nall+11)=massfld xf_ens(i,j,nall+12)=massfld endif if(icoic.ge.1)then closure_n(i)=0. xf_ens(i,j,nall+1)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+2)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+3)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+4)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+5)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+6)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+7)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+8)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+9)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+10)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+11)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+12)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+13)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+14)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+15)=xf_ens(i,j,nall+icoic) xf_ens(i,j,nall+16)=xf_ens(i,j,nall+icoic) endif ! ! replace 13-16 for now with other stab closures ! (13 gave problems for mass model) ! ! xf_ens(i,j,nall+13)=xf_ens(i,j,nall+1) if(icoic.eq.0)xf_ens(i,j,nall+14)=xf_ens(i,j,nall+13) ! xf_ens(i,j,nall+15)=xf_ens(i,j,nall+11) ! xf_ens(i,j,nall+16)=xf_ens(i,j,nall+11) ! xf_ens(i,j,nall+7)=xf_ens(i,j,nall+4) ! xf_ens(i,j,nall+8)=xf_ens(i,j,nall+5) ! xf_ens(i,j,nall+9)=xf_ens(i,j,nall+6) ! !--- store new for next time step ! do nens3=1,maxens3 massfln(i,j,nall+nens3)=edt(i) & *xf_ens(i,j,nall+nens3) massfln(i,j,nall+nens3)=max(0., & massfln(i,j,nall+nens3)) enddo ! ! !--- do some more on the caps!!! ne=1 for 175, ne=2 for 100,.... ! ! do not care for caps here for closure groups 1 and 5, ! they are fine, do not turn them off here ! ! if(ne.eq.2.and.ierr2(i).gt.0)then xf_ens(i,j,nall+1) =0. xf_ens(i,j,nall+2) =0. xf_ens(i,j,nall+3) =0. xf_ens(i,j,nall+4) =0. xf_ens(i,j,nall+5) =0. xf_ens(i,j,nall+6) =0. xf_ens(i,j,nall+7) =0. xf_ens(i,j,nall+8) =0. xf_ens(i,j,nall+9) =0. xf_ens(i,j,nall+10)=0. xf_ens(i,j,nall+11)=0. xf_ens(i,j,nall+12)=0. xf_ens(i,j,nall+13)=0. xf_ens(i,j,nall+14)=0. xf_ens(i,j,nall+15)=0. xf_ens(i,j,nall+16)=0. massfln(i,j,nall+1)=0. massfln(i,j,nall+2)=0. massfln(i,j,nall+3)=0. massfln(i,j,nall+4)=0. massfln(i,j,nall+5)=0. massfln(i,j,nall+6)=0. massfln(i,j,nall+7)=0. massfln(i,j,nall+8)=0. massfln(i,j,nall+9)=0. massfln(i,j,nall+10)=0. massfln(i,j,nall+11)=0. massfln(i,j,nall+12)=0. massfln(i,j,nall+13)=0. massfln(i,j,nall+14)=0. massfln(i,j,nall+15)=0. massfln(i,j,nall+16)=0. endif if(ne.eq.3.and.ierr3(i).gt.0)then xf_ens(i,j,nall+1) =0. xf_ens(i,j,nall+2) =0. xf_ens(i,j,nall+3) =0. xf_ens(i,j,nall+4) =0. xf_ens(i,j,nall+5) =0. xf_ens(i,j,nall+6) =0. xf_ens(i,j,nall+7) =0. xf_ens(i,j,nall+8) =0. xf_ens(i,j,nall+9) =0. xf_ens(i,j,nall+10)=0. xf_ens(i,j,nall+11)=0. xf_ens(i,j,nall+12)=0. xf_ens(i,j,nall+13)=0. xf_ens(i,j,nall+14)=0. xf_ens(i,j,nall+15)=0. xf_ens(i,j,nall+16)=0. massfln(i,j,nall+1)=0. massfln(i,j,nall+2)=0. massfln(i,j,nall+3)=0. massfln(i,j,nall+4)=0. massfln(i,j,nall+5)=0. massfln(i,j,nall+6)=0. massfln(i,j,nall+7)=0. massfln(i,j,nall+8)=0. massfln(i,j,nall+9)=0. massfln(i,j,nall+10)=0. massfln(i,j,nall+11)=0. massfln(i,j,nall+12)=0. massfln(i,j,nall+13)=0. massfln(i,j,nall+14)=0. massfln(i,j,nall+15)=0. massfln(i,j,nall+16)=0. endif endif 350 continue ! ne=1, cap=175 ! nall=(iens-1)*maxens3*maxens*maxens2 & +(iedt-1)*maxens*maxens3 ! ne=2, cap=100 ! nall2=(iens-1)*maxens3*maxens*maxens2 & +(iedt-1)*maxens*maxens3 & +(2-1)*maxens3 xf_ens(i,j,nall+4) = xf_ens(i,j,nall2+4) xf_ens(i,j,nall+5) =xf_ens(i,j,nall2+5) xf_ens(i,j,nall+6) =xf_ens(i,j,nall2+6) xf_ens(i,j,nall+7) =xf_ens(i,j,nall2+7) xf_ens(i,j,nall+8) =xf_ens(i,j,nall2+8) xf_ens(i,j,nall+9) =xf_ens(i,j,nall2+9) xf_ens(i,j,nall+10)=xf_ens(i,j,nall2+10) xf_ens(i,j,nall+11)=xf_ens(i,j,nall2+11) xf_ens(i,j,nall+12)=xf_ens(i,j,nall2+12) go to 100 endif elseif(ierr(i).ne.20.and.ierr(i).ne.0)then do n=1,ensdim xf_ens(i,j,n)=0. massfln(i,j,n)=0. enddo endif 100 continue END SUBROUTINE cup_forcing_ens SUBROUTINE cup_kbcon(cap_inc,iloop,k22,kbcon,he_cup,hes_cup, & ierr,kbmax,p_cup,cap_max, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! ! ! ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & he_cup,hes_cup,p_cup real, dimension (its:ite) & ,intent (in ) :: & cap_max,cap_inc integer, dimension (its:ite) & ,intent (in ) :: & kbmax integer, dimension (its:ite) & ,intent (inout) :: & kbcon,k22,ierr integer & ,intent (in ) :: & iloop ! ! local variables in this routine ! integer :: & i real :: & pbcdif,plus integer :: itf itf=MIN(ite,ide-1) ! !--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON ! DO 27 i=its,itf kbcon(i)=1 IF(ierr(I).ne.0)GO TO 27 KBCON(I)=K22(I) GO TO 32 31 CONTINUE KBCON(I)=KBCON(I)+1 IF(KBCON(I).GT.KBMAX(i)+2)THEN if(iloop.lt.4)ierr(i)=3 ! if(iloop.lt.4)ierr(i)=997 GO TO 27 ENDIF 32 CONTINUE IF(HE_cup(I,K22(I)).LT.HES_cup(I,KBCON(I)))GO TO 31 ! cloud base pressure and max moist static energy pressure ! i.e., the depth (in mb) of the layer of negative buoyancy if(KBCON(I)-K22(I).eq.1)go to 27 PBCDIF=-P_cup(I,KBCON(I))+P_cup(I,K22(I)) plus=max(25.,cap_max(i)-float(iloop-1)*cap_inc(i)) if(iloop.eq.4)plus=cap_max(i) IF(PBCDIF.GT.plus)THEN K22(I)=K22(I)+1 KBCON(I)=K22(I) GO TO 32 ENDIF 27 CONTINUE END SUBROUTINE cup_kbcon SUBROUTINE cup_kbcon_cin(iloop,k22,kbcon,he_cup,hes_cup, & z,tmean,qes,ierr,kbmax,p_cup,cap_max,xl,cp, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! ! ! ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & he_cup,hes_cup,p_cup,z,tmean,qes real, dimension (its:ite) & ,intent (in ) :: & cap_max real & ,intent (in ) :: & xl,cp integer, dimension (its:ite) & ,intent (in ) :: & kbmax integer, dimension (its:ite) & ,intent (inout) :: & kbcon,k22,ierr integer & ,intent (in ) :: & iloop ! ! local variables in this routine ! integer :: & i,k real :: & cin,cin_max,dh,tprim,gamma ! integer :: itf itf=MIN(ite,ide-1) ! ! ! !--- DETERMINE THE LEVEL OF CONVECTIVE CLOUD BASE - KBCON ! DO 27 i=its,itf cin_max=-cap_max(i) kbcon(i)=1 cin = 0. IF(ierr(I).ne.0)GO TO 27 KBCON(I)=K22(I) GO TO 32 31 CONTINUE KBCON(I)=KBCON(I)+1 IF(KBCON(I).GT.KBMAX(i)+2)THEN if(iloop.eq.1)ierr(i)=3 ! if(iloop.eq.2)ierr(i)=997 GO TO 27 ENDIF 32 CONTINUE dh = HE_cup(I,K22(I)) - HES_cup(I,KBCON(I)) if (dh.lt. 0.) then GAMMA=(xl/cp)*(xl/(461.525*(Tmean(I,K22(i))**2)))*QES(I,K22(i)) tprim = dh/(cp*(1.+gamma)) cin = cin + 9.8066 * tprim & *(z(i,k22(i))-z(i,k22(i)-1)) / tmean(i,k22(i)) go to 31 end if ! If negative energy in negatively buoyant layer ! exceeds convective inhibition (CIN) threshold, ! then set K22 level one level up and see if that ! will work. IF(cin.lT.cin_max)THEN ! print *,i,cin,cin_max,k22(i),kbcon(i) K22(I)=K22(I)+1 KBCON(I)=K22(I) GO TO 32 ENDIF 27 CONTINUE END SUBROUTINE cup_kbcon_cin SUBROUTINE cup_ktop(ilo,dby,kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! dby = buoancy term ! ktop = cloud top (output) ! ilo = flag ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (inout) :: & dby integer, dimension (its:ite) & ,intent (in ) :: & kbcon integer & ,intent (in ) :: & ilo integer, dimension (its:ite) & ,intent (out ) :: & ktop integer, dimension (its:ite) & ,intent (inout) :: & ierr ! ! local variables in this routine ! integer :: & i,k ! integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) ! ! DO 42 i=its,itf ktop(i)=1 IF(ierr(I).EQ.0)then DO 40 K=KBCON(I)+1,ktf-1 IF(DBY(I,K).LE.0.)THEN KTOP(I)=K-1 GO TO 41 ENDIF 40 CONTINUE if(ilo.eq.1)ierr(i)=5 ! if(ilo.eq.2)ierr(i)=998 GO TO 42 41 CONTINUE do k=ktop(i)+1,ktf dby(i,k)=0. enddo endif 42 CONTINUE END SUBROUTINE cup_ktop SUBROUTINE cup_MAXIMI(ARRAY,KS,KE,MAXX,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! array input array ! x output array with return values ! kt output array of levels ! ks,kend check-range real, dimension (its:ite,kts:kte) & ,intent (in ) :: & array integer, dimension (its:ite) & ,intent (in ) :: & ierr,ke integer & ,intent (in ) :: & ks integer, dimension (its:ite) & ,intent (out ) :: & maxx real, dimension (its:ite) :: & x real :: & xar integer :: & i,k integer :: itf itf=MIN(ite,ide-1) DO 200 i=its,itf MAXX(I)=KS if(ierr(i).eq.0)then X(I)=ARRAY(I,KS) ! DO 100 K=KS,KE(i) XAR=ARRAY(I,K) IF(XAR.GE.X(I)) THEN X(I)=XAR MAXX(I)=K ENDIF 100 CONTINUE endif 200 CONTINUE END SUBROUTINE cup_MAXIMI SUBROUTINE cup_minimi(ARRAY,KS,KEND,KT,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! array input array ! x output array with return values ! kt output array of levels ! ks,kend check-range real, dimension (its:ite,kts:kte) & ,intent (in ) :: & array integer, dimension (its:ite) & ,intent (in ) :: & ierr,ks,kend integer, dimension (its:ite) & ,intent (out ) :: & kt real, dimension (its:ite) :: & x integer :: & i,k,kstop integer :: itf itf=MIN(ite,ide-1) DO 200 i=its,itf KT(I)=KS(I) if(ierr(i).eq.0)then X(I)=ARRAY(I,KS(I)) KSTOP=MAX(KS(I)+1,KEND(I)) ! DO 100 K=KS(I)+1,KSTOP IF(ARRAY(I,K).LT.X(I)) THEN X(I)=ARRAY(I,K) KT(I)=K ENDIF 100 CONTINUE endif 200 CONTINUE END SUBROUTINE cup_MINIMI SUBROUTINE cup_output_ens(xf_ens,ierr,dellat,dellaq,dellaqc, & outtem,outq,outqc,pre,pw,xmb,ktop, & j,name,nx,nx2,iens,ierr2,ierr3,pr_ens, & maxens3,ensdim,massfln, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI,closure_n,xland1, & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1, & CFU1_ens,CFD1_ens,DFU1_ens,EFU1_ens,DFD1_ens,EFD1_ens, & l_flux, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte integer, intent (in ) :: & j,ensdim,nx,nx2,iens,maxens3 ! xf_ens = ensemble mass fluxes ! pr_ens = precipitation ensembles ! dellat = change of temperature per unit mass flux of cloud ensemble ! dellaq = change of q per unit mass flux of cloud ensemble ! dellaqc = change of qc per unit mass flux of cloud ensemble ! outtem = output temp tendency (per s) ! outq = output q tendency (per s) ! outqc = output qc tendency (per s) ! pre = output precip ! xmb = total base mass flux ! xfac1 = correction factor ! pw = pw -epsilon*pd (ensemble dependent) ! ierr error value, maybe modified in this routine ! real, dimension (ims:ime,jms:jme,1:ensdim) & ,intent (inout) :: & xf_ens,pr_ens,massfln real, dimension (ims:ime,jms:jme) & ,intent (inout) :: & APR_GR,APR_W,APR_MC,APR_ST,APR_AS,APR_CAPMA, & APR_CAPME,APR_CAPMI real, dimension (its:ite,kts:kte) & ,intent (out ) :: & outtem,outq,outqc real, dimension (its:ite) & ,intent (out ) :: & pre,xmb real, dimension (its:ite) & ,intent (inout ) :: & closure_n,xland1 real, dimension (its:ite,kts:kte,1:nx) & ,intent (in ) :: & dellat,dellaqc,dellaq,pw integer, dimension (its:ite) & ,intent (in ) :: & ktop integer, dimension (its:ite) & ,intent (inout) :: & ierr,ierr2,ierr3 real, dimension (its:ite,kts:kte,1:ensdim) & ,intent (in ) :: & CFU1_ens,CFD1_ens,DFU1_ens,EFU1_ens,DFD1_ens,EFD1_ens real, dimension (its:ite,kts:kte) & ,intent (out) :: & outCFU1,outCFD1,outDFU1,outEFU1,outDFD1,outEFD1 logical, intent(in) :: l_flux ! ! local variables in this routine ! integer :: & i,k,n,ncount real :: & outtes,ddtes,dtt,dtq,dtqc,dtpw,tuning,prerate,clos_wei real, dimension (its:ite) :: & xfac1 real, dimension (its:ite):: & xmb_ske,xmb_ave,xmb_std,xmb_cur,xmbweight real, dimension (its:ite):: & pr_ske,pr_ave,pr_std,pr_cur real, dimension (its:ite,jts:jte):: & pr_gr,pr_w,pr_mc,pr_st,pr_as,pr_capma, & pr_capme,pr_capmi integer :: iedt, kk ! character *(*), intent (in) :: & name ! integer :: itf, ktf itf=MIN(ite,ide-1) ktf=MIN(kte,kde-1) tuning=0. ! ! DO k=kts,ktf do i=its,itf outtem(i,k)=0. outq(i,k)=0. outqc(i,k)=0. enddo enddo do i=its,itf pre(i)=0. xmb(i)=0. xfac1(i)=1. xmbweight(i)=1. enddo do i=its,itf IF(ierr(i).eq.0)then do n=(iens-1)*nx*nx2*maxens3+1,iens*nx*nx2*maxens3 if(pr_ens(i,j,n).le.0.)then xf_ens(i,j,n)=0. endif enddo endif enddo ! !--- calculate ensemble average mass fluxes ! call massflx_stats(xf_ens,ensdim,nx2,nx,maxens3, & xmb_ave,xmb_std,xmb_cur,xmb_ske,j,ierr,1, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI, & pr_gr,pr_w,pr_mc,pr_st,pr_as, & pr_capma,pr_capme,pr_capmi, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) call massflx_stats(pr_ens,ensdim,nx2,nx,maxens3, & pr_ave,pr_std,pr_cur,pr_ske,j,ierr,2, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI, & pr_gr,pr_w,pr_mc,pr_st,pr_as, & pr_capma,pr_capme,pr_capmi, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) ! !-- now do feedback ! ddtes=200. ! if(name.eq.'shal')ddtes=200. do i=its,itf if(ierr(i).eq.0)then if(xmb_ave(i).le.0.)then ierr(i)=13 xmb_ave(i)=0. endif ! xmb(i)=max(0.,xmb_ave(i)) xmb(i)=max(.1*xmb_ave(i),xmb_ave(i)-tuning*xmb_std(i)) ! --- Now use proper count of how many closures were actually ! used in cup_forcing_ens (including screening of some ! closures over water) to properly normalize xmb clos_wei=16./max(1.,closure_n(i)) if (xland1(i).lt.0.5)xmb(i)=xmb(i)*clos_wei if(xmb(i).eq.0.)then ierr(i)=19 endif if(xmb(i).gt.100.)then ierr(i)=19 endif xfac1(i)=xmb(i) endif xfac1(i)=xmb_ave(i) ENDDO DO k=kts,ktf do i=its,itf dtt=0. dtq=0. dtqc=0. dtpw=0. IF(ierr(i).eq.0.and.k.le.ktop(i))then do n=1,nx dtt=dtt+dellat(i,k,n) dtq=dtq+dellaq(i,k,n) dtqc=dtqc+dellaqc(i,k,n) dtpw=dtpw+pw(i,k,n) enddo outtes=dtt*XMB(I)*86400./float(nx) IF((OUTTES.GT.2.*ddtes.and.k.gt.2))THEN XMB(I)= 2.*ddtes/outtes * xmb(i) outtes=1.*ddtes endif if (outtes .lt. -ddtes) then XMB(I)= -ddtes/outtes * xmb(i) outtes=-ddtes endif if (outtes .gt. .5*ddtes.and.k.le.2) then XMB(I)= ddtes/outtes * xmb(i) outtes=.5*ddtes endif OUTTEM(I,K)=XMB(I)*dtt/float(nx) OUTQ(I,K)=XMB(I)*dtq/float(nx) OUTQC(I,K)=XMB(I)*dtqc/float(nx) PRE(I)=PRE(I)+XMB(I)*dtpw/float(nx) endif enddo enddo do i=its,itf if(ierr(i).eq.0)then prerate=pre(i)*3600. if(prerate.lt.0.1)then if(ierr2(i).gt.0.or.ierr3(i).gt.0)then pre(i)=0. ierr(i)=221 do k=kts,ktf outtem(i,k)=0. outq(i,k)=0. outqc(i,k)=0. enddo do k=(iens-1)*nx*nx2*maxens3+1,iens*nx*nx2*maxens3 massfln(i,j,k)=0. xf_ens(i,j,k)=0. enddo endif endif endif ENDDO do i=its,itf if(ierr(i).eq.0)then xfac1(i)=xmb(i)/xfac1(i) do k=(iens-1)*nx*nx2*maxens3+1,iens*nx*nx2*maxens3 massfln(i,j,k)=massfln(i,j,k)*xfac1(i) xf_ens(i,j,k)=xf_ens(i,j,k)*xfac1(i) enddo endif ENDDO if (l_flux) then if (iens .eq. 1) then ! Only do deep convection mass fluxes do k=kts,ktf do i=its,itf outcfu1(i,k)=0. outcfd1(i,k)=0. outdfu1(i,k)=0. outefu1(i,k)=0. outdfd1(i,k)=0. outefd1(i,k)=0. if (ierr(i) .eq. 0) then do iedt=1,nx do kk=1,nx2*maxens3 n=(iens-1)*nx*nx2*maxens3 + & (iedt-1)*nx2*maxens3 + kk outcfu1(i,k)=outcfu1(i,k)+cfu1_ens(i,k,iedt)*xf_ens(i,j,n) outcfd1(i,k)=outcfd1(i,k)+cfd1_ens(i,k,iedt)*xf_ens(i,j,n) outdfu1(i,k)=outdfu1(i,k)+dfu1_ens(i,k,iedt)*xf_ens(i,j,n) outefu1(i,k)=outefu1(i,k)+efu1_ens(i,k,iedt)*xf_ens(i,j,n) outdfd1(i,k)=outdfd1(i,k)+dfd1_ens(i,k,iedt)*xf_ens(i,j,n) outefd1(i,k)=outefd1(i,k)+efd1_ens(i,k,iedt)*xf_ens(i,j,n) end do end do outcfu1(i,k)=outcfu1(i,k)/ensdim outcfd1(i,k)=outcfd1(i,k)/ensdim outdfu1(i,k)=outdfu1(i,k)/ensdim outefu1(i,k)=outefu1(i,k)/ensdim outdfd1(i,k)=outdfd1(i,k)/ensdim outefd1(i,k)=outefd1(i,k)/ensdim end if !ierr end do !i end do !k end if !iens .eq. 1 end if !l_flux END SUBROUTINE cup_output_ens SUBROUTINE cup_up_aa0(aa0,z,zu,dby,GAMMA_CUP,t_cup, & kbcon,ktop,ierr, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! aa0 cloud work function ! gamma_cup = gamma on model cloud levels ! t_cup = temperature (Kelvin) on model cloud levels ! dby = buoancy term ! zu= normalized updraft mass flux ! z = heights of model levels ! ierr error value, maybe modified in this routine ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z,zu,gamma_cup,t_cup,dby integer, dimension (its:ite) & ,intent (in ) :: & kbcon,ktop ! ! input and output ! integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite) & ,intent (out ) :: & aa0 ! ! local variables in this routine ! integer :: & i,k real :: & dz,da ! integer :: itf, ktf itf = MIN(ite,ide-1) ktf = MIN(kte,kde-1) do i=its,itf aa0(i)=0. enddo DO 100 k=kts+1,ktf DO 100 i=its,itf IF(ierr(i).ne.0)GO TO 100 IF(K.LE.KBCON(I))GO TO 100 IF(K.Gt.KTOP(I))GO TO 100 DZ=Z(I,K)-Z(I,K-1) da=zu(i,k)*DZ*(9.81/(1004.*( & (T_cup(I,K)))))*DBY(I,K-1)/ & (1.+GAMMA_CUP(I,K)) IF(K.eq.KTOP(I).and.da.le.0.)go to 100 AA0(I)=AA0(I)+da if(aa0(i).lt.0.)aa0(i)=0. 100 continue END SUBROUTINE cup_up_aa0 SUBROUTINE cup_up_he(k22,hkb,z_cup,cd,entr,he_cup,hc, & kbcon,ierr,dby,he,hes_cup, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! hc = cloud moist static energy ! hkb = moist static energy at originating level ! he = moist static energy on model levels ! he_cup = moist static energy on model cloud levels ! hes_cup = saturation moist static energy on model cloud levels ! dby = buoancy term ! cd= detrainment function ! z_cup = heights of model cloud levels ! entr = entrainment rate ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & he,he_cup,hes_cup,z_cup,cd ! entr= entrainment rate real & ,intent (in ) :: & entr integer, dimension (its:ite) & ,intent (in ) :: & kbcon,k22 ! ! input and output ! ! ierr error value, maybe modified in this routine integer, dimension (its:ite) & ,intent (inout) :: & ierr real, dimension (its:ite,kts:kte) & ,intent (out ) :: & hc,dby real, dimension (its:ite) & ,intent (out ) :: & hkb ! ! local variables in this routine ! integer :: & i,k real :: & dz ! integer :: itf, ktf itf = MIN(ite,ide-1) ktf = MIN(kte,kde-1) ! !--- moist static energy inside cloud ! do i=its,itf if(ierr(i).eq.0.)then hkb(i)=he_cup(i,k22(i)) do k=1,k22(i) hc(i,k)=he_cup(i,k) DBY(I,K)=0. enddo do k=k22(i),kbcon(i)-1 hc(i,k)=hkb(i) DBY(I,K)=0. enddo k=kbcon(i) hc(i,k)=hkb(i) DBY(I,Kbcon(i))=Hkb(I)-HES_cup(I,K) endif enddo do k=kts+1,ktf do i=its,itf if(k.gt.kbcon(i).and.ierr(i).eq.0.)then DZ=Z_cup(i,K)-Z_cup(i,K-1) HC(i,K)=(HC(i,K-1)*(1.-.5*CD(i,K)*DZ)+entr* & DZ*HE(i,K-1))/(1.+entr*DZ-.5*cd(i,k)*dz) DBY(I,K)=HC(I,K)-HES_cup(I,K) endif enddo enddo END SUBROUTINE cup_up_he SUBROUTINE cup_up_moisture(ierr,z_cup,qc,qrc,pw,pwav, & kbcon,ktop,cd,dby,mentr_rate,clw_all, & q,GAMMA_cup,zu,qes_cup,k22,qe_cup,xl, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! cd= detrainment function ! q = environmental q on model levels ! qe_cup = environmental q on model cloud levels ! qes_cup = saturation q on model cloud levels ! dby = buoancy term ! cd= detrainment function ! zu = normalized updraft mass flux ! gamma_cup = gamma on model cloud levels ! mentr_rate = entrainment rate ! real, dimension (its:ite,kts:kte) & ,intent (in ) :: & q,zu,gamma_cup,qe_cup,dby,qes_cup,z_cup,cd ! entr= entrainment rate real & ,intent (in ) :: & mentr_rate,xl integer, dimension (its:ite) & ,intent (in ) :: & kbcon,ktop,k22 ! ! input and output ! ! ierr error value, maybe modified in this routine integer, dimension (its:ite) & ,intent (inout) :: & ierr ! qc = cloud q (including liquid water) after entrainment ! qrch = saturation q in cloud ! qrc = liquid water content in cloud after rainout ! pw = condensate that will fall out at that level ! pwav = totan normalized integrated condensate (I1) ! c0 = conversion rate (cloud to rain) real, dimension (its:ite,kts:kte) & ,intent (out ) :: & qc,qrc,pw,clw_all real, dimension (its:ite) & ,intent (out ) :: & pwav ! ! local variables in this routine ! integer :: & iall,i,k real :: & dh,qrch,c0,dz,radius ! integer :: itf, ktf itf = MIN(ite,ide-1) ktf = MIN(kte,kde-1) iall=0 c0=.002 ! !--- no precip for small clouds ! if(mentr_rate.gt.0.)then radius=.2/mentr_rate if(radius.lt.900.)c0=0. ! if(radius.lt.900.)iall=0 endif do i=its,itf pwav(i)=0. enddo do k=kts,ktf do i=its,itf pw(i,k)=0. if(ierr(i).eq.0)qc(i,k)=qes_cup(i,k) clw_all(i,k)=0. qrc(i,k)=0. enddo enddo do i=its,itf if(ierr(i).eq.0.)then do k=k22(i),kbcon(i)-1 qc(i,k)=qe_cup(i,k22(i)) enddo endif enddo DO 100 k=kts+1,ktf DO 100 i=its,itf IF(ierr(i).ne.0)GO TO 100 IF(K.Lt.KBCON(I))GO TO 100 IF(K.Gt.KTOP(I))GO TO 100 DZ=Z_cup(i,K)-Z_cup(i,K-1) ! !------ 1. steady state plume equation, for what could !------ be in cloud without condensation ! ! QC(i,K)=(QC(i,K-1)*(1.-.5*CD(i,K)*DZ)+mentr_rate* & DZ*Q(i,K-1))/(1.+mentr_rate*DZ-.5*cd(i,k)*dz) ! !--- saturation in cloud, this is what is allowed to be in it ! QRCH=QES_cup(I,K)+(1./XL)*(GAMMA_cup(i,k) & /(1.+GAMMA_cup(i,k)))*DBY(I,K) ! !------- LIQUID WATER CONTENT IN cloud after rainout ! clw_all(i,k)=QC(I,K)-QRCH QRC(I,K)=(QC(I,K)-QRCH)/(1.+C0*DZ) if(qrc(i,k).lt.0.)then qrc(i,k)=0. endif ! !------- 3.Condensation ! PW(i,k)=c0*dz*QRC(I,K)*zu(i,k) if(iall.eq.1)then qrc(i,k)=0. pw(i,k)=(QC(I,K)-QRCH)*zu(i,k) if(pw(i,k).lt.0.)pw(i,k)=0. endif ! !----- set next level ! QC(I,K)=QRC(I,K)+qrch ! !--- integrated normalized ondensate ! PWAV(I)=PWAV(I)+PW(I,K) 100 CONTINUE END SUBROUTINE cup_up_moisture SUBROUTINE cup_up_nms(zu,z_cup,entr,cd,kbcon,ktop,ierr,k22, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) IMPLICIT NONE ! ! on input ! ! only local wrf dimensions are need as of now in this routine integer & ,intent (in ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! cd= detrainment function real, dimension (its:ite,kts:kte) & ,intent (in ) :: & z_cup,cd ! entr= entrainment rate real & ,intent (in ) :: & entr integer, dimension (its:ite) & ,intent (in ) :: & kbcon,ktop,k22 ! ! input and output ! ! ierr error value, maybe modified in this routine integer, dimension (its:ite) & ,intent (inout) :: & ierr ! zu is the normalized mass flux real, dimension (its:ite,kts:kte) & ,intent (out ) :: & zu ! ! local variables in this routine ! integer :: & i,k real :: & dz integer :: itf, ktf itf = MIN(ite,ide-1) ktf = MIN(kte,kde-1) ! ! initialize for this go around ! do k=kts,ktf do i=its,itf zu(i,k)=0. enddo enddo ! ! do normalized mass budget ! do i=its,itf IF(ierr(I).eq.0)then do k=k22(i),kbcon(i) zu(i,k)=1. enddo DO K=KBcon(i)+1,KTOP(i) DZ=Z_cup(i,K)-Z_cup(i,K-1) ZU(i,K)=ZU(i,K-1)*(1.+(entr-cd(i,k))*DZ) enddo endif enddo END SUBROUTINE cup_up_nms !==================================================================== SUBROUTINE gdinit(RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, & MASS_FLUX,cp,restart, & P_QC,P_QI,P_FIRST_SCALAR, & RTHFTEN, RQVFTEN, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI, & allowed_to_read, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !-------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------- LOGICAL , INTENT(IN) :: restart,allowed_to_read INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte INTEGER , INTENT(IN) :: P_FIRST_SCALAR, P_QI, P_QC REAL, INTENT(IN) :: cp REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: & RTHCUTEN, & RQVCUTEN, & RQCCUTEN, & RQICUTEN REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: & RTHFTEN, & RQVFTEN REAL, DIMENSION( ims:ime , jms:jme ) , INTENT(OUT) :: & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI, & MASS_FLUX INTEGER :: i, j, k, itf, jtf, ktf jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) IF(.not.restart)THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RTHCUTEN(i,k,j)=0. RQVCUTEN(i,k,j)=0. ENDDO ENDDO ENDDO DO j=jts,jtf DO k=kts,ktf DO i=its,itf RTHFTEN(i,k,j)=0. RQVFTEN(i,k,j)=0. ENDDO ENDDO ENDDO IF (P_QC .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQCCUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF IF (P_QI .ge. P_FIRST_SCALAR) THEN DO j=jts,jtf DO k=kts,ktf DO i=its,itf RQICUTEN(i,k,j)=0. ENDDO ENDDO ENDDO ENDIF DO j=jts,jtf DO i=its,itf mass_flux(i,j)=0. ENDDO ENDDO ENDIF DO j=jts,jtf DO i=its,itf APR_GR(i,j)=0. APR_ST(i,j)=0. APR_W(i,j)=0. APR_MC(i,j)=0. APR_AS(i,j)=0. APR_CAPMA(i,j)=0. APR_CAPME(i,j)=0. APR_CAPMI(i,j)=0. ENDDO ENDDO END SUBROUTINE gdinit SUBROUTINE massflx_stats(xf_ens,ensdim,maxens,maxens2,maxens3, & xt_ave,xt_std,xt_cur,xt_ske,j,ierr,itest, & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI, & pr_gr,pr_w,pr_mc,pr_st,pr_as, & pr_capma,pr_capme,pr_capmi, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) IMPLICIT NONE integer, intent (in ) :: & j,ensdim,maxens3,maxens,maxens2,itest INTEGER, INTENT(IN ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte real, dimension (its:ite) & , intent(inout) :: & xt_ave,xt_cur,xt_std,xt_ske integer, dimension (its:ite), intent (in) :: & ierr real, dimension (ims:ime,jms:jme,1:ensdim) & , intent(in ) :: & xf_ens real, dimension (ims:ime,jms:jme) & , intent(inout) :: & APR_GR,APR_W,APR_MC,APR_ST,APR_AS, & APR_CAPMA,APR_CAPME,APR_CAPMI real, dimension (its:ite,jts:jte) & , intent(inout) :: & pr_gr,pr_w,pr_mc,pr_st,pr_as, & pr_capma,pr_capme,pr_capmi ! ! local stuff ! real, dimension (its:ite , 1:maxens3 ) :: & x_ave,x_cur,x_std,x_ske real, dimension (its:ite , 1:maxens ) :: & x_ave_cap integer, dimension (1:maxens3) :: nc1 integer :: i,k integer :: num,kk,num2,iedt real :: a3,a4 num=ensdim/maxens3 num2=ensdim/maxens if(itest.eq.1)then do i=its,ite pr_gr(i,j) = 0. pr_w(i,j) = 0. pr_mc(i,j) = 0. pr_st(i,j) = 0. pr_as(i,j) = 0. pr_capma(i,j) = 0. pr_capme(i,j) = 0. pr_capmi(i,j) = 0. enddo endif do k=1,maxens do i=its,ite x_ave_cap(i,k)=0. enddo enddo do k=1,maxens3 do i=its,ite x_ave(i,k)=0. x_std(i,k)=0. x_ske(i,k)=0. x_cur(i,k)=0. enddo enddo do i=its,ite xt_ave(i)=0. xt_std(i)=0. xt_ske(i)=0. xt_cur(i)=0. enddo do kk=1,num do k=1,maxens3 do i=its,ite if(ierr(i).eq.0)then x_ave(i,k)=x_ave(i,k)+xf_ens(i,j,maxens3*(kk-1)+k) endif enddo enddo enddo do iedt=1,maxens2 do k=1,maxens do kk=1,maxens3 do i=its,ite if(ierr(i).eq.0)then x_ave_cap(i,k)=x_ave_cap(i,k) & +xf_ens(i,j,maxens3*(k-1)+(iedt-1)*maxens*maxens3+kk) endif enddo enddo enddo enddo do k=1,maxens do i=its,ite if(ierr(i).eq.0)then x_ave_cap(i,k)=x_ave_cap(i,k)/float(num2) endif enddo enddo do k=1,maxens3 do i=its,ite if(ierr(i).eq.0)then x_ave(i,k)=x_ave(i,k)/float(num) endif enddo enddo do k=1,maxens3 do i=its,ite if(ierr(i).eq.0)then xt_ave(i)=xt_ave(i)+x_ave(i,k) endif enddo enddo do i=its,ite if(ierr(i).eq.0)then xt_ave(i)=xt_ave(i)/float(maxens3) endif enddo ! !--- now do std, skewness,curtosis ! do kk=1,num do k=1,maxens3 do i=its,ite if(ierr(i).eq.0.and.x_ave(i,k).gt.0.)then ! print *,i,j,k,kk,x_std(i,k),xf_ens(i,j,maxens3*(kk-1)+k),x_ave(i,k) x_std(i,k)=x_std(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**2 x_ske(i,k)=x_ske(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**3 x_cur(i,k)=x_cur(i,k)+(xf_ens(i,j,maxens3*(kk-1)+k)-x_ave(i,k))**4 endif enddo enddo enddo do k=1,maxens3 do i=its,ite if(ierr(i).eq.0.and.xt_ave(i).gt.0.)then xt_std(i)=xt_std(i)+(x_ave(i,k)-xt_ave(i))**2 xt_ske(i)=xt_ske(i)+(x_ave(i,k)-xt_ave(i))**3 xt_cur(i)=xt_cur(i)+(x_ave(i,k)-xt_ave(i))**4 endif enddo enddo do k=1,maxens3 do i=its,ite if(ierr(i).eq.0.and.x_std(i,k).gt.0.)then x_std(i,k)=x_std(i,k)/float(num) a3=max(1.e-6,x_std(i,k)) x_std(i,k)=sqrt(a3) a3=max(1.e-6,x_std(i,k)**3) a4=max(1.e-6,x_std(i,k)**4) x_ske(i,k)=x_ske(i,k)/float(num)/a3 x_cur(i,k)=x_cur(i,k)/float(num)/a4 endif ! print*,' ' ! print*,'Some statistics at gridpoint i,j, ierr',i,j,ierr(i) ! print*,'statistics for closure number ',k ! print*,'Average= ',x_ave(i,k),' Std= ',x_std(i,k) ! print*,'Skewness= ',x_ske(i,k),' Curtosis= ',x_cur(i,k) ! print*,' ' enddo enddo do i=its,ite if(ierr(i).eq.0.and.xt_std(i).gt.0.)then xt_std(i)=xt_std(i)/float(maxens3) a3=max(1.e-6,xt_std(i)) xt_std(i)=sqrt(a3) a3=max(1.e-6,xt_std(i)**3) a4=max(1.e-6,xt_std(i)**4) xt_ske(i)=xt_ske(i)/float(maxens3)/a3 xt_cur(i)=xt_cur(i)/float(maxens3)/a4 ! print*,' ' ! print*,'Total ensemble independent statistics at i =',i ! print*,'Average= ',xt_ave(i),' Std= ',xt_std(i) ! print*,'Skewness= ',xt_ske(i),' Curtosis= ',xt_cur(i) ! print*,' ' ! ! first go around: store massflx for different closures/caps ! if(itest.eq.1)then pr_gr(i,j) = .333*(x_ave(i,1)+x_ave(i,2)+x_ave(i,3)) pr_w(i,j) = .333*(x_ave(i,4)+x_ave(i,5)+x_ave(i,6)) pr_mc(i,j) = .333*(x_ave(i,7)+x_ave(i,8)+x_ave(i,9)) pr_st(i,j) = .333*(x_ave(i,10)+x_ave(i,11)+x_ave(i,12)) pr_as(i,j) = .25*(x_ave(i,13)+x_ave(i,14)+x_ave(i,15) & + x_ave(i,16)) pr_capma(i,j) = x_ave_cap(i,1) pr_capme(i,j) = x_ave_cap(i,2) pr_capmi(i,j) = x_ave_cap(i,3) ! ! second go around: store preciprates (mm/hour) for different closures/caps ! else if (itest.eq.2)then APR_GR(i,j)=.333*(x_ave(i,1)+x_ave(i,2)+x_ave(i,3))* & 3600.*pr_gr(i,j) +APR_GR(i,j) APR_W(i,j)=.333*(x_ave(i,4)+x_ave(i,5)+x_ave(i,6))* & 3600.*pr_w(i,j) +APR_W(i,j) APR_MC(i,j)=.333*(x_ave(i,7)+x_ave(i,8)+x_ave(i,9))* & 3600.*pr_mc(i,j) +APR_MC(i,j) APR_ST(i,j)=.333*(x_ave(i,10)+x_ave(i,11)+x_ave(i,12))* & 3600.*pr_st(i,j) +APR_ST(i,j) APR_AS(i,j)=.25*(x_ave(i,13)+x_ave(i,14)+x_ave(i,15) & + x_ave(i,16))* & 3600.*pr_as(i,j) +APR_AS(i,j) APR_CAPMA(i,j) = x_ave_cap(i,1)* & 3600.*pr_capma(i,j) +APR_CAPMA(i,j) APR_CAPME(i,j) = x_ave_cap(i,2)* & 3600.*pr_capme(i,j) +APR_CAPME(i,j) APR_CAPMI(i,j) = x_ave_cap(i,3)* & 3600.*pr_capmi(i,j) +APR_CAPMI(i,j) endif endif enddo END SUBROUTINE massflx_stats SUBROUTINE neg_check(dt,q,outq,outt,outqc,pret,its,ite,kts,kte,itf,ktf) INTEGER, INTENT(IN ) :: its,ite,kts,kte,itf,ktf real, dimension (its:ite,kts:kte ) , & intent(inout ) :: & q,outq,outt,outqc real, dimension (its:ite ) , & intent(inout ) :: & pret real & ,intent (in ) :: & dt real :: thresh,qmem,qmemf,qmem2,qtest,qmem1 ! ! first do check on vertical heating rate ! thresh=200.01 do i=its,itf qmemf=1. qmem=0. do k=kts,ktf qmem=outt(i,k)*86400. if(qmem.gt.2.*thresh)then qmem2=2.*thresh/qmem qmemf=min(qmemf,qmem2) ! ! ! print *,'1',' adjusted massflux by factor ',i,k,qmem,qmem2,qmemf endif if(qmem.lt.-thresh)then qmem2=-thresh/qmem qmemf=min(qmemf,qmem2) ! ! ! print *,'2',' adjusted massflux by factor ',i,k,qmem,qmem2,qmemf endif enddo do k=kts,ktf outq(i,k)=outq(i,k)*qmemf outt(i,k)=outt(i,k)*qmemf outqc(i,k)=outqc(i,k)*qmemf enddo pret(i)=pret(i)*qmemf enddo ! ! check whether routine produces negative q's. This can happen, since ! tendencies are calculated based on forced q's. This should have no ! influence on conservation properties, it scales linear through all ! tendencies ! thresh=1.e-10 do i=its,itf qmemf=1. do k=kts,ktf qmem=outq(i,k) if(abs(qmem).gt.0.)then qtest=q(i,k)+outq(i,k)*dt if(qtest.lt.thresh)then ! ! qmem2 would be the maximum allowable tendency ! qmem1=outq(i,k) qmem2=(thresh-q(i,k))/dt qmemf=min(qmemf,qmem2/qmem1) ! qmemf=max(0.,qmemf) ! print *,'4 adjusted tendencies ',i,k,qmem,qmem2,qmemf endif endif enddo do k=kts,ktf outq(i,k)=outq(i,k)*qmemf outt(i,k)=outt(i,k)*qmemf outqc(i,k)=outqc(i,k)*qmemf enddo pret(i)=pret(i)*qmemf enddo END SUBROUTINE neg_check !------------------------------------------------------- END MODULE module_cu_gd