import numpy as np
import os
from netCDF4 import Dataset as NetCDFFile
import drawing_tools as drw
from optparse import OptionParser
import sys
from cStringIO import StringIO

## e.g. # drawing.py -f /media/data2/etudes/WRF_LMDZ/WL_HyMeX/IIphase/medic950116/wlmdza/wrfout/wrfout_d01_1995-01-13_00:00:00 -o create_movie -S 'draw_2D_shad#Time@WRFTimes@10@95@191@1#tas:East_West|-1,North_South|-1,Time|2:longitude:latitude:Summer:270.,300.:tas|at|t=0:pdf:None:None' -v T2
## e.g. # drawing.py -f wrfout_d01_1980-03-01_00\:00\:00_Time_B0-E48-I1.nc -o draw_2D_shad -S 'tas:East_West|-1,North_South|-1,Time|2:longitude:latitude:Summer:270.,300.:tas|at|t=0:pdf:None:cyl,i' -v T2
## e.g. # drawing.py -f ~/etudes/domains/MEDCORDEX/geo_em.d01.nc -o draw_2D_shad_cont -S 'landmask,height:Time|0:Time|0:XLONG_M:XLAT_M:rainbow:fixc,k:%.2f:0,1:0.,3000.,10:landmask & height:pdf:False:lcc,i' -v LANDMASK,HGT_M
## e.g. # drawing.py -f ~/etudes/domains/MEDCORDEX/geo_em.d01.nc -o draw_2D_shad_cont -S 'height,landmask:Time|0:Time|0:XLONG_M:XLAT_M:terrain:fixc,k:None:0.,3000.:0,1,10:MEDCORDEX height & landmask:pdf:False:lcc,i' -v HGT_M,LANDMASK
## e.g. # drawing.py -o draw_2D_shad_line -f 'mean_dtcon-pluc-pres_lat.nc,mean_dtcon-pluc-pres_lat.nc' -S 'dtcon,prc:bottom_top|-1,south_north|-1:latmean:presmean:seismic,k:-5.,5.:monthly|dtcon|&|prc:pdf:flip@y:None:True' -v 'dtconmean,prcmean'
## e.g. # drawing.py -f 'geo_em.d02.nc' -o draw_topo_geogrid -S '0.,3000.:None:FF_3dom d02:png:cyl,i'
## e.g. # drawing.py -o draw_topo_geogrid_boxes -S '0.,3000.:None:FF domains:pdf:lcc,i:d01,d02,d03' -f geo_em.d01.nc,geo_em.d02.nc,geo_em.d03.nc
## e.g. # drawing.py -o draw_trajectories -f 'WRF/control/trajectory.dat@-1@/home/lluis/etudes/domains/WL_HyMeX_HighRes_C/geo_em.d03.nc#XLONG_M#XLAT_M,WRF_LMDZ/wlmdza/trajectory.dat@-1@/home/lluis/etudes/domains/WL_HyMeX_C/geo_em.d01.nc#XLONG_M#XLAT_M,WRF_LMDZ/wlmdzb/trajectory.dat@-1@/home/lluis/etudes/domains/WL_HyMeX_C/geo_em.d01.nc#XLONG_M#XLAT_M,WRF_LMDZ/wlmdzb_ii/trajectory.dat@-1@/home/lluis/etudes/domains/WL_HyMeX_C/geo_em.d01.nc#XLONG_M#XLAT_M' -S '$WRF_{CRM}$,$LMDZ_{AR4.0}$,$LMDZ_{NPv3.1}$,$LMDZ_{NPv3.1b}$|None|medicane trajectories|pdf|cyl,i' -v obs/trajectory.dat,satellite,-1
## e.g. # drawing.py -o draw_vals_trajectories -f WRF_LMDZ/wlmdza/tevolboxtraj_T2.nc,WRF_LMDZ/wlmdzb/tevolboxtraj_T2.nc,WRF/control/tevolboxtraj_T2.nc -S 'mean:-1:$WRF_{CRM}$,$LMDZ_{AR4.0}$,$LMDZ_{NPv3.1}$@4:tas:time|($[DD]^[HH]$):exct,6,h:$%d^{%H}$:trajectory|following|mean:pdf' -v T2
## e.g. # drawing.py -o draw_2D_shad_time -f 'netcdf_concatenated.nc' -S 'dtcon:Time|-1,bottom_top|-1:presmean:time:seismic:-3.e-6,3.e-6:monthly|dtcon:pdf:transpose:time|hours!since!1949-12-01|exct,2,d|%d|date!([DD])|x:True' -v 'dtconmean'
## e.g. # drawing.py -o variable_values -S PSFC
## e.g. # drawing.py -o draw_timeSeries -f wrfout_d01_1979-12-01_00:00:00_bottom_top_B6-E6-I1_south_north_B3-E3-I1_west_east_B26-E26-I1.nc -S 'dt_con:time|($[DD]^{[HH]}$):exct,12,h:$%d^{%H}$:time|evolution|at|-1|6|3|26:1:pdf' -v 'LDQCON,time'
## e.g. # drawing.py -f wrfout_d01_1979-12-01_00:00:00 -o draw_Neighbourghood_evol -S 'q:Time|-1|Times,bottom_top|6|ZNU,south_north|3|XLAT,west_east|26|XLONG:south_north,west_east:5:auto:time|($[DD]^{[HH]}$),time|($[DD]^{[HH]}$):exct,2,h|exct,1,d:$%d^{%H}$,$%d^{%H}$:5|pts|neighbourghood|temporal|evolution:0.0,0.004:BuPu:pdf:True' -v QVAPOR
## e.g. # drawing.py -o draw_lines_time -f wrfout_d01_1980-03-01_00:00:00_Time_B0-E48-I1_south_north_B15-E15-I1_west_east_B15-E15-I1.nc -S 'time;y;time ([DD]${[HH]}$);file1;tas;evolution;time|hours!since!1949-12-01_00:00:00|exct,12,h|%d$^{%H}$;pdf' -v T2

main = 'drawing.py'

errormsg = 'ERROR -- error -- ERROR -- error'
warnmsg = 'WARNING -- waring -- WARNING -- warning'
fillValue=1.e20

namegraphics = ['create_movie', 'draw_2D_shad', 'draw_2D_shad_time',                 \
  'draw_2D_shad_cont', 'draw_2D_shad_cont_time', 'draw_2D_shad_line',                \
  'draw_2D_shad_line_time', 'draw_timeSeries', 'draw_topo_geogrid',                  \
  'draw_topo_geogrid_boxes', 'draw_trajectories', 'draw_vals_trajectories',          \
  'draw_lines', 'draw_lines_time', 'draw_Neighbourghood_evol', 'list_graphics',      \
  'variable_values']

def draw_2D_shad(ncfile, values, varn):
    """ plotting a fields with shading
    draw_2D_shad(ncfile, values, varn)
      ncfile= file to use
      values=[vnamefs]:[dimvals]:[dimxvn]:[dimyvn]:[colorbar]:[sminv],[smaxv]:[figt]:
       [kindfig]:[reverse]:[mapv]:[close]
        [vnamefs]: Name in the figure of the variable to be shaded
        [dimvals]: ',' list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (-1, all the length)
        [dimx/yvn]: name of the variables with the values of the final dimensions (x,y)
        [colorbar]: name of the color bar
        [smin/axv]: minimum and maximum value for the shading or:
          'Srange': for full range
          'Saroundmean@val': for mean-xtrm,mean+xtrm where xtrm = np.min(mean-min@val,max@val-mean)
          'Saroundminmax@val': for min*val,max*val
          'Saroundpercentile@val': for median-xtrm,median+xtrm where xtrm = np.min(median-percentile_(val),
            percentile_(100-val)-median)
          'Smean@val': for -xtrm,xtrm where xtrm = np.min(mean-min*@val,max*@val-mean)
          'Smedian@val': for -xtrm,xtrm where xtrm = np.min(median-min@val,max@val-median)
          'Spercentile@val': for -xtrm,xtrm where xtrm = np.min(median-percentile_(val),
             percentile_(100-val)-median)
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: Transformation of the values
          * 'transpose': reverse the axes (x-->y, y-->x)
          * 'flip'@[x/y]: flip the axis x or y
        [mapv]: map characteristics: [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lamvbert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
      valules= 'rh:z|-1,x|-1:z|-1,x|-1:lat:pressure:BuPu:0.,100.:rh:pdf:flip@y:None'
      varn= [varsn] name of the variable to plot with shading
    """

    fname = 'draw_2D_shad'
    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad.__doc__
        quit()

    expectargs = ['[vnamefs]', '[dimvals]', '[dimxvn]', '[dimyvn]', '[colorbar]',    \
      '[sminv],[smaxv]', '[figt]', '[kindfig]', '[reverse]', '[mapv]', '[close]']
 
    drw.check_arguments(fname,len(expectargs),values,':',expectargs)

    vnamesfig = values.split(':')[0]
    dimvals= values.split(':')[1].replace('|',':')
    vdimxn = values.split(':')[2]
    vdimyn = values.split(':')[3]
    colbarn = values.split(':')[4]
    shadminmax = values.split(':')[5]
    figtitle = values.split(':')[6].replace('|',' ')
    figkind = values.split(':')[7]
    revals = values.split(':')[8]
    mapvalue = values.split(':')[9]
#    varn = values.split(':')[10]

    ncfiles = ncfile
    
    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    
    varns = varn.split(',')[0]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))

# Dimensions names
##    print fname + ' obj dimnames: ', objvars.dimensions, dimvals, len(dimvals.split(','))
##    dimnamesv = []
##    for idd in range(len(objvars.dimensions)):
##        cutdim = False
##        for idc in range(len(dimvals.split(','))):
##            dimcutn = dimvals.split(',')[idc].split(':')[0]
##            print objvars.dimensions[idd], dimcutn
##            if objvars.dimensions[idd] == dimcutn: 
##                cutdim = True
##                break
##        if not cutdim: dimnamesv.append(objvars.dimensions[idd])
    dimnamesv = [vdimyn, vdimxn]

    if drw.searchInlist(objvars.ncattrs(),'units'):
        varunits = objvars.getncattr('units')
    else:
        print warnmsg
        print '  ' + fname + ": variable '" + varn + "' without units!!"
        varunits = '-'

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimyn + '" !!'
        quit(-1)

    objdimx = objsf.variables[vdimxn]
    objdimy = objsf.variables[vdimyn]
    if drw.searchInlist(objdimx.ncattrs(),'units'):
        odimxu = objdimx.getncattr('units')
    else:
        print warnmsg
        print '  ' + fname + ": variable dimension '" + vdimxn + "' without units!!"
        odimxu = '-'

    if drw.searchInlist(objdimy.ncattrs(),'units'):
        odimyu = objdimy.getncattr('units')
    else:
        print warnmsg
        print '  ' + fname + ": variable dimension '" + vdimyn + "' without units!!"
        odimyu = '-'

    if len(objdimx.shape) <= 2:
#        odimxv = objdimx[valshad.shape]
#        odimyv = objdimy[valshad.shape]
        odimxv = objdimx[:]
        odimyv = objdimy[:]

    elif len(objdimx.shape) == 3:
#        dimcut = [0, slice(0,valshad.shape[0]), slice(0,valshad.shape[1])]
#        odimxv = objdimx[tuple(dimcut)]
#        odimyv = objdimy[tuple(dimcut)]
        odimxv = objdimx[0,:]
        odimyv = objdimy[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', objdimx.shape,        \
          ' not ready!!'
        quit(-1)

    shading_nx = []
    if shadminmax.split(',')[0][0:1] != 'S':
            shading_nx.append(np.float(shadminmax.split(',')[0]))
    else:
        shading_nx.append(shadminmax.split(',')[0])

    if shadminmax.split(',')[1][0:1] != 'S':
        shading_nx.append(np.float(shadminmax.split(',')[1]))
    else:
        shading_nx.append(shadminmax.split(',')[1])

    if mapvalue == 'None': mapvalue = None

    drw.plot_2D_shadow(valshad, vnamesfig, odimxv, odimyv, odimxu, odimyu, dimnamesv,\
      colbarn, shading_nx, varunits, figtitle, figkind, revals, mapvalue, True)

    return

def draw_2D_shad_time(ncfile, values, varn):
    """ plotting a fields with shading with time values
    draw_2D_shad(ncfile, values, varn)
      ncfile= file to use
      values=[vnamefs]:[dimvals]:[dimxvn]:[dimyvn]:[colorbar]:[sminv],[smaxv]:[figt]:
       [kindfig]:[reverse]:[timevals]:[close]
        [vnamefs]: Name in the figure of the variable to be shaded
        [dimvals]: ',' list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (-1, all the length)
        [dimx/yvn]: name of the variables with the values of the final dimensions (x,y)
        [colorbar]: name of the color bar
        [smin/axv]: minimum and maximum value for the shading or:
          'Srange': for full range
          'Saroundmean@val': for mean-xtrm,mean+xtrm where xtrm = np.min(mean-min@val,max@val-mean)
          'Saroundminmax@val': for min*val,max*val
          'Saroundpercentile@val': for median-xtrm,median+xtrm where xtrm = np.min(median-percentile_(val),
            percentile_(100-val)-median)
          'Smean@val': for -xtrm,xtrm where xtrm = np.min(mean-min*@val,max*@val-mean)
          'Smedian@val': for -xtrm,xtrm where xtrm = np.min(median-min@val,max@val-median)
          'Spercentile@val': for -xtrm,xtrm where xtrm = np.min(median-percentile_(val),
             percentile_(100-val)-median)
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: Transformation of the values
          * 'transpose': reverse the axes (x-->y, y-->x)
          * 'flip'@[x/y]: flip the axis x or y
        [timevals]: [timen]|[units]|[kind]|[tfmt]|[label]|[timeaxis] time labels characteristics
           [timen]; name of the time variable
           [units]; units string according to CF conventions ([tunits] since 
             [YYYY]-[MM]-[DD] [[HH]:[MI]:[SS]], '!' for spaces)
           [kind]; kind of output
             'Nval': according to a given number of values as 'Nval',[Nval]
             'exct': according to an exact time unit as 'exct',[tunit]; 
               tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
                'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
                'l': milisecond
           [tfmt]; desired format
           [label]; label at the graph ('!' for spaces)
        [close]: should figure be closed (finished)
      values='dtcon:Time|-1,bottom_top|-1:presmean:time:seismic:-3.e-6,3.e-6:monthly|'
        'dtcon:pdf:transpose:time|hours!since!1949-12-01|exct,2,d|%d|date!([DD])|x:True
      varn= [varsn] name of the variable to plot with shading
    """
    fname = 'draw_2D_shad_time'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad_time.__doc__
        quit()

    farguments = ['[vnamefs]', '[dimvals]', '[dimxvn]', '[dimyvn]', '[colorbar]',     \
      '[sminv],[smaxv]', '[figt]', '[kindfig]', '[reverse]', '[timevals]', '[close]']
    drw.check_arguments(fname,11,values,':',farguments)

    vnamesfig = values.split(':')[0]
    dimvals= values.split(':')[1].replace('|',':')
    vdimxn = values.split(':')[2]
    vdimyn = values.split(':')[3]
    colbarn = values.split(':')[4]
    shadminmax = values.split(':')[5]
    figtitle = values.split(':')[6].replace('|',' ')
    figkind = values.split(':')[7]
    revals = values.split(':')[8]
    timevals = values.split(':')[9]
    close = values.split(':')[10]

    ncfiles = ncfile
    
    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    
    varns = varn.split(',')[0]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))

    dimnamesv = [vdimyn, vdimxn]

    varunits = objvars.getncattr('units')

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimensino variable "' +  vdimyn + '" !!'
        quit(-1)

    objdimx = objsf.variables[vdimxn]
    objdimy = objsf.variables[vdimyn]
    odimxu = objdimx.getncattr('units')
    odimyu = objdimy.getncattr('units')

    if len(objdimx.shape) <= 2:
        odimxv = objdimx[:]
        odimyv = objdimy[:]

    elif len(objdimx.shape) == 3:
        odimxv = objdimx[0,:]
        odimyv = objdimy[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', objdimx.shape,        \
          ' not ready!!'
        quit(-1)

    timename = timevals.split('|')[0]
    timeunit = timevals.split('|')[1].replace('!',' ')
    timekind = timevals.split('|')[2]
    timefmt = timevals.split('|')[3]
    timelabel = timevals.split('|')[4].replace('!',' ')

    if vdimxn == timename:
        odimxv = objsf.variables[vdimxn][:]
        odimxu = timelabel
        timeaxis = 'x'
        odimyv = objsf.variables[vdimyn]
        odimyu = odimyv.getncattr('units')
        timepos, timelabels = drw.CFtimes_plot(odimxv, timeunit, timekind, timefmt)
    elif vdimyn == timename:
        odimyv = objsf.variables[vdimyn][:]
        odimyu = timelabel
        timeaxis = 'y'
        odimxv = objsf.variables[vdimxn]
        odimxu = odimxv.getncattr('units')
        timepos, timelabels = drw.CFtimes_plot(odimyv, timeunit, timekind, timefmt)
    else:
        print errormsg
        print '  ' + fname + ": time variable '" + timename + "' not found!!"
        quit(-1)

    shading_nx = []
    if shadminmax.split(',')[0][0:1] != 'S':
        shading_nx.append(np.float(shadminmax.split(',')[0]))
    else:
        shading_nx.append(shadminmax.split(',')[0])

    if shadminmax.split(',')[1][0:1] != 'S':
        shading_nx.append(np.float(shadminmax.split(',')[1]))
    else:
        shading_nx.append(shadminmax.split(',')[1])

    closeval = drw.Str_Bool(close)

    drw.plot_2D_shadow_time(valshad, vnamesfig, odimxv, odimyv, odimxu, odimyu,      \
      dimnamesv, colbarn, shading_nx, varunits, figtitle, figkind, revals, timeaxis, \
      timepos, timelabels, closeval)

    return

def draw_2D_shad_cont(ncfile, values, varn):
    """ plotting two fields, one with shading and the other with contour lines
    draw_2D_shad_cont(ncfile, values, varn)
      ncfile= [ncfilevars],[ncfilevarc] files to use (one value, same file)
      values=[vnamefs]:[dimvals]:[dimvalc]:[dimxvn]:[dimyvn]:[colorbar]:[ckind]:[clabfmt]:[sminv],[smaxv]:[sminc],[smaxv],[Nlev]:[figt]:[kindfig]:[reverse]:[mapv]
        [vnamefs],[vnamefc]: Name in the figure of the shaded and the contour variables
        [dimvals/c]: list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (no dimension name, all the length)
        [dimx/yvn]: ',' list with the name of the variables with the values of the dimensions
        [colorbar]: name of the color bar
        [ckind]: kind of contours 
          'cmap': as it gets from colorbar
          'fixc,[colname]': fixed color [colname], all stright lines
          'fixsigc,[colname]': fixed color [colname], >0 stright, <0 dashed  line
        [clabfmt]: format of the labels in the contour (None, also possible)
        [smin/axv]: minimum and maximum value for the shading
        [sminc]:[smaxv]:[Nlev]: minimum, maximum and number of values for the contour
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: does the values be transposed? 'True/False', 
        [mapv]: map characteristics: [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lamvbert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
      valules= 'rh,ta:z|-1,x|-1:z|-1,x|-1:lat:pressure:BuPu:fixsigc,black:%d:0.,100.:195.,305.,7:Meridonal|average|of|rh|&|ta:pdf:flip@y:None'
      varn= [varsn],[varcn] name of the variable to plot with shading variable with contour
    """

    fname = 'draw_2D_shad_cont'
    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad_cont.__doc__
        quit()

    vnamesfig = values.split(':')[0].split(',')
    dimvals= values.split(':')[1].replace('|',':')
    dimvalc= values.split(':')[2].replace('|',':')
    vdimxn = values.split(':')[3]
    vdimyn = values.split(':')[4]
    colbarn = values.split(':')[5]
    countkind = values.split(':')[6]
    countlabelfmt = values.split(':')[7]
    shadminmax = values.split(':')[8]
    contlevels = values.split(':')[9]
    figtitle = values.split(':')[10].replace('|',' ')
    figkind = values.split(':')[11]
    revals = values.split(':')[12]
    mapvalue = values.split(':')[13]

    if2filenames = ncfile.find(',')

    if if2filenames != -1:
        ncfiles = ncfile.split(',')[0]
        ncfilec = ncfile.split(',')[1]
    else:
        ncfiles = ncfile
        ncfilec = ncfile

    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    if not os.path.isfile(ncfilec):
        print errormsg
        print '  ' + fname + ': contour file "' + ncfilec + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    objcf = NetCDFFile(ncfilec, 'r')
    
    varns = varn.split(',')[0]
    varnc = varn.split(',')[1]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

    if  not objcf.variables.has_key(varnc):
        print errormsg
        print '  ' + fname + ': contour file "' + ncfilec +                          \
          '" does not have variable "' +  varnc + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]
    objvarc = objcf.variables[varnc]

    if len(objvars.shape) != len(objvarc.shape):
        print errormsg
        print '  ' + fname + ': shading variable "' + varns + '" has a shape: ',     \
          objvars.shape,  'different than contour variable "' +  varnc + '": ',      \
          objvarc.shape,' !!!'
        quit(-1)

    for idim in range(len(objvars.shape)):
        if objvars.shape[idim] != objvarc.shape[idim]:
            print errormsg
            print '  ' + fname + ': shading variable "' + varns + '" has a shape: ', \
              objvars.shape,  'different than contour variable "' +  varnc + '": ',  \
              objvarc.shape,' !!!'
            quit(-1)

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))
    valcont, dimscont = drw.slice_variable(objvarc, dimvalc.replace(',','|'))

# Dimensions names
##    print fname + ' obj dimnames: ', objvars.dimensions, dimvals, len(dimvals.split(','))
##    dimnamesv = []
##    for idd in range(len(objvars.dimensions)):
##        cutdim = False
##        for idc in range(len(dimvals.split(','))):
##            dimcutn = dimvals.split(',')[idc].split(':')[0]
##            print objvars.dimensions[idd], dimcutn
##            if objvars.dimensions[idd] == dimcutn: 
##                cutdim = True
##                break
##        if not cutdim: dimnamesv.append(objvars.dimensions[idd])
    dimnamesv = [vdimyn, vdimxn]

    varunits = []
    varunits.append(objvars.getncattr('units'))
    varunits.append(objvarc.getncattr('units'))

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimensino variable "' +  vdimyn + '" !!'
        quit(-1)

    objdimx = objsf.variables[vdimxn]
    objdimy = objsf.variables[vdimyn]
    odimxu = objdimx.getncattr('units')
    odimyu = objdimy.getncattr('units')

    if len(objdimx.shape) <= 2:
#        odimxv = objdimx[valshad.shape]
#        odimyv = objdimy[valshad.shape]
        odimxv = objdimx[:]
        odimyv = objdimy[:]

    elif len(objdimx.shape) == 3:
#        dimcut = [0, slice(0,valshad.shape[0]), slice(0,valshad.shape[1])]
#        odimxv = objdimx[tuple(dimcut)]
#        odimyv = objdimy[tuple(dimcut)]
        odimxv = objdimx[0,:]
        odimyv = objdimy[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', objdimx.shape,        \
          ' not ready!!'
        quit(-1)

    if countlabelfmt == 'None': 
        countlfmt = None
    else:
        countlfmt = countlabelfmt

    shading_nx = np.zeros((2), dtype=np.float)
    shading_nx[0] = np.float(shadminmax.split(',')[0])
    shading_nx[1] = np.float(shadminmax.split(',')[1])

    clevmin = np.float(contlevels.split(',')[0])
    clevmax = np.float(contlevels.split(',')[1])
    Nclevels = int(contlevels.split(',')[2])

    levels_cont = drw.pretty_int(clevmin, clevmax, Nclevels)

    if len(levels_cont) <= 1: 
        print warnmsg
        print '  ' + fname + ': wrong contour levels:', levels_cont,' !!'
        del(levels_cont)
        levels_cont = np.zeros((Nclevels), dtype=np.float)
        levels_cont = np.arange(7)*(clevmax - clevmin)/(Nclevels-1)
        print '    generating default ones: ',levels_cont

    if mapvalue == 'None': mapvalue = None

    drw.plot_2D_shadow_contour(valshad, valcont, vnamesfig, odimxv, odimyv, odimxu,  \
      odimyu, dimnamesv, colbarn, countkind, countlfmt, shading_nx, levels_cont,     \
      varunits, figtitle, figkind, revals, mapvalue)

    return

def draw_2D_shad_cont_time(ncfile, values, varn):
    """ plotting two fields, one with shading and the other with contour lines being
    one of the dimensions of time characteristics
    draw_2D_shad_cont(ncfile, values, varn)
      ncfile= [ncfilevars],[ncfilevarc] files to use (one value, same file)
      values=[vnamefs]:[dimvals]:[dimvalc]:[dimxvn]:[dimyvn]:[colorbar]:[ckind]:[clabfmt]:[sminv],[smaxv]:[sminc],[smaxv],[Nlev]:[figt]:[kindfig]:[reverse]:[timevals]:[mapv]
        [vnamefs],[vnamefc]: Name in the figure of the shaded and the contour variables
        [dimvals/c]: list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (no dimension name, all the length)
        [dimx/yvn]: ',' list with the name of the variables with the values of the dimensions
        [colorbar]: name of the color bar
        [ckind]: kind of contours 
          'cmap': as it gets from colorbar
          'fixc,[colname]': fixed color [colname], all stright lines
          'fixsigc,[colname]': fixed color [colname], >0 stright, <0 dashed  line
        [clabfmt]: format of the labels in the contour (None, also possible)
        [smin/axv]: minimum and maximum value for the shading
        [sminc]:[smaxv]:[Nlev]: minimum, maximum and number of values for the contour
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: modification to the dimensions:
          'transposed': transpose matrices
          'flip',[x/y]: flip only the dimension [x] or [y]
        [timevals]: [timen]|[units]|[kind]|[tfmt]|[label] time labels characteristics
           [timen]; name of the time variable
           [units]; units string according to CF conventions ([tunits] since 
             [YYYY]-[MM]-[DD] [[HH]:[MI]:[SS]], '!' for spaces)
           [kind]; kind of output
             'Nval': according to a given number of values as 'Nval',[Nval]
             'exct': according to an exact time unit as 'exct',[tunit]; 
               tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
                'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
                'l': milisecond
           [tfmt]; desired format
           [label]; label at the graph ('!' for spaces)
        [mapv]: map characteristics: [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lamvbert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
      valules= 'rh,ta:z|-1,x|-1:z|-1,x|-1:lat:pressure:BuPu:fixsigc,black:%d:0.,100.:195.,305.,7:Meridonal|average|of|rh|&|ta:pdf:flip@y:time!hours!since!1949/12/01|exct,5d|%d|date!([DD]):None'
      varn= [varsn],[varcn] name of the variable to plot with shading variable with contour
    """

    fname = 'draw_2D_shad_cont_time'
    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad_cont_time.__doc__
        quit()

    expectargs = ['[vnamefs]', '[dimvals]', '[dimvalc]', '[dimxvn]', '[dimyvn]',     \
      '[colorbar]', '[ckind]', '[clabfmt]', '[sminv],[smaxv]',                       \
      '[sminc],[smaxv],[Nlev]', '[figt]', '[kindfig]', '[reverse]', '[timevals]',    \
      '[mapv]']
 
    drw.check_arguments(fname,len(expectargs),values,':',expectargs)

    vnamesfig = values.split(':')[0].split(',')
    dimvals= values.split(':')[1].replace('|',':')
    dimvalc= values.split(':')[2].replace('|',':')
    vdimxn = values.split(':')[3]
    vdimyn = values.split(':')[4]
    colbarn = values.split(':')[5]
    countkind = values.split(':')[6]
    countlabelfmt = values.split(':')[7]
    shadminmax = values.split(':')[8]
    contlevels = values.split(':')[9]
    figtitle = values.split(':')[10].replace('|',' ')
    figkind = values.split(':')[11]
    revals = values.split(':')[12]
    timevals = values.split(':')[13]
    mapvalue = values.split(':')[14]

    if2filenames = ncfile.find(',')

    if if2filenames != -1:
        ncfiles = ncfile.split(',')[0]
        ncfilec = ncfile.split(',')[1]
    else:
        ncfiles = ncfile
        ncfilec = ncfile

    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    if not os.path.isfile(ncfilec):
        print errormsg
        print '  ' + fname + ': contour file "' + ncfilec + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    objcf = NetCDFFile(ncfilec, 'r')
    
    varns = varn.split(',')[0]
    varnc = varn.split(',')[1]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

    if  not objcf.variables.has_key(varnc):
        print errormsg
        print '  ' + fname + ': contour file "' + ncfilec +                          \
          '" does not have variable "' +  varnc + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]
    objvarc = objcf.variables[varnc]

    if len(objvars.shape) != len(objvarc.shape):
        print errormsg
        print '  ' + fname + ': shading variable "' + varns + '" has a shape: ',     \
          objvars.shape,  'different than contour variable "' +  varnc + '": ',      \
          objvarc.shape,' !!!'
        quit(-1)

    for idim in range(len(objvars.shape)):
        if objvars.shape[idim] != objvarc.shape[idim]:
            print errormsg
            print '  ' + fname + ': shading variable "' + varns + '" has a shape: ', \
              objvars.shape,  'different than contour variable "' +  varnc + '": ',  \
              objvarc.shape,' !!!'
            quit(-1)

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))
    valcont, dimscont = drw.slice_variable(objvarc, dimvalc.replace(',','|'))

# Dimensions names
##    print fname + ' obj dimnames: ', objvars.dimensions, dimvals, len(dimvals.split(','))
##    dimnamesv = []
##    for idd in range(len(objvars.dimensions)):
##        cutdim = False
##        for idc in range(len(dimvals.split(','))):
##            dimcutn = dimvals.split(',')[idc].split(':')[0]
##            print objvars.dimensions[idd], dimcutn
##            if objvars.dimensions[idd] == dimcutn: 
##                cutdim = True
##                break
##        if not cutdim: dimnamesv.append(objvars.dimensions[idd])
    dimnamesv = [vdimyn, vdimxn]

    varunits = []
    varunits.append(objvars.getncattr('units'))
    varunits.append(objvarc.getncattr('units'))

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimyn + '" !!'
        quit(-1)

    timename = timevals.split('|')[0]
    timeunit = timevals.split('|')[1].replace('!',' ')
    timekind = timevals.split('|')[2]
    timefmt = timevals.split('|')[3]
    timelabel = timevals.split('|')[4].replace('!',' ')

    if vdimxn == timename:
        timevals = objsf.variables[vdimxn][:]
        dimt = 'x'
        ovalaxis = objsf.variables[vdimyn]
        ovalu = ovalaxis.getncattr('units')
    elif vdimyn == timename:
        timevals = objsf.variables[vdimyn][:]
        dimt = 'y'
        ovalaxis = objsf.variables[vdimxn]
        ovalu = ovalaxis.getncattr('units')
    else:
        print errormsg
        print '  ' + fname + ": time variable '" + timename + "' not found!!"
        quit(-1)

    timepos, timelabels = drw.CFtimes_plot(timevals, timeunit, timekind, timefmt)

    if len(ovalaxis.shape) <= 2:
        ovalaxisv = ovalaxis[:]

    elif len(ovalaxis.shape) == 3:
        ovalaxisv = ovalaxis[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', ovalaxis.shape,       \
          ' not ready!!'
        quit(-1)

    if countlabelfmt == 'None': 
        countlfmt = None
    else:
        countlfmt = countlabelfmt

    shading_nx = np.zeros((2), dtype=np.float)
    shading_nx[0] = np.float(shadminmax.split(',')[0])
    shading_nx[1] = np.float(shadminmax.split(',')[1])

    clevmin = np.float(contlevels.split(',')[0])
    clevmax = np.float(contlevels.split(',')[1])
    Nclevels = int(contlevels.split(',')[2])

    levels_cont = drw.pretty_int(clevmin, clevmax, Nclevels)

    if len(levels_cont) <= 1: 
        print warnmsg
        print '  ' + fname + ': wrong contour levels:', levels_cont,' !!'
        del(levels_cont)
        levels_cont = np.zeros((Nclevels), dtype=np.float)
        levels_cont = np.arange(7)*(clevmax - clevmin)/(Nclevels-1)
        print '    generating default ones: ',levels_cont

    if mapvalue == 'None': mapvalue = None

    drw.plot_2D_shadow_contour_time(valshad, valcont, vnamesfig, ovalaxisv,         \
      timevals, timepos, timelabels, ovalu, timelabel, dimt, dimnamesv, colbarn,    \
      countkind, countlfmt, shading_nx, levels_cont, varunits, figtitle, figkind,   \
      revals, mapvalue)

    return

def draw_2D_shad_line(ncfile, values, varn):
    """ plotting a fields with shading and another with line
    draw_2D_shad_line(ncfile, values, varn)
      ncfile= [ncfiles],[ncfilel] file to use for the shading and for the line
      values=[vnamefs],[vnamefl]:[dimvals]:[dimxvn]:[dimyvn]:[colorbar],[colline]:[sminv],[smaxv]:[figt]:
       [kindfig]:[reverse]:[mapv]:[close]
        [vnamefs]: Name in the figure of the variable to be shaded
        [vnamefl]: Name in the figure of the variable to be lined
        [dimvals]: ',' list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (-1, all the length)
        [dimx/yvn]: name of the variables with the values of the final dimensions (x,y)
        [colorbar]: name of the color bar
        [colline]: name of the color for the line
        [smin/axv]: minimum and maximum value for the shading
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: Transformation of the values
          * 'transpose': reverse the axes (x-->y, y-->x)
          * 'flip'@[x/y]: flip the axis x or y
        [mapv]: map characteristics: [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lamvbert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
      valules= 'rh:z|-1,x|-1:z|-1,x|-1:lat:pressure:BuPu:0.,100.:rh:pdf:flip@y:None'
      varn= [varsn],[varnl] name of the variable to plot with shading and with line
    """

    fname = 'draw_2D_shad_line'
    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad_line.__doc__
        quit()

    farguments = ['[vnamefs],[vnamefl]', '[dimvals]', '[dimxvn]', '[dimyvn]',        \
      '[colorbar],[colline]', '[sminv],[smaxv]', '[figt]', '[kindfig]', '[reverse]', \
      '[mapv]', '[close]']
    drw.check_arguments(fname,11,values,':',farguments)

    vnamesfig = values.split(':')[0].split(',')[0]
    dimvals= values.split(':')[1].replace('|',':')
    vdimxn = values.split(':')[2]
    vdimyn = values.split(':')[3]
    colbarn = values.split(':')[4].split(',')[0]
    shadminmax = values.split(':')[5]
    figtitle = values.split(':')[6].replace('|',' ')
    figkind = values.split(':')[7]
    revals = values.split(':')[8]
    mapvalue = values.split(':')[9]
#    varn = values.split(':')[10]

    ncfiles = ncfile.split(',')[0]
    
    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    
    varns = varn.split(',')[0]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))

# Dimensions names
##    print fname + ' obj dimnames: ', objvars.dimensions, dimvals, len(dimvals.split(','))
##    dimnamesv = []
##    for idd in range(len(objvars.dimensions)):
##        cutdim = False
##        for idc in range(len(dimvals.split(','))):
##            dimcutn = dimvals.split(',')[idc].split(':')[0]
##            print objvars.dimensions[idd], dimcutn
##            if objvars.dimensions[idd] == dimcutn: 
##                cutdim = True
##                break
##        if not cutdim: dimnamesv.append(objvars.dimensions[idd])
    dimnamesv = [vdimyn, vdimxn]

    varunits = objvars.getncattr('units')

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimensino variable "' +  vdimyn + '" !!'
        quit(-1)

    objdimx = objsf.variables[vdimxn]
    objdimy = objsf.variables[vdimyn]
    odimxu = objdimx.getncattr('units')
    odimyu = objdimy.getncattr('units')

    if len(objdimx.shape) <= 2:
#        odimxv = objdimx[valshad.shape]
#        odimyv = objdimy[valshad.shape]
        odimxv = objdimx[:]
        odimyv = objdimy[:]

    elif len(objdimx.shape) == 3:
#        dimcut = [0, slice(0,valshad.shape[0]), slice(0,valshad.shape[1])]
#        odimxv = objdimx[tuple(dimcut)]
#        odimyv = objdimy[tuple(dimcut)]
        odimxv = objdimx[0,:]
        odimyv = objdimy[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', objdimx.shape,        \
          ' not ready!!'
        quit(-1)

    shading_nx = np.zeros((2), dtype=np.float)
    shading_nx[0] = np.float(shadminmax.split(',')[0])
    shading_nx[1] = np.float(shadminmax.split(',')[1])

    if mapvalue == 'None': mapvalue = None

# line plot
##
    ncfilel = ncfile.split(',')[1]
    vnamelfig = values.split(':')[0].split(',')[1]
    varnl = varn.split(',')[1]
    colline = values.split(':')[4].split(',')[1]

    objlf = NetCDFFile(ncfilel,'r')
    objlvar = objlf.variables[varnl]

    linevals = objlvar[:]
    varlunits = objlvar.units

    drw.plot_2D_shadow_line(valshad, linevals, vnamesfig, vnamelfig, odimxv, odimyv, \
      odimxu, odimyu, dimnamesv, colbarn, colline, shading_nx, varunits, varlunits,  \
      figtitle, figkind, revals, mapvalue, True)

    objsf.close()
    objlf.close()

    return

def draw_2D_shad_line_time(ncfile, values, varn):
    """ plotting a fields with shading and a line with time values
    draw_2D_shad_line(ncfile, values, varn)
      ncfile= [ncfiles],[ncfilel] files to use to draw with shading and the line
      values= [vnamefs],[vanemefl]:[dimvals]:[dimxvn]:[dimyvn]:[colorbar]:[sminv],[smaxv]:[figt]:
       [kindfig]:[reverse]:[timevals]:[close]
        [vnamefs]: Name in the figure of the variable to be shaded
        [vnamefl]: Name in the figure of the variable to be lined
        [dimvals]: ',' list of [dimname]|[value] telling at which dimension of the 
          variable a given value is required (-1, all the length)
        [dimx/yvn]: name of the variables with the values of the final dimensions (x,y)
        [colorbar]: name of the color bar
        [smin/axv]: minimum and maximum value for the shading
        [figt]: title of the figure ('|' for spaces)
        [kindfig]: kind of figure
        [reverse]: Transformation of the values
          * 'transpose': reverse the axes (x-->y, y-->x)
          * 'flip'@[x/y]: flip the axis x or y
        [timevals]: [timen]|[units]|[kind]|[tfmt]|[label]|[timeaxis] time labels characteristics
           [timen]; name of the time variable
           [units]; units string according to CF conventions ([tunits] since 
             [YYYY]-[MM]-[DD] [[HH]:[MI]:[SS]], '!' for spaces)
           [kind]; kind of output
             'Nval': according to a given number of values as 'Nval',[Nval]
             'exct': according to an exact time unit as 'exct',[tunit]; 
               tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
                'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
                'l': milisecond
           [tfmt]; desired format
           [label]; label at the graph ('!' for spaces)
        [close]: should figure be closed (finished)
      values='dtcon,prc:Time|-1,bottom_top|-1:presmean:time:seismic:-3.e-6,3.e-6:monthly|'
        'dtcon:pdf:transpose:time|hours!since!1949-12-01|exct,2,d|%d|date!([DD])|x:True
      varn= [varsn].[varln] name of the variable to plot with shading and to plot with line
    """
    fname = 'draw_2D_shad_line_time'
    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_2D_shad__line_time.__doc__
        quit()

    farguments = ['[vnamefs],[vanemefl]', '[dimvals]', '[dimxvn]', '[dimyvn]',       \
      '[colorbar]', '[sminv],[smaxv]', '[figt]', '[kindfig]', '[reverse]',           \
      '[timevals]', '[close]']
    drw.check_arguments(fname,11,values,':',farguments)

    vnamesfig = values.split(':')[0].split(',')[0]
    dimvals= values.split(':')[1].replace('|',':')
    vdimxn = values.split(':')[2]
    vdimyn = values.split(':')[3]
    colbarn = values.split(':')[4]
    shadminmax = values.split(':')[5]
    figtitle = values.split(':')[6].replace('|',' ')
    figkind = values.split(':')[7]
    revals = values.split(':')[8]
    timevals = values.split(':')[9]
    close = values.split(':')[10]

    ncfiles = ncfile.split(',')[0]
    
    if not os.path.isfile(ncfiles):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles + '" does not exist !!'
        quit(-1)    

    objsf = NetCDFFile(ncfiles, 'r')
    
    varns = varn.split(',')[0]

    if  not objsf.variables.has_key(varns):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have variable "' +  varns + '" !!'
        quit(-1)

# Variables' values
    objvars = objsf.variables[varns]

    valshad, dimsshad = drw.slice_variable(objvars, dimvals.replace(',','|'))

    dimnamesv = [vdimyn, vdimxn]

    varunits = objvars.getncattr('units')

    if  not objsf.variables.has_key(vdimxn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimension variable "' +  vdimxn + '" !!'
        quit(-1)
    if  not objsf.variables.has_key(vdimyn):
        print errormsg
        print '  ' + fname + ': shading file "' + ncfiles +                          \
          '" does not have dimensino variable "' +  vdimyn + '" !!'
        quit(-1)

    objdimx = objsf.variables[vdimxn]
    objdimy = objsf.variables[vdimyn]
    odimxu = objdimx.getncattr('units')
    odimyu = objdimy.getncattr('units')

    if len(objdimx.shape) <= 2:
        odimxv = objdimx[:]
        odimyv = objdimy[:]

    elif len(objdimx.shape) == 3:
        odimxv = objdimx[0,:]
        odimyv = objdimy[0,:]
    else:
        print errormsg
        print '  ' + fname + ': shape of dimension variable:', objdimx.shape,        \
          ' not ready!!'
        quit(-1)

    timename = timevals.split('|')[0]
    timeunit = timevals.split('|')[1].replace('!',' ')
    timekind = timevals.split('|')[2]
    timefmt = timevals.split('|')[3]
    timelabel = timevals.split('|')[4].replace('!',' ')

    if vdimxn == timename:
        odimxv = objsf.variables[vdimxn][:]
        odimxu = timelabel
        timeaxis = 'x'
        odimyv = objsf.variables[vdimyn]
        odimyu = odimyv.getncattr('units')
        timepos, timelabels = drw.CFtimes_plot(odimxv, timeunit, timekind, timefmt)
    elif vdimyn == timename:
        odimyv = objsf.variables[vdimyn][:]
        odimyu = timelabel
        timeaxis = 'y'
        odimxv = objsf.variables[vdimxn]
        odimxu = odimxv.getncattr('units')
        timepos, timelabels = drw.CFtimes_plot(odimyv, timeunit, timekind, timefmt)
    else:
        print errormsg
        print '  ' + fname + ": time variable '" + timename + "' not found!!"
        quit(-1)

    shading_nx = np.zeros((2), dtype=np.float)
    shading_nx[0] = np.float(shadminmax.split(',')[0])
    shading_nx[1] = np.float(shadminmax.split(',')[1])

    closeval = drw.Str_Bool(close)

    drw.plot_2D_shadow_time(valshad, vnamesfig, odimxv, odimyv, odimxu, odimyu,      \
      dimnamesv, colbarn, shading_nx, varunits, figtitle, figkind, revals, timeaxis, \
      timepos, timelabels, False)

# Line values
## 
    ncfilel = ncfile.split(',')[1]

    vnamelfig = values.split(':')[0].split(',')[1]
    varnl = varn.split(',')[1]

    objlf = NetCDFFile(ncfilel,'r')
    objlvar = objlf.variables[varnl]

    linevals = objlvar[:]
    if reva0 == 'tranpose':
        plt.plot (linevals, odimxv, '-', color='k')
    else:
        plt.plot (odimxv, linevals, '-', color='k')

    objsf.close()
    objsl.close()

    return

def draw_topo_geogrid(ncfile, values):
    """ plotting geo_em.d[nn].nc topography from WPS files
    draw_topo_geogrid(ncfile, values)
      ncfile= geo_em.d[nn].nc file to use
      values= [minTopo],[maxTopo]:[lonlatL]:[title]:[graphic_kind]:[mapvalues]
        [min/max]Topo: minimum and maximum values of topography to draw
        lonlatL: limits of longitudes and latitudes [lonmin, latmin, lonmax, latmax] or None
        title: title of the graph
        graphic_kind: kind of figure (jpg, pdf, png)
        mapvalues: map characteristics [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lambert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
    """
    fname = 'draw_topo_geogrid'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_topo_geogrid.__doc__
        quit()

    expectargs = ['[minTopo]','[maxTopo]', '[lonlatL]', '[title]', '[graphic_kind]', \
      '[mapvalues]']
 
    drw.check_arguments(fname,5,values,':',expectargs)

    mintopo = values.split(':')[0].split(',')[0]
    maxtopo = values.split(':')[0].split(',')[1]

    lonlatLS = values.split(':')[1]
    lonlatLv = lonlatLS.split(',')[0]

    if lonlatLv == 'None':
        lonlatL = None
    else:
        lonlatL = np.zeros((4), dtype=np.float)
        lonlatL[0] = np.float(lonlatLS.split(',')[0])
        lonlatL[1] = np.float(lonlatLS.split(',')[1])
        lonlatL[2] = np.float(lonlatLS.split(',')[2])
        lonlatL[3] = np.float(lonlatLS.split(',')[3])

    grtit = values.split(':')[2]
    kindfig = values.split(':')[3]
    mapvalues = values.split(':')[4]

    if not os.path.isfile(ncfile):
        print errormsg
        print '  ' + fname + ': domain file "' + ncfile + '" does not exist !!'
        quit(-1)    

    objdomf = NetCDFFile(ncfile, 'r')
    
    objhgt = objdomf.variables['HGT_M']
    objlon = objdomf.variables['XLONG_M']
    objlat = objdomf.variables['XLAT_M']

    topography = objhgt[0,:,:]

    drw.plot_topo_geogrid(topography, objlon, objlat, mintopo, maxtopo, lonlatL,     \
      grtit, kindfig, mapvalues, True)

    objdomf.close()

    return

def draw_topo_geogrid_boxes(ncfiles, values):
    """ plotting different geo_em.d[nn].nc topography from WPS files
    draw_topo_geogrid_boxes(ncfile, values)
      ncfiles= ',' list of geo_em.d[nn].nc files to use (fisrt as topographyc reference)
      values= [minTopo],[maxTopo]:[lonlatL]:[title]:[graphic_kind]:[mapvalues]:[labels]
        [min/max]Topo: minimum and maximum values of topography to draw
        lonlatL: limits of longitudes and latitudes [lonmin, latmin, lonmax, latmax] or None
        title: title of the graph
        graphic_kind: kind of figure (jpg, pdf, png)
        mapvalues: map characteristics [proj],[res]
          see full documentation: http://matplotlib.org/basemap/
          [proj]: projection
            * 'cyl', cilindric
            * 'lcc', lambert conformal
          [res]: resolution:
            * 'c', crude
            * 'l', low
            * 'i', intermediate
            * 'h', high
            * 'f', full
        labels= labels to write in the graph
    """
#    import matplotlib as mpl
#    mpl.use('Agg')
    import matplotlib.pyplot as plt

    fname = 'draw_topo_geogrid_boxes'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_topo_geogrid_boxes.__doc__
        quit()

    mintopo = values.split(':')[0].split(',')[0]
    maxtopo = values.split(':')[0].split(',')[1]

    lonlatLS = values.split(':')[1]
    lonlatLv = lonlatLS.split(',')[0]

    if lonlatLv == 'None':
        lonlatL = None
    else:
        lonlatL = np.zeros((4), dtype=np.float)
        lonlatL[0] = np.float(lonlatLS.split(',')[0])
        lonlatL[1] = np.float(lonlatLS.split(',')[1])
        lonlatL[2] = np.float(lonlatLS.split(',')[2])
        lonlatL[3] = np.float(lonlatLS.split(',')[3])

    grtit = values.split(':')[2]
    kindfig = values.split(':')[3]
    mapvalues = values.split(':')[4]
    labels = values.split(':')[5]

    ncfile = ncfiles.split(',')[0]
    if not os.path.isfile(ncfile):
        print errormsg
        print '  ' + fname + ': domain file "' + ncfile + '" does not exist !!'
        quit(-1)    

    objdomf = NetCDFFile(ncfile, 'r')
    
    objhgt = objdomf.variables['HGT_M']
    objlon0 = objdomf.variables['XLONG_M']
    objlat0 = objdomf.variables['XLAT_M']

    topography = objhgt[0,:,:]

    Nfiles = len(ncfiles.split(','))
    boxlabels = labels.split(',')

    Xboxlines = []
    Yboxlines = []

    for ifile in range(Nfiles):
        ncfile = ncfiles.split(',')[ifile]
#        print ifile, ncfile
        if not os.path.isfile(ncfile):
            print errormsg
            print '  ' + fname + ': domain file "' + ncfile + '" does not exist !!'
            quit(-1)    

        objdomfi = NetCDFFile(ncfile, 'r')
    
        objlon = objdomfi.variables['XLONG_M']
        objlat = objdomfi.variables['XLAT_M']

        dx = objlon.shape[2]
        dy = objlon.shape[1]

        Xboxlines.append(objlon[0,0,:])
        Yboxlines.append(objlat[0,0,:])
        Xboxlines.append(objlon[0,dy-1,:])
        Yboxlines.append(objlat[0,dy-1,:])
        Xboxlines.append(objlon[0,:,0])
        Yboxlines.append(objlat[0,:,0])
        Xboxlines.append(objlon[0,:,dx-1])
        Yboxlines.append(objlat[0,:,dx-1])

        objdomfi.close()

    drw.plot_topo_geogrid_boxes(topography, Xboxlines, Yboxlines, boxlabels,         \
      objlon0, objlat0, mintopo, maxtopo, lonlatL, grtit, kindfig, mapvalues, True)

    objdomf.close()

    return

def movievalslice(origslice, dimmovien, framenum):
    """ Function to provide variable slice according to a geneation of a movie
    movievals(origslice, dimmovien, framenum)
      [origslice]= slice original as [dimname1]|[val1],[...,[dimnameN]|[valN]] 
        ([val] = -1, full length) 
      [dimmovien]= name of the dimension to produce the movie
      [framenum]= value of the frame to substitue in [origslice] as 
        [dimmovien]|[framenum]
    >>> movievalslice('East_West|-1,North_South|-1,Time|2','Time',0)
    East_West|-1,North_South|-1,Time|0
    """

    fname = 'movievalslice'

    if origslice == 'h':
        print fname + '_____________________________________________________________'
        print movievalslice.__doc__
        quit()
    
    dims = origslice.split(',')

    movieslice = ''
    idim = 0

    for dimn in dims:
        dn = dimn.split('|')[0]
        if dn == dimmovien:
            movieslice = movieslice + dn + '|' + str(framenum)
        else:
            movieslice = movieslice + dimn
        if idim < len(dims)-1: movieslice = movieslice + ','

        idim = idim + 1

    return movieslice

class Capturing(list):
    """ Class to capture function output as a list
    from: http://stackoverflow.com/questions/16571150/how-to-capture-stdout-output-from-a-python-function-call
    """
#    from cStringIO import StringIO

    def __enter__(self):
        self._stdout = sys.stdout
        sys.stdout = self._stringio = StringIO()
        return self
    def __exit__(self, *args):
        self.extend(self._stringio.getvalue().splitlines())
        sys.stdout = self._stdout

def create_movie(netcdfile, values, variable):
    """ Function to create a movie assuming ImageMagick installed!
      values= [graph]#[movie_dimension]#[graph_values]
        [graph]: which graphic
        [movie_dimension]: [dimnmovie]@[dimvmovie]@[moviedelay]@[interval]
          [dimnmovie]; name of the dimension from which make the movie
          [dimvmovie]; name of the variable with the values of the dimension
          [moviedelay]; delay between frames
          [interval]; [beg]@[end]@[freq] or -1 (all)
        [graph_values]: values to generate the graphic
      netcdfile= netCDF file
      variable= variable to use (when applicable)
    """ 
    fname = 'create_movie'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print create_movie.__doc__
        quit()

    graph = values.split('#')[0]
    movie_dim = values.split('#')[1]
    graph_vals = values.split('#')[2]

    ncobj = NetCDFFile(netcdfile, 'r')

# Movie dimension
##
    dimnmovie = movie_dim.split('@')[0]
    dimvmovie = movie_dim.split('@')[1]
    moviedelay = movie_dim.split('@')[2]
    moviebeg = int(movie_dim.split('@')[3])

    if not drw.searchInlist(ncobj.dimensions.keys(),dimnmovie):
        print errormsg
        print '  ' + fname + ": file '" + netcdfile + "' has not dimension '" +      \
          dimnmovie + "' !!!"
        quit(-1)

    objdmovie = ncobj.dimensions[dimnmovie]
    dmovie = len(objdmovie)
    if moviebeg != -1:
        moviend = int(movie_dim.split('@')[4])
        moviefreq = int(movie_dim.split('@')[5])
    else:
        moviebeg = 0
        moviend = dmovie
        moviefreq = 1

    if dimvmovie == 'WRFTimes':
        objvdmovie = ncobj.variables['Times']
        vdmovieunits = ''
        valsdmovie = []
        for it in range(objvdmovie.shape[0]):
            valsdmovie.append(drw.datetimeStr_conversion(objvdmovie[it,:],           \
              'WRFdatetime', 'Y/m/d H-M-S'))
    elif dimvmovie == 'CFtime':
        objvdmovie = ncobj.variables['time']
        vdmovieunits = ''
        print objvdmovie.units
        valsdmovie0 = drw.netCDFdatetime_realdatetime(objvdmovie.units, 'standard',  \
          objvdmovie[:])
        valsdmovie = []
        for it in range(objvdmovie.shape[0]):
            valsdmovie.append(drw.datetimeStr_conversion(valsdmovie0[it,:],          \
              'matYmdHMS', 'Y/m/d H-M-S'))
    else:
        if  not drw.searchInlist(ncobj.variables.keys(),dimvmovie):
            print errormsg
            print '  ' + fname + ": file '" + netcdfile + "' has not variable '" +   \
              dimvmovie + "' !!!"
            quit(-1)
        vdmovieunits = objvdmovie.getncattr('units')
        objvdmovie = ncobj.variables[dimvmovie]
        if len(objvdmovie.shape) == 1:
            vasldmovie = objvdmovie[:]
        else:
            print errormsg
            print '  ' + fname + ': shape', objvdmovie.shape, 'of variable with ' +  \
              'dimension movie values not ready!!!'
            quit(-1)

    ncobj.close()
    os.system('rm frame_*.png > /dev/null')

# graphic
##
    if graph == 'draw_2D_shad':
        graphvals = graph_vals.split(':')

        for iframe in range(moviebeg,moviend,moviefreq):
            iframeS = str(iframe).zfill(4)

            drw.percendone((iframe-moviebeg)/moviefreq,(moviend-moviebeg)/moviefreq, \
              5, 'frames')
            titgraph = dimnmovie + '|=|' + str(valsdmovie[iframe]) + '|' +           \
              vdmovieunits

            graphvals[1] = movievalslice(graphvals[1],dimnmovie,iframe)
            graphvals[6] = titgraph
            graphvals[7] = 'png'

            graphv = drw.numVector_String(graphvals, ":")

            with Capturing() as output:
                draw_2D_shad(netcdfile, graphv, variable)

            os.system('mv 2Dfields_shadow.png frame_' + iframeS + '.png')
    else:
        print errormsg
        print '  ' + fname + ": graphic '" +  graph + "' not defined !!!"
        quit(-1)

    os.system('convert -delay ' + moviedelay + ' -loop 0 frame_*.png create_movie.gif')

    print "Succesfuly creation of movie file 'create_movie.gif' !!!"

    return

def draw_lines(ncfilens, values, varname):
    """ Function to draw different lines at the same time from different files
    draw_lines(ncfilens, values, varname):
      ncfilens= [filen] ',' separated list of netCDF files
      values= [dimvname]:[valuesaxis]:[dimtit]:[leglabels]:[vtit]:[title]:[locleg]:[graphk]
        [dimvname]: name of the variable with he values of the common dimension
        [valuesaxis]: which axis will be used for the values ('x', or 'y')
        [dimtit]: title for the common dimension
        [leglabels]: ',' separated list of names for the legend
        [vartit]: name of the variable in the graph
        [title]: title of the plot ('|' for spaces)
        [locleg]: location of the legend (-1, autmoatic)
          1: 'upper right', 2: 'upper left', 3: 'lower left', 4: 'lower right',
          5: 'right', 6: 'center left', 7: 'center right', 8: 'lower center',
          9: 'upper center', 10: 'center'
        [graphk]: kind of the graphic
      varname= variable to plot
      values= 'XLAT:x:latitude:32x32:$wss^{*}$:wss Taylor's turbulence term:pdf'
    """

    fname = 'draw_lines'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_lines.__doc__
        quit()

    expectargs = '[dimvname]:[valuesaxis]:[dimtit]:[leglabels]:[vtit]:[title]:[locleg]:[graphk]'
    drw.check_arguments(fname,len(expectargs.split(':')),values,':',expectargs)

    ncfiles = ncfilens.split(',')
    dimvname = values.split(':')[0]
    valuesaxis = values.split(':')[1]
    dimtit = values.split(':')[2]
    leglabels = values.split(':')[3].replace('_','\_')
    vartit = values.split(':')[4]
    title = values.split(':')[5].replace('|',' ')
    graphk = values.split(':')[6]

    Nfiles = len(ncfiles)

# Getting trajectotries 
##

    varvalues = []
    dimvalues = []

    print '  ' + fname
    ifn = 0
    for ifile in ncfiles:
        filen = ifile.split('@')[0]

        print '    filen:',filen

        if not os.path.isfile(filen):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen + "' does not exist !!"
            quit(-1)

        objfile = NetCDFFile(filen, 'r')

        if not objfile.variables.has_key(dimvname):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen +                         \
              "' does not have variable '" + dimvname + "' !!"
            quit(-1)

        if not objfile.variables.has_key(varname):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen +                         \
              "' does not have variable '" + varname + "' !!"
            quit(-1)

        vvobj = objfile.variables[varname]
        if len(vvobj.shape) != 1:
            print errormsg
            print '  ' + fname + ': wrong shape:',vvobj.shape," of variable '" +     \
              varname +  "' !!"
            quit(-1)

        vdobj = objfile.variables[dimvname]
        if len(vdobj.shape) != 1:
            print errormsg
            print '  ' + fname + ': wrong shape:',vdobj.shape," of variable '" +     \
              dimvname +  "' !!"
            quit(-1)

        varvalues.append(vvobj[:])
        dimvalues.append(vdobj[:])

        if ifn == 0:
            varunits = vvobj.units

        objfile.close()

        ifn = ifn + 1


    drw.plot_lines(dimvalues, varvalues, valuesaxis, dimtit, leglabels.split(','),   \
      vartit, varunits, title, graphk)

    return

def draw_lines_time(ncfilens, values, varname):
    """ Function to draw different lines at the same time from different files with times
    draw_lines_time(ncfilens, values, varname):
      ncfilens= [filen] ',' separated list of netCDF files
      values= [dimvname];[valuesaxis];[dimtit];[leglabels];[vtit];[title];[timevals];[locleg];[graphk]
        [dimvname]: name of the variable with he values of the common dimension
        [valuesaxis]: which axis will be used for the values ('x', or 'y')
        [dimtit]: title for the common dimension
        [leglabels]: ',' separated list of names for the legend
        [vartit]: name of the variable in the graph
        [title]: title of the plot ('|' for spaces)
        [timevals]: [timen]|[units]|[kind]|[tfmt] time labels characteristics
           [timen]; name of the time variable
           [units]; units string according to CF conventions ([tunits] since 
             [YYYY]-[MM]-[DD] [[HH]:[MI]:[SS]], '!' for spaces)
           [kind]; kind of output
             'Nval': according to a given number of values as 'Nval',[Nval]
             'exct': according to an exact time unit as 'exct',[tunit]; 
               tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
                'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
                'l': milisecond
           [tfmt]; desired format
        [locleg]: location of the legend (-1, autmoatic)
          1: 'upper right', 2: 'upper left', 3: 'lower left', 4: 'lower right',
          5: 'right', 6: 'center left', 7: 'center right', 8: 'lower center',
          9: 'upper center', 10: 'center'
        [graphk]: kind of the graphic
      varname= variable to plot
      values= 'time;y;time ([DD]${[HH]}$);32x32;$wss^{*}$;wss Taylor's turbulence term;time|hours!since!1949-12-01_00:00:00;exct,12,h|%d$^{%H}$;2;pdf'
    """

    fname = 'draw_lines_time'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_lines.__doc__
        quit()

    expectargs = '[dimvname];[valuesaxis];[dimtit];[leglabels];[vtit];[title];'
    expectargs = expectargs + '[timevals];[locleg];[graphk]'
    drw.check_arguments(fname,len(expectargs.split(';')),values,';',expectargs)

    ncfiles = ncfilens.split(',')
    dimvname = values.split(';')[0]
    valuesaxis = values.split(';')[1]
    dimtit = values.split(';')[2]
    leglabels = values.split(';')[3].replace('_','\_')
    vartit = values.split(';')[4]
    title = values.split(';')[5].replace('|',' ')
    timevals = values.split(';')[6]
    locleg = int(values.split(';')[7])
    graphk = values.split(';')[8]

    Nfiles = len(ncfiles)

# Getting values
##
    varvalues = []
    dimvalues = []
    timvalues = []
    timvals0 = timvalues

    print '  ' + fname
    ifn = 0
    mintval = 1.e20
    maxtval = -1.e20

    for ifile in ncfiles:
        filen = ifile.split('@')[0]

        print '    filen:',filen

        if not os.path.isfile(filen):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen + "' does not exist !!"
            quit(-1)

        objfile = NetCDFFile(filen, 'r')

        if not objfile.variables.has_key(dimvname):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen +                         \
              "' does not have variable '" + dimvname + "' !!"
            quit(-1)

        if not objfile.variables.has_key(varname):
            print errormsg
            print '  ' + fname + ": netCDF file '" + filen +                         \
              "' does not have variable '" + varname + "' !!"
            quit(-1)

        vvobj = objfile.variables[varname]
        if len(vvobj.shape) != 1:
            print errormsg
            print '  ' + fname + ': wrong shape:',vvobj.shape," of variable '" +     \
              varname +  "' !!"
            quit(-1)

        vdobj = objfile.variables[dimvname]
        if len(vdobj.shape) != 1:
            print errormsg
            print '  ' + fname + ': wrong shape:',vdobj.shape," of variable '" +     \
              dimvname +  "' !!"
            quit(-1)

        varvalues.append(vvobj[:])
        dimvalues.append(vdobj[:])

        mindvals = np.min(vdobj[:])
        maxdvals = np.max(vdobj[:])

        if mindvals < mintval: mintval = mindvals
        if maxdvals > maxtval: maxtval = maxdvals

        if ifn == 0:
            varunits = vvobj.units

        objfile.close()

        ifn = ifn + 1

# Times
    timename = timevals.split('|')[0]
    timeunit = timevals.split('|')[1].replace('!',' ')
    timekind = timevals.split('|')[2]
    timefmt = timevals.split('|')[3]

    dtvals = (maxtval - mintval)/5.
    tvals = np.arange(mintval, maxtval, dtvals/2.)

    timepos, timelabels = drw.CFtimes_plot(tvals, timeunit, timekind, timefmt)

    drw.plot_lines_time(dimvalues, varvalues, valuesaxis, dimtit, leglabels.split(','),   \
      vartit, varunits, timepos, timelabels, title, locleg, graphk)

    return

def draw_Neighbourghood_evol(filen, values, variable):
    """ Function to draw the temporal evolution of a neighbourghood around a point
    draw_Neighbourghood_evol(filen, values, variable)
      filen= netCDF file name
      values= [gvarname]:[dimsval]:[neigdims]:[Nneig]:[Ncol]:[timetits]:[tkinds]:
       [timefmts]:[gtitle]:[shadxtrms]:[cbar]:[gkind]:[ofile]
        [dimsval]: [dimn1]|[val1]|[dimv1],...,[dimnN]|[valN]|[dimvN] dimension names, values to get 
          (-1, for all; no name/value pair given full length) and variable with values of the dimension
          NOTE: when dimsval[X,Y] == neigdims[X,Y], valX,valY --> valX,valY-Nneig/2, valX,valY+Nneig/2
        [neigdims]: [dimnX],[dimnY] dimensions mnames along which the neigbourghood should be defined
        [Nneig]: Number of grid points of the full side of the box (odd value)
        [Ncol]: Number of columns ('auto': square final plot)
        [gvarname]: name of the variable to appear in the graph
        [timetits]: [titX],[titY] titles of the axes ('|' for spaces)
        [tkinds]: [tkindX]|[tkindY] kinds of time to appear in the graph
          'Nval': according to a given number of values as 'Nval',[Nval]
          'exct': according to an exact time unit as 'exct',[tunit]; 
            tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
              'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
              'l': milisecond
        [timefmts]: [tfmtX],[tfmtY] format of the time labels
        [gtitle]: title of the graphic ('|' for spaces)
        [shadxtrms]: Extremes for the shading
        [cbar]: colorbar to use
        [gkind]: kind of graphical output
        [ofile]: True/False whether the netcdf with data should be created or not
      variable= name of the variable
      values = 'q:Time|-1|Times,bottom_top|6|ZNU,south_north|3|XLAT,west_east|26|XLONG:south_north,west_east:5:auto:time|($[DD]^{[HH]}$),time|($[DD]^{[HH]}$):exct,2,h|exct,1,d:$%d^{%H}$,$%d^{%H}$:5|pts|neighbourghood|temporal|evolution:0.0,0.004:BuPu:pdf:True'
    """ 

    fname = 'draw_Neighbourghood_evol'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_Neighbourghood_evol.__doc__
        quit()

    expectargs = ['[gvarname]', '[dimsval]', '[neigdims]', '[Nneig]', '[Ncol]',      \
      '[timetits]', '[tkinds]', '[timefmts]', '[gtitle]', '[shadxtrms]', '[cbar]',   \
      '[gkind]', '[ofile]']
 
    drw.check_arguments(fname,len(expectargs),values,':',expectargs)

    gvarname = values.split(':')[0]
    dimsval = values.split(':')[1].split(',')
    neigdims = values.split(':')[2].split(',')
    Nneig = int(values.split(':')[3])
    Ncol0 = values.split(':')[4]
    timetits = values.split(':')[5].split(',')
    timekinds = values.split(':')[6].split('|')
    timefmts = values.split(':')[7].split(',')
    gtitle = values.split(':')[8].replace('|',' ')
    shadxtrms = values.split(':')[9].split(',')
    cbar = values.split(':')[10]
    gkind = values.split(':')[11]
    ofile = values.split(':')[12]

    if Ncol0 != 'auto': 
        Ncol = int(Ncol0)
    else:
        Ncol = Ncol0

    timetits[0] = timetits[0].replace('|',' ')
    timetits[1] = timetits[1].replace('|',' ')

    if np.mod(Nneig,2) == 0:
        print errormsg
        print '  ' + fname + ": an odd value for 'Nneig':",Nneig,'is required !!!'
        quit(-1)

    Nneig2 = int(Nneig/2)

# Values to slice the variable
    dimvslice = {}
    dimvvalues = {}
    for dimvs in dimsval:
        dimn = dimvs.split('|')[0]
        dimv = int(dimvs.split('|')[1])
        dimnv = dimvs.split('|')[2]

        dimvvalues[dimn] = dimnv
        dimvslice[dimn] = dimv

    ncobj = NetCDFFile(filen, 'r')

    varobj = ncobj.variables[variable]

    slicevar = []
    newdimn = []
    newdimsvar = {}

    for dimn in varobj.dimensions:
        if not drw.searchInlist(dimvslice.keys(), dimn):
            dimsize = len(ncobj.dimensions[dimn])
            slicevar.append(slice(0, dimsize+1))
            newdimn.append(dimn)
            newdimsvar[dimn] = dimseize

        for dimslicen in dimvslice.keys():
            if dimn == dimslicen:
                if dimvslice[dimn] != -1:
                    if drw.searchInlist(neigdims, dimn):
                        slicevar.append(slice(dimvslice[dimn]-Nneig2,                \
                          dimvslice[dimn]+Nneig2+1))
                        newdimn.append(dimn)
                        newdimsvar[dimn] = Nneig
                        break
                    else:
                        slicevar.append(slice(dimvslice[dimn], dimvslice[dimn]+1))
                        break
                else:
                    dimsize = len(ncobj.dimensions[dimn])
                    slicevar.append(slice(0, dimsize+1))
                    newdimn.append(dimn)
                    newdimsvar[dimn] = dimsize
                    break
 
    varv = varobj[tuple(slicevar)]

    if len(newdimn) != 3:
        print errormsg
        print '  ' + fname + ': sliced variable with shape=', varv.shape,            \
          ' must have three dimensions',len(varv.shape),'given !!'
        quit(-1)

    newdims = []
    for nwdims in newdimn:
        newdims.append(newdimsvar[nwdims])

# The dimension which is not in the neighbourhood dimensions must be time!
    for dim1 in newdimn:
        if not drw.searchInlist(neigdims, dim1):
            dimt = newdimsvar[dim1]
            dimtime = dim1

    if Ncol == 'auto':
        dimtsqx = int(np.sqrt(dimt)) + 1
        dimtsqy = int(np.sqrt(dimt)) + 1
    else:
        dimtsqx = int(Ncol)
        dimtsqy = dimt/dimtsqx + 1

    neighbourghood = np.ones((dimtsqy*Nneig,dimtsqx*Nneig), dtype=np.float)*fillValue

    for it in range(dimt):
        ity = int(it/dimtsqx)
        itx = it-ity*dimtsqx

        itty = (dimtsqy - ity - 1)*Nneig + Nneig2
        ittx = itx*Nneig + Nneig2

        neighbourghood[itty-Nneig2:itty+Nneig2+1,ittx-Nneig2:ittx+Nneig2+1]=         \
          varv[it,::-1,:]

    variablevals = drw.variables_values(variable)
    if drw.searchInlist(varobj.ncattrs(), 'units'):
        vunits = varobj.units
    else:
        vunits = variablevals[5]

# Time values at the X/Y axes
    if ncobj.variables[dimvvalues[dimtime]].dtype == '|S1':
        print '    ' + fname + ': WRF time variable!'
        refdate = '19491201000000'
        tunitsval = 'hours'
        dimtvalues = np.zeros((dimt), dtype=np.float)
        tvals = ncobj.variables[dimvvalues[dimtime]]
        yrref=refdate[0:4]
        monref=refdate[4:6]
        dayref=refdate[6:8]
        horref=refdate[8:10]
        minref=refdate[10:12]
        secref=refdate[12:14]

        refdateS = yrref + '/' + monref + '/' + dayref + '_' + horref + ':' +        \
          minref + ':' + secref
        tunits = tunitsval + ' since ' + refdateS
        for it in range(dimt):
            wrfdates = drw.datetimeStr_conversion(tvals[it,:],'WRFdatetime', 'matYmdHMS')
            dimtvalues[it] = drw.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval)
    else:
        dimtvalues = ncobj.variables[dimvvalues[dimtime]][:]
        tunits = ncobj.variables[newdimsvar[dimtime]].units

    dimxv = dimtvalues[0:dimtsqx]
    dimyv = dimtvalues[0:dimt:dimtsqx]

    print 'Lluis lens: dimxv, dimyv:',len(dimxv), len(dimyv)

    dimn = ['time','time']

    if ofile == 'True':
        ofilen = 'Neighbourghood_evol.nc'
        newnc = NetCDFFile(ofilen, 'w')
# Dimensions
        newdim = newnc.createDimension('time',None)
        newdim = newnc.createDimension('y',dimtsqy*Nneig)
        newdim = newnc.createDimension('x',dimtsqx*Nneig)
# Dimension values
        newvar = newnc.createVariable('time','f8',('time'))
        newvar[:] = np.arange(dimt)
        newattr = drw.basicvardef(newvar, 'time','time',tunits)
# Neighbourhghood variable
        newvar = newnc.createVariable(variable + 'neigevol', 'f4', ('y','x'),        \
          fill_value=fillValue)
        newvar[:] = neighbourghood

        newnc.sync()
        newnc.close()
        print fname + ": Successfull generation of file '" + ofilen + "' !!"

# Time ticks
    timeposX, timelabelsX = drw.CFtimes_plot(dimxv, tunits, timekinds[0], timefmts[0])
    timeposY, timelabelsY = drw.CFtimes_plot(dimyv, tunits, timekinds[1], timefmts[1])

    timepos = [timeposX[0:len(timeposX)], timeposY[len(timeposY):0:-1]]
    timelabels = [timelabelsX[0:len(timeposX)], timelabelsY[0:len(timeposY)]]

    for i in range(2):
        if shadxtrms[i][0:1] != 'S':
            shadxtrms[i] = np.float(shadxtrms[i])

    drw.plot_Neighbourghood_evol(neighbourghood, dimxv, dimyv, gvarname, timetits,   \
      timepos, timelabels, cbar, Nneig, shadxtrms, vunits, gtitle, gkind, True)

def draw_timeSeries(filen, values, variables):
    """ Function to draw a time-series
    draw_timeSeries(filen, values, variable):
      filen= name of the file
      values= [gvarname]:[timetit]:[tkind]:[timefmt]:[title]:[locleg]:[gkind]
      [gvarname]: name of the variable to appear in the graph
      [timetit]: title of the time axis (assumed x-axis, '|' for spaces)
      [tkind]: kind of time to appear in the graph (assumed x-axis)
        'Nval': according to a given number of values as 'Nval',[Nval]
        'exct': according to an exact time unit as 'exct',[tunit]; 
          tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
            'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
            'l': milisecond
      [timefmt]: format of the time labels
      [title]: title of the graphic ('|' for spaces)
      [locleg]: location of the legend (-1, autmoatic)
        1: 'upper right', 2: 'upper left', 3: 'lower left', 4: 'lower right',
        5: 'right', 6: 'center left', 7: 'center right', 8: 'lower center',
        9: 'upper center', 10: 'center'
      [gkind]: kind of graphical output
      variables= [varname],[timename] names of variable and variable with times
      draw_timeSeries('wrfout_d01_1979-12-01_00:00:00_bottom_top_B6-E6-I1_south_north_B3-E3-I1_west_east_B26-E26-I1.nc', 'dt_con:time|($[DD]^{[HH]}$):exct,12,h:$%d^{%H}$:time|evolution|at|-1|6|3|26:1:pdf', 'LDQCON,time')
    """

    fname = 'draw_timeSeries'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_timeSeries.__doc__
        quit()

    expectargs = ['[gvarname]', '[timetit]', '[tkind]', '[timefmt]', '[title]',      \
      '[locleg]', '[gkind]']
 
    drw.check_arguments(fname,len(expectargs),values,':',expectargs)

    gvarname = values.split(':')[0]
    timetit = values.split(':')[1].replace('|',' ')
    tkind = values.split(':')[2]
    timefmt = values.split(':')[3]
    title = values.split(':')[4].replace('|',' ')
    locleg = int(values.split(':')[5])
    gkind = values.split(':')[6]
    
    ncobj = NetCDFFile(filen, 'r')

    variable = variables.split(',')[0]
    timevar = variables.split(',')[1]

    if not ncobj.variables.has_key(variable):
        print errormsg
        print '  ' + fname + ": file '" +  filen + "' does not have variable '" +    \
          variable + "' !!"
        quit(-1)

    if not ncobj.variables.has_key(timevar):
        print errormsg
        print '  ' + fname + ": file '" +  filen + "' does not have variable time '" \
          + timevar + "' !!"
        quit(-1)

    varobj = ncobj.variables[variable]
    timeobj = ncobj.variables[timevar]

    dimt = len(timeobj[:])
    varvals = np.zeros((2,dimt), dtype=np.float)

    gunits = varobj.getncattr('units')
    tunits = timeobj.getncattr('units')

    varvals[0,:], valpot, newgunits, Spot = drw.pot_values(varobj[:].flatten(), gunits)
    varvals[1,:] = timeobj[:]

    tseriesvals = []
    tseriesvals.append(varvals)

    drw.plot_TimeSeries(tseriesvals, Spot + drw.units_lunits(gunits), tunits,        \
      'TimeSeries', gvarname, timetit, tkind, timefmt, title,      \
      gvarname.replace('_','\_'), locleg, gkind)

    return

#draw_timeSeries('wrfout_d01_1979-12-01_00:00:00_bottom_top_B6-E6-I1_south_north_B3-E3-I1_west_east_B26-E26-I1.nc', 'dt_con:time|($[DD]^{[HH]}$):exct,12,h:$%d^{%H}$:time|evolution|at|-1|6|3|26:1:pdf', 'LDQCON,time')

def draw_trajectories(trjfilens, values, observations):
    """ Function to draw different trajectories at the same time
    draw_trajectories(trjfilens, values, observations):
      trjfilens= [filen]@[Tint]@[map] ',' separated list of files with trajectories,
         time intervals and reference maps (first one will be used to plot)
        [filen]: name of the file to use (lines with '#', not readed) as:
          [t-step] [x] [y]
        [Tint]: interval of time as [Tbeg]@[Tend] or -1 for all the interval
        [map]: [file]#[lonname]#[latname] 
          [file]; with the [lon],[lat] matrices
          [lonname],[latname]; names of the longitudes and latitudes variables
      values=[leglabels]|[lonlatlims]|[title]|[graphk]|[mapkind]
        [leglabels]: ',' separated list of names for the legend
        [lonlatlims]: limits of the map [lonmin, latmin, lonmax, latmax] or None
        [title]: title of the plot
        [graphk]: kind of the graphic
        [mapkind]: drawing coastaline ([proj],[res]) or None
          [proj]: projection
             * 'cyl', cilindric
             * 'lcc', lambert conformal
          [res]: resolution:
             * 'c', crude
             * 'l', low
             * 'i', intermediate
             * 'h', high
             * 'f', full
      obsevations= [obsfile],[obsname],[Tint],[null]
        [obsfile]: name fo the File with the observations as [t-step] [lat] [lon]
        [obsname]: name of the observations in the graph
        [Tint]: interval of time as [Tbeg]@[Tend] or -1 for all the interval
        [null]: null value for the observed trajectory
    """

    fname = 'draw_trajectories'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_trajectories.__doc__
        quit()

    trjfiles = trjfilens.split(',')
    leglabels = values.split('|')[0]
    lonlatlims = values.split('|')[1]
    title = values.split('|')[2]
    graphk = values.split('|')[3]
    mapkind = values.split('|')[4]

    Nfiles = len(trjfiles)

# Getting trajectotries 
##

    lontrjvalues = []
    lattrjvalues = []

    print '  ' + fname
    ifn = 0
    for ifile in trjfiles:
        filen = ifile.split('@')[0]
        Tint = ifile.split('@')[1]

        print '    trajectory:',filen

        if Tint != '-1':
            Tbeg = Tint
            Tend = ifile.split('@')[2]
            mapv = ifile.split('@')[3]
        else:
            mapv = ifile.split('@')[2]

        if not os.path.isfile(filen):
            print errormsg
            print '  ' + fname + ": trajectory file '" + filen + "' does not exist !!"
            quit(-1)

# Charging longitude and latitude values
## 
        lonvals, latvals = drw.lonlat_values(mapv.split('#')[0], mapv.split('#')[1], \
          mapv.split('#')[2])

        if ifn == 0: mapref = mapv
        ifn = ifn + 1

        objfile = open(filen, 'r')
        trjtimev = []
        trjxv = []
        trjyv = []

        for line in objfile:
            if line[0:1] != '#':
                trjtimev.append(int(line.split(' ')[0]))
                trjxv.append(int(line.split(' ')[1]))
                trjyv.append(int(line.split(' ')[2]))

        objfile.close()

        if Tint != '-1':
            lontrjvalues.append(lonvals[trjyv[Tint:Tend+1], trjxv[Tint:Tend+1]])
            lattrjvalues.append(latvals[trjyv[Tint:Tend+1], trjxv[Tint:Tend+1]])
        else:
            lontrjvalues.append(lonvals[trjyv[:], trjxv[:]])
            lattrjvalues.append(latvals[trjyv[:], trjxv[:]])

# lonlatlimits
##

    if lonlatlims == 'None':
        lonlatlimsv = None
    else:
        lonlatlimsv = np.zeros((4), dtype=np.float)
        lonlatlimsv[0] = np.float(lonlatlims.split(',')[0])
        lonlatlimsv[1] = np.float(lonlatlims.split(',')[1])
        lonlatlimsv[2] = np.float(lonlatlims.split(',')[2])
        lonlatlimsv[3] = np.float(lonlatlims.split(',')[3])

# lon/lat objects
##
    objnc = NetCDFFile(mapref.split('#')[0])
    lonobj = objnc.variables[mapref.split('#')[1]]
    latobj = objnc.variables[mapref.split('#')[2]]

# map
##
    if mapkind == 'None':
        mapkindv = None
    else:
        mapkindv = mapkind

    if observations is None:
        obsname = None
    else:
        obsfile = observations.split(',')[0]
        obsname = observations.split(',')[1]
        Tint = observations.split(',')[2]
        null = np.float(observations.split(',')[3])
        print '    observational trajectory:',obsfile

        if not os.path.isfile(obsfile):
            print errormsg
            print '  ' + fname + ": observations trajectory file '" + obsfile +      \
              "' does not exist !!"
            quit(-1)

        objfile = open(obsfile, 'r')
        obstrjtimev = []
        obstrjxv = []
        obstrjyv = []

        for line in objfile:
            if line[0:1] != '#':
                lon = np.float(line.split(' ')[2])
                lat = np.float(line.split(' ')[1])
                if not lon == null and not lat == null:
                    obstrjtimev.append(int(line.split(' ')[0]))
                    obstrjxv.append(lon)
                    obstrjyv.append(lat)
                else:
                    obstrjtimev.append(int(line.split(' ')[0]))
                    obstrjxv.append(None)
                    obstrjyv.append(None)

        objfile.close()

        if Tint != '-1':
            Tint = int(observations.split(',')[2].split('@')[0])
            Tend = int(observations.split(',')[2].split('@')[1])
            lontrjvalues.append(obstrjxv[Tint:Tend+1])
            lattrjvalues.append(obstrjyv[Tint:Tend+1])
        else:
            lontrjvalues.append(obstrjxv[:])
            lattrjvalues.append(obstrjyv[:])

    drw.plot_Trajectories(lontrjvalues, lattrjvalues, leglabels.split(','),          \
      lonobj, latobj, lonlatlimsv, title, graphk, mapkindv, obsname)

    objnc.close()

    return

def draw_vals_trajectories(ncfile, values, variable):
    """ Function to draw values from the outputs from 'compute_tevolboxtraj'
    draw_vals_trajectories(ncfile, values, variable)
    ncfile= [ncfile] ',' list of files to use
    values= [statistics]:[Tint]:[labels]@[locleg]:[gvarname]:[timetit]:[tkind]:[timefmt]:[title]:[gkind]
      [statistics]: which statistics to use, from: 'center', 'min', 'max', 'mean', 
        'mean2', 'stdev'
      [Tint]: [Tbeg]@[Tend] or None, interval of time to plot or -1 for all the times
      [labels]: ',' separated list of labels for the legend
      [locleg]: location of the legend (-1, autmoatic)
        1: 'upper right', 2: 'upper left', 3: 'lower left', 4: 'lower right',
        5: 'right', 6: 'center left', 7: 'center right', 8: 'lower center',
        9: 'upper center', 10: 'center'
      [gvarname]: name of the variable to appear in the graph
      [timetit]: title of the time axis (assumed x-axis, '|' for spaces)
      [tkind]: kind of time to appear in the graph (assumed x-axis)
        'Nval': according to a given number of values as 'Nval',[Nval]
        'exct': according to an exact time unit as 'exct',[tunit]; 
          tunit= [Nunits],[tu]; [tu]= 'c': centuries, 'y': year, 'm': month,
            'w': week, 'd': day, 'h': hour, 'i': minute, 's': second, 
            'l': milisecond
      [timefmt]: format of the time labels
      [title]: title of the graphic ('|' for spaces)
      [gkind]: kind of graphical output
    variable= variable to use
    """

    fname = 'draw_vals_trajectories'

    if values == 'h':
        print fname + '_____________________________________________________________'
        print draw_vals_trajectories.__doc__
        quit()

    sims = ncfile.split(',')

    if len(values.split(':')) != 9:
        print errormsg
        print '  ' + fname  + ': wrong number of values!', len(values.split(':')),   \
          'given 9 needed!!'
        print '    ',values.split(':')
        quit(-1)

    statistics = values.split(':')[0]
    Tint = values.split(':')[1]
    labels = values.split(':')[2]
    gvarname = values.split(':')[3]
    timetit = values.split(':')[4].replace('|',' ')
    tkind = values.split(':')[5]
    timefmt = values.split(':')[6]
    title = values.split(':')[7].replace('|',' ')
    gkind = values.split(':')[8]

    leglabels = labels.split('@')[0].split(',')
    locleg = int(labels.split('@')[1])

    Nsims = len(sims)

    if Tint != '-1':
        tini = np.float(Tint.split('@')[0])
        tend = np.float(Tint.split('@')[1])
    else:
        tini = -1.
        tend = -1.

    vartimetrjv = []

    print '  ' + fname
    for trjfile in sims:
        print '    ' + trjfile + ' ...'
        if not os.path.isfile(trjfile):
            print errormsg
            print '  ' + fname + ": trajectory file: '" + trjfile +                  \
              "' does not exist !!"
            quit(-1)

        trjobj = NetCDFFile(trjfile, 'r')
        otim = trjobj.variables['time']
        if not trjobj.variables.has_key(statistics + 'box_' + variable):
            print errormsg
            print '  ' + fname + ": file '" + trjfile + "' does not have variable '"+\
              statistics + 'box_' + variable + "' !!"
            quit(-1)
        ovar = trjobj.variables[statistics + 'box_' + variable]
        dimt = otim.shape[0]

        if trjfile == sims[0]:
            gunits = ovar.getncattr('units')
            lname = ovar.getncattr('long_name')
            tunits = otim.getncattr('units')

        if tini != -1:
            tiniid = -1
            tendid = -1       
            for itv in range(dimt):
                if otim[itv] <= tini and otim[itv+1] >= tini: tiniid = itv
                if otim[itv] <= tend and otim[itv+1] >= tend: tendid = itv

            if tiniid == -1 or tendid == -1:
                print errormsg
                print '  ' + main + ' time interval ', tini,',',tend,' not found: ',     \
                  tendid, ',', tiniid, ' !!'
                print '    data interval [',otim[0], otim[dimt-1],']'
                quit(-1)
            dimt = tendid - tiniid + 1

        else:
            dimt = otim.shape[0]

        valsv = np.zeros((2,dimt), dtype=np.float)

        if tini == -1:
            valsv[1,:] = otim[:]
            valsv[0,:] = ovar[:]
        else:
            valsv[1,:] = otim[tiniid:tendid+1]
            valsv[0,:] = ovar[tiniid:tendid+1]

        vartimetrjv.append(valsv)
        trjobj.close()

    drw.plot_TimeSeries(vartimetrjv, drw.units_lunits(gunits), tunits,               \
      'val_trajectories_' + statistics, gvarname, timetit, tkind, timefmt, title,    \
      leglabels, locleg, gkind)

def variable_values(values):
    """ Function to give back values for a given variable
      values= [varname] name of the variable
    """

    fname = 'variable_values'

    values = drw.variables_values(values)

    print fname,'values:',values
    print fname,'variable_name:',values[0]
    print fname,'standard_name:',values[1]
    print fname,'min,max:',str(values[2]) + ',' + str(values[3])
    print fname,'long_name:',values[4]
    print fname,'units:',values[5]
    print fname,'shad_colors:',values[6]
    print fname,'all_values:',drw.numVector_String(values,',')

    return

####### ###### ##### #### ### ## #

ngraphics = "'" + drw.numVector_String(namegraphics, "', '") + "'"

### Options
##string_operation="operation to make: " + '\n' + " out, output values -S inidim1,[inidim2,...]:enddim1,[enddim2,...]"
string_operation="""operation to make: 
  draw_topo_geogrid, draws topography from a WPS geo_em.d[nn].nc: -S [minTopo],[maxTopo]:[SW_lon],[SW_lat],[NE_lon],[NE_lat]:[title]:[graphic_kind]:[projection],[res_coastline]
  draw_2D_shad_cont, draws two 2D fields, first with shading second with contour lines: -v [varns],[varnc] -S [vnamefs],[vnamefc],[dimxvn],[dimyvn],[colorbar],[ckind],[clabfmt],[sminv]:[smaxv],[sminc]:[smaxv]:[Nlev],[figt],[kindfig],[reverse]
    [ckind]:
      'cmap': as it gets from colorbar
      'fixc,[colname]': fixed color [colname], all stright lines
      'fixsignc,[colname]': fixed color [colname], >0 stright, <0 dashed  line
"""

#print string_operation

parser = OptionParser()
parser.add_option("-f", "--netCDF_file", dest="ncfile", 
                  help="file to use", metavar="FILE")
parser.add_option("-o", "--operation", type='choice', dest="operation", 
       choices=namegraphics, 
                  help="operation to make: " + ngraphics, metavar="OPER")
parser.add_option("-S", "--valueS", dest="values", 
                  help="[WHEN APPLICABLE] values to use according to the operation", metavar="VALUES")
parser.add_option("-v", "--variable", dest="varname",
                  help="[WHEN APPLICABLE] variable to check", metavar="VAR")

(opts, args) = parser.parse_args()

#######    #######
## MAIN
    #######

# Not checking file operation
Notcheckingfile = ['draw_2D_shad_cont', 'draw_2D_shad_cont_time',                    \
  'draw_2D_shad_line', 'draw_2D_shad_line_time', 'draw_lines', 'draw_lines_time',    \
  'draw_topo_geogrid_boxes', 'draw_trajectories', 'draw_vals_trajectories',          \
  'variable_values']

####### ###### ##### #### ### ## #
errormsg='ERROR -- error -- ERROR -- error'

varn=opts.varname
oper=opts.operation

if opts.ncfile is not None and not os.path.isfile(opts.ncfile) and                   \
  not drw.searchInlist(Notcheckingfile, oper):
    print errormsg
    print '  ' + main + ': File ' + opts.ncfile + ' does not exist !!'
    quit(-1)

if oper == 'create_movie':
    create_movie(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad':
    draw_2D_shad(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad_time':
    draw_2D_shad_time(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad_cont':
    draw_2D_shad_cont(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad_cont_time':
    draw_2D_shad_cont_time(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad_line':
    draw_2D_shad_line(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_2D_shad_line_time':
    draw_2D_shad_line_time(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_Neighbourghood_evol':
    draw_Neighbourghood_evol(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_lines':
    draw_lines(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_lines_time':
    draw_lines_time(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_timeSeries':
    draw_timeSeries(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_topo_geogrid':
    draw_topo_geogrid(opts.ncfile, opts.values)
elif oper == 'draw_topo_geogrid_boxes':
    draw_topo_geogrid_boxes(opts.ncfile, opts.values)
elif oper == 'draw_trajectories':
    draw_trajectories(opts.ncfile, opts.values, opts.varname)
elif oper == 'draw_vals_trajectories':
    draw_vals_trajectories(opts.ncfile, opts.values, opts.varname)
elif oper == 'list_graphics':
# From: http://www.diveintopython.net/power_of_introspection/all_together.html
    import drawing as myself
    object = myself
    for opern in namegraphics:
        if  opern != 'list_graphics': 
            print opern + '_______ ______ _____ ____ ___ __ _'
            print getattr(object, opern).__doc__
elif oper == 'variable_values':
    variable_values(opts.values)
else:
    print errormsg
    print '  ' + main + ": the graphic '" + oper + "' is not ready !!"
    print errormsg
    quit()
