MODULE module_ra_rrtm ! Parameters INTEGER, PRIVATE :: IDATA INTEGER, PARAMETER :: MG=16 INTEGER, PARAMETER :: NBANDS=16 INTEGER, PARAMETER :: NGPT=140 INTEGER, PARAMETER :: NG1=8 INTEGER, PARAMETER :: NG2=14 INTEGER, PARAMETER :: NG3=16 INTEGER, PARAMETER :: NG4=14 INTEGER, PARAMETER :: NG5=16 INTEGER, PARAMETER :: NG6=8 INTEGER, PARAMETER :: NG7=12 INTEGER, PARAMETER :: NG8=8 INTEGER, PARAMETER :: NG9=12 INTEGER, PARAMETER :: NG10=6 INTEGER, PARAMETER :: NG11=8 INTEGER, PARAMETER :: NG12=8 INTEGER, PARAMETER :: NG13=4 INTEGER, PARAMETER :: NG14=2 INTEGER, PARAMETER :: NG15=2 INTEGER, PARAMETER :: NG16=2 INTEGER, PARAMETER :: MAXINPX=35 INTEGER, PARAMETER :: MAXXSEC=4 INTEGER, PARAMETER :: NMOL = 6 REAL, PARAMETER :: ONEMINUS = 1. - 1.E-6 REAL, PARAMETER :: deltap = 4. ! Pressure interval for buffer layer in mb ! var REAL , SAVE :: FLUXFAC INTEGER , SAVE :: NLAYERS ! ! data 1 ! REAL,SAVE :: abscoefL1(5,13,MG), abscoefH1(5,13:59,MG), & SELFREF1(10,MG) REAL,SAVE :: abscoefL2(5,13,MG), abscoefH2(5,13:59,MG), & SELFREF2(10,MG) REAL,SAVE :: abscoefL3(10,5,13,MG), abscoefH3(5,5,13:59,MG), & SELFREF3(10,MG) REAL,SAVE :: abscoefL4(9,5,13,MG), abscoefH4(6,5,13:59,MG), & SELFREF4(10,MG) REAL,SAVE :: abscoefL5(9,5,13,MG), abscoefH5(5,5,13:59,MG), & SELFREF5(10,MG) REAL,SAVE :: abscoefL6(5,13,MG), SELFREF6(10,MG) REAL,SAVE :: abscoefL7(9,5,13,MG), abscoefH7(5,13:59,MG), & SELFREF7(10,MG) REAL,SAVE :: abscoefL8(5,7,MG), abscoefH8(5,7:59,MG), & SELFREF8(10,MG) REAL,SAVE :: abscoefL9(11,5,13,MG), abscoefH9(5,13:59,MG), & SELFREF9(10,MG) REAL,SAVE :: abscoefL10(5,13,MG), abscoefH10(5,13:59,MG) REAL,SAVE :: abscoefL11(5,13,MG), abscoefH11(5,13:59,MG), & SELFREF11(10,MG) REAL,SAVE :: abscoefL12(9,5,13,MG), SELFREF12(10,MG) REAL,SAVE :: abscoefL13(9,5,13,MG), SELFREF13(10,MG) REAL,SAVE :: abscoefL14(5,13,MG), abscoefH14(5,13:59,MG), & SELFREF14(10,MG) REAL,SAVE :: abscoefL15(9,5,13,MG), SELFREF15(10,MG) REAL,SAVE :: abscoefL16(9,5,13,MG), SELFREF16(10,MG) ! ! data 2 ! INTEGER,SAVE :: NGM(MG*NBANDS), NGC(NBANDS), NGS(NBANDS), & NGN(NGPT), NGB(NGPT) REAL,SAVE :: WT(MG) ! ! data 3 ! REAL,SAVE :: FRACREFA1(MG), FRACREFB1(MG), FORREF1(MG) REAL,SAVE :: FRACREFA2(MG,13), FRACREFB2(MG), FORREF2(MG) REAL,SAVE :: FRACREFA3(MG,10), FRACREFB3(MG,5) REAL,SAVE :: FORREF3(MG), ABSN2OA3(MG), ABSN2OB3(MG) REAL,SAVE :: FRACREFA4(MG,9), FRACREFB4(MG,6) REAL,SAVE :: FRACREFA5(MG,9), FRACREFB5(MG,5), CCL45(MG) REAL,SAVE :: FRACREFA6(MG), ABSCO26(MG), CFC11ADJ6(MG), CFC126(MG) REAL,SAVE :: FRACREFA7(MG,9), FRACREFB7(MG), ABSCO27(MG) REAL,SAVE :: FRACREFA8(MG), FRACREFB8(MG), ABSCO2A8(MG), ABSCO2B8(MG) REAL,SAVE :: ABSN2OA8(MG), ABSN2OB8(MG), CFC128(MG), CFC22ADJ8(MG) REAL,SAVE :: FRACREFA9(MG,9), FRACREFB9(MG), ABSN2O9(3*MG) REAL,SAVE :: FRACREFA10(MG), FRACREFB10(MG) REAL,SAVE :: FRACREFA11(MG), FRACREFB11(MG) REAL,SAVE :: FRACREFA12(MG,9) REAL,SAVE :: FRACREFA13(MG,9) REAL,SAVE :: FRACREFA14(MG), FRACREFB14(MG) REAL,SAVE :: FRACREFA15(MG,9) REAL,SAVE :: FRACREFA16(MG,9) ! ! data 4 ! INTEGER,SAVE :: NXMOL, IXINDX(MAXINPX) ! data 5 REAL,SAVE :: WAVENUM1(NBANDS),WAVENUM2(NBANDS),DELWAVE(NBANDS) ! data 6 INTEGER,SAVE :: NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) REAL, SAVE :: HEATFAC REAL, SAVE :: PREF(59),PREFLOG(59),TREF(59) ! data 7 REAL, SAVE :: TOTPLNK(181,NBANDS), TOTPLK16(181) ! data REAL, SAVE :: TAU(0:5000),TF(0:5000),TRANS(0:5000) ! REAL, SAVE :: ABSA1(5*13,NG1), ABSB1(5*(59-13+1),NG1), & SELFREFC1(10,NG1), FORREFC1(NG1) REAL, SAVE :: ABSA2(5*13,NG2), ABSB2(5*(59-13+1),NG2), & SELFREFC2(10,NG2), FORREFC2(NG2) REAL, SAVE :: ABSA3(10*5*13,NG3), ABSB3(5*5*(59-13+1),NG3), & SELFREFC3(10,NG3), FORREFC3(NG3), & ABSN2OAC3(NG3), ABSN2OBC3(NG3) REAL, SAVE :: ABSA4(9*5*13,NG4), ABSB4(6*5*(59-13+1),NG4), & SELFREFC4(10,NG4) REAL, SAVE :: ABSA5(9*5*13,NG5), ABSB5(5*5*(59-13+1),NG5), & SELFREFC5(10,NG5), CCL4C5(NG5) REAL, SAVE :: ABSA6(5*13,NG6), SELFREFC6(10,NG6), & ABSCO2C6(NG6), CFC11ADJC6(NG6), CFC12C6(NG6) REAL, SAVE :: ABSA7(9*5*13,NG7), ABSB7(5*(59-13+1),NG7), & SELFREFC7(10,NG7), ABSCO2C7(NG7) REAL, SAVE :: ABSA8(5*7,NG8), ABSB8(5*(59-7+1),NG8), & SELFREFC8(10,NG8), & ABSCO2AC8(NG8), ABSCO2BC8(NG8), & ABSN2OAC8(NG8), ABSN2OBC8(NG8), & CFC12C8(NG8), CFC22ADJC8(NG8) REAL, SAVE :: ABSA9(11*5*13,NG9), ABSB9(5*(59-13+1),NG9), & SELFREFC9(10,NG9), ABSN2OC9(3*NG9) REAL, SAVE :: ABSA10(5*13,NG10), ABSB10(5*(59-13+1),NG10) REAL, SAVE :: ABSA11(5*13,NG11), ABSB11(5*(59-13+1),NG11), & SELFREFC11(10,NG11) REAL, SAVE :: ABSA12(9*5*13,NG12), SELFREFC12(10,NG12) REAL, SAVE :: ABSA13(9*5*13,NG13), SELFREFC13(10,NG13) REAL, SAVE :: ABSA14(5*13,NG14), ABSB14(5*(59-13+1),NG14), & SELFREFC14(10,NG14) REAL, SAVE :: ABSA15(9*5*13,NG15), SELFREFC15(10,NG15) REAL, SAVE :: ABSA16(9*5*13,NG16), SELFREFC16(10,NG16) REAL, SAVE :: FRACREFAC1(NG1), FRACREFBC1(NG1) REAL, SAVE :: FRACREFAC2(NG2,13), FRACREFBC2(NG2) REAL, SAVE :: FRACREFAC3(NG3,10), FRACREFBC3(NG3,5) REAL, SAVE :: FRACREFAC4(NG4,9), FRACREFBC4(NG4,6) REAL, SAVE :: FRACREFAC5(NG5,9), FRACREFBC5(NG5,5) REAL, SAVE :: FRACREFAC6(NG6) REAL, SAVE :: FRACREFAC7(NG7,9), FRACREFBC7(NG7) REAL, SAVE :: FRACREFAC8(NG8), FRACREFBC8(NG8) REAL, SAVE :: FRACREFAC9(NG9,9), FRACREFBC9(NG9) REAL, SAVE :: FRACREFAC10(NG10), FRACREFBC10(NG10) REAL, SAVE :: FRACREFAC11(NG11), FRACREFBC11(NG11) REAL, SAVE :: FRACREFAC12(NG12,9) REAL, SAVE :: FRACREFAC13(NG13,9) REAL, SAVE :: FRACREFAC14(NG14), FRACREFBC14(NG14) REAL, SAVE :: FRACREFAC15(NG15,9) REAL, SAVE :: FRACREFAC16(NG16,9) REAL, SAVE :: CORR1(0:200),CORR2(0:200) REAL, SAVE :: BPADE REAL, SAVE :: RWGT(MG*NBANDS) !---------------------------------------------------------------------------- ! ! start data 2 ! Arrays for the g-point reduction from 256 to 140 for the 16 LW bands: ! This mapping from 256 to 140 points has been carefully selected to ! minimize the effect on the resulting fluxes and cooling rates, and ! caution should be used if the mapping is modified. ! ! NGPT The total number of new g-points ! NGC The number of new g-points in each band ! NGM The index of each new g-point relative to the original ! 16 g-points for each band. ! NGN The number of original g-points that are combined to make ! each new g-point in each band. ! NGB The band index for each new g-point. ! WT RRTM weights for 16 g-points. ! Data Statements DATA NGC /8,14,16,14,16,8,12,8,12,6,8,8,4,2,2,2/ DATA NGS /8,22,38,52,68,76,88,96,108,114,122,130,134,136,138,140/ DATA NGM /1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! Band 1 1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,14, & ! Band 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! Band 3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,14,14, & ! Band 4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! Band 5 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! Band 6 1,1,2,2,3,4,5,6,7,8,9,10,11,11,12,12, & ! Band 7 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! Band 8 1,2,3,4,5,6,7,8,9,9,10,10,11,11,12,12, & ! Band 9 1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6, & ! Band 10 1,2,3,3,4,4,5,5,6,6,7,7,7,8,8,8, & ! Band 11 1,2,3,4,5,5,6,6,7,7,7,7,8,8,8,8, & ! Band 12 1,1,1,2,2,2,3,3,3,3,4,4,4,4,4,4, & ! Band 13 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! Band 14 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! Band 15 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2/ ! Band 16 DATA NGN /2,2,2,2,2,2,2,2, & ! Band 1 1,1,1,1,1,1,1,1,1,1,1,1,2,2, & ! Band 2 16*1, & ! Band 3 1,1,1,1,1,1,1,1,1,1,1,1,1,3, & ! Band 4 16*1, & ! Band 5 2,2,2,2,2,2,2,2, & ! Band 6 2,2,1,1,1,1,1,1,1,1,2,2, & ! Band 7 2,2,2,2,2,2,2,2, & ! Band 8 1,1,1,1,1,1,1,1,2,2,2,2, & ! Band 9 2,2,2,2,4,4, & ! Band 10 1,1,2,2,2,2,3,3, & ! Band 11 1,1,1,1,2,2,4,4, & ! Band 12 3,3,4,6, & ! Band 13 8,8, & ! Band 14 8,8, & ! Band 15 8,8/ ! Band 16 DATA NGB /8*1, & ! Band 1 14*2, & ! Band 2 16*3, & ! Band 3 14*4, & ! Band 4 16*5, & ! Band 5 8*6, & ! Band 6 12*7, & ! Band 7 8*8, & ! Band 8 12*9, & ! Band 9 6*10, & ! Band 10 8*11, & ! Band 11 8*12, & ! Band 12 4*13, & ! Band 13 2*14, & ! Band 14 2*15, & ! Band 15 2*16/ ! Band 16 DATA WT/ & 0.1527534276,0.1491729617,0.1420961469,0.1316886544, & 0.1181945205,0.1019300893,0.0832767040,0.0626720116, & 0.0424925,0.0046269894,0.0038279891,0.0030260086, & 0.0022199750,0.0014140010,0.000533,0.000075/ ! ! end of data 2 ! !----------------------------------------------------------------------- ! start data 3 ! Data DATA FRACREFA1/ & 0.08452097,0.17952873,0.16214369,0.13602182, & 0.12760490,0.10302561,0.08392423,0.06337652, & 0.04206551,0.00487497,0.00410743,0.00344421, & 0.00285731,0.00157327,0.00080648,0.00012406/ DATA FRACREFB1/ & 0.15492001,0.17384727,0.15165100,0.12675308, & 0.10986247,0.09006091,0.07584465,0.05990077, & 0.04113461,0.00438638,0.00374754,0.00313924, & 0.00234381,0.00167167,0.00062744,0.00010889/ DATA FORREF1/ & -4.50470E-02,-1.18908E-01,-7.21730E-02,-2.83862E-02, & -3.01961E-02,-1.56877E-02,-1.53684E-02,-1.29135E-02, & -1.27963E-02,-1.81742E-03, 4.40008E-05, 1.05260E-02, & 2.17290E-02, 1.65571E-02, 7.60751E-02, 1.47405E-01/ ! Data ! The ith set of reference fractions are from the ith reference ! pressure level. DATA FRACREFA2/ & 0.18068060,0.16803175,0.15140158,0.12221480, 0.10240850,0.09330297,0.07518960,0.05611294, & 0.03781487,0.00387192,0.00321285,0.00244440, 0.00179546,0.00107704,0.00038798,0.00005060, & 0.17927621,0.16731168,0.15129538,0.12328085, 0.10243484,0.09354796,0.07538418,0.05633071, & 0.03810832,0.00398347,0.00320262,0.00250029, 0.00178666,0.00111127,0.00039438,0.00005169, & 0.17762886,0.16638555,0.15115446,0.12470623, 0.10253213,0.09383459,0.07560240,0.05646568, & 0.03844077,0.00409142,0.00322521,0.00254918, 0.00179296,0.00113652,0.00040169,0.00005259, & 0.17566043,0.16539773,0.15092199,0.12571971, 0.10340609,0.09426189,0.07559051,0.05678188, & 0.03881499,0.00414102,0.00328551,0.00258795, 0.00181648,0.00115145,0.00040969,0.00005357, & 0.17335825,0.16442548,0.15070701,0.12667464, 0.10452303,0.09450833,0.07599410,0.05706393, & 0.03910370,0.00417880,0.00335256,0.00261708, 0.00185491,0.00116627,0.00041759,0.00005464, & 0.17082544,0.16321516,0.15044247,0.12797612, 0.10574646,0.09470057,0.07647423,0.05738756, & 0.03935621,0.00423789,0.00342651,0.00264549, 0.00190188,0.00118281,0.00042592,0.00005583, & 0.16809277,0.16193336,0.15013184,0.12937409, 0.10720784,0.09485368,0.07692636,0.05771774, & 0.03966988,0.00427754,0.00349696,0.00268946, 0.00193536,0.00120222,0.00043462,0.00005712, & 0.16517997,0.16059248,0.14984852,0.13079269, 0.10865030,0.09492947,0.07759736,0.05812201, & 0.03997169,0.00432356,0.00355308,0.00274031, 0.00197243,0.00122401,0.00044359,0.00005849, & 0.16209179,0.15912023,0.14938223,0.13198245, 0.11077233,0.09487948,0.07831636,0.05863440, & 0.04028239,0.00436804,0.00360407,0.00279885, 0.00200364,0.00124861,0.00045521,0.00005996, & 0.15962425,0.15789343,0.14898103,0.13275230, 0.11253940,0.09503502,0.07884382,0.05908009, & 0.04053524,0.00439971,0.00364269,0.00284965, 0.00202758,0.00127076,0.00046408,0.00006114, & 0.15926200,0.15770932,0.14891729,0.13283882, 0.11276010,0.09507311,0.07892222,0.05919230, & 0.04054824,0.00440833,0.00365575,0.00286459, 0.00203786,0.00128405,0.00046504,0.00006146, & 0.15926351,0.15770483,0.14891177,0.13279966, 0.11268171,0.09515216,0.07890341,0.05924807, & 0.04052851,0.00440870,0.00365425,0.00286878, 0.00205747,0.00128916,0.00046589,0.00006221, & 0.15937765,0.15775780,0.14892603,0.13273248, 0.11252731,0.09521657,0.07885858,0.05927679, & 0.04050184,0.00440285,0.00365748,0.00286791, 0.00207507,0.00129193,0.00046679,0.00006308/ ! From P = 0.432 mb. DATA FRACREFB2/ & 0.17444289,0.16467269,0.15021490,0.12460902, & 0.10400643,0.09481928,0.07590704,0.05752856, & 0.03931715,0.00428572,0.00349352,0.00278938, & 0.00203448,0.00130037,0.00051560,0.00006255/ DATA FORREF2/ & -2.34550E-03,-8.42698E-03,-2.01816E-02,-5.66701E-02, & -8.93189E-02,-6.37487E-02,-4.56455E-02,-4.41417E-02, & -4.48605E-02,-4.74696E-02,-5.16648E-02,-5.63099E-02, & -4.74781E-02,-3.84704E-02,-2.49905E-02, 2.02114E-03/ ! Data DATA FRACREFA3/ & ! From P = 1053.6 mb. 0.15116400,0.14875700,0.14232300,0.13234501, 0.11881600,0.10224100,0.08345580,0.06267490, & 0.04250650,0.00462650,0.00382259,0.00302600, 0.00222004,0.00141397,0.00053379,0.00007421, & 0.15266000,0.14888400,0.14195900,0.13179500, 0.11842700,0.10209000,0.08336130,0.06264370, & 0.04247660,0.00461946,0.00381536,0.00302601, 0.00222004,0.00141397,0.00053302,0.00007498, & 0.15282799,0.14903000,0.14192399,0.13174300, 0.11835300,0.10202700,0.08329830,0.06264830, & 0.04246910,0.00460242,0.00381904,0.00301573, 0.00222004,0.00141397,0.00053379,0.00007421, & 0.15298399,0.14902800,0.14193401,0.13173500, 0.11833300,0.10195800,0.08324730,0.06264770, & 0.04246490,0.00460489,0.00381123,0.00301893, 0.00221093,0.00141397,0.00053379,0.00007421, & 0.15307599,0.14907201,0.14198899,0.13169800, 0.11827300,0.10192300,0.08321600,0.06263490, & 0.04245600,0.00460846,0.00380836,0.00301663, 0.00221402,0.00141167,0.00052807,0.00007376, & 0.15311401,0.14915401,0.14207301,0.13167299, 0.11819300,0.10188900,0.08318760,0.06261960, & 0.04243890,0.00461584,0.00380929,0.00300815, 0.00221736,0.00140588,0.00052776,0.00007376, & 0.15316001,0.14925499,0.14213000,0.13170999, 0.11807700,0.10181400,0.08317400,0.06260300, & 0.04242720,0.00461520,0.00381381,0.00301285, 0.00220275,0.00140371,0.00052776,0.00007376, & 0.15321200,0.14940999,0.14222500,0.13164200, 0.11798200,0.10174500,0.08317500,0.06253640, & 0.04243130,0.00461724,0.00381534,0.00300320, 0.00220091,0.00140364,0.00052852,0.00007300, & 0.15312800,0.14973100,0.14234400,0.13168900, 0.11795200,0.10156100,0.08302990,0.06252240, & 0.04240980,0.00461035,0.00381381,0.00300176, 0.00220160,0.00140284,0.00052774,0.00007376, & 0.15292500,0.14978001,0.14242400,0.13172600, 0.11798800,0.10156400,0.08303050,0.06251670, & 0.04240970,0.00461302,0.00381452,0.00300250, 0.00220126,0.00140324,0.00052850,0.00007300/ DATA FRACREFB3/ & ! From P = 64.1 mb. 0.16340201,0.15607700,0.14601400,0.13182700, & 0.11524700,0.09666570,0.07825360,0.05849780, & 0.03949650,0.00427980,0.00353719,0.00279303, & 0.00204788,0.00130139,0.00049055,0.00006904, & 0.15762900,0.15494700,0.14659800,0.13267800, & 0.11562700,0.09838360,0.07930420,0.05962700, & 0.04036360,0.00438053,0.00361463,0.00285723, & 0.00208345,0.00132135,0.00050528,0.00008003, & 0.15641500,0.15394500,0.14633600,0.13180400, & 0.11617100,0.09924170,0.08000510,0.06021420, & 0.04082730,0.00441694,0.00365364,0.00287723, & 0.00210914,0.00135784,0.00054651,0.00008003, & 0.15482700,0.15286300,0.14392500,0.13244100, & 0.11712000,0.09994920,0.08119200,0.06104360, & 0.04135600,0.00446685,0.00368377,0.00290767, & 0.00215445,0.00142865,0.00056142,0.00008003, & 0.15975100,0.15653500,0.14214399,0.12892200, & 0.11508400,0.09906020,0.08087940,0.06078190, & 0.04140530,0.00452724,0.00374558,0.00295328, & 0.00218509,0.00138644,0.00056018,0.00008003/ DATA ABSN2OA3/ & 1.50387E-01,2.91407E-01,6.28803E-01,9.65619E-01, & 1.15054E-00,2.23424E-00,1.83392E-00,1.39033E-00, & 4.28457E-01,2.73502E-01,1.84307E-01,1.61325E-01, & 7.66314E-02,1.33862E-01,6.71196E-07,1.59293E-06/ DATA ABSN2OB3/ & 9.37044E-05,1.23318E-03,7.91720E-03,5.33005E-02, & 1.72343E-01,4.29571E-01,1.01288E+00,3.83863E+00, & 1.15312E+01,1.08383E+00,2.24847E+00,1.51268E+00, & 3.33177E-01,7.82102E-01,3.44631E-01,1.61039E-03/ DATA FORREF3/ & 1.76842E-04, 1.77913E-04, 1.25186E-04, 1.07912E-04, & 1.05217E-04, 7.48726E-05, 1.11701E-04, 7.68921E-05, & 9.87242E-05, 9.85711E-05, 6.16557E-05,-1.61291E-05, & -1.26794E-04,-1.19011E-04,-2.67814E-04, 6.95005E-05/ ! Data DATA FRACREFA4/ & ! From P = 0.15579100,0.14918099,0.14113800,0.13127001, & 0.11796300,0.10174300,0.08282370,0.06238150, & 0.04213440,0.00458968,0.00377949,0.00298736, & 0.00220743,0.00140644,0.00053024,0.00007459, & 0.15292799,0.15004000,0.14211500,0.13176700, & 0.11821100,0.10186300,0.08288040,0.06241390, & 0.04220720,0.00459006,0.00377919,0.00298743, & 0.00220743,0.00140644,0.00053024,0.00007459, & 0.14386199,0.15125300,0.14650001,0.13377000, & 0.11895900,0.10229400,0.08312110,0.06239520, & 0.04225560,0.00459428,0.00378865,0.00298860, & 0.00220743,0.00140644,0.00053024,0.00007459, & 0.14359100,0.14561599,0.14479300,0.13740200, & 0.12150100,0.10315400,0.08355480,0.06247240, & 0.04230980,0.00459916,0.00378373,0.00300063, & 0.00221111,0.00140644,0.00053024,0.00007459, & 0.14337599,0.14451601,0.14238000,0.13520500, & 0.12354200,0.10581200,0.08451810,0.06262440, & 0.04239590,0.00460297,0.00378701,0.00300466, & 0.00221899,0.00141020,0.00053024,0.00007459, & 0.14322001,0.14397401,0.14117201,0.13401900, & 0.12255500,0.10774100,0.08617650,0.06296420, & 0.04249590,0.00463406,0.00378241,0.00302037, & 0.00221583,0.00141103,0.00053814,0.00007991, & 0.14309500,0.14364301,0.14043900,0.13348100, & 0.12211600,0.10684700,0.08820590,0.06374610, & 0.04264730,0.00464231,0.00384022,0.00303427, & 0.00221825,0.00140943,0.00055564,0.00007991, & 0.15579100,0.14918099,0.14113800,0.13127001, & 0.11796300,0.10174300,0.08282370,0.06238150, & 0.04213440,0.00458968,0.00377949,0.00298736, & 0.00220743,0.00140644,0.00053024,0.00007459, & 0.15937001,0.15159500,0.14242800,0.13078900, & 0.11671300,0.10035700,0.08143450,0.06093850, & 0.04105320,0.00446233,0.00369844,0.00293784, & 0.00216425,0.00143403,0.00054571,0.00007991/ DATA FRACREFB4/ & ! From P = 1.17 mb. 0.15558299,0.14930600,0.14104301,0.13124099, & 0.11792900,0.10159200,0.08314130,0.06240450, & 0.04217020,0.00459313,0.00379798,0.00299835, & 0.00218950,0.00140615,0.00053010,0.00007457, & 0.15592700,0.14918999,0.14095700,0.13115700, & 0.11788900,0.10158000,0.08313780,0.06240240, & 0.04217000,0.00459313,0.00379798,0.00299835, & 0.00218950,0.00140615,0.00053010,0.00007457, & 0.15949000,0.15014900,0.14162201,0.13080800, & 0.11713500,0.10057100,0.08170080,0.06128110, & 0.04165600,0.00459202,0.00379835,0.00299717, & 0.00218958,0.00140616,0.00053010,0.00007457, & 0.15967900,0.15038200,0.14196999,0.13074800, & 0.11701700,0.10053000,0.08160790,0.06122690, & 0.04128310,0.00456598,0.00379486,0.00299457, & 0.00219016,0.00140619,0.00053011,0.00007456, & 0.15989800,0.15057300,0.14207700,0.13068600, & 0.11682900,0.10053900,0.08163610,0.06121870, & 0.04121690,0.00449061,0.00371235,0.00294207, & 0.00217778,0.00139877,0.00053011,0.00007455, & 0.15950100,0.15112500,0.14199100,0.13071300, & 0.11680800,0.10054600,0.08179050,0.06120910, & 0.04126050,0.00444324,0.00366843,0.00289369, & 0.00211550,0.00134746,0.00050874,0.00007863/ ! Data DATA FRACREFA5/ & ! From P = 387.6 mb. 0.13966499,0.14138900,0.13763399,0.13076700, & 0.12299100,0.10747700,0.08942000,0.06769200, & 0.04587610,0.00501173,0.00415809,0.00328398, & 0.00240015,0.00156222,0.00059104,0.00008323, & 0.13958199,0.14332899,0.13785399,0.13205400, & 0.12199700,0.10679600,0.08861080,0.06712320, & 0.04556030,0.00500863,0.00416315,0.00328629, & 0.00240023,0.00156220,0.00059104,0.00008323, & 0.13907100,0.14250501,0.13889600,0.13297300, & 0.12218700,0.10683800,0.08839260,0.06677310, & 0.04538570,0.00495402,0.00409863,0.00328219, & 0.00240805,0.00156266,0.00059104,0.00008323, & 0.13867700,0.14190100,0.13932300,0.13327099, & 0.12280800,0.10692500,0.08844510,0.06658510, & 0.04519340,0.00492276,0.00408832,0.00323856, & 0.00239289,0.00155698,0.00059104,0.00008323, & 0.13845000,0.14158800,0.13929300,0.13295600, & 0.12348300,0.10736700,0.08859480,0.06650610, & 0.04498230,0.00491335,0.00406968,0.00322901, & 0.00234666,0.00155235,0.00058813,0.00008323, & 0.13837101,0.14113200,0.13930500,0.13283101, & 0.12349200,0.10796400,0.08890490,0.06646480, & 0.04485990,0.00489554,0.00405264,0.00320313, & 0.00234742,0.00151159,0.00058438,0.00008253, & 0.13834500,0.14093500,0.13896500,0.13262001, & 0.12326900,0.10828900,0.08950050,0.06674610, & 0.04476560,0.00489624,0.00400962,0.00317423, & 0.00233479,0.00148249,0.00058590,0.00008253, & 0.13831300,0.14069000,0.13871400,0.13247600, & 0.12251400,0.10831300,0.08977090,0.06776920, & 0.04498390,0.00484111,0.00398948,0.00316069, & 0.00229741,0.00150104,0.00058608,0.00008253, & 0.14027201,0.14420401,0.14215700,0.13446601, & 0.12303700,0.10596100,0.08650370,0.06409570, & 0.04312310,0.00471110,0.00393954,0.00310850, & 0.00229588,0.00146366,0.00058194,0.00008253/ DATA FRACREFB5/ & ! From P = 1.17 mb. 0.14339100,0.14358699,0.13935301,0.13306700, & 0.12135700,0.10590600,0.08688240,0.06553220, & 0.04446740,0.00483580,0.00399413,0.00316225, & 0.00233007,0.00149135,0.00056246,0.00008059, & 0.14330500,0.14430299,0.14053699,0.13355300, & 0.12151200,0.10529100,0.08627630,0.06505230, & 0.04385850,0.00476555,0.00395010,0.00313878, & 0.00232273,0.00149354,0.00056246,0.00008059, & 0.14328399,0.14442700,0.14078601,0.13390100, & 0.12132600,0.10510600,0.08613660,0.06494630, & 0.04381310,0.00475378,0.00394166,0.00313076, & 0.00231235,0.00149159,0.00056301,0.00008059, & 0.14326900,0.14453100,0.14114200,0.13397101, & 0.12127200,0.10493400,0.08601380,0.06483360, & 0.04378900,0.00474655,0.00393549,0.00312583, & 0.00230686,0.00148433,0.00056502,0.00008059, & 0.14328900,0.14532700,0.14179000,0.13384600, & 0.12093700,0.10461500,0.08573010,0.06461340, & 0.04366570,0.00473087,0.00392539,0.00311238, & 0.00229865,0.00147572,0.00056517,0.00007939/ DATA CCL45/ & 26.1407, 53.9776, 63.8085, 36.1701, & 15.4099, 10.23116, 4.82948, 5.03836, & 1.75558,0.,0.,0., & 0.,0.,0.,0./ ! Data DATA FRACREFA6/ & ! From P = 706 mb. 0.13739009,0.14259538,0.14033118,0.13547136, & 0.12569460,0.11028396,0.08626066,0.06245148, & 0.04309394,0.00473551,0.00403920,0.00321695, & 0.00232470,0.00147662,0.00056095,0.00007373/ DATA CFC11ADJ6/ & 0., 0., 36.7627, 150.757, & 81.4109, 74.9112, 56.9325, 49.3226, & 57.1074, 66.1202, 109.557, 89.0562, & 149.865, 196.140, 258.393, 80.9923/ DATA CFC126/ & 62.8368, 43.2626, 26.7549, 22.2487, & 23.5029, 34.8323, 26.2335, 23.2306, & 18.4062, 13.9534, 22.6268, 24.2604, & 30.0088, 26.3634, 15.8237, 57.5050/ DATA ABSCO26/ & 7.44852E-05, 6.29208E-05, 7.34031E-05, 6.65218E-05, & 7.87511E-05, 1.22489E-04, 3.39785E-04, 9.33040E-04, & 1.54323E-03, 4.07220E-04, 4.34332E-04, 8.76418E-05, & 9.80381E-05, 3.51680E-05, 5.31766E-05, 1.01542E-05/ ! Data DATA FRACREFA7/ & 0.16461779, 0.14889984, 0.14233345, 0.13156526, & 0.11679733, 0.09988949, 0.08078653, 0.06006384, & 0.04028391, 0.00435899, 0.00359173, 0.00281707, & 0.00206767, 0.00135012, 0.00050720, 0.00007146, & 0.16442357, 0.14944240, 0.14245804, 0.13111183, & 0.11688625, 0.09983791, 0.08085148, 0.05993948, & 0.04028057, 0.00435939, 0.00358708, 0.00284036, & 0.00208869, 0.00133256, 0.00049260, 0.00006931, & 0.16368519, 0.15018989, 0.14262174, 0.13084342, & 0.11682195, 0.09996257, 0.08074036, 0.05985692, & 0.04045362, 0.00436208, 0.00358257, 0.00287122, & 0.00211004, 0.00133804, 0.00049260, 0.00006931, & 0.16274056, 0.15133780, 0.14228874, 0.13081114, & 0.11688486, 0.09979610, 0.08073687, 0.05996741, & 0.04040616, 0.00439869, 0.00368910, 0.00293041, & 0.00211604, 0.00133536, 0.00049260, 0.00006931, & 0.16176532, 0.15207882, 0.14226955, 0.13079646, & 0.11688191, 0.09966998, 0.08066384, 0.06020275, & 0.04047901, 0.00446696, 0.00377456, 0.00294410, & 0.00211082, 0.00133536, 0.00049260, 0.00006931, & 0.15993737, 0.15305527, 0.14259829, 0.13078023, & 0.11686983, 0.09980131, 0.08058286, 0.06031430, & 0.04082833, 0.00450509, 0.00377574, 0.00294823, & 0.00210977, 0.00133302, 0.00049260, 0.00006931, & 0.15371189, 0.15592396, 0.14430280, 0.13076764, & 0.11720382, 0.10023471, 0.08066396, 0.06073554, & 0.04121581, 0.00451202, 0.00377832, 0.00294609, & 0.00210943, 0.00133336, 0.00049260, 0.00006931, & 0.14262275, 0.14572631, 0.14560597, 0.13736825, & 0.12271351, 0.10419556, 0.08294533, 0.06199794, & 0.04157615, 0.00452842, 0.00377704, 0.00293852, & 0.00211034, 0.00133278, 0.00049259, 0.00006931, & 0.14500433, 0.14590444, 0.14430299, 0.13770708, & 0.12288283, 0.10350952, 0.08269450, 0.06130579, & 0.04144571, 0.00452096, 0.00377382, 0.00294532, & 0.00210943, 0.00133228, 0.00049260, 0.00006931/ DATA FRACREFB7/ & 0.15355594,0.15310939,0.14274909,0.13129812, & 0.11736792,0.10118213,0.08215259,0.06165591, & 0.04164486,0.00451141,0.00372837,0.00294095, & 0.00215259,0.00136792,0.00051233,0.00007075/ DATA ABSCO27/ & 9.30038E-05, 1.74061E-04, 2.09293E-04, 2.52360E-04, & 3.13404E-04, 4.16619E-04, 6.27394E-04, 1.29386E-03, & 4.05192E-03, 3.97050E-03, 7.00634E-04, 6.06617E-04, & 7.66978E-04, 6.70661E-04, 7.89971E-04, 7.55709E-04/ ! Data DATA FRACREFA8/ & ! From P = 1053.6 mb. 0.15309700,0.15450300,0.14458799,0.13098200, & 0.11817900,0.09953490,0.08132080,0.06139960, & 0.04132010,0.00446788,0.00372533,0.00294053, & 0.00211371,0.00128122,0.00048050,0.00006759/ DATA FRACREFB8/ & ! From P = 28.9 mb. 0.14105400,0.14728899,0.14264800,0.13331699, & 0.12034100,0.10467000,0.08574980,0.06469390, & 0.04394640,0.00481284,0.00397375,0.00315006, & 0.00228636,0.00144606,0.00054604,0.00007697/ DATA CFC128/ & 85.4027, 89.4696, 74.0959, 67.7480, & 61.2444, 59.9073, 60.8296, 63.0998, & 59.6110, 64.0735, 57.2622, 58.9721, & 43.5505, 26.1192, 32.7023, 32.8667/ DATA CFC22ADJ8/ & ! Original CFC22 is multiplied by 1.485 to account for the 780-850 cm-1 ! and 1290-1335 cm-1 bands. 135.335, 89.6642, 76.2375, 65.9748, & 63.1164, 60.2935, 64.0299, 75.4264, & 51.3018, 7.07911, 5.86928, 0.398693, & 2.82885, 9.12751, 6.28271, 0./ DATA ABSCO2A8/ & 1.11233E-05, 3.92400E-05, 6.62059E-05, 8.51687E-05, & 7.79035E-05, 1.34058E-04, 2.82553E-04, 5.41741E-04, & 1.47029E-05, 2.34982E-05, 6.91094E-08, 8.48917E-08, & 6.58783E-08, 4.64849E-08, 3.62742E-08, 3.62742E-08/ DATA ABSCO2B8/ & 4.10977E-09, 5.65200E-08, 1.70800E-07, 4.16840E-07, & 9.53684E-07, 2.36468E-06, 7.29502E-06, 4.93883E-05, & 5.10440E-04, 9.75248E-04, 1.36495E-03, 2.40451E-03, & 4.50277E-03, 2.24486E-02, 4.06756E-02, 2.17447E-10/ DATA ABSN2OA8/ & 1.28527E-02,5.28651E-02,1.01668E-01,1.57224E-01, & 2.76947E-01,4.93048E-01,6.71387E-01,3.48809E-01, & 4.19840E-01,3.13558E-01,2.44432E-01,2.05108E-01, & 1.21423E-01,1.22158E-01,1.49702E-01,1.47799E-01/ DATA ABSN2OB8/ & 3.15864E-03,4.87347E-03,8.63235E-03,2.16053E-02, & 3.63699E-02,7.89149E-02,3.53807E-01,1.27140E-00, & 2.31464E-00,7.75834E-02,5.15063E-02,4.07059E-02, & 5.91947E-02,5.83546E-02,3.12716E-01,1.47456E-01/ ! Data DATA FRACREFA9/ & ! From P = 1053.6 mb. 0.16898900,0.15898301,0.13575301,0.12600900, & 0.11545800,0.09879170,0.08106830,0.06063440, & 0.03988780,0.00421760,0.00346635,0.00278779, & 0.00206225,0.00132324,0.00050033,0.00007038, & 0.18209399,0.15315101,0.13571000,0.12504999, & 0.11379100,0.09680810,0.08008570,0.05970280, & 0.03942860,0.00413383,0.00343186,0.00275558, & 0.00204657,0.00130219,0.00045454,0.00005664, & 0.18459500,0.15512000,0.13395500,0.12576801, & 0.11276800,0.09645190,0.07956650,0.05903340, & 0.03887050,0.00412226,0.00339453,0.00273518, & 0.00196922,0.00119411,0.00040263,0.00005664, & 0.18458800,0.15859900,0.13278100,0.12589300, & 0.11272700,0.09599660,0.07903030,0.05843600, & 0.03843400,0.00405181,0.00337980,0.00263818, & 0.00186869,0.00111807,0.00040263,0.00005664, & 0.18459301,0.16176100,0.13235000,0.12528200, & 0.11237100,0.09618840,0.07833760,0.05800770, & 0.03787610,0.00408253,0.00330363,0.00250445, & 0.00176725,0.00111753,0.00040263,0.00005664, & 0.18454400,0.16505300,0.13221300,0.12476600, & 0.11158300,0.09618120,0.07797340,0.05740380, & 0.03742820,0.00392691,0.00312208,0.00246306, & 0.00176735,0.00111721,0.00040263,0.00005664, & 0.18452001,0.16697501,0.13445500,0.12391300, & 0.11059100,0.09596890,0.07761050,0.05643200, & 0.03686520,0.00377086,0.00309351,0.00246297, & 0.00176765,0.00111700,0.00040263,0.00005664, & 0.18460999,0.16854499,0.13922299,0.12266400, & 0.10962200,0.09452030,0.07653800,0.05551340, & 0.03609660,0.00377043,0.00309367,0.00246304, & 0.00176749,0.00111689,0.00040263,0.00005664, & 0.18312500,0.16787501,0.14720701,0.12766500, & 0.10890900,0.08935530,0.07310870,0.05443140, & 0.03566380,0.00376446,0.00309521,0.00246510, & 0.00176139,0.00111543,0.00040263,0.00005664/ DATA FRACREFB9/ & ! From P = 0.071 mb. 0.20148601,0.15252700,0.13376500,0.12184600, & 0.10767800,0.09307410,0.07674570,0.05876940, & 0.04001480,0.00424612,0.00346896,0.00269954, & 0.00196864,0.00122562,0.00043628,0.00004892/ DATA ABSN2O9/ & ! From P = 952 mb. 3.26267E-01,2.42869E-00,1.15455E+01,7.39478E-00, & 5.16550E-00,2.54474E-00,3.53082E-00,3.82278E-00, & 1.81297E-00,6.65313E-01,1.23652E-01,1.83895E-03, & 1.70592E-03,2.68434E-09,0.,0., & ! From P = 620 mb. 2.08632E-01,1.11865E+00,4.95975E+00,8.10907E+00, & 1.10408E+01,5.45460E+00,4.18611E+00,3.53422E+00, & 2.54164E+00,3.65093E-01,5.84480E-01,2.26918E-01, & 1.36230E-03,5.54400E-10,6.83703E-10,0., & ! From P = 313 mb. 6.20022E-02,2.69521E-01,9.81928E-01,1.65004E-00, & 3.08089E-00,5.38696E-00,1.14600E+01,2.41211E+01, & 1.69655E+01,1.37556E-00,5.43254E-01,3.52079E-01, & 4.31888E-01,4.82523E-06,5.74747E-11,0./ ! Data DATA FRACREFA10/ & ! From P = 473 mb. 0.16271301,0.15141940,0.14065412,0.12899506, & 0.11607002,0.10142808,0.08116794,0.06104711, & 0.04146209,0.00447386,0.00372902,0.00287258, & 0.00206028,0.00134634,0.00049232,0.00006927/ DATA FRACREFB10/ & ! From P = 1.17 mb. 0.16571465,0.15262246,0.14036226,0.12620729, & 0.11477834,0.09967982,0.08155201,0.06159503, & 0.04196607,0.00453940,0.00376881,0.00300437, & 0.00223034,0.00139432,0.00051516,0.00007095/ ! Data DATA FRACREFA11/ & ! From P = 473 mb. 0.14152819,0.13811260,0.14312185,0.13705885, & 0.11944738,0.10570189,0.08866373,0.06565409, & 0.04428961,0.00481540,0.00387058,0.00329187, & 0.00238294,0.00150971,0.00049287,0.00005980/ DATA FRACREFB11/ & ! From P = 1.17 mb. 0.10874039,0.15164889,0.15149839,0.14515044, & 0.12486220,0.10725017,0.08715712,0.06463144, & 0.04332319,0.00441193,0.00393819,0.00305960, & 0.00224221,0.00145100,0.00055586,0.00007934/ ! Data DATA FRACREFA12/ & ! From P = 706.3 mb. 0.21245100,0.15164700,0.14486700,0.13075501, & 0.11629600,0.09266050,0.06579930,0.04524000, & 0.03072870,0.00284297,0.00234660,0.00185208, & 0.00133978,0.00082214,0.00031016,0.00004363, & 0.14703900,0.16937999,0.15605700,0.14159000, & 0.12088500,0.10058500,0.06809110,0.05131470, & 0.03487040,0.00327281,0.00250183,0.00190024, & 0.00133978,0.00082214,0.00031016,0.00004363, & 0.13689300,0.16610400,0.15723500,0.14299500, & 0.12399400,0.09907820,0.07169690,0.05367370, & 0.03671630,0.00378148,0.00290510,0.00221076, & 0.00142810,0.00093527,0.00031016,0.00004363, & 0.13054299,0.16273800,0.15874299,0.14279599, & 0.12674300,0.09664900,0.07462200,0.05620080, & 0.03789090,0.00411690,0.00322920,0.00245036, & 0.00178303,0.00098595,0.00040802,0.00010150, & 0.12828299,0.15824600,0.15688400,0.14449100, & 0.12787800,0.09517830,0.07679350,0.05890820, & 0.03883570,0.00442304,0.00346796,0.00255333, & 0.00212519,0.00116168,0.00067065,0.00010150, & 0.12649800,0.15195100,0.15646499,0.14569700, & 0.12669300,0.09653520,0.07887920,0.06106920, & 0.04043910,0.00430390,0.00364453,0.00314360, & 0.00203206,0.00187787,0.00067075,0.00010150, & 0.12500300,0.14460599,0.15672199,0.14724600, & 0.11978900,0.10190200,0.08196710,0.06315770, & 0.04240100,0.00433645,0.00404097,0.00329466, & 0.00288491,0.00187803,0.00067093,0.00010150, & 0.12317200,0.14118700,0.15242000,0.13794300, & 0.12119200,0.10655400,0.08808350,0.06521370, & 0.04505680,0.00485949,0.00477105,0.00401468, & 0.00288491,0.00187786,0.00067110,0.00010150, & 0.10193600,0.11693000,0.13236099,0.14053200, & 0.13749801,0.12193100,0.10221000,0.07448910, & 0.05205320,0.00572312,0.00476882,0.00403380, & 0.00288871,0.00187396,0.00067218,0.00010150/ ! Data DATA FRACREFA13/ & ! From P = 706.3 mb. 0.17683899,0.17319500,0.15712699,0.13604601, & 0.10776200,0.08750010,0.06808820,0.04905150, & 0.03280360,0.00350836,0.00281864,0.00219862, & 0.00160943,0.00101885,0.00038147,0.00005348, & 0.17535400,0.16999300,0.15610200,0.13589200, & 0.10842100,0.08988550,0.06943920,0.04974900, & 0.03323400,0.00352752,0.00289402,0.00231003, & 0.00174659,0.00101884,0.00038147,0.00005348, & 0.17409500,0.16846400,0.15641899,0.13503000, & 0.10838600,0.08985800,0.07092720,0.05075710, & 0.03364180,0.00354241,0.00303507,0.00243391, & 0.00177502,0.00114638,0.00043585,0.00005348, & 0.17248300,0.16778600,0.15543500,0.13496999, & 0.10826300,0.09028740,0.07156720,0.05187120, & 0.03424890,0.00363933,0.00324715,0.00255030, & 0.00187380,0.00116978,0.00051229,0.00009768, & 0.17061099,0.16715799,0.15405200,0.13471501, & 0.10896400,0.09069460,0.07229760,0.05218280, & 0.03555340,0.00379576,0.00330240,0.00274693, & 0.00201587,0.00119598,0.00061885,0.00009768, & 0.16789700,0.16629100,0.15270300,0.13360199, & 0.11047200,0.09151080,0.07325000,0.05261450, & 0.03657990,0.00450092,0.00349537,0.00283321, & 0.00208396,0.00140354,0.00066587,0.00009768, & 0.16412200,0.16387400,0.15211500,0.13062200, & 0.11325100,0.09348130,0.07381380,0.05434740, & 0.03803160,0.00481346,0.00393592,0.00296633, & 0.00222532,0.00163762,0.00066648,0.00009768, & 0.15513401,0.15768200,0.14850400,0.13330200, & 0.11446500,0.09868230,0.07642050,0.05624170, & 0.04197810,0.00502288,0.00429452,0.00315347, & 0.00263559,0.00171772,0.00066860,0.00009768, & 0.15732600,0.15223300,0.14271900,0.13563600, & 0.11859600,0.10274200,0.07934560,0.05763410, & 0.03921740,0.00437741,0.00337921,0.00280212, & 0.00200156,0.00124812,0.00064664,0.00009768/ ! Data DATA FRACREFA14/ & ! From P = 1053.6 mb. 0.18446200,0.16795200,0.14949700,0.12036000, & 0.10440100,0.09024280,0.07435880,0.05629380, & 0.03825420,0.00417276,0.00345278,0.00272949, & 0.00200378,0.00127404,0.00050721,0.00004141/ DATA FRACREFB14/ & ! From P = 0.64 mb. 0.19128500,0.16495700,0.14146100,0.11904500, & 0.10350200,0.09151190,0.07604270,0.05806020, & 0.03979950,0.00423959,0.00357439,0.00287559, & 0.00198860,0.00116529,0.00043616,0.00005987/ ! Data DATA FRACREFA15/ & ! From P = 1053.6 mb. 0.11287100,0.12070200,0.12729000,0.12858100, & 0.12743001,0.11961800,0.10290400,0.07888980, & 0.05900120,0.00667979,0.00552926,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.13918801,0.16353001,0.16155800,0.14090499, & 0.11322300,0.08757720,0.07225720,0.05173390, & 0.04731360,0.00667979,0.00552926,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.14687300,0.17853101,0.15664500,0.13351700, & 0.10791200,0.08684320,0.07158090,0.05198410, & 0.04340110,0.00667979,0.00552926,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.15760700,0.17759100,0.15158001,0.13193300, & 0.10742800,0.08693760,0.07159490,0.05196250, & 0.04065270,0.00667979,0.00552926,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.16646700,0.17299300,0.15018500,0.13138700, & 0.10735900,0.08713110,0.07130330,0.05279420, & 0.03766730,0.00667979,0.00552926,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.17546000,0.16666500,0.14969499,0.13105400, & 0.10782500,0.08718610,0.07156770,0.05308320, & 0.03753960,0.00432465,0.00509623,0.00436993, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.18378501,0.16064601,0.14940400,0.13146400, & 0.10810300,0.08775740,0.07115360,0.05400040, & 0.03689970,0.00388333,0.00323610,0.00353414, & 0.00320611,0.00204765,0.00077371,0.00010894, & 0.18966800,0.15744300,0.14993000,0.13152599, & 0.10899200,0.08858690,0.07142920,0.05399600, & 0.03433460,0.00374886,0.00302066,0.00240653, & 0.00199205,0.00204765,0.00077371,0.00010894, & 0.11887100,0.12479600,0.12569501,0.12839900, & 0.12473500,0.12012800,0.11086700,0.08493590, & 0.05063770,0.00328723,0.00266849,0.00210232, & 0.00152114,0.00095635,0.00035374,0.00004980/ ! Data DATA FRACREFA16/ & ! From P = 862.6 mb. 0.17356300,0.18880001,0.17704099,0.13661300, & 0.10691600,0.08222480,0.05939860,0.04230810, & 0.02526330,0.00244532,0.00193541,0.00150415, & 0.00103528,0.00067068,0.00024951,0.00003348, & 0.17779499,0.19837400,0.16557600,0.13470000, & 0.11013600,0.08342720,0.05987030,0.03938700, & 0.02293650,0.00238849,0.00192400,0.00149921, & 0.00103539,0.00067150,0.00024822,0.00003348, & 0.18535601,0.19407199,0.16053200,0.13300700, & 0.10779000,0.08408500,0.06480450,0.04070160, & 0.02203590,0.00227779,0.00189074,0.00146888, & 0.00103147,0.00066770,0.00024751,0.00003348, & 0.19139200,0.18917400,0.15748601,0.13240699, & 0.10557300,0.08383260,0.06724060,0.04364450, & 0.02175820,0.00225436,0.00184421,0.00143153, & 0.00103027,0.00066066,0.00024222,0.00003148, & 0.19547801,0.18539500,0.15442000,0.13114899, & 0.10515600,0.08350350,0.06909780,0.04671630, & 0.02168820,0.00224400,0.00182009,0.00139098, & 0.00102582,0.00065367,0.00023202,0.00003148, & 0.19757500,0.18266800,0.15208900,0.12897800, & 0.10637200,0.08391220,0.06989830,0.04964120, & 0.02155800,0.00224310,0.00177358,0.00138184, & 0.00101538,0.00063370,0.00023227,0.00003148, & 0.20145500,0.17692900,0.14940600,0.12690400, & 0.10828800,0.08553720,0.07004940,0.05153430, & 0.02268740,0.00216943,0.00178603,0.00137754, & 0.00098344,0.00063165,0.00023218,0.00003148, & 0.20383500,0.17047501,0.14570600,0.12679300, & 0.11043100,0.08719150,0.07045440,0.05345420, & 0.02448340,0.00215839,0.00175893,0.00138296, & 0.00098318,0.00063188,0.00023199,0.00003148, & 0.18680701,0.15961801,0.15092900,0.13049100, & 0.11418400,0.09380540,0.07093450,0.05664280, & 0.02938410,0.00217751,0.00176766,0.00138275, & 0.00098377,0.00063181,0.00023193,0.00003148/ ! ! end of data 3 ! !----------------------------------------------------------------------- ! start data 4 DATA NXMOL /2/ DATA IXINDX /0,2,3,0,31*0/ ! ! end of data 4 ! !----------------------------------------------------------------------- ! start data 5 ! ! Longwave spectral band data DATA WAVENUM1(1) /10./, WAVENUM2(1) /250./, DELWAVE(1) /240./ DATA WAVENUM1(2) /250./, WAVENUM2(2) /500./, DELWAVE(2) /250./ DATA WAVENUM1(3) /500./, WAVENUM2(3) /630./, DELWAVE(3) /130./ DATA WAVENUM1(4) /630./, WAVENUM2(4) /700./, DELWAVE(4) /70./ DATA WAVENUM1(5) /700./, WAVENUM2(5) /820./, DELWAVE(5) /120./ DATA WAVENUM1(6) /820./, WAVENUM2(6) /980./, DELWAVE(6) /160./ DATA WAVENUM1(7) /980./, WAVENUM2(7) /1080./, DELWAVE(7) /100./ DATA WAVENUM1(8) /1080./, WAVENUM2(8) /1180./, DELWAVE(8) /100./ DATA WAVENUM1(9) /1180./, WAVENUM2(9) /1390./, DELWAVE(9) /210./ DATA WAVENUM1(10) /1390./,WAVENUM2(10) /1480./,DELWAVE(10) /90./ DATA WAVENUM1(11) /1480./,WAVENUM2(11) /1800./,DELWAVE(11) /320./ DATA WAVENUM1(12) /1800./,WAVENUM2(12) /2080./,DELWAVE(12) /280./ DATA WAVENUM1(13) /2080./,WAVENUM2(13) /2250./,DELWAVE(13) /170./ DATA WAVENUM1(14) /2250./,WAVENUM2(14) /2380./,DELWAVE(14) /130./ DATA WAVENUM1(15) /2380./,WAVENUM2(15) /2600./,DELWAVE(15) /220./ DATA WAVENUM1(16) /2600./,WAVENUM2(16) /3000./,DELWAVE(16) /400./ ! ! end of data 5 ! !----------------------------------------------------------------------- ! start data 6 DATA NG /16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16/ DATA NSPA /1, 1,10, 9, 9, 1, 9, 1,11, 1, 1, 9, 9, 1, 9, 9/ DATA NSPB /1, 1, 5, 6, 5, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0/ ! HEATFAC is the factor by which one must multiply delta-flux/ ! delta-pressure, with flux in w/m-2 and pressure in mbar, to get ! the heating rate in units of degrees/day. It is equal to ! (g)x(#sec/day)x(1e-5)/(specific heat of air at const. p) ! = (9.8066)(3600)(1e-5)/(1.004) DATA HEATFAC /8.4391/ ! These pressures are chosen such that the ln of the first pressure ! has only a few non-zero digits (i.e. ln(PREF(1)) = 6.96000) and ! each subsequent ln(pressure) differs from the previous one by 0.2. DATA PREF / & 1.05363E+03,8.62642E+02,7.06272E+02,5.78246E+02,4.73428E+02, & 3.87610E+02,3.17348E+02,2.59823E+02,2.12725E+02,1.74164E+02, & 1.42594E+02,1.16746E+02,9.55835E+01,7.82571E+01,6.40715E+01, & 5.24573E+01,4.29484E+01,3.51632E+01,2.87892E+01,2.35706E+01, & 1.92980E+01,1.57998E+01,1.29358E+01,1.05910E+01,8.67114E+00, & 7.09933E+00,5.81244E+00,4.75882E+00,3.89619E+00,3.18993E+00, & 2.61170E+00,2.13828E+00,1.75067E+00,1.43333E+00,1.17351E+00, & 9.60789E-01,7.86628E-01,6.44036E-01,5.27292E-01,4.31710E-01, & 3.53455E-01,2.89384E-01,2.36928E-01,1.93980E-01,1.58817E-01, & 1.30029E-01,1.06458E-01,8.71608E-02,7.13612E-02,5.84256E-02, & 4.78349E-02,3.91639E-02,3.20647E-02,2.62523E-02,2.14936E-02, & 1.75975E-02,1.44076E-02,1.17959E-02,9.65769E-03/ DATA PREFLOG / & 6.9600E+00, 6.7600E+00, 6.5600E+00, 6.3600E+00, 6.1600E+00, & 5.9600E+00, 5.7600E+00, 5.5600E+00, 5.3600E+00, 5.1600E+00, & 4.9600E+00, 4.7600E+00, 4.5600E+00, 4.3600E+00, 4.1600E+00, & 3.9600E+00, 3.7600E+00, 3.5600E+00, 3.3600E+00, 3.1600E+00, & 2.9600E+00, 2.7600E+00, 2.5600E+00, 2.3600E+00, 2.1600E+00, & 1.9600E+00, 1.7600E+00, 1.5600E+00, 1.3600E+00, 1.1600E+00, & 9.6000E-01, 7.6000E-01, 5.6000E-01, 3.6000E-01, 1.6000E-01, & -4.0000E-02,-2.4000E-01,-4.4000E-01,-6.4000E-01,-8.4000E-01, & -1.0400E+00,-1.2400E+00,-1.4400E+00,-1.6400E+00,-1.8400E+00, & -2.0400E+00,-2.2400E+00,-2.4400E+00,-2.6400E+00,-2.8400E+00, & -3.0400E+00,-3.2400E+00,-3.4400E+00,-3.6400E+00,-3.8400E+00, & -4.0400E+00,-4.2400E+00,-4.4400E+00,-4.6400E+00/ ! These are the temperatures associated with the respective ! pressures for the MLS standard atmosphere. DATA TREF / & 2.9420E+02, 2.8799E+02, 2.7894E+02, 2.6925E+02, 2.5983E+02, & 2.5017E+02, 2.4077E+02, 2.3179E+02, 2.2306E+02, 2.1578E+02, & 2.1570E+02, 2.1570E+02, 2.1570E+02, 2.1706E+02, 2.1858E+02, & 2.2018E+02, 2.2174E+02, 2.2328E+02, 2.2479E+02, 2.2655E+02, & 2.2834E+02, 2.3113E+02, 2.3401E+02, 2.3703E+02, 2.4022E+02, & 2.4371E+02, 2.4726E+02, 2.5085E+02, 2.5457E+02, 2.5832E+02, & 2.6216E+02, 2.6606E+02, 2.6999E+02, 2.7340E+02, 2.7536E+02, & 2.7568E+02, 2.7372E+02, 2.7163E+02, 2.6955E+02, 2.6593E+02, & 2.6211E+02, 2.5828E+02, 2.5360E+02, 2.4854E+02, 2.4348E+02, & 2.3809E+02, 2.3206E+02, 2.2603E+02, 2.2000E+02, 2.1435E+02, & 2.0887E+02, 2.0340E+02, 1.9792E+02, 1.9290E+02, 1.8809E+02, & 1.8329E+02, 1.7849E+02, 1.7394E+02, 1.7212E+02/ ! ! end of data 6 ! !----------------------------------------------------------------------- ! start data 7 DATA (TOTPLNK(IDATA, 1),IDATA=1,50)/ & 1.13735E-06,1.15150E-06,1.16569E-06,1.17992E-06,1.19419E-06, & 1.20850E-06,1.22285E-06,1.23723E-06,1.25164E-06,1.26610E-06, & 1.28059E-06,1.29511E-06,1.30967E-06,1.32426E-06,1.33889E-06, & 1.35355E-06,1.36824E-06,1.38296E-06,1.39772E-06,1.41250E-06, & 1.42732E-06,1.44217E-06,1.45704E-06,1.47195E-06,1.48689E-06, & 1.50185E-06,1.51684E-06,1.53186E-06,1.54691E-06,1.56198E-06, & 1.57709E-06,1.59222E-06,1.60737E-06,1.62255E-06,1.63776E-06, & 1.65299E-06,1.66825E-06,1.68352E-06,1.69883E-06,1.71416E-06, & 1.72951E-06,1.74488E-06,1.76028E-06,1.77570E-06,1.79114E-06, & 1.80661E-06,1.82210E-06,1.83760E-06,1.85313E-06,1.86868E-06/ DATA (TOTPLNK(IDATA, 1),IDATA=51,100)/ & 1.88425E-06,1.89985E-06,1.91546E-06,1.93109E-06,1.94674E-06, & 1.96241E-06,1.97811E-06,1.99381E-06,2.00954E-06,2.02529E-06, & 2.04105E-06,2.05684E-06,2.07264E-06,2.08846E-06,2.10429E-06, & 2.12015E-06,2.13602E-06,2.15190E-06,2.16781E-06,2.18373E-06, & 2.19966E-06,2.21562E-06,2.23159E-06,2.24758E-06,2.26358E-06, & 2.27959E-06,2.29562E-06,2.31167E-06,2.32773E-06,2.34381E-06, & 2.35990E-06,2.37601E-06,2.39212E-06,2.40825E-06,2.42440E-06, & 2.44056E-06,2.45673E-06,2.47292E-06,2.48912E-06,2.50533E-06, & 2.52157E-06,2.53781E-06,2.55406E-06,2.57032E-06,2.58660E-06, & 2.60289E-06,2.61919E-06,2.63550E-06,2.65183E-06,2.66817E-06/ DATA (TOTPLNK(IDATA, 1),IDATA=101,150)/ & 2.68452E-06,2.70088E-06,2.71726E-06,2.73364E-06,2.75003E-06, & 2.76644E-06,2.78286E-06,2.79929E-06,2.81572E-06,2.83218E-06, & 2.84864E-06,2.86510E-06,2.88159E-06,2.89807E-06,2.91458E-06, & 2.93109E-06,2.94762E-06,2.96415E-06,2.98068E-06,2.99724E-06, & 3.01379E-06,3.03036E-06,3.04693E-06,3.06353E-06,3.08013E-06, & 3.09674E-06,3.11335E-06,3.12998E-06,3.14661E-06,3.16324E-06, & 3.17989E-06,3.19656E-06,3.21323E-06,3.22991E-06,3.24658E-06, & 3.26328E-06,3.27998E-06,3.29669E-06,3.31341E-06,3.33013E-06, & 3.34686E-06,3.36360E-06,3.38034E-06,3.39709E-06,3.41387E-06, & 3.43063E-06,3.44742E-06,3.46420E-06,3.48099E-06,3.49779E-06/ DATA (TOTPLNK(IDATA, 1),IDATA=151,181)/ & 3.51461E-06,3.53141E-06,3.54824E-06,3.56506E-06,3.58191E-06, & 3.59875E-06,3.61559E-06,3.63244E-06,3.64931E-06,3.66617E-06, & 3.68305E-06,3.69992E-06,3.71682E-06,3.73372E-06,3.75061E-06, & 3.76753E-06,3.78443E-06,3.80136E-06,3.81829E-06,3.83522E-06, & 3.85215E-06,3.86910E-06,3.88605E-06,3.90301E-06,3.91997E-06, & 3.93694E-06,3.95390E-06,3.97087E-06,3.98788E-06,4.00485E-06, & 4.02187E-06/ DATA (TOTPLNK(IDATA, 2),IDATA=1,50)/ & 2.13441E-06,2.18076E-06,2.22758E-06,2.27489E-06,2.32268E-06, & 2.37093E-06,2.41966E-06,2.46886E-06,2.51852E-06,2.56864E-06, & 2.61922E-06,2.67026E-06,2.72175E-06,2.77370E-06,2.82609E-06, & 2.87893E-06,2.93221E-06,2.98593E-06,3.04008E-06,3.09468E-06, & 3.14970E-06,3.20515E-06,3.26103E-06,3.31732E-06,3.37404E-06, & 3.43118E-06,3.48873E-06,3.54669E-06,3.60506E-06,3.66383E-06, & 3.72301E-06,3.78259E-06,3.84256E-06,3.90293E-06,3.96368E-06, & 4.02483E-06,4.08636E-06,4.14828E-06,4.21057E-06,4.27324E-06, & 4.33629E-06,4.39971E-06,4.46350E-06,4.52765E-06,4.59217E-06, & 4.65705E-06,4.72228E-06,4.78787E-06,4.85382E-06,4.92011E-06/ DATA (TOTPLNK(IDATA, 2),IDATA=51,100)/ & 4.98675E-06,5.05374E-06,5.12106E-06,5.18873E-06,5.25674E-06, & 5.32507E-06,5.39374E-06,5.46274E-06,5.53207E-06,5.60172E-06, & 5.67169E-06,5.74198E-06,5.81259E-06,5.88352E-06,5.95475E-06, & 6.02629E-06,6.09815E-06,6.17030E-06,6.24276E-06,6.31552E-06, & 6.38858E-06,6.46192E-06,6.53557E-06,6.60950E-06,6.68373E-06, & 6.75824E-06,6.83303E-06,6.90810E-06,6.98346E-06,7.05909E-06, & 7.13500E-06,7.21117E-06,7.28763E-06,7.36435E-06,7.44134E-06, & 7.51859E-06,7.59611E-06,7.67388E-06,7.75192E-06,7.83021E-06, & 7.90875E-06,7.98755E-06,8.06660E-06,8.14589E-06,8.22544E-06, & 8.30522E-06,8.38526E-06,8.46553E-06,8.54604E-06,8.62679E-06/ DATA (TOTPLNK(IDATA, 2),IDATA=101,150)/ & 8.70777E-06,8.78899E-06,8.87043E-06,8.95211E-06,9.03402E-06, & 9.11616E-06,9.19852E-06,9.28109E-06,9.36390E-06,9.44692E-06, & 9.53015E-06,9.61361E-06,9.69729E-06,9.78117E-06,9.86526E-06, & 9.94957E-06,1.00341E-05,1.01188E-05,1.02037E-05,1.02888E-05, & 1.03742E-05,1.04597E-05,1.05454E-05,1.06313E-05,1.07175E-05, & 1.08038E-05,1.08903E-05,1.09770E-05,1.10639E-05,1.11509E-05, & 1.12382E-05,1.13257E-05,1.14133E-05,1.15011E-05,1.15891E-05, & 1.16773E-05,1.17656E-05,1.18542E-05,1.19429E-05,1.20317E-05, & 1.21208E-05,1.22100E-05,1.22994E-05,1.23890E-05,1.24787E-05, & 1.25686E-05,1.26587E-05,1.27489E-05,1.28393E-05,1.29299E-05/ DATA (TOTPLNK(IDATA, 2),IDATA=151,181)/ & 1.30206E-05,1.31115E-05,1.32025E-05,1.32937E-05,1.33850E-05, & 1.34765E-05,1.35682E-05,1.36600E-05,1.37520E-05,1.38441E-05, & 1.39364E-05,1.40288E-05,1.41213E-05,1.42140E-05,1.43069E-05, & 1.43999E-05,1.44930E-05,1.45863E-05,1.46797E-05,1.47733E-05, & 1.48670E-05,1.49608E-05,1.50548E-05,1.51489E-05,1.52431E-05, & 1.53375E-05,1.54320E-05,1.55267E-05,1.56214E-05,1.57164E-05, & 1.58114E-05/ DATA (TOTPLNK(IDATA, 3),IDATA=1,50)/ & 1.34822E-06,1.39134E-06,1.43530E-06,1.48010E-06,1.52574E-06, & 1.57222E-06,1.61956E-06,1.66774E-06,1.71678E-06,1.76666E-06, & 1.81741E-06,1.86901E-06,1.92147E-06,1.97479E-06,2.02898E-06, & 2.08402E-06,2.13993E-06,2.19671E-06,2.25435E-06,2.31285E-06, & 2.37222E-06,2.43246E-06,2.49356E-06,2.55553E-06,2.61837E-06, & 2.68207E-06,2.74664E-06,2.81207E-06,2.87837E-06,2.94554E-06, & 3.01356E-06,3.08245E-06,3.15221E-06,3.22282E-06,3.29429E-06, & 3.36662E-06,3.43982E-06,3.51386E-06,3.58876E-06,3.66451E-06, & 3.74112E-06,3.81857E-06,3.89688E-06,3.97602E-06,4.05601E-06, & 4.13685E-06,4.21852E-06,4.30104E-06,4.38438E-06,4.46857E-06/ DATA (TOTPLNK(IDATA, 3),IDATA=51,100)/ & 4.55358E-06,4.63943E-06,4.72610E-06,4.81359E-06,4.90191E-06, & 4.99105E-06,5.08100E-06,5.17176E-06,5.26335E-06,5.35573E-06, & 5.44892E-06,5.54292E-06,5.63772E-06,5.73331E-06,5.82970E-06, & 5.92688E-06,6.02485E-06,6.12360E-06,6.22314E-06,6.32346E-06, & 6.42455E-06,6.52641E-06,6.62906E-06,6.73247E-06,6.83664E-06, & 6.94156E-06,7.04725E-06,7.15370E-06,7.26089E-06,7.36883E-06, & 7.47752E-06,7.58695E-06,7.69712E-06,7.80801E-06,7.91965E-06, & 8.03201E-06,8.14510E-06,8.25891E-06,8.37343E-06,8.48867E-06, & 8.60463E-06,8.72128E-06,8.83865E-06,8.95672E-06,9.07548E-06, & 9.19495E-06,9.31510E-06,9.43594E-06,9.55745E-06,9.67966E-06/ DATA (TOTPLNK(IDATA, 3),IDATA=101,150)/ & 9.80254E-06,9.92609E-06,1.00503E-05,1.01752E-05,1.03008E-05, & 1.04270E-05,1.05539E-05,1.06814E-05,1.08096E-05,1.09384E-05, & 1.10679E-05,1.11980E-05,1.13288E-05,1.14601E-05,1.15922E-05, & 1.17248E-05,1.18581E-05,1.19920E-05,1.21265E-05,1.22616E-05, & 1.23973E-05,1.25337E-05,1.26706E-05,1.28081E-05,1.29463E-05, & 1.30850E-05,1.32243E-05,1.33642E-05,1.35047E-05,1.36458E-05, & 1.37875E-05,1.39297E-05,1.40725E-05,1.42159E-05,1.43598E-05, & 1.45044E-05,1.46494E-05,1.47950E-05,1.49412E-05,1.50879E-05, & 1.52352E-05,1.53830E-05,1.55314E-05,1.56803E-05,1.58297E-05, & 1.59797E-05,1.61302E-05,1.62812E-05,1.64327E-05,1.65848E-05/ DATA (TOTPLNK(IDATA, 3),IDATA=151,181)/ & 1.67374E-05,1.68904E-05,1.70441E-05,1.71982E-05,1.73528E-05, & 1.75079E-05,1.76635E-05,1.78197E-05,1.79763E-05,1.81334E-05, & 1.82910E-05,1.84491E-05,1.86076E-05,1.87667E-05,1.89262E-05, & 1.90862E-05,1.92467E-05,1.94076E-05,1.95690E-05,1.97309E-05, & 1.98932E-05,2.00560E-05,2.02193E-05,2.03830E-05,2.05472E-05, & 2.07118E-05,2.08768E-05,2.10423E-05,2.12083E-05,2.13747E-05, & 2.15414E-05/ DATA (TOTPLNK(IDATA, 4),IDATA=1,50)/ & 8.90528E-07,9.24222E-07,9.58757E-07,9.94141E-07,1.03038E-06, & 1.06748E-06,1.10545E-06,1.14430E-06,1.18403E-06,1.22465E-06, & 1.26618E-06,1.30860E-06,1.35193E-06,1.39619E-06,1.44136E-06, & 1.48746E-06,1.53449E-06,1.58246E-06,1.63138E-06,1.68124E-06, & 1.73206E-06,1.78383E-06,1.83657E-06,1.89028E-06,1.94495E-06, & 2.00060E-06,2.05724E-06,2.11485E-06,2.17344E-06,2.23303E-06, & 2.29361E-06,2.35519E-06,2.41777E-06,2.48134E-06,2.54592E-06, & 2.61151E-06,2.67810E-06,2.74571E-06,2.81433E-06,2.88396E-06, & 2.95461E-06,3.02628E-06,3.09896E-06,3.17267E-06,3.24741E-06, & 3.32316E-06,3.39994E-06,3.47774E-06,3.55657E-06,3.63642E-06/ DATA (TOTPLNK(IDATA, 4),IDATA=51,100)/ & 3.71731E-06,3.79922E-06,3.88216E-06,3.96612E-06,4.05112E-06, & 4.13714E-06,4.22419E-06,4.31227E-06,4.40137E-06,4.49151E-06, & 4.58266E-06,4.67485E-06,4.76806E-06,4.86229E-06,4.95754E-06, & 5.05383E-06,5.15113E-06,5.24946E-06,5.34879E-06,5.44916E-06, & 5.55053E-06,5.65292E-06,5.75632E-06,5.86073E-06,5.96616E-06, & 6.07260E-06,6.18003E-06,6.28848E-06,6.39794E-06,6.50838E-06, & 6.61983E-06,6.73229E-06,6.84573E-06,6.96016E-06,7.07559E-06, & 7.19200E-06,7.30940E-06,7.42779E-06,7.54715E-06,7.66749E-06, & 7.78882E-06,7.91110E-06,8.03436E-06,8.15859E-06,8.28379E-06, & 8.40994E-06,8.53706E-06,8.66515E-06,8.79418E-06,8.92416E-06/ DATA (TOTPLNK(IDATA, 4),IDATA=101,150)/ & 9.05510E-06,9.18697E-06,9.31979E-06,9.45356E-06,9.58826E-06, & 9.72389E-06,9.86046E-06,9.99793E-06,1.01364E-05,1.02757E-05, & 1.04159E-05,1.05571E-05,1.06992E-05,1.08422E-05,1.09861E-05, & 1.11309E-05,1.12766E-05,1.14232E-05,1.15707E-05,1.17190E-05, & 1.18683E-05,1.20184E-05,1.21695E-05,1.23214E-05,1.24741E-05, & 1.26277E-05,1.27822E-05,1.29376E-05,1.30939E-05,1.32509E-05, & 1.34088E-05,1.35676E-05,1.37273E-05,1.38877E-05,1.40490E-05, & 1.42112E-05,1.43742E-05,1.45380E-05,1.47026E-05,1.48680E-05, & 1.50343E-05,1.52014E-05,1.53692E-05,1.55379E-05,1.57074E-05, & 1.58778E-05,1.60488E-05,1.62207E-05,1.63934E-05,1.65669E-05/ DATA (TOTPLNK(IDATA, 4),IDATA=151,181)/ & 1.67411E-05,1.69162E-05,1.70920E-05,1.72685E-05,1.74459E-05, & 1.76240E-05,1.78029E-05,1.79825E-05,1.81629E-05,1.83440E-05, & 1.85259E-05,1.87086E-05,1.88919E-05,1.90760E-05,1.92609E-05, & 1.94465E-05,1.96327E-05,1.98199E-05,2.00076E-05,2.01961E-05, & 2.03853E-05,2.05752E-05,2.07658E-05,2.09571E-05,2.11491E-05, & 2.13418E-05,2.15352E-05,2.17294E-05,2.19241E-05,2.21196E-05, & 2.23158E-05/ DATA (TOTPLNK(IDATA, 5),IDATA=1,50)/ & 5.70230E-07,5.94788E-07,6.20085E-07,6.46130E-07,6.72936E-07, & 7.00512E-07,7.28869E-07,7.58019E-07,7.87971E-07,8.18734E-07, & 8.50320E-07,8.82738E-07,9.15999E-07,9.50110E-07,9.85084E-07, & 1.02093E-06,1.05765E-06,1.09527E-06,1.13378E-06,1.17320E-06, & 1.21353E-06,1.25479E-06,1.29698E-06,1.34011E-06,1.38419E-06, & 1.42923E-06,1.47523E-06,1.52221E-06,1.57016E-06,1.61910E-06, & 1.66904E-06,1.71997E-06,1.77192E-06,1.82488E-06,1.87886E-06, & 1.93387E-06,1.98991E-06,2.04699E-06,2.10512E-06,2.16430E-06, & 2.22454E-06,2.28584E-06,2.34821E-06,2.41166E-06,2.47618E-06, & 2.54178E-06,2.60847E-06,2.67626E-06,2.74514E-06,2.81512E-06/ DATA (TOTPLNK(IDATA, 5),IDATA=51,100)/ & 2.88621E-06,2.95841E-06,3.03172E-06,3.10615E-06,3.18170E-06, & 3.25838E-06,3.33618E-06,3.41511E-06,3.49518E-06,3.57639E-06, & 3.65873E-06,3.74221E-06,3.82684E-06,3.91262E-06,3.99955E-06, & 4.08763E-06,4.17686E-06,4.26725E-06,4.35880E-06,4.45150E-06, & 4.54537E-06,4.64039E-06,4.73659E-06,4.83394E-06,4.93246E-06, & 5.03215E-06,5.13301E-06,5.23504E-06,5.33823E-06,5.44260E-06, & 5.54814E-06,5.65484E-06,5.76272E-06,5.87177E-06,5.98199E-06, & 6.09339E-06,6.20596E-06,6.31969E-06,6.43460E-06,6.55068E-06, & 6.66793E-06,6.78636E-06,6.90595E-06,7.02670E-06,7.14863E-06, & 7.27173E-06,7.39599E-06,7.52142E-06,7.64802E-06,7.77577E-06/ DATA (TOTPLNK(IDATA, 5),IDATA=101,150)/ & 7.90469E-06,8.03477E-06,8.16601E-06,8.29841E-06,8.43198E-06, & 8.56669E-06,8.70256E-06,8.83957E-06,8.97775E-06,9.11706E-06, & 9.25753E-06,9.39915E-06,9.54190E-06,9.68580E-06,9.83085E-06, & 9.97704E-06,1.01243E-05,1.02728E-05,1.04224E-05,1.05731E-05, & 1.07249E-05,1.08779E-05,1.10320E-05,1.11872E-05,1.13435E-05, & 1.15009E-05,1.16595E-05,1.18191E-05,1.19799E-05,1.21418E-05, & 1.23048E-05,1.24688E-05,1.26340E-05,1.28003E-05,1.29676E-05, & 1.31361E-05,1.33056E-05,1.34762E-05,1.36479E-05,1.38207E-05, & 1.39945E-05,1.41694E-05,1.43454E-05,1.45225E-05,1.47006E-05, & 1.48797E-05,1.50600E-05,1.52413E-05,1.54236E-05,1.56070E-05/ DATA (TOTPLNK(IDATA, 5),IDATA=151,181)/ & 1.57914E-05,1.59768E-05,1.61633E-05,1.63509E-05,1.65394E-05, & 1.67290E-05,1.69197E-05,1.71113E-05,1.73040E-05,1.74976E-05, & 1.76923E-05,1.78880E-05,1.80847E-05,1.82824E-05,1.84811E-05, & 1.86808E-05,1.88814E-05,1.90831E-05,1.92857E-05,1.94894E-05, & 1.96940E-05,1.98996E-05,2.01061E-05,2.03136E-05,2.05221E-05, & 2.07316E-05,2.09420E-05,2.11533E-05,2.13657E-05,2.15789E-05, & 2.17931E-05/ DATA (TOTPLNK(IDATA, 6),IDATA=1,50)/ & 2.73493E-07,2.87408E-07,3.01848E-07,3.16825E-07,3.32352E-07, & 3.48439E-07,3.65100E-07,3.82346E-07,4.00189E-07,4.18641E-07, & 4.37715E-07,4.57422E-07,4.77774E-07,4.98784E-07,5.20464E-07, & 5.42824E-07,5.65879E-07,5.89638E-07,6.14115E-07,6.39320E-07, & 6.65266E-07,6.91965E-07,7.19427E-07,7.47666E-07,7.76691E-07, & 8.06516E-07,8.37151E-07,8.68607E-07,9.00896E-07,9.34029E-07, & 9.68018E-07,1.00287E-06,1.03860E-06,1.07522E-06,1.11274E-06, & 1.15117E-06,1.19052E-06,1.23079E-06,1.27201E-06,1.31418E-06, & 1.35731E-06,1.40141E-06,1.44650E-06,1.49257E-06,1.53965E-06, & 1.58773E-06,1.63684E-06,1.68697E-06,1.73815E-06,1.79037E-06/ DATA (TOTPLNK(IDATA, 6),IDATA=51,100)/ & 1.84365E-06,1.89799E-06,1.95341E-06,2.00991E-06,2.06750E-06, & 2.12619E-06,2.18599E-06,2.24691E-06,2.30895E-06,2.37212E-06, & 2.43643E-06,2.50189E-06,2.56851E-06,2.63628E-06,2.70523E-06, & 2.77536E-06,2.84666E-06,2.91916E-06,2.99286E-06,3.06776E-06, & 3.14387E-06,3.22120E-06,3.29975E-06,3.37953E-06,3.46054E-06, & 3.54280E-06,3.62630E-06,3.71105E-06,3.79707E-06,3.88434E-06, & 3.97288E-06,4.06270E-06,4.15380E-06,4.24617E-06,4.33984E-06, & 4.43479E-06,4.53104E-06,4.62860E-06,4.72746E-06,4.82763E-06, & 4.92911E-06,5.03191E-06,5.13603E-06,5.24147E-06,5.34824E-06, & 5.45634E-06,5.56578E-06,5.67656E-06,5.78867E-06,5.90213E-06/ DATA (TOTPLNK(IDATA, 6),IDATA=101,150)/ & 6.01694E-06,6.13309E-06,6.25060E-06,6.36947E-06,6.48968E-06, & 6.61126E-06,6.73420E-06,6.85850E-06,6.98417E-06,7.11120E-06, & 7.23961E-06,7.36938E-06,7.50053E-06,7.63305E-06,7.76694E-06, & 7.90221E-06,8.03887E-06,8.17690E-06,8.31632E-06,8.45710E-06, & 8.59928E-06,8.74282E-06,8.88776E-06,9.03409E-06,9.18179E-06, & 9.33088E-06,9.48136E-06,9.63323E-06,9.78648E-06,9.94111E-06, & 1.00971E-05,1.02545E-05,1.04133E-05,1.05735E-05,1.07351E-05, & 1.08980E-05,1.10624E-05,1.12281E-05,1.13952E-05,1.15637E-05, & 1.17335E-05,1.19048E-05,1.20774E-05,1.22514E-05,1.24268E-05, & 1.26036E-05,1.27817E-05,1.29612E-05,1.31421E-05,1.33244E-05/ DATA (TOTPLNK(IDATA, 6),IDATA=151,181)/ & 1.35080E-05,1.36930E-05,1.38794E-05,1.40672E-05,1.42563E-05, & 1.44468E-05,1.46386E-05,1.48318E-05,1.50264E-05,1.52223E-05, & 1.54196E-05,1.56182E-05,1.58182E-05,1.60196E-05,1.62223E-05, & 1.64263E-05,1.66317E-05,1.68384E-05,1.70465E-05,1.72559E-05, & 1.74666E-05,1.76787E-05,1.78921E-05,1.81069E-05,1.83230E-05, & 1.85404E-05,1.87591E-05,1.89791E-05,1.92005E-05,1.94232E-05, & 1.96471E-05/ DATA (TOTPLNK(IDATA, 7),IDATA=1,50)/ & 1.25349E-07,1.32735E-07,1.40458E-07,1.48527E-07,1.56954E-07, & 1.65748E-07,1.74920E-07,1.84481E-07,1.94443E-07,2.04814E-07, & 2.15608E-07,2.26835E-07,2.38507E-07,2.50634E-07,2.63229E-07, & 2.76301E-07,2.89864E-07,3.03930E-07,3.18508E-07,3.33612E-07, & 3.49253E-07,3.65443E-07,3.82195E-07,3.99519E-07,4.17428E-07, & 4.35934E-07,4.55050E-07,4.74785E-07,4.95155E-07,5.16170E-07, & 5.37844E-07,5.60186E-07,5.83211E-07,6.06929E-07,6.31355E-07, & 6.56498E-07,6.82373E-07,7.08990E-07,7.36362E-07,7.64501E-07, & 7.93420E-07,8.23130E-07,8.53643E-07,8.84971E-07,9.17128E-07, & 9.50123E-07,9.83969E-07,1.01868E-06,1.05426E-06,1.09073E-06/ DATA (TOTPLNK(IDATA, 7),IDATA=51,100)/ & 1.12810E-06,1.16638E-06,1.20558E-06,1.24572E-06,1.28680E-06, & 1.32883E-06,1.37183E-06,1.41581E-06,1.46078E-06,1.50675E-06, & 1.55374E-06,1.60174E-06,1.65078E-06,1.70087E-06,1.75200E-06, & 1.80421E-06,1.85749E-06,1.91186E-06,1.96732E-06,2.02389E-06, & 2.08159E-06,2.14040E-06,2.20035E-06,2.26146E-06,2.32372E-06, & 2.38714E-06,2.45174E-06,2.51753E-06,2.58451E-06,2.65270E-06, & 2.72210E-06,2.79272E-06,2.86457E-06,2.93767E-06,3.01201E-06, & 3.08761E-06,3.16448E-06,3.24261E-06,3.32204E-06,3.40275E-06, & 3.48476E-06,3.56808E-06,3.65271E-06,3.73866E-06,3.82595E-06, & 3.91456E-06,4.00453E-06,4.09584E-06,4.18851E-06,4.28254E-06/ DATA (TOTPLNK(IDATA, 7),IDATA=101,150)/ & 4.37796E-06,4.47475E-06,4.57293E-06,4.67249E-06,4.77346E-06, & 4.87583E-06,4.97961E-06,5.08481E-06,5.19143E-06,5.29948E-06, & 5.40896E-06,5.51989E-06,5.63226E-06,5.74608E-06,5.86136E-06, & 5.97810E-06,6.09631E-06,6.21597E-06,6.33713E-06,6.45976E-06, & 6.58388E-06,6.70950E-06,6.83661E-06,6.96521E-06,7.09531E-06, & 7.22692E-06,7.36005E-06,7.49468E-06,7.63084E-06,7.76851E-06, & 7.90773E-06,8.04846E-06,8.19072E-06,8.33452E-06,8.47985E-06, & 8.62674E-06,8.77517E-06,8.92514E-06,9.07666E-06,9.22975E-06, & 9.38437E-06,9.54057E-06,9.69832E-06,9.85762E-06,1.00185E-05, & 1.01810E-05,1.03450E-05,1.05106E-05,1.06777E-05,1.08465E-05/ DATA (TOTPLNK(IDATA, 7),IDATA=151,181)/ & 1.10168E-05,1.11887E-05,1.13621E-05,1.15372E-05,1.17138E-05, & 1.18920E-05,1.20718E-05,1.22532E-05,1.24362E-05,1.26207E-05, & 1.28069E-05,1.29946E-05,1.31839E-05,1.33749E-05,1.35674E-05, & 1.37615E-05,1.39572E-05,1.41544E-05,1.43533E-05,1.45538E-05, & 1.47558E-05,1.49595E-05,1.51647E-05,1.53716E-05,1.55800E-05, & 1.57900E-05,1.60017E-05,1.62149E-05,1.64296E-05,1.66460E-05, & 1.68640E-05/ DATA (TOTPLNK(IDATA, 8),IDATA=1,50)/ & 6.74445E-08,7.18176E-08,7.64153E-08,8.12456E-08,8.63170E-08, & 9.16378E-08,9.72168E-08,1.03063E-07,1.09184E-07,1.15591E-07, & 1.22292E-07,1.29296E-07,1.36613E-07,1.44253E-07,1.52226E-07, & 1.60540E-07,1.69207E-07,1.78236E-07,1.87637E-07,1.97421E-07, & 2.07599E-07,2.18181E-07,2.29177E-07,2.40598E-07,2.52456E-07, & 2.64761E-07,2.77523E-07,2.90755E-07,3.04468E-07,3.18673E-07, & 3.33381E-07,3.48603E-07,3.64352E-07,3.80638E-07,3.97474E-07, & 4.14871E-07,4.32841E-07,4.51395E-07,4.70547E-07,4.90306E-07, & 5.10687E-07,5.31699E-07,5.53357E-07,5.75670E-07,5.98652E-07, & 6.22315E-07,6.46672E-07,6.71731E-07,6.97511E-07,7.24018E-07/ DATA (TOTPLNK(IDATA, 8),IDATA=51,100)/ & 7.51266E-07,7.79269E-07,8.08038E-07,8.37584E-07,8.67922E-07, & 8.99061E-07,9.31016E-07,9.63797E-07,9.97417E-07,1.03189E-06, & 1.06722E-06,1.10343E-06,1.14053E-06,1.17853E-06,1.21743E-06, & 1.25726E-06,1.29803E-06,1.33974E-06,1.38241E-06,1.42606E-06, & 1.47068E-06,1.51630E-06,1.56293E-06,1.61056E-06,1.65924E-06, & 1.70894E-06,1.75971E-06,1.81153E-06,1.86443E-06,1.91841E-06, & 1.97350E-06,2.02968E-06,2.08699E-06,2.14543E-06,2.20500E-06, & 2.26573E-06,2.32762E-06,2.39068E-06,2.45492E-06,2.52036E-06, & 2.58700E-06,2.65485E-06,2.72393E-06,2.79424E-06,2.86580E-06, & 2.93861E-06,3.01269E-06,3.08803E-06,3.16467E-06,3.24259E-06/ DATA (TOTPLNK(IDATA, 8),IDATA=101,150)/ & 3.32181E-06,3.40235E-06,3.48420E-06,3.56739E-06,3.65192E-06, & 3.73779E-06,3.82502E-06,3.91362E-06,4.00359E-06,4.09494E-06, & 4.18768E-06,4.28182E-06,4.37737E-06,4.47434E-06,4.57273E-06, & 4.67254E-06,4.77380E-06,4.87651E-06,4.98067E-06,5.08630E-06, & 5.19339E-06,5.30196E-06,5.41201E-06,5.52356E-06,5.63660E-06, & 5.75116E-06,5.86722E-06,5.98479E-06,6.10390E-06,6.22453E-06, & 6.34669E-06,6.47042E-06,6.59569E-06,6.72252E-06,6.85090E-06, & 6.98085E-06,7.11238E-06,7.24549E-06,7.38019E-06,7.51646E-06, & 7.65434E-06,7.79382E-06,7.93490E-06,8.07760E-06,8.22192E-06, & 8.36784E-06,8.51540E-06,8.66459E-06,8.81542E-06,8.96786E-06/ DATA (TOTPLNK(IDATA, 8),IDATA=151,181)/ & 9.12197E-06,9.27772E-06,9.43513E-06,9.59419E-06,9.75490E-06, & 9.91728E-06,1.00813E-05,1.02471E-05,1.04144E-05,1.05835E-05, & 1.07543E-05,1.09267E-05,1.11008E-05,1.12766E-05,1.14541E-05, & 1.16333E-05,1.18142E-05,1.19969E-05,1.21812E-05,1.23672E-05, & 1.25549E-05,1.27443E-05,1.29355E-05,1.31284E-05,1.33229E-05, & 1.35193E-05,1.37173E-05,1.39170E-05,1.41185E-05,1.43217E-05, & 1.45267E-05/ DATA (TOTPLNK(IDATA, 9),IDATA=1,50)/ & 2.61522E-08,2.80613E-08,3.00838E-08,3.22250E-08,3.44899E-08, & 3.68841E-08,3.94129E-08,4.20820E-08,4.48973E-08,4.78646E-08, & 5.09901E-08,5.42799E-08,5.77405E-08,6.13784E-08,6.52001E-08, & 6.92126E-08,7.34227E-08,7.78375E-08,8.24643E-08,8.73103E-08, & 9.23832E-08,9.76905E-08,1.03240E-07,1.09039E-07,1.15097E-07, & 1.21421E-07,1.28020E-07,1.34902E-07,1.42075E-07,1.49548E-07, & 1.57331E-07,1.65432E-07,1.73860E-07,1.82624E-07,1.91734E-07, & 2.01198E-07,2.11028E-07,2.21231E-07,2.31818E-07,2.42799E-07, & 2.54184E-07,2.65983E-07,2.78205E-07,2.90862E-07,3.03963E-07, & 3.17519E-07,3.31541E-07,3.46039E-07,3.61024E-07,3.76507E-07/ DATA (TOTPLNK(IDATA, 9),IDATA=51,100)/ & 3.92498E-07,4.09008E-07,4.26050E-07,4.43633E-07,4.61769E-07, & 4.80469E-07,4.99744E-07,5.19606E-07,5.40067E-07,5.61136E-07, & 5.82828E-07,6.05152E-07,6.28120E-07,6.51745E-07,6.76038E-07, & 7.01010E-07,7.26674E-07,7.53041E-07,7.80124E-07,8.07933E-07, & 8.36482E-07,8.65781E-07,8.95845E-07,9.26683E-07,9.58308E-07, & 9.90732E-07,1.02397E-06,1.05803E-06,1.09292E-06,1.12866E-06, & 1.16526E-06,1.20274E-06,1.24109E-06,1.28034E-06,1.32050E-06, & 1.36158E-06,1.40359E-06,1.44655E-06,1.49046E-06,1.53534E-06, & 1.58120E-06,1.62805E-06,1.67591E-06,1.72478E-06,1.77468E-06, & 1.82561E-06,1.87760E-06,1.93066E-06,1.98479E-06,2.04000E-06/ DATA (TOTPLNK(IDATA, 9),IDATA=101,150)/ & 2.09631E-06,2.15373E-06,2.21228E-06,2.27196E-06,2.33278E-06, & 2.39475E-06,2.45790E-06,2.52222E-06,2.58773E-06,2.65445E-06, & 2.72238E-06,2.79152E-06,2.86191E-06,2.93354E-06,3.00643E-06, & 3.08058E-06,3.15601E-06,3.23273E-06,3.31075E-06,3.39009E-06, & 3.47074E-06,3.55272E-06,3.63605E-06,3.72072E-06,3.80676E-06, & 3.89417E-06,3.98297E-06,4.07315E-06,4.16474E-06,4.25774E-06, & 4.35217E-06,4.44802E-06,4.54532E-06,4.64406E-06,4.74428E-06, & 4.84595E-06,4.94911E-06,5.05376E-06,5.15990E-06,5.26755E-06, & 5.37671E-06,5.48741E-06,5.59963E-06,5.71340E-06,5.82871E-06, & 5.94559E-06,6.06403E-06,6.18404E-06,6.30565E-06,6.42885E-06/ DATA (TOTPLNK(IDATA, 9),IDATA=151,181)/ & 6.55364E-06,6.68004E-06,6.80806E-06,6.93771E-06,7.06898E-06, & 7.20190E-06,7.33646E-06,7.47267E-06,7.61056E-06,7.75010E-06, & 7.89133E-06,8.03423E-06,8.17884E-06,8.32514E-06,8.47314E-06, & 8.62284E-06,8.77427E-06,8.92743E-06,9.08231E-06,9.23893E-06, & 9.39729E-06,9.55741E-06,9.71927E-06,9.88291E-06,1.00483E-05, & 1.02155E-05,1.03844E-05,1.05552E-05,1.07277E-05,1.09020E-05, & 1.10781E-05/ DATA (TOTPLNK(IDATA,10),IDATA=1,50)/ & 8.89300E-09,9.63263E-09,1.04235E-08,1.12685E-08,1.21703E-08, & 1.31321E-08,1.41570E-08,1.52482E-08,1.64090E-08,1.76428E-08, & 1.89533E-08,2.03441E-08,2.18190E-08,2.33820E-08,2.50370E-08, & 2.67884E-08,2.86402E-08,3.05969E-08,3.26632E-08,3.48436E-08, & 3.71429E-08,3.95660E-08,4.21179E-08,4.48040E-08,4.76294E-08, & 5.05996E-08,5.37201E-08,5.69966E-08,6.04349E-08,6.40411E-08, & 6.78211E-08,7.17812E-08,7.59276E-08,8.02670E-08,8.48059E-08, & 8.95508E-08,9.45090E-08,9.96873E-08,1.05093E-07,1.10733E-07, & 1.16614E-07,1.22745E-07,1.29133E-07,1.35786E-07,1.42711E-07, & 1.49916E-07,1.57410E-07,1.65202E-07,1.73298E-07,1.81709E-07/ DATA (TOTPLNK(IDATA,10),IDATA=51,100)/ & 1.90441E-07,1.99505E-07,2.08908E-07,2.18660E-07,2.28770E-07, & 2.39247E-07,2.50101E-07,2.61340E-07,2.72974E-07,2.85013E-07, & 2.97467E-07,3.10345E-07,3.23657E-07,3.37413E-07,3.51623E-07, & 3.66298E-07,3.81448E-07,3.97082E-07,4.13212E-07,4.29848E-07, & 4.47000E-07,4.64680E-07,4.82898E-07,5.01664E-07,5.20991E-07, & 5.40888E-07,5.61369E-07,5.82440E-07,6.04118E-07,6.26410E-07, & 6.49329E-07,6.72887E-07,6.97095E-07,7.21964E-07,7.47506E-07, & 7.73732E-07,8.00655E-07,8.28287E-07,8.56635E-07,8.85717E-07, & 9.15542E-07,9.46122E-07,9.77469E-07,1.00960E-06,1.04251E-06, & 1.07623E-06,1.11077E-06,1.14613E-06,1.18233E-06,1.21939E-06/ DATA (TOTPLNK(IDATA,10),IDATA=101,150)/ & 1.25730E-06,1.29610E-06,1.33578E-06,1.37636E-06,1.41785E-06, & 1.46027E-06,1.50362E-06,1.54792E-06,1.59319E-06,1.63942E-06, & 1.68665E-06,1.73487E-06,1.78410E-06,1.83435E-06,1.88564E-06, & 1.93797E-06,1.99136E-06,2.04582E-06,2.10137E-06,2.15801E-06, & 2.21576E-06,2.27463E-06,2.33462E-06,2.39577E-06,2.45806E-06, & 2.52153E-06,2.58617E-06,2.65201E-06,2.71905E-06,2.78730E-06, & 2.85678E-06,2.92749E-06,2.99946E-06,3.07269E-06,3.14720E-06, & 3.22299E-06,3.30007E-06,3.37847E-06,3.45818E-06,3.53923E-06, & 3.62161E-06,3.70535E-06,3.79046E-06,3.87695E-06,3.96481E-06, & 4.05409E-06,4.14477E-06,4.23687E-06,4.33040E-06,4.42538E-06/ DATA (TOTPLNK(IDATA,10),IDATA=151,181)/ & 4.52180E-06,4.61969E-06,4.71905E-06,4.81991E-06,4.92226E-06, & 5.02611E-06,5.13148E-06,5.23839E-06,5.34681E-06,5.45681E-06, & 5.56835E-06,5.68146E-06,5.79614E-06,5.91242E-06,6.03030E-06, & 6.14978E-06,6.27088E-06,6.39360E-06,6.51798E-06,6.64398E-06, & 6.77165E-06,6.90099E-06,7.03198E-06,7.16468E-06,7.29906E-06, & 7.43514E-06,7.57294E-06,7.71244E-06,7.85369E-06,7.99666E-06, & 8.14138E-06/ DATA (TOTPLNK(IDATA,11),IDATA=1,50)/ & 2.53767E-09,2.77242E-09,3.02564E-09,3.29851E-09,3.59228E-09, & 3.90825E-09,4.24777E-09,4.61227E-09,5.00322E-09,5.42219E-09, & 5.87080E-09,6.35072E-09,6.86370E-09,7.41159E-09,7.99628E-09, & 8.61974E-09,9.28404E-09,9.99130E-09,1.07437E-08,1.15436E-08, & 1.23933E-08,1.32953E-08,1.42522E-08,1.52665E-08,1.63410E-08, & 1.74786E-08,1.86820E-08,1.99542E-08,2.12985E-08,2.27179E-08, & 2.42158E-08,2.57954E-08,2.74604E-08,2.92141E-08,3.10604E-08, & 3.30029E-08,3.50457E-08,3.71925E-08,3.94476E-08,4.18149E-08, & 4.42991E-08,4.69043E-08,4.96352E-08,5.24961E-08,5.54921E-08, & 5.86277E-08,6.19081E-08,6.53381E-08,6.89231E-08,7.26681E-08/ DATA (TOTPLNK(IDATA,11),IDATA=51,100)/ & 7.65788E-08,8.06604E-08,8.49187E-08,8.93591E-08,9.39879E-08, & 9.88106E-08,1.03834E-07,1.09063E-07,1.14504E-07,1.20165E-07, & 1.26051E-07,1.32169E-07,1.38525E-07,1.45128E-07,1.51982E-07, & 1.59096E-07,1.66477E-07,1.74132E-07,1.82068E-07,1.90292E-07, & 1.98813E-07,2.07638E-07,2.16775E-07,2.26231E-07,2.36015E-07, & 2.46135E-07,2.56599E-07,2.67415E-07,2.78592E-07,2.90137E-07, & 3.02061E-07,3.14371E-07,3.27077E-07,3.40186E-07,3.53710E-07, & 3.67655E-07,3.82031E-07,3.96848E-07,4.12116E-07,4.27842E-07, & 4.44039E-07,4.60713E-07,4.77876E-07,4.95537E-07,5.13706E-07, & 5.32392E-07,5.51608E-07,5.71360E-07,5.91662E-07,6.12521E-07/ DATA (TOTPLNK(IDATA,11),IDATA=101,150)/ & 6.33950E-07,6.55958E-07,6.78556E-07,7.01753E-07,7.25562E-07, & 7.49992E-07,7.75055E-07,8.00760E-07,8.27120E-07,8.54145E-07, & 8.81845E-07,9.10233E-07,9.39318E-07,9.69113E-07,9.99627E-07, & 1.03087E-06,1.06286E-06,1.09561E-06,1.12912E-06,1.16340E-06, & 1.19848E-06,1.23435E-06,1.27104E-06,1.30855E-06,1.34690E-06, & 1.38609E-06,1.42614E-06,1.46706E-06,1.50886E-06,1.55155E-06, & 1.59515E-06,1.63967E-06,1.68512E-06,1.73150E-06,1.77884E-06, & 1.82715E-06,1.87643E-06,1.92670E-06,1.97797E-06,2.03026E-06, & 2.08356E-06,2.13791E-06,2.19330E-06,2.24975E-06,2.30728E-06, & 2.36589E-06,2.42560E-06,2.48641E-06,2.54835E-06,2.61142E-06/ DATA (TOTPLNK(IDATA,11),IDATA=151,181)/ & 2.67563E-06,2.74100E-06,2.80754E-06,2.87526E-06,2.94417E-06, & 3.01429E-06,3.08562E-06,3.15819E-06,3.23199E-06,3.30704E-06, & 3.38336E-06,3.46096E-06,3.53984E-06,3.62002E-06,3.70151E-06, & 3.78433E-06,3.86848E-06,3.95399E-06,4.04084E-06,4.12907E-06, & 4.21868E-06,4.30968E-06,4.40209E-06,4.49592E-06,4.59117E-06, & 4.68786E-06,4.78600E-06,4.88561E-06,4.98669E-06,5.08926E-06, & 5.19332E-06/ DATA (TOTPLNK(IDATA,12),IDATA=1,50)/ & 2.73921E-10,3.04500E-10,3.38056E-10,3.74835E-10,4.15099E-10, & 4.59126E-10,5.07214E-10,5.59679E-10,6.16857E-10,6.79103E-10, & 7.46796E-10,8.20335E-10,9.00144E-10,9.86671E-10,1.08039E-09, & 1.18180E-09,1.29142E-09,1.40982E-09,1.53757E-09,1.67529E-09, & 1.82363E-09,1.98327E-09,2.15492E-09,2.33932E-09,2.53726E-09, & 2.74957E-09,2.97710E-09,3.22075E-09,3.48145E-09,3.76020E-09, & 4.05801E-09,4.37595E-09,4.71513E-09,5.07672E-09,5.46193E-09, & 5.87201E-09,6.30827E-09,6.77205E-09,7.26480E-09,7.78794E-09, & 8.34304E-09,8.93163E-09,9.55537E-09,1.02159E-08,1.09151E-08, & 1.16547E-08,1.24365E-08,1.32625E-08,1.41348E-08,1.50554E-08/ DATA (TOTPLNK(IDATA,12),IDATA=51,100)/ & 1.60264E-08,1.70500E-08,1.81285E-08,1.92642E-08,2.04596E-08, & 2.17171E-08,2.30394E-08,2.44289E-08,2.58885E-08,2.74209E-08, & 2.90290E-08,3.07157E-08,3.24841E-08,3.43371E-08,3.62782E-08, & 3.83103E-08,4.04371E-08,4.26617E-08,4.49878E-08,4.74190E-08, & 4.99589E-08,5.26113E-08,5.53801E-08,5.82692E-08,6.12826E-08, & 6.44245E-08,6.76991E-08,7.11105E-08,7.46634E-08,7.83621E-08, & 8.22112E-08,8.62154E-08,9.03795E-08,9.47081E-08,9.92066E-08, & 1.03879E-07,1.08732E-07,1.13770E-07,1.18998E-07,1.24422E-07, & 1.30048E-07,1.35880E-07,1.41924E-07,1.48187E-07,1.54675E-07, & 1.61392E-07,1.68346E-07,1.75543E-07,1.82988E-07,1.90688E-07/ DATA (TOTPLNK(IDATA,12),IDATA=101,150)/ & 1.98650E-07,2.06880E-07,2.15385E-07,2.24172E-07,2.33247E-07, & 2.42617E-07,2.52289E-07,2.62272E-07,2.72571E-07,2.83193E-07, & 2.94147E-07,3.05440E-07,3.17080E-07,3.29074E-07,3.41430E-07, & 3.54155E-07,3.67259E-07,3.80747E-07,3.94631E-07,4.08916E-07, & 4.23611E-07,4.38725E-07,4.54267E-07,4.70245E-07,4.86666E-07, & 5.03541E-07,5.20879E-07,5.38687E-07,5.56975E-07,5.75751E-07, & 5.95026E-07,6.14808E-07,6.35107E-07,6.55932E-07,6.77293E-07, & 6.99197E-07,7.21656E-07,7.44681E-07,7.68278E-07,7.92460E-07, & 8.17235E-07,8.42614E-07,8.68606E-07,8.95223E-07,9.22473E-07, & 9.50366E-07,9.78915E-07,1.00813E-06,1.03802E-06,1.06859E-06/ DATA (TOTPLNK(IDATA,12),IDATA=151,181)/ & 1.09986E-06,1.13184E-06,1.16453E-06,1.19796E-06,1.23212E-06, & 1.26703E-06,1.30270E-06,1.33915E-06,1.37637E-06,1.41440E-06, & 1.45322E-06,1.49286E-06,1.53333E-06,1.57464E-06,1.61679E-06, & 1.65981E-06,1.70370E-06,1.74847E-06,1.79414E-06,1.84071E-06, & 1.88821E-06,1.93663E-06,1.98599E-06,2.03631E-06,2.08759E-06, & 2.13985E-06,2.19310E-06,2.24734E-06,2.30260E-06,2.35888E-06, & 2.41619E-06/ DATA (TOTPLNK(IDATA,13),IDATA=1,50)/ & 4.53634E-11,5.11435E-11,5.75754E-11,6.47222E-11,7.26531E-11, & 8.14420E-11,9.11690E-11,1.01921E-10,1.13790E-10,1.26877E-10, & 1.41288E-10,1.57140E-10,1.74555E-10,1.93665E-10,2.14613E-10, & 2.37548E-10,2.62633E-10,2.90039E-10,3.19948E-10,3.52558E-10, & 3.88073E-10,4.26716E-10,4.68719E-10,5.14331E-10,5.63815E-10, & 6.17448E-10,6.75526E-10,7.38358E-10,8.06277E-10,8.79625E-10, & 9.58770E-10,1.04410E-09,1.13602E-09,1.23495E-09,1.34135E-09, & 1.45568E-09,1.57845E-09,1.71017E-09,1.85139E-09,2.00268E-09, & 2.16464E-09,2.33789E-09,2.52309E-09,2.72093E-09,2.93212E-09, & 3.15740E-09,3.39757E-09,3.65341E-09,3.92579E-09,4.21559E-09/ DATA (TOTPLNK(IDATA,13),IDATA=51,100)/ & 4.52372E-09,4.85115E-09,5.19886E-09,5.56788E-09,5.95928E-09, & 6.37419E-09,6.81375E-09,7.27917E-09,7.77168E-09,8.29256E-09, & 8.84317E-09,9.42487E-09,1.00391E-08,1.06873E-08,1.13710E-08, & 1.20919E-08,1.28515E-08,1.36514E-08,1.44935E-08,1.53796E-08, & 1.63114E-08,1.72909E-08,1.83201E-08,1.94008E-08,2.05354E-08, & 2.17258E-08,2.29742E-08,2.42830E-08,2.56545E-08,2.70910E-08, & 2.85950E-08,3.01689E-08,3.18155E-08,3.35373E-08,3.53372E-08, & 3.72177E-08,3.91818E-08,4.12325E-08,4.33727E-08,4.56056E-08, & 4.79342E-08,5.03617E-08,5.28915E-08,5.55270E-08,5.82715E-08, & 6.11286E-08,6.41019E-08,6.71951E-08,7.04119E-08,7.37560E-08/ DATA (TOTPLNK(IDATA,13),IDATA=101,150)/ & 7.72315E-08,8.08424E-08,8.45927E-08,8.84866E-08,9.25281E-08, & 9.67218E-08,1.01072E-07,1.05583E-07,1.10260E-07,1.15107E-07, & 1.20128E-07,1.25330E-07,1.30716E-07,1.36291E-07,1.42061E-07, & 1.48031E-07,1.54206E-07,1.60592E-07,1.67192E-07,1.74015E-07, & 1.81064E-07,1.88345E-07,1.95865E-07,2.03628E-07,2.11643E-07, & 2.19912E-07,2.28443E-07,2.37244E-07,2.46318E-07,2.55673E-07, & 2.65316E-07,2.75252E-07,2.85489E-07,2.96033E-07,3.06891E-07, & 3.18070E-07,3.29576E-07,3.41417E-07,3.53600E-07,3.66133E-07, & 3.79021E-07,3.92274E-07,4.05897E-07,4.19899E-07,4.34288E-07, & 4.49071E-07,4.64255E-07,4.79850E-07,4.95863E-07,5.12300E-07/ DATA (TOTPLNK(IDATA,13),IDATA=151,181)/ & 5.29172E-07,5.46486E-07,5.64250E-07,5.82473E-07,6.01164E-07, & 6.20329E-07,6.39979E-07,6.60122E-07,6.80767E-07,7.01922E-07, & 7.23596E-07,7.45800E-07,7.68539E-07,7.91826E-07,8.15669E-07, & 8.40076E-07,8.65058E-07,8.90623E-07,9.16783E-07,9.43544E-07, & 9.70917E-07,9.98912E-07,1.02754E-06,1.05681E-06,1.08673E-06, & 1.11731E-06,1.14856E-06,1.18050E-06,1.21312E-06,1.24645E-06, & 1.28049E-06/ DATA (TOTPLNK(IDATA,14),IDATA=1,50)/ & 1.40113E-11,1.59358E-11,1.80960E-11,2.05171E-11,2.32266E-11, & 2.62546E-11,2.96335E-11,3.33990E-11,3.75896E-11,4.22469E-11, & 4.74164E-11,5.31466E-11,5.94905E-11,6.65054E-11,7.42522E-11, & 8.27975E-11,9.22122E-11,1.02573E-10,1.13961E-10,1.26466E-10, & 1.40181E-10,1.55206E-10,1.71651E-10,1.89630E-10,2.09265E-10, & 2.30689E-10,2.54040E-10,2.79467E-10,3.07128E-10,3.37190E-10, & 3.69833E-10,4.05243E-10,4.43623E-10,4.85183E-10,5.30149E-10, & 5.78755E-10,6.31255E-10,6.87910E-10,7.49002E-10,8.14824E-10, & 8.85687E-10,9.61914E-10,1.04385E-09,1.13186E-09,1.22631E-09, & 1.32761E-09,1.43617E-09,1.55243E-09,1.67686E-09,1.80992E-09/ DATA (TOTPLNK(IDATA,14),IDATA=51,100)/ & 1.95212E-09,2.10399E-09,2.26607E-09,2.43895E-09,2.62321E-09, & 2.81949E-09,3.02844E-09,3.25073E-09,3.48707E-09,3.73820E-09, & 4.00490E-09,4.28794E-09,4.58819E-09,4.90647E-09,5.24371E-09, & 5.60081E-09,5.97875E-09,6.37854E-09,6.80120E-09,7.24782E-09, & 7.71950E-09,8.21740E-09,8.74271E-09,9.29666E-09,9.88054E-09, & 1.04956E-08,1.11434E-08,1.18251E-08,1.25422E-08,1.32964E-08, & 1.40890E-08,1.49217E-08,1.57961E-08,1.67140E-08,1.76771E-08, & 1.86870E-08,1.97458E-08,2.08553E-08,2.20175E-08,2.32342E-08, & 2.45077E-08,2.58401E-08,2.72334E-08,2.86900E-08,3.02122E-08, & 3.18021E-08,3.34624E-08,3.51954E-08,3.70037E-08,3.88899E-08/ DATA (TOTPLNK(IDATA,14),IDATA=101,150)/ & 4.08568E-08,4.29068E-08,4.50429E-08,4.72678E-08,4.95847E-08, & 5.19963E-08,5.45058E-08,5.71161E-08,5.98309E-08,6.26529E-08, & 6.55857E-08,6.86327E-08,7.17971E-08,7.50829E-08,7.84933E-08, & 8.20323E-08,8.57035E-08,8.95105E-08,9.34579E-08,9.75488E-08, & 1.01788E-07,1.06179E-07,1.10727E-07,1.15434E-07,1.20307E-07, & 1.25350E-07,1.30566E-07,1.35961E-07,1.41539E-07,1.47304E-07, & 1.53263E-07,1.59419E-07,1.65778E-07,1.72345E-07,1.79124E-07, & 1.86122E-07,1.93343E-07,2.00792E-07,2.08476E-07,2.16400E-07, & 2.24568E-07,2.32988E-07,2.41666E-07,2.50605E-07,2.59813E-07, & 2.69297E-07,2.79060E-07,2.89111E-07,2.99455E-07,3.10099E-07/ DATA (TOTPLNK(IDATA,14),IDATA=151,181)/ & 3.21049E-07,3.32311E-07,3.43893E-07,3.55801E-07,3.68041E-07, & 3.80621E-07,3.93547E-07,4.06826E-07,4.20465E-07,4.34473E-07, & 4.48856E-07,4.63620E-07,4.78774E-07,4.94325E-07,5.10280E-07, & 5.26648E-07,5.43436E-07,5.60652E-07,5.78302E-07,5.96397E-07, & 6.14943E-07,6.33949E-07,6.53421E-07,6.73370E-07,6.93803E-07, & 7.14731E-07,7.36157E-07,7.58095E-07,7.80549E-07,8.03533E-07, & 8.27050E-07/ DATA (TOTPLNK(IDATA,15),IDATA=1,50)/ & 3.90483E-12,4.47999E-12,5.13122E-12,5.86739E-12,6.69829E-12, & 7.63467E-12,8.68833E-12,9.87221E-12,1.12005E-11,1.26885E-11, & 1.43534E-11,1.62134E-11,1.82888E-11,2.06012E-11,2.31745E-11, & 2.60343E-11,2.92087E-11,3.27277E-11,3.66242E-11,4.09334E-11, & 4.56935E-11,5.09455E-11,5.67338E-11,6.31057E-11,7.01127E-11, & 7.78096E-11,8.62554E-11,9.55130E-11,1.05651E-10,1.16740E-10, & 1.28858E-10,1.42089E-10,1.56519E-10,1.72243E-10,1.89361E-10, & 2.07978E-10,2.28209E-10,2.50173E-10,2.73999E-10,2.99820E-10, & 3.27782E-10,3.58034E-10,3.90739E-10,4.26067E-10,4.64196E-10, & 5.05317E-10,5.49631E-10,5.97347E-10,6.48689E-10,7.03891E-10/ DATA (TOTPLNK(IDATA,15),IDATA=51,100)/ & 7.63201E-10,8.26876E-10,8.95192E-10,9.68430E-10,1.04690E-09, & 1.13091E-09,1.22079E-09,1.31689E-09,1.41957E-09,1.52922E-09, & 1.64623E-09,1.77101E-09,1.90401E-09,2.04567E-09,2.19647E-09, & 2.35690E-09,2.52749E-09,2.70875E-09,2.90127E-09,3.10560E-09, & 3.32238E-09,3.55222E-09,3.79578E-09,4.05375E-09,4.32682E-09, & 4.61574E-09,4.92128E-09,5.24420E-09,5.58536E-09,5.94558E-09, & 6.32575E-09,6.72678E-09,7.14964E-09,7.59526E-09,8.06470E-09, & 8.55897E-09,9.07916E-09,9.62638E-09,1.02018E-08,1.08066E-08, & 1.14420E-08,1.21092E-08,1.28097E-08,1.35446E-08,1.43155E-08, & 1.51237E-08,1.59708E-08,1.68581E-08,1.77873E-08,1.87599E-08/ DATA (TOTPLNK(IDATA,15),IDATA=101,150)/ & 1.97777E-08,2.08423E-08,2.19555E-08,2.31190E-08,2.43348E-08, & 2.56045E-08,2.69302E-08,2.83140E-08,2.97578E-08,3.12636E-08, & 3.28337E-08,3.44702E-08,3.61755E-08,3.79516E-08,3.98012E-08, & 4.17265E-08,4.37300E-08,4.58143E-08,4.79819E-08,5.02355E-08, & 5.25777E-08,5.50114E-08,5.75393E-08,6.01644E-08,6.28896E-08, & 6.57177E-08,6.86521E-08,7.16959E-08,7.48520E-08,7.81239E-08, & 8.15148E-08,8.50282E-08,8.86675E-08,9.24362E-08,9.63380E-08, & 1.00376E-07,1.04555E-07,1.08878E-07,1.13349E-07,1.17972E-07, & 1.22751E-07,1.27690E-07,1.32793E-07,1.38064E-07,1.43508E-07, & 1.49129E-07,1.54931E-07,1.60920E-07,1.67099E-07,1.73473E-07/ DATA (TOTPLNK(IDATA,15),IDATA=151,181)/ & 1.80046E-07,1.86825E-07,1.93812E-07,2.01014E-07,2.08436E-07, & 2.16082E-07,2.23957E-07,2.32067E-07,2.40418E-07,2.49013E-07, & 2.57860E-07,2.66963E-07,2.76328E-07,2.85961E-07,2.95868E-07, & 3.06053E-07,3.16524E-07,3.27286E-07,3.38345E-07,3.49707E-07, & 3.61379E-07,3.73367E-07,3.85676E-07,3.98315E-07,4.11287E-07, & 4.24602E-07,4.38265E-07,4.52283E-07,4.66662E-07,4.81410E-07, & 4.96535E-07/ DATA (TOTPLNK(IDATA,16),IDATA=1,50)/ & 4.65378E-13,5.41927E-13,6.29913E-13,7.30869E-13,8.46510E-13, & 9.78750E-13,1.12972E-12,1.30181E-12,1.49764E-12,1.72016E-12, & 1.97260E-12,2.25858E-12,2.58206E-12,2.94744E-12,3.35955E-12, & 3.82372E-12,4.34581E-12,4.93225E-12,5.59010E-12,6.32711E-12, & 7.15171E-12,8.07317E-12,9.10159E-12,1.02480E-11,1.15244E-11, & 1.29438E-11,1.45204E-11,1.62697E-11,1.82084E-11,2.03545E-11, & 2.27278E-11,2.53494E-11,2.82424E-11,3.14313E-11,3.49431E-11, & 3.88064E-11,4.30522E-11,4.77139E-11,5.28273E-11,5.84308E-11, & 6.45658E-11,7.12764E-11,7.86103E-11,8.66176E-11,9.53534E-11, & 1.04875E-10,1.15245E-10,1.26528E-10,1.38796E-10,1.52123E-10/ DATA (TOTPLNK(IDATA,16),IDATA=51,100)/ & 1.66590E-10,1.82281E-10,1.99287E-10,2.17704E-10,2.37632E-10, & 2.59182E-10,2.82468E-10,3.07610E-10,3.34738E-10,3.63988E-10, & 3.95504E-10,4.29438E-10,4.65951E-10,5.05212E-10,5.47402E-10, & 5.92707E-10,6.41329E-10,6.93477E-10,7.49371E-10,8.09242E-10, & 8.73338E-10,9.41911E-10,1.01524E-09,1.09359E-09,1.17728E-09, & 1.26660E-09,1.36190E-09,1.46350E-09,1.57177E-09,1.68709E-09, & 1.80984E-09,1.94044E-09,2.07932E-09,2.22693E-09,2.38373E-09, & 2.55021E-09,2.72689E-09,2.91429E-09,3.11298E-09,3.32353E-09, & 3.54655E-09,3.78265E-09,4.03251E-09,4.29679E-09,4.57620E-09, & 4.87148E-09,5.18341E-09,5.51276E-09,5.86037E-09,6.22708E-09/ DATA (TOTPLNK(IDATA,16),IDATA=101,150)/ & 6.61381E-09,7.02145E-09,7.45097E-09,7.90336E-09,8.37967E-09, & 8.88092E-09,9.40827E-09,9.96280E-09,1.05457E-08,1.11583E-08, & 1.18017E-08,1.24773E-08,1.31865E-08,1.39306E-08,1.47111E-08, & 1.55295E-08,1.63872E-08,1.72860E-08,1.82274E-08,1.92132E-08, & 2.02450E-08,2.13247E-08,2.24541E-08,2.36352E-08,2.48699E-08, & 2.61602E-08,2.75082E-08,2.89161E-08,3.03860E-08,3.19203E-08, & 3.35213E-08,3.51913E-08,3.69330E-08,3.87486E-08,4.06411E-08, & 4.26129E-08,4.46668E-08,4.68058E-08,4.90325E-08,5.13502E-08, & 5.37617E-08,5.62703E-08,5.88791E-08,6.15915E-08,6.44107E-08, & 6.73404E-08,7.03841E-08,7.35453E-08,7.68278E-08,8.02355E-08/ DATA (TOTPLNK(IDATA,16),IDATA=151,181)/ & 8.37721E-08,8.74419E-08,9.12486E-08,9.51968E-08,9.92905E-08, & 1.03534E-07,1.07932E-07,1.12490E-07,1.17211E-07,1.22100E-07, & 1.27163E-07,1.32404E-07,1.37829E-07,1.43443E-07,1.49250E-07, & 1.55257E-07,1.61470E-07,1.67893E-07,1.74532E-07,1.81394E-07, & 1.88485E-07,1.95810E-07,2.03375E-07,2.11189E-07,2.19256E-07, & 2.27583E-07,2.36177E-07,2.45046E-07,2.54196E-07,2.63634E-07, & 2.73367E-07/ DATA (TOTPLK16(IDATA),IDATA=1,50)/ & 4.46128E-13,5.19008E-13,6.02681E-13,6.98580E-13,8.08302E-13, & 9.33629E-13,1.07654E-12,1.23925E-12,1.42419E-12,1.63407E-12, & 1.87190E-12,2.14099E-12,2.44498E-12,2.78793E-12,3.17424E-12, & 3.60881E-12,4.09698E-12,4.64461E-12,5.25813E-12,5.94456E-12, & 6.71156E-12,7.56752E-12,8.52154E-12,9.58357E-12,1.07644E-11, & 1.20758E-11,1.35304E-11,1.51420E-11,1.69256E-11,1.88973E-11, & 2.10746E-11,2.34762E-11,2.61227E-11,2.90356E-11,3.22388E-11, & 3.57574E-11,3.96187E-11,4.38519E-11,4.84883E-11,5.35616E-11, & 5.91075E-11,6.51647E-11,7.17743E-11,7.89797E-11,8.68284E-11, & 9.53697E-11,1.04658E-10,1.14748E-10,1.25701E-10,1.37582E-10/ DATA (TOTPLK16(IDATA),IDATA=51,100)/ & 1.50457E-10,1.64400E-10,1.79487E-10,1.95799E-10,2.13422E-10, & 2.32446E-10,2.52970E-10,2.75094E-10,2.98925E-10,3.24578E-10, & 3.52172E-10,3.81833E-10,4.13695E-10,4.47897E-10,4.84588E-10, & 5.23922E-10,5.66063E-10,6.11182E-10,6.59459E-10,7.11081E-10, & 7.66251E-10,8.25172E-10,8.88065E-10,9.55155E-10,1.02668E-09, & 1.10290E-09,1.18406E-09,1.27044E-09,1.36233E-09,1.46002E-09, & 1.56382E-09,1.67406E-09,1.79108E-09,1.91522E-09,2.04686E-09, & 2.18637E-09,2.33416E-09,2.49063E-09,2.65622E-09,2.83136E-09, & 3.01653E-09,3.21221E-09,3.41890E-09,3.63712E-09,3.86740E-09, & 4.11030E-09,4.36641E-09,4.63631E-09,4.92064E-09,5.22003E-09/ DATA (TOTPLK16(IDATA),IDATA=101,150)/ & 5.53516E-09,5.86670E-09,6.21538E-09,6.58191E-09,6.96708E-09, & 7.37165E-09,7.79645E-09,8.24229E-09,8.71007E-09,9.20066E-09, & 9.71498E-09,1.02540E-08,1.08186E-08,1.14100E-08,1.20290E-08, & 1.26767E-08,1.33544E-08,1.40630E-08,1.48038E-08,1.55780E-08, & 1.63867E-08,1.72313E-08,1.81130E-08,1.90332E-08,1.99932E-08, & 2.09945E-08,2.20385E-08,2.31267E-08,2.42605E-08,2.54416E-08, & 2.66716E-08,2.79520E-08,2.92846E-08,3.06711E-08,3.21133E-08, & 3.36128E-08,3.51717E-08,3.67918E-08,3.84749E-08,4.02232E-08, & 4.20386E-08,4.39231E-08,4.58790E-08,4.79083E-08,5.00132E-08, & 5.21961E-08,5.44592E-08,5.68049E-08,5.92356E-08,6.17537E-08/ DATA (TOTPLK16(IDATA),IDATA=151,181)/ & 6.43617E-08,6.70622E-08,6.98578E-08,7.27511E-08,7.57449E-08, & 7.88419E-08,8.20449E-08,8.53568E-08,8.87805E-08,9.23190E-08, & 9.59753E-08,9.97526E-08,1.03654E-07,1.07682E-07,1.11841E-07, & 1.16134E-07,1.20564E-07,1.25135E-07,1.29850E-07,1.34712E-07, & 1.39726E-07,1.44894E-07,1.50221E-07,1.55711E-07,1.61367E-07, & 1.67193E-07,1.73193E-07,1.79371E-07,1.85732E-07,1.92279E-07, & 1.99016E-07/ CONTAINS !------------------------------------------------------------------ SUBROUTINE RRTMLWRAD(rthraten,glw,olr,emiss & ,p8w,p3d,pi3d & ,dz8w,tsk,t3d,t8w,rho3d,r,g & ,icloud, warm_rain & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ,qv3d,qc3d,qr3d & ,qi3d,qs3d,qg3d,cldfra3d & ,f_qv,f_qc,f_qr,f_qi,f_qs,f_qg & ) !------------------------------------------------------------------ IMPLICIT NONE !------------------------------------------------------------------ LOGICAL, INTENT(IN ) :: warm_rain ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte INTEGER, INTENT(IN ) :: ICLOUD ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: dz8w, & T3D, & t8w, & p8w, & P3D, & pi3D, & rho3D ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(INOUT) :: RTHRATEN ! REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: EMISS, & TSK ! REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: GLW, & OLR ! REAL, INTENT(IN ) :: R,G ! ! Optional ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & OPTIONAL , & INTENT(IN ) :: & CLDFRA3D, & QV3D, & QC3D, & QR3D, & QI3D, & QS3D, & QG3D LOGICAL, OPTIONAL, INTENT(IN ) :: F_QV,F_QC,F_QR,F_QI,F_QS,F_QG ! LOCAL VARS REAL, DIMENSION( kts:kte+1 ) :: Pw1D, & Tw1D REAL, DIMENSION( kts:kte ) :: TTEN1D, & CLDFRA1D, & DZ1D, & P1D, & T1D, & QV1D, & QC1D, & QR1D, & QI1D, & QS1D, & QG1D ! REAL :: TSFC,GLW0,OLR0,EMISS0 ! INTEGER:: i,j,K,NK LOGICAL :: predicate !------------------------------------------------------------------ !-----CALCULATE LONG WAVE RADIATION ! j_loop: DO J=jts,jte i_loop: DO I=its,ite ! reverse vars ! p1D pw1D are in mb do k=kts,kte+1 NK=kme-k+kms Pw1D(K) = p8w(I,NK,J)/100. Tw1D(K) = t8w(I,NK,J) enddo DO K=kts,kte QV1D(K)=0. QC1D(K)=0. QR1D(K)=0. QI1D(K)=0. QS1D(K)=0. CLDFRA1D(k)=0. ENDDO DO K=kts,kte NK=kme-1-K+kms QV1D(K)=QV3D(I,NK,J) QV1D(K)=max(0.,QV1D(K)) ENDDO DO K=kts,kte NK=kme-1-K+kms TTEN1D(K)=0. T1D(K)=T3D(I,NK,J) P1D(K)=P3D(I,NK,J)/100. DZ1D(K)=dz8w(I,NK,J) ENDDO IF (ICLOUD .ne. 0) THEN IF ( PRESENT( CLDFRA3D ) ) THEN DO K=kts,kte NK=kme-1-K+kms CLDFRA1D(k)=CLDFRA3D(I,NK,J) ENDDO ENDIF IF (PRESENT(F_QC) .AND. PRESENT(QC3D)) THEN IF ( F_QC) THEN DO K=kts,kte NK=kme-1-K+kms QC1D(K)=QC3D(I,NK,J) QC1D(K)=max(0.,QC1D(K)) ENDDO ENDIF ENDIF IF (PRESENT(F_QR) .AND. PRESENT(QR3D)) THEN IF ( F_QR) THEN DO K=kts,kte NK=kme-1-K+kms QR1D(K)=QR3D(I,NK,J) QR1D(K)=max(0.,QR1D(K)) ENDDO ENDIF ENDIF ! This logic is tortured because cannot test F_QI unless ! it is present, and order of evaluation of expressions ! is not specified in Fortran IF ( PRESENT ( F_QI ) ) THEN predicate = F_QI ELSE predicate = .FALSE. ENDIF IF (.NOT. predicate .and. .not. warm_rain) THEN DO K=kts,kte IF (T1D(K) .lt. 273.15) THEN QI1D(K)=QC1D(K) QS1D(K)=QR1D(K) QC1D(K)=0. QR1D(K)=0. ENDIF ENDDO ENDIF IF (PRESENT(F_QI) .AND. PRESENT(QI3D)) THEN DO K=kts,kte NK=kme-1-K+kms QI1D(K)=QI3D(I,NK,J) QI1D(K)=max(0.,QI1D(K)) ENDDO ENDIF IF (PRESENT(F_QS) .AND. PRESENT(QS3D)) THEN IF (F_QS) THEN DO K=kts,kte NK=kme-1-K+kms QS1D(K)=QS3D(I,NK,J) QS1D(K)=max(0.,QS1D(K)) ENDDO ENDIF ENDIF IF (PRESENT(F_QG) .AND. PRESENT(QG3D)) THEN IF (F_QG) THEN DO K=kts,kte NK=kme-1-K+kms QG1D(K)=QG3D(I,NK,J) QG1D(K)=max(0.,QG1D(K)) ENDDO ENDIF ENDIF ENDIF EMISS0=EMISS(I,J) GLW0=0. OLR0=0. TSFC=TSK(I,J) CALL RRTM(tten1d,glw0,olr0,tsfc,cldfra1d,t1d,tw1d,qv1d,qc1d, & qr1d,qi1d,qs1d,qg1d,p1d,pW1d,dz1d, & emiss0,r,g, & kts,kte ) GLW(I,J)=GLW0 OLR(I,J)=OLR0 DO K=kts,kte nk=kme-1-k+kms rthraten(i,k,j)=rthraten(i,k,j)+tten1d(nk)/pi3d(i,k,j) ENDDO END DO i_loop END DO j_loop !------------------------------------------------------------------- END SUBROUTINE RRTMLWRAD !**************************************************************************** !* * !* RRTM * !* * !* * !* * !* RAPID RADIATIVE TRANSFER MODEL * !* * !* * !* ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * !* 840 MEMORIAL DRIVE * !* CAMBRIDGE, MA 02139 * !* * !* * !* ELI J. MLAWER * !* STEVEN J. TAUBMAN~ * !* SHEPARD A. CLOUGH * !* * !* * !* ~currently at GFDL * !* * !* * !* * !* email: mlawer@aer.com * !* * !* The authors wish to acknowledge the contributions of the * !* following people: Patrick D. Brown, Michael J. Iacono, * !* Ronald E. Farren, Luke Chen, Robert Bergstrom. * !* * !**************************************************************************** ! *** This version of RRTM has been altered to interface with the ! *** NCAR MM5 mesoscale model for the calculation of longwave radiative ! *** transfer (based on a code for interface with CCM model by M. J. Iacono) ! *** J. Dudhia ; March, 1999 !--------------------------------------------------------------------- SUBROUTINE RRTM(TTEN,GLW,OLR,TSFC,CLDFRA,T,Tw,QV,QC, & QR,QI,QS,QG,P,Pw,DZ, & EMISS,R,G, & kts,kte ) !--------------------------------------------------------------------- ! *** This program is the driver for RRTM, the AER LW radiation model. ! This routine: ! Calls MM5ATM to provide atmosphere in column and boundary values ! a) calls GASABS to calculate gaseous optical depths ! b) calls SETCOEF to calculate various quantities needed for ! the radiative transfer algorithm ! c) calls RTRN (for both clear and cloudy columns) to do the ! radiative transfer calculation ! d) passes the necessary flux and cooling rate back to MM5 !--------------------------------------------------------------------- IMPLICIT NONE !--------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts, kte ! REAL, DIMENSION( kts:kte+1 ), INTENT(IN ) :: Pw, & Tw REAL, DIMENSION( kts:kte ), INTENT(IN ) :: CLDFRA, & T, & P, & DZ ! REAL, DIMENSION( kts:kte ), INTENT(INOUT) :: & QV REAL, DIMENSION( kts:kte ), INTENT(IN ) :: & QC, & QR, & QI, & QS, & QG ! REAL, DIMENSION( kts:kte ), INTENT(INOUT):: TTEN ! REAL, INTENT(IN ) :: R, G, EMISS ! REAL, INTENT(INOUT) :: TSFC,GLW,OLR ! LOCAL VAR INTEGER, DIMENSION( NGPT,kts:NLAYERS ) :: ITR REAL, DIMENSION( NGPT,kts:NLAYERS ) :: PFRAC, & TAUG REAL, DIMENSION( 35,kts:NLAYERS ) :: WKL REAL, DIMENSION( MAXXSEC,kts:NLAYERS ) :: WX REAL, DIMENSION( kts:kte ) :: O3PROF REAL, DIMENSION( kts:NLAYERS ) :: PAVEL, & TAVEL, & CLDFRAC, & TAUCLOUD, & COLDRY, & COLH2O, & COLCO2, & COLO3, & COLN2O, & COLCH4, & COLO2, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC ! INTEGER, DIMENSION( kts:NLAYERS ) :: ICLDLYR, & JP, & JT, & JT1, & INDSELF REAL, DIMENSION( 0:NLAYERS ) :: PZ, & TZ, & TOTDFLUX, & TOTUFLUX, & HTR ! INTEGER :: I,K,ktep1 INTEGER :: LAYTROP,LAYSWTCH,LAYLOW REAL :: TBOUND REAL, DIMENSION(NBANDS) :: SEMISS !--------------------------------------------------------------------------- ! RRTM Definitions ! NGPT ! Total number of g-point subintervals ! MXLAY ! Maximum number of model layers ! NBANDS ! Number of longwave spectral bands ! PI ! Geometric constant ! FLUXFAC ! Radiance to flux conversion factor ! HEATFAC ! Heating rate conversion factor ! NG(NBANDS) ! Number of g-points per band for input ! absorption coefficient data ! NSPA(NBANDS),NSPB(NBANDS) ! Number of reference atmospheres per band ! WAVENUM1(NBANDS) ! Longwave band lower limit (wavenumbers) ! WAVENUM2(NBANDS) ! Longwave band upper limit (wavenumbers) ! DELWAVE ! Longwave band width (wavenumbers) ! NLAYERS ! Number of model layers (mkx+1) ! PAVEL(MXLAY) ! Layer pressures (mb) ! PZ(0:MXLAY) ! Level (interface) pressures (mb) ! TAVEL(MXLAY) ! Layer temperatures (K) ! TZ(0:MXLAY) ! Level (interface) temperatures(mb) ! TBOUND ! Surface temperature (K) ! CLDFRAC(MXLAY) ! Layer cloud fraction ! TAUCLOUD(MXLAY) ! Layer cloud optical depth ! ITR(NGPT,MXLAY) ! Integer look-up table index ! PFRAC(NGPT,MXLAY) ! Planck fractions ! ICLDLYR(MXLAY) ! Flag for cloudy layers ! TOTUFLUX(0:MXLAY) ! Upward longwave flux (W/m2) ! TOTDFLUX(0:MXLAY) ! Downward longwave flux (W/m2) ! FNET(0:MXLAY) ! Net longwave flux (W/m2) ! HTR(0:MXLAY) ! Longwave heating rate (K/day) ! CLRNTTOA ! Clear-sky TOA outgoing flux (W/m2) ! CLRNTSRF ! Clear-sky net surface flux (W/m2) ! TOTUCLFL(0:MXLAY) ! Clear-sky upward longwave flux (W/m2) ! TOTDCLFL(0:MXLAY) ! Clear-sky downward longwave flux (W/m2) ! FNETC(0:MXLAY) ! Clear-sky net longwave flux (W/m2) ! HTRC(0:MXLAY) ! Clear-sky longwave heating rate (K/day) ! ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. !--------------------------------------------------------------------------- ! ktep1=kte+1 ktep1=NLAYERS ! ! CLOUD EMISSIVITIES (M^2/G) ! THESE ARE CONSISTENT WITH LWRAD (ABCW=0.5*(ABUP+ABDOWN)) ! ! ONEMINUS = 1. - 1.E-6 ! PI = 2.*ASIN(1.) ! FLUXFAC = PI * 2.D4 ! CALL INIRAD (O3PROF,Pw,kts,kte) ! Prepare atmospheric profile from CCM for use in RRTM, and define ! other RRTM input parameters. Arrays are passed back through the ! existing RRTM commons and arrays. CALL MM5ATM(CLDFRA,O3PROF,T,Tw,TSFC,QV,QC,QR,QI,QS,QG, & P,Pw,DZ,EMISS,R,G, & PAVEL,TAVEL,PZ,TZ,CLDFRAC,TAUCLOUD,COLDRY, & WKL,WX,TBOUND,SEMISS, & kts,kte ) ! Calculate information needed by the radiative transfer routine ! that is specific to this atmosphere, especially some of the ! coefficients and indices needed to compute the optical depths ! by interpolating data from stored reference atmospheres. CALL SETCOEF(kts,ktep1, & PAVEL,TAVEL,COLDRY,COLH2O,COLCO2,COLO3, & COLN2O,COLCH4,COLO2,CO2MULT, & FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC, & JP,JT,JT1,INDSELF,WKL,LAYTROP,LAYSWTCH,LAYLOW) CALL GASABS(kts,ktep1, & COLDRY,COLH2O,COLCO2,COLO3,COLN2O,COLCH4, & COLO2,CO2MULT, & FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC, & JP,JT,JT1,INDSELF,ITR,WX,PFRAC,TAUG, & LAYTROP,LAYSWTCH,LAYLOW ) ! Check for cloud in column. Use original CCM LW threshold: if total ! clear sky fraction < 0.999, then column is cloudy, otherwise consider ! it clear. Also, set up flag array, icldlyr, for use in radiative ! transfer. Set icldlyr to one for each layer with cloud. If tclrsf ! is not available, icldlyr can be set from cldfrac alone. do 1500 k = 1, nlayers if (cldfrac(k).gt.0.) then icldlyr(k) = 1 else icldlyr(k) = 0 endif 1500 continue ! Call the radiative transfer routine. CALL RTRN(kts,ktep1, & TAVEL, PZ, TZ, CLDFRAC, TAUCLOUD, TOTDFLUX, & TOTUFLUX, HTR, ICLDLYR, ITR, PFRAC, TBOUND,SEMISS ) ! Pass total sky up and down flux profiles to CCM output arrays and ! convert from mks to cgs units for CCM. Pass clear sky TOA and surface ! net fluxes to CCM fields for diagnostics. Pass total sky heating rate ! profile to CCM output arrays and convert units to K/sec. The vertical ! array index (bottom to top in RRTM) is reversed for CCM fields. ! flntc(iiplon) = CLRNTTOA*1.e3 ! flnsc(iiplon) = CLRNTSRF*1.e3 ! do 2400 k = 0, NLAYERS-1 ! fulc(k+1) = TOTUCLFL(NLAYERS-1-k)*1.e3 ! fdlc(k+1) = TOTDCLFL(NLAYERS-1-k)*1.e3 ! ful(k+1) = TOTUFLUX(NLAYERS-1-k)*1.e3 ! fdl(k+1) = TOTDFLUX(NLAYERS-1-k)*1.e3 ! 2400 continue ! do 2450 k = 1, NLAYERS-1 do 2450 k = 1, kte ! qrlc(k) = HTRC(NLAYERS-1-k)/86400. ! qrl(k) = HTR(NLAYERS-1-k)/86400. ! TTEN(K)=HTR(NLAYERS-1-k)/86400. TTEN(K)=HTR(kte-k)/86400. 2450 continue GLW = TOTDFLUX(0) ! OLR = TOTUFLUX(NLAYERS) OLR = TOTUFLUX(kte) END SUBROUTINE RRTM !*************************************************************************** SUBROUTINE CMBGB1(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, FORREF, & SELFREFC, FORREFC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! Original version: Michael J. Iacono; July, 1998 ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! The subroutines CMBGB1->CMBGB16 input the absorption coefficient ! data for each band, which are defined for 16 g-points and 16 spectral ! bands. The data are combined with appropriate weighting following the ! g-point mapping arrays specified in RRTMINIT. Plank fraction data ! in arrays FRACREFA and FRACREFB are combined without weighting. All ! g-point reduced data are put into new arrays for use in RRTM. ! ! BAND 1: 10-250 cm-1 (low - H2O; high - H2O) !*************************************************************************** ! Input REAL abscoefL(5,13,MG),abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG), FRACREFB(MG), FORREF(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG1), FORREFC(NG1) REAL FRACREFAC(NG1), FRACREFBC(NG1) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(1) SUMK = 0. DO 2600 IPR = 1, NGN(IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM) 2600 CONTINUE ABSA1(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(1) SUMK = 0. DO 3600 IPR = 1, NGN(IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM) 3600 CONTINUE ABSB1(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(1) SUMK = 0. DO 4600 IPR = 1, NGN(IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE IPRSM = 0 DO 5400 IGC = 1,NGC(1) SUMK = 0. SUMF1 = 0. SUMF2 = 0. DO 5600 IPR = 1, NGN(IGC) IPRSM = IPRSM + 1 SUMK = SUMK + FORREF(IPRSM)*RWGT(IPRSM) SUMF1= SUMF1+ FRACREFA(IPRSM) SUMF2= SUMF2+ FRACREFB(IPRSM) 5600 CONTINUE FORREFC(IGC) = SUMK FRACREFAC(IGC) = SUMF1 FRACREFBC(IGC) = SUMF2 5400 CONTINUE END SUBROUTINE CMBGB1 !*************************************************************************** SUBROUTINE CMBGB2(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, FORREF, & SELFREFC, FORREFC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 2: 250-500 cm-1 (low - H2O; high - H2O) !*************************************************************************** ! Input REAL abscoefL(5,13,MG),abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,13), FRACREFB(MG), FORREF(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG2), FORREFC(NG2) REAL FRACREFAC(NG2,13), FRACREFBC(NG2) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(2) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(1)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+16) 2600 CONTINUE ABSA2(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(2) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(1)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+16) 3600 CONTINUE ABSB2(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(2) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(1)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+16) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 5000 JPJP = 1,13 IPRSM = 0 DO 5400 IGC = 1,NGC(2) SUMF = 0. DO 5600 IPR = 1, NGN(NGS(1)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 5600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 5400 CONTINUE 5000 CONTINUE IPRSM = 0 DO 6400 IGC = 1,NGC(2) SUMK = 0. SUMF = 0. DO 6600 IPR = 1, NGN(NGS(1)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + FORREF(IPRSM)*RWGT(IPRSM+16) SUMF = SUMF + FRACREFB(IPRSM) 6600 CONTINUE FORREFC(IGC) = SUMK FRACREFBC(IGC) = SUMF 6400 CONTINUE END SUBROUTINE CMBGB2 !*************************************************************************** SUBROUTINE CMBGB3(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, FORREF, ABSN2OA, ABSN2OB, & SELFREFC, FORREFC, & ABSN2OAC, ABSN2OBC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 3: 500-630 cm-1 (low - H2O,CO2; high - H2O,CO2) !*************************************************************************** ! Input REAL abscoefL(10,5,13,MG),abscoefH(5,5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,10), FRACREFB(MG,5) REAL FORREF(MG), ABSN2OA(MG), ABSN2OB(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG3), FORREFC(NG3), & ABSN2OAC(NG3), ABSN2OBC(NG3) REAL FRACREFAC(NG3,10), FRACREFBC(NG3,5) DO 2000 JN = 1,10 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(3) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(2)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)* RWGT(IPRSM+32) 2600 CONTINUE ABSA3(JN+(JTJT-1)*10+(JPJP-1)*50,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JN = 1,5 DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(3) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(2)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JN,JTJT,JPJP,IPRSM)* RWGT(IPRSM+32) 3600 CONTINUE ABSB3(JN+(JTJT-1)*5+(JPJP-13)*25,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(3) SUMK = 0. SUMF = 0. DO 4600 IPR = 1, NGN(NGS(2)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)* RWGT(IPRSM+32) SUMF = SUMF + FRACREFA(IPRSM,JTJT) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK FRACREFAC(IGC,JTJT) = SUMF 4400 CONTINUE 4000 CONTINUE DO 5000 JPJP = 1,5 IPRSM = 0 DO 5400 IGC = 1,NGC(3) SUMF = 0. DO 5600 IPR = 1, NGN(NGS(2)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFB(IPRSM,JPJP) 5600 CONTINUE FRACREFBC(IGC,JPJP) = SUMF 5400 CONTINUE 5000 CONTINUE IPRSM = 0 DO 6400 IGC = 1,NGC(3) SUMK1= 0. SUMK2= 0. SUMK3= 0. DO 6600 IPR = 1, NGN(NGS(2)+IGC) IPRSM = IPRSM + 1 SUMK1= SUMK1+ FORREF(IPRSM)*RWGT(IPRSM+32) SUMK2= SUMK2+ ABSN2OA(IPRSM)*RWGT(IPRSM+32) SUMK3= SUMK3+ ABSN2OB(IPRSM)*RWGT(IPRSM+32) 6600 CONTINUE FORREFC(IGC) = SUMK1 ABSN2OAC(IGC) = SUMK2 ABSN2OBC(IGC) = SUMK3 6400 CONTINUE END SUBROUTINE CMBGB3 !*************************************************************************** SUBROUTINE CMBGB4(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, & SELFREFC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 4: 630-700 cm-1 (low - H2O,CO2; high - O3,CO2) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG),abscoefH(6,5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9), FRACREFB(MG,6) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG4) REAL FRACREFAC(NG4,9), FRACREFBC(NG4,6) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(4) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(3)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+48) 2600 CONTINUE ABSA4(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JN = 1,6 DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(4) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(3)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+48) 3600 CONTINUE ABSB4(JN+(JTJT-1)*6+(JPJP-13)*30,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(4) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(3)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+48) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 5000 JPJP = 1,9 IPRSM = 0 DO 5400 IGC = 1,NGC(4) SUMF = 0. DO 5600 IPR = 1, NGN(NGS(3)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 5600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 5400 CONTINUE 5000 CONTINUE DO 6000 JPJP = 1,6 IPRSM = 0 DO 6400 IGC = 1,NGC(4) SUMF = 0. DO 6600 IPR = 1, NGN(NGS(3)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFB(IPRSM,JPJP) 6600 CONTINUE FRACREFBC(IGC,JPJP) = SUMF 6400 CONTINUE 6000 CONTINUE END SUBROUTINE CMBGB4 !*************************************************************************** SUBROUTINE CMBGB5(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, CCL4, & SELFREFC, CCL4C, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 5: 700-820 cm-1 (low - H2O,CO2; high - O3,CO2) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG),abscoefH(5,5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9), FRACREFB(MG,5), CCL4(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG5), CCL4C(NG5) REAL FRACREFAC(NG5,9), FRACREFBC(NG5,5) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(5) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+64) 2600 CONTINUE ABSA5(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JN = 1,5 DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(5) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+64) 3600 CONTINUE ABSB5(JN+(JTJT-1)*5+(JPJP-13)*25,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(5) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+64) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 5000 JPJP = 1,9 IPRSM = 0 DO 5400 IGC = 1,NGC(5) SUMF = 0. DO 5600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 5600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 5400 CONTINUE 5000 CONTINUE DO 6000 JPJP = 1,5 IPRSM = 0 DO 6400 IGC = 1,NGC(5) SUMF = 0. DO 6600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFB(IPRSM,JPJP) 6600 CONTINUE FRACREFBC(IGC,JPJP) = SUMF 6400 CONTINUE 6000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(5) SUMK = 0. DO 7600 IPR = 1, NGN(NGS(4)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + CCL4(IPRSM)*RWGT(IPRSM+64) 7600 CONTINUE CCL4C(IGC) = SUMK 7400 CONTINUE END SUBROUTINE CMBGB5 !*************************************************************************** SUBROUTINE CMBGB6(abscoefL, SELFREF, & FRACREFA, ABSCO2, CFC11ADJ, CFC12, & SELFREFC, ABSCO2C, CFC11ADJC, CFC12C, & FRACREFAC ) !*************************************************************************** ! ! BAND 6: 820-980 cm-1 (low - H2O; high - nothing) !*************************************************************************** ! Input REAL abscoefL(5,13,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG), ABSCO2(MG), CFC11ADJ(MG), CFC12(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG6), & ABSCO2C(NG6), CFC11ADJC(NG6), CFC12C(NG6) REAL FRACREFAC(NG6) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(6) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(5)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+80) 2600 CONTINUE ABSA6(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(6) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(5)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+80) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(6) SUMF = 0. SUMK1= 0. SUMK2= 0. SUMK3= 0. DO 7600 IPR = 1, NGN(NGS(5)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM) SUMK1= SUMK1+ ABSCO2(IPRSM)*RWGT(IPRSM+80) SUMK2= SUMK2+ CFC11ADJ(IPRSM)*RWGT(IPRSM+80) SUMK3= SUMK3+ CFC12(IPRSM)*RWGT(IPRSM+80) 7600 CONTINUE FRACREFAC(IGC) = SUMF ABSCO2C(IGC) = SUMK1 CFC11ADJC(IGC) = SUMK2 CFC12C(IGC) = SUMK3 7400 CONTINUE END SUBROUTINE CMBGB6 !*************************************************************************** SUBROUTINE CMBGB7(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, ABSCO2, & SELFREFC, ABSCO2C, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 7: 980-1080 cm-1 (low - H2O,O3; high - O3) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG),abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9), FRACREFB(MG), ABSCO2(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG7), ABSCO2C(NG7) REAL FRACREFAC(NG7,9), FRACREFBC(NG7) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(7) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(6)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+96) 2600 CONTINUE ABSA7(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(7) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(6)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+96) 3600 CONTINUE ABSB7(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(7) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(6)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+96) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 5000 JPJP = 1,9 IPRSM = 0 DO 5400 IGC = 1,NGC(7) SUMF = 0. DO 5600 IPR = 1, NGN(NGS(6)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 5600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 5400 CONTINUE 5000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(7) SUMF = 0. SUMK = 0. DO 7600 IPR = 1, NGN(NGS(6)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFB(IPRSM) SUMK = SUMK + ABSCO2(IPRSM)*RWGT(IPRSM+96) 7600 CONTINUE FRACREFBC(IGC) = SUMF ABSCO2C(IGC) = SUMK 7400 CONTINUE END SUBROUTINE CMBGB7 !*************************************************************************** SUBROUTINE CMBGB8(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, ABSCO2A, ABSCO2B, & ABSN2OA, ABSN2OB, CFC12, CFC22ADJ, & SELFREFC, ABSCO2AC, ABSCO2BC, & ABSN2OAC, ABSN2OBC, CFC12C, CFC22ADJC, & FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 8: 1080-1180 cm-1 (low (i.e.>~300mb) - H2O; high - O3) !*************************************************************************** ! Input REAL abscoefL(5,7,MG),abscoefH(5,7:59,MG), SELFREF(10,MG) REAL FRACREFA(MG), FRACREFB(MG), ABSCO2A(MG), ABSCO2B(MG) REAL ABSN2OA(MG), ABSN2OB(MG), CFC12(MG), CFC22ADJ(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG8), & ABSCO2AC(NG8), ABSCO2BC(NG8), & ABSN2OAC(NG8), ABSN2OBC(NG8), & CFC12C(NG8), CFC22ADJC(NG8) REAL FRACREFAC(NG8), FRACREFBC(NG8) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,7 IPRSM = 0 DO 2400 IGC = 1,NGC(8) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(7)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+112) 2600 CONTINUE ABSA8(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 7,59 IPRSM = 0 DO 3400 IGC = 1,NGC(8) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(7)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+112) 3600 CONTINUE ABSB8(JTJT+(JPJP-7)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(8) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(7)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+112) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(8) SUMF1= 0. SUMF2= 0. SUMK1= 0. SUMK2= 0. SUMK3= 0. SUMK4= 0. SUMK5= 0. SUMK6= 0. DO 7600 IPR = 1, NGN(NGS(7)+IGC) IPRSM = IPRSM + 1 SUMF1= SUMF1+ FRACREFA(IPRSM) SUMF2= SUMF2+ FRACREFB(IPRSM) SUMK1= SUMK1+ ABSCO2A(IPRSM)*RWGT(IPRSM+112) SUMK2= SUMK2+ ABSCO2B(IPRSM)*RWGT(IPRSM+112) SUMK3= SUMK3+ ABSN2OA(IPRSM)*RWGT(IPRSM+112) SUMK4= SUMK4+ ABSN2OB(IPRSM)*RWGT(IPRSM+112) SUMK5= SUMK5+ CFC12(IPRSM)*RWGT(IPRSM+112) SUMK6= SUMK6+ CFC22ADJ(IPRSM)*RWGT(IPRSM+112) 7600 CONTINUE FRACREFAC(IGC) = SUMF1 FRACREFBC(IGC) = SUMF2 ABSCO2AC(IGC) = SUMK1 ABSCO2BC(IGC) = SUMK2 ABSN2OAC(IGC) = SUMK3 ABSN2OBC(IGC) = SUMK4 CFC12C(IGC) = SUMK5 CFC22ADJC(IGC) = SUMK6 7400 CONTINUE END SUBROUTINE CMBGB8 !*************************************************************************** SUBROUTINE CMBGB9(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, ABSN2O, & SELFREFC, ABSN2OC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 9: 1180-1390 cm-1 (low - H2O,CH4; high - CH4) !*************************************************************************** ! Input REAL abscoefL(11,5,13,MG), abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9), FRACREFB(MG), ABSN2O(3*MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG9), ABSN2OC(3*NG9) REAL FRACREFAC(NG9,9), FRACREFBC(NG9) DO 2000 JN = 1,11 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(9) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+128) 2600 CONTINUE ABSA9(JN+(JTJT-1)*11+(JPJP-1)*55,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(9) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+128) 3600 CONTINUE ABSB9(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(9) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+128) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 5000 JN = 1,3 IPRSM = 0 DO 5400 IGC = 1,NGC(9) SUMK = 0. DO 5600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 JND = (JN-1)*16 SUMK = SUMK + ABSN2O(JND+IPRSM)*RWGT(IPRSM+128) 5600 CONTINUE JNDC = (JN-1)*NGC(9) ABSN2OC(JNDC+IGC) = SUMK 5400 CONTINUE 5000 CONTINUE DO 6000 JPJP = 1,9 IPRSM = 0 DO 6400 IGC = 1,NGC(9) SUMF = 0. DO 6600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 6600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 6400 CONTINUE 6000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(9) SUMF = 0. DO 7600 IPR = 1, NGN(NGS(8)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFB(IPRSM) 7600 CONTINUE FRACREFBC(IGC) = SUMF 7400 CONTINUE END SUBROUTINE CMBGB9 !*************************************************************************** SUBROUTINE CMBGB10(abscoefL, abscoefH, & FRACREFA, FRACREFB, & FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 10: 1390-1480 cm-1 (low - H2O; high - H2O) !*************************************************************************** ! Input REAL abscoefL(5,13,MG),abscoefH(5,13:59,MG) REAL FRACREFA(MG), FRACREFB(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL FRACREFAC(NG10), FRACREFBC(NG10) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(10) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(9)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+144) 2600 CONTINUE ABSA10(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(10) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(9)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+144) 3600 CONTINUE ABSB10(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(10) SUMF1= 0. SUMF2= 0. DO 7600 IPR = 1, NGN(NGS(9)+IGC) IPRSM = IPRSM + 1 SUMF1= SUMF1+ FRACREFA(IPRSM) SUMF2= SUMF2+ FRACREFB(IPRSM) 7600 CONTINUE FRACREFAC(IGC) = SUMF1 FRACREFBC(IGC) = SUMF2 7400 CONTINUE END SUBROUTINE CMBGB10 !*************************************************************************** SUBROUTINE CMBGB11(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, & SELFREFC, & FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 11: 1480-1800 cm-1 (low - H2O; high - H2O) !*************************************************************************** ! Input REAL abscoefL(5,13,MG),abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG), FRACREFB(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG11) REAL FRACREFAC(NG11), FRACREFBC(NG11) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(11) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(10)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+160) 2600 CONTINUE ABSA11(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(11) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(10)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+160) 3600 CONTINUE ABSB11(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(11) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(10)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+160) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(11) SUMF1= 0. SUMF2= 0. DO 7600 IPR = 1, NGN(NGS(10)+IGC) IPRSM = IPRSM + 1 SUMF1= SUMF1+ FRACREFA(IPRSM) SUMF2= SUMF2+ FRACREFB(IPRSM) 7600 CONTINUE FRACREFAC(IGC) = SUMF1 FRACREFBC(IGC) = SUMF2 7400 CONTINUE END SUBROUTINE CMBGB11 !*************************************************************************** SUBROUTINE CMBGB12(abscoefL, SELFREF, & FRACREFA, & SELFREFC, FRACREFAC ) !*************************************************************************** ! ! BAND 12: 1800-2080 cm-1 (low - H2O,CO2; high - nothing) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG12) REAL FRACREFAC(NG12,9) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(12) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(11)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+176) 2600 CONTINUE ABSA12(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(12) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(11)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+176) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 7000 JPJP = 1,9 IPRSM = 0 DO 7400 IGC = 1,NGC(12) SUMF = 0. DO 7600 IPR = 1, NGN(NGS(11)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 7600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 7400 CONTINUE 7000 CONTINUE END SUBROUTINE CMBGB12 !*************************************************************************** SUBROUTINE CMBGB13(abscoefL, SELFREF, FRACREFA, & SELFREFC, FRACREFAC ) !*************************************************************************** ! ! BAND 13: 2080-2250 cm-1 (low - H2O,N2O; high - nothing) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG13) REAL FRACREFAC(NG13,9) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(13) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(12)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+192) 2600 CONTINUE ABSA13(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(13) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(12)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+192) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 7000 JPJP = 1,9 IPRSM = 0 DO 7400 IGC = 1,NGC(13) SUMF = 0. DO 7600 IPR = 1, NGN(NGS(12)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 7600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 7400 CONTINUE 7000 CONTINUE END SUBROUTINE CMBGB13 !*************************************************************************** SUBROUTINE CMBGB14(abscoefL, abscoefH, SELFREF, & FRACREFA, FRACREFB, & SELFREFC, FRACREFAC, FRACREFBC ) !*************************************************************************** ! ! BAND 14: 2250-2380 cm-1 (low - CO2; high - CO2) !*************************************************************************** ! Input REAL abscoefL(5,13,MG),abscoefH(5,13:59,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG), FRACREFB(MG) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG14) REAL FRACREFAC(NG14), FRACREFBC(NG14) DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(14) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(13)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JTJT,JPJP,IPRSM)*RWGT(IPRSM+208) 2600 CONTINUE ABSA14(JTJT+(JPJP-1)*5,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 3000 JTJT = 1,5 DO 3200 JPJP = 13,59 IPRSM = 0 DO 3400 IGC = 1,NGC(14) SUMK = 0. DO 3600 IPR = 1, NGN(NGS(13)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefH(JTJT,JPJP,IPRSM)*RWGT(IPRSM+208) 3600 CONTINUE ABSB14(JTJT+(JPJP-13)*5,IGC) = SUMK 3400 CONTINUE 3200 CONTINUE 3000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(14) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(13)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+208) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE IPRSM = 0 DO 7400 IGC = 1,NGC(14) SUMF1= 0. SUMF2= 0. DO 7600 IPR = 1, NGN(NGS(13)+IGC) IPRSM = IPRSM + 1 SUMF1= SUMF1+ FRACREFA(IPRSM) SUMF2= SUMF2+ FRACREFB(IPRSM) 7600 CONTINUE FRACREFAC(IGC) = SUMF1 FRACREFBC(IGC) = SUMF2 7400 CONTINUE END SUBROUTINE CMBGB14 !*************************************************************************** SUBROUTINE CMBGB15(abscoefL, SELFREF, FRACREFA, & SELFREFC, FRACREFAC ) !*************************************************************************** ! ! BAND 15: 2380-2600 cm-1 (low - N2O,CO2; high - nothing) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG15) REAL FRACREFAC(NG15,9) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(15) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(14)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+224) 2600 CONTINUE ABSA15(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(15) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(14)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+224) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 7000 JPJP = 1,9 IPRSM = 0 DO 7400 IGC = 1,NGC(15) SUMF = 0. DO 7600 IPR = 1, NGN(NGS(14)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 7600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 7400 CONTINUE 7000 CONTINUE END SUBROUTINE CMBGB15 !*************************************************************************** SUBROUTINE CMBGB16(abscoefL, SELFREF, FRACREFA, & SELFREFC, FRACREFAC ) !*************************************************************************** ! ! BAND 16: 2600-3000 cm-1 (low - H2O,CH4; high - nothing) !*************************************************************************** ! Input REAL abscoefL(9,5,13,MG) REAL SELFREF(10,MG) REAL FRACREFA(MG,9) ! REAL RWGT(MG*NBANDS) ! Output REAL SELFREFC(10,NG16) REAL FRACREFAC(NG16,9) DO 2000 JN = 1,9 DO 2000 JTJT = 1,5 DO 2200 JPJP = 1,13 IPRSM = 0 DO 2400 IGC = 1,NGC(16) SUMK = 0. DO 2600 IPR = 1, NGN(NGS(15)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + abscoefL(JN,JTJT,JPJP,IPRSM)*RWGT(IPRSM+240) 2600 CONTINUE ABSA16(JN+(JTJT-1)*9+(JPJP-1)*45,IGC) = SUMK 2400 CONTINUE 2200 CONTINUE 2000 CONTINUE DO 4000 JTJT = 1,10 IPRSM = 0 DO 4400 IGC = 1,NGC(16) SUMK = 0. DO 4600 IPR = 1, NGN(NGS(15)+IGC) IPRSM = IPRSM + 1 SUMK = SUMK + SELFREF(JTJT,IPRSM)*RWGT(IPRSM+240) 4600 CONTINUE SELFREFC(JTJT,IGC) = SUMK 4400 CONTINUE 4000 CONTINUE DO 7000 JPJP = 1,9 IPRSM = 0 DO 7400 IGC = 1,NGC(16) SUMF = 0. DO 7600 IPR = 1, NGN(NGS(15)+IGC) IPRSM = IPRSM + 1 SUMF = SUMF + FRACREFA(IPRSM,JPJP) 7600 CONTINUE FRACREFAC(IGC,JPJP) = SUMF 7400 CONTINUE 7000 CONTINUE END SUBROUTINE CMBGB16 !------------------------------------------------------------------------- SUBROUTINE INIRAD (O3PROF,Pw, kts, kte) !------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts,kte REAL, DIMENSION( kts:kte ),INTENT(INOUT) :: O3PROF REAL, DIMENSION( kts:kte+1 ),INTENT(IN ) :: Pw ! LOCAL VAR REAL, DIMENSION( kts:kte+1 ) :: PAVEL, TAVEL REAL, DIMENSION( 0:kte+1 ) :: PZ, TZ INTEGER :: k ! ! COMPUTE OZONE MIXING RATIO DISTRIBUTION ! DO K=kts,kte O3PROF(K)=0. ENDDO CALL O3DATA(O3PROF, Pw, kts, kte) ! END SUBROUTINE INIRAD !------------------------------------------------------------------------- SUBROUTINE O3DATA (O3PROF, Pw, kts, kte) !------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------- ! INTEGER, INTENT(IN ) :: kts, kte ! REAL, DIMENSION( kts:kte ),INTENT(INOUT) :: O3PROF REAL, DIMENSION( kts:kte+1 ),INTENT(IN ) :: Pw ! LOCAL VAR INTEGER :: K, JJ, NK REAL :: PRLEVH(kts:kte+1),PPWRKH(32), & O3WRK(31),PPWRK(31),O3SUM(31),PPSUM(31), & O3WIN(31),PPWIN(31),O3ANN(31),PPANN(31) REAL :: PB1, PB2, PT1, PT2 DATA O3SUM /5.297E-8,5.852E-8,6.579E-8,7.505E-8, & 8.577E-8,9.895E-8,1.175E-7,1.399E-7,1.677E-7,2.003E-7, & 2.571E-7,3.325E-7,4.438E-7,6.255E-7,8.168E-7,1.036E-6, & 1.366E-6,1.855E-6,2.514E-6,3.240E-6,4.033E-6,4.854E-6, & 5.517E-6,6.089E-6,6.689E-6,1.106E-5,1.462E-5,1.321E-5, & 9.856E-6,5.960E-6,5.960E-6/ DATA PPSUM /955.890,850.532,754.599,667.742,589.841, & 519.421,455.480,398.085,347.171,301.735,261.310,225.360, & 193.419,165.490,141.032,120.125,102.689, 87.829, 75.123, & 64.306, 55.086, 47.209, 40.535, 34.795, 29.865, 19.122, & 9.277, 4.660, 2.421, 1.294, 0.647/ ! DATA O3WIN /4.629E-8,4.686E-8,5.017E-8,5.613E-8, & 6.871E-8,8.751E-8,1.138E-7,1.516E-7,2.161E-7,3.264E-7, & 4.968E-7,7.338E-7,1.017E-6,1.308E-6,1.625E-6,2.011E-6, & 2.516E-6,3.130E-6,3.840E-6,4.703E-6,5.486E-6,6.289E-6, & 6.993E-6,7.494E-6,8.197E-6,9.632E-6,1.113E-5,1.146E-5, & 9.389E-6,6.135E-6,6.135E-6/ DATA PPWIN /955.747,841.783,740.199,649.538,568.404, & 495.815,431.069,373.464,322.354,277.190,237.635,203.433, & 174.070,148.949,127.408,108.915, 93.114, 79.551, 67.940, & 58.072, 49.593, 42.318, 36.138, 30.907, 26.362, 16.423, & 7.583, 3.620, 1.807, 0.938, 0.469/ ! DO K=1,31 PPANN(K)=PPSUM(K) ENDDO ! O3ANN(1)=0.5*(O3SUM(1)+O3WIN(1)) ! DO K=2,31 O3ANN(K)=O3WIN(K-1)+(O3WIN(K)-O3WIN(K-1))/(PPWIN(K)-PPWIN(K-1))* & (PPSUM(K)-PPWIN(K-1)) ENDDO ! DO K=2,31 O3ANN(K)=0.5*(O3ANN(K)+O3SUM(K)) ENDDO ! DO K=1,31 O3WRK(K)=O3ANN(K) PPWRK(K)=PPANN(K) ENDDO ! ! CALCULATE HALF PRESSURE LEVELS FOR MODEL AND DATA LEVELS ! ! Pw is total P at w level ! Pw is in mb DO K=kts,kte+1 NK=kte+1-K+1 PRLEVH(K)=Pw(NK) ENDDO ! PPWRKH(1)=1100. DO K=2,31 PPWRKH(K)=(PPWRK(K)+PPWRK(K-1))/2. ENDDO PPWRKH(32)=0. DO K=kts,kte DO 25 JJ=1,31 IF((-(PRLEVH(K)-PPWRKH(JJ))).GE.0.)THEN PB1=0. ELSE PB1=PRLEVH(K)-PPWRKH(JJ) ENDIF IF((-(PRLEVH(K)-PPWRKH(JJ+1))).GE.0.)THEN PB2=0. ELSE PB2=PRLEVH(K)-PPWRKH(JJ+1) ENDIF IF((-(PRLEVH(K+1)-PPWRKH(JJ))).GE.0.)THEN PT1=0. ELSE PT1=PRLEVH(K+1)-PPWRKH(JJ) ENDIF IF((-(PRLEVH(K+1)-PPWRKH(JJ+1))).GE.0.)THEN PT2=0. ELSE PT2=PRLEVH(K+1)-PPWRKH(JJ+1) ENDIF O3PROF(K)=O3PROF(K)+(PB2-PB1-PT2+PT1)*O3WRK(JJ) 25 CONTINUE O3PROF(K)=O3PROF(K)/(PRLEVH(K)-PRLEVH(K+1)) ENDDO ! END SUBROUTINE O3DATA !--------------------------------------------------------------------------- SUBROUTINE MM5ATM(CLDFRA,O3PROF,T,Tw,TSFC,QV,QC,QR,QI,QS,QG, & P,Pw,DELZ,EMISS,R,G, & PAVEL,TAVEL,PZ,TZ,CLDFRAC,TAUCLOUD,COLDRY, & WKL,WX,TBOUND,SEMISS, & kts,kte ) !--------------------------------------------------------------------------- ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Revision for NCAR MM5: J. Dudhia (converted from CCM code) ! ! Input atmospheric profile from NCAR MM5, and prepare it for use in RRTM. ! Set other RRTM input parameters. Values are passed back through existing ! RRTM arrays and commons. !--------------------------------------------------------------------------- ! RRTM Definitions ! MXLAY = kte+1 ! Maximum number of model layers ! MAXXSEC ! Maximum number of cross sections ! NLAYERS ! Number of model layers (kte+1) ! PAVEL(MXLAY) ! Layer pressures (mb) ! PZ(0:MXLAY) ! Level (interface) pressures (mb) ! TAVEL(MXLAY) ! Layer temperatures (K) ! TZ(0:MXLAY) ! Level (interface) temperatures(mb) ! TBOUND ! Surface temperature (K) ! COLDRY(MXLAY) ! Dry air column (molecules/cm2) ! WKL(35,MXLAY) ! Molecular amounts (molecules/cm2) ! WBRODL(MXLAY) ! Inactive in this version ! WX(MAXXSEC) ! Cross-section amounts (molecules/cm2) ! CLDFRAC(MXLAY) ! Layer cloud fraction ! TAUCLOUD(MXLAY) ! Layer cloud optical depth ! AMD ! Atomic weight of dry air ! AMW ! Atomic weight of water ! AMO ! Atomic weight of ozone ! AMCH4 ! Atomic weight of methane ! AMN2O ! Atomic weight of nitrous oxide ! AMC11 ! Atomic weight of CFC-11 ! AMC12 ! Atomic weight of CFC-12 ! NXMOL ! Number of cross-section molecules ! IXINDX ! Cross-section molecule index (see below) ! IXSECT ! On/off flag for cross-sections (inactive) ! IXMAX ! Maximum number of cross-sections (inactive) ! !----------------------------------------------------------------------------- ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. !---------------------------------------------------------------------------- ! Activate cross section molecules: ! NXMOL - number of cross-sections input by user ! IXINDX(I) - index of cross-section molecule corresponding to Ith ! cross-section specified by user ! = 0 -- not allowed in RRTM ! = 1 -- CCL4 ! = 2 -- CFC11 ! = 3 -- CFC12 ! = 4 -- CFC22 ! DATA NXMOL /2/ ! DATA IXINDX /0,2,3,0,31*0/ ! ! CLOUD EMISSIVITIES (M^2/G) ! THESE ARE CONSISTENT WITH LWRAD (ABCW=0.5*(ABUP+ABDOWN)) !---------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts, kte ! REAL, DIMENSION( 35,kts:NLAYERS ), & INTENT(INOUT) :: WKL REAL, DIMENSION( MAXXSEC,kts:NLAYERS ), & INTENT(INOUT) :: WX REAL, INTENT(INOUT) :: TBOUND REAL, DIMENSION(NBANDS), INTENT(INOUT) :: SEMISS REAL, DIMENSION( kts:kte+1 ), INTENT(IN ) :: & Tw, & Pw REAL, DIMENSION( kts:kte ), INTENT(IN ) :: & CLDFRA, & O3PROF, & DELZ, & T, & P REAL, DIMENSION( kts:kte ), INTENT(INOUT) :: & QV REAL, DIMENSION( kts:kte ), INTENT(IN ) :: & QC, & QR, & QI, & QS, & QG REAL, DIMENSION( kts:NLAYERS ), INTENT(INOUT) :: & PAVEL, & TAVEL, & CLDFRAC, & TAUCLOUD, & COLDRY REAL, DIMENSION( 0:NLAYERS ), INTENT(INOUT) :: & PZ, & TZ REAL, INTENT(IN ) :: R,G,EMISS,TSFC REAL :: GRAVIT ! ! LOCAL REAL, DIMENSION( kts:kte ) :: CLDFRC, & PINT, & TINT, & O3, & N2O, & CH4, & CLWP, & CIWP, & PLWP, & PIWP ! New declarations for RRTM buffer patch. ! Steven Cavallo, NCAR/MMM 01/2010 INTEGER, PARAMETER :: nproflevs = 60 ! Constant, from the table INTEGER :: L, LL, klev ! Loop indices REAL, DIMENSION( kts:NLAYERS ) :: O3PROF2, PZR, varint REAL :: wght,vark,vark1 REAL :: PPROF(nproflevs), TPROF(nproflevs) ! Mean pressure and temperature profiles from midlatitude ! summer (MLS),midlatitude winter (MLW), sub-Arctic ! winter (SAW),and tropical (TROP) standard atmospheres. DATA PPROF /1000.00,855.47,731.82,626.05,535.57,458.16, & 391.94,335.29,286.83,245.38,209.91,179.57, & 153.62,131.41,112.42,96.17,82.27,70.38, & 60.21,51.51,44.06,37.69,32.25,27.59, & 23.60,20.19,17.27,14.77,12.64,10.81, & 9.25,7.91,6.77,5.79,4.95,4.24, & 3.63,3.10,2.65,2.27,1.94,1.66, & 1.42,1.22,1.04,0.89,0.76,0.65, & 0.56,0.48,0.41,0.35,0.30,0.26, & 0.22,0.19,0.16,0.14,0.12,0.10/ DATA TPROF /279.94,276.16,270.73,264.14,256.71,249.28, & 241.97,234.91,228.78,224.02,220.52,217.31, & 215.21,213.48,211.63,211.45,211.73,212.71, & 213.81,214.95,215.96,216.73,217.42,218.11, & 218.89,219.92,221.31,222.84,224.39,226.04, & 227.78,229.73,231.88,234.22,236.82,239.50, & 242.30,245.21,248.13,251.08,254.04,257.02, & 259.84,261.88,263.38,264.67,265.42,265.34, & 264.45,262.76,260.85,258.78,256.49,254.02, & 251.07,248.23,245.46,242.77,239.87,237.53/ ! End new declarations for buffer layer edit CHARACTER*80 errmess real :: amd ! Effective molecular weight of dry air (g/mol) real :: amw ! Molecular weight of water vapor (g/mol) real :: amo ! Molecular weight of ozone (g/mol) real :: amch4 ! Molecular weight of methane (g/mol) real :: amn2o ! Molecular weight of nitrous oxide (g/mol) real :: amc11 ! Molecular weight of CFC11 (g/mol) - CFCL3 real :: amc12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 real :: avgdro ! Avogadro's number (molecules/mole) ! Atomic weights for conversion from mass to volume mixing ratios data amd / 28.9644 / data amw / 18.0154 / data amo / 47.9998 / data amch4 / 16.0430 / data amn2o / 44.0128 / data amc11 / 137.3684 / data amc12 / 120.9138 / data avgdro/ 6.022E23 / ! Set molecular weight ratios real :: amdw, & ! Molecular weight of dry air / water vapor amdo, & ! Molecular weight of dry air / ozone amdc, & ! Molecular weight of dry air / methane amdn, & ! Molecular weight of dry air / nitrous oxide amdc1, & ! Molecular weight of dry air / CFC11 amdc2 ! Molecular weight of dry air / CFC12 data amdw / 1.607758 / data amdo / 0.603461 / data amdc / 1.805423 / data amdn / 0.658090 / data amdc1/ 0.210852 / data amdc2/ 0.239546 / ! Put in CO2 volume mixing ratio here (330 ppmv) ! Added H2O volume mixing ratio from standard atmosphere ! above 150 mb (Steven Cavallo, 01/2010). real :: co2vmr, h2ovmr data co2vmr / 330.e-6 / data h2ovmr / 5.00e-6 / REAL :: ABCW,ABICE,ABRN,ABSN DATA ABCW /0.144/ DATA ABICE /0.0735/ DATA ABRN /0.330E-3/ DATA ABSN /2.34E-3/ GRAVIT = G*100. ! ! MID-LAYER VALUES DO K=kts,kte RO=P(K)/(R*T(K))*100. DZ=DELZ(K) QV(K)=AMAX1(QV(K),1.E-12) CLDFRC(K)=CLDFRA(K) ! PATHS IN G/M^2 ! QI=0 if no ice phase ! QS=0 if no ice phase CLWP(K)=RO*QC(K)*DZ*1000. CIWP(K)=RO*QI(K)*DZ*1000. PLWP(K)=(RO*QR(K))**0.75*DZ*1000. PIWP(K)=(RO*QS(K))**0.75*DZ*1000. O3(K)=O3PROF(K) N2O(K)=0. CH4(K)=0. ENDDO ! Initialize all molecular amounts to zero here, then pass MM5 amounts ! into RRTM arrays WKL and WX below. ! DO 1000 ILAY = kts,kte+1 DO 1000 ILAY = kts,NLAYERS DO 1100 ISP = 1,35 1100 WKL(ISP,ILAY) = 0.0 DO 1200 ISP = 1,MAXXSEC 1200 WX(ISP,ILAY) = 0.0 1000 CONTINUE ! Set parameters needed for RRTM execution: IXSECT = 1 IXMAX = 4 ! Set surface temperature. The longwave upward surface flux is ! computed in the Land Surface Model based on the surface ! temperature and the emissivity of the surface type for each ! grid point. The bottom interface temperature, tint(kte+1), is ! ground temperature consistent with this LW upward flux, and ! TBOUND is set to this temperature here. ! TBOUND = TINT(kte+1) ! TBOUND = Tw(kte+1) TBOUND = TSFC IF(TBOUND .GT. 340.)THEN WRITE( errmess , '(A,F10.3)' ) 'rrtm: TBOUND exceeds table limit: reset ',TBOUND CALL wrf_message (errmess) TBOUND = 339.99 ENDIF ! Install MM5 profiles into RRTM arrays for pressure, temperature, ! and molecular amounts. Pressures are converted from cb ! (CCM) to mb (RRTM). H2O and trace gas amounts are converted from ! mass mixing ratio to volume mixing ratio. CO2 vmr is constant at all ! levels. The dry air column COLDRY (in molec/cm2) is calculated ! from the level pressures PZ (in mb) based on the hydrostatic equation ! and includes a correction to account for H2O in the layer. The ! molecular weight of moist air (amm) is calculated for each layer. ! RRTM is executed for additional levels (L = kte + int(p_top/4) + 1) ! from the model top (p_top) to 0 mb, to estimate the downward ! fluxes between the model top interface and the top of the atmosphere ! where kte is the top WRF model level index and p_top is the pressure at ! the top model level. H2O, CO2, N2O, and CH4 vmrs for these extra layers are ! set to the values in the model's top layer, though the O3 value is ! interpolated based on the US Std Atm. For GCMs with a model top near 0 mb, ! these extra layers are not needed, and NLAYERS should be set to the number ! of model layers (kte in this case). ! Note: RRTM levels count from bottom to top, while MM5 levels count ! from the top down and must be reversed here. ! NMOL = 6 ! PZ(0) = pint(kte+1) ! TZ(0) = tint(kte+1) PZ(0) = Pw(kte+1) TZ(0) = Tw(kte+1) ! DO 2000 L = 1, NLAYERS-1 DO 2000 L = 1, kte PAVEL(L) = p(kte+1-L) TAVEL(L) = t(kte+1-L) ! PZ(L) = pint(kte+1-L) ! TZ(L) = tint(kte+1-L) PZ(L) = Pw(kte+1-L) TZ(L) = Tw(kte+1-L) WKL(1,L) = qv(kte+1-L)*amdw ! Set the water vapor mixing ratio constant above ! the typical level where global and reanalysis data ! does not provide it. Steven Cavallo 01/2010. !IF (PAVEL(L).LE.100) THEN ! WKL(1,L) = h2ovmr !ENDIF WKL(2,L) = co2vmr WKL(3,L) = o3(kte+1-L) ! ozone is already bottom to top array but convert mmr to vmr WKL(3,L) = o3(L)*amdo WKL(4,L) = n2o(kte+1-L)*amdn WKL(6,L) = ch4(kte+1-L)*amdc amm = (1-WKL(1,L))*amd + WKL(1,L)*amw COLDRY(L) = (PZ(L-1)-PZ(L))*1.E3*avgdro/ & (gravit*amm*(1+WKL(1,L))) 2000 CONTINUE ! Set cross section molecule amounts from CCM; convert to vmr ! DO 2100 L=1, NLAYERS-1 DO 2100 L=1, kte ! WX(2,L) = c11mmr(kte+1-L)*amdc1 ! WX(3,L) = c12mmr(kte+1-L)*amdc2 WX(2,L) = 0. WX(3,L) = 0. 2100 CONTINUE ! old section IF ( 1 .EQ. 0 ) THEN ! ***** ! Set up values for extra layer at top of the atmosphere. ! The top layer temperature for all gridpoints is set to the top layer-1 ! temperature plus a constant (0 K) that represents an isothermal layer ! above ptop. Top layer interface temperatures are ! linearly interpolated from the layer temperatures. ! Note: The top layer temperature and ozone amount are based on a 0-3mb ! top layer and must be modified if the layering is changed. ! This section should be commented if the extra layer is not needed. PAVEL(NLAYERS) = 0.5*PZ(NLAYERS-1) TAVEL(NLAYERS) = TAVEL(NLAYERS-1) + 0.0 PZ(NLAYERS) = 0.00 TZ(NLAYERS-1) = 0.5*(TAVEL(NLAYERS)+TAVEL(NLAYERS-1)) TZ(NLAYERS) = TZ(NLAYERS-1)+0.0 WKL(1,NLAYERS) = WKL(1,NLAYERS-1) WKL(2,NLAYERS) = co2vmr WKL(3,NLAYERS) = 0.6*WKL(3,NLAYERS-1) WKL(4,NLAYERS) = WKL(4,NLAYERS-1) WKL(6,NLAYERS) = WKL(6,NLAYERS-1) amm = (1-WKL(1,NLAYERS-1))*amd + WKL(1,NLAYERS-1)*amw ! COLDRY(NLAYERS) = (PZ(NLAYERS-1))*1.E3*avgdro/ & COLDRY(NLAYERS) = ((PZ(NLAYERS-1)-PZ(NLAYERS)))*1.E3*avgdro/ & (gravit*amm*(1+WKL(1,NLAYERS-1))) WX(2,NLAYERS) = WX(2,NLAYERS-1) WX(3,NLAYERS) = WX(3,NLAYERS-1) ! ***** ENDIF ! ***** ! Set up values for extra layers to the top of the atmosphere. ! Temperature is calculated based on an average temperature profile given ! here in a table. The input table data is linearly interpolated to the ! column pressure. Mixing ratios are held constant except for ozone. ! Caution should be used if model top pressure is less than 5 hPa. ! Steven Cavallo, NCAR/MMM, January 2010 ! Calculate the column pressure buffer levels above the ! model top DO 3000 L=kte+1,NLAYERS-1,1 PZ(L) = PZ(L-1) - deltap PAVEL(L) = 0.5*(PZ(L) + PZ(L-1)) 3000 CONTINUE ! Add zero as top level. This gets the temperature max at the ! stratopause, reducing the downward flux errors in the top ! levels. If zero happened to be the top level already, ! this will add another level with zero, but will not affect ! the radiative transfer calculation. PZ(NLAYERS) = 0.00 PAVEL(NLAYERS) = 0.5*(PZ(NLAYERS) + PZ(NLAYERS-1)) ! Interpolate the table temperatures to column pressure levels DO 3100 L=1,NLAYERS,1 IF ( PPROF(nproflevs) .LT. PZ(L) ) THEN DO 3150 LL=2,nproflevs,1 IF ( PPROF(LL) .LT. PZ(L) ) THEN klev = LL - 1 exit ENDIF 3150 CONTINUE ELSE klev = nproflevs ENDIF IF (klev .NE. nproflevs ) THEN vark = TPROF(klev) vark1 = TPROF(klev+1) wght=( PZ(L)-PPROF(klev) ) / ( PPROF(klev+1)-PPROF(klev)) ELSE vark = TPROF(klev) vark1 = TPROF(klev) wght = 0.0 ENDIF varint(L) = wght*(vark1-vark)+vark 3100 CONTINUE ! Match the interpolated table temperature profile to WRF column DO 3200 L=kte+1,NLAYERS,1 TZ(L) = varint(L) + (TZ(kte) - varint(kte)) TAVEL(L) = 0.5*(TZ(L) + TZ(L-1)) 3200 CONTINUE ! Get the new ozone profile. First need to reverse pressure ! array for the ozone interpolator subroutines. DO 3225 L=kts,NLAYERS,1 klev=NLAYERS-L+1 PZR(L)=PZ(klev) 3225 CONTINUE CALL INIRAD (O3PROF2(kts:NLAYERS-1),PZR,kts,NLAYERS-1) ! Pick the top level to be the closest to zero from the table O3PROF2(NLAYERS) = 6.135E-6 ! Keep all molecular mixing ratios constant in the buffer zone, ! except for ozone IF ( kte .NE. NLAYERS ) THEN DO 3250 L=1,NLAYERS,1 WKL(3,L) = O3PROF2(L)*amdo! O3 IF ( L .GT. kte ) THEN ! WKL(1,L) = WKL(1,kte) ! H2O WKL(1,L) = h2ovmr ! H2O above model top set to constant value WKL(2,L) = co2vmr ! CO2 WKL(4,L) = WKL(4,kte) ! N2O WKL(6,L) = WKL(6,kte) ! CH4 amm = (1-WKL(1,L))*amd + WKL(1,L)*amw COLDRY(L) = (PZ(L-1)-PZ(L))*1.E3*avgdro/ & (gravit*amm*(1+WKL(1,L))) WX(2,L) = WX(2,kte) WX(3,L) = WX(3,kte) ENDIF 3250 CONTINUE ENDIF ! ! End of buffer layer edit. ! ! Here, all molecules in WKL and WX are in volume mixing ratio; convert to ! molec/cm2 based on COLDRY for use in RRTM DO 5000 L = 1, NLAYERS DO 4200 IMOL = 1, NMOL WKL(IMOL,L) = COLDRY(L) * WKL(IMOL,L) 4200 CONTINUE DO 4400 IX = 1,MAXXSEC IF (IXINDX(IX) .NE. 0) THEN WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20 ENDIF 4400 CONTINUE 5000 CONTINUE ! Set spectral surface emissivity for each longwave band. The default value ! is set here to emiss(i,j) based on land-use (taken to be constant across band ! Comment: if land-surface uses skin temperature, emissivity must match that ! used in its calculation (e.g. 1.0) DO 5500 N=1,NBANDS SEMISS(N) = EMISS 5500 CONTINUE ! Transfer cloud fraction to RRTM array; compute cloud optical depth, TAUCLOUD, ! as the product of clwp and cloud mass absorption coefficient in MM5, which is ! a combination of liquid and ice absorption coefficients. ! Note: RRTM levels count from bottom to top, while CCM levels count from the ! top down and must be reversed here. Values for the extra RRTM levels (above ! the model top) are set to zero. ! DO 7000 L = 1, NLAYERS-1 DO 7000 L = 1, kte TAUCLOUD(L) = ABCW*CLWP(kte+1-L)+ABICE*CIWP(kte+1-L) & +ABRN*PLWP(kte+1-L)+ABSN*PIWP(kte+1-L) IF(TAUCLOUD(L).GT.0.01)CLDFRC(kte+1-L)=1. CLDFRAC(L) = cldfrc(kte+1-L) 7000 CONTINUE ! CLDFRAC(NLAYERS) = 0.0 ! TAUCLOUD(NLAYERS) = 0.0 DO 7500 L = kte+1,NLAYERS,1 CLDFRAC(L) = 0.0 TAUCLOUD(L) = 0.0 7500 CONTINUE END SUBROUTINE MM5ATM !--------------------------------------------------------------------------- SUBROUTINE SETCOEF(kts,ktep1, & PAVEL,TAVEL,COLDRY,COLH2O,COLCO2,COLO3, & COLN2O,COLCH4,COLO2,CO2MULT, & FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC, & JP,JT,JT1,INDSELF,WKL,LAYTROP,LAYSWTCH,LAYLOW ) !--------------------------------------------------------------------------- IMPLICIT NONE !--------------------------------------------------------------------------- ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! For a given atmosphere, calculate the indices and fractions related to the ! pressure and temperature interpolations. Also calculate the values of the ! integrated Planck functions for each band at the level and layer ! temperatures. !--------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts, ktep1 REAL, DIMENSION( 35,kts:ktep1), & INTENT(IN ) :: WKL INTEGER, INTENT(INOUT) :: LAYTROP,LAYSWTCH,LAYLOW REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & PAVEL, & TAVEL, & COLDRY REAL, DIMENSION( kts:ktep1 ), INTENT(INOUT) :: & COLH2O, & COLCO2, & COLO3, & COLN2O, & COLCH4, & COLO2, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(INOUT) :: & JP, & JT, & JT1, & INDSELF ! LOCAL INTEGER :: LAY, JP1 REAL :: STPFAC, PLOG, FP, FT, FT1, WATERS, WATER, & CALEFAC, FACTOR, CO2REG, COMPFP, SCALEFAC ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STPFAC = 296./1013. LAYTROP = 0 LAYSWTCH = 0 LAYLOW = 0 DO 7000 LAY = 1, NLAYERS ! Find the two reference pressures on either side of the ! layer pressure. Store them in JP and JP1. Store in FP the ! fraction of the difference (in ln(pressure)) between these ! two values that the layer pressure lies. PLOG = LOG(PAVEL(LAY)) JP(LAY) = INT(36. - 5*(PLOG+0.04)) IF (JP(LAY) .LT. 1) THEN JP(LAY) = 1 ELSEIF (JP(LAY) .GT. 58) THEN JP(LAY) = 58 ENDIF JP1 = JP(LAY) + 1 FP = 5. * (PREFLOG(JP(LAY)) - PLOG) ! Determine, for each reference pressure (JP and JP1), which ! reference temperature (these are different for each ! reference pressure) is nearest the layer temperature but does ! not exceed it. Store these indices in JT and JT1, resp. ! Store in FT (resp. FT1) the fraction of the way between JT ! (JT1) and the next highest reference temperature that the ! layer temperature falls. JT(LAY) = INT(3. + (TAVEL(LAY)-TREF(JP(LAY)))/15.) IF (JT(LAY) .LT. 1) THEN JT(LAY) = 1 ELSEIF (JT(LAY) .GT. 4) THEN JT(LAY) = 4 ENDIF FT = ((TAVEL(LAY)-TREF(JP(LAY)))/15.) - FLOAT(JT(LAY)-3) JT1(LAY) = INT(3. + (TAVEL(LAY)-TREF(JP1))/15.) IF (JT1(LAY) .LT. 1) THEN JT1(LAY) = 1 ELSEIF (JT1(LAY) .GT. 4) THEN JT1(LAY) = 4 ENDIF FT1 = ((TAVEL(LAY)-TREF(JP1))/15.) - FLOAT(JT1(LAY)-3) WATER = WKL(1,LAY)/COLDRY(LAY) SCALEFAC = PAVEL(LAY) * STPFAC / TAVEL(LAY) ! If the pressure is less than ~100mb, perform a different ! set of species interpolations. IF (PLOG .LE. 4.56) GO TO 5300 LAYTROP = LAYTROP + 1 ! For one band, the "switch" occurs at ~300 mb. ! JD: changed from (PLOG .GE. 5.76) to avoid out-of-range IF (PLOG .Gt. 5.76) LAYSWTCH = LAYSWTCH + 1 IF (PLOG .GE. 6.62) LAYLOW = LAYLOW + 1 ! FORFAC(LAY) = SCALEFAC / (1.+WATER) ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. SELFFAC(LAY) = WATER * FORFAC(LAY) FACTOR = (TAVEL(LAY)-188.0)/7.2 INDSELF(LAY) = MIN(9, MAX(1, INT(FACTOR)-7)) SELFFRAC(LAY) = FACTOR - FLOAT(INDSELF(LAY) + 7) ! Calculate needed column amounts. COLH2O(LAY) = 1.E-20 * WKL(1,LAY) COLCO2(LAY) = 1.E-20 * WKL(2,LAY) COLO3(LAY) = 1.E-20 * WKL(3,LAY) COLN2O(LAY) = 1.E-20 * WKL(4,LAY) COLCH4(LAY) = 1.E-20 * WKL(6,LAY) COLO2(LAY) = 1.E-20 * WKL(7,LAY) IF (COLCO2(LAY) .EQ. 0.) COLCO2(LAY) = 1.E-32 * COLDRY(LAY) IF (COLN2O(LAY) .EQ. 0.) COLN2O(LAY) = 1.E-32 * COLDRY(LAY) IF (COLCH4(LAY) .EQ. 0.) COLCH4(LAY) = 1.E-32 * COLDRY(LAY) ! Using E = 1334.2 cm-1. CO2REG = 3.55E-24 * COLDRY(LAY) CO2MULT(LAY)= (COLCO2(LAY) - CO2REG) * & 272.63*EXP(-1919.4/TAVEL(LAY))/(8.7604E-4*TAVEL(LAY)) GO TO 5400 ! Above LAYTROP. 5300 CONTINUE FORFAC(LAY) = SCALEFAC / (1.+WATER) ! Calculate needed column amounts. COLH2O(LAY) = 1.E-20 * WKL(1,LAY) COLCO2(LAY) = 1.E-20 * WKL(2,LAY) COLO3(LAY) = 1.E-20 * WKL(3,LAY) COLN2O(LAY) = 1.E-20 * WKL(4,LAY) COLCH4(LAY) = 1.E-20 * WKL(6,LAY) COLO2(LAY) = 1.E-20 * WKL(7,LAY) IF (COLCO2(LAY) .EQ. 0.) COLCO2(LAY) = 1.E-32 * COLDRY(LAY) IF (COLN2O(LAY) .EQ. 0.) COLN2O(LAY) = 1.E-32 * COLDRY(LAY) IF (COLCH4(LAY) .EQ. 0.) COLCH4(LAY) = 1.E-32 * COLDRY(LAY) CO2REG = 3.55E-24 * COLDRY(LAY) CO2MULT(LAY)= (COLCO2(LAY) - CO2REG) * & 272.63*EXP(-1919.4/TAVEL(LAY))/(8.7604E-4*TAVEL(LAY)) 5400 CONTINUE ! We have now isolated the layer ln pressure and temperature, ! between two reference pressures and two reference temperatures ! (for each reference pressure). We multiply the pressure ! fraction FP with the appropriate temperature fractions to get ! the factors that will be needed for the interpolation that yields ! the optical depths (performed in routines TAUGBn for band n). COMPFP = 1. - FP FAC10(LAY) = COMPFP * FT FAC00(LAY) = COMPFP * (1. - FT) FAC11(LAY) = FP * FT1 FAC01(LAY) = FP * (1. - FT1) 7000 CONTINUE ! Set LAYLOW for profiles with surface pressure less than 750mb. IF (LAYLOW.EQ.0) LAYLOW=1 ! Sometimes round-off gives wrong LAYSWTCH therefore check here (JD) IF (JP(LAYSWTCH+1).LE.6) THEN LAYSWTCH=LAYSWTCH+1 ENDIF END SUBROUTINE SETCOEF !------------------------------------------------------------------------------- !* * !* Optical depths developed for the * !* * !* RAPID RADIATIVE TRANSFER MODEL (RRTM) * !* * !* * !* ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * !* 840 MEMORIAL DRIVE * !* CAMBRIDGE, MA 02139 * !* * !* * !* ELI J. MLAWER * !* STEVEN J. TAUBMAN * !* SHEPARD A. CLOUGH * !* * !* * !* * !* * !* email: mlawer@aer.com * !* * !* The authors wish to acknowledge the contributions of the * !* following people: Patrick D. Brown, Michael J. Iacono, * !* Ronald E. Farren, Luke Chen, Robert Bergstrom. * !* * !------------------------------------------------------------------------------- !* * !* Revision for NCAR CCM: Michael J. Iacono; September, 1998 * !* * !* TAUMOL * !* * !* This file contains the subroutines TAUGBn (where n goes from * !* 1 to 16). TAUGBn calculates the optical depths and Planck fractions * !* per g-value and layer for band n. * !* * !* Output: optical depths (unitless) * !* fractions needed to compute Planck functions at every layer * !* and g-value * !* * !* COMMON /TAUGCOM/ TAUG(MXLAY,MG) * !* COMMON /PLANKG/ FRACS(MXLAY,MG) * !* * !* Input * !* * !* COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * !* COMMON /PRECISE/ ONEMINUS * !* COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * !* & PZ(0:MXLAY),TZ(0:MXLAY) * !* COMMON /PROFDATA/ LAYTROP,LAYSWTCH,LAYLOW, * !* & COLH2O(MXLAY),COLCO2(MXLAY), * !* & COLO3(MXLAY),COLN2O(MXLAY),COLCH4(MXLAY), * !* & COLO2(MXLAY),CO2MULT(MXLAY) * !* COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * !* & FAC10(MXLAY),FAC11(MXLAY) * !* COMMON /INTIND/ JP(MXLAY),JT(MXLAY),JT1(MXLAY) * !* COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(MXLAY) * !* * !* Description: * !* NG(IBAND) - number of g-values in band IBAND * !* NSPA(IBAND) - for the lower atmosphere, the number of reference * !* atmospheres that are stored for band IBAND per * !* pressure level and temperature. Each of these * !* atmospheres has different relative amounts of the * !* key species for the band (i.e. different binary * !* species parameters). * !* NSPB(IBAND) - same for upper atmosphere * !* ONEMINUS - since problems are caused in some cases by interpolation * !* parameters equal to or greater than 1, for these cases * !* these parameters are set to this value, slightly < 1. * !* PAVEL - layer pressures (mb) * !* TAVEL - layer temperatures (degrees K) * !* PZ - level pressures (mb) * !* TZ - level temperatures (degrees K) * !* LAYTROP - layer at which switch is made from one combination of * !* key species to another * !* COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * !* vapor,carbon dioxide, ozone, nitrous ozide, methane, * !* respectively (molecules/cm**2) * !* CO2MULT - for bands in which carbon dioxide is implemented as a * !* trace species, this is the factor used to multiply the * !* band's average CO2 absorption coefficient to get the added * !* contribution to the optical depth relative to 355 ppm. * !* FACij(LAY) - for layer LAY, these are factors that are needed to * !* compute the interpolation factors that multiply the * !* appropriate reference k-values. A value of 0 (1) for * !* i,j indicates that the corresponding factor multiplies * !* reference k-value for the lower (higher) of the two * !* appropriate temperatures, and altitudes, respectively. * !* JP - the index of the lower (in altitude) of the two appropriate * !* reference pressure levels needed for interpolation * !* JT, JT1 - the indices of the lower of the two appropriate reference * !* temperatures needed for interpolation (for pressure * !* levels JP and JP+1, respectively) * !* SELFFAC - scale factor needed to water vapor self-continuum, equals * !* (water vapor density)/(atmospheric density at 296K and * !* 1013 mb) * !* SELFFRAC - factor needed for temperature interpolation of reference * !* water vapor self-continuum data * !* INDSELF - index of the lower of the two appropriate reference * !* temperatures needed for the self-continuum interpolation * !* * !* Data input * !* COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG) * !* (note: n is the band number) * !* * !* Description: * !* KA - k-values for low reference atmospheres (no water vapor * !* self-continuum) (units: cm**2/molecule) * !* KB - k-values for high reference atmospheres (all sources) * !* (units: cm**2/molecule) * !* SELFREF - k-values for water vapor self-continuum for reference * !* atmospheres (used below LAYTROP) * !* (units: cm**2/molecule) * !* * !* DIMENSION ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * !* EQUIVALENCE (KA,ABSA),(KB,ABSB) * !* * !******************************************************************************* !--------------------------------------------------------------------------- SUBROUTINE TAUGB1(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !--------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. ! Revised by Michael J. Iacono, Atmospheric & Environmental Research. ! BAND 1: 10-250 cm-1 (low - H2O; high - H2O) ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below LAYTROP, the water vapor self-continuum ! is interpolated (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(1) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(1) + 1 INDS = INDSELF(LAY) DO 2000 IG = 1, NG1 TAUG(IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSA1(IND0,IG) + & FAC10(LAY) * ABSA1(IND0+1,IG) + & FAC01(LAY) * ABSA1(IND1,IG) + & FAC11(LAY) * ABSA1(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC1(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC1(INDS+1,IG) - SELFREFC1(INDS,IG))) + & FORFAC(LAY) * FORREFC1(IG)) PFRAC(IG,LAY) = FRACREFAC1(IG) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(1) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(1) + 1 DO 3000 IG = 1, NG1 TAUG(IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSB1(IND0,IG) + & FAC10(LAY) * ABSB1(IND0+1,IG) + & FAC01(LAY) * ABSB1(IND1,IG) + & FAC11(LAY) * ABSB1(IND1+1,IG) + & FORFAC(LAY) * FORREFC1(IG)) PFRAC(IG,LAY) = FRACREFBC1(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB1 !---------------------------------------------------------------------------- SUBROUTINE TAUGB2(kts,ktep1,COLDRY,COLH2O,FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !---------------------------------------------------------------------------- ! BAND 2: 250-500 cm-1 (low - H2O; high - H2O) INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, PARAMETER :: NGS1=8 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLDRY, & COLH2O, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. DIMENSION FC00(kts:ktep1),FC01(kts:ktep1),FC10(kts:ktep1),FC11(kts:ktep1) DIMENSION REFPARAM(13) ! These are the mixing ratios for H2O for a MLS atmosphere at the ! 13 RRTM reference pressure levels: 1.8759999E-02, 1.2223309E-02, ! 5.8908667E-03, 2.7675382E-03, 1.4065107E-03, 7.5969833E-04, ! 3.8875898E-04, 1.6542293E-04, 3.7189537E-05, 7.4764857E-06, ! 4.3081886E-06, 3.3319423E-06, 3.2039343E-06/ ! The following are parameters related to the reference water vapor ! mixing ratios by REFPARAM(I) = REFH2O(I) / (.002+REFH2O(I)). ! These parameters are used for the Planck function interpolation. DATA REFPARAM/ & 0.903661, 0.859386, 0.746542, 0.580496, 0.412889, 0.275283, & 0.162745, 7.63929E-02, 1.82553E-02, 3.72432E-03, & 2.14946E-03, 1.66320E-03, 1.59940E-03/ ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below LAYTROP, the water vapor self-continuum is ! interpolated (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP WATER = 1.E20 * COLH2O(LAY) / COLDRY(LAY) H2OPARAM = WATER/(WATER +.002) DO 1800 IFRAC = 2, 12 IF (H2OPARAM .GE. REFPARAM(IFRAC)) GO TO 1900 1800 CONTINUE 1900 CONTINUE FRACINT = (H2OPARAM-REFPARAM(IFRAC))/ & (REFPARAM(IFRAC-1)-REFPARAM(IFRAC)) FP = FAC11(LAY) + FAC01(LAY) IFP = 2.E2*FP+0.5 IF (IFP.LE.0) IFP = 0 FC00(LAY) = FAC00(LAY) * CORR2(IFP) FC10(LAY) = FAC10(LAY) * CORR2(IFP) FC01(LAY) = FAC01(LAY) * CORR1(IFP) FC11(LAY) = FAC11(LAY) * CORR1(IFP) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(2) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(2) + 1 INDS = INDSELF(LAY) DO 2000 IG = 1, NG2 TAUG(NGS1+IG,LAY) = COLH2O(LAY) * & (FC00(LAY) * ABSA2(IND0,IG) + & FC10(LAY) * ABSA2(IND0+1,IG) + & FC01(LAY) * ABSA2(IND1,IG) + & FC11(LAY) * ABSA2(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC2(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC2(INDS+1,IG) - SELFREFC2(INDS,IG))) + & FORFAC(LAY) * FORREFC2(IG)) PFRAC(NGS1+IG,LAY) = FRACREFAC2(IG,IFRAC) + FRACINT * & (FRACREFAC2(IG,IFRAC-1)-FRACREFAC2(IG,IFRAC)) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS FP = FAC11(LAY) + FAC01(LAY) IFP = 2.E2*FP+0.5 IF (IFP.LE.0) IFP = 0 FC00(LAY) = FAC00(LAY) * CORR2(IFP) FC10(LAY) = FAC10(LAY) * CORR2(IFP) FC01(LAY) = FAC01(LAY) * CORR1(IFP) FC11(LAY) = FAC11(LAY) * CORR1(IFP) IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(2) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(2) + 1 DO 3000 IG = 1, NG2 TAUG(NGS1+IG,LAY) = COLH2O(LAY) * & (FC00(LAY) * ABSB2(IND0,IG) + & FC10(LAY) * ABSB2(IND0+1,IG) + & FC01(LAY) * ABSB2(IND1,IG) + & FC11(LAY) * ABSB2(IND1+1,IG) + & FORFAC(LAY) * FORREFC2(IG)) PFRAC(NGS1+IG,LAY) = FRACREFBC2(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB2 !----------------------------------------------------------------------------- SUBROUTINE TAUGB3(kts,ktep1,COLH2O,COLCO2,COLN2O,FAC00,FAC01,FAC10, & FAC11,FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !----------------------------------------------------------------------------- ! BAND 3: 500-630 cm-1 (low - H2O,CO2; high - H2O,CO2) INTEGER, PARAMETER :: NGS2=22 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCO2, & COLN2O, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. DIMENSION H2OREF(59),CO2REF(59), ETAREF(10) REAL N2OMULT,N2OREF(59) DATA ETAREF/ & 0.,0.125,0.25,0.375,0.5,0.625,0.75,0.875,0.9875,1.0/ DATA H2OREF/ & 1.87599E-02,1.22233E-02,5.89086E-03,2.76753E-03,1.40651E-03, & 7.59698E-04,3.88758E-04,1.65422E-04,3.71895E-05,7.47648E-06, & 4.30818E-06,3.33194E-06,3.20393E-06,3.16186E-06,3.25235E-06, & 3.42258E-06,3.62884E-06,3.91482E-06,4.14875E-06,4.30810E-06, & 4.44204E-06,4.57783E-06,4.70865E-06,4.79432E-06,4.86971E-06, & 4.92603E-06,4.96688E-06,4.99628E-06,5.05266E-06,5.12658E-06, & 5.25028E-06,5.35708E-06,5.45085E-06,5.48304E-06,5.50000E-06, & 5.50000E-06,5.45359E-06,5.40468E-06,5.35576E-06,5.25327E-06, & 5.14362E-06,5.03396E-06,4.87662E-06,4.69787E-06,4.51911E-06, & 4.33600E-06,4.14416E-06,3.95232E-06,3.76048E-06,3.57217E-06, & 3.38549E-06,3.19881E-06,3.01212E-06,2.82621E-06,2.64068E-06, & 2.45515E-06,2.26962E-06,2.08659E-06,1.93029E-06/ DATA N2OREF/ & 3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07, & 3.19652E-07,3.15324E-07,3.03830E-07,2.94221E-07,2.84953E-07, & 2.76714E-07,2.64709E-07,2.42847E-07,2.09547E-07,1.71945E-07, & 1.37491E-07,1.13319E-07,1.00354E-07,9.12812E-08,8.54633E-08, & 8.03631E-08,7.33718E-08,6.59754E-08,5.60386E-08,4.70901E-08, & 3.99774E-08,3.29786E-08,2.60642E-08,2.10663E-08,1.65918E-08, & 1.30167E-08,1.00900E-08,7.62490E-09,6.11592E-09,4.66725E-09, & 3.28574E-09,2.84838E-09,2.46198E-09,2.07557E-09,1.85507E-09, & 1.65675E-09,1.45843E-09,1.31948E-09,1.20716E-09,1.09485E-09, & 9.97803E-10,9.31260E-10,8.64721E-10,7.98181E-10,7.51380E-10, & 7.13670E-10,6.75960E-10,6.38250E-10,6.09811E-10,5.85998E-10, & 5.62185E-10,5.38371E-10,5.15183E-10,4.98660E-10/ DATA CO2REF/ & 53*3.55E-04, 3.5470873E-04, 3.5427220E-04, 3.5383567E-04, & 3.5339911E-04, 3.5282588E-04, 3.5079606E-04/ STRRAT = 1.19268 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT*COLCO2(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) IF (JS .EQ. 8) THEN IF (FS .GE. 0.9) THEN JS = 9 FS = 10. * (FS - 0.9) ELSE FS = FS/0.9 ENDIF ENDIF NS = JS + INT(FS + 0.5) FP = FAC01(LAY) + FAC11(LAY) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(3) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(3) + JS INDS = INDSELF(LAY) COLREF1 = N2OREF(JP(LAY)) COLREF2 = N2OREF(JP(LAY)+1) IF (NS .EQ. 10) THEN WCOMB1 = H2OREF(JP(LAY)) WCOMB2 = H2OREF(JP(LAY)+1) ELSE WCOMB1 = STRRAT * CO2REF(JP(LAY))/(1.-ETAREF(NS)) WCOMB2 = STRRAT * CO2REF(JP(LAY)+1)/(1.-ETAREF(NS)) ENDIF RATIO = (COLREF1/WCOMB1)+FP*((COLREF2/WCOMB2)-(COLREF1/WCOMB1)) CURRN2O = SPECCOMB * RATIO N2OMULT = COLN2O(LAY) - CURRN2O !!DIR$ VECTOR DO 2000 IG = 1, NG3 TAUG(NGS2+IG,LAY) = SPECCOMB * & (FAC000 * ABSA3(IND0,IG) + & FAC100 * ABSA3(IND0+1,IG) + & FAC010 * ABSA3(IND0+10,IG) + & FAC110 * ABSA3(IND0+11,IG) + & FAC001 * ABSA3(IND1,IG) + & FAC101 * ABSA3(IND1+1,IG) + & FAC011 * ABSA3(IND1+10,IG) + & FAC111 * ABSA3(IND1+11,IG)) + & COLH2O(LAY) * & (SELFFAC(LAY) * (SELFREFC3(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC3(INDS+1,IG) - SELFREFC3(INDS,IG))) + & FORFAC(LAY) * FORREFC3(IG)) & + N2OMULT * ABSN2OAC3(IG) PFRAC(NGS2+IG,LAY) = FRACREFAC3(IG,JS) + FS * & (FRACREFAC3(IG,JS+1) - FRACREFAC3(IG,JS)) 2000 CONTINUE 2500 CONTINUE !!DIR$ NOVECTOR !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS SPECCOMB = COLH2O(LAY) + STRRAT*COLCO2(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 4.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) NS = JS + INT(FS + 0.5) FP = FAC01(LAY) + FAC11(LAY) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(3) + JS IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(3) + JS COLREF1 = N2OREF(JP(LAY)) COLREF2 = N2OREF(JP(LAY)+1) IF (NS .EQ. 5) THEN WCOMB1 = H2OREF(JP(LAY)) WCOMB2 = H2OREF(JP(LAY)+1) ELSE WCOMB1 = STRRAT * CO2REF(JP(LAY))/(1.-ETAREF(NS)) WCOMB2 = STRRAT * CO2REF(JP(LAY)+1)/(1.-ETAREF(NS)) ENDIF RATIO = (COLREF1/WCOMB1)+FP*((COLREF2/WCOMB2)-(COLREF1/WCOMB1)) CURRN2O = SPECCOMB * RATIO N2OMULT = COLN2O(LAY) - CURRN2O !!DIR$ VECTOR DO 3000 IG = 1, NG3 TAUG(NGS2+IG,LAY) = SPECCOMB * & (FAC000 * ABSB3(IND0,IG) + & FAC100 * ABSB3(IND0+1,IG) + & FAC010 * ABSB3(IND0+5,IG) + & FAC110 * ABSB3(IND0+6,IG) + & FAC001 * ABSB3(IND1,IG) + & FAC101 * ABSB3(IND1+1,IG) + & FAC011 * ABSB3(IND1+5,IG) + & FAC111 * ABSB3(IND1+6,IG)) + & COLH2O(LAY) * FORFAC(LAY) * FORREFC3(IG) & + N2OMULT * ABSN2OBC3(IG) PFRAC(NGS2+IG,LAY) = FRACREFBC3(IG,JS) + FS * & (FRACREFBC3(IG,JS+1) - FRACREFBC3(IG,JS)) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB3 !---------------------------------------------------------------------------- SUBROUTINE TAUGB4(kts,ktep1,COLH2O,COLCO2,COLO3,FAC00,FAC01,FAC10, & FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !---------------------------------------------------------------------------- ! BAND 4: 630-700 cm-1 (low - H2O,CO2; high - O3,CO2) INTEGER, PARAMETER :: NGS3=38 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCO2, & COLO3, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 850.577 STRRAT2 = 35.7416 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !!DIR$ NOVECTOR !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLCO2(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(4) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(4) + JS INDS = INDSELF(LAY) !!DIR$ VECTOR DO 2000 IG = 1, NG4 TAUG(NGS3+IG,LAY) = SPECCOMB * & (FAC000 * ABSA4(IND0,IG) + & FAC100 * ABSA4(IND0+1,IG) + & FAC010 * ABSA4(IND0+9,IG) + & FAC110 * ABSA4(IND0+10,IG) + & FAC001 * ABSA4(IND1,IG) + & FAC101 * ABSA4(IND1+1,IG) + & FAC011 * ABSA4(IND1+9,IG) + & FAC111 * ABSA4(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC4(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC4(INDS+1,IG) - SELFREFC4(INDS,IG))) PFRAC(NGS3+IG,LAY) = FRACREFAC4(IG,JS) + FS * & (FRACREFAC4(IG,JS+1) - FRACREFAC4(IG,JS)) 2000 CONTINUE 2500 CONTINUE !!DIR$ NOVECTOR !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS SPECCOMB = COLO3(LAY) + STRRAT2*COLCO2(LAY) SPECPARM = COLO3(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 4.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) IF (JS .GT. 1) THEN JS = JS + 1 ELSEIF (FS .GE. 0.0024) THEN JS = 2 FS = (FS - 0.0024)/0.9976 ELSE JS = 1 FS = FS/0.0024 ENDIF FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(4) + JS IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(4) + JS !!DIR$ VECTOR DO 3000 IG = 1, NG4 TAUG(NGS3+IG,LAY) = SPECCOMB * & (FAC000 * ABSB4(IND0,IG) + & FAC100 * ABSB4(IND0+1,IG) + & FAC010 * ABSB4(IND0+6,IG) + & FAC110 * ABSB4(IND0+7,IG) + & FAC001 * ABSB4(IND1,IG) + & FAC101 * ABSB4(IND1+1,IG) + & FAC011 * ABSB4(IND1+6,IG) + & FAC111 * ABSB4(IND1+7,IG)) PFRAC(NGS3+IG,LAY) = FRACREFBC4(IG,JS) + FS * & (FRACREFBC4(IG,JS+1) - FRACREFBC4(IG,JS)) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB4 !---------------------------------------------------------------------------- SUBROUTINE TAUGB5(kts,ktep1,COLH2O,COLCO2,COLO3,FAC00,FAC01,FAC10, & FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,WX, & PFRAC,TAUG,LAYTROP ) !---------------------------------------------------------------------------- ! BAND 5: 700-820 cm-1 (low - H2O,CO2; high - O3,CO2) INTEGER, PARAMETER :: NGS4=52 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( MAXXSEC,kts:ktep1 ), & INTENT(IN ) :: WX REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCO2, & COLO3, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 90.4894 STRRAT2 = 0.900502 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !!DIR$ NOVECTOR !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLCO2(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(5) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(5) + JS INDS = INDSELF(LAY) !!DIR$ VECTOR DO 2000 IG = 1, NG5 TAUG(NGS4+IG,LAY) = SPECCOMB * & (FAC000 * ABSA5(IND0,IG) + & FAC100 * ABSA5(IND0+1,IG) + & FAC010 * ABSA5(IND0+9,IG) + & FAC110 * ABSA5(IND0+10,IG) + & FAC001 * ABSA5(IND1,IG) + & FAC101 * ABSA5(IND1+1,IG) + & FAC011 * ABSA5(IND1+9,IG) + & FAC111 * ABSA5(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC5(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC5(INDS+1,IG) - SELFREFC5(INDS,IG))) & + WX(1,LAY) * CCL4C5(IG) PFRAC(NGS4+IG,LAY) = FRACREFAC5(IG,JS) + FS * & (FRACREFAC5(IG,JS+1) - FRACREFAC5(IG,JS)) 2000 CONTINUE 2500 CONTINUE !!DIR$ NOVECTOR !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS SPECCOMB = COLO3(LAY) + STRRAT2*COLCO2(LAY) SPECPARM = COLO3(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 4.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(5) + JS IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(5) + JS !!DIR$ VECTOR DO 3000 IG = 1, NG5 TAUG(NGS4+IG,LAY) = SPECCOMB * & (FAC000 * ABSB5(IND0,IG) + & FAC100 * ABSB5(IND0+1,IG) + & FAC010 * ABSB5(IND0+5,IG) + & FAC110 * ABSB5(IND0+6,IG) + & FAC001 * ABSB5(IND1,IG) + & FAC101 * ABSB5(IND1+1,IG) + & FAC011 * ABSB5(IND1+5,IG) + & FAC111 * ABSB5(IND1+6,IG)) & + WX(1,LAY) * CCL4C5(IG) PFRAC(NGS4+IG,LAY) = FRACREFBC5(IG,JS) + FS * & (FRACREFBC5(IG,JS+1) - FRACREFBC5(IG,JS)) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB5 !----------------------------------------------------------------------------- SUBROUTINE TAUGB6(kts,ktep1,COLH2O,CO2MULT,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,WX,PFRAC,TAUG, & LAYTROP ) !----------------------------------------------------------------------------- ! BAND 6: 820-980 cm-1 (low - H2O; high - nothing) INTEGER, PARAMETER :: NGS5=68 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( MAXXSEC,kts:ktep1 ), & INTENT(IN ) :: WX REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. The water vapor self-continuum is interpolated ! (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(6) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(6) + 1 INDS = INDSELF(LAY) DO 2000 IG = 1, NG6 TAUG(NGS5+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSA6(IND0,IG) + & FAC10(LAY) * ABSA6(IND0+1,IG) + & FAC01(LAY) * ABSA6(IND1,IG) + & FAC11(LAY) * ABSA6(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC6(INDS,IG) + & SELFFRAC(LAY)* & (SELFREFC6(INDS+1,IG)-SELFREFC6(INDS,IG)))) & + WX(2,LAY) * CFC11ADJC6(IG) & + WX(3,LAY) * CFC12C6(IG) & + CO2MULT(LAY) * ABSCO2C6(IG) PFRAC(NGS5+IG,LAY) = FRACREFAC6(IG) 2000 CONTINUE 2500 CONTINUE ! Nothing important goes on above LAYTROP in this band. !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS DO 3000 IG = 1, NG6 TAUG(NGS5+IG,LAY) = 0.0 & + WX(2,LAY) * CFC11ADJC6(IG) & + WX(3,LAY) * CFC12C6(IG) PFRAC(NGS5+IG,LAY) = FRACREFAC6(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB6 !----------------------------------------------------------------------------- SUBROUTINE TAUGB7(kts,ktep1,COLH2O,COLO3,CO2MULT,FAC00,FAC01,FAC10, & FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !----------------------------------------------------------------------------- ! BAND 7: 980-1080 cm-1 (low - H2O,O3; high - O3) INTEGER, PARAMETER :: NGS6=76 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLO3, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 8.21104E4 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !!DIR$ NOVECTOR !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLO3(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*SPECPARM JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(7) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(7) + JS INDS = INDSELF(LAY) !!DIR$ VECTOR DO 2000 IG = 1, NG7 TAUG(NGS6+IG,LAY) = SPECCOMB * & (FAC000 * ABSA7(IND0,IG) + & FAC100 * ABSA7(IND0+1,IG) + & FAC010 * ABSA7(IND0+9,IG) + & FAC110 * ABSA7(IND0+10,IG) + & FAC001 * ABSA7(IND1,IG) + & FAC101 * ABSA7(IND1+1,IG) + & FAC011 * ABSA7(IND1+9,IG) + & FAC111 * ABSA7(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC7(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC7(INDS+1,IG) - SELFREFC7(INDS,IG)))& + CO2MULT(LAY) * ABSCO2C7(IG) PFRAC(NGS6+IG,LAY) = FRACREFAC7(IG,JS) + FS * & (FRACREFAC7(IG,JS+1) - FRACREFAC7(IG,JS)) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(7) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(7) + 1 DO 3000 IG = 1, NG7 TAUG(NGS6+IG,LAY) = COLO3(LAY) * & (FAC00(LAY) * ABSB7(IND0,IG) + & FAC10(LAY) * ABSB7(IND0+1,IG) + & FAC01(LAY) * ABSB7(IND1,IG) + & FAC11(LAY) * ABSB7(IND1+1,IG)) & + CO2MULT(LAY) * ABSCO2C7(IG) PFRAC(NGS6+IG,LAY) = FRACREFBC7(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB7 !---------------------------------------------------------------------------- SUBROUTINE TAUGB8(kts,ktep1,COLH2O,COLO3,COLN2O,CO2MULT, & FAC00,FAC01,FAC10,FAC11,SELFFAC,SELFFRAC, & JP,JT,JT1,INDSELF,WX,PFRAC,TAUG,LAYSWTCH ) !---------------------------------------------------------------------------- ! BAND 8: 1080-1180 cm-1 (low (i.e.>~300mb) - H2O; high - O3) INTEGER, PARAMETER :: NGS7=88 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYSWTCH REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( MAXXSEC,kts:ktep1 ), & INTENT(IN ) :: WX REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLO3, & COLN2O, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. DIMENSION H2OREF(59),O3REF(59) REAL N2OMULT,N2OREF(59) DATA H2OREF/ & 1.87599E-02,1.22233E-02,5.89086E-03,2.76753E-03,1.40651E-03, & 7.59698E-04,3.88758E-04,1.65422E-04,3.71895E-05,7.47648E-06, & 4.30818E-06,3.33194E-06,3.20393E-06,3.16186E-06,3.25235E-06, & 3.42258E-06,3.62884E-06,3.91482E-06,4.14875E-06,4.30810E-06, & 4.44204E-06,4.57783E-06,4.70865E-06,4.79432E-06,4.86971E-06, & 4.92603E-06,4.96688E-06,4.99628E-06,5.05266E-06,5.12658E-06, & 5.25028E-06,5.35708E-06,5.45085E-06,5.48304E-06,5.50000E-06, & 5.50000E-06,5.45359E-06,5.40468E-06,5.35576E-06,5.25327E-06, & 5.14362E-06,5.03396E-06,4.87662E-06,4.69787E-06,4.51911E-06, & 4.33600E-06,4.14416E-06,3.95232E-06,3.76048E-06,3.57217E-06, & 3.38549E-06,3.19881E-06,3.01212E-06,2.82621E-06,2.64068E-06, & 2.45515E-06,2.26962E-06,2.08659E-06,1.93029E-06/ DATA N2OREF/ & 3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07, & 3.19652E-07,3.15324E-07,3.03830E-07,2.94221E-07,2.84953E-07, & 2.76714E-07,2.64709E-07,2.42847E-07,2.09547E-07,1.71945E-07, & 1.37491E-07,1.13319E-07,1.00354E-07,9.12812E-08,8.54633E-08, & 8.03631E-08,7.33718E-08,6.59754E-08,5.60386E-08,4.70901E-08, & 3.99774E-08,3.29786E-08,2.60642E-08,2.10663E-08,1.65918E-08, & 1.30167E-08,1.00900E-08,7.62490E-09,6.11592E-09,4.66725E-09, & 3.28574E-09,2.84838E-09,2.46198E-09,2.07557E-09,1.85507E-09, & 1.65675E-09,1.45843E-09,1.31948E-09,1.20716E-09,1.09485E-09, & 9.97803E-10,9.31260E-10,8.64721E-10,7.98181E-10,7.51380E-10, & 7.13670E-10,6.75960E-10,6.38250E-10,6.09811E-10,5.85998E-10, & 5.62185E-10,5.38371E-10,5.15183E-10,4.98660E-10/ DATA O3REF/ & 3.01700E-08,3.47254E-08,4.24769E-08,5.27592E-08,6.69439E-08, & 8.71295E-08,1.13911E-07,1.56771E-07,2.17878E-07,3.24430E-07, & 4.65942E-07,5.68057E-07,6.96065E-07,1.11863E-06,1.76175E-06, & 2.32689E-06,2.95769E-06,3.65930E-06,4.59503E-06,5.31891E-06, & 5.96179E-06,6.51133E-06,7.06350E-06,7.69169E-06,8.25771E-06, & 8.70824E-06,8.83245E-06,8.71486E-06,8.09434E-06,7.33071E-06, & 6.31014E-06,5.36717E-06,4.48289E-06,3.83913E-06,3.28270E-06, & 2.82351E-06,2.49061E-06,2.16453E-06,1.83845E-06,1.66182E-06, & 1.50517E-06,1.34852E-06,1.19718E-06,1.04822E-06,8.99264E-07, & 7.63432E-07,6.53806E-07,5.44186E-07,4.34564E-07,3.64210E-07, & 3.11938E-07,2.59667E-07,2.07395E-07,1.91456E-07,1.93639E-07, & 1.95821E-07,1.98004E-07,2.06442E-07,2.81546E-07/ ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. !cdir novector DO 2500 LAY = 1, LAYSWTCH FP = FAC01(LAY) + FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(8) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(8) + 1 INDS = INDSELF(LAY) COLREF1 = N2OREF(JP(LAY)) COLREF2 = N2OREF(JP(LAY)+1) WCOMB1 = H2OREF(JP(LAY)) WCOMB2 = H2OREF(JP(LAY)+1) RATIO = (COLREF1/WCOMB1)+FP*((COLREF2/WCOMB2)-(COLREF1/WCOMB1)) CURRN2O = COLH2O(LAY) * RATIO N2OMULT = COLN2O(LAY) - CURRN2O DO 2000 IG = 1, NG8 TAUG(NGS7+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSA8(IND0,IG) + & FAC10(LAY) * ABSA8(IND0+1,IG) + & FAC01(LAY) * ABSA8(IND1,IG) + & FAC11(LAY) * ABSA8(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC8(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC8(INDS+1,IG) - SELFREFC8(INDS,IG))))& + WX(3,LAY) * CFC12C8(IG) & + WX(4,LAY) * CFC22ADJC8(IG) & + CO2MULT(LAY) * ABSCO2AC8(IG) & + N2OMULT * ABSN2OAC8(IG) PFRAC(NGS7+IG,LAY) = FRACREFAC8(IG) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYSWTCH+1, NLAYERS FP = FAC01(LAY) + FAC11(LAY) IND0 = ((JP(LAY)-7)*5+(JT(LAY)-1))*NSPB(8) + 1 IND1 = ((JP(LAY)-6)*5+(JT1(LAY)-1))*NSPB(8) + 1 COLREF1 = N2OREF(JP(LAY)) COLREF2 = N2OREF(JP(LAY)+1) WCOMB1 = O3REF(JP(LAY)) WCOMB2 = O3REF(JP(LAY)+1) RATIO = (COLREF1/WCOMB1)+FP*((COLREF2/WCOMB2)-(COLREF1/WCOMB1)) CURRN2O = COLO3(LAY) * RATIO N2OMULT = COLN2O(LAY) - CURRN2O DO 3000 IG = 1, NG8 TAUG(NGS7+IG,LAY) = COLO3(LAY) * & (FAC00(LAY) * ABSB8(IND0,IG) + & FAC10(LAY) * ABSB8(IND0+1,IG) + & FAC01(LAY) * ABSB8(IND1,IG) + & FAC11(LAY) * ABSB8(IND1+1,IG)) & + WX(3,LAY) * CFC12C8(IG) & + WX(4,LAY) * CFC22ADJC8(IG) & + CO2MULT(LAY) * ABSCO2BC8(IG) & + N2OMULT * ABSN2OBC8(IG) PFRAC(NGS7+IG,LAY) = FRACREFBC8(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB8 !----------------------------------------------------------------------------- SUBROUTINE TAUGB9(kts,ktep1,COLH2O,COLN2O,COLCH4,FAC00,FAC01,FAC10, & FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP,LAYSWTCH,LAYLOW ) !----------------------------------------------------------------------------- ! BAND 9: 1180-1390 cm-1 (low - H2O,CH4; high - CH4) INTEGER, PARAMETER :: NGS8=96 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP,LAYSWTCH,LAYLOW REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLN2O, & COLCH4, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. DIMENSION H2OREF(13),CH4REF(13),ETAREF(11) REAL N2OMULT,N2OREF(13) DATA N2OREF/ & 3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07,3.20000E-07, & 3.19652E-07,3.15324E-07,3.03830E-07,2.94221E-07,2.84953E-07, & 2.76714E-07,2.64709E-07,2.42847E-07/ DATA H2OREF/ & 1.8759999E-02, 1.2223309E-02, 5.8908667E-03, 2.7675382E-03, & 1.4065107E-03, 7.5969833E-04, 3.8875898E-04, 1.6542293E-04, & 3.7189537E-05, 7.4764857E-06, 4.3081886E-06, 3.3319423E-06, & 3.2039343E-06/ DATA CH4REF/ & 1.7000001E-06, 1.7000001E-06, 1.6998713E-06, 1.6904165E-06, & 1.6671424E-06, 1.6350652E-06, 1.6097551E-06, 1.5590465E-06, & 1.5119849E-06, 1.4741138E-06, 1.4384609E-06, 1.4002215E-06, & 1.3573376E-06/ DATA ETAREF/ & 0.,0.125,0.25,0.375,0.5,0.625,0.75,0.875,0.96,0.99,1.0/ STRRAT = 21.6282 IOFF = 0 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT*COLCH4(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) JFRAC = JS FS = MOD(SPECMULT,1.0) FFRAC = FS IF (JS .EQ. 8) THEN IF (FS .LE. 0.68) THEN FS = FS/0.68 ELSEIF (FS .LE. 0.92) THEN JS = JS + 1 FS = (FS-0.68)/0.24 ELSE JS = JS + 2 FS = (FS-0.92)/0.08 ENDIF ELSEIF (JS .EQ.9) THEN JS = 10 FS = 1. JFRAC = 8 FFRAC = 1. ENDIF FP = FAC01(LAY) + FAC11(LAY) NS = JS + INT(FS + 0.5) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(9) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(9) + JS INDS = INDSELF(LAY) IF (LAY .EQ. LAYLOW) IOFF = NG9 IF (LAY .EQ. LAYSWTCH) IOFF = 2*NG9 COLREF1 = N2OREF(JP(LAY)) COLREF2 = N2OREF(JP(LAY)+1) IF (NS .EQ. 11) THEN WCOMB1 = H2OREF(JP(LAY)) WCOMB2 = H2OREF(JP(LAY)+1) ELSE WCOMB1 = STRRAT * CH4REF(JP(LAY))/(1.-ETAREF(NS)) WCOMB2 = STRRAT * CH4REF(JP(LAY)+1)/(1.-ETAREF(NS)) ENDIF RATIO = (COLREF1/WCOMB1)+FP*((COLREF2/WCOMB2)-(COLREF1/WCOMB1)) CURRN2O = SPECCOMB * RATIO N2OMULT = COLN2O(LAY) - CURRN2O DO 2000 IG = 1, NG9 TAUG(NGS8+IG,LAY) = SPECCOMB * & (FAC000 * ABSA9(IND0,IG) + & FAC100 * ABSA9(IND0+1,IG) + & FAC010 * ABSA9(IND0+11,IG) + & FAC110 * ABSA9(IND0+12,IG) + & FAC001 * ABSA9(IND1,IG) + & FAC101 * ABSA9(IND1+1,IG) + & FAC011 * ABSA9(IND1+11,IG) + & FAC111 * ABSA9(IND1+12,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC9(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC9(INDS+1,IG) - SELFREFC9(INDS,IG))) & + N2OMULT * ABSN2OC9(IG+IOFF) PFRAC(NGS8+IG,LAY) = FRACREFAC9(IG,JFRAC) + FFRAC * & (FRACREFAC9(IG,JFRAC+1) - FRACREFAC9(IG,JFRAC)) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(9) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(9) + 1 DO 3000 IG = 1, NG9 TAUG(NGS8+IG,LAY) = COLCH4(LAY) * & (FAC00(LAY) * ABSB9(IND0,IG) + & FAC10(LAY) * ABSB9(IND0+1,IG) + & FAC01(LAY) * ABSB9(IND1,IG) + & FAC11(LAY) * ABSB9(IND1+1,IG)) PFRAC(NGS8+IG,LAY) = FRACREFBC9(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB9 !-------------------------------------------------------------------------------- SUBROUTINE TAUGB10(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11,JP,JT,JT1, & PFRAC,TAUG,LAYTROP ) !-------------------------------------------------------------------------------- ! BAND 10: 1390-1480 cm-1 (low - H2O; high - H2O) INTEGER, PARAMETER :: NGS9=108 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & FAC00, & FAC01, & FAC10, & FAC11 INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1 ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. !cdir novector DO 2500 LAY = 1, LAYTROP IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(10) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(10) + 1 DO 2000 IG = 1, NG10 TAUG(NGS9+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSA10(IND0,IG) + & FAC10(LAY) * ABSA10(IND0+1,IG) + & FAC01(LAY) * ABSA10(IND1,IG) + & FAC11(LAY) * ABSA10(IND1+1,IG)) PFRAC(NGS9+IG,LAY) = FRACREFAC10(IG) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(10) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(10) + 1 DO 3000 IG = 1, NG10 TAUG(NGS9+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSB10(IND0,IG) + & FAC10(LAY) * ABSB10(IND0+1,IG) + & FAC01(LAY) * ABSB10(IND1,IG) + & FAC11(LAY) * ABSB10(IND1+1,IG)) PFRAC(NGS9+IG,LAY) = FRACREFBC10(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB10 !-------------------------------------------------------------------------- SUBROUTINE TAUGB11(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP ) !-------------------------------------------------------------------------- ! BAND 11: 1480-1800 cm-1 (low - H2O; high - H2O) INTEGER, PARAMETER :: NGS10=114 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below LAYTROP, the water vapor self-continuum ! is interpolated (in temperature) separately. !cdir novector DO 2500 LAY = 1, LAYTROP IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(11) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(11) + 1 INDS = INDSELF(LAY) DO 2000 IG = 1, NG11 TAUG(NGS10+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSA11(IND0,IG) + & FAC10(LAY) * ABSA11(IND0+1,IG) + & FAC01(LAY) * ABSA11(IND1,IG) + & FAC11(LAY) * ABSA11(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC11(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC11(INDS+1,IG) - SELFREFC11(INDS,IG)))) PFRAC(NGS10+IG,LAY) = FRACREFAC11(IG) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(11) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(11) + 1 DO 3000 IG = 1, NG11 TAUG(NGS10+IG,LAY) = COLH2O(LAY) * & (FAC00(LAY) * ABSB11(IND0,IG) + & FAC10(LAY) * ABSB11(IND0+1,IG) + & FAC01(LAY) * ABSB11(IND1,IG) + & FAC11(LAY) * ABSB11(IND1+1,IG)) PFRAC(NGS10+IG,LAY) = FRACREFBC11(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB11 !----------------------------------------------------------------------------- SUBROUTINE TAUGB12(kts,ktep1,COLH2O,COLCO2,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP ) !----------------------------------------------------------------------------- ! BAND 12: 1800-2080 cm-1 (low - H2O,CO2; high - nothing) INTEGER, PARAMETER :: NGS11=122 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCO2, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 0.009736757 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. !!DIR$ NOVECTOR !cdir novector DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLCO2(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(12) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(12) + JS INDS = INDSELF(LAY) !!DIR$ VECTOR DO 2000 IG = 1, NG12 TAUG(NGS11+IG,LAY) = SPECCOMB * & (FAC000 * ABSA12(IND0,IG) + & FAC100 * ABSA12(IND0+1,IG) + & FAC010 * ABSA12(IND0+9,IG) + & FAC110 * ABSA12(IND0+10,IG) + & FAC001 * ABSA12(IND1,IG) + & FAC101 * ABSA12(IND1+1,IG) + & FAC011 * ABSA12(IND1+9,IG) + & FAC111 * ABSA12(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC12(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC12(INDS+1,IG) - SELFREFC12(INDS,IG))) PFRAC(NGS11+IG,LAY) = FRACREFAC12(IG,JS) + FS * & (FRACREFAC12(IG,JS+1) - FRACREFAC12(IG,JS)) 2000 CONTINUE 2500 CONTINUE !cdir novector DO 3500 LAY = LAYTROP+1, NLAYERS DO 3000 IG = 1, NG12 TAUG(NGS11+IG,LAY) = 0.0 PFRAC(NGS11+IG,LAY) = 0.0 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB12 !----------------------------------------------------------------------------- SUBROUTINE TAUGB13(kts,ktep1,COLH2O,COLN2O,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP ) !----------------------------------------------------------------------------- ! BAND 13: 2080-2250 cm-1 (low - H2O,N2O; high - nothing) INTEGER, PARAMETER :: NGS12=130 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLN2O, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 16658.87 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLN2O(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(13) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(13) + JS INDS = INDSELF(LAY) DO 2000 IG = 1, NG13 TAUG(NGS12+IG,LAY) = SPECCOMB * & (FAC000 * ABSA13(IND0,IG) + & FAC100 * ABSA13(IND0+1,IG) + & FAC010 * ABSA13(IND0+9,IG) + & FAC110 * ABSA13(IND0+10,IG) + & FAC001 * ABSA13(IND1,IG) + & FAC101 * ABSA13(IND1+1,IG) + & FAC011 * ABSA13(IND1+9,IG) + & FAC111 * ABSA13(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC13(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC13(INDS+1,IG) - SELFREFC13(INDS,IG))) PFRAC(NGS12+IG,LAY) = FRACREFAC13(IG,JS) + FS * & (FRACREFAC13(IG,JS+1) - FRACREFAC13(IG,JS)) 2000 CONTINUE 2500 CONTINUE DO 3500 LAY = LAYTROP+1, NLAYERS DO 3000 IG = 1, NG13 TAUG(NGS12+IG,LAY) = 0.0 PFRAC(NGS12+IG,LAY) = 0.0 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB13 !---------------------------------------------------------------------------- SUBROUTINE TAUGB14(kts,ktep1,COLCO2,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP ) !---------------------------------------------------------------------------- ! BAND 14: 2250-2380 cm-1 (low - CO2; high - CO2) INTEGER, PARAMETER :: NGS13=134 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLCO2, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below LAYTROP, the water vapor self-continuum ! is interpolated (in temperature) separately. DO 2500 LAY = 1, LAYTROP IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(14) + 1 IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(14) + 1 INDS = INDSELF(LAY) DO 2000 IG = 1, NG14 TAUG(NGS13+IG,LAY) = COLCO2(LAY) * & (FAC00(LAY) * ABSA14(IND0,IG) + & FAC10(LAY) * ABSA14(IND0+1,IG) + & FAC01(LAY) * ABSA14(IND1,IG) + & FAC11(LAY) * ABSA14(IND1+1,IG) + & SELFFAC(LAY) * (SELFREFC14(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC14(INDS+1,IG) - SELFREFC14(INDS,IG)))) PFRAC(NGS13+IG,LAY) = FRACREFAC14(IG) 2000 CONTINUE 2500 CONTINUE DO 3500 LAY = LAYTROP+1, NLAYERS IND0 = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(14) + 1 IND1 = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(14) + 1 DO 3000 IG = 1, NG14 TAUG(NGS13+IG,LAY) = COLCO2(LAY) * & (FAC00(LAY) * ABSB14(IND0,IG) + & FAC10(LAY) * ABSB14(IND0+1,IG) + & FAC01(LAY) * ABSB14(IND1,IG) + & FAC11(LAY) * ABSB14(IND1+1,IG)) PFRAC(NGS13+IG,LAY) = FRACREFBC14(IG) 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB14 !------------------------------------------------------------------------------ SUBROUTINE TAUGB15(kts,ktep1,COLH2O,COLCO2,COLN2O,FAC00,FAC01,FAC10, & FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF, & PFRAC,TAUG,LAYTROP ) !------------------------------------------------------------------------------ ! BAND 15: 2380-2600 cm-1 (low - N2O,CO2; high - nothing) INTEGER, PARAMETER :: NGS14=136 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCO2, & COLN2O, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 0.2883201 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. DO 2500 LAY = 1, LAYTROP SPECCOMB = COLN2O(LAY) + STRRAT1*COLCO2(LAY) SPECPARM = COLN2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(15) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(15) + JS INDS = INDSELF(LAY) DO 2000 IG = 1, NG15 TAUG(NGS14+IG,LAY) = SPECCOMB * & (FAC000 * ABSA15(IND0,IG) + & FAC100 * ABSA15(IND0+1,IG) + & FAC010 * ABSA15(IND0+9,IG) + & FAC110 * ABSA15(IND0+10,IG) + & FAC001 * ABSA15(IND1,IG) + & FAC101 * ABSA15(IND1+1,IG) + & FAC011 * ABSA15(IND1+9,IG) + & FAC111 * ABSA15(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC15(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC15(INDS+1,IG) - SELFREFC15(INDS,IG))) PFRAC(NGS14+IG,LAY) = FRACREFAC15(IG,JS) + FS * & (FRACREFAC15(IG,JS+1) - FRACREFAC15(IG,JS)) 2000 CONTINUE 2500 CONTINUE DO 3500 LAY = LAYTROP+1, NLAYERS DO 3000 IG = 1, NG15 TAUG(NGS14+IG,LAY) = 0.0 PFRAC(NGS14+IG,LAY) = 0.0 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB15 !----------------------------------------------------------------------------- SUBROUTINE TAUGB16(kts,ktep1,COLH2O,COLCH4,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP ) !----------------------------------------------------------------------------- ! BAND 16: 2600-3000 cm-1 (low - H2O,CH4; high - nothing) INTEGER, PARAMETER :: NGS15=138 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC, & TAUG REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLH2O, & COLCH4, & FAC00, & FAC01, & FAC10, & FAC11, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & JP, & JT, & JT1, & INDSELF ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. STRRAT1 = 830.411 ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below LAYTROP, the water ! vapor self-continuum is interpolated (in temperature) separately. DO 2500 LAY = 1, LAYTROP SPECCOMB = COLH2O(LAY) + STRRAT1*COLCH4(LAY) SPECPARM = COLH2O(LAY)/SPECCOMB IF (SPECPARM .GE. ONEMINUS) SPECPARM = ONEMINUS SPECMULT = 8.*(SPECPARM) JS = 1 + INT(SPECMULT) FS = MOD(SPECMULT,1.0) FAC000 = (1. - FS) * FAC00(LAY) FAC010 = (1. - FS) * FAC10(LAY) FAC100 = FS * FAC00(LAY) FAC110 = FS * FAC10(LAY) FAC001 = (1. - FS) * FAC01(LAY) FAC011 = (1. - FS) * FAC11(LAY) FAC101 = FS * FAC01(LAY) FAC111 = FS * FAC11(LAY) IND0 = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(16) + JS IND1 = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(16) + JS INDS = INDSELF(LAY) DO 2000 IG = 1, NG16 TAUG(NGS15+IG,LAY) = SPECCOMB * & (FAC000 * ABSA16(IND0,IG) + & FAC100 * ABSA16(IND0+1,IG) + & FAC010 * ABSA16(IND0+9,IG) + & FAC110 * ABSA16(IND0+10,IG) + & FAC001 * ABSA16(IND1,IG) + & FAC101 * ABSA16(IND1+1,IG) + & FAC011 * ABSA16(IND1+9,IG) + & FAC111 * ABSA16(IND1+10,IG)) + & COLH2O(LAY) * & SELFFAC(LAY) * (SELFREFC16(INDS,IG) + & SELFFRAC(LAY) * & (SELFREFC16(INDS+1,IG) - SELFREFC16(INDS,IG))) PFRAC(NGS15+IG,LAY) = FRACREFAC16(IG,JS) + FS * & (FRACREFAC16(IG,JS+1) - FRACREFAC16(IG,JS)) 2000 CONTINUE 2500 CONTINUE DO 3500 LAY = LAYTROP+1, NLAYERS DO 3000 IG = 1, NG16 TAUG(NGS15+IG,LAY) = 0.0 PFRAC(NGS15+IG,LAY) = 0.0 3000 CONTINUE 3500 CONTINUE END SUBROUTINE TAUGB16 !------------------------------------------------------------------------- SUBROUTINE RTRN(kts,ktep1, & TAVEL, PZ, TZ, CLDFRAC, TAUCLOUD, TOTDFLUX, & TOTUFLUX, HTR, ICLDLYR, ITR, PFRAC, TBOUND,SEMISS ) !------------------------------------------------------------------------- ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! This program calculates the upward fluxes, downward fluxes, and ! heating rates for an arbitrary clear or cloudy atmosphere. The input ! to this program is the atmospheric profile, all Planck function ! information, and the cloud fraction by layer. The diffusivity angle ! (SECANG=1.66) is used for the angle integration for consistency with ! the NCAR CCM; the Gaussian weight appropriate to this angle (WTNUM=0.5) ! is applied here. Note that use of the emissivity angle for the flux ! integration can cause errors of 1 to 4 W/m2 within cloudy layers. !------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, DIMENSION( NGPT,kts:ktep1 ), & INTENT(IN ) :: ITR REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(IN ) :: PFRAC REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & TAVEL REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & CLDFRAC, & TAUCLOUD REAL, DIMENSION( 0:ktep1 ),INTENT(INOUT):: & TOTDFLUX, & TOTUFLUX REAL, DIMENSION( 0:ktep1 ), INTENT(INOUT) :: & HTR REAL, DIMENSION( 0:ktep1 ), INTENT(IN ) :: & PZ, & TZ INTEGER, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & ICLDLYR REAL, INTENT(IN ) :: TBOUND REAL, DIMENSION(NBANDS), INTENT(IN ) :: SEMISS ! LOCAL VAR REAL, DIMENSION( 0:ktep1 ) :: & TOTUCLFL, & TOTDCLFL REAL, DIMENSION( 0:ktep1 ) :: & FNET, & FNETC, & HTRC INTEGER :: kk REAL :: CLRNTTOA,CLRNTSRF ! Parameters ! INTEGER, PARAMETER :: MXLAY=101 REAL, PARAMETER :: SECANG=1.66 REAL, PARAMETER :: WTNUM=0.5 ! RRTM Definitions ! Input ! MXLAY ! Maximum number of model layers ! NGPT ! Total number of g-point subintervals ! NBANDS ! Number of longwave spectral bands ! SECANG ! Diffusivity angle ! WTNUM ! Weight for radiance to flux conversion ! NLAYERS ! Number of model layers (plev+1) ! PAVEL(MXLAY) ! Layer pressures (mb) ! PZ(0:MXLAY) ! Level (interface) pressures (mb) ! TAVEL(MXLAY) ! Layer temperatures (K) ! TZ(0:MXLAY) ! Level (interface) temperatures(mb) ! TBOUND ! Surface temperature (K) ! CLDFRAC(MXLAY) ! Layer cloud fraction ! TAUCLOUD(MXLAY) ! Layer cloud optical depth ! ITR(NGPT,MXLAY) ! Integer look-up table index ! PFRAC(NGPT,MXLAY) ! Planck fractions ! ICLDLYR(MXLAY) ! Flag for cloudy layers ! ICLD ! Flag for cloudy in column ! SEMISS(NBANDS) ! Surface emissivities for each band ! BPADE ! Pade constant ! TAU ! Clear sky optical depth look-up table ! TF ! Tau transition function look-up table ! TRANS ! Clear sky transmittance look-up table ! Local ! ABSS(NGPT*MXLAY) ! Gaseous absorptivity ! ABSCLD(MXLAY) ! Cloud absorptivity ! ATOT(NGPT*MXLAY) ! Combined gaseous and cloud absorptivity ! ODCLR(NGPT,MXLAY) ! Clear sky (gaseous) optical depth ! ODCLD(MXLAY) ! Cloud optical depth ! EFCLFRAC(MXLAY) ! Effective cloud fraction ! RADLU(NGPT) ! Upward radiance ! URAD ! Spectrally summed upward radiance ! RADCLRU(NGPT) ! Clear sky upward radiance ! CLRURAD ! Spectrally summed clear sky upward radiance ! RADLD(NGPT) ! Downward radiance ! DRAD ! Spectrally summed downward radiance ! RADCLRD(NGPT) ! Clear sky downward radiance ! CLRDRAD ! Spectrally summed clear sky downward radianc ! Output ! TOTUFLUX(0:MXLAY) ! Upward longwave flux (W/m2) ! TOTDFLUX(0:MXLAY) ! Downward longwave flux (W/m2) ! FNET(0:MXLAY) ! Net longwave flux (W/m2) ! HTR(0:MXLAY) ! Longwave heating rate (K/day) ! CLRNTTOA ! Clear sky TOA outgoing flux (W/m2) ! CLRNTSFC ! Clear sky net surface flux (W/m2) ! TOTUCLFL(0:MXLAY) ! Clear sky upward longwave flux (W/m2) ! TOTDCLFL(0:MXLAY) ! Clear sky downward longwave flux (W/m2) ! FNETC(0:MXLAY) ! Clear sky net longwave flux (W/m2) ! HTRC(0:MXLAY) ! Clear sky longwave heating rate (K/day) ! ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. DIMENSION BBU(NGPT*(ktep1-kts+1)),BBUTOT(NGPT*(ktep1-kts)),BGLEV(NGPT) DIMENSION PLANKBND(NBANDS),PLNKEMIT(NBANDS) DIMENSION PLVL(NBANDS,0:ktep1),PLAY(NBANDS,kts:ktep1) DIMENSION INDLAY(kts:ktep1),INDLEV(0:ktep1) DIMENSION TLAYFRAC(kts:ktep1),TLEVFRAC(0:ktep1) DIMENSION ABSS(NGPT*(ktep1-kts+1)),ABSCLD(kts:ktep1-1),ATOT(NGPT*(ktep1-kts)) DIMENSION ODCLR(NGPT,kts:ktep1-1),ODCLD(kts:ktep1-1),EFCLFRAC(kts:ktep1-1) DIMENSION RADLU(NGPT),RADLD(NGPT) DIMENSION RADCLRU(NGPT),RADCLRD(NGPT) DIMENSION SEMIS(NGPT),RADUEMIT(NGPT) INDBOUND = TBOUND - 159. TBNDFRAC = TBOUND - INT(TBOUND) DO 200 LAY = 0, NLAYERS TOTUFLUX(LAY) = 0.0 TOTDFLUX(LAY) = 0.0 TOTUCLFL(LAY) = 0.0 TOTDCLFL(LAY) = 0.0 INDLEV(LAY) = TZ(LAY) - 159. TLEVFRAC(LAY) = TZ(LAY) - INT(TZ(LAY)) 200 CONTINUE DO 220 LEV = 1, NLAYERS IF (ICLDLYR(LEV).EQ.1) THEN INDLAY(LEV) = TAVEL(LEV) - 159. TLAYFRAC(LEV) = TAVEL(LEV) - INT(TAVEL(LEV)) ! Cloudy sky optical depth and absorptivity. ODCLD(LEV) = SECANG * TAUCLOUD(LEV) TRANSCLD = EXP(-ODCLD(LEV)) ABSCLD(LEV) = 1. - TRANSCLD EFCLFRAC(LEV) = ABSCLD(LEV) * CLDFRAC(LEV) ! Get clear sky optical depth from TAU lookup table DO 250 IPR = 1, NGPT IND = ITR(IPR,LEV) ODCLR(IPR,LEV) = TAU(IND) 250 CONTINUE ELSE INDLAY(LEV) = TAVEL(LEV) - 159. TLAYFRAC(LEV) = TAVEL(LEV) - INT(TAVEL(LEV)) ENDIF 220 CONTINUE ! SUMPL = 0.0 ! SUMPLEM = 0.0 ! *** Loop over frequency bands. DO 600 IBAND = 1, NBANDS DBDTLEV = TOTPLNK(INDBOUND+1,IBAND)-TOTPLNK(INDBOUND,IBAND) PLANKBND(IBAND) = DELWAVE(IBAND) * (TOTPLNK(INDBOUND,IBAND) + & TBNDFRAC * DBDTLEV) DBDTLEV = TOTPLNK(INDLEV(0)+1,IBAND) - & TOTPLNK(INDLEV(0),IBAND) PLVL(IBAND,0) = DELWAVE(IBAND) * (TOTPLNK(INDLEV(0),IBAND) + & TLEVFRAC(0)*DBDTLEV) PLNKEMIT(IBAND) = SEMISS(IBAND) * PLANKBND(IBAND) ! SUMPLEM = SUMPLEM + PLNKEMIT(IBAND) ! SUMPL = SUMPL + PLANKBND(IBAND) DO 300 LEV = 1, NLAYERS ! Calculate the integrated Planck functions at the level and ! layer temperatures. DBDTLEV = TOTPLNK(INDLEV(LEV)+1,IBAND) - & TOTPLNK(INDLEV(LEV),IBAND) DBDTLAY = TOTPLNK(INDLAY(LEV)+1,IBAND) - & TOTPLNK(INDLAY(LEV),IBAND) PLAY(IBAND,LEV) = DELWAVE(IBAND) * & (TOTPLNK(INDLAY(LEV),IBAND) + TLAYFRAC(LEV) * DBDTLAY) PLVL(IBAND,LEV) = DELWAVE(IBAND) * & (TOTPLNK(INDLEV(LEV),IBAND) + TLEVFRAC(LEV) * DBDTLEV) 300 CONTINUE 600 CONTINUE ! SEMISLW = SUMPLEM / SUMPL ! *** Initialize for radiative transfer. DO 500 IPR = 1, NGPT RADCLRD(IPR) = 0. RADLD(IPR) = 0. SEMIS(IPR) = SEMISS(NGB(IPR)) RADUEMIT(IPR) = PFRAC(IPR,1) * PLNKEMIT(NGB(IPR)) BGLEV(IPR) = PFRAC(IPR,NLAYERS) * PLVL(NGB(IPR),NLAYERS) 500 CONTINUE ! *** DOWNWARD RADIATIVE TRANSFER ! *** DRAD holds summed radiance for total sky stream ! *** CLRDRAD holds summed radiance for clear sky stream ICLDDN = 0 DO 3000 LEV = NLAYERS, 1, -1 DRAD = 0.0 CLRDRAD = 0.0 IF (ICLDLYR(LEV).EQ.1) THEN ! *** Cloudy layer ICLDDN = 1 IENT = NGPT * (LEV-1) DO 2000 IPR = 1, NGPT INDEX = IENT + IPR ! Get lookup table index IND = ITR(IPR,LEV) ! Add clear sky and cloud optical depths ODSM = ODCLR(IPR,LEV) + ODCLD(LEV) FACTOT = ODSM / (BPADE + ODSM) BGLAY = PFRAC(IPR,LEV) * PLAY(NGB(IPR),LEV) DELBGUP = BGLEV(IPR) - BGLAY ! Get TF from lookup table TAUF = TF(IND) BBU(INDEX) = BGLAY + TAUF * DELBGUP BBUTOT(INDEX) = BGLAY + FACTOT * DELBGUP BGLEV(IPR) = PFRAC(IPR,LEV) * PLVL(NGB(IPR),LEV-1) DELBGDN = BGLEV(IPR) - BGLAY BBD = BGLAY + TAUF * DELBGDN BBDLEVD = BGLAY + FACTOT * DELBGDN ! Get clear sky transmittance from lookup table ABSS(INDEX) = 1. - TRANS(IND) ATOT(INDEX) = ABSS(INDEX) + ABSCLD(LEV) - & ABSS(INDEX) * ABSCLD(LEV) GASSRC = BBD * ABSS(INDEX) ! Total sky radiance RADLD(IPR) = RADLD(IPR) - RADLD(IPR) * (ABSS(INDEX) + & EFCLFRAC(LEV) * (1.-ABSS(INDEX))) + GASSRC + & CLDFRAC(LEV) * (BBDLEVD * ATOT(INDEX) - GASSRC) DRAD = DRAD + RADLD(IPR) ! Clear sky radiance RADCLRD(IPR) = RADCLRD(IPR) + (BBD - RADCLRD(IPR)) & * ABSS(INDEX) CLRDRAD = CLRDRAD + RADCLRD(IPR) 2000 CONTINUE ELSE ! *** Clear layer IENT = NGPT * (LEV-1) DO 2100 IPR = 1, NGPT INDEX = IENT + IPR IND = ITR(IPR,LEV) BGLAY = PFRAC(IPR,LEV) * PLAY(NGB(IPR),LEV) DELBGUP = BGLEV(IPR) - BGLAY ! Get TF from lookup table TAUF = TF(IND) BBU(INDEX) = BGLAY + TAUF * DELBGUP BGLEV(IPR) = PFRAC(IPR,LEV) * PLVL(NGB(IPR),LEV-1) DELBGDN = BGLEV(IPR) - BGLAY BBD = BGLAY + TAUF * DELBGDN ! Get clear sky transmittance from lookup table ABSS(INDEX) = 1. - TRANS(IND) ! Total sky radiance RADLD(IPR) = RADLD(IPR) + (BBD - RADLD(IPR)) * & ABSS(INDEX) DRAD = DRAD + RADLD(IPR) 2100 CONTINUE ! Set clear sky stream to total sky stream as long as layers ! remain clear. Streams diverge when a cloud is reached. IF (ICLDDN.EQ.1) THEN DO 2200 IPR = 1, NGPT RADCLRD(IPR) = RADCLRD(IPR) + (BBD - RADCLRD(IPR)) * & ABSS(INDEX) CLRDRAD = CLRDRAD + RADCLRD(IPR) 2200 CONTINUE ELSE DO 2300 IPR = 1, NGPT RADCLRD(IPR) = RADLD(IPR) CLRDRAD = DRAD 2300 CONTINUE ENDIF ! 2100 CONTINUE ENDIF TOTDFLUX(LEV-1) = DRAD * WTNUM TOTDCLFL(LEV-1) = CLRDRAD * WTNUM 3000 CONTINUE ! SPECTRAL EMISSIVITY & REFLECTANCE ! Include the contribution of spectrally varying longwave emissivity and ! reflection from the surface to the upward radiative transfer. ! Note: Spectral and Lambertian reflection are identical for the one angle ! flux integration used here. URAD = 0.0 CLRURAD = 0.0 DO 3500 IPR = 1, NGPT ! Total sky radiance RADLU(IPR) = RADUEMIT(IPR) + (1. - SEMIS(IPR)) * RADLD(IPR) URAD = URAD + RADLU(IPR) ! Clear sky radiance RADCLRU(IPR) = RADUEMIT(IPR) + (1. - SEMIS(IPR)) & * RADCLRD(IPR) CLRURAD = CLRURAD + RADCLRU(IPR) 3500 CONTINUE TOTUFLUX(0) = URAD * WTNUM TOTUCLFL(0) = CLRURAD * WTNUM ! *** UPWARD RADIATIVE TRANSFER ! *** URAD holds the summed radiance for total sky stream ! *** CLRURAD holds the summed radiance for clear sky stream DO 5000 LEV = 1, NLAYERS URAD = 0.0 CLRURAD = 0.0 ! Check flag for cloud in current layer IF (ICLDLYR(LEV).EQ.1) THEN ! *** Cloudy layers IENT = NGPT * (LEV-1) DO 4000 IPR = 1, NGPT INDEX = IENT + IPR GASSRC = BBU(INDEX) * ABSS(INDEX) ! Total sky radiance RADLU(IPR) = RADLU(IPR) - RADLU(IPR) * (ABSS(INDEX) + & EFCLFRAC(LEV) * (1.-ABSS(INDEX))) + GASSRC + & CLDFRAC(LEV) * (BBUTOT(INDEX) * ATOT(INDEX) - GASSRC) URAD = URAD + RADLU(IPR) ! Clear sky radiance RADCLRU(IPR) = RADCLRU(IPR) + (BBU(INDEX) - RADCLRU(IPR)) * & ABSS(INDEX) CLRURAD = CLRURAD + RADCLRU(IPR) 4000 CONTINUE ELSE ! *** Clear layer IENT = NGPT * (LEV-1) DO 4100 IPR = 1, NGPT INDEX = IENT + IPR ! Total sky radiance RADLU(IPR) = RADLU(IPR) + (BBU(INDEX)-RADLU(IPR)) * & ABSS(INDEX) URAD = URAD + RADLU(IPR) ! Clear sky radiance ! Upward clear and total sky streams must remain separate because surface ! reflectance is different for each. RADCLRU(IPR) = RADCLRU(IPR) + (BBU(INDEX) - RADCLRU(IPR)) & * ABSS(INDEX) CLRURAD = CLRURAD + RADCLRU(IPR) 4100 CONTINUE ENDIF TOTUFLUX(LEV) = URAD * WTNUM TOTUCLFL(LEV) = CLRURAD * WTNUM 5000 CONTINUE ! *** Convert radiances to fluxes and heating rates for total sky. Calculates ! clear sky surface and TOA values. To compute clear sky profiles, uncommen ! relevant lines below. TOTUFLUX(0) = TOTUFLUX(0) * FLUXFAC TOTDFLUX(0) = TOTDFLUX(0) * FLUXFAC FNET(0) = TOTUFLUX(0) - TOTDFLUX(0) TOTUCLFL(0) = TOTUCLFL(0) * FLUXFAC TOTDCLFL(0) = TOTDCLFL(0) * FLUXFAC FNETC(0) = TOTUCLFL(0) - TOTDCLFL(0) CLRNTTOA = TOTUCLFL(NLAYERS) CLRNTSRF = TOTUFLUX(0) - TOTDCLFL(0) DO 7000 LEV = 1, NLAYERS TOTUFLUX(LEV) = TOTUFLUX(LEV) * FLUXFAC TOTDFLUX(LEV) = TOTDFLUX(LEV) * FLUXFAC FNET(LEV) = TOTUFLUX(LEV) - TOTDFLUX(LEV) TOTUCLFL(LEV) = TOTUCLFL(LEV) * FLUXFAC TOTDCLFL(LEV) = TOTDCLFL(LEV) * FLUXFAC FNETC(LEV) = TOTUCLFL(LEV) - TOTDCLFL(LEV) L = LEV - 1 ! Calculate Heating Rates. HTR(L) = HEATFAC * (FNET(L) - FNET(LEV)) / (PZ(L) - PZ(LEV)) HTRC(L) = HEATFAC * (FNETC(L) - FNETC(LEV)) / (PZ(L) - PZ(LEV)) 7000 CONTINUE HTR(NLAYERS) = 0.0 HTRC(NLAYERS) = 0.0 END SUBROUTINE RTRN !--------------------------------------------------------------------------- SUBROUTINE GASABS(kts,ktep1, & COLDRY,COLH2O,COLCO2,COLO3,COLN2O,COLCH4, & COLO2,CO2MULT, & FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC, & JP,JT,JT1,INDSELF,ITR,WX,PFRAC,TAUG, & LAYTROP,LAYSWTCH,LAYLOW ) !--------------------------------------------------------------------------- ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! This routine calculates the gaseous optical depths for all 16 longwave ! spectral bands. The optical depths are used to define the Pade ! approximation to the function of tau transition from tranparancy to ! opacity. This function, which varies from 0 to 1, is converted to an ! integer that will serve as an index for the lookup tables of tau ! transition function and transmittance used in the radiative transfer. ! These lookup tables are created on initialization in routine RRTMINIT. !--------------------------------------------------------------------------- ! ! Definitions ! NGPT ! Total number of g-point subintervals ! MXLAY ! Maximum number of model layers ! SECANG ! Diffusivity angle for flux computation ! TAU(NGPT,MXLAY) ! Gaseous optical depths ! NLAYERS ! Number of model layers used in RRTM ! PAVEL(MXLAY) ! Model layer pressures (mb) ! PZ(0:MXLAY) ! Model level (interface) pressures (mb) ! TAVEL(MXLAY) ! Model layer temperatures (K) ! TZ(0:MXLAY) ! Model level (interface) temperatures (K) ! TBOUND ! Surface temperature (K) ! BPADE ! Pade approximation constant (=1./0.278) ! ITR(NGPT,MXLAY) ! Integer lookup table index ! ! Parameters IMPLICIT NONE REAL, PARAMETER :: SECANG=1.66 INTEGER, INTENT(IN ) :: kts,ktep1 INTEGER, INTENT(IN ) :: LAYTROP,LAYSWTCH,LAYLOW REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: PFRAC REAL, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: TAUG REAL, DIMENSION( MAXXSEC,kts:ktep1 ), & INTENT(IN ) :: WX INTEGER, DIMENSION( NGPT,kts:ktep1 ), & INTENT(INOUT) :: ITR REAL, DIMENSION( kts:ktep1 ), INTENT(IN ) :: & COLDRY, & COLH2O, & COLCO2, & COLO3, & COLN2O, & COLCH4, & COLO2, & CO2MULT, & FAC00, & FAC01, & FAC10, & FAC11, & FORFAC, & SELFFAC, & SELFFRAC INTEGER, DIMENSION( kts:ktep1 ), INTENT(INOUT) :: & JP, & JT, & JT1, & INDSELF INTEGER :: lay,ipr REAL :: odepth,tff ! This compiler directive was added to insure private common block storage ! in multi-tasked mode on a CRAY or SGI for all commons except those that ! carry constants. ! ************************************************************************** ! Calculate optical depth for each band CALL TAUGB1(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB2(kts,ktep1,COLDRY,COLH2O,FAC00,FAC01,FAC10,FAC11, & FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB3(kts,ktep1,COLH2O,COLCO2,COLN2O,FAC00,FAC01,FAC10,FAC11,& FORFAC,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB4(kts,ktep1,COLH2O,COLCO2,COLO3,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB5(kts,ktep1,COLH2O,COLCO2,COLO3,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,WX,PFRAC,TAUG, & LAYTROP) CALL TAUGB6(kts,ktep1,COLH2O,CO2MULT,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,WX,PFRAC,TAUG, & LAYTROP) CALL TAUGB7(kts,ktep1,COLH2O,COLO3,CO2MULT,FAC00,FAC01,FAC10,FAC11,& SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB8(kts,ktep1,COLH2O,COLO3,COLN2O,CO2MULT,FAC00,FAC01,FAC10,& FAC11,SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,WX,PFRAC,TAUG,& LAYSWTCH) CALL TAUGB9(kts,ktep1,COLH2O,COLN2O,COLCH4,FAC00,FAC01,FAC10,FAC11,& SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP,LAYSWTCH,LAYLOW) CALL TAUGB10(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11,JP,JT,JT1,& PFRAC,TAUG,LAYTROP) CALL TAUGB11(kts,ktep1,COLH2O,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB12(kts,ktep1,COLH2O,COLCO2,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB13(kts,ktep1,COLH2O,COLN2O,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB14(kts,ktep1,COLCO2,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB15(kts,ktep1,COLH2O,COLCO2,COLN2O,FAC00,FAC01,FAC10,FAC11,& SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) CALL TAUGB16(kts,ktep1,COLH2O,COLCH4,FAC00,FAC01,FAC10,FAC11, & SELFFAC,SELFFRAC,JP,JT,JT1,INDSELF,PFRAC,TAUG, & LAYTROP) ! Compute the lookup table index from the Pade approximation of the ! tau transition function, which is derived from the optical depth. DO 6000 LAY = 1, NLAYERS DO 5000 IPR = 1, NGPT ODEPTH = SECANG * TAUG(IPR,LAY) TFF = ODEPTH/(BPADE+ODEPTH) IF (ODEPTH.LE.0.) TFF=0. ITR(IPR,LAY) = INT(5.E3*TFF+0.5) 5000 CONTINUE 6000 CONTINUE END SUBROUTINE GASABS !==================================================================== SUBROUTINE rrtminit( & p_top, allowed_to_read , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !-------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------- LOGICAL , INTENT(IN) :: allowed_to_read INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN) :: p_top ! REAL, PARAMETER :: deltap = 4 ! Pressure interval for buffer layer (hPa) REAL :: pi PI = 2.*ASIN(1.) FLUXFAC = PI * 2.D4 !NLAYERS = kme NLAYERS = kme + nint(p_top*0.01/deltap)- 1 ! Model levels plus new levels IF ( allowed_to_read ) THEN CALL rrtm_lookuptable ENDIF END SUBROUTINE rrtminit ! ************************************************************************** SUBROUTINE rrtm_lookuptable ! ************************************************************************** USE module_wrf_error !USE module_dm, ONLY : wrf_dm_bcast_bytes IMPLICIT NONE ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: Michael J. Iacono; July, 1998 ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! This subroutine performs calculations necessary for the initialization ! of the LW model, RRTM. Lookup tables are computed for use in the LW ! radiative transfer, and input absorption coefficient data for each ! spectral band are reduced from 256 g-points to 140 for use in RRTM. ! ************************************************************************** ! Definitions ! Arrays for 5000-point look-up tables: ! TAU Clear-sky optical depth (used in cloudy radiative transfer) ! TF Tau transition function; i.e. the transition of the Planck ! function from that for the mean layer temperature to that for ! the layer boundary temperature as a function of optical depth. ! The "linear in tau" method is used to make the table. ! TRANS Transmittance ! BPADE Inverse of the Pade approximation constant (= 1./0.278) ! Local INTEGER :: i,itre,igcsm,ibnd,igc,ind,ig,ipr,iprsm REAL :: tfn,fp,rtfp,wtsum LOGICAL :: opened LOGICAL , EXTERNAL :: wrf_dm_on_monitor REAL :: WTSM(MG) CHARACTER*80 errmess INTEGER rrtm_unit IF ( wrf_dm_on_monitor() ) THEN DO i = 10,99 INQUIRE ( i , OPENED = opened ) IF ( .NOT. opened ) THEN rrtm_unit = i GOTO 2010 ENDIF ENDDO rrtm_unit = -1 2010 CONTINUE ENDIF CALL wrf_dm_bcast_bytes ( rrtm_unit , IWORDSIZE ) IF ( rrtm_unit < 0 ) THEN CALL wrf_error_fatal ( 'module_ra_rrtm: rrtm_lookuptable: Can not '// & 'find unused fortran unit to read in lookup table.' ) ENDIF ! start data 1 ! ************************************************************************** ! RRTM Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for NCAR CCM: Michael J. Iacono; September, 1998 ! ! This routine contains 16 READ statements that include the ! absorption coefficients and other data for each of the 16 longwave ! spectral bands used in RRTM. Here, the data are defined for 16 ! g-points, or sub-intervals, per band. These data are combined and ! weighted using a mapping procedure in routine RRTMINIT to reduce ! the total number of g-points from 256 to 140 for use in the CCM. ! ************************************************************************** IF ( wrf_dm_on_monitor() ) THEN OPEN(rrtm_unit,FILE='RRTM_DATA', & FORM='UNFORMATTED',STATUS='OLD',ERR=9009) ENDIF ! The array abscoefL1 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefH1 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF1 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL1, abscoefH1, SELFREF1 DM_BCAST_MACRO(abscoefL1) DM_BCAST_MACRO(abscoefH1) DM_BCAST_MACRO(SELFREF1) ! ************************************************************************** ! The array abscoefL2 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefH2 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF2 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL2, abscoefH2, SELFREF2 DM_BCAST_MACRO(abscoefL2) DM_BCAST_MACRO(abscoefH2) DM_BCAST_MACRO(SELFREF2) ! ************************************************************************** ! The array abscoefL3 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different water vapor to CO2 ratios, & ! as expressed through the binary species parameter eta, defined as ! eta = h2o/(h20 + (rat) * co2), where rat is the ratio of the integrated ! line strength in the band of co2 to that of h2o. For instance, & ! JS=1 refers to dry air (eta = 0), JS = 10 corresponds to eta = 1.0. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array abscoefH3 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of H2O to CO2. The first index in the array, JS, runs from 1 to 5, & ! and corresponds to different H2O to CO2 ratios, as expressed through ! the binary species parameter eta, defined as eta = H2O/(H2O+RAT*CO2), & ! where RAT is the ratio of the integrated line strength in the band ! of CO2 to that of H2O. For instance, JS=1 refers to no H2O, & ! JS = 2 corresponds to eta = 0.25, etc. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! The array SELFREF3 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL3, abscoefH3, SELFREF3 DM_BCAST_MACRO(abscoefL3) DM_BCAST_MACRO(abscoefH3) DM_BCAST_MACRO(SELFREF3) ! ************************************************************************** ! The array abscoefL4 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 9 and corresponds to different water vapor to CO2 ratios, & ! as expressed through the binary species parameter eta, defined as ! eta = h2o/(h20 + (rat) * co2), where rat is the ratio of the integrated ! line strength in the band of co2 to that of h2o. For instance, & ! JS=1 refers to dry air (eta = 0), JS = 9 corresponds to eta = 1.0. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, & ! JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array abscoefH4 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of O3 to CO2. The first index in the array, JS, runs from 1 to 6, & ! and corresponds to different O3 to CO2 ratios, as expressed through ! the binary species parameter eta, defined as eta = O3/(O3+RAT*H2O), & ! where RAT is the ratio of the integrated line strength in the band ! of CO2 to that of O3. For instance, JS=1 refers to no O3 (eta = 0) ! and JS = 5 corresponds to eta = 1.0. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! The array SELFREF4 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL4, abscoefH4, SELFREF4 DM_BCAST_MACRO(abscoefL4) DM_BCAST_MACRO(abscoefH4) DM_BCAST_MACRO(SELFREF4) ! ************************************************************************** ! The array abscoefL5 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 9 and corresponds to different water vapor to CO2 ratios, & ! as expressed through the binary species parameter eta, defined as ! eta = h2o/(h20 + (rat) * co2), where rat is the ratio of the integrated ! line strength in the band of co2 to that of h2o. For instance, & ! JS=1 refers to dry air (eta = 0), JS = 9 corresponds to eta = 1.0. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, & ! JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array abscoefH5 contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of O3 to CO2. The first index in the array, JS, runs from 1 to 5, & ! and corresponds to different O3 to CO2 ratios, as expressed through ! the binary species parameter eta, defined as eta = O3/(O3+RAT*CO2), & ! where RAT is the ratio of the integrated line strength in the band ! of co2 to that of O3. For instance, JS=1 refers to no O3 (eta = 0) ! and JS = 5 corresponds to eta = 1.0. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! The array SELFREF5 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL5, abscoefH5, SELFREF5 DM_BCAST_MACRO(abscoefL5) DM_BCAST_MACRO(abscoefH5) DM_BCAST_MACRO(SELFREF5) ! ************************************************************************** ! The array abscoefL6 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array SELFREF6 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL6, SELFREF6 DM_BCAST_MACRO(abscoefL6) DM_BCAST_MACRO(SELFREF6) ! ************************************************************************** ! The array abscoefL7 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 9, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array abscoefH7 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF7 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL7, abscoefH7, SELFREF7 DM_BCAST_MACRO(abscoefL7) DM_BCAST_MACRO(abscoefH7) DM_BCAST_MACRO(SELFREF7) ! ************************************************************************** ! The array abscoefL8 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefL8 contains absorption coef5s at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the cooresponding TREF for this pressure level, & ! JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The second index, JP, runs from 1 to 13 and refers ! to the corresponding pressure level in PREF (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The third index, IG, goes from 1 to 16, & ! and tells us which "g-channel" the absorption coefficients are for. ! The array abscoefH8 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! ! SELFREF8 is the array for the self-continuum. ! IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL8, abscoefH8, SELFREF8 DM_BCAST_MACRO(abscoefL8) DM_BCAST_MACRO(abscoefH8) DM_BCAST_MACRO(SELFREF8) ! ************************************************************************** ! The array abscoefL9 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 11, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array abscoefH9 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF9 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL9, abscoefH9, SELFREF9 DM_BCAST_MACRO(abscoefL9) DM_BCAST_MACRO(abscoefH9) DM_BCAST_MACRO(SELFREF9) ! ************************************************************************** ! The array abscoefL10 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefH10 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL10, abscoefH10 DM_BCAST_MACRO(abscoefL10) DM_BCAST_MACRO(abscoefH10) ! ************************************************************************** ! The array abscoefL11 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefH11 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF11 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL11, abscoefH11, SELFREF11 DM_BCAST_MACRO(abscoefL11) DM_BCAST_MACRO(abscoefH11) DM_BCAST_MACRO(SELFREF11) ! ************************************************************************** ! The array abscoefL12 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 9, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array SELFREF12 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL12, SELFREF12 DM_BCAST_MACRO(abscoefL12) DM_BCAST_MACRO(SELFREF12) ! ************************************************************************** ! The array abscoefL13 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 9, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array SELFREF13 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL13, SELFREF13 DM_BCAST_MACRO(abscoefL13) DM_BCAST_MACRO(SELFREF13) ! ************************************************************************** ! The array abscoefL14 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, & ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, & ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array abscoefH14 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, & ! and tells us which g-interval the absorption coefficients are for. ! The array SELFREF14 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL14, abscoefH14, SELFREF14 DM_BCAST_MACRO(abscoefL14) DM_BCAST_MACRO(abscoefH14) DM_BCAST_MACRO(SELFREF14) ! ************************************************************************** ! The array abscoefL15 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 9, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array SELFREF15 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL15, SELFREF15 DM_BCAST_MACRO(abscoefL15) DM_BCAST_MACRO(SELFREF15) ! ************************************************************************** ! The array abscoefL16 contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels> ~100mb, temperatures, and binary ! species parameters (see taumol.f for definition). The first ! index in the array, JS, runs from 1 to 9, and corresponds to ! different values of the binary species parameter. For instance, & ! JS=1 refers to dry air, JS = 2 corresponds to the paramter value 1/8, & ! JS = 3 corresponds to the parameter value 2/8, etc. The second index ! in the array, JT, which runs from 1 to 5, corresponds to different ! temperatures. More specifically, JT = 3 means that the data are for ! the reference temperature TREF for this pressure level, JT = 2 refers ! to TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the JPth reference pressure level (see taumol.f for these levels ! in mb). The fourth index, IG, goes from 1 to 16, and indicates ! which g-interval the absorption coefficients are for. ! The array SELFREF16 contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, & ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, & ! etc. The second index runs over the g-channel (1 to 16). IF ( wrf_dm_on_monitor() ) READ (rrtm_unit,ERR=9010) abscoefL16, SELFREF16 DM_BCAST_MACRO(abscoefL16) DM_BCAST_MACRO(SELFREF16) IF ( wrf_dm_on_monitor() ) CLOSE (rrtm_unit) !----------------------------------------------------------------------- ! Compute lookup tables for transmittance, tau transition function, ! and clear sky tau (for the cloudy sky radiative transfer). Tau is ! computed as a function of the tau transition function, transmittance ! is calculated as a function of tau, and the tau transition function ! is calculated using the linear in tau formulation at values of tau ! above 0.01. TF is approximated as tau/6 for tau < 0.01. All tables ! are computed at intervals of 0.001. The inverse of the constant used ! in the Pade approximation to the tau transition function is set to b. TAU(0) = 0.0 TAU(5000) = 1.E10 TRANS(0) = 1.0 TRANS(5000) = 0.0 TF(0) = 0.0 TF(5000) = 1.0 BPADE=1./0.278 DO 1000 ITRE = 1,4999 TFN = ITRE/5.E3 TAU(ITRE) = BPADE*TFN/(1.-TFN) TRANS(ITRE) = EXP(-TAU(ITRE)) IF (TAU(ITRE).LT.0.1) THEN TF(ITRE) = TAU(ITRE)/6. ELSE TF(ITRE) = 1.-2.*((1./TAU(ITRE))-(TRANS(ITRE)/(1.-TRANS(ITRE)))) ENDIF 1000 CONTINUE ! Calculate lookup tables for functions needed in routine TAUMOL (TAUGB2) CORR1(0) = 1. CORR1(200) = 1. CORR2(0) = 1. CORR2(200) = 1. DO 1200 I = 1,199 FP = 0.005*FLOAT(I) RTFP = SQRT(FP) CORR1(I) = RTFP/FP CORR2(I) = (1.-RTFP)/(1.-FP) 1200 CONTINUE ! Perform g-point reduction from 16 per band (256 total points) to ! a band dependant number (140 total points) for all absorption ! coefficient input data and Planck fraction input data. ! Compute relative weighting for new g-point combinations. IGCSM = 0 DO 500 IBND = 1,NBANDS IPRSM = 0 IF (NGC(IBND).LT.16) THEN DO 450 IGC = 1,NGC(IBND) IGCSM = IGCSM + 1 WTSUM = 0. DO 420 IPR = 1, NGN(IGCSM) IPRSM = IPRSM + 1 WTSUM = WTSUM + WT(IPRSM) 420 CONTINUE WTSM(IGC) = WTSUM 450 CONTINUE DO 400 IG = 1,NG(IBND) IND = (IBND-1)*16 + IG RWGT(IND) = WT(IG)/WTSM(NGM(IND)) 400 CONTINUE ELSE DO 300 IG = 1,NG(IBND) IGCSM = IGCSM + 1 IND = (IBND-1)*16 + IG RWGT(IND) = 1.0 300 CONTINUE ENDIF 500 CONTINUE ! Reduce g-points for relevant data in each LW spectral band. CALL CMBGB1 (abscoefL1, abscoefH1, SELFREF1, & FRACREFA1, FRACREFB1, FORREF1, & SELFREFC1, FORREFC1, FRACREFAC1, & FRACREFBC1 & ) CALL CMBGB2 (abscoefL2, abscoefH2, SELFREF2, & FRACREFA2, FRACREFB2, FORREF2, & SELFREFC2, FORREFC2, FRACREFAC2, & FRACREFBC2 & ) CALL CMBGB3 (abscoefL3, abscoefH3, SELFREF3, & FRACREFA3, FRACREFB3, & FORREF3, ABSN2OA3, ABSN2OB3, & SELFREFC3, FORREFC3, & ABSN2OAC3, ABSN2OBC3, FRACREFAC3, FRACREFBC3 & ) CALL CMBGB4 (abscoefL4, abscoefH4, SELFREF4, & FRACREFA4, FRACREFB4, & SELFREFC4, FRACREFAC4, FRACREFBC4 & ) CALL CMBGB5 (abscoefL5, abscoefH5, SELFREF5, & FRACREFA5, FRACREFB5, CCL45, & SELFREFC5, CCL4C5, FRACREFAC5, & FRACREFBC5 & ) CALL CMBGB6 (abscoefL6, SELFREF6, & FRACREFA6, ABSCO26, CFC11ADJ6, CFC126, & SELFREFC6, ABSCO2C6, CFC11ADJC6, CFC12C6, & FRACREFAC6 & ) CALL CMBGB7 (abscoefL7, abscoefH7, SELFREF7, & FRACREFA7, FRACREFB7, ABSCO27, & SELFREFC7, ABSCO2C7, FRACREFAC7, & FRACREFBC7 & ) CALL CMBGB8 (abscoefL8, abscoefH8, SELFREF8, & FRACREFA8, FRACREFB8, ABSCO2A8, ABSCO2B8, & ABSN2OA8, ABSN2OB8, CFC128, CFC22ADJ8, & SELFREFC8, ABSCO2AC8, ABSCO2BC8, & ABSN2OAC8, ABSN2OBC8, CFC12C8, CFC22ADJC8, & FRACREFAC8, FRACREFBC8 & ) CALL CMBGB9 (abscoefL9, abscoefH9, SELFREF9, & FRACREFA9, FRACREFB9, ABSN2O9, & SELFREFC9, ABSN2OC9, FRACREFAC9, & FRACREFBC9 & ) CALL CMBGB10(abscoefL10, abscoefH10, & FRACREFA10, FRACREFB10, & FRACREFAC10, FRACREFBC10 & ) CALL CMBGB11(abscoefL11, abscoefH11, SELFREF11, & FRACREFA11, FRACREFB11, & SELFREFC11, FRACREFAC11, & FRACREFBC11 & ) CALL CMBGB12(abscoefL12, SELFREF12, & FRACREFA12, & SELFREFC12, FRACREFAC12 & ) CALL CMBGB13(abscoefL13, SELFREF13, & FRACREFA13, & SELFREFC13, FRACREFAC13 & ) CALL CMBGB14(abscoefL14, abscoefH14, SELFREF14, & FRACREFA14, FRACREFB14, & SELFREFC14, FRACREFAC14, & FRACREFBC14 & ) CALL CMBGB15(abscoefL15, SELFREF15, & FRACREFA15, & SELFREFC15, FRACREFAC15 & ) CALL CMBGB16(abscoefL16, SELFREF16, & FRACREFA16, & SELFREFC16, FRACREFAC16 & ) RETURN 9009 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtm: error opening RRTM_DATA on unit ',rrtm_unit CALL wrf_error_fatal(errmess) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtm: error reading RRTM_DATA on unit ',rrtm_unit CALL wrf_error_fatal(errmess) END SUBROUTINE rrtm_lookuptable !------------------------------------------------------------------ END MODULE module_ra_rrtm