!WRF:MODEL_LAYER:PHYSICS !--- The code is based on Lin and Colle (A New Bulk Microphysical Scheme ! that Includes Riming Intensity and Temperature Dependent Ice Characteristics, 2011, MWR) ! and Lin et al. (Parameterization of riming intensity and its impact on ice fall speed using ARM data, 2011, MWR) !--- NOTE: 1) Prognose variables are: qi,PI(precipitating ice, qs, which includes snow, partially rimed snow and graupel),qw,qr !--- 2) Sedimentation flux is based on Prudue Lin scheme !--- 2) PI has varying properties depending on riming intensity (Ri, diagnosed currently following Lin et al. (2011, MWR) and T !--- 3) Autoconverion is based on Liu and Daum (2004) !--- 4) PI size distribution assuming Gamma distribution, but mu_s=0 (Exponential) currently !--- 5) No density dependent fall speed since the V-D is derived using Best number approach, which already includes density effect !--- 6) Future work will include radar equivalent reflectivity using the new PI property (A-D, M-D, N(D)). If you use RIP for reflectivity !--- computation, please note that snow is (1-Ri)*qs and graupel is Ri*qs. Otherwise, reflectivity will be underestimated. !--- 7) The Liu and Daum autoconverion is quite sensitive on Nt_c. For mixed-phase cloud and marine environment, Nt_c of 10 or 20 is suggested. !--- default value is 10E.6. Change accordingly for your use. !--- 8) Eq.7 and 8 are not in SI units and need to be converted in the code. the ! paper treats the units in Eq.7 and 8 as cgs, and so need 1e-2^(2-ba) in ! the code, and that would give the plots in the paper. However, there is ! large uncertainty with this parameter, and one could argue that the units ! for these equations could be mm-g-s instead, which would mean 1e-3^(2-ba) ! in the code. This increases the snow fallspeed and gives an even ! better comparison of aa and ba with obs in paper. MODULE module_mp_sbu_ylin USE module_wrf_error ! !..Parameters user might change based on their need REAL, PARAMETER, PRIVATE :: RH = 1.0 REAL, PARAMETER, PRIVATE :: xnor = 8.0e6 REAL, PARAMETER, PRIVATE :: Nt_c = 10.E6 !..Water vapor and air gas constants at constant pressure REAL, PARAMETER, PRIVATE :: Rvapor = 461.5 REAL, PARAMETER, PRIVATE :: oRv = 1./Rvapor REAL, PARAMETER, PRIVATE :: Rair = 287.04 REAL, PARAMETER, PRIVATE :: Cp = 1004.0 REAL, PARAMETER, PRIVATE :: grav = 9.81 REAL, PARAMETER, PRIVATE :: rhowater = 1000.0 REAL, PARAMETER, PRIVATE :: rhosnow = 100.0 REAL, PARAMETER, PRIVATE :: SVP1=0.6112 REAL, PARAMETER, PRIVATE :: SVP2=17.67 REAL, PARAMETER, PRIVATE :: SVP3=29.65 REAL, PARAMETER, PRIVATE :: SVPT0=273.15 REAL, PARAMETER, PRIVATE :: EP1=Rvapor/Rair-1. REAL, PARAMETER, PRIVATE :: EP2=Rair/Rvapor !..Enthalpy of sublimation, vaporization, and fusion at 0C. REAL, PARAMETER, PRIVATE :: XLS = 2.834E6 REAL, PARAMETER, PRIVATE :: XLV = 2.5E6 REAL, PARAMETER, PRIVATE :: XLF = XLS - XLV ! REAL, PARAMETER, PRIVATE :: & qi0 = 1.0e-3, & !--- ice aggregation to snow threshold xmi50 = 4.8e-10, xmi40 = 2.46e-10, & xni0 = 1.0e-2, xmnin = 1.05e-18, bni = 0.5, & di50 = 1.0e-4, xmi = 4.19e-13, & !--- parameters used in BF process bv_r = 0.8, bv_i = 0.25, & o6 = 1./6., cdrag = 0.6, & avisc = 1.49628e-6, adiffwv = 8.7602e-5, & axka = 1.4132e3, cw = 4.187e3, ci = 2.093e3 CONTAINS !------------------------------------------------------------------- ! Lin et al., 1983, JAM, 1065-1092, and ! Rutledge and Hobbs, 1984, JAS, 2949-2972 !------------------------------------------------------------------- SUBROUTINE sbu_ylin(th & ,qv, ql, qr & ,qi, qs, Ri3D & ,rho, pii, p & ,dt_in & ,z,ht, dz8w & ,RAINNC, RAINNCV & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & th, & qv, & qi,ql, & qs,qr ! YLIN ! Adding RI3D as a variable to the interface REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), & INTENT(INOUT) :: Ri3D ! REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(IN ) :: & rho, & pii, & z,p, & dz8w REAL , DIMENSION( ims:ime , jms:jme ) , INTENT(IN) :: ht REAL, INTENT(IN ) :: dt_in REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: RAINNC, & RAINNCV ! LOCAL VAR INTEGER :: min_q, max_q REAL, DIMENSION( its:ite , jts:jte ) & :: rain, snow,ice REAL, DIMENSION( kts:kte ) :: qvz, qlz, qrz, & qiz, qsz, qgz, & thz, & tothz, rhoz, & orhoz, sqrhoz, & prez, zz, & dzw ! Added vertical profile of Ri (riz) as a variable REAL, DIMENSION( kts:kte ) :: riz ! REAL :: dt, pptice, pptrain, pptsnow, pptgraul, rhoe_s INTEGER :: i,j,k dt=dt_in rhoe_s=1.29 j_loop: DO j = jts, jte i_loop: DO i = its, ite ! !- write data from 3-D to 1-D ! DO k = kts, kte qvz(k)=qv(i,k,j) qlz(k)=ql(i,k,j) qrz(k)=qr(i,k,j) qiz(k)=qi(i,k,j) qsz(k)=qs(i,k,j) thz(k)=th(i,k,j) rhoz(k)=rho(i,k,j) orhoz(k)=1./rhoz(k) prez(k)=p(i,k,j) ! sqrhoz(k)=sqrt(rhoe_s*orhoz(k)) ! no density dependence of fall speed as Note #5, you can turn it on to increase fall speed at low pressure. sqrhoz(k)=1.0 tothz(k)=pii(i,k,j) zz(k)=z(i,k,j) dzw(k)=dz8w(i,k,j) END DO ! pptrain=0. pptsnow=0. pptice =0. ! CALL wrf_debug ( 100 , 'microphysics_driver: calling clphy1d_ylin' ) CALL clphy1d_ylin( dt, qvz, qlz, qrz, qiz, qsz, & thz, tothz, rhoz, orhoz, sqrhoz, & prez, zz, dzw, ht(I,J), & pptrain, pptsnow, pptice, & kts, kte, i, j, riz ) ! ! Precipitation from cloud microphysics -- only for one time step ! ! unit is transferred from m to mm ! rain(i,j)= pptrain snow(i,j)= pptsnow ice(i,j) = pptice ! RAINNCV(i,j)= pptrain + pptsnow + pptice RAINNC(i,j) = RAINNC(i,j) + pptrain + pptsnow + pptice ! !- update data from 1-D back to 3-D ! DO k = kts, kte qv(i,k,j)=qvz(k) ql(i,k,j)=qlz(k) qr(i,k,j)=qrz(k) th(i,k,j)=thz(k) qi(i,k,j)=qiz(k) qs(i,k,j)=qsz(k) ri3d(i,k,j)=riz(k) END DO ! ENDDO i_loop ENDDO j_loop END SUBROUTINE sbu_ylin !----------------------------------------------------------------------- SUBROUTINE clphy1d_ylin(dt, qvz, qlz, qrz, qiz, qsz, & thz, tothz, rho, orho, sqrho, & prez, zz, dzw, zsfc, pptrain, pptsnow,pptice, & kts, kte, i, j,riz ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- ! This program handles the vertical 1-D cloud micphysics !----------------------------------------------------------------------- ! avisc: constant in empirical formular for dynamic viscosity of air ! =1.49628e-6 [kg/m/s] = 1.49628e-5 [g/cm/s] ! adiffwv: constant in empirical formular for diffusivity of water ! vapor in air ! = 8.7602e-5 [kgm/s3] = 8.7602 [gcm/s3] ! axka: constant in empirical formular for thermal conductivity of air ! = 1.4132e3 [m2/s2/K] = 1.4132e7 [cm2/s2/K] ! qi0: mixing ratio threshold for cloud ice aggregation [kg/kg] ! xmi50: mass of a 50 micron ice crystal ! = 4.8e-10 [kg] =4.8e-7 [g] ! xmi40: mass of a 40 micron ice crystal ! = 2.46e-10 [kg] = 2.46e-7 [g] ! di50: diameter of a 50 micro (radius) ice crystal ! =1.0e-4 [m] ! xmi: mass of one cloud ice crystal ! =4.19e-13 [kg] = 4.19e-10 [g] ! oxmi=1.0/xmi ! ! xni0=1.0e-2 [m-3] The value given in Lin et al. is wrong.(see ! Hsie et al.(1980) and Rutledge and Hobbs(1983) ) ! bni=0.5 [K-1] ! xmnin: mass of a natural ice nucleus ! = 1.05e-18 [kg] = 1.05e-15 [g] This values is suggested by ! Hsie et al. (1980) ! = 1.0e-12 [kg] suggested by Rutlegde and Hobbs (1983) ! av_r: av_r in empirical formular for terminal ! velocity of raindrop ! =2115.0 [cm**(1-b)/s] = 2115.0*0.01**(1-b) [m**(1-b)/s] ! bv_r: bv_r in empirical formular for terminal ! velocity of raindrop ! =0.8 ! av_i: av_i in empirical formular for terminal ! velocity of snow ! =152.93 [cm**(1-d)/s] = 152.93*0.01**(1-d) [m**(1-d)/s] ! bv_i: bv_i in empirical formular for terminal ! velocity of snow ! =0.25 ! vf1r: ventilation factors for rain =0.78 ! vf2r: ventilation factors for rain =0.31 ! vf1s: ventilation factors for snow =0.65 ! vf2s: ventilation factors for snow =0.44 ! !---------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts, kte, i, j REAL, DIMENSION( kts:kte ), & INTENT(INOUT) :: qvz, qlz, qrz, qiz, qsz, & thz REAL, DIMENSION( kts:kte ), & INTENT(IN ) :: tothz, rho, orho, sqrho, & prez, zz, dzw REAL, INTENT(INOUT) :: pptrain, pptsnow, pptice REAL, INTENT(IN ) :: dt, zsfc ! local vars REAL :: obp4, bp3, bp5, bp6, odp4, & dp3, dp5, dp5o2 ! temperary vars REAL :: tmp, tmp0, tmp1, tmp2,tmp3, & tmp4, tmpa,tmpb,tmpc,tmpd,alpha1, & qic, abi,abr, abg, odtberg, & vti50,eiw,eri,esi,esr, esw, & erw,delrs,term0,term1, & Ap, Bp, & factor, tmp_r, tmp_s,tmp_g, & qlpqi, rsat, a1, a2, xnin ! REAL, DIMENSION( kts:kte ) :: oprez, tem, temcc, theiz, qswz, & qsiz, qvoqswz, qvoqsiz, qvzodt, & qlzodt, qizodt, qszodt, qrzodt !--- microphysical processes REAL, DIMENSION( kts:kte ) :: psnow, psaut, psfw, psfi, praci, & piacr, psaci, psacw, psdep, pssub, & pracs, psacr, psmlt, psmltevp, & prain, praut, pracw, prevp, pvapor, & pclw, pladj, pcli, pimlt, pihom, & pidw, piadj, pgfr, & qschg ! REAL, DIMENSION( kts:kte ) :: qvsbar, rs0, viscmu, visc, diffwv, & schmidt, xka !---- new snow parameters REAL, DIMENSION( kts:kte ):: ab_s,ab_r,ab_riming,lamc REAL, DIMENSION( kts:kte ):: cap_s !---- capacitance of snow REAL, PARAMETER :: vf1s = 0.65, vf2s = 0.44, vf1r =0.78 , vf2r = 0.31 REAL, PARAMETER :: am_c1=0.004, am_c2= 6e-5, am_c3=0.15 REAL, PARAMETER :: bm_c1=1.85, bm_c2= 0.003, bm_c3=1.25 REAL, PARAMETER :: aa_c1=1.28, aa_c2= -0.012, aa_c3=-0.6 REAL, PARAMETER :: ba_c1=1.5, ba_c2= 0.0075, ba_c3=0.5 REAL, PARAMETER :: best_a=1.08 , best_b = 0.499 REAL, DIMENSION(kts:kte):: am_s,bm_s,av_s,bv_s,Ri,N0_s,tmp_ss,lams REAL, DIMENSION(kts:kte):: aa_s,ba_s,tmp_sa REAL, PARAMETER :: mu_s=0.,mu_i=0.,mu_r=0. REAL :: tc0, disp, Dc_liu, eta, mu_c, R6c !--- for Liu's autoconversion ! Adding variable Riz, which will duplicate Ri but be a copy passed upward REAL, DIMENSION(kts:kte) :: Riz REAL, DIMENSION( kts:kte ) :: vtr, vts, & vtrold, vtsold, vtiold, & xlambdar, xlambdas, & olambdar, olambdas REAL :: episp0k, dtb, odtb, pi, pio4, & pio6, oxLf, xLvocp, xLfocp, av_r, & av_i, ocdrag, gambp4, gamdp4, & gam4pt5, Cpor, oxmi, gambp3, gamdp3,& gambp6, gam3pt5, gam2pt75, gambp5o2,& gamdp5o2, cwoxlf, ocp, xni50, es ! REAL :: qvmin=1.e-20 REAL :: temc1,save1,save2,xni50mx ! for terminal velocity flux INTEGER :: min_q, max_q, max_ri_k, k REAL :: max_ri REAL :: t_del_tv, del_tv, flux, fluxin, fluxout ,tmpqrz LOGICAL :: notlast ! mu_c = AMIN1(15., (1000.E6/Nt_c + 2.)) R6c = 10.0E-6 !---- 10 micron, threshold radius of cloud droplet dtb=dt odtb=1./dtb pi =acos(-1.) pio4=acos(-1.)/4. pio6=acos(-1.)/6. ocp=1./cp oxLf=1./xLf xLvocp=xLv/cp xLfocp=xLf/cp Cpor=cp/Rair oxmi=1.0/xmi cwoxlf=cw/xlf av_r=2115.0*0.01**(1-bv_r) av_i=152.93*0.01**(1-bv_i) ocdrag=1./Cdrag episp0k=RH*ep2*1000.*svp1 ! gambp4=ggamma(bv_r+4.) gamdp4=ggamma(bv_i+4.) gambp3=ggamma(bv_r+3.) gambp6=ggamma(bv_r+6) gambp5o2=ggamma((bv_r+5.)/2.) gamdp5o2=ggamma((bv_i+5.)/2.) ! ! oprez 1./prez ( prez : pressure) ! qsw saturated mixing ratio on water surface ! qsi saturated mixing ratio on ice surface ! episp0k RH*e*saturated pressure at 273.15 K = 611.2 hPa (Rogers and Yau 1989) ! qvoqsw qv/qsw ! qvoqsi qv/qsi ! qvzodt qv/dt ! qlzodt ql/dt ! qizodt qi/dt ! qszodt qs/dt ! qrzodt qr/dt ! temcc temperature in dregee C ! obp4=1.0/(bv_r+4.0) bp3=bv_r+3.0 bp5=bv_r+5.0 bp6=bv_r+6.0 odp4=1.0/(bv_i+4.0) dp3=bv_i+3.0 dp5=bv_i+5.0 dp5o2=0.5*(bv_i+5.0) ! do k=kts,kte oprez(k)=1./prez(k) qlz(k)=amax1( 0.0,qlz(k) ) qiz(k)=amax1( 0.0,qiz(k) ) qvz(k)=amax1( qvmin,qvz(k) ) qsz(k)=amax1( 0.0,qsz(k) ) qrz(k)=amax1( 0.0,qrz(k) ) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) !--- RY89 Eq(2.17) qswz(k)=ep2*es/(prez(k)-es) if (tem(k) .lt. 273.15 ) then es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) qsiz(k)=ep2*es/(prez(k)-es) if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) else qsiz(k)=qswz(k) endif ! qvoqswz(k)=qvz(k)/qswz(k) qvoqsiz(k)=qvz(k)/qsiz(k) qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) qizodt(k)=amax1( 0.0,odtb*qiz(k) ) qszodt(k)=amax1( 0.0,odtb*qsz(k) ) qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) theiz(k)=thz(k)+(xlvocp*qvz(k)-xlfocp*qiz(k))/tothz(k) enddo do k=kts,kte psnow(k)=0.0 psaut(k)=0.0 psfw(k)=0.0 psfi(k)=0.0 praci(k)=0.0 piacr(k)=0.0 psaci(k)=0.0 psacw(k)=0.0 psdep(k)=0.0 pssub(k)=0.0 pracs(k)=0.0 psacr(k)=0.0 psmlt(k)=0.0 psmltevp(k)=0.0 prain(k)=0.0 praut(k)=0.0 pracw(k)=0.0 prevp(k)=0.0 pgfr(k)=0.0 pvapor(k)=0.0 pclw(k)=0.0 pladj(k)=0.0 pcli(k)=0.0 pimlt(k)=0.0 pihom(k)=0.0 pidw(k)=0.0 piadj(k)=0.0 qschg(k)=0. enddo !*********************************************************************** !***** compute viscosity,difusivity,thermal conductivity, and ****** !***** Schmidt number ****** !*********************************************************************** !c------------------------------------------------------------------ !c viscmu: dynamic viscosity of air kg/m/s !c visc: kinematic viscosity of air = viscmu/rho (m2/s) !c avisc=1.49628e-6 kg/m/s=1.49628e-5 g/cm/s !c viscmu=1.718e-5 kg/m/s in RH !c diffwv: Diffusivity of water vapor in air !c adiffwv = 8.7602e-5 (8.794e-5 in MM5) kgm/s3 !c = 8.7602 (8.794 in MM5) gcm/s3 !c diffwv(k)=2.26e-5 m2/s !c schmidt: Schmidt number=visc/diffwv !c xka: thermal conductivity of air J/m/s/K (Kgm/s3/K) !c xka(k)=2.43e-2 J/m/s/K in RH !c axka=1.4132e3 (1.414e3 in MM5) m2/s2/k = 1.4132e7 cm2/s2/k !c------------------------------------------------------------------ DO k=kts,kte viscmu(k)=avisc*tem(k)**1.5/(tem(k)+120.0) visc(k)=viscmu(k)*orho(k) diffwv(k)=adiffwv*tem(k)**1.81*oprez(k) schmidt(k)=visc(k)/diffwv(k) xka(k)=axka*viscmu(k) rs0(k)=ep2*1000.*svp1/(prez(k)-1000.*svp1) END DO ! ! ---- YLIN, set snow variables ! !---- A+B in depositional growth, the first try just take from Rogers and Yau(1989) ! ab_s(k) = lsub*lsub*orv/(tcond(k)*temp(k))+& ! rv*temp(k)/(diffu(k)*qvsi(k)) do k = kts, kte tc0 = tem(k)-273.15 if (rho(k)*qlz(k) .gt. 1e-5 .AND. rho(k)*qsz(k) .gt. 1e-5) then Ri(k) = 1.0/(1.0+6e-5/(rho(k)**1.170*qlz(k)*qsz(k)**0.170)) else Ri(k) = 0 endif enddo ! !--- make sure Ri does not decrease downward in a column ! max_ri_k = MAXLOC(Ri,dim=1) max_ri = MAXVAL(Ri) do k = kts, max_ri_k Ri(k) = max_ri enddo !--- YLIN, get PI properties do k = kts, kte Ri(k) = AMAX1(0.,AMIN1(Ri(k),1.0)) ! Store the value of Ri(k) as Riz(k) Riz(k) = Ri(k) cap_s(k)= 0.25*(1+Ri(k)) tc0 = AMIN1(-0.1, tem(k)-273.15) N0_s(k) = amin1(2.0E8, 2.0E6*exp(-0.12*tc0)) am_s(k) = am_c1+am_c2*tc0+am_c3*Ri(k)*Ri(k) !--- Heymsfield 2007 am_s(k) = AMAX1(0.000023,am_s(k)) !--- use the a_min in table 1 of Heymsfield bm_s(k) = bm_c1+bm_c2*tc0+bm_c3*Ri(k) bm_s(k) = AMIN1(bm_s(k),3.0) !---- capped by 3 !--- converting from cgs to SI unit am_s(k) = 10**(2*bm_s(k)-3.0)*am_s(k) aa_s(k) = aa_c1 + aa_c2*tc0 + aa_c3*Ri(k) ba_s(k) = ba_c1 + ba_c2*tc0 + ba_c3*Ri(k) !--- convert from mm.g.s to SI unit (this will give larger PI fall speed than in the paper) aa_s(k) = (1e-3)**(2.0-ba_s(k))*aa_s(k) !---- get v from Mitchell 1996 av_s(k) = best_a*viscmu(k)*(2*grav*am_s(k)/rho(k)/aa_s(k)/(viscmu(k)**2))**best_b bv_s(k) = best_b*(bm_s(k)-ba_s(k)+2)-1 tmp_ss(k)= bm_s(k)+mu_s+1 tmp_sa(k)= ba_s(k)+mu_s+1 enddo ! !*********************************************************************** ! Calculate precipitation fluxes due to terminal velocities. !*********************************************************************** ! !- Calculate termianl velocity (vt?) of precipitation q?z !- Find maximum vt? to determine the small delta t ! !-- rain ! ! CALL wrf_debug ( 100 , 'module_ylin, start precip fluxes' ) t_del_tv=0. del_tv=dtb notlast=.true. DO while (notlast) ! min_q=kte max_q=kts-1 ! do k=kts,kte-1 if (qrz(k) .gt. 1.0e-8) then min_q=min0(min_q,k) max_q=max0(max_q,k) tmp1=sqrt(pi*rhowater*xnor/rho(k)/qrz(k)) tmp1=sqrt(tmp1) vtrold(k)=o6*av_r*gambp4*sqrho(k)/tmp1**bv_r if (k .eq. 1) then del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtrold(k)) else del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtrold(k)) endif else vtrold(k)=0. endif enddo if (max_q .ge. min_q) then ! !- Check if the summation of the small delta t >= big delta t ! (t_del_tv) (del_tv) (dtb) t_del_tv=t_del_tv+del_tv ! if ( t_del_tv .ge. dtb ) then notlast=.false. del_tv=dtb+del_tv-t_del_tv endif ! fluxin=0. do k=max_q,min_q,-1 fluxout=rho(k)*vtrold(k)*qrz(k) flux=(fluxin-fluxout)/rho(k)/dzw(k) tmpqrz=qrz(k) qrz(k)=qrz(k)+del_tv*flux fluxin=fluxout enddo if (min_q .eq. 1) then pptrain=pptrain+fluxin*del_tv else qrz(min_q-1)=qrz(min_q-1)+del_tv* & fluxin/rho(min_q-1)/dzw(min_q-1) endif ! else notlast=.false. endif ENDDO ! !-- snow ! t_del_tv=0. del_tv=dtb notlast=.true. DO while (notlast) ! min_q=kte max_q=kts-1 ! do k=kts,kte-1 if (qsz(k) .gt. 1.0e-8) then min_q=min0(min_q,k) max_q=max0(max_q,k) tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& **(1./tmp_ss(k)) vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & ggamma(tmp_ss(k))/(tmp1**bv_s(k)) if (k .eq. 1) then del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtsold(k)) else del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtsold(k)) endif else vtsold(k)=0. endif enddo if (max_q .ge. min_q) then ! ! !- Check if the summation of the small delta t >= big delta t ! (t_del_tv) (del_tv) (dtb) t_del_tv=t_del_tv+del_tv if ( t_del_tv .ge. dtb ) then notlast=.false. del_tv=dtb+del_tv-t_del_tv endif ! fluxin=0. do k=max_q,min_q,-1 fluxout=rho(k)*vtsold(k)*qsz(k) flux=(fluxin-fluxout)/rho(k)/dzw(k) qsz(k)=qsz(k)+del_tv*flux qsz(k)=amax1(0.,qsz(k)) fluxin=fluxout enddo if (min_q .eq. 1) then pptsnow=pptsnow+fluxin*del_tv else qsz(min_q-1)=qsz(min_q-1)+del_tv* & fluxin/rho(min_q-1)/dzw(min_q-1) endif ! else notlast=.false. endif ENDDO ! !-- cloud ice (03/21/02) using Heymsfield and Donner (1990) Vi=3.29*qi^0.16 ! t_del_tv=0. del_tv=dtb notlast=.true. ! DO while (notlast) ! min_q=kte max_q=kts-1 ! do k=kts,kte-1 if (qiz(k) .gt. 1.0e-8) then min_q=min0(min_q,k) max_q=max0(max_q,k) vtiold(k)= 3.29 * (rho(k)* qiz(k))** 0.16 ! Heymsfield and Donner if (k .eq. 1) then del_tv=amin1(del_tv,0.9*(zz(k)-zsfc)/vtiold(k)) else del_tv=amin1(del_tv,0.9*(zz(k)-zz(k-1))/vtiold(k)) endif else vtiold(k)=0. endif enddo if (max_q .ge. min_q) then ! !- Check if the summation of the small delta t >= big delta t ! (t_del_tv) (del_tv) (dtb) t_del_tv=t_del_tv+del_tv if ( t_del_tv .ge. dtb ) then notlast=.false. del_tv=dtb+del_tv-t_del_tv endif fluxin=0. do k=max_q,min_q,-1 fluxout=rho(k)*vtiold(k)*qiz(k) flux=(fluxin-fluxout)/rho(k)/dzw(k) qiz(k)=qiz(k)+del_tv*flux qiz(k)=amax1(0.,qiz(k)) fluxin=fluxout enddo if (min_q .eq. 1) then pptice=pptice+fluxin*del_tv else qiz(min_q-1)=qiz(min_q-1)+del_tv* & fluxin/rho(min_q-1)/dzw(min_q-1) endif ! else notlast=.false. endif ! ENDDO ! CALL wrf_debug ( 100 , 'module_ylin: end precip flux' ) ! Microphpysics processes DO 2000 k=kts,kte ! qvzodt(k)=amax1( 0.0,odtb*qvz(k) ) qlzodt(k)=amax1( 0.0,odtb*qlz(k) ) qizodt(k)=amax1( 0.0,odtb*qiz(k) ) qszodt(k)=amax1( 0.0,odtb*qsz(k) ) qrzodt(k)=amax1( 0.0,odtb*qrz(k) ) !*********************************************************************** !***** diagnose mixing ratios (qrz,qsz), terminal ***** !***** velocities (vtr,vts), and slope parameters in size ***** !***** distribution(xlambdar,xlambdas) of rain and snow ***** !***** follows Nagata and Ogura, 1991, MWR, 1309-1337. Eq (A7) ***** !*********************************************************************** ! !**** assuming no cloud water can exist in the top two levels due to !**** radiation consideration ! !! if !! unsaturated, !! no cloud water, rain, ice, snow !! then !! skip these processes and jump to line 2000 ! ! tmp=qiz(k)+qlz(k)+qsz(k)+qrz(k) if( qvz(k)+qlz(k)+qiz(k) .lt. qsiz(k) & .and. tmp .eq. 0.0 ) go to 2000 ! !! calculate terminal velocity of rain ! if (qrz(k) .gt. 1.0e-8) then tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) xlambdar(k)=sqrt(tmp1) olambdar(k)=1.0/xlambdar(k) vtrold(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r else vtrold(k)=0. olambdar(k)=0. endif ! if (qrz(k) .gt. 1.0e-8) then tmp1=sqrt(pi*rhowater*xnor*orho(k)/qrz(k)) xlambdar(k)=sqrt(tmp1) olambdar(k)=1.0/xlambdar(k) vtr(k)=o6*av_r*gambp4*sqrho(k)*olambdar(k)**bv_r else vtr(k)=0. olambdar(k)=0. endif ! !! calculate terminal velocity of snow ! if (qsz(k) .gt. 1.0e-8) then tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& **(1./tmp_ss(k)) olambdas(k)=1.0/tmp1 vtsold(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & ggamma(tmp_ss(k))/(tmp1**bv_s(k)) else vtsold(k)=0. olambdas(k)=0. endif ! if (qsz(k) .gt. 1.0e-8) then tmp1= (am_s(k)*N0_s(k)*ggamma(tmp_ss(k))*orho(k)/qsz(k))& **(1./tmp_ss(k)) olambdas(k)=1.0/tmp1 vts(k)= sqrho(k)*av_s(k)*ggamma(bv_s(k)+tmp_ss(k))/ & ggamma(tmp_ss(k))/(tmp1**bv_s(k)) else vts(k)=0. olambdas(k)=0. endif !---------- start of snow/ice processes below freezing if (tem(k) .lt. 273.15) then ! !*********************************************************************** !********* snow production processes for T < 0 C ********** !*********************************************************************** !c !c (1) ICE CRYSTAL AGGREGATION TO SNOW (Psaut): Lin (21) !c! psaut=alpha1*(qi-qi0) !c! alpha1=1.0e-3*exp(0.025*(T-T0)) !c alpha1=1.0e-3*exp( 0.025*temcc(k) ) ! if(temcc(k) .lt. -20.0) then tmp1=-7.6+4.0*exp( -0.2443e-3*(abs(temcc(k))-20)**2.455 ) qic=1.0e-3*exp(tmp1)*orho(k) else qic=qi0 end if tmp1=odtb*(qiz(k)-qic)*(1.0-exp(-alpha1*dtb)) psaut(k)=amax1( 0.0,tmp1 ) !c !c (2) BERGERON PROCESS TRANSFER OF CLOUD WATER TO SNOW (Psfw) !c this process only considered when -31 C < T < 0 C !c Lin (33) and Hsie (17) !c !c! !c! parama1 and parama2 functions must be user supplied !c! if( qlz(k) .gt. 1.0e-10 ) then temc1=amax1(-30.99,temcc(k)) a1=parama1( temc1 ) a2=parama2( temc1 ) tmp1=1.0-a2 !! change unit from cgs to mks a1=a1*0.001**tmp1 !! dtberg is the time needed for a crystal to grow from 40 to 50 um !! odtberg=1.0/dtberg odtberg=(a1*tmp1)/(xmi50**tmp1-xmi40**tmp1) ! !! compute terminal velocity of a 50 micron ice cystal ! vti50=av_i*di50**bv_i*sqrho(k) ! eiw=1.0 save1=a1*xmi50**a2 save2=0.25*pi*eiw*rho(k)*di50*di50*vti50 ! tmp2=( save1 + save2*qlz(k) ) ! !! maximum number of 50 micron crystals limited by the amount !! of supercool water ! xni50mx=qlzodt(k)/tmp2 ! !! number of 50 micron crystals produced ! xni50=qiz(k)*( 1.0-exp(-dtb*odtberg) )/xmi50 xni50=amin1(xni50,xni50mx) ! tmp3=odtb*tmp2/save2*( 1.0-exp(-save2*xni50*dtb) ) psfw(k)=amin1( tmp3,qlzodt(k) ) !c !c (3) REDUCTION OF CLOUD ICE BY BERGERON PROCESS (Psfi): Lin (34) !c this process only considered when -31 C < T < 0 C !c tmp1=xni50*xmi50-psfw(k) psfi(k)=amin1(tmp1,qizodt(k)) end if ! ! if(qrz(k) .le. 0.0) go to 1000 ! ! Processes (4) and (5) only need when qrz > 0.0 ! !c !c (4) CLOUD ICE ACCRETION BY RAIN (Praci): Lin (25) !c produce PI !c eri=1.0 save1=pio4*eri*xnor*av_r*sqrho(k) tmp1=save1*gambp3*olambdar(k)**bp3 praci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) !c !c (5) RAIN ACCRETION BY CLOUD ICE (Piacr): Lin (26) !c tmp2=qiz(k)*save1*rho(k)*pio6*rhowater*gambp6*oxmi* & olambdar(k)**bp6 piacr(k)=amin1( tmp2,qrzodt(k) ) ! 1000 continue ! if(qsz(k) .le. 0.0) go to 1200 ! ! Compute the following processes only when qsz > 0.0 ! !c !c (6) ICE CRYSTAL ACCRETION BY SNOW (Psaci): Lin (22) !c esi=exp( 0.025*temcc(k) ) save1 = aa_s(k)*sqrho(k)*N0_s(k)* & ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k)) tmp1=esi*save1 psaci(k)=qizodt(k)*( 1.0-exp(-tmp1*dtb) ) !c !c (7) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) !c esw=1.0 tmp1=esw*save1 psacw(k)=qlzodt(K)*( 1.0-exp(-tmp1*dtb) ) !c !c (8) DEPOSITION/SUBLIMATION OF SNOW (Psdep/Pssub): Lin (31) !c includes consideration of ventilation effect !c tmpa=rvapor*xka(k)*tem(k)*tem(k) tmpb=xls*xls*rho(k)*qsiz(k)*diffwv(k) tmpc=tmpa*qsiz(k)*diffwv(k) abi=4.0*pi*cap_s(k)*(qvoqsiz(k)-1.0)*tmpc/(tmpa+tmpb) tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) !---- YLIN, here there is some approximation assuming mu_s =1, so gamma(2)=1, etc. tmp2= abi*N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & vf2s*schmidt(k)**0.33334* & ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) tmp3=odtb*( qvz(k)-qsiz(k) ) ! if( tmp2 .le. 0.0) then tmp2=amax1( tmp2,tmp3) pssub(k)=amax1( tmp2,-qszodt(k) ) psdep(k)=0.0 else psdep(k)=amin1( tmp2,tmp3 ) pssub(k)=0.0 end if ! if(qrz(k) .le. 0.0) go to 1200 ! ! Compute processes (9) and (10) only when qsz > 0.0 and qrz > 0.0 ! these two terms need to be refined in the future, they should be equal !c !c (9) ACCRETION OF SNOW BY RAIN (Pracs): Lin (27) !c esr=1.0 tmpa=olambdar(k)*olambdar(k) tmpb=olambdas(k)*olambdas(k) tmpc=olambdar(k)*olambdas(k) tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k) tmp2=tmpb*tmpb*olambdar(k)*(5.0*tmpb+2.0*tmpc+0.5*tmpa) tmp3=tmp1*rhosnow*tmp2 pracs(k)=amin1( tmp3,qszodt(k) ) pracs(k)=0.0 !c !c (10) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) !c tmp3=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) tmp4=tmp1*rhowater*tmp3 psacr(k)=amin1( tmp4,qrzodt(k) ) ! !c !c (2) FREEZING OF RAIN TO FORM GRAUPEL (pgfr): Lin (45), added to PI !c positive value !c Constant in Bigg freezing Aplume=Ap=0.66 /k !c Constant in raindrop freezing equ. Bplume=Bp=100./m/m/m/s ! if (qrz(k) .gt. 1.e-8 ) then Bp=100. Ap=0.66 tmp1=olambdar(k)*olambdar(k)*olambdar(k) tmp2=20.*pi*pi*Bp*xnor*rhowater*orho(k)* & (exp(-Ap*temcc(k))-1.0)*tmp1*tmp1*olambdar(k) pgfr(k)=amin1( tmp2,qrzodt(k) ) else pgfr(k)=0 endif 1200 continue ! else ! !*********************************************************************** !********* snow production processes for T > 0 C ********** !*********************************************************************** ! if (qsz(k) .le. 0.0) go to 1400 !c !c (1) CLOUD WATER ACCRETION BY SNOW (Psacw): Lin (24) !c esw=1.0 save1 =aa_s(k)*sqrho(k)*N0_s(k)* & ggamma(bv_s(k)+tmp_sa(k))*olambdas(k)**(bv_s(k)+tmp_sa(k)) tmp1=esw*save1 psacw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) !c !c (2) ACCRETION OF RAIN BY SNOW (Psacr): Lin (28) !c esr=1.0 tmpa=olambdar(k)*olambdar(k) tmpb=olambdas(k)*olambdas(k) tmpc=olambdar(k)*olambdas(k) tmp1=pi*pi*esr*xnor*N0_s(k)*abs( vtr(k)-vts(k) )*orho(k) tmp2=tmpa*tmpa*olambdas(k)*(5.0*tmpa+2.0*tmpc+0.5*tmpb) tmp3=tmp1*rhowater*tmp2 psacr(k)=amin1( tmp3,qrzodt(k) ) !c !c (3) MELTING OF SNOW (Psmlt): Lin (32) !c Psmlt is negative value ! delrs=rs0(k)-qvz(k) term1=2.0*pi*orho(k)*( xlv*diffwv(k)*rho(k)*delrs- & xka(k)*temcc(k) ) tmp1= av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & vf2s*schmidt(k)**0.33334* & ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) tmp3=term1*oxlf*tmp2-cwoxlf*temcc(k)*( psacw(k)+psacr(k) ) tmp4=amin1(0.0,tmp3) psmlt(k)=amax1( tmp4,-qszodt(k) ) !c !c (4) EVAPORATION OF MELTING SNOW (Psmltevp): HR (A27) !c but use Lin et al. coefficience !c Psmltevp is a negative value !c tmpa=rvapor*xka(k)*tem(k)*tem(k) tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) tmpc=tmpa*qswz(k)*diffwv(k) tmpd=amin1( 0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb ) abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) ! !**** allow evaporation to occur when RH less than 90% !**** here not using 100% because the evaporation cooling !**** of temperature is not taking into account yet; hence, !**** the qsw value is a little bit larger. This will avoid !**** evaporation can generate cloud. ! tmp1=av_s(k)*sqrho(k)*olambdas(k)**(5+bv_s(k)+2*mu_s)/visc(k) tmp2= N0_s(k)*( vf1s*olambdas(k)*olambdas(k)+ & vf2s*schmidt(k)**0.33334* & ggamma(2.5+0.5*bv_s(k)+mu_s)*sqrt(tmp1) ) tmp3=amin1(0.0,tmp2) tmp3=amax1( tmp3,tmpd ) psmltevp(k)=amax1( tmp3,-qszodt(k) ) 1400 continue ! end if !---- end of snow/ice processes ! CALL wrf_debug ( 100 , 'module_ylin: finish ice/snow processes' ) !*********************************************************************** !********* rain production processes ********** !*********************************************************************** !c !c (1) AUTOCONVERSION OF RAIN (Praut): using Liu and Daum (2004) !c !---- YLIN, autoconversion use Liu and Daum (2004), unit = g cm-3 s-1, in the scheme kg/kg s-1, so if (qlz(k) .gt. 1e-6) then lamc(k) = (Nt_c*rhowater*pi*ggamma(4.+mu_c)/(6.*rho(k)*qlz(k))/ & !--- N(D) = N0*D^mu*exp(-lamc*D) ggamma(1+mu_c))**0.3333 Dc_liu = (ggamma(6+1+mu_c)/ggamma(1+mu_c))**(1./6.)/lamc(k) !----- R6 in m if (Dc_liu .gt. R6c) then disp = 1./(mu_c+1.) !--- square of relative dispersion eta = (0.75/pi/(1e-3*rhowater))**2*1.9e11*((1+3*disp)*(1+4*disp)*& (1+5*disp)/(1+disp)/(1+2*disp)) praut(k) = eta*(1e-3*rho(k)*qlz(k))**3/(1e-6*Nt_c) !--- g cm-3 s-1 praut(k) = praut(k)/(1e-3*rho(k)) !--- kg kg-1 s-1 else praut(k) = 0.0 endif else praut(k) = 0.0 endif !c !c (2) ACCRETION OF CLOUD WATER BY RAIN (Pracw): Lin (51) !c erw=1.0 tmp1=pio4*erw*xnor*av_r*sqrho(k)* & gambp3*olambdar(k)**bp3 pracw(k)=qlzodt(k)*( 1.0-exp(-tmp1*dtb) ) !c !c (3) EVAPORATION OF RAIN (Prevp): Lin (52) !c Prevp is negative value !c !c Sw=qvoqsw : saturation ratio !c tmpa=rvapor*xka(k)*tem(k)*tem(k) tmpb=xlv*xlv*rho(k)*qswz(k)*diffwv(k) tmpc=tmpa*qswz(k)*diffwv(k) tmpd=amin1(0.0,(qvoqswz(k)-0.90)*qswz(k)*odtb) abr=2.0*pi*(qvoqswz(k)-0.90)*tmpc/(tmpa+tmpb) tmp1=av_r*sqrho(k)*olambdar(k)**bp5/visc(k) tmp2=abr*xnor*( vf1r*olambdar(k)*olambdar(k)+ & vf2r*schmidt(k)**0.33334*gambp5o2*sqrt(tmp1) ) tmp3=amin1( 0.0,tmp2 ) tmp3=amax1( tmp3,tmpd ) prevp(k)=amax1( tmp3,-qrzodt(k) ) ! CALL wrf_debug ( 100 , 'module_ylin: finish rain processes' ) !c !c********************************************************************** !c***** combine all processes together and avoid negative ***** !c***** water substances !*********************************************************************** !c if ( temcc(k) .lt. 0.0) then !c !c combined water vapor depletions !c tmp=psdep(k) if ( tmp .gt. qvzodt(k) ) then factor=qvzodt(k)/tmp psdep(k)=psdep(k)*factor end if !c !c combined cloud water depletions !c tmp=praut(k)+psacw(k)+psfw(k)+pracw(k) if ( tmp .gt. qlzodt(k) ) then factor=qlzodt(k)/tmp praut(k)=praut(k)*factor psacw(k)=psacw(k)*factor psfw(k)=psfw(k)*factor pracw(k)=pracw(k)*factor end if !c !c combined cloud ice depletions !c tmp=psaut(k)+psaci(k)+praci(k)+psfi(k) if (tmp .gt. qizodt(k) ) then factor=qizodt(k)/tmp psaut(k)=psaut(k)*factor psaci(k)=psaci(k)*factor praci(k)=praci(k)*factor psfi(k)=psfi(k)*factor endif !c !c combined all rain processes !c tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k) if (tmp_r .gt. qrzodt(k) ) then factor=qrzodt(k)/tmp_r piacr(k)=piacr(k)*factor psacr(k)=psacr(k)*factor prevp(k)=prevp(k)*factor pgfr(k)=pgfr(k)*factor endif !c !c combined all snow processes !c tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ & psfi(k)+praci(k)+piacr(k)+ & psdep(k)+psacr(k)-pracs(k)) if ( tmp_s .gt. qszodt(k) ) then factor=qszodt(k)/tmp_s pssub(k)=pssub(k)*factor Pracs(k)=Pracs(k)*factor endif !c !c calculate new water substances, thetae, tem, and qvsbar !c pvapor(k)=-pssub(k)-psdep(k)-prevp(k) qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k) ) pclw(k)=-praut(k)-pracw(k)-psacw(k)-psfw(k) qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) pcli(k)=-psaut(k)-psfi(k)-psaci(k)-praci(k) qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) tmp_r=piacr(k)+psacr(k)-prevp(k)-praut(k)-pracw(k)+pgfr(k)-pracs(k) prain(k)=-tmp_r qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) tmp_s=-pssub(k)-(psaut(k)+psaci(k)+psacw(k)+psfw(k)+pgfr(k)+ & psfi(k)+praci(k)+piacr(k)+ & psdep(k)+psacr(k)-pracs(k)) psnow(k)=-tmp_s qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) qschg(k)=qschg(k)+psnow(k) qschg(k)=psnow(k) tmp=ocp/tothz(k)*xLf*qschg(k) theiz(k)=theiz(k)+dtb*tmp thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 if( temcc(k) .lt. -40.0 ) qswz(k)=qsiz(k) qlpqi=qlz(k)+qiz(k) if ( qlpqi .eq. 0.0 ) then qvsbar(k)=qsiz(k) else qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi endif ! else !>0 C !c !c combined cloud water depletions !c tmp=praut(k)+psacw(k)+pracw(k) if ( tmp .gt. qlzodt(k) ) then factor=qlzodt(k)/tmp praut(k)=praut(k)*factor psacw(k)=psacw(k)*factor pracw(k)=pracw(k)*factor end if !c !c combined all snow processes !c tmp_s=-(psmlt(k)+psmltevp(k)) if (tmp_s .gt. qszodt(k) ) then factor=qszodt(k)/tmp_s psmlt(k)=psmlt(k)*factor psmltevp(k)=psmltevp(k)*factor endif !c !c combined all rain processes !c tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) if (tmp_r .gt. qrzodt(k) ) then factor=qrzodt(k)/tmp_r prevp(k)=prevp(k)*factor endif !c !c calculate new water substances and thetae !c pvapor(k)=-psmltevp(k)-prevp(k) qvz(k)=amax1( qvmin,qvz(k)+dtb*pvapor(k)) pclw(k)=-praut(k)-pracw(k)-psacw(k) qlz(k)=amax1( 0.0,qlz(k)+dtb*pclw(k) ) pcli(k)=0.0 qiz(k)=amax1( 0.0,qiz(k)+dtb*pcli(k) ) tmp_r=-prevp(k)-(praut(k)+pracw(k)+psacw(k)-psmlt(k)) prain(k)=-tmp_r tmpqrz=qrz(k) qrz(k)=amax1( 0.0,qrz(k)+dtb*prain(k) ) tmp_s=-(psmlt(k)+psmltevp(k)) psnow(k)=-tmp_s qsz(k)=amax1( 0.0,qsz(k)+dtb*psnow(k) ) qschg(k)=psnow(k) ! tmp=ocp/tothz(k)*xLf*qschg(k) theiz(k)=theiz(k)+dtb*tmp thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) qswz(k)=ep2*es/(prez(k)-es) qsiz(k)=qswz(k) qvsbar(k)=qswz(k) ! end if ! CALL wrf_debug ( 100 , 'module_ylin: finish sum of all processes' ) ! !*********************************************************************** !********** saturation adjustment ********** !*********************************************************************** ! ! allow supersaturation exits linearly from 0% at 500 mb to 50% ! above 300 mb ! 5.0e-5=1.0/(500mb-300mb) ! rsat=1.0 if( qvz(k)+qlz(k)+qiz(k) .lt. rsat*qvsbar(k) ) then !c !c unsaturated !c qvz(k)=qvz(k)+qlz(k)+qiz(k) qlz(k)=0.0 qiz(k)=0.0 thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 go to 1800 ! else !c !c saturated !c pladj(k)=qlz(k) piadj(k)=qiz(k) ! CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) ! pladj(k)=odtb*(qlz(k)-pladj(k)) piadj(k)=odtb*(qiz(k)-piadj(k)) ! pclw(k)=pclw(k)+pladj(k) pcli(k)=pcli(k)+piadj(k) pvapor(k)=pvapor(k)-( pladj(k)+piadj(k) ) ! thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) qswz(k)=ep2*es/(prez(k)-es) if (tem(k) .lt. 273.15 ) then es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) qsiz(k)=ep2*es/(prez(k)-es) if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) else qsiz(k)=qswz(k) endif qlpqi=qlz(k)+qiz(k) if ( qlpqi .eq. 0.0 ) then qvsbar(k)=qsiz(k) else qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi endif end if ! !*********************************************************************** !***** melting and freezing of cloud ice and cloud water ***** !*********************************************************************** qlpqi=qlz(k)+qiz(k) if(qlpqi .le. 0.0) go to 1800 ! !c !c (1) HOMOGENEOUS NUCLEATION WHEN T< -40 C (Pihom) !c if(temcc(k) .lt. -40.0) pihom(k)=qlz(k)*odtb !c !c (2) MELTING OF ICE CRYSTAL WHEN T> 0 C (Pimlt) !c if(temcc(k) .gt. 0.0) pimlt(k)=qiz(k)*odtb !c !c (3) PRODUCTION OF CLOUD ICE BY BERGERON PROCESS (Pidw): Hsie (p957) !c this process only considered when -31 C < T < 0 C !c if(temcc(k) .lt. 0.0 .and. temcc(k) .gt. -31.0) then !c! !c! parama1 and parama2 functions must be user supplied !c! a1=parama1( temcc(k) ) a2=parama2( temcc(k) ) !! change unit from cgs to mks a1=a1*0.001**(1.0-a2) xnin=xni0*exp(-bni*temcc(k)) pidw(k)=xnin*orho(k)*(a1*xmnin**a2) end if ! pcli(k)=pcli(k)+pihom(k)-pimlt(k)+pidw(k) pclw(k)=pclw(k)-pihom(k)+pimlt(k)-pidw(k) qlz(k)=amax1( 0.0,qlz(k)+dtb*(-pihom(k)+pimlt(k)-pidw(k)) ) qiz(k)=amax1( 0.0,qiz(k)+dtb*(pihom(k)-pimlt(k)+pidw(k)) ) ! CALL satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, kts, kte, & k, xLvocp, xLfocp, episp0k ,EP2,SVP1,SVP2,SVP3,SVPT0) thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=thz(k)*tothz(k) temcc(k)=tem(k)-273.15 es=1000.*svp1*exp( svp2*temcc(k)/(tem(k)-svp3) ) qswz(k)=ep2*es/(prez(k)-es) if (tem(k) .lt. 273.15 ) then es=1000.*svp1*exp( 21.8745584*(tem(k)-273.16)/(tem(k)-7.66) ) qsiz(k)=ep2*es/(prez(k)-es) if (temcc(k) .lt. -40.0) qswz(k)=qsiz(k) else qsiz(k)=qswz(k) endif qlpqi=qlz(k)+qiz(k) if ( qlpqi .eq. 0.0 ) then qvsbar(k)=qsiz(k) else qvsbar(k)=( qiz(k)*qsiz(k)+qlz(k)*qswz(k) )/qlpqi endif 1800 continue ! !*********************************************************************** !********** integrate the productions of rain and snow ********** !*********************************************************************** ! 2000 continue ! !**** below if qv < qvmin then qv=qvmin, ql=0.0, and qi=0.0 ! do k=kts+1,kte if ( qvz(k) .lt. qvmin ) then qlz(k)=0.0 qiz(k)=0.0 qvz(k)=amax1( qvmin,qvz(k)+qlz(k)+qiz(k) ) end if enddo ! ! CALL wrf_debug ( 100 , 'module_ylin: finish saturation adjustment' ) END SUBROUTINE clphy1d_ylin !--------------------------------------------------------------------- ! SATURATED ADJUSTMENT !--------------------------------------------------------------------- SUBROUTINE satadj(qvz, qlz, qiz, prez, theiz, thz, tothz, & kts, kte, k, xLvocp, xLfocp, episp0k, EP2,SVP1,SVP2,SVP3,SVPT0) !--------------------------------------------------------------------- IMPLICIT NONE !--------------------------------------------------------------------- ! This program use Newton's method for finding saturated temperature ! and saturation mixing ratio. ! ! In this saturation adjustment scheme we assume ! (1) the saturation mixing ratio is the mass weighted average of ! saturation values over liquid water (qsw), and ice (qsi) ! following Lord et al., 1984 and Tao, 1989 ! ! (2) the percentage of cloud liquid and cloud ice will ! be fixed during the saturation calculation !--------------------------------------------------------------------- ! INTEGER, INTENT(IN ) :: kts, kte, k REAL, DIMENSION( kts:kte ), & INTENT(INOUT) :: qvz, qlz, qiz ! REAL, DIMENSION( kts:kte ), & INTENT(IN ) :: prez, theiz, tothz REAL, INTENT(IN ) :: xLvocp, xLfocp, episp0k REAL, INTENT(IN ) :: EP2,SVP1,SVP2,SVP3,SVPT0 ! LOCAL VARS INTEGER :: n REAL, DIMENSION( kts:kte ) :: thz, tem, temcc, qsiz, & qswz, qvsbar REAL :: qsat, qlpqi, ratql, t0, t1, tmp1, ratqi, tsat, absft, & denom1, denom2, dqvsbar, ftsat, dftsat, qpz,es ! !--------------------------------------------------------------------- thz(k)=theiz(k)-(xLvocp*qvz(k)-xLfocp*qiz(k))/tothz(k) tem(k)=tothz(k)*thz(k) if (tem(k) .gt. 273.15) then ! qsat=episp0k/prez(k)* & ! exp( svp2*(tem(k)-273.15)/(tem(k)-svp3) ) es=1000.*svp1*exp( svp2*(tem(k)-svpt0)/(tem(k)-svp3) ) qsat=ep2*es/(prez(k)-es) else qsat=episp0k/prez(k)* & exp( 21.8745584*(tem(k)-273.15)/(tem(k)-7.66) ) end if qpz=qvz(k)+qlz(k)+qiz(k) if (qpz .lt. qsat) then qvz(k)=qpz qiz(k)=0.0 qlz(k)=0.0 go to 400 end if qlpqi=qlz(k)+qiz(k) if( qlpqi .ge. 1.0e-5) then ratql=qlz(k)/qlpqi ratqi=qiz(k)/qlpqi else t0=273.15 ! t1=233.15 t1=248.15 tmp1=( t0-tem(k) )/(t0-t1) tmp1=amin1(1.0,tmp1) tmp1=amax1(0.0,tmp1) ratqi=tmp1 ratql=1.0-tmp1 end if ! ! !-- saturation mixing ratios over water and ice !-- at the outset we will follow Bolton 1980 MWR for !-- the water and Murray JAS 1967 for the ice ! !-- dqvsbar=d(qvsbar)/dT !-- ftsat=F(Tsat) !-- dftsat=d(F(T))/dT ! ! First guess of tsat tsat=tem(k) absft=1.0 ! do 200 n=1,20 denom1=1.0/(tsat-svp3) denom2=1.0/(tsat-7.66) ! qswz(k)=episp0k/prez(k)* & ! exp( svp2*denom1*(tsat-273.15) ) es=1000.*svp1*exp( svp2*denom1*(tsat-svpt0) ) qswz(k)=ep2*es/(prez(k)-es) if (tem(k) .lt. 273.15) then ! qsiz(k)=episp0k/prez(k)* & ! exp( 21.8745584*denom2*(tsat-273.15) ) es=1000.*svp1*exp( 21.8745584*denom2*(tsat-273.15) ) qsiz(k)=ep2*es/(prez(k)-es) if (tem(k) .lt. 233.15) qswz(k)=qsiz(k) else qsiz(k)=qswz(k) endif qvsbar(k)=ratql*qswz(k)+ratqi*qsiz(k) ! ! if( absft .lt. 0.01 .and. n .gt. 3 ) go to 300 if( absft .lt. 0.01 ) go to 300 ! dqvsbar=ratql*qswz(k)*svp2*243.5*denom1*denom1+ & ratqi*qsiz(k)*21.8745584*265.5*denom2*denom2 ftsat=tsat+(xlvocp+ratqi*xlfocp)*qvsbar(k)- & tothz(k)*theiz(k)-xlfocp*ratqi*(qvz(k)+qlz(k)+qiz(k)) dftsat=1.0+(xlvocp+ratqi*xlfocp)*dqvsbar tsat=tsat-ftsat/dftsat absft=abs(ftsat) 200 continue 9020 format(1x,'point can not converge, absft,n=',e12.5,i5) 300 continue if( qpz .gt. qvsbar(k) ) then qvz(k)=qvsbar(k) qiz(k)=ratqi*( qpz-qvz(k) ) qlz(k)=ratql*( qpz-qvz(k) ) else qvz(k)=qpz qiz(k)=0.0 qlz(k)=0.0 end if 400 continue END SUBROUTINE satadj !---------------------------------------------------------------- REAL FUNCTION parama1(temp) !---------------------------------------------------------------- IMPLICIT NONE !---------------------------------------------------------------- ! This program calculate the parameter for crystal growth rate ! in Bergeron process !---------------------------------------------------------------- REAL, INTENT (IN ) :: temp REAL, DIMENSION(32) :: a1 INTEGER :: i1, i1p1 REAL :: ratio data a1/0.100e-10,0.7939e-7,0.7841e-6,0.3369e-5,0.4336e-5, & 0.5285e-5,0.3728e-5,0.1852e-5,0.2991e-6,0.4248e-6, & 0.7434e-6,0.1812e-5,0.4394e-5,0.9145e-5,0.1725e-4, & 0.3348e-4,0.1725e-4,0.9175e-5,0.4412e-5,0.2252e-5, & 0.9115e-6,0.4876e-6,0.3473e-6,0.4758e-6,0.6306e-6, & 0.8573e-6,0.7868e-6,0.7192e-6,0.6513e-6,0.5956e-6, & 0.5333e-6,0.4834e-6/ i1=int(-temp)+1 i1p1=i1+1 ratio=-(temp)-float(i1-1) parama1=a1(i1)+ratio*( a1(i1p1)-a1(i1) ) END FUNCTION parama1 !---------------------------------------------------------------- REAL FUNCTION parama2(temp) !---------------------------------------------------------------- IMPLICIT NONE !---------------------------------------------------------------- ! This program calculate the parameter for crystal growth rate ! in Bergeron process !---------------------------------------------------------------- REAL, INTENT (IN ) :: temp REAL, DIMENSION(32) :: a2 INTEGER :: i1, i1p1 REAL :: ratio data a2/0.0100,0.4006,0.4831,0.5320,0.5307,0.5319,0.5249, & 0.4888,0.3849,0.4047,0.4318,0.4771,0.5183,0.5463, & 0.5651,0.5813,0.5655,0.5478,0.5203,0.4906,0.4447, & 0.4126,0.3960,0.4149,0.4320,0.4506,0.4483,0.4460, & 0.4433,0.4413,0.4382,0.4361/ i1=int(-temp)+1 i1p1=i1+1 ratio=-(temp)-float(i1-1) parama2=a2(i1)+ratio*( a2(i1p1)-a2(i1) ) END FUNCTION parama2 !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE LIQUID SATURATION VAPOR MIXING RATIO AS ! A FUNCTION OF TEMPERATURE AND PRESSURE ! REAL FUNCTION RSLF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESL,X REAL, PARAMETER:: C0= .611583699E03 REAL, PARAMETER:: C1= .444606896E02 REAL, PARAMETER:: C2= .143177157E01 REAL, PARAMETER:: C3= .264224321E-1 REAL, PARAMETER:: C4= .299291081E-3 REAL, PARAMETER:: C5= .203154182E-5 REAL, PARAMETER:: C6= .702620698E-8 REAL, PARAMETER:: C7= .379534310E-11 REAL, PARAMETER:: C8=-.321582393E-13 X=MAX(-80.,T-273.16) ! ESL=612.2*EXP(17.67*X/(T-29.65)) ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSLF=.622*ESL/(P-ESL) END FUNCTION RSLF ! !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A ! FUNCTION OF TEMPERATURE AND PRESSURE ! REAL FUNCTION RSIF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESI,X REAL, PARAMETER:: C0= .609868993E03 REAL, PARAMETER:: C1= .499320233E02 REAL, PARAMETER:: C2= .184672631E01 REAL, PARAMETER:: C3= .402737184E-1 REAL, PARAMETER:: C4= .565392987E-3 REAL, PARAMETER:: C5= .521693933E-5 REAL, PARAMETER:: C6= .307839583E-7 REAL, PARAMETER:: C7= .105785160E-9 REAL, PARAMETER:: C8= .161444444E-12 X=MAX(-80.,T-273.16) ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSIF=.622*ESI/(P-ESI) END FUNCTION RSIF !+---+-----------------------------------------------------------------+ !---------------------------------------------------------------- REAL FUNCTION ggamma(X) !---------------------------------------------------------------- IMPLICIT NONE !---------------------------------------------------------------- REAL, INTENT(IN ) :: x REAL, DIMENSION(8) :: B INTEGER ::j, K1 REAL ::PF, G1TO2 ,TEMP DATA B/-.577191652,.988205891,-.897056937,.918206857, & -.756704078,.482199394,-.193527818,.035868343/ PF=1. TEMP=X DO 10 J=1,200 IF (TEMP .LE. 2) GO TO 20 TEMP=TEMP-1. 10 PF=PF*TEMP ! 100 FORMAT(//,5X,'module_mp_lin: INPUT TO GAMMA FUNCTION TOO LARGE, X=',E12.5) ! WRITE(wrf_err_message,100)X ! CALL wrf_error_fatal(wrf_err_message) 20 G1TO2=1. TEMP=TEMP - 1. DO 30 K1=1,8 30 G1TO2=G1TO2 + B(K1)*TEMP**K1 ggamma=PF*G1TO2 END FUNCTION ggamma !---------------------------------------------------------------- END MODULE module_mp_sbu_ylin