!WRF:DRIVER_LAYER:TOP
!
!TBH: $$$ move this to ../frame?
MODULE module_wrf_top
!
! This module defines top-level wrf_init(), wrf_run(), and wrf_finalize()
! routines.
!
USE module_machine
USE module_domain
USE module_integrate
USE module_driver_constants
USE module_configure
USE module_check_a_mundo
USE module_timing
USE module_wrf_error
USE module_nesting
#ifdef DM_PARALLEL
USE module_dm, ONLY : wrf_dm_initialize
#endif
IMPLICIT NONE
REAL :: time
INTEGER :: loop , &
levels_to_process
TYPE (domain) , POINTER :: keep_grid, grid_ptr, null_domain
TYPE (domain) , pointer :: parent_grid, new_nest
LOGICAL :: a_nest_was_opened
TYPE (grid_config_rec_type), SAVE :: config_flags
INTEGER :: kid, nestid
INTEGER :: number_at_same_level
INTEGER :: time_step_begin_restart
INTEGER :: max_dom , domain_id , fid , oid , idum1 , idum2 , ierr
INTEGER :: debug_level
LOGICAL :: input_from_file
#ifdef DM_PARALLEL
INTEGER :: nbytes
INTEGER, PARAMETER :: configbuflen = 4* CONFIG_BUF_LEN
INTEGER :: configbuf( configbuflen )
LOGICAL , EXTERNAL :: wrf_dm_on_monitor
#endif
CHARACTER (LEN=80) :: rstname
CHARACTER (LEN=80) :: message
INTERFACE
SUBROUTINE Setup_Timekeeping( grid )
USE module_domain
TYPE(domain), POINTER :: grid
END SUBROUTINE Setup_Timekeeping
! #if (EM_CORE == 1)
SUBROUTINE wrf_dfi_write_initialized_state( )
END SUBROUTINE wrf_dfi_write_initialized_state
SUBROUTINE wrf_dfi_startfwd_init( )
END SUBROUTINE wrf_dfi_startfwd_init
SUBROUTINE wrf_dfi_startbck_init( )
END SUBROUTINE wrf_dfi_startbck_init
SUBROUTINE wrf_dfi_bck_init( )
END SUBROUTINE wrf_dfi_bck_init
SUBROUTINE wrf_dfi_fwd_init( )
END SUBROUTINE wrf_dfi_fwd_init
SUBROUTINE wrf_dfi_fst_init( )
END SUBROUTINE wrf_dfi_fst_init
SUBROUTINE wrf_dfi_array_reset ( )
END SUBROUTINE wrf_dfi_array_reset
! #endif
SUBROUTINE med_nest_initial ( parent , grid , config_flags )
USE module_domain
USE module_configure
TYPE (domain), POINTER :: grid , parent
TYPE (grid_config_rec_type) config_flags
END SUBROUTINE med_nest_initial
END INTERFACE
CONTAINS
SUBROUTINE wrf_init( no_init1 )
!
! WRF initialization routine.
!
#ifdef _OPENMP
use omp_lib
#endif
#ifdef _ACCEL
use accel_lib
#endif
LOGICAL, OPTIONAL, INTENT(IN) :: no_init1
INTEGER i, myproc, nproc, hostid, loccomm, ierr, buddcounter, mydevice
INTEGER, ALLOCATABLE :: hostids(:), budds(:)
CHARACTER*512 hostname
#ifdef _ACCEL
integer :: it, nt, in, devnum
#endif
#if defined(DM_PARALLEL) && !defined(STUBMPI) && ( defined(RUN_ON_GPU) || defined(_ACCEL))
include "mpif.h"
#endif
#include "version_decl"
!
! Program_name, a global variable defined in frame/module_domain.F, is
! set, then a routine init_modules is
! called. This calls all the init programs that are provided by the
! modules that are linked into WRF. These include initialization of
! external I/O packages. Also, some key initializations for
! distributed-memory parallelism occur here if DM_PARALLEL is specified
! in the compile: setting up I/O quilt processes to act as I/O servers
! and dividing up MPI communicators among those as well as initializing
! external communication packages such as RSL or RSL_LITE.
!
!
program_name = "WRF " // TRIM(release_version) // " MODEL"
! Initialize WRF modules:
! Phase 1 returns after MPI_INIT() (if it is called)
CALL init_modules(1)
IF ( .NOT. PRESENT( no_init1 ) ) THEN
! Initialize utilities (time manager, etc.)
#ifdef NO_LEAP_CALENDAR
CALL WRFU_Initialize( defaultCalendar=WRFU_CAL_NOLEAP )
#else
CALL WRFU_Initialize( defaultCalendar=WRFU_CAL_GREGORIAN )
#endif
ENDIF
! Phase 2 resumes after MPI_INIT() (if it is called)
CALL init_modules(2)
!
! The wrf namelist.input file is read and stored in the USE associated
! structure model_config_rec, defined in frame/module_configure.F, by the
! call to initial_config. On distributed
! memory parallel runs this is done only on one processor, and then
! broadcast as a buffer. For distributed-memory, the broadcast of the
! configuration information is accomplished by first putting the
! configuration information into a buffer (get_config_as_buffer), broadcasting
! the buffer, then setting the configuration information (set_config_as_buffer).
!
!
#ifdef DM_PARALLEL
IF ( wrf_dm_on_monitor() ) THEN
CALL initial_config
ENDIF
CALL get_config_as_buffer( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes( configbuf, nbytes )
CALL set_config_as_buffer( configbuf, configbuflen )
CALL wrf_dm_initialize
#else
CALL initial_config
#endif
CALL set_derived_rconfigs
CALL check_nml_consistency
CALL set_physics_rconfigs
#ifdef _ACCEL
buddcounter = 1
mydevice = 0
# if defined(DM_PARALLEL) && !defined(STUBMPI)
CALL wrf_get_myproc( myproc )
CALL wrf_get_nproc( nproc )
CALL wrf_get_hostid ( hostid )
CALL wrf_get_dm_communicator ( loccomm )
ALLOCATE( hostids(nproc) )
ALLOCATE( budds(nproc) )
CALL mpi_allgather( hostid, 1, MPI_INTEGER, hostids, 1, MPI_INTEGER, loccomm, ierr )
if ( ierr .NE. 0 ) print * ,'error in mpi_allgather ',ierr
budds = -1
buddcounter = 0
! mark the ones i am on the same node with
DO i = 1, nproc
IF ( hostid .EQ. hostids(i) ) THEN
budds(i) = buddcounter
buddcounter = buddcounter + 1
ENDIF
ENDDO
mydevice = budds(myproc+1)
DEALLOCATE( hostids )
DEALLOCATE( budds )
# endif
in = acc_get_num_devices(acc_device_nvidia)
if (in .le. 0) print *, 'error: No GPUS present: ',in
# ifdef _OPENMP
!$OMP PARALLEL SHARED(mydevice,in) PRIVATE(it,nt,devnum)
it = omp_get_thread_num()
nt = omp_get_num_threads()
devnum = mod(mod(mydevice*nt,in) + it, in)
# ifdef _ACCEL_PROF
print *, "Process, Thread, Device: ",mydevice, it, devnum
# endif
call acc_set_device_num(devnum, acc_device_nvidia)
!$OMP END PARALLEL
# else
it = 0
nt = 1
devnum = mod(mod(mydevice*nt,in) + it, in)
# ifdef _ACCEL_PROF
print *, "Process, Thread, Device: ",mydevice, it, devnum
# endif
call acc_set_device_num(devnum, acc_device_nvidia)
# endif
#endif
#ifdef RUN_ON_GPU
CALL wrf_get_myproc( myproc )
CALL wrf_get_nproc( nproc )
# ifdef DM_PARALLEL
CALL wrf_get_hostid ( hostid )
CALL wrf_get_dm_communicator ( loccomm )
ALLOCATE( hostids(nproc) )
ALLOCATE( budds(nproc) )
CALL mpi_allgather( hostid, 1, MPI_INTEGER, hostids, 1, MPI_INTEGER, loccomm, ierr )
if ( ierr .NE. 0 ) write(0,*)__FILE__,__LINE__,'error in mpi_allgather ',ierr
budds = -1
buddcounter = 0
! mark the ones i am on the same node with
DO i = 1, nproc
IF ( hostid .EQ. hostids(i) ) THEN
budds(i) = buddcounter
buddcounter = buddcounter + 1
ENDIF
ENDDO
mydevice = budds(myproc+1)
DEALLOCATE( hostids )
DEALLOCATE( budds )
# else
mydevice = 0
# endif
CALL wsm5_gpu_init( myproc, nproc, mydevice )
#endif
!
! Among the configuration variables read from the namelist is
! debug_level. This is retrieved using nl_get_debug_level (Registry
! generated and defined in frame/module_configure.F). The value is then
! used to set the debug-print information level for use by wrf_debug throughout the code. Debug_level
! of zero (the default) causes no information to be printed when the
! model runs. The higher the number (up to 1000) the more information is
! printed.
!
!
CALL nl_get_debug_level ( 1, debug_level )
CALL set_wrf_debug_level ( debug_level )
! allocated and configure the mother domain
NULLIFY( null_domain )
!
! RSL is required for WRF nesting options.
! The non-MPI build that allows nesting is only supported on machines
! with the -DSTUBMPI option. Check to see if the WRF model is being asked
! for a for a multi-domain run (max_dom > 1, from the namelist). If so,
! then we check to make sure that we are under the parallel
! run option or we are on an acceptable machine.
!
CALL nl_get_max_dom( 1, max_dom )
IF ( max_dom > 1 ) THEN
#if ( ! defined(DM_PARALLEL) && ! defined(STUBMPI) )
CALL wrf_error_fatal( &
'nesting requires either an MPI build or use of the -DSTUBMPI option' )
#endif
END IF
!
! The top-most domain in the simulation is then allocated and configured
! by calling alloc_and_configure_domain.
! Here, in the case of this root domain, the routine is passed the
! globally accessible pointer to TYPE(domain), head_grid, defined in
! frame/module_domain.F. The parent is null and the child index is given
! as negative, signifying none. Afterwards, because the call to
! alloc_and_configure_domain may modify the model's configuration data
! stored in model_config_rec, the configuration information is again
! repacked into a buffer, broadcast, and unpacked on each task (for
! DM_PARALLEL compiles). The call to setup_timekeeping for head_grid relies
! on this configuration information, and it must occur after the second
! broadcast of the configuration information.
!
!
CALL wrf_message ( program_name )
CALL wrf_debug ( 100 , 'wrf: calling alloc_and_configure_domain ' )
CALL alloc_and_configure_domain ( domain_id = 1 , &
grid = head_grid , &
parent = null_domain , &
kid = -1 )
CALL wrf_debug ( 100 , 'wrf: calling model_to_grid_config_rec ' )
CALL model_to_grid_config_rec ( head_grid%id , model_config_rec , config_flags )
CALL wrf_debug ( 100 , 'wrf: calling set_scalar_indices_from_config ' )
CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
CALL wrf_debug ( 100 , 'wrf: calling init_wrfio' )
CALL init_wrfio
#ifdef DM_PARALLEL
CALL get_config_as_buffer( configbuf, configbuflen, nbytes )
CALL wrf_dm_bcast_bytes( configbuf, nbytes )
CALL set_config_as_buffer( configbuf, configbuflen )
#endif
! #if (EM_CORE == 1)
! In case we are doing digital filter initialization, set dfi_stage = DFI_SETUP
! to indicate in Setup_Timekeeping that we want forecast start and
! end times at this point
IF ( head_grid%dfi_opt .NE. DFI_NODFI ) head_grid%dfi_stage = DFI_SETUP
! #endif
CALL Setup_Timekeeping (head_grid)
!
! The head grid is initialized with read-in data through the call to med_initialdata_input, which is
! passed the pointer head_grid and a locally declared configuration data
! structure, config_flags, that is set by a call to model_to_grid_config_rec. It is
! also necessary that the indices into the 4d tracer arrays such as
! moisture be set with a call to set_scalar_indices_from_config
! prior to the call to initialize the domain. Both of these calls are
! told which domain they are setting up for by passing in the integer id
! of the head domain as head_grid%id, which is 1 for the
! top-most domain.
!
! In the case that write_restart_at_0h is set to true in the namelist,
! the model simply generates a restart file using the just read-in data
! and then shuts down. This is used for ensemble breeding, and is not
! typically enabled.
!
!
CALL med_initialdata_input( head_grid , config_flags )
IF ( config_flags%write_restart_at_0h ) THEN
CALL med_restart_out ( head_grid, config_flags )
#ifndef AUTODOC_BUILD
! prevent this from showing up before the call to integrate in the autogenerated call tree
CALL wrf_debug ( 0 , ' 0 h restart only wrf: SUCCESS COMPLETE WRF' )
! TBH: $$$ Unscramble this later...
! TBH: $$$ Need to add state to avoid calling wrf_finalize() twice when ESMF
! TBH: $$$ library is used. Maybe just set clock stop_time=start_time and
! TBH: $$$ do not call wrf_finalize here...
CALL wrf_finalize( )
#endif
END IF
! set default values for subtimes
head_grid%start_subtime = domain_get_start_time ( head_grid )
head_grid%stop_subtime = domain_get_stop_time ( head_grid )
! For EM (but not DA), if this is a DFI run, we can allocate some space. We are
! not allowing anyting tricky for nested DFI. If there are any nested domains,
! they all need to start at the same time. Otherwise, why even do the DFI? If
! the domains do not all start at the same time, then there will be inconsistencies,
! which is what DFI is supposed to address.
#if (EM_CORE == 1)
IF ( head_grid%dfi_opt .NE. DFI_NODFI ) THEN
CALL alloc_doms_for_dfi ( head_grid )
END IF
#endif
END SUBROUTINE wrf_init
SUBROUTINE wrf_run( )
!
! WRF run routine.
!
!
! Once the top-level domain has been allocated, configured, and
! initialized, the model time integration is ready to proceed. The start
! and stop times for the domain are set to the start and stop time of the
! model run, and then integrate is called to
! advance the domain forward through that specified time interval. On
! return, the simulation is completed.
!
!
! The forecast integration for the most coarse grid is now started. The
! integration is from the first step (1) to the last step of the simulation.
CALL wrf_debug ( 100 , 'wrf: calling integrate' )
CALL integrate ( head_grid )
CALL wrf_debug ( 100 , 'wrf: back from integrate' )
END SUBROUTINE wrf_run
SUBROUTINE wrf_finalize( no_shutdown )
!
! WRF finalize routine.
!
!
! A Mediation Layer-provided
! subroutine, med_shutdown_io is called
! to allow the the model to do any I/O specific cleanup and shutdown, and
! then the WRF Driver Layer routine wrf_shutdown (quilt servers would be
! directed to shut down here) is called to properly end the run,
! including shutting down the communications (for example, most comm
! layers would call MPI_FINALIZE at this point if they're using MPI).
!
!
LOGICAL, OPTIONAL, INTENT(IN) :: no_shutdown
! shut down I/O
CALL med_shutdown_io ( head_grid , config_flags )
CALL wrf_debug ( 100 , 'wrf: back from med_shutdown_io' )
CALL wrf_debug ( 0 , 'wrf: SUCCESS COMPLETE WRF' )
! Call wrf_shutdown() (which calls MPI_FINALIZE()
! for DM parallel runs).
IF ( .NOT. PRESENT( no_shutdown ) ) THEN
! Finalize time manager
CALL WRFU_Finalize
CALL wrf_shutdown
ENDIF
END SUBROUTINE wrf_finalize
SUBROUTINE wrf_dfi()
!
! Runs a digital filter initialization procedure.
!
IMPLICIT NONE
! #if (EM_CORE == 1)
! Initialization procedure
IF ( config_flags%dfi_opt .NE. DFI_NODFI ) THEN
SELECT CASE ( config_flags%dfi_opt )
CASE (DFI_DFL)
wrf_err_message = 'Initializing with DFL'
CALL wrf_message(TRIM(wrf_err_message))
wrf_err_message = ' Filtering forward in time'
CALL wrf_message(TRIM(wrf_err_message))
CALL wrf_dfi_fwd_init()
CALL wrf_run()
CALL wrf_dfi_array_reset()
CALL wrf_dfi_fst_init()
IF ( config_flags%dfi_write_filtered_input ) THEN
CALL wrf_dfi_write_initialized_state()
END IF
CASE (DFI_DDFI)
wrf_err_message = 'Initializing with DDFI'
CALL wrf_message(TRIM(wrf_err_message))
wrf_err_message = ' Integrating backward in time'
CALL wrf_message(TRIM(wrf_err_message))
CALL wrf_dfi_bck_init()
CALL wrf_run()
wrf_err_message = ' Filtering forward in time'
CALL wrf_message(TRIM(wrf_err_message))
CALL wrf_dfi_fwd_init()
CALL wrf_run()
CALL wrf_dfi_array_reset()
CALL wrf_dfi_fst_init()
IF ( config_flags%dfi_write_filtered_input ) THEN
CALL wrf_dfi_write_initialized_state()
END IF
CASE (DFI_TDFI)
wrf_err_message = 'Initializing with TDFI'
CALL wrf_message(TRIM(wrf_err_message))
wrf_err_message = ' Integrating backward in time'
CALL wrf_message(TRIM(wrf_err_message))
CALL wrf_dfi_bck_init()
CALL wrf_run()
CALL wrf_dfi_array_reset()
wrf_err_message = ' Filtering forward in time'
CALL wrf_message(TRIM(wrf_err_message))
CALL wrf_dfi_fwd_init()
CALL wrf_run()
CALL wrf_dfi_array_reset()
CALL wrf_dfi_fst_init()
IF ( config_flags%dfi_write_filtered_input ) THEN
CALL wrf_dfi_write_initialized_state()
END IF
CASE DEFAULT
wrf_err_message = 'Unrecognized DFI_OPT in namelist'
CALL wrf_error_fatal(TRIM(wrf_err_message))
END SELECT
END IF
! #endif
END SUBROUTINE wrf_dfi
SUBROUTINE set_derived_rconfigs
!
! Some derived rconfig entries need to be set based on the value of other,
! non-derived entries before package-dependent memory allocation takes place.
! This might be employed when, for example, we want to allocate arrays in
! a package that depends on the setting of two or more namelist variables.
! In this subroutine, we do just that.
!
IMPLICIT NONE
INTEGER :: i
! #if (EM_CORE == 1)
IF ( model_config_rec % dfi_opt .EQ. DFI_NODFI ) THEN
DO i = 1, model_config_rec % max_dom
model_config_rec % mp_physics_dfi(i) = -1
ENDDO
ELSE
DO i = 1, model_config_rec % max_dom
model_config_rec % mp_physics_dfi(i) = model_config_rec % mp_physics(i)
ENDDO
END IF
! #endif
#if (DA_CORE == 1)
IF ( model_config_rec % dyn_opt .EQ. 2 ) THEN
DO i = 1, model_config_rec % max_dom
model_config_rec % mp_physics_4dvar(i) = -1
ENDDO
ELSE
DO i = 1, model_config_rec % max_dom
model_config_rec % mp_physics_4dvar(i) = model_config_rec % mp_physics(i)
ENDDO
END IF
#endif
END SUBROUTINE set_derived_rconfigs
RECURSIVE SUBROUTINE alloc_doms_for_dfi ( grid )
! Input variables.
TYPE (domain) , pointer :: grid
! Local variables.
TYPE (domain) , pointer :: new_nest_loc
TYPE (grid_config_rec_type) :: parent_config_flags
INTEGER :: nestid_loc , kid_loc
! Are there any subdomains from this level. The output is the nestid (the domain
! ID of the nest), and kid (an index to which of the parent's children this new nested
! domain represents).
DO WHILE ( nests_to_open( grid , nestid_loc , kid_loc ) )
! If we found another child domain, we continue on: allocate, set up time keeping,
! initialize.
CALL alloc_and_configure_domain ( domain_id = nestid_loc , &
grid = new_nest_loc , &
parent = grid , &
kid = kid_loc )
print *,'for parent domain id #',grid%id,', found child domain #',nestid_loc
! Since this is a DFI run, set the DFI switches to the same for all domains.
new_nest_loc%dfi_opt = head_grid%dfi_opt
new_nest_loc%dfi_stage = DFI_SETUP
! Set up time keeping for the fine grid space that was just allocated.
CALL Setup_Timekeeping (new_nest_loc)
! With space allocated, and timers set, the fine grid can be initialized with data.
CALL model_to_grid_config_rec ( grid%id , model_config_rec , parent_config_flags )
CALL med_nest_initial ( grid , new_nest_loc , config_flags )
! Here's the recursive part. For each of these child domains, we call this same routine.
! This will find all of "new_nest_loc" first generation progeny.
CALL alloc_doms_for_dfi ( new_nest_loc )
END DO
END SUBROUTINE alloc_doms_for_dfi
END MODULE module_wrf_top