Changeset 1561 in lmdz_wrf for trunk/tools/documentation/ncmanage


Ignore:
Timestamp:
May 10, 2017, 10:18:47 PM (8 years ago)
Author:
lfita
Message:

Adding 'ifreq_anom', ìfreq_mean', 'ifreq_normmeanstd' in `compute_opersvarsfiles'

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/tools/documentation/ncmanage/compute_opersvarsfiles.html

    r1538 r1561  
    3838      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'divc',[modval1]: [prevalues] divide by [modval1]<BR>
    3939      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'forwrdderiv',[N],[ord],[dim]: un-scaled forward [N]-derivative of order [ord] along dimension [dim] of [var]<BR>
     40      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'ifreq_anom',[stepdimn],[stepvardimn],[istep]: computing anomalies by substracting sub-means at each<BR>
     41      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;step by averaging from there all values taken every [istep] along dimension [stepdim]. <BR>
     42      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;mean(j) = sum(matA[j+k*istep]_k=0,Nstep)/Nstep; Nstep = len(stepdimn)/istep; j=[0,istep]<BR>
     43      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepdimn]= name of the dimension along which to sample<BR>
     44      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepvardimn]= name of the variable-dimension with the values for [stepdimn]<BR>
     45      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[istep]= frequency to sample<BR>
     46      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'ifreq_mean',[stepdimn],[stepvardimn],[istep]: computing sub-means at each step by averaging from <BR>
     47      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;there all values taken every [istep] along dimension [stepdim]. <BR>
     48      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;mean(j) = sum(matA[j+k*istep]_k=0,Nstep)/Nstep; Nstep = len(stepdimn)/istep; j=[0,istep]<BR>
     49      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepdimn]= name of the dimension along which to sample<BR>
     50      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepvardimn]= name of the variable-dimension with the values for [stepdimn]<BR>
     51      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[istep]= frequency to sample<BR>
     52      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'ifreq_normmeanstd',[stepdimn],[stepvardimn],[istep]: nbormalizing anomalies by substracting mean(j)/dtsv(j) <BR>
     53      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;sub-stats at each step by averaging from there all values taken every [istep] along dimension[stepdim]. <BR>
     54      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;mean(j) = sum(matA[j+k*istep]_k=0,Nstep)/Nstep; std(j) = std(matA[j+k*istep]_k=0,Nstep); <BR>
     55      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Nstep = len(stepdimn)/istep; j=[0,istep]<BR>
     56      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepdimn]= name of the dimension along which to sample<BR>
     57      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[stepvardimn]= name of the variable-dimension with the values for [stepdimn]<BR>
     58      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[istep]= frequency to sample<BR>
    4059      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'inv': inverting [prevalues] (1/[prevalues])<BR>
    4160      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'lowthres',[modval1],[modval2]: if [prevalues] < [modval1]; prevalues = [modval2]<BR>
     
    4968      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'norm_meanstd',[NOTnormdims]: normalization of data as: (val-<val>)/stdev(val) except along <BR>
    5069      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;dimensions [NOTnormdims] (':' list of dimension names, or 'any' for using all dimensions)<BR>
    51        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;dimensions [NOTnormdims] (':' list of dimension names)<BR>
     70       &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;dimensions [NOTnormdims] (':' list of dimension names)<BR>
    5271      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'pot': powering with [var] ([prevalues] ** [var])<BR>
    5372      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'potc',[modval1]: [prevalues] ** [modval1]<BR>
     
    7291    <DIV CLASS="valins">
    7392    * Transforming temperature from Kelvin to &deg;C<BR>
    74     &nbsp;&nbsp;  $ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|Times|3@subc,273.15|wrfout_d01_2001-11-11_00:00:00|T2' -v 'tempC,air!temperature,C'<BR>
     93    &nbsp;&nbsp;$ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|Times|3@subc,273.15|wrfout_d01_2001-11-11_00:00:00|T2' -v 'tempC,air!temperature,C'<BR>
    7594    * Computing the x-derivative of first order<BR>
    76     &nbsp;&nbsp;  $ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'lon|lon|-1;lat|lat|-1;time_counter|time_counter|-1@forwrdderiv,1,1,2|histday.nc|t2m' -v 'tasderiv,x-derivative|of|air|temperature,K' <BR>
     95    &nbsp;&nbsp;$ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'lon|lon|-1;lat|lat|-1;time_counter|time_counter|-1@forwrdderiv,1,1,2|histday.nc|t2m' -v 'tasderiv,x-derivative|of|air|temperature,K' <BR>
    7796    * Normalizing a variable by substracting its mean and weighting by its standard-deviation<BR>
    78     &nbsp;&nbsp; $ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@norm_meanstd,Time|wrfout_d01_1995-01-01_00:00:00|T2' -v 'tasnorm,normalized!2m!temperature!substracting!mean!and!weighting!by!standard!deviation,K' <BR>
     97    &nbsp;&nbsp;$ python ${pyHOME}/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@norm_meanstd,Time|wrfout_d01_1995-01-01_00:00:00|T2' -v 'tasnorm,normalized!2m!temperature!substracting!mean!and!weighting!by!standard!deviation,K' <BR>
    7998    * Getting height of the frist level from surface from a WRF file<BR>
    80     &nbsp;&nbsp; $ python $pyHOME/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;bottom_top_stag|ZNW|1@addc,0|wrfout_d01_1995-01-01_00:00:00|PH%west_east|XLONG|-1;south_north|XLAT|-1;bottom_top_stag|ZNW|1@add|wrfout_d01_1995-01-01_00:00:00|PHB%contoperation@divc,9.81%west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@sub|wrfout_d01_1995-01-01_00:00:00|HGT' -v 'height1lev,height!above!surface!of!first!level,m'<BR>
     99    &nbsp;&nbsp;$ python $pyHOME/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;bottom_top_stag|ZNW|1@addc,0|wrfout_d01_1995-01-01_00:00:00|PH%west_east|XLONG|-1;south_north|XLAT|-1;bottom_top_stag|ZNW|1@add|wrfout_d01_1995-01-01_00:00:00|PHB%contoperation@divc,9.81%west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@sub|wrfout_d01_1995-01-01_00:00:00|HGT' -v 'height1lev,height!above!surface!of!first!level,m'<BR>
    81100    * Computing wind-direction from a WRF file<BR>
    82     &nbsp;&nbsp; $ python $pyHOME/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@addc,0|wrfout_d01_1995-01-01_00:00:00|V10%west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@arctan|wrfout_d01_1995-01-01_00:00:00|U10%contoperation@mulc,57.2957795131' -v 'wsdir,2m!wind!direction,Degrees'
     101    &nbsp;&nbsp;$ python $pyHOME/nc_var.py -o compute_opersvarsfiles -S 'west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@addc,0|wrfout_d01_1995-01-01_00:00:00|V10%west_east|XLONG|-1;south_north|XLAT|-1;Time|WRFtime|-1@arctan|wrfout_d01_1995-01-01_00:00:00|U10%contoperation@mulc,57.2957795131' -v 'wsdir,2m!wind!direction,Degrees'
     102    * Computing normalized anomalyes of WRF outputs by the mean and standard deviations of the outputs at the same hour<BR>
     103    &nbsp;&nbsp;$ python nc_var.py -o compute_opersvarsfiles -S 'Time|WRFtime|-1;south_north|XLAT|-1;west_east|XLONG|-1@ifreq_normmeanstd,Time,WRFtime,8|/home/lluis/PY/wrfout_d01_1995-01-01_00:00:00|T2' -v 'tas_ifreqnormmeanstd,tas!anomaly!by!substracting!frequency!mean!at!every!8!time-steps,K'
     104
    83105    </DIV>
    84106  </BODY>
Note: See TracChangeset for help on using the changeset viewer.