1 | |
---|
2 | # L. Fita, LMD-Jussieu. February 2015 |
---|
3 | ## e.g. sfcEneAvigon # validation_sim.py -d X@west_east@None,Y@south_north@None,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,T@time@time -k single-station -l 4.878773,43.915876,12. -o /home/lluis/DATA/obs/HyMeX/IOP15/sfcEnergyBalance_Avignon/OBSnetcdf.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v HFX@H,LH@LE,GRDFLX@G |
---|
4 | ## e.g. AIREP # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@alti,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/AIREP/2012/10/AIREP_121018.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@t,WRFtd@td,WRFws@u,WRFwd@dd |
---|
5 | ## e.g. ATRCore # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/ATRCore/V3/ATR_1Hz-HYMEXBDD-SOP1-v3_20121018_as120051.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@air_temperature@subc@273.15,WRFp@air_pressure,WRFrh@relative_humidity,WRFrh@relative_humidity_Rosemount,WRFwd@wind_from_direction,WRFws@wind_speed |
---|
6 | ## e.g. BAMED # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/BAMED/BAMED_SOP1_B12_TOT5.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@tas_north,WRFp@pressure,WRFrh@hus,U@uas,V@vas |
---|
7 | |
---|
8 | import numpy as np |
---|
9 | import os |
---|
10 | import re |
---|
11 | from optparse import OptionParser |
---|
12 | from netCDF4 import Dataset as NetCDFFile |
---|
13 | from scipy import stats as sts |
---|
14 | import numpy.ma as ma |
---|
15 | |
---|
16 | main = 'validarion_sim.py' |
---|
17 | errormsg = 'ERROR -- errror -- ERROR -- error' |
---|
18 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
19 | |
---|
20 | # version |
---|
21 | version=1.0 |
---|
22 | |
---|
23 | # Filling values for floats, integer and string |
---|
24 | fillValueF = 1.e20 |
---|
25 | fillValueI = -99999 |
---|
26 | fillValueS = '---' |
---|
27 | |
---|
28 | StringLength = 50 |
---|
29 | |
---|
30 | # Number of grid points to take as 'environment' around the observed point |
---|
31 | Ngrid = 1 |
---|
32 | |
---|
33 | def searchInlist(listname, nameFind): |
---|
34 | """ Function to search a value within a list |
---|
35 | listname = list |
---|
36 | nameFind = value to find |
---|
37 | >>> searInlist(['1', '2', '3', '5'], '5') |
---|
38 | True |
---|
39 | """ |
---|
40 | for x in listname: |
---|
41 | if x == nameFind: |
---|
42 | return True |
---|
43 | return False |
---|
44 | |
---|
45 | def set_attribute(ncvar, attrname, attrvalue): |
---|
46 | """ Sets a value of an attribute of a netCDF variable. Removes previous attribute value if exists |
---|
47 | ncvar = object netcdf variable |
---|
48 | attrname = name of the attribute |
---|
49 | attrvalue = value of the attribute |
---|
50 | """ |
---|
51 | import numpy as np |
---|
52 | from netCDF4 import Dataset as NetCDFFile |
---|
53 | |
---|
54 | attvar = ncvar.ncattrs() |
---|
55 | if searchInlist(attvar, attrname): |
---|
56 | attr = ncvar.delncattr(attrname) |
---|
57 | |
---|
58 | attr = ncvar.setncattr(attrname, attrvalue) |
---|
59 | |
---|
60 | return ncvar |
---|
61 | |
---|
62 | def basicvardef(varobj, vstname, vlname, vunits): |
---|
63 | """ Function to give the basic attributes to a variable |
---|
64 | varobj= netCDF variable object |
---|
65 | vstname= standard name of the variable |
---|
66 | vlname= long name of the variable |
---|
67 | vunits= units of the variable |
---|
68 | """ |
---|
69 | attr = varobj.setncattr('standard_name', vstname) |
---|
70 | attr = varobj.setncattr('long_name', vlname) |
---|
71 | attr = varobj.setncattr('units', vunits) |
---|
72 | |
---|
73 | return |
---|
74 | |
---|
75 | def writing_str_nc(varo, values, Lchar): |
---|
76 | """ Function to write string values in a netCDF variable as a chain of 1char values |
---|
77 | varo= netCDF variable object |
---|
78 | values = list of values to introduce |
---|
79 | Lchar = length of the string in the netCDF file |
---|
80 | """ |
---|
81 | |
---|
82 | Nvals = len(values) |
---|
83 | for iv in range(Nvals): |
---|
84 | stringv=values[iv] |
---|
85 | charvals = np.chararray(Lchar) |
---|
86 | Lstr = len(stringv) |
---|
87 | charvals[Lstr:Lchar] = '' |
---|
88 | |
---|
89 | for ich in range(Lstr): |
---|
90 | charvals[ich] = stringv[ich:ich+1] |
---|
91 | |
---|
92 | varo[iv,:] = charvals |
---|
93 | |
---|
94 | return |
---|
95 | |
---|
96 | def index_3mat(matA,matB,matC,val): |
---|
97 | """ Function to provide the coordinates of a given value inside three matrix simultaneously |
---|
98 | index_mat(matA,matB,matC,val) |
---|
99 | matA= matrix with one set of values |
---|
100 | matB= matrix with the other set of values |
---|
101 | matB= matrix with the third set of values |
---|
102 | val= triplet of values to search |
---|
103 | >>> index_mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),np.arange(200,227).reshape(3,3,3),[22,122,222]) |
---|
104 | [2 1 1] |
---|
105 | """ |
---|
106 | fname = 'index_3mat' |
---|
107 | |
---|
108 | matAshape = matA.shape |
---|
109 | matBshape = matB.shape |
---|
110 | matCshape = matC.shape |
---|
111 | |
---|
112 | for idv in range(len(matAshape)): |
---|
113 | if matAshape[idv] != matBshape[idv]: |
---|
114 | print errormsg |
---|
115 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
116 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
117 | quit(-1) |
---|
118 | if matAshape[idv] != matCshape[idv]: |
---|
119 | print errormsg |
---|
120 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
121 | 'and C:',matCshape[idv],'does not coincide!!' |
---|
122 | quit(-1) |
---|
123 | |
---|
124 | minA = np.min(matA) |
---|
125 | maxA = np.max(matA) |
---|
126 | minB = np.min(matB) |
---|
127 | maxB = np.max(matB) |
---|
128 | minC = np.min(matC) |
---|
129 | maxC = np.max(matC) |
---|
130 | |
---|
131 | if val[0] < minA or val[0] > maxA: |
---|
132 | print warnmsg |
---|
133 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
134 | maxA,'!!' |
---|
135 | if val[1] < minB or val[1] > maxB: |
---|
136 | print warnmsg |
---|
137 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
138 | maxB,'!!' |
---|
139 | if val[2] < minC or val[2] > maxC: |
---|
140 | print warnmsg |
---|
141 | print ' ' + fname + ': second value:',val[2],'outside matC range',minC,',', \ |
---|
142 | maxC,'!!' |
---|
143 | |
---|
144 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
145 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2 + \ |
---|
146 | (matC - np.float(val[2]))**2) |
---|
147 | |
---|
148 | mindist = np.min(dist) |
---|
149 | |
---|
150 | matlist = list(dist.flatten()) |
---|
151 | ifound = matlist.index(mindist) |
---|
152 | |
---|
153 | Ndims = len(matAshape) |
---|
154 | valpos = np.zeros((Ndims), dtype=int) |
---|
155 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
156 | |
---|
157 | for dimid in range(Ndims): |
---|
158 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
159 | if dimid == 0: |
---|
160 | alreadyplaced = 0 |
---|
161 | else: |
---|
162 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
163 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
164 | |
---|
165 | return valpos |
---|
166 | |
---|
167 | def index_2mat(matA,matB,val): |
---|
168 | """ Function to provide the coordinates of a given value inside two matrix simultaneously |
---|
169 | index_mat(matA,matB,val) |
---|
170 | matA= matrix with one set of values |
---|
171 | matB= matrix with the pother set of values |
---|
172 | val= couple of values to search |
---|
173 | >>> index_2mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),[22,111]) |
---|
174 | [2 1 1] |
---|
175 | """ |
---|
176 | fname = 'index_2mat' |
---|
177 | |
---|
178 | matAshape = matA.shape |
---|
179 | matBshape = matB.shape |
---|
180 | |
---|
181 | for idv in range(len(matAshape)): |
---|
182 | if matAshape[idv] != matBshape[idv]: |
---|
183 | print errormsg |
---|
184 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
185 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
186 | quit(-1) |
---|
187 | |
---|
188 | minA = np.min(matA) |
---|
189 | maxA = np.max(matA) |
---|
190 | minB = np.min(matB) |
---|
191 | maxB = np.max(matB) |
---|
192 | |
---|
193 | Ndims = len(matAshape) |
---|
194 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
195 | valpos = np.zeros((Ndims), dtype=int) |
---|
196 | |
---|
197 | if val[0] < minA or val[0] > maxA: |
---|
198 | print warnmsg |
---|
199 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
200 | maxA,'!!' |
---|
201 | return valpos |
---|
202 | if val[1] < minB or val[1] > maxB: |
---|
203 | print warnmsg |
---|
204 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
205 | maxB,'!!' |
---|
206 | return valpos |
---|
207 | |
---|
208 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
209 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2) |
---|
210 | |
---|
211 | mindist = np.min(dist) |
---|
212 | |
---|
213 | if mindist != mindist: |
---|
214 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
215 | return valpos |
---|
216 | else: |
---|
217 | matlist = list(dist.flatten()) |
---|
218 | ifound = matlist.index(mindist) |
---|
219 | |
---|
220 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
221 | for dimid in range(Ndims): |
---|
222 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
223 | if dimid == 0: |
---|
224 | alreadyplaced = 0 |
---|
225 | else: |
---|
226 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
227 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
228 | |
---|
229 | return valpos |
---|
230 | |
---|
231 | def index_mat(matA,val): |
---|
232 | """ Function to provide the coordinates of a given value inside a matrix |
---|
233 | index_mat(matA,val) |
---|
234 | matA= matrix with one set of values |
---|
235 | val= couple of values to search |
---|
236 | >>> index_mat(np.arange(27),22.3) |
---|
237 | 22 |
---|
238 | """ |
---|
239 | fname = 'index_mat' |
---|
240 | |
---|
241 | matAshape = matA.shape |
---|
242 | |
---|
243 | minA = np.min(matA) |
---|
244 | maxA = np.max(matA) |
---|
245 | |
---|
246 | Ndims = len(matAshape) |
---|
247 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
248 | valpos = np.zeros((Ndims), dtype=int) |
---|
249 | |
---|
250 | if val < minA or val > maxA: |
---|
251 | print warnmsg |
---|
252 | print ' ' + fname + ': first value:',val,'outside matA range',minA,',', \ |
---|
253 | maxA,'!!' |
---|
254 | return valpos |
---|
255 | |
---|
256 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
257 | dist = (matA - np.float(val))**2 |
---|
258 | |
---|
259 | mindist = np.min(dist) |
---|
260 | if mindist != mindist: |
---|
261 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
262 | return valpos |
---|
263 | |
---|
264 | matlist = list(dist.flatten()) |
---|
265 | valpos = matlist.index(mindist) |
---|
266 | |
---|
267 | return valpos |
---|
268 | |
---|
269 | def index_mat_exact(mat,val): |
---|
270 | """ Function to provide the coordinates of a given exact value inside a matrix |
---|
271 | index_mat(mat,val) |
---|
272 | mat= matrix with values |
---|
273 | val= value to search |
---|
274 | >>> index_mat(np.arange(27).reshape(3,3,3),22) |
---|
275 | [2 1 1] |
---|
276 | """ |
---|
277 | |
---|
278 | fname = 'index_mat' |
---|
279 | |
---|
280 | matshape = mat.shape |
---|
281 | |
---|
282 | matlist = list(mat.flatten()) |
---|
283 | ifound = matlist.index(val) |
---|
284 | |
---|
285 | Ndims = len(matshape) |
---|
286 | valpos = np.zeros((Ndims), dtype=int) |
---|
287 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
288 | |
---|
289 | for dimid in range(Ndims): |
---|
290 | baseprevdims[dimid] = np.product(matshape[dimid+1:Ndims]) |
---|
291 | if dimid == 0: |
---|
292 | alreadyplaced = 0 |
---|
293 | else: |
---|
294 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
295 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
296 | |
---|
297 | return valpos |
---|
298 | |
---|
299 | def datetimeStr_datetime(StringDT): |
---|
300 | """ Function to transform a string date ([YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format) to a date object |
---|
301 | >>> datetimeStr_datetime('1976-02-17_00:00:00') |
---|
302 | 1976-02-17 00:00:00 |
---|
303 | """ |
---|
304 | import datetime as dt |
---|
305 | |
---|
306 | fname = 'datetimeStr_datetime' |
---|
307 | |
---|
308 | dateD = np.zeros((3), dtype=int) |
---|
309 | timeT = np.zeros((3), dtype=int) |
---|
310 | |
---|
311 | dateD[0] = int(StringDT[0:4]) |
---|
312 | dateD[1] = int(StringDT[5:7]) |
---|
313 | dateD[2] = int(StringDT[8:10]) |
---|
314 | |
---|
315 | trefT = StringDT.find(':') |
---|
316 | if not trefT == -1: |
---|
317 | # print ' ' + fname + ': refdate with time!' |
---|
318 | timeT[0] = int(StringDT[11:13]) |
---|
319 | timeT[1] = int(StringDT[14:16]) |
---|
320 | timeT[2] = int(StringDT[17:19]) |
---|
321 | |
---|
322 | if int(dateD[0]) == 0: |
---|
323 | print warnmsg |
---|
324 | print ' ' + fname + ': 0 reference year!! changing to 1' |
---|
325 | dateD[0] = 1 |
---|
326 | |
---|
327 | newdatetime = dt.datetime(dateD[0], dateD[1], dateD[2], timeT[0], timeT[1], timeT[2]) |
---|
328 | |
---|
329 | return newdatetime |
---|
330 | |
---|
331 | def datetimeStr_conversion(StringDT,typeSi,typeSo): |
---|
332 | """ Function to transform a string date to an another date object |
---|
333 | StringDT= string with the date and time |
---|
334 | typeSi= type of datetime string input |
---|
335 | typeSo= type of datetime string output |
---|
336 | [typeSi/o] |
---|
337 | 'cfTime': [time],[units]; ]time in CF-convention format [units] = [tunits] since [refdate] |
---|
338 | 'matYmdHMS': numerical vector with [[YYYY], [MM], [DD], [HH], [MI], [SS]] |
---|
339 | 'YmdHMS': [YYYY][MM][DD][HH][MI][SS] format |
---|
340 | 'Y-m-d_H:M:S': [YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format |
---|
341 | 'Y-m-d H:M:S': [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] format |
---|
342 | 'Y/m/d H-M-S': [YYYY]/[MM]/[DD] [HH]-[MI]-[SS] format |
---|
343 | 'WRFdatetime': [Y], [Y], [Y], [Y], '-', [M], [M], '-', [D], [D], '_', [H], |
---|
344 | [H], ':', [M], [M], ':', [S], [S] |
---|
345 | >>> datetimeStr_conversion('1976-02-17_08:32:05','Y-m-d_H:M:S','matYmdHMS') |
---|
346 | [1976 2 17 8 32 5] |
---|
347 | >>> datetimeStr_conversion(str(137880)+',minutes since 1979-12-01_00:00:00','cfTime','Y/m/d H-M-S') |
---|
348 | 1980/03/05 18-00-00 |
---|
349 | """ |
---|
350 | import datetime as dt |
---|
351 | |
---|
352 | fname = 'datetimeStr_conversion' |
---|
353 | |
---|
354 | if StringDT[0:1] == 'h': |
---|
355 | print fname + '_____________________________________________________________' |
---|
356 | print datetimeStr_conversion.__doc__ |
---|
357 | quit() |
---|
358 | |
---|
359 | if typeSi == 'cfTime': |
---|
360 | timeval = np.float(StringDT.split(',')[0]) |
---|
361 | tunits = StringDT.split(',')[1].split(' ')[0] |
---|
362 | Srefdate = StringDT.split(',')[1].split(' ')[2] |
---|
363 | |
---|
364 | # Does reference date contain a time value [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] |
---|
365 | ## |
---|
366 | yrref=Srefdate[0:4] |
---|
367 | monref=Srefdate[5:7] |
---|
368 | dayref=Srefdate[8:10] |
---|
369 | |
---|
370 | trefT = Srefdate.find(':') |
---|
371 | if not trefT == -1: |
---|
372 | # print ' ' + fname + ': refdate with time!' |
---|
373 | horref=Srefdate[11:13] |
---|
374 | minref=Srefdate[14:16] |
---|
375 | secref=Srefdate[17:19] |
---|
376 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
377 | '_' + horref + ':' + minref + ':' + secref) |
---|
378 | else: |
---|
379 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
380 | + '_00:00:00') |
---|
381 | |
---|
382 | if tunits == 'weeks': |
---|
383 | newdate = refdate + dt.timedelta(weeks=float(timeval)) |
---|
384 | elif tunits == 'days': |
---|
385 | newdate = refdate + dt.timedelta(days=float(timeval)) |
---|
386 | elif tunits == 'hours': |
---|
387 | newdate = refdate + dt.timedelta(hours=float(timeval)) |
---|
388 | elif tunits == 'minutes': |
---|
389 | newdate = refdate + dt.timedelta(minutes=float(timeval)) |
---|
390 | elif tunits == 'seconds': |
---|
391 | newdate = refdate + dt.timedelta(seconds=float(timeval)) |
---|
392 | elif tunits == 'milliseconds': |
---|
393 | newdate = refdate + dt.timedelta(milliseconds=float(timeval)) |
---|
394 | else: |
---|
395 | print errormsg |
---|
396 | print ' timeref_datetime: time units "' + tunits + '" not ready!!!!' |
---|
397 | quit(-1) |
---|
398 | |
---|
399 | yr = newdate.year |
---|
400 | mo = newdate.month |
---|
401 | da = newdate.day |
---|
402 | ho = newdate.hour |
---|
403 | mi = newdate.minute |
---|
404 | se = newdate.second |
---|
405 | elif typeSi == 'matYmdHMS': |
---|
406 | yr = StringDT[0] |
---|
407 | mo = StringDT[1] |
---|
408 | da = StringDT[2] |
---|
409 | ho = StringDT[3] |
---|
410 | mi = StringDT[4] |
---|
411 | se = StringDT[5] |
---|
412 | elif typeSi == 'YmdHMS': |
---|
413 | yr = int(StringDT[0:4]) |
---|
414 | mo = int(StringDT[4:6]) |
---|
415 | da = int(StringDT[6:8]) |
---|
416 | ho = int(StringDT[8:10]) |
---|
417 | mi = int(StringDT[10:12]) |
---|
418 | se = int(StringDT[12:14]) |
---|
419 | elif typeSi == 'Y-m-d_H:M:S': |
---|
420 | dateDT = StringDT.split('_') |
---|
421 | dateD = dateDT[0].split('-') |
---|
422 | timeT = dateDT[1].split(':') |
---|
423 | yr = int(dateD[0]) |
---|
424 | mo = int(dateD[1]) |
---|
425 | da = int(dateD[2]) |
---|
426 | ho = int(timeT[0]) |
---|
427 | mi = int(timeT[1]) |
---|
428 | se = int(timeT[2]) |
---|
429 | elif typeSi == 'Y-m-d H:M:S': |
---|
430 | dateDT = StringDT.split(' ') |
---|
431 | dateD = dateDT[0].split('-') |
---|
432 | timeT = dateDT[1].split(':') |
---|
433 | yr = int(dateD[0]) |
---|
434 | mo = int(dateD[1]) |
---|
435 | da = int(dateD[2]) |
---|
436 | ho = int(timeT[0]) |
---|
437 | mi = int(timeT[1]) |
---|
438 | se = int(timeT[2]) |
---|
439 | elif typeSi == 'Y/m/d H-M-S': |
---|
440 | dateDT = StringDT.split(' ') |
---|
441 | dateD = dateDT[0].split('/') |
---|
442 | timeT = dateDT[1].split('-') |
---|
443 | yr = int(dateD[0]) |
---|
444 | mo = int(dateD[1]) |
---|
445 | da = int(dateD[2]) |
---|
446 | ho = int(timeT[0]) |
---|
447 | mi = int(timeT[1]) |
---|
448 | se = int(timeT[2]) |
---|
449 | elif typeSi == 'WRFdatetime': |
---|
450 | yr = int(StringDT[0])*1000 + int(StringDT[1])*100 + int(StringDT[2])*10 + \ |
---|
451 | int(StringDT[3]) |
---|
452 | mo = int(StringDT[5])*10 + int(StringDT[6]) |
---|
453 | da = int(StringDT[8])*10 + int(StringDT[9]) |
---|
454 | ho = int(StringDT[11])*10 + int(StringDT[12]) |
---|
455 | mi = int(StringDT[14])*10 + int(StringDT[15]) |
---|
456 | se = int(StringDT[17])*10 + int(StringDT[18]) |
---|
457 | else: |
---|
458 | print errormsg |
---|
459 | print ' ' + fname + ': type of String input date "' + typeSi + \ |
---|
460 | '" not ready !!!!' |
---|
461 | quit(-1) |
---|
462 | |
---|
463 | if typeSo == 'matYmdHMS': |
---|
464 | dateYmdHMS = np.zeros((6), dtype=int) |
---|
465 | dateYmdHMS[0] = yr |
---|
466 | dateYmdHMS[1] = mo |
---|
467 | dateYmdHMS[2] = da |
---|
468 | dateYmdHMS[3] = ho |
---|
469 | dateYmdHMS[4] = mi |
---|
470 | dateYmdHMS[5] = se |
---|
471 | elif typeSo == 'YmdHMS': |
---|
472 | dateYmdHMS = str(yr).zfill(4) + str(mo).zfill(2) + str(da).zfill(2) + \ |
---|
473 | str(ho).zfill(2) + str(mi).zfill(2) + str(se).zfill(2) |
---|
474 | elif typeSo == 'Y-m-d_H:M:S': |
---|
475 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
476 | str(da).zfill(2) + '_' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
477 | str(se).zfill(2) |
---|
478 | elif typeSo == 'Y-m-d H:M:S': |
---|
479 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
480 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
481 | str(se).zfill(2) |
---|
482 | elif typeSo == 'Y/m/d H-M-S': |
---|
483 | dateYmdHMS = str(yr).zfill(4) + '/' + str(mo).zfill(2) + '/' + \ |
---|
484 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + '-' + str(mi).zfill(2) + '-' + \ |
---|
485 | str(se).zfill(2) |
---|
486 | elif typeSo == 'WRFdatetime': |
---|
487 | dateYmdHMS = [] |
---|
488 | yM = yr/1000 |
---|
489 | yC = (yr-yM*1000)/100 |
---|
490 | yD = (yr-yM*1000-yC*100)/10 |
---|
491 | yU = yr-yM*1000-yC*100-yD*10 |
---|
492 | |
---|
493 | mD = mo/10 |
---|
494 | mU = mo-mD*10 |
---|
495 | |
---|
496 | dD = da/10 |
---|
497 | dU = da-dD*10 |
---|
498 | |
---|
499 | hD = ho/10 |
---|
500 | hU = ho-hD*10 |
---|
501 | |
---|
502 | miD = mi/10 |
---|
503 | miU = mi-miD*10 |
---|
504 | |
---|
505 | sD = se/10 |
---|
506 | sU = se-sD*10 |
---|
507 | |
---|
508 | dateYmdHMS.append(str(yM)) |
---|
509 | dateYmdHMS.append(str(yC)) |
---|
510 | dateYmdHMS.append(str(yD)) |
---|
511 | dateYmdHMS.append(str(yU)) |
---|
512 | dateYmdHMS.append('-') |
---|
513 | dateYmdHMS.append(str(mD)) |
---|
514 | dateYmdHMS.append(str(mU)) |
---|
515 | dateYmdHMS.append('-') |
---|
516 | dateYmdHMS.append(str(dD)) |
---|
517 | dateYmdHMS.append(str(dU)) |
---|
518 | dateYmdHMS.append('_') |
---|
519 | dateYmdHMS.append(str(hD)) |
---|
520 | dateYmdHMS.append(str(hU)) |
---|
521 | dateYmdHMS.append(':') |
---|
522 | dateYmdHMS.append(str(miD)) |
---|
523 | dateYmdHMS.append(str(miU)) |
---|
524 | dateYmdHMS.append(':') |
---|
525 | dateYmdHMS.append(str(sD)) |
---|
526 | dateYmdHMS.append(str(sU)) |
---|
527 | else: |
---|
528 | print errormsg |
---|
529 | print ' ' + fname + ': type of output date "' + typeSo + '" not ready !!!!' |
---|
530 | quit(-1) |
---|
531 | |
---|
532 | return dateYmdHMS |
---|
533 | |
---|
534 | def coincident_CFtimes(tvalB, tunitA, tunitB): |
---|
535 | """ Function to make coincident times for two different sets of CFtimes |
---|
536 | tvalB= time values B |
---|
537 | tunitA= time units times A to which we want to make coincidence |
---|
538 | tunitB= time units times B |
---|
539 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
540 | 'hours since 1949-12-01 00:00:00') |
---|
541 | [ 0. 3600. 7200. 10800. 14400. 18000. 21600. 25200. 28800. 32400.] |
---|
542 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
543 | 'hours since 1979-12-01 00:00:00') |
---|
544 | [ 9.46684800e+08 9.46688400e+08 9.46692000e+08 9.46695600e+08 |
---|
545 | 9.46699200e+08 9.46702800e+08 9.46706400e+08 9.46710000e+08 |
---|
546 | 9.46713600e+08 9.46717200e+08] |
---|
547 | """ |
---|
548 | import datetime as dt |
---|
549 | fname = 'coincident_CFtimes' |
---|
550 | |
---|
551 | trefA = tunitA.split(' ')[2] + ' ' + tunitA.split(' ')[3] |
---|
552 | trefB = tunitB.split(' ')[2] + ' ' + tunitB.split(' ')[3] |
---|
553 | tuA = tunitA.split(' ')[0] |
---|
554 | tuB = tunitB.split(' ')[0] |
---|
555 | |
---|
556 | if tuA != tuB: |
---|
557 | if tuA == 'microseconds': |
---|
558 | if tuB == 'microseconds': |
---|
559 | tB = tvalB*1. |
---|
560 | elif tuB == 'seconds': |
---|
561 | tB = tvalB*10.e6 |
---|
562 | elif tuB == 'minutes': |
---|
563 | tB = tvalB*60.*10.e6 |
---|
564 | elif tuB == 'hours': |
---|
565 | tB = tvalB*3600.*10.e6 |
---|
566 | elif tuB == 'days': |
---|
567 | tB = tvalB*3600.*24.*10.e6 |
---|
568 | else: |
---|
569 | print errormsg |
---|
570 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
571 | "' & '" + tuB + "' not ready !!" |
---|
572 | quit(-1) |
---|
573 | elif tuA == 'seconds': |
---|
574 | if tuB == 'microseconds': |
---|
575 | tB = tvalB/10.e6 |
---|
576 | elif tuB == 'seconds': |
---|
577 | tB = tvalB*1. |
---|
578 | elif tuB == 'minutes': |
---|
579 | tB = tvalB*60. |
---|
580 | elif tuB == 'hours': |
---|
581 | tB = tvalB*3600. |
---|
582 | elif tuB == 'days': |
---|
583 | tB = tvalB*3600.*24. |
---|
584 | else: |
---|
585 | print errormsg |
---|
586 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
587 | "' & '" + tuB + "' not ready !!" |
---|
588 | quit(-1) |
---|
589 | elif tuA == 'minutes': |
---|
590 | if tuB == 'microseconds': |
---|
591 | tB = tvalB/(60.*10.e6) |
---|
592 | elif tuB == 'seconds': |
---|
593 | tB = tvalB/60. |
---|
594 | elif tuB == 'minutes': |
---|
595 | tB = tvalB*1. |
---|
596 | elif tuB == 'hours': |
---|
597 | tB = tvalB*60. |
---|
598 | elif tuB == 'days': |
---|
599 | tB = tvalB*60.*24. |
---|
600 | else: |
---|
601 | print errormsg |
---|
602 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
603 | "' & '" + tuB + "' not ready !!" |
---|
604 | quit(-1) |
---|
605 | elif tuA == 'hours': |
---|
606 | if tuB == 'microseconds': |
---|
607 | tB = tvalB/(3600.*10.e6) |
---|
608 | elif tuB == 'seconds': |
---|
609 | tB = tvalB/3600. |
---|
610 | elif tuB == 'minutes': |
---|
611 | tB = tvalB/60. |
---|
612 | elif tuB == 'hours': |
---|
613 | tB = tvalB*1. |
---|
614 | elif tuB == 'days': |
---|
615 | tB = tvalB*24. |
---|
616 | else: |
---|
617 | print errormsg |
---|
618 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
619 | "' & '" + tuB + "' not ready !!" |
---|
620 | quit(-1) |
---|
621 | elif tuA == 'days': |
---|
622 | if tuB == 'microseconds': |
---|
623 | tB = tvalB/(24.*3600.*10.e6) |
---|
624 | elif tuB == 'seconds': |
---|
625 | tB = tvalB/(24.*3600.) |
---|
626 | elif tuB == 'minutes': |
---|
627 | tB = tvalB/(24.*60.) |
---|
628 | elif tuB == 'hours': |
---|
629 | tB = tvalB/24. |
---|
630 | elif tuB == 'days': |
---|
631 | tB = tvalB*1. |
---|
632 | else: |
---|
633 | print errormsg |
---|
634 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
635 | "' & '" + tuB + "' not ready !!" |
---|
636 | quit(-1) |
---|
637 | else: |
---|
638 | print errormsg |
---|
639 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
640 | quit(-1) |
---|
641 | else: |
---|
642 | tB = tvalB*1. |
---|
643 | |
---|
644 | if trefA != trefB: |
---|
645 | trefTA = dt.datetime.strptime(trefA, '%Y-%m-%d %H:%M:%S') |
---|
646 | trefTB = dt.datetime.strptime(trefB, '%Y-%m-%d %H:%M:%S') |
---|
647 | |
---|
648 | difft = trefTB - trefTA |
---|
649 | diffv = difft.days*24.*3600.*10.e6 + difft.seconds*10.e6 + difft.microseconds |
---|
650 | print ' ' + fname + ': different reference refA:',trefTA,'refB',trefTB |
---|
651 | print ' difference:',difft,':',diffv,'microseconds' |
---|
652 | |
---|
653 | if tuA == 'microseconds': |
---|
654 | tB = tB + diffv |
---|
655 | elif tuA == 'seconds': |
---|
656 | tB = tB + diffv/10.e6 |
---|
657 | elif tuA == 'minutes': |
---|
658 | tB = tB + diffv/(60.*10.e6) |
---|
659 | elif tuA == 'hours': |
---|
660 | tB = tB + diffv/(3600.*10.e6) |
---|
661 | elif tuA == 'dayss': |
---|
662 | tB = tB + diffv/(24.*3600.*10.e6) |
---|
663 | else: |
---|
664 | print errormsg |
---|
665 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
666 | quit(-1) |
---|
667 | |
---|
668 | return tB |
---|
669 | |
---|
670 | def slice_variable(varobj, dimslice): |
---|
671 | """ Function to return a slice of a given variable according to values to its |
---|
672 | dimensions |
---|
673 | slice_variable(varobj, dimslice) |
---|
674 | varobj= object wit the variable |
---|
675 | dimslice= [[dimname1]:[value1]|[[dimname2]:[value2], ...] pairs of dimension |
---|
676 | [value]: |
---|
677 | * [integer]: which value of the dimension |
---|
678 | * -1: all along the dimension |
---|
679 | * -9: last value of the dimension |
---|
680 | * [beg]@[end] slice from [beg] to [end] |
---|
681 | """ |
---|
682 | fname = 'slice_variable' |
---|
683 | |
---|
684 | if varobj == 'h': |
---|
685 | print fname + '_____________________________________________________________' |
---|
686 | print slice_variable.__doc__ |
---|
687 | quit() |
---|
688 | |
---|
689 | vardims = varobj.dimensions |
---|
690 | Ndimvar = len(vardims) |
---|
691 | |
---|
692 | Ndimcut = len(dimslice.split('|')) |
---|
693 | dimsl = dimslice.split('|') |
---|
694 | |
---|
695 | varvalsdim = [] |
---|
696 | dimnslice = [] |
---|
697 | |
---|
698 | for idd in range(Ndimvar): |
---|
699 | for idc in range(Ndimcut): |
---|
700 | dimcutn = dimsl[idc].split(':')[0] |
---|
701 | dimcutv = dimsl[idc].split(':')[1] |
---|
702 | if vardims[idd] == dimcutn: |
---|
703 | posfrac = dimcutv.find('@') |
---|
704 | if posfrac != -1: |
---|
705 | inifrac = int(dimcutv.split('@')[0]) |
---|
706 | endfrac = int(dimcutv.split('@')[1]) |
---|
707 | varvalsdim.append(slice(inifrac,endfrac)) |
---|
708 | dimnslice.append(vardims[idd]) |
---|
709 | else: |
---|
710 | if int(dimcutv) == -1: |
---|
711 | varvalsdim.append(slice(0,varobj.shape[idd])) |
---|
712 | dimnslice.append(vardims[idd]) |
---|
713 | elif int(dimcutv) == -9: |
---|
714 | varvalsdim.append(int(varobj.shape[idd])-1) |
---|
715 | else: |
---|
716 | varvalsdim.append(int(dimcutv)) |
---|
717 | break |
---|
718 | |
---|
719 | varvalues = varobj[tuple(varvalsdim)] |
---|
720 | |
---|
721 | return varvalues, dimnslice |
---|
722 | |
---|
723 | def func_compute_varNOcheck(ncobj, varn): |
---|
724 | """ Function to compute variables which are not originary in the file |
---|
725 | ncobj= netCDF object file |
---|
726 | varn = variable to compute: |
---|
727 | 'WRFdens': air density from WRF variables |
---|
728 | 'WRFght': geopotential height from WRF variables |
---|
729 | 'WRFp': pressure from WRF variables |
---|
730 | 'WRFrh': relative humidty fom WRF variables |
---|
731 | 'WRFt': temperature from WRF variables |
---|
732 | 'WRFwds': surface wind direction from WRF variables |
---|
733 | 'WRFwss': surface wind speed from WRF variables |
---|
734 | 'WRFz': height from WRF variables |
---|
735 | """ |
---|
736 | fname = 'compute_varNOcheck' |
---|
737 | |
---|
738 | if varn == 'WRFdens': |
---|
739 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
740 | # 'DNW)/g ...' |
---|
741 | grav = 9.81 |
---|
742 | |
---|
743 | # Just we need in in absolute values: Size of the central grid cell |
---|
744 | ## dxval = ncobj.getncattr('DX') |
---|
745 | ## dyval = ncobj.getncattr('DY') |
---|
746 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
747 | ## area = dxval*dyval*mapfac |
---|
748 | dimensions = ncobj.variables['MU'].dimensions |
---|
749 | |
---|
750 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
751 | dnw = ncobj.variables['DNW'][:] |
---|
752 | |
---|
753 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
754 | dtype=np.float) |
---|
755 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
756 | |
---|
757 | for it in range(mu.shape[0]): |
---|
758 | for iz in range(dnw.shape[1]): |
---|
759 | levval.fill(np.abs(dnw[it,iz])) |
---|
760 | varNOcheck[it,iz,:,:] = levval |
---|
761 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
762 | |
---|
763 | elif varn == 'WRFght': |
---|
764 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
765 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
766 | dimensions = ncobj.variables['PH'].dimensions |
---|
767 | |
---|
768 | elif varn == 'WRFp': |
---|
769 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
770 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
771 | dimensions = ncobj.variables['P'].dimensions |
---|
772 | |
---|
773 | elif varn == 'WRFrh': |
---|
774 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
775 | # ' equation (T,P) ...' |
---|
776 | p0=100000. |
---|
777 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
778 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
779 | qv = ncobj.variables['QVAPOR'][:] |
---|
780 | |
---|
781 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
782 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
783 | |
---|
784 | varNOcheckv = qv/data2 |
---|
785 | dimensions = ncobj.variables['P'].dimensions |
---|
786 | |
---|
787 | elif varn == 'WRFt': |
---|
788 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
789 | p0=100000. |
---|
790 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
791 | |
---|
792 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
793 | dimensions = ncobj.variables['T'].dimensions |
---|
794 | |
---|
795 | elif varn == 'WRFwds': |
---|
796 | # print ' ' + main + ': computing surface wind direction from WRF as ATAN2(V,U) ...' |
---|
797 | varNOcheckv = np.arctan2(ncobj.variables['V10'][:], ncobj.variables['U10'][:]) |
---|
798 | dimensions = ncobj.variables['V10'].dimensions |
---|
799 | |
---|
800 | elif varn == 'WRFwss': |
---|
801 | # print ' ' + main + ': computing surface wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
802 | varNOcheckv = np.sqrt(ncobj.variables['U10'][:]*ncobj.variables['U10'][:] + \ |
---|
803 | ncobj.variables['V10'][:]*ncobj.variables['V10'][:]) |
---|
804 | dimensions = ncobj.variables['U10'].dimensions |
---|
805 | |
---|
806 | elif varn == 'WRFz': |
---|
807 | grav = 9.81 |
---|
808 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
809 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
810 | dimensions = ncobj.variables['PH'].dimensions |
---|
811 | |
---|
812 | else: |
---|
813 | print erromsg |
---|
814 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
815 | quit(-1) |
---|
816 | |
---|
817 | return varNOcheck |
---|
818 | |
---|
819 | class compute_varNOcheck(object): |
---|
820 | """ Class to compute variables which are not originary in the file |
---|
821 | ncobj= netCDF object file |
---|
822 | varn = variable to compute: |
---|
823 | 'WRFdens': air density from WRF variables |
---|
824 | 'WRFght': geopotential height from WRF variables |
---|
825 | 'WRFp': pressure from WRF variables |
---|
826 | 'WRFrh': relative humidty fom WRF variables |
---|
827 | 'TSrhs': surface relative humidty fom TS variables |
---|
828 | 'WRFrhs': surface relative humidty fom WRF variables |
---|
829 | 'WRFT': CF-time from WRF variables |
---|
830 | 'WRFt': temperature from WRF variables |
---|
831 | 'WRFtd': dew-point temperature from WRF variables |
---|
832 | 'WRFwd': wind direction from WRF variables |
---|
833 | 'TSwds': surface wind direction from TS variables |
---|
834 | 'WRFwds': surface wind direction from WRF variables |
---|
835 | 'WRFws': wind speed from WRF variables |
---|
836 | 'TSwss': surface wind speed from TS variables |
---|
837 | 'WRFwss': surface wind speed from WRF variables |
---|
838 | 'WRFz': height from WRF variables |
---|
839 | """ |
---|
840 | fname = 'compute_varNOcheck' |
---|
841 | |
---|
842 | def __init__(self, ncobj, varn): |
---|
843 | |
---|
844 | if ncobj is None: |
---|
845 | self = None |
---|
846 | self.dimensions = None |
---|
847 | self.shape = None |
---|
848 | self.__values = None |
---|
849 | else: |
---|
850 | if varn == 'WRFdens': |
---|
851 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
852 | # 'DNW)/g ...' |
---|
853 | grav = 9.81 |
---|
854 | |
---|
855 | # Just we need in in absolute values: Size of the central grid cell |
---|
856 | ## dxval = ncobj.getncattr('DX') |
---|
857 | ## dyval = ncobj.getncattr('DY') |
---|
858 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
859 | ## area = dxval*dyval*mapfac |
---|
860 | dimensions = ncobj.variables['MU'].dimensions |
---|
861 | shape = ncobj.variables['MU'].shape |
---|
862 | |
---|
863 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
864 | dnw = ncobj.variables['DNW'][:] |
---|
865 | |
---|
866 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
867 | dtype=np.float) |
---|
868 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
869 | |
---|
870 | for it in range(mu.shape[0]): |
---|
871 | for iz in range(dnw.shape[1]): |
---|
872 | levval.fill(np.abs(dnw[it,iz])) |
---|
873 | varNOcheck[it,iz,:,:] = levval |
---|
874 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
875 | |
---|
876 | elif varn == 'WRFght': |
---|
877 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
878 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
879 | dimensions = ncobj.variables['PH'].dimensions |
---|
880 | shape = ncobj.variables['PH'].shape |
---|
881 | |
---|
882 | elif varn == 'WRFp': |
---|
883 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
884 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
885 | dimensions = ncobj.variables['P'].dimensions |
---|
886 | shape = ncobj.variables['P'].shape |
---|
887 | |
---|
888 | elif varn == 'WRFrh': |
---|
889 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
890 | # ' equation (T,P) ...' |
---|
891 | p0=100000. |
---|
892 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
893 | tk = (ncobj.variables['T'][:])*(p/p0)**(2./7.) |
---|
894 | qv = ncobj.variables['QVAPOR'][:] |
---|
895 | |
---|
896 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
897 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
898 | |
---|
899 | varNOcheckv = qv/data2 |
---|
900 | dimensions = ncobj.variables['P'].dimensions |
---|
901 | shape = ncobj.variables['P'].shape |
---|
902 | |
---|
903 | elif varn == 'TSrhs': |
---|
904 | # print ' ' + main + ": computing surface relative humidity from TSs as 'Tetens'" +\ |
---|
905 | # ' equation (T,P) ...' |
---|
906 | p0=100000. |
---|
907 | p=ncobj.variables['psfc'][:] |
---|
908 | tk = (ncobj.variables['t'][:])*(p/p0)**(2./7.) |
---|
909 | qv = ncobj.variables['q'][:] |
---|
910 | |
---|
911 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
912 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
913 | |
---|
914 | varNOcheckv = qv/data2 |
---|
915 | dimensions = ncobj.variables['psfc'].dimensions |
---|
916 | shape = ncobj.variables['psfc'].shape |
---|
917 | |
---|
918 | elif varn == 'WRFrhs': |
---|
919 | # print ' ' + main + ": computing surface relative humidity from WRF as 'Tetens'" +\ |
---|
920 | # ' equation (T,P) ...' |
---|
921 | p0=100000. |
---|
922 | p=ncobj.variables['PSFC'][:] |
---|
923 | tk = (ncobj.variables['T2'][:] + 300.)*(p/p0)**(2./7.) |
---|
924 | qv = ncobj.variables['Q2'][:] |
---|
925 | |
---|
926 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
927 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
928 | |
---|
929 | varNOcheckv = qv/data2 |
---|
930 | dimensions = ncobj.variables['PSFC'].dimensions |
---|
931 | shape = ncobj.variables['PSFC'].shape |
---|
932 | |
---|
933 | elif varn == 'WRFT': |
---|
934 | # To compute CF-times from WRF kind |
---|
935 | # |
---|
936 | import datetime as dt |
---|
937 | |
---|
938 | times = ncobj.variables['Times'] |
---|
939 | dimt = times.shape[0] |
---|
940 | varNOcheckv = np.zeros((dimt), dtype=np.float64) |
---|
941 | self.unitsval = 'seconds since 1949-12-01 00:00:00' |
---|
942 | refdate = datetimeStr_datetime('1949-12-01_00:00:00') |
---|
943 | |
---|
944 | dimensions = tuple([ncobj.variables['Times'].dimensions[0]]) |
---|
945 | shape = tuple([dimt]) |
---|
946 | |
---|
947 | for it in range(dimt): |
---|
948 | datevalS = datetimeStr_conversion(times[it,:], 'WRFdatetime', \ |
---|
949 | 'YmdHMS') |
---|
950 | dateval = dt.datetime.strptime(datevalS, '%Y%m%d%H%M%S') |
---|
951 | difft = dateval - refdate |
---|
952 | varNOcheckv[it] = difft.days*3600.*24. + difft.seconds + \ |
---|
953 | np.float(int(difft.microseconds/10.e6)) |
---|
954 | |
---|
955 | elif varn == 'WRFt': |
---|
956 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
957 | p0=100000. |
---|
958 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
959 | |
---|
960 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
961 | dimensions = ncobj.variables['T'].dimensions |
---|
962 | shape = ncobj.variables['P'].shape |
---|
963 | |
---|
964 | elif varn == 'WRFtd': |
---|
965 | # print ' ' + main + ': computing dew-point temperature from WRF as inv_potT(T + 300) and Tetens...' |
---|
966 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
967 | p0=100000. |
---|
968 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
969 | |
---|
970 | temp = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
971 | |
---|
972 | qv = ncobj.variables['QVAPOR'][:] |
---|
973 | |
---|
974 | tk = temp - 273.15 |
---|
975 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
976 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
977 | |
---|
978 | rh = qv/data2 |
---|
979 | |
---|
980 | pa = rh * data1/100. |
---|
981 | varNOcheckv = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
982 | |
---|
983 | dimensions = ncobj.variables['T'].dimensions |
---|
984 | shape = ncobj.variables['P'].shape |
---|
985 | |
---|
986 | elif varn == 'WRFwd': |
---|
987 | # print ' ' + main + ': computing wind direction from WRF as ATAN2PI(V,U) ...' |
---|
988 | uwind = ncobj.variables['U'][:] |
---|
989 | vwind = ncobj.variables['V'][:] |
---|
990 | dx = uwind.shape[3] |
---|
991 | dy = vwind.shape[2] |
---|
992 | |
---|
993 | # de-staggering |
---|
994 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
995 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
996 | |
---|
997 | theta = np.arctan2(ua, va) |
---|
998 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
999 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1000 | |
---|
1001 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
1002 | shape = ua.shape |
---|
1003 | |
---|
1004 | elif varn == 'WRFwds': |
---|
1005 | # print ' ' + main + ': computing surface wind direction from WRF as ATAN2(V,U) ...' |
---|
1006 | theta = np.arctan2(ncobj.variables['V10'][:], ncobj.variables['U10'][:]) |
---|
1007 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1008 | |
---|
1009 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1010 | dimensions = ncobj.variables['V10'].dimensions |
---|
1011 | shape = ncobj.variables['V10'].shape |
---|
1012 | |
---|
1013 | elif varn == 'TSwds': |
---|
1014 | # print ' ' + main + ': computing surface wind direction from TSs as ATAN2(v,u) ...' |
---|
1015 | theta = np.arctan2(ncobj.variables['v'][:], ncobj.variables['u'][:]) |
---|
1016 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1017 | |
---|
1018 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1019 | dimensions = ncobj.variables['v'].dimensions |
---|
1020 | shape = ncobj.variables['v'].shape |
---|
1021 | |
---|
1022 | elif varn == 'WRFws': |
---|
1023 | # print ' ' + main + ': computing wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
1024 | uwind = ncobj.variables['U'][:] |
---|
1025 | vwind = ncobj.variables['V'][:] |
---|
1026 | dx = uwind.shape[3] |
---|
1027 | dy = vwind.shape[2] |
---|
1028 | |
---|
1029 | # de-staggering |
---|
1030 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
1031 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
1032 | |
---|
1033 | varNOcheckv = np.sqrt(ua*ua + va*va) |
---|
1034 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
1035 | shape = ua.shape |
---|
1036 | |
---|
1037 | elif varn == 'TSwss': |
---|
1038 | # print ' ' + main + ': computing surface wind speed from TSs as SQRT(u**2 + v**2) ...' |
---|
1039 | varNOcheckv = np.sqrt(ncobj.variables['u'][:]* \ |
---|
1040 | ncobj.variables['u'][:] + ncobj.variables['v'][:]* \ |
---|
1041 | ncobj.variables['v'][:]) |
---|
1042 | dimensions = ncobj.variables['u'].dimensions |
---|
1043 | shape = ncobj.variables['u'].shape |
---|
1044 | |
---|
1045 | elif varn == 'WRFwss': |
---|
1046 | # print ' ' + main + ': computing surface wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
1047 | varNOcheckv = np.sqrt(ncobj.variables['U10'][:]* \ |
---|
1048 | ncobj.variables['U10'][:] + ncobj.variables['V10'][:]* \ |
---|
1049 | ncobj.variables['V10'][:]) |
---|
1050 | dimensions = ncobj.variables['U10'].dimensions |
---|
1051 | shape = ncobj.variables['U10'].shape |
---|
1052 | |
---|
1053 | elif varn == 'WRFz': |
---|
1054 | grav = 9.81 |
---|
1055 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
1056 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
1057 | dimensions = ncobj.variables['PH'].dimensions |
---|
1058 | shape = ncobj.variables['PH'].shape |
---|
1059 | |
---|
1060 | else: |
---|
1061 | print errormsg |
---|
1062 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
1063 | quit(-1) |
---|
1064 | |
---|
1065 | self.dimensions = dimensions |
---|
1066 | self.shape = shape |
---|
1067 | self.__values = varNOcheckv |
---|
1068 | |
---|
1069 | def __getitem__(self,elem): |
---|
1070 | return self.__values[elem] |
---|
1071 | |
---|
1072 | def adding_station_desc(onc,stdesc): |
---|
1073 | """ Function to add a station description in a netCDF file |
---|
1074 | onc= netCDF object |
---|
1075 | stdesc= station description lon, lat, height |
---|
1076 | """ |
---|
1077 | fname = 'adding_station_desc' |
---|
1078 | |
---|
1079 | newvar = onc.createVariable( 'station', 'c', ('StrLength')) |
---|
1080 | newvar[0:len(stdesc[0])] = stdesc[0] |
---|
1081 | |
---|
1082 | newdim = onc.createDimension('nst',1) |
---|
1083 | |
---|
1084 | if onc.variables.has_key('lon'): |
---|
1085 | print warnmsg |
---|
1086 | print ' ' + fname + ": variable 'lon' already exist !!" |
---|
1087 | print " renaming it as 'lonst'" |
---|
1088 | lonname = 'lonst' |
---|
1089 | else: |
---|
1090 | lonname = 'lon' |
---|
1091 | |
---|
1092 | newvar = onc.createVariable( lonname, 'f4', ('nst')) |
---|
1093 | basicvardef(newvar, lonname, 'longitude', 'degrees_West' ) |
---|
1094 | newvar[:] = stdesc[1] |
---|
1095 | |
---|
1096 | if onc.variables.has_key('lat'): |
---|
1097 | print warnmsg |
---|
1098 | print ' ' + fname + ": variable 'lat' already exist !!" |
---|
1099 | print " renaming it as 'latst'" |
---|
1100 | latname = 'latst' |
---|
1101 | else: |
---|
1102 | latname = 'lat' |
---|
1103 | |
---|
1104 | newvar = onc.createVariable( latname, 'f4', ('nst')) |
---|
1105 | basicvardef(newvar, lonname, 'latitude', 'degrees_North' ) |
---|
1106 | newvar[:] = stdesc[2] |
---|
1107 | |
---|
1108 | if onc.variables.has_key('height'): |
---|
1109 | print warnmsg |
---|
1110 | print ' ' + fname + ": variable 'height' already exist !!" |
---|
1111 | print " renaming it as 'heightst'" |
---|
1112 | heightname = 'heightst' |
---|
1113 | else: |
---|
1114 | heightname = 'height' |
---|
1115 | |
---|
1116 | newvar = onc.createVariable( heightname, 'f4', ('nst')) |
---|
1117 | basicvardef(newvar, heightname, 'height above sea level', 'm' ) |
---|
1118 | newvar[:] = stdesc[3] |
---|
1119 | |
---|
1120 | return |
---|
1121 | |
---|
1122 | class Quantiles(object): |
---|
1123 | """ Class to provide quantiles from a given arrayof values |
---|
1124 | """ |
---|
1125 | |
---|
1126 | def __init__(self, values, Nquants): |
---|
1127 | import numpy.ma as ma |
---|
1128 | |
---|
1129 | if values is None: |
---|
1130 | self.quantilesv = None |
---|
1131 | |
---|
1132 | else: |
---|
1133 | self.quantilesv = [] |
---|
1134 | |
---|
1135 | vals0 = values.flatten() |
---|
1136 | Nvalues = len(vals0) |
---|
1137 | vals = ma.masked_equal(vals0, None) |
---|
1138 | Nvals=len(vals.compressed()) |
---|
1139 | |
---|
1140 | sortedvals = sorted(vals.compressed()) |
---|
1141 | for iq in range(Nquants): |
---|
1142 | self.quantilesv.append(sortedvals[int((Nvals-1)*iq/Nquants)]) |
---|
1143 | |
---|
1144 | self.quantilesv.append(sortedvals[Nvals-1]) |
---|
1145 | |
---|
1146 | |
---|
1147 | def getting_ValidationValues(okind, dimt, ds, trjpos, ovs, ovo, tvalues, oFill, Ng, kvals): |
---|
1148 | """ Function to get the values to validate accroding to the type of observation |
---|
1149 | okind= observational kind |
---|
1150 | dimt= initial number of values to retrieve |
---|
1151 | ds= dictionary with the names of the dimensions (sim, obs) |
---|
1152 | trjpos= positions of the multi-stations (t, Y, X) or trajectory ([Z], Y, X) |
---|
1153 | ovs= object with the values of the simulation |
---|
1154 | ovs= object with the values of the observations |
---|
1155 | tvalues= temporal values (sim. time step, obs. time step, sim t value, obs t value, t diff) |
---|
1156 | oFill= Fill Value for the observations |
---|
1157 | Ng= number of grid points around the observation |
---|
1158 | kvals= kind of values |
---|
1159 | 'instantaneous': values are taken as instantaneous values |
---|
1160 | 'tbackwardSmean': simulated values are taken as time averages from back to the point |
---|
1161 | 'tbackwardOmean': observed values are taken as time averages from back to the point |
---|
1162 | return: |
---|
1163 | sovalues= simulated values at the observation point and time |
---|
1164 | soSvalues= values Ngrid points around the simulated point |
---|
1165 | soTtvalues= inital/ending period between two consecutive obsevations (for `single-station') |
---|
1166 | trjs= trajectory on the simulation space |
---|
1167 | """ |
---|
1168 | fname = 'getting_ValidationValues' |
---|
1169 | |
---|
1170 | sovalues = [] |
---|
1171 | |
---|
1172 | if kvals == 'instantaneous': |
---|
1173 | dimtf = dimt |
---|
1174 | elif kvals == 'tbackwardSmean': |
---|
1175 | print ' ' + fname + ':',kvals,'!!' |
---|
1176 | uniqt = np.unique(tvalues[:,3]) |
---|
1177 | dimtf = len(uniqt) |
---|
1178 | print ' initially we got',dimt,'values which will become',dimtf |
---|
1179 | postf = {} |
---|
1180 | for it in range(dimtf): |
---|
1181 | if it == 0: |
---|
1182 | postf[uniqt[it]] = [0,0] |
---|
1183 | elif it == 1: |
---|
1184 | posprev = postf[uniqt[it-1]][1] |
---|
1185 | posit = list(tvalues[:,3]).index(uniqt[it]) |
---|
1186 | postf[uniqt[it]] = [posprev, posit+1] |
---|
1187 | else: |
---|
1188 | posprev = postf[uniqt[it-1]][1] |
---|
1189 | posit = list(tvalues[:,3]).index(uniqt[it]) |
---|
1190 | postf[uniqt[it]] = [posprev+1, posit+1] |
---|
1191 | elif kvals == 'tbackwardOmean': |
---|
1192 | print ' ' + fname + ':',kvals,'!!' |
---|
1193 | uniqt = np.unique(tvalues[:,2]) |
---|
1194 | dimtf = len(uniqt) |
---|
1195 | print ' initially we got',dimt,'values which will become',dimtf |
---|
1196 | print ' ==== NOT READY === ' |
---|
1197 | quit(-1) |
---|
1198 | else: |
---|
1199 | print errormsg |
---|
1200 | print ' ' + fname + ": kind of values '" + kvals + "' not ready!!" |
---|
1201 | quit(-1) |
---|
1202 | |
---|
1203 | # Simulated values spatially around |
---|
1204 | if ds.has_key('Z'): |
---|
1205 | soSvalues = np.zeros((dimt, Ng*2+1, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1206 | if okind == 'trajectory': |
---|
1207 | trjs = np.zeros((4,dimt), dtype=int) |
---|
1208 | else: |
---|
1209 | trjs = None |
---|
1210 | else: |
---|
1211 | soSvalues = np.zeros((dimt, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1212 | if okind == 'trajectory': |
---|
1213 | trjs = np.zeros((3,dimt), dtype=int) |
---|
1214 | else: |
---|
1215 | trjs = None |
---|
1216 | |
---|
1217 | if okind == 'single-station': |
---|
1218 | soTtvalues = np.zeros((dimt,2), dtype=np.float) |
---|
1219 | else: |
---|
1220 | None |
---|
1221 | |
---|
1222 | if okind == 'multi-points': |
---|
1223 | for it in range(dimt): |
---|
1224 | slicev = ds['X'][0] + ':' + str(trjpos[2,it]) + '|' + ds['Y'][0] + \ |
---|
1225 | ':' + str(trjpos[1,it]) + '|' + ds['T'][0]+ ':' + str(tvalues[it][0]) |
---|
1226 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1227 | sovalues.append([ slicevar, ovo[tvalues[it][1]]]) |
---|
1228 | slicev = ds['X'][0] + ':' + str(trjpos[2,it]-Ng) + '@' + \ |
---|
1229 | str(trjpos[2,it]+Ng) + '|' + ds['Y'][0] + ':' + \ |
---|
1230 | str(trjpos[1,it]-Ng) + '@' + str(trjpos[1,it]+Ng) + '|' + \ |
---|
1231 | ds['T'][0]+':'+str(tvalues[it][0]) |
---|
1232 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1233 | soSvalues[it,:,:] = slicevar |
---|
1234 | |
---|
1235 | elif okind == 'single-station': |
---|
1236 | for it in range(dimt): |
---|
1237 | ito = int(tvalues[it,1]) |
---|
1238 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1239 | slicev = ds['X'][0] + ':' + str(stationpos[1]) + '|' + \ |
---|
1240 | ds['Y'][0] + ':' + str(stationpos[0]) + '|' + \ |
---|
1241 | ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1242 | else: |
---|
1243 | slicev = ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1244 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1245 | if ovo[int(ito)] == oFill or ovo[int(ito)] == '--': |
---|
1246 | sovalues.append([ slicevar, fillValueF]) |
---|
1247 | # elif ovo[int(ito)] != ovo[int(ito)]: |
---|
1248 | # sovalues.append([ slicevar, fillValueF]) |
---|
1249 | else: |
---|
1250 | sovalues.append([ slicevar, ovo[int(ito)]]) |
---|
1251 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1252 | slicev = ds['X'][0] + ':' + str(stationpos[1]-Ng) + '@' + \ |
---|
1253 | str(stationpos[1]+Ng+1) + '|' + ds['Y'][0] + ':' + \ |
---|
1254 | str(stationpos[0]-Ng) + '@' + str(stationpos[0]+Ng+1) + '|' + \ |
---|
1255 | ds['T'][0] + ':' + str(int(tvalues[it,0])) |
---|
1256 | else: |
---|
1257 | slicev = ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1258 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1259 | soSvalues[it,:,:] = slicevar |
---|
1260 | |
---|
1261 | if it == 0: |
---|
1262 | itoi = 0 |
---|
1263 | itof = int(tvalues[it,1]) / 2 |
---|
1264 | elif it == dimt-1: |
---|
1265 | itoi = int( (ito + int(tvalues[it-1,1])) / 2) |
---|
1266 | itof = int(tvalues[it,1]) |
---|
1267 | else: |
---|
1268 | itod = int( (ito - int(tvalues[it-1,1])) / 2 ) |
---|
1269 | itoi = ito - itod |
---|
1270 | itod = int( (int(tvalues[it+1,1]) - ito) / 2 ) |
---|
1271 | itof = ito + itod |
---|
1272 | |
---|
1273 | soTtvalues[it,0] = valdimobs['T'][itoi] |
---|
1274 | soTtvalues[it,1] = valdimobs['T'][itof] |
---|
1275 | |
---|
1276 | elif okind == 'trajectory': |
---|
1277 | if ds.has_key('Z'): |
---|
1278 | for it in range(dimt): |
---|
1279 | ito = int(tvalues[it,1]) |
---|
1280 | if notfound[ito] == 0: |
---|
1281 | trjpos[2,ito] = index_mat(valdimsim['Z'][tvalues[it,0],:, \ |
---|
1282 | trjpos[1,ito],trjpos[0,ito]], valdimobs['Z'][ito]) |
---|
1283 | slicev = ds['X'][0]+':'+str(trjpos[0,ito]) + '|' + \ |
---|
1284 | ds['Y'][0]+':'+str(trjpos[1,ito]) + '|' + \ |
---|
1285 | ds['Z'][0]+':'+str(trjpos[2,ito]) + '|' + \ |
---|
1286 | ds['T'][0]+':'+str(int(tvalues[it,0])) |
---|
1287 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1288 | sovalues.append([ slicevar, ovo[int(ito)]]) |
---|
1289 | minx = np.max([trjpos[0,ito]-Ng,0]) |
---|
1290 | maxx = np.min([trjpos[0,ito]+Ng+1,ovs.shape[3]]) |
---|
1291 | miny = np.max([trjpos[1,ito]-Ng,0]) |
---|
1292 | maxy = np.min([trjpos[1,ito]+Ng+1,ovs.shape[2]]) |
---|
1293 | minz = np.max([trjpos[2,ito]-Ng,0]) |
---|
1294 | maxz = np.min([trjpos[2,ito]+Ng+1,ovs.shape[1]]) |
---|
1295 | |
---|
1296 | slicev = ds['X'][0] + ':' + str(minx) + '@' + str(maxx) + '|' + \ |
---|
1297 | ds['Y'][0] + ':' + str(miny) + '@' + str(maxy) + '|' + \ |
---|
1298 | ds['Z'][0] + ':' + str(minz) + '@' + str(maxz) + '|' + \ |
---|
1299 | ds['T'][0] + ':' + str(int(tvalues[it,0])) |
---|
1300 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1301 | |
---|
1302 | sliceS = [] |
---|
1303 | sliceS.append(it) |
---|
1304 | sliceS.append(slice(0,maxz-minz)) |
---|
1305 | sliceS.append(slice(0,maxy-miny)) |
---|
1306 | sliceS.append(slice(0,maxx-minx)) |
---|
1307 | |
---|
1308 | soSvalues[tuple(sliceS)] = slicevar |
---|
1309 | if ivar == 0: |
---|
1310 | trjs[0,it] = trjpos[0,ito] |
---|
1311 | trjs[1,it] = trjpos[1,ito] |
---|
1312 | trjs[2,it] = trjpos[2,ito] |
---|
1313 | trjs[3,it] = tvalues[it,0] |
---|
1314 | else: |
---|
1315 | sovalues.append([fillValueF, fillValueF]) |
---|
1316 | soSvalues[it,:,:,:]= np.ones((Ng*2+1,Ng*2+1,Ng*2+1), \ |
---|
1317 | dtype = np.float)*fillValueF |
---|
1318 | # 2D trajectory |
---|
1319 | else: |
---|
1320 | for it in range(dimt): |
---|
1321 | if notfound[it] == 0: |
---|
1322 | ito = tvalues[it,1] |
---|
1323 | slicev = ds['X'][0]+':'+str(trjpos[2,ito]) + '|' + \ |
---|
1324 | ds['Y'][0]+':'+str(trjpos[1,ito]) + '|' + \ |
---|
1325 | ds['T'][0]+':'+str(tvalues[ito,0]) |
---|
1326 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1327 | sovalues.append([ slicevar, ovo[tvalues[it,1]]]) |
---|
1328 | slicev = ds['X'][0] + ':' + str(trjpos[0,it]-Ng) + '@' + \ |
---|
1329 | str(trjpos[0,it]+Ng) + '|' + ds['Y'][0] + ':' + \ |
---|
1330 | str(trjpos[1,it]-Ng) + '@' + str(trjpos[1,it]+Ng) + \ |
---|
1331 | '|' + ds['T'][0] + ':' + str(tvalues[it,0]) |
---|
1332 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1333 | soSvalues[it,:,:] = slicevar |
---|
1334 | else: |
---|
1335 | sovalues.append([fillValue, fillValue]) |
---|
1336 | soSvalues[it,:,:] = np.ones((Ng*2+1,Ng*2+1), \ |
---|
1337 | dtype = np.float)*fillValueF |
---|
1338 | print sovalues[varsimobs][:][it] |
---|
1339 | else: |
---|
1340 | print errormsg |
---|
1341 | print ' ' + fname + ": observatino kind '" + okind + "' not ready!!" |
---|
1342 | quit(-1) |
---|
1343 | |
---|
1344 | # Re-arranging final values |
---|
1345 | ## |
---|
1346 | if kvals == 'instantaneous': |
---|
1347 | return sovalues, soSvalues, soTtvalues, trjs |
---|
1348 | |
---|
1349 | elif kvals == 'tbackwardSmean': |
---|
1350 | fsovalues = [] |
---|
1351 | if ds.has_key('Z'): |
---|
1352 | fsoSvalues = np.zeros((dimtf, Ng*2+1, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1353 | if okind == 'trajectory': |
---|
1354 | ftrjs = np.zeros((4,dimtf), dtype=int) |
---|
1355 | else: |
---|
1356 | ftrjs = None |
---|
1357 | else: |
---|
1358 | fsoSvalues = np.zeros((dimtf, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1359 | if okind == 'trajectory': |
---|
1360 | ftrjs = np.zeros((3,dimtf), dtype=int) |
---|
1361 | else: |
---|
1362 | ftrjs = None |
---|
1363 | |
---|
1364 | if okind == 'single-station': |
---|
1365 | fsoTtvalues = np.zeros((dimtf,2), dtype=np.float) |
---|
1366 | else: |
---|
1367 | None |
---|
1368 | |
---|
1369 | for it in range(1,dimtf): |
---|
1370 | tv = uniqt[it] |
---|
1371 | intv = postf[tv] |
---|
1372 | |
---|
1373 | # Temporal statistics |
---|
1374 | sovs = np.array(sovalues[intv[0]:intv[1]])[:,0] |
---|
1375 | minv = np.min(sovs) |
---|
1376 | maxv = np.max(sovs) |
---|
1377 | meanv = np.mean(sovs) |
---|
1378 | stdv = np.std(sovs) |
---|
1379 | |
---|
1380 | fsovalues.append([meanv, np.array(sovalues[intv[0]:intv[1]])[0,1], minv, \ |
---|
1381 | maxv, stdv]) |
---|
1382 | if ds.has_key('Z'): |
---|
1383 | if okind == 'trajectory': |
---|
1384 | for ip in range(4): |
---|
1385 | ftrjs[ip,it] = np.mean(trjs[ip,intv[0]:intv[1]]) |
---|
1386 | for iz in range(2*Ng+1): |
---|
1387 | for iy in range(2*Ng+1): |
---|
1388 | for ix in range(2*Ng+1): |
---|
1389 | fsoSvalues[it,iz,iy,ix] = np.mean(soSvalues[intv[0]: \ |
---|
1390 | intv[1],iz,iy,ix]) |
---|
1391 | else: |
---|
1392 | if okind == 'trajectory': |
---|
1393 | for ip in range(3): |
---|
1394 | ftrjs[ip,it] = np.mean(trjs[ip,intv[0]:intv[1]]) |
---|
1395 | for iy in range(2*Ng+1): |
---|
1396 | for ix in range(2*Ng+1): |
---|
1397 | fsoSvalues[it,iy,ix] = np.mean(soSvalues[intv[0]:intv[1], \ |
---|
1398 | iy,ix]) |
---|
1399 | fsoTtvalues[it,0] = soTtvalues[intv[0],0] |
---|
1400 | fsoTtvalues[it,1] = soTtvalues[intv[1],0] |
---|
1401 | |
---|
1402 | return fsovalues, fsoSvalues, fsoTtvalues, ftrjs |
---|
1403 | |
---|
1404 | elif kvals == 'tbackwardOmean': |
---|
1405 | print ' ' + fname + ':',kvals,'!!' |
---|
1406 | uniqt = np.unique(tvalues[:,2]) |
---|
1407 | dimtf = len(uniqt) |
---|
1408 | print ' initially we got',dimt,'values which will become',dimtf |
---|
1409 | |
---|
1410 | return |
---|
1411 | |
---|
1412 | |
---|
1413 | ####### ###### ##### #### ### ## # |
---|
1414 | |
---|
1415 | strCFt="Refdate,tunits (CF reference date [YYYY][MM][DD][HH][MI][SS] format and " + \ |
---|
1416 | " and time units: 'weeks', 'days', 'hours', 'miuntes', 'seconds')" |
---|
1417 | |
---|
1418 | kindobs=['multi-points', 'single-station', 'trajectory'] |
---|
1419 | strkObs="kind of observations; 'multi-points': multiple individual punctual obs " + \ |
---|
1420 | "(e.g., lightning strikes), 'single-station': single station on a fixed position,"+\ |
---|
1421 | "'trajectory': following a trajectory" |
---|
1422 | simopers = ['sumc','subc','mulc','divc'] |
---|
1423 | opersinf = 'sumc,[constant]: add [constant] to variables values; subc,[constant]: '+ \ |
---|
1424 | 'substract [constant] to variables values; mulc,[constant]: multipy by ' + \ |
---|
1425 | '[constant] to variables values; divc,[constant]: divide by [constant] to ' + \ |
---|
1426 | 'variables values' |
---|
1427 | varNOcheck = ['WRFdens', 'WRFght', 'WRFp', 'WRFrh', 'TSrhs', 'WRFrhs', 'WRFT', \ |
---|
1428 | 'WRFt', 'WRFtd', 'WRFwd', 'TSwds', 'WRFwds', 'WRFws', 'TSwss', 'WRFwss', 'WRFz'] |
---|
1429 | varNOcheckinf = "'WRFdens': air density from WRF variables; " + \ |
---|
1430 | "'WRFght': geopotentiali height from WRF variables; " + \ |
---|
1431 | "'WRFp': pressure from WRF variables; " + \ |
---|
1432 | "'WRFrh': relative humidty fom WRF variables; " + \ |
---|
1433 | "'WRFrhs': surface relative humidity from WRF variables; " + \ |
---|
1434 | "'WRFT': CF-time from WRF variables; " + \ |
---|
1435 | "'WRFt': temperature from WRF variables; " + \ |
---|
1436 | "'WRFtd': dew-point temperature from WRF variables; " + \ |
---|
1437 | "'WRFwd': wind direction from WRF variables; " + \ |
---|
1438 | "'WRFwds': surface wind direction from WRF variables; " + \ |
---|
1439 | "'WRFws': wind speed from WRF variables; " + \ |
---|
1440 | "'WRFwss': surface wind speed from WRF variables; " + \ |
---|
1441 | "'WRFz': height from WRF variables" |
---|
1442 | |
---|
1443 | dimshelp = "[DIM]@[simdim]@[obsdim] ',' list of couples of dimensions names from " + \ |
---|
1444 | "each source ([DIM]='X','Y','Z','T'; None, no value)" |
---|
1445 | vardimshelp = "[DIM]@[simvardim]@[obsvardim] ',' list of couples of variables " + \ |
---|
1446 | "names with dimensions values from each source ([DIM]='X','Y','Z','T'; None, " + \ |
---|
1447 | "no value, WRFdiagnosted variables also available: " + varNOcheckinf + ")" |
---|
1448 | varshelp="[simvar]@[obsvar]@[[oper]@[val]] ',' list of couples of variables to " + \ |
---|
1449 | "validate and if necessary operation and value (sim. values) available " + \ |
---|
1450 | "operations: " + opersinf + " (WRFdiagnosted variables also available: " + \ |
---|
1451 | varNOcheckinf + ")" |
---|
1452 | statsn = ['minimum', 'maximum', 'mean', 'mean2', 'standard deviation'] |
---|
1453 | gstatsn = ['bias', 'simobs_mean', 'sim_obsmin', 'sim_obsmax', 'sim_obsmean', 'mae', \ |
---|
1454 | 'rmse', 'r_pearsoncorr', 'p_pearsoncorr', 'deviation_of_residuals_SDR', \ |
---|
1455 | 'indef_of_efficiency_IOE', 'index_of_agreement_IOA', 'fractional_mean_bias_FMB'] |
---|
1456 | ostatsn = ['number of points', 'minimum', 'maximum', 'mean', 'mean2', \ |
---|
1457 | 'standard deviation'] |
---|
1458 | |
---|
1459 | parser = OptionParser() |
---|
1460 | parser.add_option("-d", "--dimensions", dest="dims", help=dimshelp, metavar="VALUES") |
---|
1461 | parser.add_option("-D", "--vardimensions", dest="vardims", |
---|
1462 | help=vardimshelp, metavar="VALUES") |
---|
1463 | parser.add_option("-k", "--kindObs", dest="obskind", type='choice', choices=kindobs, |
---|
1464 | help=strkObs, metavar="FILE") |
---|
1465 | parser.add_option("-l", "--stationLocation", dest="stloc", |
---|
1466 | help="name (| for spaces), longitude, latitude and height of the station (only for 'single-station')", |
---|
1467 | metavar="FILE") |
---|
1468 | parser.add_option("-o", "--observation", dest="fobs", |
---|
1469 | help="observations file to validate", metavar="FILE") |
---|
1470 | parser.add_option("-s", "--simulation", dest="fsim", |
---|
1471 | help="simulation file to validate", metavar="FILE") |
---|
1472 | parser.add_option("-t", "--trajectoryfile", dest="trajf", |
---|
1473 | help="file with grid points of the trajectory in the simulation grid ('simtrj')", |
---|
1474 | metavar="FILE") |
---|
1475 | parser.add_option("-v", "--variables", dest="vars", |
---|
1476 | help=varshelp, metavar="VALUES") |
---|
1477 | |
---|
1478 | (opts, args) = parser.parse_args() |
---|
1479 | |
---|
1480 | ####### ###### ##### #### ### ## # |
---|
1481 | # Number of different statistics according to the temporal coincidence |
---|
1482 | # 0: Exact time |
---|
1483 | # 1: Simulation values closest to observed times |
---|
1484 | # 2: Simulation values between consecutive observed times |
---|
1485 | Nstsim = 3 |
---|
1486 | |
---|
1487 | stdescsim = ['E', 'C', 'B'] |
---|
1488 | prestdescsim = ['exact', 'closest', 'between'] |
---|
1489 | Lstdescsim = ['exact time', 'cloest time', 'between observational time-steps'] |
---|
1490 | |
---|
1491 | ####### ####### |
---|
1492 | ## MAIN |
---|
1493 | ####### |
---|
1494 | |
---|
1495 | ofile='validation_sim.nc' |
---|
1496 | |
---|
1497 | if opts.dims is None: |
---|
1498 | print errormsg |
---|
1499 | print ' ' + main + ': No list of dimensions are provided!!' |
---|
1500 | print ' a ',' list of values X@[dimxsim]@[dimxobs],...,T@[dimtsim]@[dimtobs]'+\ |
---|
1501 | ' is needed' |
---|
1502 | quit(-1) |
---|
1503 | else: |
---|
1504 | simdims = {} |
---|
1505 | obsdims = {} |
---|
1506 | print main +': couple of dimensions _______' |
---|
1507 | dims = {} |
---|
1508 | ds = opts.dims.split(',') |
---|
1509 | for d in ds: |
---|
1510 | dsecs = d.split('@') |
---|
1511 | if len(dsecs) != 3: |
---|
1512 | print errormsg |
---|
1513 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
1514 | print ' [DIM]@[dimnsim]@[dimnobs]' |
---|
1515 | quit(-1) |
---|
1516 | if dsecs[1] != 'None': |
---|
1517 | dims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
1518 | simdims[dsecs[0]] = dsecs[1] |
---|
1519 | obsdims[dsecs[0]] = dsecs[2] |
---|
1520 | |
---|
1521 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
1522 | |
---|
1523 | if opts.vardims is None: |
---|
1524 | print errormsg |
---|
1525 | print ' ' + main + ': No list of variables with dimension values are provided!!' |
---|
1526 | print ' a ',' list of values X@[vardimxsim]@[vardimxobs],...,T@' + \ |
---|
1527 | '[vardimtsim]@[vardimtobs] is needed' |
---|
1528 | quit(-1) |
---|
1529 | else: |
---|
1530 | print main +': couple of variable dimensions _______' |
---|
1531 | vardims = {} |
---|
1532 | ds = opts.vardims.split(',') |
---|
1533 | for d in ds: |
---|
1534 | dsecs = d.split('@') |
---|
1535 | if len(dsecs) != 3: |
---|
1536 | print errormsg |
---|
1537 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
1538 | print ' [DIM]@[vardimnsim]@[vardimnobs]' |
---|
1539 | quit(-1) |
---|
1540 | if dsecs[1] != 'None': |
---|
1541 | vardims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
1542 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
1543 | |
---|
1544 | if opts.obskind is None: |
---|
1545 | print errormsg |
---|
1546 | print ' ' + main + ': No kind of observations provided !!' |
---|
1547 | quit(-1) |
---|
1548 | else: |
---|
1549 | obskind = opts.obskind |
---|
1550 | if obskind == 'single-station': |
---|
1551 | if opts.stloc is None: |
---|
1552 | print errormsg |
---|
1553 | print ' ' + main + ': No station location provided !!' |
---|
1554 | quit(-1) |
---|
1555 | else: |
---|
1556 | stationdesc = [opts.stloc.split(',')[0].replace('|',' '), \ |
---|
1557 | np.float(opts.stloc.split(',')[1]), np.float(opts.stloc.split(',')[2]),\ |
---|
1558 | np.float(opts.stloc.split(',')[3])] |
---|
1559 | |
---|
1560 | if opts.fobs is None: |
---|
1561 | print errormsg |
---|
1562 | print ' ' + main + ': No observations file is provided!!' |
---|
1563 | quit(-1) |
---|
1564 | else: |
---|
1565 | if not os.path.isfile(opts.fobs): |
---|
1566 | print errormsg |
---|
1567 | print ' ' + main + ": observations file '" + opts.fobs + "' does not exist !!" |
---|
1568 | quit(-1) |
---|
1569 | |
---|
1570 | if opts.fsim is None: |
---|
1571 | print errormsg |
---|
1572 | print ' ' + main + ': No simulation file is provided!!' |
---|
1573 | quit(-1) |
---|
1574 | else: |
---|
1575 | if not os.path.isfile(opts.fsim): |
---|
1576 | print errormsg |
---|
1577 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
1578 | quit(-1) |
---|
1579 | |
---|
1580 | if opts.vars is None: |
---|
1581 | print errormsg |
---|
1582 | print ' ' + main + ': No list of couples of variables is provided!!' |
---|
1583 | print ' a ',' list of values [varsim]@[varobs],... is needed' |
---|
1584 | quit(-1) |
---|
1585 | else: |
---|
1586 | valvars = [] |
---|
1587 | vs = opts.vars.split(',') |
---|
1588 | for v in vs: |
---|
1589 | vsecs = v.split('@') |
---|
1590 | if len(vsecs) < 2: |
---|
1591 | print errormsg |
---|
1592 | print ' ' + main + ': wrong number of values in:',vsecs, \ |
---|
1593 | ' at least 2 are needed !!' |
---|
1594 | print ' [varsim]@[varobs]@[[oper][val]]' |
---|
1595 | quit(-1) |
---|
1596 | if len(vsecs) > 2: |
---|
1597 | if not searchInlist(simopers,vsecs[2]): |
---|
1598 | print errormsg |
---|
1599 | print main + ": operation on simulation values '" + vsecs[2] + \ |
---|
1600 | "' not ready !!" |
---|
1601 | quit(-1) |
---|
1602 | |
---|
1603 | valvars.append(vsecs) |
---|
1604 | |
---|
1605 | # Openning observations trajectory |
---|
1606 | ## |
---|
1607 | oobs = NetCDFFile(opts.fobs, 'r') |
---|
1608 | |
---|
1609 | valdimobs = {} |
---|
1610 | for dn in dims: |
---|
1611 | print dn,':',dims[dn] |
---|
1612 | if dims[dn][1] != 'None': |
---|
1613 | if not oobs.dimensions.has_key(dims[dn][1]): |
---|
1614 | print errormsg |
---|
1615 | print ' ' + main + ": observations file does not have dimension '" + \ |
---|
1616 | dims[dn][1] + "' !!" |
---|
1617 | quit(-1) |
---|
1618 | if vardims[dn][1] != 'None': |
---|
1619 | if not oobs.variables.has_key(vardims[dn][1]): |
---|
1620 | print errormsg |
---|
1621 | print ' ' + main + ": observations file does not have varibale " + \ |
---|
1622 | "dimension '" + vardims[dn][1] + "' !!" |
---|
1623 | quit(-1) |
---|
1624 | valdimobs[dn] = oobs.variables[vardims[dn][1]][:] |
---|
1625 | else: |
---|
1626 | if dn == 'X': |
---|
1627 | valdimobs[dn] = stationdesc[1] |
---|
1628 | elif dn == 'Y': |
---|
1629 | valdimobs[dn] = stationdesc[2] |
---|
1630 | elif dn == 'Z': |
---|
1631 | valdimobs[dn] = stationdesc[3] |
---|
1632 | |
---|
1633 | osim = NetCDFFile(opts.fsim, 'r') |
---|
1634 | |
---|
1635 | valdimsim = {} |
---|
1636 | for dn in dims: |
---|
1637 | if dims[dn][0] != 'None': |
---|
1638 | if not osim.dimensions.has_key(dims[dn][0]): |
---|
1639 | print errormsg |
---|
1640 | print ' ' + main + ": simulation file '" + opts.fsim + \ |
---|
1641 | "' does not have dimension '" + dims[dn][0] + "' !!" |
---|
1642 | print ' it has: ',osim.dimensions |
---|
1643 | quit(-1) |
---|
1644 | |
---|
1645 | if not osim.variables.has_key(vardims[dn][0]) and \ |
---|
1646 | not searchInlist(varNOcheck,vardims[dn][0]): |
---|
1647 | print errormsg |
---|
1648 | print ' ' + main + ": simulation file '" + opts.fsim + \ |
---|
1649 | "' does not have varibale dimension '" + vardims[dn][0] + "' !!" |
---|
1650 | print ' it has variables:',osim.variables |
---|
1651 | quit(-1) |
---|
1652 | if searchInlist(varNOcheck,vardims[dn][0]): |
---|
1653 | valdimsim[dn] = compute_varNOcheck(osim, vardims[dn][0]) |
---|
1654 | else: |
---|
1655 | valdimsim[dn] = osim.variables[vardims[dn][0]][:] |
---|
1656 | |
---|
1657 | # General characteristics |
---|
1658 | dimtobs = valdimobs['T'].shape[0] |
---|
1659 | dimtsim = valdimsim['T'].shape[0] |
---|
1660 | |
---|
1661 | print main +': observational time-steps:',dimtobs,'simulation:',dimtsim |
---|
1662 | |
---|
1663 | notfound = np.zeros((dimtobs), dtype=int) |
---|
1664 | |
---|
1665 | if obskind == 'multi-points': |
---|
1666 | trajpos = np.zeros((2,dimt),dtype=int) |
---|
1667 | for it in range(dimtobs): |
---|
1668 | trajpos[:,it] = index_2mat(valdimsim['X'],valdimsim['Y'], \ |
---|
1669 | [valdimobs['X'][it],valdimobss['Y'][it]]) |
---|
1670 | elif obskind == 'single-station': |
---|
1671 | trajpos = None |
---|
1672 | stationpos = np.zeros((2), dtype=int) |
---|
1673 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1674 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'],[valdimobs['Y'], \ |
---|
1675 | valdimobs['X']]) |
---|
1676 | iid = 0 |
---|
1677 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1678 | if idn == dims['X'][0]: |
---|
1679 | stationpos[1] = stsimpos[iid] |
---|
1680 | elif idn == dims['Y'][0]: |
---|
1681 | stationpos[0] = stsimpos[iid] |
---|
1682 | |
---|
1683 | iid = iid + 1 |
---|
1684 | print main + ': station point in simulation:', stationpos |
---|
1685 | print ' station position:',valdimobs['X'],',',valdimobs['Y'] |
---|
1686 | print ' simulation coord.:',valdimsim['X'][tuple(stsimpos)],',', \ |
---|
1687 | valdimsim['Y'][tuple(stsimpos)] |
---|
1688 | else: |
---|
1689 | print main + ': validation with two time-series !!' |
---|
1690 | |
---|
1691 | elif obskind == 'trajectory': |
---|
1692 | if opts.trajf is not None: |
---|
1693 | if not os.path.isfile(opts.fsim): |
---|
1694 | print errormsg |
---|
1695 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
1696 | quit(-1) |
---|
1697 | else: |
---|
1698 | otrjf = NetCDFFile(opts.fsim, 'r') |
---|
1699 | trajpos[0,:] = otrjf.variables['obssimtrj'][0] |
---|
1700 | trajpos[1,:] = otrjf.variables['obssimtrj'][1] |
---|
1701 | otrjf.close() |
---|
1702 | else: |
---|
1703 | if dims.has_key('Z'): |
---|
1704 | trajpos = np.zeros((3,dimtobs),dtype=int) |
---|
1705 | for it in range(dimtobs): |
---|
1706 | if np.mod(it*100./dimtobs,10.) == 0.: |
---|
1707 | print ' trajectory done: ',it*100./dimtobs,'%' |
---|
1708 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
1709 | [valdimobs['Y'][it],valdimobs['X'][it]]) |
---|
1710 | stationpos = np.zeros((2), dtype=int) |
---|
1711 | iid = 0 |
---|
1712 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1713 | if idn == dims['X'][0]: |
---|
1714 | stationpos[1] = stsimpos[iid] |
---|
1715 | elif idn == dims['Y'][0]: |
---|
1716 | stationpos[0] = stsimpos[iid] |
---|
1717 | iid = iid + 1 |
---|
1718 | if stationpos[0] == 0 and stationpos[1] == 0: notfound[it] = 1 |
---|
1719 | |
---|
1720 | trajpos[0,it] = stationpos[0] |
---|
1721 | trajpos[1,it] = stationpos[1] |
---|
1722 | # In the simulation 'Z' varies with time ... non-hydrostatic model! ;) |
---|
1723 | # trajpos[2,it] = index_mat(valdimsim['Z'][it,:,stationpos[0], \ |
---|
1724 | # stationpos[1]], valdimobs['Z'][it]) |
---|
1725 | else: |
---|
1726 | trajpos = np.zeros((2,dimtobs),dtype=int) |
---|
1727 | for it in range(dimtobs): |
---|
1728 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
1729 | [valdimobs['Y'][it],valdimobss['X'][it]]) |
---|
1730 | stationpos = np.zeros((2), dtype=int) |
---|
1731 | iid = 0 |
---|
1732 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1733 | if idn == dims['X'][0]: |
---|
1734 | stationpos[1] = stsimpos[iid] |
---|
1735 | elif idn == dims['Y'][0]: |
---|
1736 | stationpos[0] = stsimpos[iid] |
---|
1737 | iid = iid + 1 |
---|
1738 | if stationpos[0] == 0 or stationpos[1] == 0: notfound[it] = 1 |
---|
1739 | |
---|
1740 | trajpos[0,it] = stationspos[0] |
---|
1741 | trajpos[1,it] = stationspos[1] |
---|
1742 | |
---|
1743 | print main + ': not found',np.sum(notfound),'points of the trajectory' |
---|
1744 | |
---|
1745 | # Getting times |
---|
1746 | tobj = oobs.variables[vardims['T'][1]] |
---|
1747 | obstunits = tobj.getncattr('units') |
---|
1748 | if vardims['T'][0] == 'WRFT': |
---|
1749 | tsim = valdimsim['T'][:] |
---|
1750 | simtunits = 'seconds since 1949-12-01 00:00:00' |
---|
1751 | else: |
---|
1752 | tsim = osim.variables[vardims['T'][0]][:] |
---|
1753 | otsim = osim.variables[vardims['T'][0]] |
---|
1754 | simtunits = otsim.getncattr('units') |
---|
1755 | |
---|
1756 | simobstimes = coincident_CFtimes(tsim, obstunits, simtunits) |
---|
1757 | |
---|
1758 | # |
---|
1759 | ## Looking for exact/near times |
---|
1760 | # |
---|
1761 | |
---|
1762 | # Exact Coincident times |
---|
1763 | ## |
---|
1764 | exacttvalues0 = [] |
---|
1765 | for it in range(dimtsim): |
---|
1766 | ot = 0 |
---|
1767 | for ito in range(ot,dimtobs-1): |
---|
1768 | if valdimobs['T'][ito] == simobstimes[it]: |
---|
1769 | ot = ito |
---|
1770 | exacttvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito]]) |
---|
1771 | |
---|
1772 | exacttvalues = np.array(exacttvalues0, dtype=np.float) |
---|
1773 | Nexactt = len(exacttvalues[:,0]) |
---|
1774 | |
---|
1775 | print main + ': found',Nexactt,'Temporal same values in simulation and observations' |
---|
1776 | |
---|
1777 | # Sim Closest times |
---|
1778 | ## |
---|
1779 | Nsimt = 0 |
---|
1780 | closesttvalues0 = [] |
---|
1781 | closesttvalues0st = [] |
---|
1782 | tsiminit = 0 |
---|
1783 | tsimend = 0 |
---|
1784 | |
---|
1785 | dtsim = simobstimes[1] - simobstimes[0] |
---|
1786 | |
---|
1787 | for it in range(dimtsim): |
---|
1788 | ot = 0 |
---|
1789 | for ito in range(ot,dimtobs-1): |
---|
1790 | if np.abs(valdimobs['T'][ito] - simobstimes[it]) <= dtsim/2.: |
---|
1791 | ot = ito |
---|
1792 | tdist = simobstimes[it] - valdimobs['T'][ito] |
---|
1793 | closesttvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito], \ |
---|
1794 | tdist]) |
---|
1795 | Nsimt = Nsimt + 1 |
---|
1796 | if tsiminit == 0: tsiminit=simobstimes[it] |
---|
1797 | tsimend = simobstimes[it] |
---|
1798 | |
---|
1799 | closesttvalues = np.array(closesttvalues0, dtype=np.float) |
---|
1800 | |
---|
1801 | Nclosest = len(closesttvalues[:,0]) |
---|
1802 | print main + ': found',Nclosest,'Simulation time-values closest to observations' |
---|
1803 | |
---|
1804 | if Nclosest == 0: |
---|
1805 | print warnmsg |
---|
1806 | print main + ': no cclosest times found !!' |
---|
1807 | print ' stopping it' |
---|
1808 | quit(-1) |
---|
1809 | |
---|
1810 | # Sim Coincident times |
---|
1811 | ## |
---|
1812 | Nsimt = 0 |
---|
1813 | coindtvalues0 = [] |
---|
1814 | coindtvalues0st = [] |
---|
1815 | tsiminit = 0 |
---|
1816 | tsimend = 0 |
---|
1817 | |
---|
1818 | for it in range(dimtsim): |
---|
1819 | ot = 0 |
---|
1820 | for ito in range(ot,dimtobs-1): |
---|
1821 | if valdimobs['T'][ito] < simobstimes[it] and valdimobs['T'][ito+1] > \ |
---|
1822 | simobstimes[it]: |
---|
1823 | ot = ito |
---|
1824 | tdist = simobstimes[it] - valdimobs['T'][ito] |
---|
1825 | coindtvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito], \ |
---|
1826 | tdist]) |
---|
1827 | Nsimt = Nsimt + 1 |
---|
1828 | if tsiminit == 0: tsiminit=simobstimes[it] |
---|
1829 | tsimend = simobstimes[it] |
---|
1830 | elif simobstimes[it] > valdimobs['T'][ito+1]: |
---|
1831 | coindtvalues0st.append([Nsimt, ito, valdimobs['T'][ito],tsimend-tsiminit]) |
---|
1832 | |
---|
1833 | coindtvalues = np.array(coindtvalues0, dtype=np.float) |
---|
1834 | coindtvaluesst = np.array(coindtvalues0st, dtype=np.float) |
---|
1835 | |
---|
1836 | Ncoindt = len(coindtvalues[:,0]) |
---|
1837 | print main + ': found',Ncoindt,'Simulation time-interval (within consecutive ' + \ |
---|
1838 | 'observed times) coincident times between simulation and observations' |
---|
1839 | |
---|
1840 | if Ncoindt == 0: |
---|
1841 | print warnmsg |
---|
1842 | print main + ': no coincident times found !!' |
---|
1843 | print ' stopping it' |
---|
1844 | quit(-1) |
---|
1845 | |
---|
1846 | # Validating |
---|
1847 | ## |
---|
1848 | |
---|
1849 | onewnc = NetCDFFile(ofile, 'w') |
---|
1850 | |
---|
1851 | # Dimensions |
---|
1852 | for kst in range(Nstsim): |
---|
1853 | newdim = onewnc.createDimension(prestdescsim[kst] + 'time',None) |
---|
1854 | if stdescsim[kst] != 'E': |
---|
1855 | newdim = onewnc.createDimension(prestdescsim[kst] + 'obstime',None) |
---|
1856 | |
---|
1857 | newdim = onewnc.createDimension('bnds',2) |
---|
1858 | newdim = onewnc.createDimension('couple',2) |
---|
1859 | newdim = onewnc.createDimension('StrLength',StringLength) |
---|
1860 | newdim = onewnc.createDimension('xaround',Ngrid*2+1) |
---|
1861 | newdim = onewnc.createDimension('yaround',Ngrid*2+1) |
---|
1862 | newdim = onewnc.createDimension('gstats',13) |
---|
1863 | newdim = onewnc.createDimension('stats',5) |
---|
1864 | newdim = onewnc.createDimension('tstats',6) |
---|
1865 | newdim = onewnc.createDimension('Nstsim', 3) |
---|
1866 | |
---|
1867 | # Variable dimensions |
---|
1868 | ## |
---|
1869 | newvar = onewnc.createVariable('couple', 'c', ('couple','StrLength')) |
---|
1870 | basicvardef(newvar, 'couple', 'couples of values', '-') |
---|
1871 | writing_str_nc(newvar, ['sim','obs'], StringLength) |
---|
1872 | |
---|
1873 | newvar = onewnc.createVariable('statistics', 'c', ('stats','StrLength')) |
---|
1874 | basicvardef(newvar, 'statistics', 'statitics from values', '-') |
---|
1875 | writing_str_nc(newvar, statsn, StringLength) |
---|
1876 | |
---|
1877 | newvar = onewnc.createVariable('gstatistics', 'c', ('gstats','StrLength')) |
---|
1878 | basicvardef(newvar, 'gstatistics', 'global statitics from values', '-') |
---|
1879 | writing_str_nc(newvar, gstatsn, StringLength) |
---|
1880 | |
---|
1881 | newvar = onewnc.createVariable('tstatistics', 'c', ('tstats','StrLength')) |
---|
1882 | basicvardef(newvar, 'tstatistics', 'statitics from values along time', '-') |
---|
1883 | writing_str_nc(newvar, ostatsn, StringLength) |
---|
1884 | |
---|
1885 | newvar = onewnc.createVariable('ksimstatistics', 'c', ('Nstsim','StrLength')) |
---|
1886 | basicvardef(newvar, 'ksimstatistics', 'kind of simulated statitics', '-') |
---|
1887 | writing_str_nc(newvar, Lstdescsim, StringLength) |
---|
1888 | |
---|
1889 | if obskind == 'trajectory': |
---|
1890 | if dims.has_key('Z'): |
---|
1891 | newdim = onewnc.createDimension('trj',3) |
---|
1892 | else: |
---|
1893 | newdim = onewnc.createDimension('trj',2) |
---|
1894 | |
---|
1895 | newvar = onewnc.createVariable('obssimtrj','i',('obstime','trj')) |
---|
1896 | basicvardef(newvar, 'obssimtrj', 'trajectory on the simulation grid', '-') |
---|
1897 | newvar[:] = trajpos.transpose() |
---|
1898 | |
---|
1899 | if dims.has_key('Z'): |
---|
1900 | newdim = onewnc.createDimension('simtrj',4) |
---|
1901 | else: |
---|
1902 | newdim = onewnc.createDimension('simtrj',3) |
---|
1903 | |
---|
1904 | Nvars = len(valvars) |
---|
1905 | for ivar in range(Nvars): |
---|
1906 | simobsvalues = [] |
---|
1907 | |
---|
1908 | varsimobs = valvars[ivar][0] + '_' + valvars[ivar][1] |
---|
1909 | print ' ' + varsimobs + '... .. .' |
---|
1910 | |
---|
1911 | if not oobs.variables.has_key(valvars[ivar][1]): |
---|
1912 | print errormsg |
---|
1913 | print ' ' + main + ": observations file has not '" + valvars[ivar][1] + \ |
---|
1914 | "' !!" |
---|
1915 | quit(-1) |
---|
1916 | |
---|
1917 | if not osim.variables.has_key(valvars[ivar][0]): |
---|
1918 | if not searchInlist(varNOcheck, valvars[ivar][0]): |
---|
1919 | print errormsg |
---|
1920 | print ' ' + main + ": simulation file has not '" + valvars[ivar][0] + \ |
---|
1921 | "' !!" |
---|
1922 | quit(-1) |
---|
1923 | else: |
---|
1924 | ovsim = compute_varNOcheck(osim, valvars[ivar][0]) |
---|
1925 | else: |
---|
1926 | ovsim = osim.variables[valvars[ivar][0]] |
---|
1927 | |
---|
1928 | for idn in ovsim.dimensions: |
---|
1929 | if not searchInlist(simdims.values(),idn): |
---|
1930 | print errormsg |
---|
1931 | print ' ' + main + ": dimension '" + idn + "' of variable '" + \ |
---|
1932 | valvars[ivar][0] + "' not provided as reference coordinate [X,Y,Z,T] !!" |
---|
1933 | quit(-1) |
---|
1934 | |
---|
1935 | ovobs = oobs.variables[valvars[ivar][1]] |
---|
1936 | if searchInlist(ovobs.ncattrs(),'_FillValue'): |
---|
1937 | oFillValue = ovobs.getncattr('_FillValue') |
---|
1938 | else: |
---|
1939 | oFillValue = None |
---|
1940 | |
---|
1941 | simstats = np.zeros((Nstsim,5), dtype=np.float) |
---|
1942 | obsstats = np.zeros((Nstsim,5), dtype=np.float) |
---|
1943 | simobsstats = np.zeros((Nstsim,13), dtype=np.float) |
---|
1944 | aroundstats = np.zeros((5,dimt), dtype=np.float) |
---|
1945 | |
---|
1946 | for kst in range(Nstsim): |
---|
1947 | timedn = prestdescsim[kst] + 'time' |
---|
1948 | print ' ' + prestdescsim[kst] + ' ...' |
---|
1949 | |
---|
1950 | if stdescsim[kst] == 'E': |
---|
1951 | # Observed and simualted exact times |
---|
1952 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
1953 | getting_ValidationValues(obskind, Nexactt, dims, trajpos, ovsim, \ |
---|
1954 | ovobs, exacttvalues, oFillValue, Ngrid, 'instantaneous') |
---|
1955 | |
---|
1956 | if ivar == 0: |
---|
1957 | vname = prestdescsim[kst] + 'time' |
---|
1958 | newvar = onewnc.createVariable(vname,'f8', (timedn)) |
---|
1959 | basicvardef(newvar, vname, 'exact coincident time observations and '+\ |
---|
1960 | 'simulation', obstunits) |
---|
1961 | set_attribute(newvar, 'calendar', 'standard') |
---|
1962 | newvar[:] = exacttvalues[:,3] |
---|
1963 | |
---|
1964 | dimt = Nexactt |
---|
1965 | |
---|
1966 | elif stdescsim[kst] == 'C': |
---|
1967 | # Simualted closest to Observed times |
---|
1968 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
1969 | getting_ValidationValues(obskind, Nclosest, dims, trajpos, ovsim, \ |
---|
1970 | ovobs, closesttvalues, oFillValue, Ngrid, 'instantaneous') |
---|
1971 | dimt = Nclosest |
---|
1972 | |
---|
1973 | |
---|
1974 | if ivar == 0: |
---|
1975 | vname = prestdescsim[kst] + 'time' |
---|
1976 | newvar = onewnc.createVariable(vname,'f8', (timedn)) |
---|
1977 | basicvardef(newvar, vname, 'time simulations closest to observed ' + \ |
---|
1978 | 'values', obstunits ) |
---|
1979 | set_attribute(newvar, 'calendar', 'standard') |
---|
1980 | newvar[:] = closesttvalues[:,2] |
---|
1981 | |
---|
1982 | vname = prestdescsim[kst] + 'obstime' |
---|
1983 | newvar = onewnc.createVariable(vname,'f8', (vname)) |
---|
1984 | basicvardef(newvar, vname, 'closest time observations', obstunits) |
---|
1985 | set_attribute(newvar, 'calendar', 'standard') |
---|
1986 | newvar[:] = closesttvalues[:,3] |
---|
1987 | |
---|
1988 | elif stdescsim[kst] == 'B': |
---|
1989 | # Observed values temporally around coincident times |
---|
1990 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
1991 | getting_ValidationValues(obskind, Ncoindt, dims, trajpos, ovsim, ovobs,\ |
---|
1992 | coindtvalues, oFillValue, Ngrid, 'tbackwardSmean') |
---|
1993 | dimt = Ncoindt |
---|
1994 | |
---|
1995 | if ivar == 0: |
---|
1996 | vname = prestdescsim[kst] + 'time' |
---|
1997 | newvar = onewnc.createVariable(vname,'f8', (timedn)) |
---|
1998 | basicvardef(newvar, vname, 'simulation time between observations', \ |
---|
1999 | obstunits ) |
---|
2000 | set_attribute(newvar, 'calendar', 'standard') |
---|
2001 | set_attribute(newvar, 'bounds', 'time_bnds') |
---|
2002 | newvar[:] = simobsTtvalues[:,1] |
---|
2003 | |
---|
2004 | vname = prestdescsim[kst] + 'obstime' |
---|
2005 | newvar = onewnc.createVariable(vname,'f8', (vname)) |
---|
2006 | basicvardef(newvar, vname, 'observed between time', obstunits ) |
---|
2007 | set_attribute(newvar, 'calendar', 'standard') |
---|
2008 | newvar[:] = np.unique(coindtvalues[:,2]) |
---|
2009 | |
---|
2010 | # Re-arranging values... |
---|
2011 | arrayvals = np.array(simobsvalues) |
---|
2012 | if len(valvars[ivar]) > 2: |
---|
2013 | const=np.float(valvars[ivar][3]) |
---|
2014 | if valvars[ivar][2] == 'sumc': |
---|
2015 | simobsSvalues = simobsSvalues + const |
---|
2016 | arrayvals[:,0] = arrayvals[:,0] + const |
---|
2017 | elif valvars[ivar][2] == 'subc': |
---|
2018 | simobsSvalues = simobsSvalues - const |
---|
2019 | arrayvals[:,0] = arrayvals[:,0] - const |
---|
2020 | elif valvars[ivar][2] == 'mulc': |
---|
2021 | simobsSvalues = simobsSvalues * const |
---|
2022 | arrayvals[:,0] = arrayvals[:,0] * const |
---|
2023 | elif valvars[ivar][2] == 'divc': |
---|
2024 | simobsSvalues = simobsSvalues / const |
---|
2025 | arrayvals[:,0] = arrayvals[:,0] / const |
---|
2026 | else: |
---|
2027 | print errormsg |
---|
2028 | print ' ' + fname + ": operation '"+valvars[ivar][2]+"' not ready!!" |
---|
2029 | quit(-1) |
---|
2030 | |
---|
2031 | # statisics sim |
---|
2032 | simstats[kst,0] = np.min(arrayvals[:,0]) |
---|
2033 | simstats[kst,1] = np.max(arrayvals[:,0]) |
---|
2034 | simstats[kst,2] = np.mean(arrayvals[:,0]) |
---|
2035 | simstats[kst,3] = np.mean(arrayvals[:,0]*arrayvals[:,0]) |
---|
2036 | simstats[kst,4] = np.sqrt(simstats[kst,3] - simstats[kst,2]*simstats[kst,2]) |
---|
2037 | |
---|
2038 | # statisics obs |
---|
2039 | # Masking 'nan' |
---|
2040 | obsmask0 = np.where(arrayvals[:,1] != arrayvals[:,1], fillValueF, \ |
---|
2041 | arrayvals[:,1]) |
---|
2042 | |
---|
2043 | obsmask = ma.masked_equal(obsmask0, fillValueF) |
---|
2044 | obsmask2 = obsmask*obsmask |
---|
2045 | |
---|
2046 | obsstats[kst,0] = obsmask.min() |
---|
2047 | obsstats[kst,1] = obsmask.max() |
---|
2048 | obsstats[kst,2] = obsmask.mean() |
---|
2049 | obsstats[kst,3] = obsmask2.mean() |
---|
2050 | obsstats[kst,4] = np.sqrt(obsstats[kst,3] - obsstats[kst,2]*obsstats[kst,2]) |
---|
2051 | |
---|
2052 | # Statistics sim-obs |
---|
2053 | diffvals = np.zeros((dimt), dtype=np.float) |
---|
2054 | |
---|
2055 | diffvals = arrayvals[:,0] - obsmask |
---|
2056 | |
---|
2057 | diff2vals = diffvals*diffvals |
---|
2058 | sumdiff = diffvals.sum() |
---|
2059 | sumdiff2 = diff2vals.sum() |
---|
2060 | |
---|
2061 | simobsstats[kst,0] = simstats[kst,0] - obsstats[kst,0] |
---|
2062 | simobsstats[kst,1] = np.mean(arrayvals[:,0]*obsmask) |
---|
2063 | simobsstats[kst,2] = diffvals.min() |
---|
2064 | simobsstats[kst,3] = diffvals.max() |
---|
2065 | simobsstats[kst,4] = diffvals.mean() |
---|
2066 | simobsstats[kst,5] = np.abs(diffvals).mean() |
---|
2067 | simobsstats[kst,6] = np.sqrt(diff2vals.mean()) |
---|
2068 | simobsstats[kst,7], simobsstats[kst,8] = sts.mstats.pearsonr(arrayvals[:,0], \ |
---|
2069 | obsmask) |
---|
2070 | # From: |
---|
2071 | #Willmott, C. J. 1981. 'On the validation of models. Physical Geography', 2, 184-194 |
---|
2072 | #Willmott, C. J. (1984). 'On the evaluation of model performance in physical |
---|
2073 | # geography'. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., |
---|
2074 | # 443-460 |
---|
2075 | #Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. |
---|
2076 | # Legates, J. O'Donnell, and C. M. Rowe (1985), 'Statistics for the Evaluation and |
---|
2077 | # Comparison of Models', J. Geophys. Res., 90(C5), 8995-9005 |
---|
2078 | #Legates, D. R., and G. J. McCabe Jr. (1999), 'Evaluating the Use of "Goodness-of-Fit" |
---|
2079 | # Measures in Hydrologic and Hydroclimatic Model Validation', Water Resour. Res., |
---|
2080 | # 35(1), 233-241 |
---|
2081 | # |
---|
2082 | # Deviation of residuals (SDR) |
---|
2083 | simobsstats[kst,9] = np.mean(np.sqrt(np.abs((diffvals-simobsstats[kst,0])* \ |
---|
2084 | (diffvals-obsstats[kst,0])))) |
---|
2085 | # Index of Efficiency (IOE) |
---|
2086 | obsbias2series = (obsmask - obsstats[kst,0])*(obsmask - obsstats[kst,0]) |
---|
2087 | sumobsbias2series = obsbias2series.sum() |
---|
2088 | |
---|
2089 | simobsstats[kst,10] = 1. - sumdiff2/(sumobsbias2series) |
---|
2090 | # Index of Agreement (IOA) |
---|
2091 | simbias2series = arrayvals[:,0] - obsstats[kst,0] |
---|
2092 | obsbias2series = obsmask - obsstats[kst,0] |
---|
2093 | |
---|
2094 | abssimbias2series = np.abs(simbias2series) |
---|
2095 | absobsbias2series = np.where(obsbias2series<0, -obsbias2series, \ |
---|
2096 | obsbias2series) |
---|
2097 | |
---|
2098 | abssimobsbias2series = (abssimbias2series+absobsbias2series)*( \ |
---|
2099 | abssimbias2series + absobsbias2series) |
---|
2100 | |
---|
2101 | simobsstats[kst,11] = 1. - sumdiff2/(abssimobsbias2series.sum()) |
---|
2102 | # Fractional Mean Bias (FMB) |
---|
2103 | simobsstats[kst,12]=(simstats[kst,0]-obsstats[kst,0])/(0.5*(simstats[kst,0] +\ |
---|
2104 | obsstats[kst,0])) |
---|
2105 | |
---|
2106 | # Statistics around sim values |
---|
2107 | for it in range(dimt): |
---|
2108 | aroundstats[0,it] = np.min(simobsSvalues[it,]) |
---|
2109 | aroundstats[1,it] = np.max(simobsSvalues[it,]) |
---|
2110 | aroundstats[2,it] = np.mean(simobsSvalues[it,]) |
---|
2111 | aroundstats[3,it] = np.mean(simobsSvalues[it,]*simobsSvalues[it,]) |
---|
2112 | aroundstats[4,it] = np.sqrt(aroundstats[3,it] - aroundstats[2,it]* \ |
---|
2113 | aroundstats[2,it]) |
---|
2114 | |
---|
2115 | # sim Values to netCDF |
---|
2116 | newvar = onewnc.createVariable(valvars[ivar][0] + '_' + stdescsim[kst] + \ |
---|
2117 | 'sim', 'f', (timedn), fill_value=fillValueF) |
---|
2118 | descvar = prestdescsim[kst] + ' time simulated: ' + valvars[ivar][0] |
---|
2119 | basicvardef(newvar, valvars[ivar][0], descvar, ovobs.getncattr('units')) |
---|
2120 | newvar[:] = arrayvals[:,0] |
---|
2121 | |
---|
2122 | # obs Values to netCDF |
---|
2123 | newvar = onewnc.createVariable(valvars[ivar][1] + '_' + stdescsim[kst] + \ |
---|
2124 | 'obs', 'f', (timedn), fill_value=fillValueF) |
---|
2125 | descvar = prestdescsim[kst] + ' time simulated: ' + valvars[ivar][1] |
---|
2126 | basicvardef(newvar, valvars[ivar][1], descvar, ovobs.getncattr('units')) |
---|
2127 | newvar[:] = arrayvals[:,1] |
---|
2128 | |
---|
2129 | # Around values |
---|
2130 | if not onewnc.variables.has_key(valvars[ivar][0] + 'around'): |
---|
2131 | vname = prestdescsim[kst] + valvars[ivar][0] + 'around' |
---|
2132 | else: |
---|
2133 | vname = prestdescsim[kst] + valvars[ivar][0] + 'Around' |
---|
2134 | |
---|
2135 | if dims.has_key('Z'): |
---|
2136 | if not onewnc.dimensions.has_key('zaround'): |
---|
2137 | newdim = onewnc.createDimension('zaround',Ngrid*2+1) |
---|
2138 | newvar = onewnc.createVariable(vname, 'f', (timedn,'zaround', \ |
---|
2139 | 'yaround','xaround'), fill_value=fillValueF) |
---|
2140 | else: |
---|
2141 | newvar = onewnc.createVariable(vname, 'f', (timedn,'yaround','xaround'), \ |
---|
2142 | fill_value=fillValueF) |
---|
2143 | |
---|
2144 | descvar = prestdescsim[kst] + 'around simulated values +/- grid values: ' + \ |
---|
2145 | valvars[ivar][0] |
---|
2146 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2147 | newvar[:] = simobsSvalues |
---|
2148 | |
---|
2149 | |
---|
2150 | # around sim Statistics between |
---|
2151 | if not searchInlist(onewnc.variables,prestdescsim[kst] + valvars[ivar][0] + \ |
---|
2152 | 'staround'): |
---|
2153 | vname = prestdescsim[kst] + valvars[ivar][0] + 'staround' |
---|
2154 | else: |
---|
2155 | vname = prestdescsim[kst] + valvars[ivar][0] + 'Staround' |
---|
2156 | |
---|
2157 | newvar = onewnc.createVariable(vname, 'f', (timedn,'stats'), \ |
---|
2158 | fill_value=fillValueF) |
---|
2159 | descvar = prestdescsim[kst] + ' around (' + str(Ngrid) + ', ' + str(Ngrid) +\ |
---|
2160 | ') simulated statisitcs: ' + valvars[ivar][0] |
---|
2161 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2162 | set_attribute(newvar, 'cell_methods', 'time_bnds') |
---|
2163 | newvar[:] = aroundstats.transpose() |
---|
2164 | |
---|
2165 | if stdescsim[kst] == 'B': |
---|
2166 | if not searchInlist(onewnc.variables, 'time_bnds'): |
---|
2167 | newvar = onewnc.createVariable('time_bnds','f8',(timedn,'bnds')) |
---|
2168 | basicvardef(newvar, 'time_bnds', timedn, obstunits ) |
---|
2169 | set_attribute(newvar, 'calendar', 'standard') |
---|
2170 | newvar[:] = simobsTtvalues |
---|
2171 | |
---|
2172 | # sim Statistics |
---|
2173 | if not searchInlist(onewnc.variables,valvars[ivar][0] + 'stsim'): |
---|
2174 | vname = valvars[ivar][0] + 'stsim' |
---|
2175 | else: |
---|
2176 | vname = valvars[ivar][0] + 'stSim' |
---|
2177 | |
---|
2178 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'stats'), \ |
---|
2179 | fill_value=fillValueF) |
---|
2180 | descvar = 'simulated statisitcs: ' + valvars[ivar][0] |
---|
2181 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2182 | newvar[:] = simstats |
---|
2183 | |
---|
2184 | # obs Statistics |
---|
2185 | if not searchInlist(onewnc.variables,valvars[ivar][1] + 'stobs'): |
---|
2186 | vname = valvars[ivar][1] + 'stobs' |
---|
2187 | else: |
---|
2188 | vname = valvars[ivar][1] + 'stObs' |
---|
2189 | |
---|
2190 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'stats'), \ |
---|
2191 | fill_value=fillValueF) |
---|
2192 | descvar = 'observed statisitcs: ' + valvars[ivar][1] |
---|
2193 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2194 | newvar[:] = obsstats |
---|
2195 | |
---|
2196 | # sim-obs Statistics |
---|
2197 | if not searchInlist(onewnc.variables,varsimobs + 'st'): |
---|
2198 | vname = varsimobs + 'st' |
---|
2199 | else: |
---|
2200 | vname = varSimobs + 'st' |
---|
2201 | |
---|
2202 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'gstats'), \ |
---|
2203 | fill_value=fillValueF) |
---|
2204 | descvar = 'simulated-observed tatisitcs: ' + varsimobs |
---|
2205 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2206 | newvar[:] = simobsstats |
---|
2207 | |
---|
2208 | onewnc.sync() |
---|
2209 | |
---|
2210 | if trjsim is not None: |
---|
2211 | newvar = onewnc.createVariable('simtrj','i',('betweentime','simtrj')) |
---|
2212 | basicvardef(newvar,'simtrj','coordinates [X,Y,Z,T] of the coincident ' + \ |
---|
2213 | 'trajectory in sim', obstunits) |
---|
2214 | newvar[:] = trjsim.transpose() |
---|
2215 | |
---|
2216 | # Adding three variables with the station location, longitude, latitude and height |
---|
2217 | if obskind == 'single-station': |
---|
2218 | adding_station_desc(onewnc,stationdesc) |
---|
2219 | |
---|
2220 | # Global attributes |
---|
2221 | ## |
---|
2222 | set_attribute(onewnc,'author_nc','Lluis Fita') |
---|
2223 | set_attribute(onewnc,'institution_nc','Laboratoire de Meteorology Dynamique, ' + \ |
---|
2224 | 'LMD-Jussieu, UPMC, Paris') |
---|
2225 | set_attribute(onewnc,'country_nc','France') |
---|
2226 | set_attribute(onewnc,'script_nc',main) |
---|
2227 | set_attribute(onewnc,'version_script',version) |
---|
2228 | set_attribute(onewnc,'information', \ |
---|
2229 | 'http://www.lmd.jussieu.fr/~lflmd/ASCIIobs_nc/index.html') |
---|
2230 | set_attribute(onewnc,'simfile',opts.fsim) |
---|
2231 | set_attribute(onewnc,'obsfile',opts.fobs) |
---|
2232 | |
---|
2233 | onewnc.sync() |
---|
2234 | onewnc.close() |
---|
2235 | |
---|
2236 | print main + ": successfull writting of '" + ofile + "' !!" |
---|