1 | |
---|
2 | # L. Fita, LMD-Jussieu. February 2015 |
---|
3 | ## e.g. sfcEneAvigon # validation_sim.py -d X@west_east@None,Y@south_north@None,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,T@time@time -k single-station -l 4.878773,43.915876,12. -o /home/lluis/DATA/obs/HyMeX/IOP15/sfcEnergyBalance_Avignon/OBSnetcdf.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v HFX@H,LH@LE,GRDFLX@G |
---|
4 | ## e.g. AIREP # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@alti,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/AIREP/2012/10/AIREP_121018.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@t,WRFtd@td,WRFws@u,WRFwd@dd |
---|
5 | ## e.g. ATRCore # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/ATRCore/V3/ATR_1Hz-HYMEXBDD-SOP1-v3_20121018_as120051.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@air_temperature@subc@273.15,WRFp@air_pressure,WRFrh@relative_humidity,WRFrh@relative_humidity_Rosemount,WRFwd@wind_from_direction,WRFws@wind_speed |
---|
6 | ## e.g. BAMED # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/BAMED/BAMED_SOP1_B12_TOT5.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@tas_north,WRFp@pressure,WRFrh@hus,U@uas,V@vas |
---|
7 | |
---|
8 | import numpy as np |
---|
9 | import os |
---|
10 | import re |
---|
11 | from optparse import OptionParser |
---|
12 | from netCDF4 import Dataset as NetCDFFile |
---|
13 | from scipy import stats as sts |
---|
14 | import numpy.ma as ma |
---|
15 | |
---|
16 | main = 'validation_sim.py' |
---|
17 | errormsg = 'ERROR -- errror -- ERROR -- error' |
---|
18 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
19 | |
---|
20 | # version |
---|
21 | version=1.0 |
---|
22 | |
---|
23 | # Filling values for floats, integer and string |
---|
24 | fillValueF = 1.e20 |
---|
25 | fillValueI = -99999 |
---|
26 | fillValueS = '---' |
---|
27 | |
---|
28 | StringLength = 50 |
---|
29 | |
---|
30 | # Number of grid points to take as 'environment' around the observed point |
---|
31 | Ngrid = 1 |
---|
32 | |
---|
33 | def searchInlist(listname, nameFind): |
---|
34 | """ Function to search a value within a list |
---|
35 | listname = list |
---|
36 | nameFind = value to find |
---|
37 | >>> searInlist(['1', '2', '3', '5'], '5') |
---|
38 | True |
---|
39 | """ |
---|
40 | for x in listname: |
---|
41 | if x == nameFind: |
---|
42 | return True |
---|
43 | return False |
---|
44 | |
---|
45 | def set_attribute(ncvar, attrname, attrvalue): |
---|
46 | """ Sets a value of an attribute of a netCDF variable. Removes previous attribute value if exists |
---|
47 | ncvar = object netcdf variable |
---|
48 | attrname = name of the attribute |
---|
49 | attrvalue = value of the attribute |
---|
50 | """ |
---|
51 | import numpy as np |
---|
52 | from netCDF4 import Dataset as NetCDFFile |
---|
53 | |
---|
54 | attvar = ncvar.ncattrs() |
---|
55 | if searchInlist(attvar, attrname): |
---|
56 | attr = ncvar.delncattr(attrname) |
---|
57 | |
---|
58 | attr = ncvar.setncattr(attrname, attrvalue) |
---|
59 | |
---|
60 | return ncvar |
---|
61 | |
---|
62 | def basicvardef(varobj, vstname, vlname, vunits): |
---|
63 | """ Function to give the basic attributes to a variable |
---|
64 | varobj= netCDF variable object |
---|
65 | vstname= standard name of the variable |
---|
66 | vlname= long name of the variable |
---|
67 | vunits= units of the variable |
---|
68 | """ |
---|
69 | attr = varobj.setncattr('standard_name', vstname) |
---|
70 | attr = varobj.setncattr('long_name', vlname) |
---|
71 | attr = varobj.setncattr('units', vunits) |
---|
72 | |
---|
73 | return |
---|
74 | |
---|
75 | def writing_str_nc(varo, values, Lchar): |
---|
76 | """ Function to write string values in a netCDF variable as a chain of 1char values |
---|
77 | varo= netCDF variable object |
---|
78 | values = list of values to introduce |
---|
79 | Lchar = length of the string in the netCDF file |
---|
80 | """ |
---|
81 | |
---|
82 | Nvals = len(values) |
---|
83 | for iv in range(Nvals): |
---|
84 | stringv=values[iv] |
---|
85 | charvals = np.chararray(Lchar) |
---|
86 | Lstr = len(stringv) |
---|
87 | charvals[Lstr:Lchar] = '' |
---|
88 | |
---|
89 | for ich in range(Lstr): |
---|
90 | charvals[ich] = stringv[ich:ich+1] |
---|
91 | |
---|
92 | varo[iv,:] = charvals |
---|
93 | |
---|
94 | return |
---|
95 | |
---|
96 | def CFtimes_datetime_NOfile(times, units, calendar): |
---|
97 | """ Provide date/time array from velues of netCDF CF-compilant time variable |
---|
98 | times= time values |
---|
99 | units= CF units of the variable time |
---|
100 | output: |
---|
101 | array(dimt, 0) = year |
---|
102 | array(dimt, 1) = month |
---|
103 | array(dimt, 2) = day |
---|
104 | array(dimt, 3) = hour |
---|
105 | array(dimt, 4) = minute |
---|
106 | array(dimt, 5) = second |
---|
107 | """ |
---|
108 | import datetime as dt |
---|
109 | fname = 'CFtimes_datetime_NOfile' |
---|
110 | |
---|
111 | txtunits = units.split(' ') |
---|
112 | tunits = txtunits[0] |
---|
113 | Srefdate = txtunits[len(txtunits) - 1] |
---|
114 | # Does reference date contain a time value [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] |
---|
115 | ## |
---|
116 | timeval = Srefdate.find(':') |
---|
117 | |
---|
118 | if not timeval == -1: |
---|
119 | # print ' refdate with time!' |
---|
120 | refdate = datetimeStr_datetime(txtunits[len(txtunits) - 2] + '_' + Srefdate) |
---|
121 | else: |
---|
122 | refdate = dateStr_date(Srefdate) |
---|
123 | |
---|
124 | dimt = len(times) |
---|
125 | realdates = np.zeros((dimt, 6), dtype=int) |
---|
126 | |
---|
127 | secsDay=3600*24. |
---|
128 | |
---|
129 | # Checking calendar! |
---|
130 | ## |
---|
131 | y360 = False |
---|
132 | daycal360 = ['earth_360d', '360d', '360days', '360_day'] |
---|
133 | if searchInlist(daycal360,calendar): |
---|
134 | print warnmsg |
---|
135 | print ' ' + fname + ': calendar of 12 months of 30 days !!' |
---|
136 | y360 = True |
---|
137 | |
---|
138 | ## Not in timedelta |
---|
139 | # if tunits == 'years': |
---|
140 | # for it in range(dimt): |
---|
141 | # realdate = refdate + dt.timedelta(years=float(times[it])) |
---|
142 | # realdates[it] = int(realdate.year) |
---|
143 | # elif tunits == 'months': |
---|
144 | # for it in range(dimt): |
---|
145 | # realdate = refdate + dt.timedelta(months=float(times[it])) |
---|
146 | # realdates[it] = int(realdate.year) |
---|
147 | if y360: |
---|
148 | if tunits == 'weeks': |
---|
149 | for it in range(dimt): |
---|
150 | deltat = dt.timedelta(weeks=float(times[it])) |
---|
151 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
152 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
153 | elif tunits == 'days': |
---|
154 | for it in range(dimt): |
---|
155 | deltat = dt.timedelta(days=float(times[it])) |
---|
156 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
157 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
158 | elif tunits == 'hours': |
---|
159 | for it in range(dimt): |
---|
160 | realdate = dt.timedelta(hours=float(times[it])) |
---|
161 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
162 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
163 | elif tunits == 'minutes': |
---|
164 | for it in range(dimt): |
---|
165 | realdate = dt.timedelta(minutes=float(times[it])) |
---|
166 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
167 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
168 | elif tunits == 'seconds': |
---|
169 | for it in range(dimt): |
---|
170 | realdate = dt.timedelta(seconds=float(times[it])) |
---|
171 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
172 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
173 | elif tunits == 'miliseconds': |
---|
174 | for it in range(dimt): |
---|
175 | realdate = dt.timedelta(miliseconds=float(times[it])) |
---|
176 | Tsecs = deltat.days*secsDay + deltat.seconds + deltat.microseconds/1000. |
---|
177 | realdates[it,:] = date_juliandate(refdate.year,Tsecs) |
---|
178 | else: |
---|
179 | print errormsg |
---|
180 | print ' CFtimes_datetime: time units "' + tunits + '" not ready!!!!' |
---|
181 | quit(-1) |
---|
182 | else: |
---|
183 | if tunits == 'weeks': |
---|
184 | for it in range(dimt): |
---|
185 | realdate = refdate + dt.timedelta(weeks=float(times[it])) |
---|
186 | realdates[it,0] = int(realdate.year) |
---|
187 | realdates[it,1] = int(realdate.month) |
---|
188 | realdates[it,2] = int(realdate.day) |
---|
189 | realdates[it,3] = int(realdate.hour) |
---|
190 | realdates[it,4] = int(realdate.second) |
---|
191 | realdates[it,5] = int(realdate.minute) |
---|
192 | elif tunits == 'days': |
---|
193 | for it in range(dimt): |
---|
194 | realdate = refdate + dt.timedelta(days=float(times[it])) |
---|
195 | realdates[it,0] = int(realdate.year) |
---|
196 | realdates[it,1] = int(realdate.month) |
---|
197 | realdates[it,2] = int(realdate.day) |
---|
198 | realdates[it,3] = int(realdate.hour) |
---|
199 | realdates[it,4] = int(realdate.second) |
---|
200 | realdates[it,5] = int(realdate.minute) |
---|
201 | elif tunits == 'hours': |
---|
202 | for it in range(dimt): |
---|
203 | realdate = refdate + dt.timedelta(hours=float(times[it])) |
---|
204 | realdates[it,0] = int(realdate.year) |
---|
205 | realdates[it,1] = int(realdate.month) |
---|
206 | realdates[it,2] = int(realdate.day) |
---|
207 | realdates[it,3] = int(realdate.hour) |
---|
208 | realdates[it,4] = int(realdate.second) |
---|
209 | realdates[it,5] = int(realdate.minute) |
---|
210 | elif tunits == 'minutes': |
---|
211 | for it in range(dimt): |
---|
212 | realdate = refdate + dt.timedelta(minutes=float(times[it])) |
---|
213 | realdates[it,0] = int(realdate.year) |
---|
214 | realdates[it,1] = int(realdate.month) |
---|
215 | realdates[it,2] = int(realdate.day) |
---|
216 | realdates[it,3] = int(realdate.hour) |
---|
217 | realdates[it,4] = int(realdate.second) |
---|
218 | realdates[it,5] = int(realdate.minute) |
---|
219 | elif tunits == 'seconds': |
---|
220 | for it in range(dimt): |
---|
221 | realdate = refdate + dt.timedelta(seconds=float(times[it])) |
---|
222 | realdates[it,0] = int(realdate.year) |
---|
223 | realdates[it,1] = int(realdate.month) |
---|
224 | realdates[it,2] = int(realdate.day) |
---|
225 | realdates[it,3] = int(realdate.hour) |
---|
226 | realdates[it,4] = int(realdate.second) |
---|
227 | realdates[it,5] = int(realdate.minute) |
---|
228 | elif tunits == 'milliseconds': |
---|
229 | for it in range(dimt): |
---|
230 | realdate = refdate + dt.timedelta(milliseconds=float(times[it])) |
---|
231 | realdates[it,0] = int(realdate.year) |
---|
232 | realdates[it,1] = int(realdate.month) |
---|
233 | realdates[it,2] = int(realdate.day) |
---|
234 | realdates[it,3] = int(realdate.hour) |
---|
235 | realdates[it,4] = int(realdate.second) |
---|
236 | realdates[it,5] = int(realdate.minute) |
---|
237 | else: |
---|
238 | print errormsg |
---|
239 | print ' CFtimes_datetime: time units "' + tunits + '" not ready!!!!' |
---|
240 | quit(-1) |
---|
241 | |
---|
242 | return realdates |
---|
243 | |
---|
244 | def index_3mat(matA,matB,matC,val): |
---|
245 | """ Function to provide the coordinates of a given value inside three matrix simultaneously |
---|
246 | index_mat(matA,matB,matC,val) |
---|
247 | matA= matrix with one set of values |
---|
248 | matB= matrix with the other set of values |
---|
249 | matB= matrix with the third set of values |
---|
250 | val= triplet of values to search |
---|
251 | >>> index_mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),np.arange(200,227).reshape(3,3,3),[22,122,222]) |
---|
252 | [2 1 1] |
---|
253 | """ |
---|
254 | fname = 'index_3mat' |
---|
255 | |
---|
256 | matAshape = matA.shape |
---|
257 | matBshape = matB.shape |
---|
258 | matCshape = matC.shape |
---|
259 | |
---|
260 | for idv in range(len(matAshape)): |
---|
261 | if matAshape[idv] != matBshape[idv]: |
---|
262 | print errormsg |
---|
263 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
264 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
265 | quit(-1) |
---|
266 | if matAshape[idv] != matCshape[idv]: |
---|
267 | print errormsg |
---|
268 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
269 | 'and C:',matCshape[idv],'does not coincide!!' |
---|
270 | quit(-1) |
---|
271 | |
---|
272 | minA = np.min(matA) |
---|
273 | maxA = np.max(matA) |
---|
274 | minB = np.min(matB) |
---|
275 | maxB = np.max(matB) |
---|
276 | minC = np.min(matC) |
---|
277 | maxC = np.max(matC) |
---|
278 | |
---|
279 | if val[0] < minA or val[0] > maxA: |
---|
280 | print warnmsg |
---|
281 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
282 | maxA,'!!' |
---|
283 | if val[1] < minB or val[1] > maxB: |
---|
284 | print warnmsg |
---|
285 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
286 | maxB,'!!' |
---|
287 | if val[2] < minC or val[2] > maxC: |
---|
288 | print warnmsg |
---|
289 | print ' ' + fname + ': second value:',val[2],'outside matC range',minC,',', \ |
---|
290 | maxC,'!!' |
---|
291 | |
---|
292 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
293 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2 + \ |
---|
294 | (matC - np.float(val[2]))**2) |
---|
295 | |
---|
296 | mindist = np.min(dist) |
---|
297 | |
---|
298 | matlist = list(dist.flatten()) |
---|
299 | ifound = matlist.index(mindist) |
---|
300 | |
---|
301 | Ndims = len(matAshape) |
---|
302 | valpos = np.zeros((Ndims), dtype=int) |
---|
303 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
304 | |
---|
305 | for dimid in range(Ndims): |
---|
306 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
307 | if dimid == 0: |
---|
308 | alreadyplaced = 0 |
---|
309 | else: |
---|
310 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
311 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
312 | |
---|
313 | return valpos |
---|
314 | |
---|
315 | def index_2mat(matA,matB,val): |
---|
316 | """ Function to provide the coordinates of a given value inside two matrix simultaneously |
---|
317 | index_mat(matA,matB,val) |
---|
318 | matA= matrix with one set of values |
---|
319 | matB= matrix with the pother set of values |
---|
320 | val= couple of values to search |
---|
321 | >>> index_2mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),[22,111]) |
---|
322 | [2 1 1] |
---|
323 | """ |
---|
324 | fname = 'index_2mat' |
---|
325 | |
---|
326 | matAshape = matA.shape |
---|
327 | matBshape = matB.shape |
---|
328 | |
---|
329 | for idv in range(len(matAshape)): |
---|
330 | if matAshape[idv] != matBshape[idv]: |
---|
331 | print errormsg |
---|
332 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
333 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
334 | quit(-1) |
---|
335 | |
---|
336 | minA = np.min(matA) |
---|
337 | maxA = np.max(matA) |
---|
338 | minB = np.min(matB) |
---|
339 | maxB = np.max(matB) |
---|
340 | |
---|
341 | Ndims = len(matAshape) |
---|
342 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
343 | valpos = np.zeros((Ndims), dtype=int) |
---|
344 | |
---|
345 | if val[0] < minA or val[0] > maxA: |
---|
346 | print warnmsg |
---|
347 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
348 | maxA,'!!' |
---|
349 | return valpos |
---|
350 | if val[1] < minB or val[1] > maxB: |
---|
351 | print warnmsg |
---|
352 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
353 | maxB,'!!' |
---|
354 | return valpos |
---|
355 | |
---|
356 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
357 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2) |
---|
358 | |
---|
359 | mindist = np.min(dist) |
---|
360 | |
---|
361 | if mindist != mindist: |
---|
362 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
363 | return valpos |
---|
364 | else: |
---|
365 | matlist = list(dist.flatten()) |
---|
366 | ifound = matlist.index(mindist) |
---|
367 | |
---|
368 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
369 | for dimid in range(Ndims): |
---|
370 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
371 | if dimid == 0: |
---|
372 | alreadyplaced = 0 |
---|
373 | else: |
---|
374 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
375 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
376 | |
---|
377 | return valpos |
---|
378 | |
---|
379 | def index_mat(matA,val): |
---|
380 | """ Function to provide the coordinates of a given value inside a matrix |
---|
381 | index_mat(matA,val) |
---|
382 | matA= matrix with one set of values |
---|
383 | val= couple of values to search |
---|
384 | >>> index_mat(np.arange(27),22.3) |
---|
385 | 22 |
---|
386 | """ |
---|
387 | fname = 'index_mat' |
---|
388 | |
---|
389 | matAshape = matA.shape |
---|
390 | |
---|
391 | minA = np.min(matA) |
---|
392 | maxA = np.max(matA) |
---|
393 | |
---|
394 | Ndims = len(matAshape) |
---|
395 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
396 | valpos = np.zeros((Ndims), dtype=int) |
---|
397 | |
---|
398 | if val < minA or val > maxA: |
---|
399 | print warnmsg |
---|
400 | print ' ' + fname + ': first value:',val,'outside matA range',minA,',', \ |
---|
401 | maxA,'!!' |
---|
402 | return valpos |
---|
403 | |
---|
404 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
405 | dist = (matA - np.float(val))**2 |
---|
406 | |
---|
407 | mindist = np.min(dist) |
---|
408 | if mindist != mindist: |
---|
409 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
410 | return valpos |
---|
411 | |
---|
412 | matlist = list(dist.flatten()) |
---|
413 | valpos = matlist.index(mindist) |
---|
414 | |
---|
415 | return valpos |
---|
416 | |
---|
417 | def index_mat_exact(mat,val): |
---|
418 | """ Function to provide the coordinates of a given exact value inside a matrix |
---|
419 | index_mat(mat,val) |
---|
420 | mat= matrix with values |
---|
421 | val= value to search |
---|
422 | >>> index_mat(np.arange(27).reshape(3,3,3),22) |
---|
423 | [2 1 1] |
---|
424 | """ |
---|
425 | |
---|
426 | fname = 'index_mat' |
---|
427 | |
---|
428 | matshape = mat.shape |
---|
429 | |
---|
430 | matlist = list(mat.flatten()) |
---|
431 | ifound = matlist.index(val) |
---|
432 | |
---|
433 | Ndims = len(matshape) |
---|
434 | valpos = np.zeros((Ndims), dtype=int) |
---|
435 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
436 | |
---|
437 | for dimid in range(Ndims): |
---|
438 | baseprevdims[dimid] = np.product(matshape[dimid+1:Ndims]) |
---|
439 | if dimid == 0: |
---|
440 | alreadyplaced = 0 |
---|
441 | else: |
---|
442 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
443 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
444 | |
---|
445 | return valpos |
---|
446 | |
---|
447 | def datetimeStr_datetime(StringDT): |
---|
448 | """ Function to transform a string date ([YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format) to a date object |
---|
449 | >>> datetimeStr_datetime('1976-02-17_00:00:00') |
---|
450 | 1976-02-17 00:00:00 |
---|
451 | """ |
---|
452 | import datetime as dt |
---|
453 | |
---|
454 | fname = 'datetimeStr_datetime' |
---|
455 | |
---|
456 | dateD = np.zeros((3), dtype=int) |
---|
457 | timeT = np.zeros((3), dtype=int) |
---|
458 | |
---|
459 | dateD[0] = int(StringDT[0:4]) |
---|
460 | dateD[1] = int(StringDT[5:7]) |
---|
461 | dateD[2] = int(StringDT[8:10]) |
---|
462 | |
---|
463 | trefT = StringDT.find(':') |
---|
464 | if not trefT == -1: |
---|
465 | # print ' ' + fname + ': refdate with time!' |
---|
466 | timeT[0] = int(StringDT[11:13]) |
---|
467 | timeT[1] = int(StringDT[14:16]) |
---|
468 | timeT[2] = int(StringDT[17:19]) |
---|
469 | |
---|
470 | if int(dateD[0]) == 0: |
---|
471 | print warnmsg |
---|
472 | print ' ' + fname + ': 0 reference year!! changing to 1' |
---|
473 | dateD[0] = 1 |
---|
474 | |
---|
475 | newdatetime = dt.datetime(dateD[0], dateD[1], dateD[2], timeT[0], timeT[1], timeT[2]) |
---|
476 | |
---|
477 | return newdatetime |
---|
478 | |
---|
479 | def datetimeStr_conversion(StringDT,typeSi,typeSo): |
---|
480 | """ Function to transform a string date to an another date object |
---|
481 | StringDT= string with the date and time |
---|
482 | typeSi= type of datetime string input |
---|
483 | typeSo= type of datetime string output |
---|
484 | [typeSi/o] |
---|
485 | 'cfTime': [time],[units]; ]time in CF-convention format [units] = [tunits] since [refdate] |
---|
486 | 'matYmdHMS': numerical vector with [[YYYY], [MM], [DD], [HH], [MI], [SS]] |
---|
487 | 'YmdHMS': [YYYY][MM][DD][HH][MI][SS] format |
---|
488 | 'Y-m-d_H:M:S': [YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format |
---|
489 | 'Y-m-d H:M:S': [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] format |
---|
490 | 'Y/m/d H-M-S': [YYYY]/[MM]/[DD] [HH]-[MI]-[SS] format |
---|
491 | 'WRFdatetime': [Y], [Y], [Y], [Y], '-', [M], [M], '-', [D], [D], '_', [H], |
---|
492 | [H], ':', [M], [M], ':', [S], [S] |
---|
493 | >>> datetimeStr_conversion('1976-02-17_08:32:05','Y-m-d_H:M:S','matYmdHMS') |
---|
494 | [1976 2 17 8 32 5] |
---|
495 | >>> datetimeStr_conversion(str(137880)+',minutes since 1979-12-01_00:00:00','cfTime','Y/m/d H-M-S') |
---|
496 | 1980/03/05 18-00-00 |
---|
497 | """ |
---|
498 | import datetime as dt |
---|
499 | |
---|
500 | fname = 'datetimeStr_conversion' |
---|
501 | |
---|
502 | if StringDT[0:1] == 'h': |
---|
503 | print fname + '_____________________________________________________________' |
---|
504 | print datetimeStr_conversion.__doc__ |
---|
505 | quit() |
---|
506 | |
---|
507 | if typeSi == 'cfTime': |
---|
508 | timeval = np.float(StringDT.split(',')[0]) |
---|
509 | tunits = StringDT.split(',')[1].split(' ')[0] |
---|
510 | Srefdate = StringDT.split(',')[1].split(' ')[2] |
---|
511 | |
---|
512 | # Does reference date contain a time value [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] |
---|
513 | ## |
---|
514 | yrref=Srefdate[0:4] |
---|
515 | monref=Srefdate[5:7] |
---|
516 | dayref=Srefdate[8:10] |
---|
517 | |
---|
518 | trefT = Srefdate.find(':') |
---|
519 | if not trefT == -1: |
---|
520 | # print ' ' + fname + ': refdate with time!' |
---|
521 | horref=Srefdate[11:13] |
---|
522 | minref=Srefdate[14:16] |
---|
523 | secref=Srefdate[17:19] |
---|
524 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
525 | '_' + horref + ':' + minref + ':' + secref) |
---|
526 | else: |
---|
527 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
528 | + '_00:00:00') |
---|
529 | |
---|
530 | if tunits == 'weeks': |
---|
531 | newdate = refdate + dt.timedelta(weeks=float(timeval)) |
---|
532 | elif tunits == 'days': |
---|
533 | newdate = refdate + dt.timedelta(days=float(timeval)) |
---|
534 | elif tunits == 'hours': |
---|
535 | newdate = refdate + dt.timedelta(hours=float(timeval)) |
---|
536 | elif tunits == 'minutes': |
---|
537 | newdate = refdate + dt.timedelta(minutes=float(timeval)) |
---|
538 | elif tunits == 'seconds': |
---|
539 | newdate = refdate + dt.timedelta(seconds=float(timeval)) |
---|
540 | elif tunits == 'milliseconds': |
---|
541 | newdate = refdate + dt.timedelta(milliseconds=float(timeval)) |
---|
542 | else: |
---|
543 | print errormsg |
---|
544 | print ' timeref_datetime: time units "' + tunits + '" not ready!!!!' |
---|
545 | quit(-1) |
---|
546 | |
---|
547 | yr = newdate.year |
---|
548 | mo = newdate.month |
---|
549 | da = newdate.day |
---|
550 | ho = newdate.hour |
---|
551 | mi = newdate.minute |
---|
552 | se = newdate.second |
---|
553 | elif typeSi == 'matYmdHMS': |
---|
554 | yr = StringDT[0] |
---|
555 | mo = StringDT[1] |
---|
556 | da = StringDT[2] |
---|
557 | ho = StringDT[3] |
---|
558 | mi = StringDT[4] |
---|
559 | se = StringDT[5] |
---|
560 | elif typeSi == 'YmdHMS': |
---|
561 | yr = int(StringDT[0:4]) |
---|
562 | mo = int(StringDT[4:6]) |
---|
563 | da = int(StringDT[6:8]) |
---|
564 | ho = int(StringDT[8:10]) |
---|
565 | mi = int(StringDT[10:12]) |
---|
566 | se = int(StringDT[12:14]) |
---|
567 | elif typeSi == 'Y-m-d_H:M:S': |
---|
568 | dateDT = StringDT.split('_') |
---|
569 | dateD = dateDT[0].split('-') |
---|
570 | timeT = dateDT[1].split(':') |
---|
571 | yr = int(dateD[0]) |
---|
572 | mo = int(dateD[1]) |
---|
573 | da = int(dateD[2]) |
---|
574 | ho = int(timeT[0]) |
---|
575 | mi = int(timeT[1]) |
---|
576 | se = int(timeT[2]) |
---|
577 | elif typeSi == 'Y-m-d H:M:S': |
---|
578 | dateDT = StringDT.split(' ') |
---|
579 | dateD = dateDT[0].split('-') |
---|
580 | timeT = dateDT[1].split(':') |
---|
581 | yr = int(dateD[0]) |
---|
582 | mo = int(dateD[1]) |
---|
583 | da = int(dateD[2]) |
---|
584 | ho = int(timeT[0]) |
---|
585 | mi = int(timeT[1]) |
---|
586 | se = int(timeT[2]) |
---|
587 | elif typeSi == 'Y/m/d H-M-S': |
---|
588 | dateDT = StringDT.split(' ') |
---|
589 | dateD = dateDT[0].split('/') |
---|
590 | timeT = dateDT[1].split('-') |
---|
591 | yr = int(dateD[0]) |
---|
592 | mo = int(dateD[1]) |
---|
593 | da = int(dateD[2]) |
---|
594 | ho = int(timeT[0]) |
---|
595 | mi = int(timeT[1]) |
---|
596 | se = int(timeT[2]) |
---|
597 | elif typeSi == 'WRFdatetime': |
---|
598 | yr = int(StringDT[0])*1000 + int(StringDT[1])*100 + int(StringDT[2])*10 + \ |
---|
599 | int(StringDT[3]) |
---|
600 | mo = int(StringDT[5])*10 + int(StringDT[6]) |
---|
601 | da = int(StringDT[8])*10 + int(StringDT[9]) |
---|
602 | ho = int(StringDT[11])*10 + int(StringDT[12]) |
---|
603 | mi = int(StringDT[14])*10 + int(StringDT[15]) |
---|
604 | se = int(StringDT[17])*10 + int(StringDT[18]) |
---|
605 | else: |
---|
606 | print errormsg |
---|
607 | print ' ' + fname + ': type of String input date "' + typeSi + \ |
---|
608 | '" not ready !!!!' |
---|
609 | quit(-1) |
---|
610 | |
---|
611 | if typeSo == 'matYmdHMS': |
---|
612 | dateYmdHMS = np.zeros((6), dtype=int) |
---|
613 | dateYmdHMS[0] = yr |
---|
614 | dateYmdHMS[1] = mo |
---|
615 | dateYmdHMS[2] = da |
---|
616 | dateYmdHMS[3] = ho |
---|
617 | dateYmdHMS[4] = mi |
---|
618 | dateYmdHMS[5] = se |
---|
619 | elif typeSo == 'YmdHMS': |
---|
620 | dateYmdHMS = str(yr).zfill(4) + str(mo).zfill(2) + str(da).zfill(2) + \ |
---|
621 | str(ho).zfill(2) + str(mi).zfill(2) + str(se).zfill(2) |
---|
622 | elif typeSo == 'Y-m-d_H:M:S': |
---|
623 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
624 | str(da).zfill(2) + '_' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
625 | str(se).zfill(2) |
---|
626 | elif typeSo == 'Y-m-d H:M:S': |
---|
627 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
628 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
629 | str(se).zfill(2) |
---|
630 | elif typeSo == 'Y/m/d H-M-S': |
---|
631 | dateYmdHMS = str(yr).zfill(4) + '/' + str(mo).zfill(2) + '/' + \ |
---|
632 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + '-' + str(mi).zfill(2) + '-' + \ |
---|
633 | str(se).zfill(2) |
---|
634 | elif typeSo == 'WRFdatetime': |
---|
635 | dateYmdHMS = [] |
---|
636 | yM = yr/1000 |
---|
637 | yC = (yr-yM*1000)/100 |
---|
638 | yD = (yr-yM*1000-yC*100)/10 |
---|
639 | yU = yr-yM*1000-yC*100-yD*10 |
---|
640 | |
---|
641 | mD = mo/10 |
---|
642 | mU = mo-mD*10 |
---|
643 | |
---|
644 | dD = da/10 |
---|
645 | dU = da-dD*10 |
---|
646 | |
---|
647 | hD = ho/10 |
---|
648 | hU = ho-hD*10 |
---|
649 | |
---|
650 | miD = mi/10 |
---|
651 | miU = mi-miD*10 |
---|
652 | |
---|
653 | sD = se/10 |
---|
654 | sU = se-sD*10 |
---|
655 | |
---|
656 | dateYmdHMS.append(str(yM)) |
---|
657 | dateYmdHMS.append(str(yC)) |
---|
658 | dateYmdHMS.append(str(yD)) |
---|
659 | dateYmdHMS.append(str(yU)) |
---|
660 | dateYmdHMS.append('-') |
---|
661 | dateYmdHMS.append(str(mD)) |
---|
662 | dateYmdHMS.append(str(mU)) |
---|
663 | dateYmdHMS.append('-') |
---|
664 | dateYmdHMS.append(str(dD)) |
---|
665 | dateYmdHMS.append(str(dU)) |
---|
666 | dateYmdHMS.append('_') |
---|
667 | dateYmdHMS.append(str(hD)) |
---|
668 | dateYmdHMS.append(str(hU)) |
---|
669 | dateYmdHMS.append(':') |
---|
670 | dateYmdHMS.append(str(miD)) |
---|
671 | dateYmdHMS.append(str(miU)) |
---|
672 | dateYmdHMS.append(':') |
---|
673 | dateYmdHMS.append(str(sD)) |
---|
674 | dateYmdHMS.append(str(sU)) |
---|
675 | else: |
---|
676 | print errormsg |
---|
677 | print ' ' + fname + ': type of output date "' + typeSo + '" not ready !!!!' |
---|
678 | quit(-1) |
---|
679 | |
---|
680 | return dateYmdHMS |
---|
681 | |
---|
682 | def coincident_CFtimes(tvalB, tunitA, tunitB): |
---|
683 | """ Function to make coincident times for two different sets of CFtimes |
---|
684 | tvalB= time values B |
---|
685 | tunitA= time units times A to which we want to make coincidence |
---|
686 | tunitB= time units times B |
---|
687 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
688 | 'hours since 1949-12-01 00:00:00') |
---|
689 | [ 0. 3600. 7200. 10800. 14400. 18000. 21600. 25200. 28800. 32400.] |
---|
690 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
691 | 'hours since 1979-12-01 00:00:00') |
---|
692 | [ 9.46684800e+08 9.46688400e+08 9.46692000e+08 9.46695600e+08 |
---|
693 | 9.46699200e+08 9.46702800e+08 9.46706400e+08 9.46710000e+08 |
---|
694 | 9.46713600e+08 9.46717200e+08] |
---|
695 | """ |
---|
696 | import datetime as dt |
---|
697 | fname = 'coincident_CFtimes' |
---|
698 | |
---|
699 | trefA = tunitA.split(' ')[2] + ' ' + tunitA.split(' ')[3] |
---|
700 | trefB = tunitB.split(' ')[2] + ' ' + tunitB.split(' ')[3] |
---|
701 | tuA = tunitA.split(' ')[0] |
---|
702 | tuB = tunitB.split(' ')[0] |
---|
703 | |
---|
704 | if tuA != tuB: |
---|
705 | if tuA == 'microseconds': |
---|
706 | if tuB == 'microseconds': |
---|
707 | tB = tvalB*1. |
---|
708 | elif tuB == 'seconds': |
---|
709 | tB = tvalB*10.e6 |
---|
710 | elif tuB == 'minutes': |
---|
711 | tB = tvalB*60.*10.e6 |
---|
712 | elif tuB == 'hours': |
---|
713 | tB = tvalB*3600.*10.e6 |
---|
714 | elif tuB == 'days': |
---|
715 | tB = tvalB*3600.*24.*10.e6 |
---|
716 | else: |
---|
717 | print errormsg |
---|
718 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
719 | "' & '" + tuB + "' not ready !!" |
---|
720 | quit(-1) |
---|
721 | elif tuA == 'seconds': |
---|
722 | if tuB == 'microseconds': |
---|
723 | tB = tvalB/10.e6 |
---|
724 | elif tuB == 'seconds': |
---|
725 | tB = tvalB*1. |
---|
726 | elif tuB == 'minutes': |
---|
727 | tB = tvalB*60. |
---|
728 | elif tuB == 'hours': |
---|
729 | tB = tvalB*3600. |
---|
730 | elif tuB == 'days': |
---|
731 | tB = tvalB*3600.*24. |
---|
732 | else: |
---|
733 | print errormsg |
---|
734 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
735 | "' & '" + tuB + "' not ready !!" |
---|
736 | quit(-1) |
---|
737 | elif tuA == 'minutes': |
---|
738 | if tuB == 'microseconds': |
---|
739 | tB = tvalB/(60.*10.e6) |
---|
740 | elif tuB == 'seconds': |
---|
741 | tB = tvalB/60. |
---|
742 | elif tuB == 'minutes': |
---|
743 | tB = tvalB*1. |
---|
744 | elif tuB == 'hours': |
---|
745 | tB = tvalB*60. |
---|
746 | elif tuB == 'days': |
---|
747 | tB = tvalB*60.*24. |
---|
748 | else: |
---|
749 | print errormsg |
---|
750 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
751 | "' & '" + tuB + "' not ready !!" |
---|
752 | quit(-1) |
---|
753 | elif tuA == 'hours': |
---|
754 | if tuB == 'microseconds': |
---|
755 | tB = tvalB/(3600.*10.e6) |
---|
756 | elif tuB == 'seconds': |
---|
757 | tB = tvalB/3600. |
---|
758 | elif tuB == 'minutes': |
---|
759 | tB = tvalB/60. |
---|
760 | elif tuB == 'hours': |
---|
761 | tB = tvalB*1. |
---|
762 | elif tuB == 'days': |
---|
763 | tB = tvalB*24. |
---|
764 | else: |
---|
765 | print errormsg |
---|
766 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
767 | "' & '" + tuB + "' not ready !!" |
---|
768 | quit(-1) |
---|
769 | elif tuA == 'days': |
---|
770 | if tuB == 'microseconds': |
---|
771 | tB = tvalB/(24.*3600.*10.e6) |
---|
772 | elif tuB == 'seconds': |
---|
773 | tB = tvalB/(24.*3600.) |
---|
774 | elif tuB == 'minutes': |
---|
775 | tB = tvalB/(24.*60.) |
---|
776 | elif tuB == 'hours': |
---|
777 | tB = tvalB/24. |
---|
778 | elif tuB == 'days': |
---|
779 | tB = tvalB*1. |
---|
780 | else: |
---|
781 | print errormsg |
---|
782 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
783 | "' & '" + tuB + "' not ready !!" |
---|
784 | quit(-1) |
---|
785 | else: |
---|
786 | print errormsg |
---|
787 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
788 | quit(-1) |
---|
789 | else: |
---|
790 | tB = tvalB*1. |
---|
791 | |
---|
792 | if trefA != trefB: |
---|
793 | trefTA = dt.datetime.strptime(trefA, '%Y-%m-%d %H:%M:%S') |
---|
794 | trefTB = dt.datetime.strptime(trefB, '%Y-%m-%d %H:%M:%S') |
---|
795 | |
---|
796 | difft = trefTB - trefTA |
---|
797 | diffv = difft.days*24.*3600. + difft.seconds + difft.microseconds/1.e6 |
---|
798 | print ' ' + fname + ': different reference refA:',trefTA,'refB',trefTB |
---|
799 | print ' difference:',difft,':',diffv,'(in seconds)' |
---|
800 | |
---|
801 | if tuA == 'microseconds': |
---|
802 | tB = tB + diffv*1.e6 |
---|
803 | elif tuA == 'seconds': |
---|
804 | tB = tB + diffv |
---|
805 | elif tuA == 'minutes': |
---|
806 | tB = tB + diffv/(60.) |
---|
807 | elif tuA == 'hours': |
---|
808 | tB = tB + diffv/(3600.) |
---|
809 | elif tuA == 'days': |
---|
810 | tB = tB + diffv/(24.*3600.) |
---|
811 | else: |
---|
812 | print errormsg |
---|
813 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
814 | quit(-1) |
---|
815 | |
---|
816 | return tB |
---|
817 | |
---|
818 | def slice_variable(varobj, dimslice): |
---|
819 | """ Function to return a slice of a given variable according to values to its |
---|
820 | dimensions |
---|
821 | slice_variable(varobj, dimslice) |
---|
822 | varobj= object wit the variable |
---|
823 | dimslice= [[dimname1]:[value1]|[[dimname2]:[value2], ...] pairs of dimension |
---|
824 | [value]: |
---|
825 | * [integer]: which value of the dimension |
---|
826 | * -1: all along the dimension |
---|
827 | * -9: last value of the dimension |
---|
828 | * [beg]@[end] slice from [beg] to [end] |
---|
829 | """ |
---|
830 | fname = 'slice_variable' |
---|
831 | |
---|
832 | if varobj == 'h': |
---|
833 | print fname + '_____________________________________________________________' |
---|
834 | print slice_variable.__doc__ |
---|
835 | quit() |
---|
836 | |
---|
837 | vardims = varobj.dimensions |
---|
838 | Ndimvar = len(vardims) |
---|
839 | |
---|
840 | Ndimcut = len(dimslice.split('|')) |
---|
841 | dimsl = dimslice.split('|') |
---|
842 | |
---|
843 | varvalsdim = [] |
---|
844 | dimnslice = [] |
---|
845 | |
---|
846 | for idd in range(Ndimvar): |
---|
847 | for idc in range(Ndimcut): |
---|
848 | dimcutn = dimsl[idc].split(':')[0] |
---|
849 | dimcutv = dimsl[idc].split(':')[1] |
---|
850 | if vardims[idd] == dimcutn: |
---|
851 | posfrac = dimcutv.find('@') |
---|
852 | if posfrac != -1: |
---|
853 | inifrac = int(dimcutv.split('@')[0]) |
---|
854 | endfrac = int(dimcutv.split('@')[1]) |
---|
855 | varvalsdim.append(slice(inifrac,endfrac)) |
---|
856 | dimnslice.append(vardims[idd]) |
---|
857 | else: |
---|
858 | if int(dimcutv) == -1: |
---|
859 | varvalsdim.append(slice(0,varobj.shape[idd])) |
---|
860 | dimnslice.append(vardims[idd]) |
---|
861 | elif int(dimcutv) == -9: |
---|
862 | varvalsdim.append(int(varobj.shape[idd])-1) |
---|
863 | else: |
---|
864 | varvalsdim.append(int(dimcutv)) |
---|
865 | break |
---|
866 | |
---|
867 | varvalues = varobj[tuple(varvalsdim)] |
---|
868 | |
---|
869 | return varvalues, dimnslice |
---|
870 | |
---|
871 | def func_compute_varNOcheck(ncobj, varn): |
---|
872 | """ Function to compute variables which are not originary in the file |
---|
873 | ncobj= netCDF object file |
---|
874 | varn = variable to compute: |
---|
875 | 'WRFdens': air density from WRF variables |
---|
876 | 'WRFght': geopotential height from WRF variables |
---|
877 | 'WRFp': pressure from WRF variables |
---|
878 | 'WRFrh': relative humidty fom WRF variables |
---|
879 | 'WRFt': temperature from WRF variables |
---|
880 | 'WRFwds': surface wind direction from WRF variables |
---|
881 | 'WRFwss': surface wind speed from WRF variables |
---|
882 | 'WRFz': height from WRF variables |
---|
883 | """ |
---|
884 | fname = 'compute_varNOcheck' |
---|
885 | |
---|
886 | if varn == 'WRFdens': |
---|
887 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
888 | # 'DNW)/g ...' |
---|
889 | grav = 9.81 |
---|
890 | |
---|
891 | # Just we need in in absolute values: Size of the central grid cell |
---|
892 | ## dxval = ncobj.getncattr('DX') |
---|
893 | ## dyval = ncobj.getncattr('DY') |
---|
894 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
895 | ## area = dxval*dyval*mapfac |
---|
896 | dimensions = ncobj.variables['MU'].dimensions |
---|
897 | |
---|
898 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
899 | dnw = ncobj.variables['DNW'][:] |
---|
900 | |
---|
901 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
902 | dtype=np.float) |
---|
903 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
904 | |
---|
905 | for it in range(mu.shape[0]): |
---|
906 | for iz in range(dnw.shape[1]): |
---|
907 | levval.fill(np.abs(dnw[it,iz])) |
---|
908 | varNOcheck[it,iz,:,:] = levval |
---|
909 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
910 | |
---|
911 | elif varn == 'WRFght': |
---|
912 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
913 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
914 | dimensions = ncobj.variables['PH'].dimensions |
---|
915 | |
---|
916 | elif varn == 'WRFp': |
---|
917 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
918 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
919 | dimensions = ncobj.variables['P'].dimensions |
---|
920 | |
---|
921 | elif varn == 'WRFrh': |
---|
922 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
923 | # ' equation (T,P) ...' |
---|
924 | p0=100000. |
---|
925 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
926 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
927 | qv = ncobj.variables['QVAPOR'][:] |
---|
928 | |
---|
929 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
930 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
931 | |
---|
932 | varNOcheckv = qv/data2 |
---|
933 | dimensions = ncobj.variables['P'].dimensions |
---|
934 | |
---|
935 | elif varn == 'WRFt': |
---|
936 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
937 | p0=100000. |
---|
938 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
939 | |
---|
940 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
941 | dimensions = ncobj.variables['T'].dimensions |
---|
942 | |
---|
943 | elif varn == 'WRFwds': |
---|
944 | # print ' ' + main + ': computing surface wind direction from WRF as ATAN2(V,U) ...' |
---|
945 | varNOcheckv = np.arctan2(ncobj.variables['V10'][:], ncobj.variables['U10'][:]) |
---|
946 | dimensions = ncobj.variables['V10'].dimensions |
---|
947 | |
---|
948 | elif varn == 'WRFwss': |
---|
949 | # print ' ' + main + ': computing surface wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
950 | varNOcheckv = np.sqrt(ncobj.variables['U10'][:]*ncobj.variables['U10'][:] + \ |
---|
951 | ncobj.variables['V10'][:]*ncobj.variables['V10'][:]) |
---|
952 | dimensions = ncobj.variables['U10'].dimensions |
---|
953 | |
---|
954 | elif varn == 'WRFz': |
---|
955 | grav = 9.81 |
---|
956 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
957 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
958 | dimensions = ncobj.variables['PH'].dimensions |
---|
959 | |
---|
960 | else: |
---|
961 | print erromsg |
---|
962 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
963 | quit(-1) |
---|
964 | |
---|
965 | return varNOcheck |
---|
966 | |
---|
967 | class compute_varNOcheck(object): |
---|
968 | """ Class to compute variables which are not originary in the file |
---|
969 | ncobj= netCDF object file |
---|
970 | varn = variable to compute: |
---|
971 | 'WRFdens': air density from WRF variables |
---|
972 | 'WRFght': geopotential height from WRF variables |
---|
973 | 'WRFp': pressure from WRF variables |
---|
974 | 'WRFrh': relative humidty fom WRF variables |
---|
975 | 'TSrhs': surface relative humidty fom TS variables |
---|
976 | 'WRFrhs': surface relative humidty fom WRF variables |
---|
977 | 'WRFT': CF-time from WRF variables |
---|
978 | 'WRFt': temperature from WRF variables |
---|
979 | 'TStd': dew-point temperature from TS variables |
---|
980 | 'WRFtd': dew-point temperature from WRF variables |
---|
981 | 'WRFwd': wind direction from WRF variables |
---|
982 | 'TSwds': surface wind direction from TS variables |
---|
983 | 'WRFwds': surface wind direction from WRF variables |
---|
984 | 'WRFws': wind speed from WRF variables |
---|
985 | 'TSwss': surface wind speed from TS variables |
---|
986 | 'WRFwss': surface wind speed from WRF variables |
---|
987 | 'WRFz': height from WRF variables |
---|
988 | """ |
---|
989 | fname = 'compute_varNOcheck' |
---|
990 | |
---|
991 | def __init__(self, ncobj, varn): |
---|
992 | |
---|
993 | if ncobj is None: |
---|
994 | self = None |
---|
995 | self.dimensions = None |
---|
996 | self.shape = None |
---|
997 | self.__values = None |
---|
998 | else: |
---|
999 | if varn == 'WRFdens': |
---|
1000 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
1001 | # 'DNW)/g ...' |
---|
1002 | grav = 9.81 |
---|
1003 | |
---|
1004 | # Just we need in in absolute values: Size of the central grid cell |
---|
1005 | ## dxval = ncobj.getncattr('DX') |
---|
1006 | ## dyval = ncobj.getncattr('DY') |
---|
1007 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
1008 | ## area = dxval*dyval*mapfac |
---|
1009 | dimensions = ncobj.variables['MU'].dimensions |
---|
1010 | shape = ncobj.variables['MU'].shape |
---|
1011 | |
---|
1012 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
1013 | dnw = ncobj.variables['DNW'][:] |
---|
1014 | |
---|
1015 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
1016 | dtype=np.float) |
---|
1017 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
1018 | |
---|
1019 | for it in range(mu.shape[0]): |
---|
1020 | for iz in range(dnw.shape[1]): |
---|
1021 | levval.fill(np.abs(dnw[it,iz])) |
---|
1022 | varNOcheck[it,iz,:,:] = levval |
---|
1023 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
1024 | |
---|
1025 | elif varn == 'WRFght': |
---|
1026 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
1027 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
1028 | dimensions = ncobj.variables['PH'].dimensions |
---|
1029 | shape = ncobj.variables['PH'].shape |
---|
1030 | |
---|
1031 | elif varn == 'WRFp': |
---|
1032 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
1033 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1034 | dimensions = ncobj.variables['P'].dimensions |
---|
1035 | shape = ncobj.variables['P'].shape |
---|
1036 | |
---|
1037 | elif varn == 'WRFrh': |
---|
1038 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
1039 | # ' equation (T,P) ...' |
---|
1040 | p0=100000. |
---|
1041 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1042 | tk = (ncobj.variables['T'][:])*(p/p0)**(2./7.) |
---|
1043 | qv = ncobj.variables['QVAPOR'][:] |
---|
1044 | |
---|
1045 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1046 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1047 | |
---|
1048 | varNOcheckv = qv/data2 |
---|
1049 | dimensions = ncobj.variables['P'].dimensions |
---|
1050 | shape = ncobj.variables['P'].shape |
---|
1051 | |
---|
1052 | elif varn == 'TSrhs': |
---|
1053 | # print ' ' + main + ": computing surface relative humidity from TSs as 'Tetens'" +\ |
---|
1054 | # ' equation (T,P) ...' |
---|
1055 | p0=100000. |
---|
1056 | p=ncobj.variables['psfc'][:] |
---|
1057 | tk = (ncobj.variables['t'][:])*(p/p0)**(2./7.) |
---|
1058 | qv = ncobj.variables['q'][:] |
---|
1059 | |
---|
1060 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1061 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1062 | |
---|
1063 | varNOcheckv = qv/data2 |
---|
1064 | dimensions = ncobj.variables['psfc'].dimensions |
---|
1065 | shape = ncobj.variables['psfc'].shape |
---|
1066 | |
---|
1067 | elif varn == 'WRFrhs': |
---|
1068 | # print ' ' + main + ": computing surface relative humidity from WRF as 'Tetens'" +\ |
---|
1069 | # ' equation (T,P) ...' |
---|
1070 | p0=100000. |
---|
1071 | p=ncobj.variables['PSFC'][:] |
---|
1072 | tk = (ncobj.variables['T2'][:] + 300.)*(p/p0)**(2./7.) |
---|
1073 | qv = ncobj.variables['Q2'][:] |
---|
1074 | |
---|
1075 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1076 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1077 | |
---|
1078 | varNOcheckv = qv/data2 |
---|
1079 | dimensions = ncobj.variables['PSFC'].dimensions |
---|
1080 | shape = ncobj.variables['PSFC'].shape |
---|
1081 | |
---|
1082 | elif varn == 'WRFT': |
---|
1083 | # To compute CF-times from WRF kind |
---|
1084 | # |
---|
1085 | import datetime as dt |
---|
1086 | |
---|
1087 | times = ncobj.variables['Times'] |
---|
1088 | dimt = times.shape[0] |
---|
1089 | varNOcheckv = np.zeros((dimt), dtype=np.float64) |
---|
1090 | self.unitsval = 'seconds since 1949-12-01 00:00:00' |
---|
1091 | refdate = datetimeStr_datetime('1949-12-01_00:00:00') |
---|
1092 | |
---|
1093 | dimensions = tuple([ncobj.variables['Times'].dimensions[0]]) |
---|
1094 | shape = tuple([dimt]) |
---|
1095 | |
---|
1096 | for it in range(dimt): |
---|
1097 | datevalS = datetimeStr_conversion(times[it,:], 'WRFdatetime', \ |
---|
1098 | 'YmdHMS') |
---|
1099 | dateval = dt.datetime.strptime(datevalS, '%Y%m%d%H%M%S') |
---|
1100 | difft = dateval - refdate |
---|
1101 | varNOcheckv[it] = difft.days*3600.*24. + difft.seconds + \ |
---|
1102 | np.float(int(difft.microseconds/10.e6)) |
---|
1103 | |
---|
1104 | elif varn == 'WRFt': |
---|
1105 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
1106 | p0=100000. |
---|
1107 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1108 | |
---|
1109 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
1110 | dimensions = ncobj.variables['T'].dimensions |
---|
1111 | shape = ncobj.variables['P'].shape |
---|
1112 | |
---|
1113 | elif varn == 'TStd': |
---|
1114 | # print ' ' + main + ': computing dew-point temperature from TS as t and Tetens...' |
---|
1115 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
1116 | p=ncobj.variables['psfc'][:] |
---|
1117 | |
---|
1118 | temp = ncobj.variables['t'][:] |
---|
1119 | |
---|
1120 | qv = ncobj.variables['q'][:] |
---|
1121 | |
---|
1122 | tk = temp |
---|
1123 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1124 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1125 | |
---|
1126 | rh = qv/data2 |
---|
1127 | |
---|
1128 | pa = rh * data1 |
---|
1129 | varNOcheckv = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1130 | |
---|
1131 | dimensions = ncobj.variables['t'].dimensions |
---|
1132 | shape = ncobj.variables['t'].shape |
---|
1133 | |
---|
1134 | elif varn == 'WRFtd': |
---|
1135 | # print ' ' + main + ': computing dew-point temperature from WRF as inv_potT(T + 300) and Tetens...' |
---|
1136 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
1137 | p0=100000. |
---|
1138 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1139 | |
---|
1140 | temp = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
1141 | |
---|
1142 | qv = ncobj.variables['QVAPOR'][:] |
---|
1143 | |
---|
1144 | tk = temp - 273.15 |
---|
1145 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1146 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1147 | |
---|
1148 | rh = qv/data2 |
---|
1149 | |
---|
1150 | pa = rh * data1 |
---|
1151 | varNOcheckv = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1152 | |
---|
1153 | dimensions = ncobj.variables['T'].dimensions |
---|
1154 | shape = ncobj.variables['P'].shape |
---|
1155 | |
---|
1156 | elif varn == 'WRFwd': |
---|
1157 | # print ' ' + main + ': computing wind direction from WRF as ATAN2PI(V,U) ...' |
---|
1158 | uwind = ncobj.variables['U'][:] |
---|
1159 | vwind = ncobj.variables['V'][:] |
---|
1160 | dx = uwind.shape[3] |
---|
1161 | dy = vwind.shape[2] |
---|
1162 | |
---|
1163 | # de-staggering |
---|
1164 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
1165 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
1166 | |
---|
1167 | theta = np.arctan2(ua, va) |
---|
1168 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1169 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1170 | |
---|
1171 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
1172 | shape = ua.shape |
---|
1173 | |
---|
1174 | elif varn == 'WRFwds': |
---|
1175 | # print ' ' + main + ': computing surface wind direction from WRF as ATAN2(V,U) ...' |
---|
1176 | theta = np.arctan2(ncobj.variables['V10'][:], ncobj.variables['U10'][:]) |
---|
1177 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1178 | |
---|
1179 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1180 | dimensions = ncobj.variables['V10'].dimensions |
---|
1181 | shape = ncobj.variables['V10'].shape |
---|
1182 | |
---|
1183 | elif varn == 'TSwds': |
---|
1184 | # print ' ' + main + ': computing surface wind direction from TSs as ATAN2(v,u) ...' |
---|
1185 | theta = np.arctan2(ncobj.variables['v'][:], ncobj.variables['u'][:]) |
---|
1186 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1187 | |
---|
1188 | varNOcheckv = 360.*theta/(2.*np.pi) |
---|
1189 | dimensions = ncobj.variables['v'].dimensions |
---|
1190 | shape = ncobj.variables['v'].shape |
---|
1191 | |
---|
1192 | elif varn == 'WRFws': |
---|
1193 | # print ' ' + main + ': computing wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
1194 | uwind = ncobj.variables['U'][:] |
---|
1195 | vwind = ncobj.variables['V'][:] |
---|
1196 | dx = uwind.shape[3] |
---|
1197 | dy = vwind.shape[2] |
---|
1198 | |
---|
1199 | # de-staggering |
---|
1200 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
1201 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
1202 | |
---|
1203 | varNOcheckv = np.sqrt(ua*ua + va*va) |
---|
1204 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
1205 | shape = ua.shape |
---|
1206 | |
---|
1207 | elif varn == 'TSwss': |
---|
1208 | # print ' ' + main + ': computing surface wind speed from TSs as SQRT(u**2 + v**2) ...' |
---|
1209 | varNOcheckv = np.sqrt(ncobj.variables['u'][:]* \ |
---|
1210 | ncobj.variables['u'][:] + ncobj.variables['v'][:]* \ |
---|
1211 | ncobj.variables['v'][:]) |
---|
1212 | dimensions = ncobj.variables['u'].dimensions |
---|
1213 | shape = ncobj.variables['u'].shape |
---|
1214 | |
---|
1215 | elif varn == 'WRFwss': |
---|
1216 | # print ' ' + main + ': computing surface wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
1217 | varNOcheckv = np.sqrt(ncobj.variables['U10'][:]* \ |
---|
1218 | ncobj.variables['U10'][:] + ncobj.variables['V10'][:]* \ |
---|
1219 | ncobj.variables['V10'][:]) |
---|
1220 | dimensions = ncobj.variables['U10'].dimensions |
---|
1221 | shape = ncobj.variables['U10'].shape |
---|
1222 | |
---|
1223 | elif varn == 'WRFz': |
---|
1224 | grav = 9.81 |
---|
1225 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
1226 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
1227 | dimensions = ncobj.variables['PH'].dimensions |
---|
1228 | shape = ncobj.variables['PH'].shape |
---|
1229 | |
---|
1230 | else: |
---|
1231 | print errormsg |
---|
1232 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
1233 | quit(-1) |
---|
1234 | |
---|
1235 | self.dimensions = dimensions |
---|
1236 | self.shape = shape |
---|
1237 | self.__values = varNOcheckv |
---|
1238 | |
---|
1239 | def __getitem__(self,elem): |
---|
1240 | return self.__values[elem] |
---|
1241 | |
---|
1242 | def adding_station_desc(onc,stdesc): |
---|
1243 | """ Function to add a station description in a netCDF file |
---|
1244 | onc= netCDF object |
---|
1245 | stdesc= station description lon, lat, height |
---|
1246 | """ |
---|
1247 | fname = 'adding_station_desc' |
---|
1248 | |
---|
1249 | newvar = onc.createVariable( 'station', 'c', ('StrLength')) |
---|
1250 | newvar[0:len(stdesc[0])] = stdesc[0] |
---|
1251 | |
---|
1252 | newdim = onc.createDimension('nst',1) |
---|
1253 | |
---|
1254 | if onc.variables.has_key('lon'): |
---|
1255 | print warnmsg |
---|
1256 | print ' ' + fname + ": variable 'lon' already exist !!" |
---|
1257 | print " renaming it as 'lonst'" |
---|
1258 | lonname = 'lonst' |
---|
1259 | else: |
---|
1260 | lonname = 'lon' |
---|
1261 | |
---|
1262 | newvar = onc.createVariable( lonname, 'f4', ('nst')) |
---|
1263 | basicvardef(newvar, lonname, 'longitude', 'degrees_West' ) |
---|
1264 | newvar[:] = stdesc[1] |
---|
1265 | |
---|
1266 | if onc.variables.has_key('lat'): |
---|
1267 | print warnmsg |
---|
1268 | print ' ' + fname + ": variable 'lat' already exist !!" |
---|
1269 | print " renaming it as 'latst'" |
---|
1270 | latname = 'latst' |
---|
1271 | else: |
---|
1272 | latname = 'lat' |
---|
1273 | |
---|
1274 | newvar = onc.createVariable( latname, 'f4', ('nst')) |
---|
1275 | basicvardef(newvar, lonname, 'latitude', 'degrees_North' ) |
---|
1276 | newvar[:] = stdesc[2] |
---|
1277 | |
---|
1278 | if onc.variables.has_key('height'): |
---|
1279 | print warnmsg |
---|
1280 | print ' ' + fname + ": variable 'height' already exist !!" |
---|
1281 | print " renaming it as 'heightst'" |
---|
1282 | heightname = 'heightst' |
---|
1283 | else: |
---|
1284 | heightname = 'height' |
---|
1285 | |
---|
1286 | newvar = onc.createVariable( heightname, 'f4', ('nst')) |
---|
1287 | basicvardef(newvar, heightname, 'height above sea level', 'm' ) |
---|
1288 | newvar[:] = stdesc[3] |
---|
1289 | |
---|
1290 | return |
---|
1291 | |
---|
1292 | class Quantiles(object): |
---|
1293 | """ Class to provide quantiles from a given arrayof values |
---|
1294 | """ |
---|
1295 | |
---|
1296 | def __init__(self, values, Nquants): |
---|
1297 | import numpy.ma as ma |
---|
1298 | |
---|
1299 | if values is None: |
---|
1300 | self.quantilesv = None |
---|
1301 | |
---|
1302 | else: |
---|
1303 | self.quantilesv = [] |
---|
1304 | |
---|
1305 | vals0 = values.flatten() |
---|
1306 | Nvalues = len(vals0) |
---|
1307 | vals = ma.masked_equal(vals0, None) |
---|
1308 | Nvals=len(vals.compressed()) |
---|
1309 | |
---|
1310 | sortedvals = sorted(vals.compressed()) |
---|
1311 | for iq in range(Nquants): |
---|
1312 | self.quantilesv.append(sortedvals[int((Nvals-1)*iq/Nquants)]) |
---|
1313 | |
---|
1314 | self.quantilesv.append(sortedvals[Nvals-1]) |
---|
1315 | |
---|
1316 | |
---|
1317 | def getting_ValidationValues(okind, dt, ds, trjpos, ovs, ovo, tvalues, oFill, Ng, kvals): |
---|
1318 | """ Function to get the values to validate accroding to the type of observation |
---|
1319 | okind= observational kind |
---|
1320 | dt= initial number of values to retrieve |
---|
1321 | ds= dictionary with the names of the dimensions (sim, obs) |
---|
1322 | trjpos= positions of the multi-stations (t, Y, X) or trajectory ([Z], Y, X) |
---|
1323 | ovs= object with the values of the simulation |
---|
1324 | ovs= object with the values of the observations |
---|
1325 | tvalues= temporal values (sim. time step, obs. time step, sim t value, obs t value, t diff) |
---|
1326 | oFill= Fill Value for the observations |
---|
1327 | Ng= number of grid points around the observation |
---|
1328 | kvals= kind of values |
---|
1329 | 'instantaneous': values are taken as instantaneous values |
---|
1330 | 'tbackwardSmean': simulated values are taken as time averages from back to the point |
---|
1331 | 'tbackwardOmean': observed values are taken as time averages from back to the point |
---|
1332 | return: |
---|
1333 | sovalues= simulated values at the observation point and time |
---|
1334 | soSvalues= values Ngrid points around the simulated point |
---|
1335 | soTtvalues= inital/ending period between two consecutive obsevations (for `single-station') |
---|
1336 | trjs= trajectory on the simulation space |
---|
1337 | """ |
---|
1338 | fname = 'getting_ValidationValues' |
---|
1339 | |
---|
1340 | sovalues = [] |
---|
1341 | |
---|
1342 | if kvals == 'instantaneous': |
---|
1343 | dtf = dt |
---|
1344 | elif kvals == 'tbackwardSmean': |
---|
1345 | print ' ' + fname + ':',kvals,'!!' |
---|
1346 | uniqt = np.unique(tvalues[:,3]) |
---|
1347 | dtf = len(uniqt) |
---|
1348 | print ' initially we got',dt,'values which will become',dtf |
---|
1349 | postf = {} |
---|
1350 | for it in range(dtf): |
---|
1351 | if it == 0: |
---|
1352 | postf[uniqt[it]] = [0,0] |
---|
1353 | elif it == 1: |
---|
1354 | posprev = postf[uniqt[it-1]][1] |
---|
1355 | posit = list(tvalues[:,3]).index(uniqt[it]) |
---|
1356 | postf[uniqt[it]] = [posprev, posit+1] |
---|
1357 | else: |
---|
1358 | posprev = postf[uniqt[it-1]][1] |
---|
1359 | posit = list(tvalues[:,3]).index(uniqt[it]) |
---|
1360 | postf[uniqt[it]] = [posprev+1, np.min([posit+1,dt-1])] |
---|
1361 | elif kvals == 'tbackwardOmean': |
---|
1362 | print ' ' + fname + ':',kvals,'!!' |
---|
1363 | uniqt = np.unique(tvalues[:,2]) |
---|
1364 | dtf = len(uniqt) |
---|
1365 | print ' initially we got',dt,'values which will become',dtf |
---|
1366 | print ' ==== NOT READY === ' |
---|
1367 | quit(-1) |
---|
1368 | else: |
---|
1369 | print errormsg |
---|
1370 | print ' ' + fname + ": kind of values '" + kvals + "' not ready!!" |
---|
1371 | quit(-1) |
---|
1372 | |
---|
1373 | # Simulated values spatially around |
---|
1374 | if ds.has_key('Z'): |
---|
1375 | soSvalues = np.zeros((dt, Ng*2+1, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1376 | if okind == 'trajectory': |
---|
1377 | trjs = np.zeros((4,dt), dtype=int) |
---|
1378 | else: |
---|
1379 | trjs = None |
---|
1380 | else: |
---|
1381 | soSvalues = np.zeros((dt, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1382 | if okind == 'trajectory': |
---|
1383 | trjs = np.zeros((3,dt), dtype=int) |
---|
1384 | else: |
---|
1385 | trjs = None |
---|
1386 | |
---|
1387 | if okind == 'single-station': |
---|
1388 | soTtvalues = np.zeros((dt,2), dtype=np.float) |
---|
1389 | else: |
---|
1390 | None |
---|
1391 | |
---|
1392 | if okind == 'multi-points': |
---|
1393 | for it in range(dt): |
---|
1394 | slicev = ds['X'][0] + ':' + str(trjpos[2,it]) + '|' + ds['Y'][0] + \ |
---|
1395 | ':' + str(trjpos[1,it]) + '|' + ds['T'][0]+ ':' + str(tvalues[it][0]) |
---|
1396 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1397 | sovalues.append([ slicevar, ovo[tvalues[it][1]]]) |
---|
1398 | slicev = ds['X'][0] + ':' + str(trjpos[2,it]-Ng) + '@' + \ |
---|
1399 | str(trjpos[2,it]+Ng) + '|' + ds['Y'][0] + ':' + \ |
---|
1400 | str(trjpos[1,it]-Ng) + '@' + str(trjpos[1,it]+Ng) + '|' + \ |
---|
1401 | ds['T'][0]+':'+str(tvalues[it][0]) |
---|
1402 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1403 | soSvalues[it,:,:] = slicevar |
---|
1404 | |
---|
1405 | elif okind == 'single-station': |
---|
1406 | for it in range(dt): |
---|
1407 | ito = int(tvalues[it,1]) |
---|
1408 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1409 | slicev = ds['X'][0] + ':' + str(stationpos[1]) + '|' + \ |
---|
1410 | ds['Y'][0] + ':' + str(stationpos[0]) + '|' + \ |
---|
1411 | ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1412 | else: |
---|
1413 | slicev = ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1414 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1415 | if ovo[int(ito)] == oFill or ovo[int(ito)] == '--': |
---|
1416 | sovalues.append([ slicevar, fillValueF]) |
---|
1417 | # elif ovo[int(ito)] != ovo[int(ito)]: |
---|
1418 | # sovalues.append([ slicevar, fillValueF]) |
---|
1419 | else: |
---|
1420 | sovalues.append([ slicevar, ovo[int(ito)]]) |
---|
1421 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1422 | slicev = ds['X'][0] + ':' + str(stationpos[1]-Ng) + '@' + \ |
---|
1423 | str(stationpos[1]+Ng+1) + '|' + ds['Y'][0] + ':' + \ |
---|
1424 | str(stationpos[0]-Ng) + '@' + str(stationpos[0]+Ng+1) + '|' + \ |
---|
1425 | ds['T'][0] + ':' + str(int(tvalues[it,0])) |
---|
1426 | else: |
---|
1427 | slicev = ds['T'][0] + ':' + str(int(tvalues[it][0])) |
---|
1428 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1429 | soSvalues[it,:,:] = slicevar |
---|
1430 | |
---|
1431 | if it == 0: |
---|
1432 | itoi = 0 |
---|
1433 | itof = int(tvalues[it,1]) / 2 |
---|
1434 | elif it == dt-1: |
---|
1435 | itoi = int( (ito + int(tvalues[it-1,1])) / 2) |
---|
1436 | itof = int(tvalues[it,1]) |
---|
1437 | else: |
---|
1438 | itod = int( (ito - int(tvalues[it-1,1])) / 2 ) |
---|
1439 | itoi = ito - itod |
---|
1440 | itod = int( (int(tvalues[it+1,1]) - ito) / 2 ) |
---|
1441 | itof = ito + itod |
---|
1442 | |
---|
1443 | soTtvalues[it,0] = valdimobs['T'][itoi] |
---|
1444 | soTtvalues[it,1] = valdimobs['T'][itof] |
---|
1445 | |
---|
1446 | elif okind == 'trajectory': |
---|
1447 | if ds.has_key('Z'): |
---|
1448 | for it in range(dt): |
---|
1449 | ito = int(tvalues[it,1]) |
---|
1450 | if notfound[ito] == 0: |
---|
1451 | trjpos[2,ito] = index_mat(valdimsim['Z'][tvalues[it,0],:, \ |
---|
1452 | trjpos[1,ito],trjpos[0,ito]], valdimobs['Z'][ito]) |
---|
1453 | slicev = ds['X'][0]+':'+str(trjpos[0,ito]) + '|' + \ |
---|
1454 | ds['Y'][0]+':'+str(trjpos[1,ito]) + '|' + \ |
---|
1455 | ds['Z'][0]+':'+str(trjpos[2,ito]) + '|' + \ |
---|
1456 | ds['T'][0]+':'+str(int(tvalues[it,0])) |
---|
1457 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1458 | sovalues.append([ slicevar, ovo[int(ito)]]) |
---|
1459 | minx = np.max([trjpos[0,ito]-Ng,0]) |
---|
1460 | maxx = np.min([trjpos[0,ito]+Ng+1,ovs.shape[3]]) |
---|
1461 | miny = np.max([trjpos[1,ito]-Ng,0]) |
---|
1462 | maxy = np.min([trjpos[1,ito]+Ng+1,ovs.shape[2]]) |
---|
1463 | minz = np.max([trjpos[2,ito]-Ng,0]) |
---|
1464 | maxz = np.min([trjpos[2,ito]+Ng+1,ovs.shape[1]]) |
---|
1465 | |
---|
1466 | slicev = ds['X'][0] + ':' + str(minx) + '@' + str(maxx) + '|' + \ |
---|
1467 | ds['Y'][0] + ':' + str(miny) + '@' + str(maxy) + '|' + \ |
---|
1468 | ds['Z'][0] + ':' + str(minz) + '@' + str(maxz) + '|' + \ |
---|
1469 | ds['T'][0] + ':' + str(int(tvalues[it,0])) |
---|
1470 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1471 | |
---|
1472 | sliceS = [] |
---|
1473 | sliceS.append(it) |
---|
1474 | sliceS.append(slice(0,maxz-minz)) |
---|
1475 | sliceS.append(slice(0,maxy-miny)) |
---|
1476 | sliceS.append(slice(0,maxx-minx)) |
---|
1477 | |
---|
1478 | soSvalues[tuple(sliceS)] = slicevar |
---|
1479 | if ivar == 0: |
---|
1480 | trjs[0,it] = trjpos[0,ito] |
---|
1481 | trjs[1,it] = trjpos[1,ito] |
---|
1482 | trjs[2,it] = trjpos[2,ito] |
---|
1483 | trjs[3,it] = tvalues[it,0] |
---|
1484 | else: |
---|
1485 | sovalues.append([fillValueF, fillValueF]) |
---|
1486 | soSvalues[it,:,:,:]= np.ones((Ng*2+1,Ng*2+1,Ng*2+1), \ |
---|
1487 | dtype = np.float)*fillValueF |
---|
1488 | # 2D trajectory |
---|
1489 | else: |
---|
1490 | for it in range(dt): |
---|
1491 | if notfound[it] == 0: |
---|
1492 | ito = tvalues[it,1] |
---|
1493 | slicev = ds['X'][0]+':'+str(trjpos[2,ito]) + '|' + \ |
---|
1494 | ds['Y'][0]+':'+str(trjpos[1,ito]) + '|' + \ |
---|
1495 | ds['T'][0]+':'+str(tvalues[ito,0]) |
---|
1496 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1497 | sovalues.append([ slicevar, ovo[tvalues[it,1]]]) |
---|
1498 | slicev = ds['X'][0] + ':' + str(trjpos[0,it]-Ng) + '@' + \ |
---|
1499 | str(trjpos[0,it]+Ng) + '|' + ds['Y'][0] + ':' + \ |
---|
1500 | str(trjpos[1,it]-Ng) + '@' + str(trjpos[1,it]+Ng) + \ |
---|
1501 | '|' + ds['T'][0] + ':' + str(tvalues[it,0]) |
---|
1502 | slicevar, dimslice = slice_variable(ovs, slicev) |
---|
1503 | soSvalues[it,:,:] = slicevar |
---|
1504 | else: |
---|
1505 | sovalues.append([fillValue, fillValue]) |
---|
1506 | soSvalues[it,:,:] = np.ones((Ng*2+1,Ng*2+1), \ |
---|
1507 | dtype = np.float)*fillValueF |
---|
1508 | print sovalues[varsimobs][:][it] |
---|
1509 | else: |
---|
1510 | print errormsg |
---|
1511 | print ' ' + fname + ": observatino kind '" + okind + "' not ready!!" |
---|
1512 | quit(-1) |
---|
1513 | |
---|
1514 | # Re-arranging final values |
---|
1515 | ## |
---|
1516 | if kvals == 'instantaneous': |
---|
1517 | return sovalues, soSvalues, soTtvalues, trjs |
---|
1518 | |
---|
1519 | elif kvals == 'tbackwardSmean': |
---|
1520 | fsovalues = [] |
---|
1521 | if ds.has_key('Z'): |
---|
1522 | fsoSvalues = np.zeros((dtf, Ng*2+1, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1523 | if okind == 'trajectory': |
---|
1524 | ftrjs = np.zeros((4,dtf), dtype=int) |
---|
1525 | else: |
---|
1526 | ftrjs = None |
---|
1527 | else: |
---|
1528 | fsoSvalues = np.zeros((dtf, Ng*2+1, Ng*2+1), dtype = np.float) |
---|
1529 | if okind == 'trajectory': |
---|
1530 | ftrjs = np.zeros((3,dtf), dtype=int) |
---|
1531 | else: |
---|
1532 | ftrjs = None |
---|
1533 | |
---|
1534 | if okind == 'single-station': |
---|
1535 | fsoTtvalues = np.ones((dtf,2), dtype=np.float)*fillValueF |
---|
1536 | else: |
---|
1537 | None |
---|
1538 | |
---|
1539 | for it in range(1,dtf): |
---|
1540 | tv = uniqt[it] |
---|
1541 | intv = postf[tv] |
---|
1542 | |
---|
1543 | # Temporal statistics |
---|
1544 | if len(np.array(sovalues[intv[0]:intv[1]]).shape) != 1: |
---|
1545 | sovs = np.array(sovalues[intv[0]:intv[1]])[:,0] |
---|
1546 | minv = np.min(sovs) |
---|
1547 | maxv = np.max(sovs) |
---|
1548 | meanv = np.mean(sovs) |
---|
1549 | stdv = np.std(sovs) |
---|
1550 | |
---|
1551 | fsovalues.append([meanv, np.array(sovalues[intv[0]:intv[1]])[0,1], \ |
---|
1552 | minv, maxv, stdv]) |
---|
1553 | else: |
---|
1554 | fsovalues.append([fillValueF, fillValueF, fillValueF, fillValueF, \ |
---|
1555 | fillValueF, fillValueF]) |
---|
1556 | if ds.has_key('Z'): |
---|
1557 | if okind == 'trajectory': |
---|
1558 | for ip in range(4): |
---|
1559 | ftrjs[ip,it] = np.mean(trjs[ip,intv[0]:intv[1]]) |
---|
1560 | for iz in range(2*Ng+1): |
---|
1561 | for iy in range(2*Ng+1): |
---|
1562 | for ix in range(2*Ng+1): |
---|
1563 | fsoSvalues[it,iz,iy,ix] = np.mean(soSvalues[intv[0]: \ |
---|
1564 | intv[1],iz,iy,ix]) |
---|
1565 | else: |
---|
1566 | if okind == 'trajectory': |
---|
1567 | for ip in range(3): |
---|
1568 | ftrjs[ip,it] = np.mean(trjs[ip,intv[0]:intv[1]]) |
---|
1569 | for iy in range(2*Ng+1): |
---|
1570 | for ix in range(2*Ng+1): |
---|
1571 | fsoSvalues[it,iy,ix] = np.mean(soSvalues[intv[0]:intv[1], \ |
---|
1572 | iy,ix]) |
---|
1573 | fsoTtvalues[it,0] = soTtvalues[intv[0],0] |
---|
1574 | fsoTtvalues[it,1] = soTtvalues[intv[1],0] |
---|
1575 | |
---|
1576 | return fsovalues, fsoSvalues, fsoTtvalues, ftrjs |
---|
1577 | |
---|
1578 | elif kvals == 'tbackwardOmean': |
---|
1579 | print ' ' + fname + ':',kvals,'!!' |
---|
1580 | uniqt = np.unique(tvalues[:,2]) |
---|
1581 | dtf = len(uniqt) |
---|
1582 | print ' initially we got',dt,'values which will become',dtf |
---|
1583 | |
---|
1584 | return |
---|
1585 | |
---|
1586 | |
---|
1587 | ####### ###### ##### #### ### ## # |
---|
1588 | |
---|
1589 | strCFt="Refdate,tunits (CF reference date [YYYY][MM][DD][HH][MI][SS] format and " + \ |
---|
1590 | " and time units: 'weeks', 'days', 'hours', 'miuntes', 'seconds')" |
---|
1591 | |
---|
1592 | kindobs=['multi-points', 'single-station', 'trajectory'] |
---|
1593 | strkObs="kind of observations; 'multi-points': multiple individual punctual obs " + \ |
---|
1594 | "(e.g., lightning strikes), 'single-station': single station on a fixed position,"+\ |
---|
1595 | "'trajectory': following a trajectory" |
---|
1596 | simopers = ['sumc','subc','mulc','divc'] |
---|
1597 | opersinf = 'sumc,[constant]: add [constant] to variables values; subc,[constant]: '+ \ |
---|
1598 | 'substract [constant] to variables values; mulc,[constant]: multipy by ' + \ |
---|
1599 | '[constant] to variables values; divc,[constant]: divide by [constant] to ' + \ |
---|
1600 | 'variables values' |
---|
1601 | varNOcheck = ['WRFdens', 'WRFght', 'WRFp', 'WRFrh', 'TSrhs', 'WRFrhs', 'WRFT', \ |
---|
1602 | 'WRFt', 'TStd', 'WRFtd', 'WRFwd', 'TSwds', 'WRFwds', 'WRFws', 'TSwss', 'WRFwss', \ |
---|
1603 | 'WRFz'] |
---|
1604 | varNOcheckinf = "'WRFdens': air density from WRF variables; " + \ |
---|
1605 | "'WRFght': geopotentiali height from WRF variables; " + \ |
---|
1606 | "'WRFp': pressure from WRF variables; " + \ |
---|
1607 | "'WRFrh': relative humidty fom WRF variables; " + \ |
---|
1608 | "'TSrhs': surface relative humidity from TS variables; " + \ |
---|
1609 | "'WRFrhs': surface relative humidity from WRF variables; " + \ |
---|
1610 | "'WRFT': CF-time from WRF variables; " + \ |
---|
1611 | "'WRFt': temperature from WRF variables; " + \ |
---|
1612 | "'TStd': dew-point temperature from TS variables; " + \ |
---|
1613 | "'WRFtd': dew-point temperature from WRF variables; " + \ |
---|
1614 | "'WRFwd': wind direction from WRF variables; " + \ |
---|
1615 | "'TSwds': surface wind direction from TS variables; " + \ |
---|
1616 | "'WRFwds': surface wind direction from WRF variables; " + \ |
---|
1617 | "'WRFws': wind speed from WRF variables; " + \ |
---|
1618 | "'TSwss': surface wind speed from TS variables; " + \ |
---|
1619 | "'WRFwss': surface wind speed from WRF variables; " + \ |
---|
1620 | "'WRFz': height from WRF variables" |
---|
1621 | |
---|
1622 | dimshelp = "[DIM]@[simdim]@[obsdim] ',' list of couples of dimensions names from " + \ |
---|
1623 | "each source ([DIM]='X','Y','Z','T'; None, no value)" |
---|
1624 | vardimshelp = "[DIM]@[simvardim]@[obsvardim] ',' list of couples of variables " + \ |
---|
1625 | "names with dimensions values from each source ([DIM]='X','Y','Z','T'; None, " + \ |
---|
1626 | "no value, WRFdiagnosted variables also available: " + varNOcheckinf + ")" |
---|
1627 | varshelp="[simvar]@[obsvar]@[[oper]@[val]] ',' list of couples of variables to " + \ |
---|
1628 | "validate and if necessary operation and value (sim. values) available " + \ |
---|
1629 | "operations: " + opersinf + " (WRFdiagnosted variables also available: " + \ |
---|
1630 | varNOcheckinf + ")" |
---|
1631 | statsn = ['minimum', 'maximum', 'mean', 'mean2', 'standard deviation'] |
---|
1632 | gstatsn = ['bias', 'simobs_mean', 'sim_obsmin', 'sim_obsmax', 'sim_obsmean', 'mae', \ |
---|
1633 | 'rmse', 'r_pearsoncorr', 'p_pearsoncorr', 'deviation_of_residuals_SDR', \ |
---|
1634 | 'indef_of_efficiency_IOE', 'index_of_agreement_IOA', 'fractional_mean_bias_FMB'] |
---|
1635 | ostatsn = ['number of points', 'minimum', 'maximum', 'mean', 'mean2', \ |
---|
1636 | 'standard deviation'] |
---|
1637 | |
---|
1638 | parser = OptionParser() |
---|
1639 | parser.add_option("-d", "--dimensions", dest="dims", help=dimshelp, metavar="VALUES") |
---|
1640 | parser.add_option("-D", "--vardimensions", dest="vardims", |
---|
1641 | help=vardimshelp, metavar="VALUES") |
---|
1642 | parser.add_option("-k", "--kindObs", dest="obskind", type='choice', choices=kindobs, |
---|
1643 | help=strkObs, metavar="FILE") |
---|
1644 | parser.add_option("-l", "--stationLocation", dest="stloc", |
---|
1645 | help="name (| for spaces), longitude, latitude and height of the station (only for 'single-station')", |
---|
1646 | metavar="FILE") |
---|
1647 | parser.add_option("-o", "--observation", dest="fobs", |
---|
1648 | help="observations file to validate", metavar="FILE") |
---|
1649 | parser.add_option("-s", "--simulation", dest="fsim", |
---|
1650 | help="simulation file to validate", metavar="FILE") |
---|
1651 | parser.add_option("-t", "--trajectoryfile", dest="trajf", |
---|
1652 | help="file with grid points of the trajectory in the simulation grid ('simtrj')", |
---|
1653 | metavar="FILE") |
---|
1654 | parser.add_option("-v", "--variables", dest="vars", |
---|
1655 | help=varshelp, metavar="VALUES") |
---|
1656 | |
---|
1657 | (opts, args) = parser.parse_args() |
---|
1658 | |
---|
1659 | ####### ###### ##### #### ### ## # |
---|
1660 | # Number of different statistics according to the temporal coincidence |
---|
1661 | # 0: Exact time |
---|
1662 | # 1: Simulation values closest to observed times |
---|
1663 | # 2: Simulation values between consecutive observed times |
---|
1664 | Nstsim = 3 |
---|
1665 | |
---|
1666 | stdescsim = ['E', 'C', 'B'] |
---|
1667 | prestdescsim = ['exact', 'closest', 'between'] |
---|
1668 | Lstdescsim = ['exact time', 'cloest time', 'between observational time-steps'] |
---|
1669 | |
---|
1670 | ####### ####### |
---|
1671 | ## MAIN |
---|
1672 | ####### |
---|
1673 | |
---|
1674 | ofile='validation_sim.nc' |
---|
1675 | |
---|
1676 | if opts.dims is None: |
---|
1677 | print errormsg |
---|
1678 | print ' ' + main + ': No list of dimensions are provided!!' |
---|
1679 | print ' a ',' list of values X@[dimxsim]@[dimxobs],...,T@[dimtsim]@[dimtobs]'+\ |
---|
1680 | ' is needed' |
---|
1681 | quit(-1) |
---|
1682 | else: |
---|
1683 | simdims = {} |
---|
1684 | obsdims = {} |
---|
1685 | print main +': couple of dimensions _______' |
---|
1686 | dims = {} |
---|
1687 | ds = opts.dims.split(',') |
---|
1688 | for d in ds: |
---|
1689 | dsecs = d.split('@') |
---|
1690 | if len(dsecs) != 3: |
---|
1691 | print errormsg |
---|
1692 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
1693 | print ' [DIM]@[dimnsim]@[dimnobs]' |
---|
1694 | quit(-1) |
---|
1695 | if dsecs[1] != 'None': |
---|
1696 | dims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
1697 | simdims[dsecs[0]] = dsecs[1] |
---|
1698 | obsdims[dsecs[0]] = dsecs[2] |
---|
1699 | |
---|
1700 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
1701 | |
---|
1702 | if opts.vardims is None: |
---|
1703 | print errormsg |
---|
1704 | print ' ' + main + ': No list of variables with dimension values are provided!!' |
---|
1705 | print ' a ',' list of values X@[vardimxsim]@[vardimxobs],...,T@' + \ |
---|
1706 | '[vardimtsim]@[vardimtobs] is needed' |
---|
1707 | quit(-1) |
---|
1708 | else: |
---|
1709 | print main +': couple of variable dimensions _______' |
---|
1710 | vardims = {} |
---|
1711 | ds = opts.vardims.split(',') |
---|
1712 | for d in ds: |
---|
1713 | dsecs = d.split('@') |
---|
1714 | if len(dsecs) != 3: |
---|
1715 | print errormsg |
---|
1716 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
1717 | print ' [DIM]@[vardimnsim]@[vardimnobs]' |
---|
1718 | quit(-1) |
---|
1719 | if dsecs[1] != 'None': |
---|
1720 | vardims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
1721 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
1722 | |
---|
1723 | if opts.obskind is None: |
---|
1724 | print errormsg |
---|
1725 | print ' ' + main + ': No kind of observations provided !!' |
---|
1726 | quit(-1) |
---|
1727 | else: |
---|
1728 | obskind = opts.obskind |
---|
1729 | if obskind == 'single-station': |
---|
1730 | if opts.stloc is None: |
---|
1731 | print errormsg |
---|
1732 | print ' ' + main + ': No station location provided !!' |
---|
1733 | quit(-1) |
---|
1734 | else: |
---|
1735 | stationdesc = [opts.stloc.split(',')[0].replace('|',' '), \ |
---|
1736 | np.float(opts.stloc.split(',')[1]), np.float(opts.stloc.split(',')[2]),\ |
---|
1737 | np.float(opts.stloc.split(',')[3])] |
---|
1738 | |
---|
1739 | if opts.fobs is None: |
---|
1740 | print errormsg |
---|
1741 | print ' ' + main + ': No observations file is provided!!' |
---|
1742 | quit(-1) |
---|
1743 | else: |
---|
1744 | if not os.path.isfile(opts.fobs): |
---|
1745 | print errormsg |
---|
1746 | print ' ' + main + ": observations file '" + opts.fobs + "' does not exist !!" |
---|
1747 | quit(-1) |
---|
1748 | |
---|
1749 | if opts.fsim is None: |
---|
1750 | print errormsg |
---|
1751 | print ' ' + main + ': No simulation file is provided!!' |
---|
1752 | quit(-1) |
---|
1753 | else: |
---|
1754 | if not os.path.isfile(opts.fsim): |
---|
1755 | print errormsg |
---|
1756 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
1757 | quit(-1) |
---|
1758 | |
---|
1759 | if opts.vars is None: |
---|
1760 | print errormsg |
---|
1761 | print ' ' + main + ': No list of couples of variables is provided!!' |
---|
1762 | print ' a ',' list of values [varsim]@[varobs],... is needed' |
---|
1763 | quit(-1) |
---|
1764 | else: |
---|
1765 | valvars = [] |
---|
1766 | vs = opts.vars.split(',') |
---|
1767 | for v in vs: |
---|
1768 | vsecs = v.split('@') |
---|
1769 | if len(vsecs) < 2: |
---|
1770 | print errormsg |
---|
1771 | print ' ' + main + ': wrong number of values in:',vsecs, \ |
---|
1772 | ' at least 2 are needed !!' |
---|
1773 | print ' [varsim]@[varobs]@[[oper][val]]' |
---|
1774 | quit(-1) |
---|
1775 | if len(vsecs) > 2: |
---|
1776 | if not searchInlist(simopers,vsecs[2]): |
---|
1777 | print errormsg |
---|
1778 | print main + ": operation on simulation values '" + vsecs[2] + \ |
---|
1779 | "' not ready !!" |
---|
1780 | quit(-1) |
---|
1781 | |
---|
1782 | valvars.append(vsecs) |
---|
1783 | |
---|
1784 | # Openning observations trajectory |
---|
1785 | ## |
---|
1786 | oobs = NetCDFFile(opts.fobs, 'r') |
---|
1787 | |
---|
1788 | valdimobs = {} |
---|
1789 | for dn in dims: |
---|
1790 | print dn,':',dims[dn] |
---|
1791 | if dims[dn][1] != 'None': |
---|
1792 | if not oobs.dimensions.has_key(dims[dn][1]): |
---|
1793 | print errormsg |
---|
1794 | print ' ' + main + ": observations file does not have dimension '" + \ |
---|
1795 | dims[dn][1] + "' !!" |
---|
1796 | quit(-1) |
---|
1797 | if vardims[dn][1] != 'None': |
---|
1798 | if not oobs.variables.has_key(vardims[dn][1]): |
---|
1799 | print errormsg |
---|
1800 | print ' ' + main + ": observations file does not have varibale " + \ |
---|
1801 | "dimension '" + vardims[dn][1] + "' !!" |
---|
1802 | quit(-1) |
---|
1803 | valdimobs[dn] = oobs.variables[vardims[dn][1]][:] |
---|
1804 | else: |
---|
1805 | if dn == 'X': |
---|
1806 | valdimobs[dn] = stationdesc[1] |
---|
1807 | elif dn == 'Y': |
---|
1808 | valdimobs[dn] = stationdesc[2] |
---|
1809 | elif dn == 'Z': |
---|
1810 | valdimobs[dn] = stationdesc[3] |
---|
1811 | |
---|
1812 | osim = NetCDFFile(opts.fsim, 'r') |
---|
1813 | |
---|
1814 | valdimsim = {} |
---|
1815 | for dn in dims: |
---|
1816 | if dims[dn][0] != 'None': |
---|
1817 | if not osim.dimensions.has_key(dims[dn][0]): |
---|
1818 | print errormsg |
---|
1819 | print ' ' + main + ": simulation file '" + opts.fsim + \ |
---|
1820 | "' does not have dimension '" + dims[dn][0] + "' !!" |
---|
1821 | print ' it has: ',osim.dimensions |
---|
1822 | quit(-1) |
---|
1823 | |
---|
1824 | if not osim.variables.has_key(vardims[dn][0]) and \ |
---|
1825 | not searchInlist(varNOcheck,vardims[dn][0]): |
---|
1826 | print errormsg |
---|
1827 | print ' ' + main + ": simulation file '" + opts.fsim + \ |
---|
1828 | "' does not have varibale dimension '" + vardims[dn][0] + "' !!" |
---|
1829 | print ' it has variables:',osim.variables |
---|
1830 | quit(-1) |
---|
1831 | if searchInlist(varNOcheck,vardims[dn][0]): |
---|
1832 | valdimsim[dn] = compute_varNOcheck(osim, vardims[dn][0]) |
---|
1833 | else: |
---|
1834 | valdimsim[dn] = osim.variables[vardims[dn][0]][:] |
---|
1835 | |
---|
1836 | # General characteristics |
---|
1837 | dimtobs = valdimobs['T'].shape[0] |
---|
1838 | dimtsim = valdimsim['T'].shape[0] |
---|
1839 | |
---|
1840 | print main +': observational time-steps:',dimtobs,'simulation:',dimtsim |
---|
1841 | |
---|
1842 | notfound = np.zeros((dimtobs), dtype=int) |
---|
1843 | |
---|
1844 | if obskind == 'multi-points': |
---|
1845 | trajpos = np.zeros((2,dimt),dtype=int) |
---|
1846 | for it in range(dimtobs): |
---|
1847 | trajpos[:,it] = index_2mat(valdimsim['X'],valdimsim['Y'], \ |
---|
1848 | [valdimobs['X'][it],valdimobss['Y'][it]]) |
---|
1849 | elif obskind == 'single-station': |
---|
1850 | trajpos = None |
---|
1851 | stationpos = np.zeros((2), dtype=int) |
---|
1852 | if valdimsim.has_key('X') and valdimsim.has_key('Y'): |
---|
1853 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'],[valdimobs['Y'], \ |
---|
1854 | valdimobs['X']]) |
---|
1855 | iid = 0 |
---|
1856 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1857 | if idn == dims['X'][0]: |
---|
1858 | stationpos[1] = stsimpos[iid] |
---|
1859 | elif idn == dims['Y'][0]: |
---|
1860 | stationpos[0] = stsimpos[iid] |
---|
1861 | |
---|
1862 | iid = iid + 1 |
---|
1863 | print main + ': station point in simulation:', stationpos |
---|
1864 | print ' station position:',valdimobs['X'],',',valdimobs['Y'] |
---|
1865 | print ' simulation coord.:',valdimsim['X'][tuple(stsimpos)],',', \ |
---|
1866 | valdimsim['Y'][tuple(stsimpos)] |
---|
1867 | else: |
---|
1868 | print main + ': validation with two time-series !!' |
---|
1869 | |
---|
1870 | elif obskind == 'trajectory': |
---|
1871 | if opts.trajf is not None: |
---|
1872 | if not os.path.isfile(opts.fsim): |
---|
1873 | print errormsg |
---|
1874 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
1875 | quit(-1) |
---|
1876 | else: |
---|
1877 | otrjf = NetCDFFile(opts.fsim, 'r') |
---|
1878 | trajpos[0,:] = otrjf.variables['obssimtrj'][0] |
---|
1879 | trajpos[1,:] = otrjf.variables['obssimtrj'][1] |
---|
1880 | otrjf.close() |
---|
1881 | else: |
---|
1882 | if dims.has_key('Z'): |
---|
1883 | trajpos = np.zeros((3,dimtobs),dtype=int) |
---|
1884 | for it in range(dimtobs): |
---|
1885 | if np.mod(it*100./dimtobs,10.) == 0.: |
---|
1886 | print ' trajectory done: ',it*100./dimtobs,'%' |
---|
1887 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
1888 | [valdimobs['Y'][it],valdimobs['X'][it]]) |
---|
1889 | stationpos = np.zeros((2), dtype=int) |
---|
1890 | iid = 0 |
---|
1891 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1892 | if idn == dims['X'][0]: |
---|
1893 | stationpos[1] = stsimpos[iid] |
---|
1894 | elif idn == dims['Y'][0]: |
---|
1895 | stationpos[0] = stsimpos[iid] |
---|
1896 | iid = iid + 1 |
---|
1897 | if stationpos[0] == 0 and stationpos[1] == 0: notfound[it] = 1 |
---|
1898 | |
---|
1899 | trajpos[0,it] = stationpos[0] |
---|
1900 | trajpos[1,it] = stationpos[1] |
---|
1901 | # In the simulation 'Z' varies with time ... non-hydrostatic model! ;) |
---|
1902 | # trajpos[2,it] = index_mat(valdimsim['Z'][it,:,stationpos[0], \ |
---|
1903 | # stationpos[1]], valdimobs['Z'][it]) |
---|
1904 | else: |
---|
1905 | trajpos = np.zeros((2,dimtobs),dtype=int) |
---|
1906 | for it in range(dimtobs): |
---|
1907 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
1908 | [valdimobs['Y'][it],valdimobss['X'][it]]) |
---|
1909 | stationpos = np.zeros((2), dtype=int) |
---|
1910 | iid = 0 |
---|
1911 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
1912 | if idn == dims['X'][0]: |
---|
1913 | stationpos[1] = stsimpos[iid] |
---|
1914 | elif idn == dims['Y'][0]: |
---|
1915 | stationpos[0] = stsimpos[iid] |
---|
1916 | iid = iid + 1 |
---|
1917 | if stationpos[0] == 0 or stationpos[1] == 0: notfound[it] = 1 |
---|
1918 | |
---|
1919 | trajpos[0,it] = stationspos[0] |
---|
1920 | trajpos[1,it] = stationspos[1] |
---|
1921 | |
---|
1922 | print main + ': not found',np.sum(notfound),'points of the trajectory' |
---|
1923 | |
---|
1924 | # Getting times |
---|
1925 | tobj = oobs.variables[vardims['T'][1]] |
---|
1926 | obstunits = tobj.getncattr('units') |
---|
1927 | if vardims['T'][0] == 'WRFT': |
---|
1928 | tsim = valdimsim['T'][:] |
---|
1929 | simtunits = 'seconds since 1949-12-01 00:00:00' |
---|
1930 | else: |
---|
1931 | tsim = osim.variables[vardims['T'][0]][:] |
---|
1932 | otsim = osim.variables[vardims['T'][0]] |
---|
1933 | simtunits = otsim.getncattr('units') |
---|
1934 | |
---|
1935 | simobstimes = coincident_CFtimes(tsim, obstunits, simtunits) |
---|
1936 | |
---|
1937 | iobst = CFtimes_datetime_NOfile([valdimobs['T'][0]], obstunits, 'standard') |
---|
1938 | fobst = CFtimes_datetime_NOfile([valdimobs['T'][dimtobs-1]], obstunits, 'standard') |
---|
1939 | isimt = CFtimes_datetime_NOfile([simobstimes[0]], obstunits, 'standard') |
---|
1940 | fsimt = CFtimes_datetime_NOfile([simobstimes[dimtsim-1]], obstunits, 'standard') |
---|
1941 | print 'check of times _______' |
---|
1942 | print ' * Observations' |
---|
1943 | print ' - first time:', iobst |
---|
1944 | print ' - last time:', fobst |
---|
1945 | print ' * Simulations' |
---|
1946 | print ' - first time:', isimt |
---|
1947 | print ' - last time:', fsimt |
---|
1948 | |
---|
1949 | # |
---|
1950 | ## Looking for exact/near times |
---|
1951 | # |
---|
1952 | |
---|
1953 | # Exact Coincident times |
---|
1954 | ## |
---|
1955 | exacttvalues0 = [] |
---|
1956 | for it in range(dimtsim): |
---|
1957 | ot = 0 |
---|
1958 | for ito in range(ot,dimtobs-1): |
---|
1959 | if valdimobs['T'][ito] == simobstimes[it]: |
---|
1960 | ot = ito |
---|
1961 | exacttvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito]]) |
---|
1962 | |
---|
1963 | exacttvalues = np.array(exacttvalues0, dtype=np.float) |
---|
1964 | |
---|
1965 | if len(exacttvalues) == 0: |
---|
1966 | print warnmsg |
---|
1967 | print ' ' + main + ': no exact values found!' |
---|
1968 | Nexactt = 0 |
---|
1969 | # quit(-1) |
---|
1970 | else: |
---|
1971 | Nexactt = len(exacttvalues[:,0]) |
---|
1972 | |
---|
1973 | print main + ': found',Nexactt,'Temporal exact values in simulation and observations' |
---|
1974 | |
---|
1975 | # Sim Closest times |
---|
1976 | ## |
---|
1977 | Nsimt = 0 |
---|
1978 | closesttvalues0 = [] |
---|
1979 | closesttvalues0st = [] |
---|
1980 | tsiminit = 0 |
---|
1981 | tsimend = 0 |
---|
1982 | |
---|
1983 | dtsim = simobstimes[1] - simobstimes[0] |
---|
1984 | |
---|
1985 | for it in range(dimtsim): |
---|
1986 | ot = 0 |
---|
1987 | for ito in range(ot,dimtobs-1): |
---|
1988 | if np.abs(valdimobs['T'][ito] - simobstimes[it]) <= dtsim/2.: |
---|
1989 | ot = ito |
---|
1990 | tdist = simobstimes[it] - valdimobs['T'][ito] |
---|
1991 | closesttvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito], \ |
---|
1992 | tdist]) |
---|
1993 | Nsimt = Nsimt + 1 |
---|
1994 | if tsiminit == 0: tsiminit=simobstimes[it] |
---|
1995 | tsimend = simobstimes[it] |
---|
1996 | |
---|
1997 | closesttvalues = np.array(closesttvalues0, dtype=np.float) |
---|
1998 | |
---|
1999 | print 'closesttvales shape:',closesttvalues.shape |
---|
2000 | Nclosest = len(closesttvalues[:,0]) |
---|
2001 | print main + ': found',Nclosest,'Simulation time-values closest to observations' |
---|
2002 | |
---|
2003 | if Nclosest == 0: |
---|
2004 | print warnmsg |
---|
2005 | print main + ': no cclosest times found !!' |
---|
2006 | print ' stopping it' |
---|
2007 | quit(-1) |
---|
2008 | |
---|
2009 | # Sim Coincident times |
---|
2010 | ## |
---|
2011 | Nsimt = 0 |
---|
2012 | coindtvalues0 = [] |
---|
2013 | coindtvalues0st = [] |
---|
2014 | tsiminit = 0 |
---|
2015 | tsimend = 0 |
---|
2016 | |
---|
2017 | for it in range(dimtsim): |
---|
2018 | ot = 0 |
---|
2019 | for ito in range(ot,dimtobs-1): |
---|
2020 | if valdimobs['T'][ito] < simobstimes[it] and valdimobs['T'][ito+1] > \ |
---|
2021 | simobstimes[it]: |
---|
2022 | ot = ito |
---|
2023 | tdist = simobstimes[it] - valdimobs['T'][ito] |
---|
2024 | coindtvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito], \ |
---|
2025 | tdist]) |
---|
2026 | Nsimt = Nsimt + 1 |
---|
2027 | if tsiminit == 0: tsiminit=simobstimes[it] |
---|
2028 | tsimend = simobstimes[it] |
---|
2029 | elif simobstimes[it] > valdimobs['T'][ito+1]: |
---|
2030 | coindtvalues0st.append([Nsimt, ito, valdimobs['T'][ito],tsimend-tsiminit]) |
---|
2031 | |
---|
2032 | coindtvalues = np.array(coindtvalues0, dtype=np.float) |
---|
2033 | coindtvaluesst = np.array(coindtvalues0st, dtype=np.float) |
---|
2034 | |
---|
2035 | Ncoindt = len(coindtvalues[:,0]) |
---|
2036 | print main + ': found',Ncoindt,'Simulation time-interval (within consecutive ' + \ |
---|
2037 | 'observed times) coincident times between simulation and observations' |
---|
2038 | |
---|
2039 | if Ncoindt == 0: |
---|
2040 | print warnmsg |
---|
2041 | print main + ': no coincident times found !!' |
---|
2042 | print ' stopping it' |
---|
2043 | quit(-1) |
---|
2044 | |
---|
2045 | # Validating |
---|
2046 | ## |
---|
2047 | |
---|
2048 | onewnc = NetCDFFile(ofile, 'w') |
---|
2049 | |
---|
2050 | # Dimensions |
---|
2051 | for kst in range(Nstsim): |
---|
2052 | newdim = onewnc.createDimension(prestdescsim[kst] + 'time',None) |
---|
2053 | if stdescsim[kst] != 'E': |
---|
2054 | newdim = onewnc.createDimension(prestdescsim[kst] + 'obstime',None) |
---|
2055 | |
---|
2056 | newdim = onewnc.createDimension('bnds',2) |
---|
2057 | newdim = onewnc.createDimension('couple',2) |
---|
2058 | newdim = onewnc.createDimension('StrLength',StringLength) |
---|
2059 | newdim = onewnc.createDimension('xaround',Ngrid*2+1) |
---|
2060 | newdim = onewnc.createDimension('yaround',Ngrid*2+1) |
---|
2061 | newdim = onewnc.createDimension('gstats',13) |
---|
2062 | newdim = onewnc.createDimension('stats',5) |
---|
2063 | newdim = onewnc.createDimension('tstats',6) |
---|
2064 | newdim = onewnc.createDimension('Nstsim', 3) |
---|
2065 | |
---|
2066 | # Variable dimensions |
---|
2067 | ## |
---|
2068 | newvar = onewnc.createVariable('couple', 'c', ('couple','StrLength')) |
---|
2069 | basicvardef(newvar, 'couple', 'couples of values', '-') |
---|
2070 | writing_str_nc(newvar, ['sim','obs'], StringLength) |
---|
2071 | |
---|
2072 | newvar = onewnc.createVariable('statistics', 'c', ('stats','StrLength')) |
---|
2073 | basicvardef(newvar, 'statistics', 'statitics from values', '-') |
---|
2074 | writing_str_nc(newvar, statsn, StringLength) |
---|
2075 | |
---|
2076 | newvar = onewnc.createVariable('gstatistics', 'c', ('gstats','StrLength')) |
---|
2077 | basicvardef(newvar, 'gstatistics', 'global statitics from values', '-') |
---|
2078 | writing_str_nc(newvar, gstatsn, StringLength) |
---|
2079 | |
---|
2080 | newvar = onewnc.createVariable('tstatistics', 'c', ('tstats','StrLength')) |
---|
2081 | basicvardef(newvar, 'tstatistics', 'statitics from values along time', '-') |
---|
2082 | writing_str_nc(newvar, ostatsn, StringLength) |
---|
2083 | |
---|
2084 | newvar = onewnc.createVariable('ksimstatistics', 'c', ('Nstsim','StrLength')) |
---|
2085 | basicvardef(newvar, 'ksimstatistics', 'kind of simulated statitics', '-') |
---|
2086 | writing_str_nc(newvar, Lstdescsim, StringLength) |
---|
2087 | |
---|
2088 | if obskind == 'trajectory': |
---|
2089 | if dims.has_key('Z'): |
---|
2090 | newdim = onewnc.createDimension('trj',3) |
---|
2091 | else: |
---|
2092 | newdim = onewnc.createDimension('trj',2) |
---|
2093 | |
---|
2094 | newvar = onewnc.createVariable('obssimtrj','i',('obstime','trj')) |
---|
2095 | basicvardef(newvar, 'obssimtrj', 'trajectory on the simulation grid', '-') |
---|
2096 | newvar[:] = trajpos.transpose() |
---|
2097 | |
---|
2098 | if dims.has_key('Z'): |
---|
2099 | newdim = onewnc.createDimension('simtrj',4) |
---|
2100 | else: |
---|
2101 | newdim = onewnc.createDimension('simtrj',3) |
---|
2102 | |
---|
2103 | Nvars = len(valvars) |
---|
2104 | for ivar in range(Nvars): |
---|
2105 | simobsvalues = [] |
---|
2106 | |
---|
2107 | varsimobs = valvars[ivar][0] + '_' + valvars[ivar][1] |
---|
2108 | print ' ' + varsimobs + '... .. .' |
---|
2109 | |
---|
2110 | if not oobs.variables.has_key(valvars[ivar][1]): |
---|
2111 | print errormsg |
---|
2112 | print ' ' + main + ": observations file has not '" + valvars[ivar][1] + \ |
---|
2113 | "' !!" |
---|
2114 | quit(-1) |
---|
2115 | |
---|
2116 | if not osim.variables.has_key(valvars[ivar][0]): |
---|
2117 | if not searchInlist(varNOcheck, valvars[ivar][0]): |
---|
2118 | print errormsg |
---|
2119 | print ' ' + main + ": simulation file has not '" + valvars[ivar][0] + \ |
---|
2120 | "' !!" |
---|
2121 | quit(-1) |
---|
2122 | else: |
---|
2123 | ovsim = compute_varNOcheck(osim, valvars[ivar][0]) |
---|
2124 | else: |
---|
2125 | ovsim = osim.variables[valvars[ivar][0]] |
---|
2126 | |
---|
2127 | for idn in ovsim.dimensions: |
---|
2128 | if not searchInlist(simdims.values(),idn): |
---|
2129 | print errormsg |
---|
2130 | print ' ' + main + ": dimension '" + idn + "' of variable '" + \ |
---|
2131 | valvars[ivar][0] + "' not provided as reference coordinate [X,Y,Z,T] !!" |
---|
2132 | quit(-1) |
---|
2133 | |
---|
2134 | ovobs = oobs.variables[valvars[ivar][1]] |
---|
2135 | if searchInlist(ovobs.ncattrs(),'_FillValue'): |
---|
2136 | oFillValue = ovobs.getncattr('_FillValue') |
---|
2137 | else: |
---|
2138 | oFillValue = None |
---|
2139 | |
---|
2140 | for kst in range(Nstsim): |
---|
2141 | simobsvalues = [] |
---|
2142 | |
---|
2143 | timedn = prestdescsim[kst] + 'time' |
---|
2144 | timeobsdn = prestdescsim[kst] + 'obstime' |
---|
2145 | print ' ' + prestdescsim[kst] + ' ...' |
---|
2146 | |
---|
2147 | if stdescsim[kst] == 'E': |
---|
2148 | # Observed and simualted exact times |
---|
2149 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
2150 | getting_ValidationValues(obskind, Nexactt, dims, trajpos, ovsim, \ |
---|
2151 | ovobs, exacttvalues, oFillValue, Ngrid, 'instantaneous') |
---|
2152 | |
---|
2153 | if ivar == 0: |
---|
2154 | vname = prestdescsim[kst] + 'time' |
---|
2155 | newvar = onewnc.createVariable(vname,'f8', (timedn)) |
---|
2156 | basicvardef(newvar, vname, 'exact coincident time observations and '+\ |
---|
2157 | 'simulation', obstunits) |
---|
2158 | set_attribute(newvar, 'calendar', 'standard') |
---|
2159 | if Nexactt == 0: |
---|
2160 | newvar[:] = np.float64(0.) |
---|
2161 | else: |
---|
2162 | newvar[:] = exacttvalues[:,3] |
---|
2163 | if Nexactt == 0: |
---|
2164 | simobsSvalues = np.zeros((1,2), dtype=np.float) |
---|
2165 | simobsvalues = np.zeros((1,2), dtype=np.float) |
---|
2166 | |
---|
2167 | dimt = Nexactt |
---|
2168 | |
---|
2169 | elif stdescsim[kst] == 'C': |
---|
2170 | # Simualted closest to Observed times |
---|
2171 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
2172 | getting_ValidationValues(obskind, Nclosest, dims, trajpos, ovsim, \ |
---|
2173 | ovobs, closesttvalues, oFillValue, Ngrid, 'instantaneous') |
---|
2174 | dimt = Nclosest |
---|
2175 | |
---|
2176 | if ivar == 0: |
---|
2177 | vname = prestdescsim[kst] + 'time' |
---|
2178 | newvar = onewnc.createVariable(vname,'f8', (timedn)) |
---|
2179 | basicvardef(newvar, vname, 'time simulations closest to observed ' + \ |
---|
2180 | 'values', obstunits ) |
---|
2181 | set_attribute(newvar, 'calendar', 'standard') |
---|
2182 | newvar[:] = closesttvalues[:,2] |
---|
2183 | |
---|
2184 | vname = prestdescsim[kst] + 'obstime' |
---|
2185 | newvar = onewnc.createVariable(vname,'f8', (vname)) |
---|
2186 | basicvardef(newvar, vname, 'closest time observations', obstunits) |
---|
2187 | set_attribute(newvar, 'calendar', 'standard') |
---|
2188 | newvar[:] = closesttvalues[:,3] |
---|
2189 | |
---|
2190 | elif stdescsim[kst] == 'B': |
---|
2191 | # Observed values temporally around coincident times |
---|
2192 | simobsvalues, simobsSvalues, simobsTtvalues, trjsim = \ |
---|
2193 | getting_ValidationValues(obskind, Ncoindt, dims, trajpos, ovsim, ovobs,\ |
---|
2194 | coindtvalues, oFillValue, Ngrid, 'tbackwardSmean') |
---|
2195 | dimt = simobsSvalues.shape[0] |
---|
2196 | |
---|
2197 | if ivar == 0: |
---|
2198 | vname = prestdescsim[kst] + 'time' |
---|
2199 | newvar = onewnc.createVariable(vname,'f8', (timedn), \ |
---|
2200 | fill_value = fillValueF) |
---|
2201 | basicvardef(newvar, vname, 'simulation time between observations', \ |
---|
2202 | obstunits) |
---|
2203 | set_attribute(newvar, 'calendar', 'standard') |
---|
2204 | set_attribute(newvar, 'bounds', 'time_bnds') |
---|
2205 | newvar[:] = simobsTtvalues[:,1] |
---|
2206 | |
---|
2207 | vname = prestdescsim[kst] + 'obstime' |
---|
2208 | newvar = onewnc.createVariable(vname,'f8', (vname)) |
---|
2209 | basicvardef(newvar, vname, 'observed between time', obstunits ) |
---|
2210 | set_attribute(newvar, 'calendar', 'standard') |
---|
2211 | newvar[:] = np.unique(coindtvalues[:,3]) |
---|
2212 | |
---|
2213 | # Re-arranging values... |
---|
2214 | # For an incomprensible reason it is not working? |
---|
2215 | # arrayvals = np.array(simobsvalues) |
---|
2216 | arrayvals = np.zeros((len(simobsvalues),2), dtype=np.float) |
---|
2217 | for it in range(len(simobsvalues)): |
---|
2218 | arrayvals[it,:] = simobsvalues[it][0:2] |
---|
2219 | |
---|
2220 | if len(valvars[ivar]) > 2: |
---|
2221 | const=np.float(valvars[ivar][3]) |
---|
2222 | if valvars[ivar][2] == 'sumc': |
---|
2223 | simobsSvalues = simobsSvalues + const |
---|
2224 | arrayvals[:,0] = arrayvals[:,0] + const |
---|
2225 | elif valvars[ivar][2] == 'subc': |
---|
2226 | simobsSvalues = simobsSvalues - const |
---|
2227 | arrayvals[:,0] = arrayvals[:,0] - const |
---|
2228 | elif valvars[ivar][2] == 'mulc': |
---|
2229 | simobsSvalues = simobsSvalues * const |
---|
2230 | arrayvals[:,0] = arrayvals[:,0] * const |
---|
2231 | elif valvars[ivar][2] == 'divc': |
---|
2232 | simobsSvalues = simobsSvalues / const |
---|
2233 | arrayvals[:,0] = arrayvals[:,0] / const |
---|
2234 | else: |
---|
2235 | print errormsg |
---|
2236 | print ' ' + fname + ": operation '"+valvars[ivar][2]+"' not ready!!" |
---|
2237 | quit(-1) |
---|
2238 | |
---|
2239 | # for it in range(len(arrayvals[:,0])): |
---|
2240 | # print it,arrayvals[it,:],':',simobsvalues[it] |
---|
2241 | # quit() |
---|
2242 | |
---|
2243 | if kst == 0: |
---|
2244 | simstats = np.zeros((Nstsim,5), dtype=np.float) |
---|
2245 | obsstats = np.zeros((Nstsim,5), dtype=np.float) |
---|
2246 | simobsstats = np.zeros((Nstsim,13), dtype=np.float) |
---|
2247 | |
---|
2248 | # statisics sim |
---|
2249 | simstats[kst,0] = np.min(arrayvals[:,0]) |
---|
2250 | simstats[kst,1] = np.max(arrayvals[:,0]) |
---|
2251 | simstats[kst,2] = np.mean(arrayvals[:,0]) |
---|
2252 | simstats[kst,3] = np.mean(arrayvals[:,0]*arrayvals[:,0]) |
---|
2253 | simstats[kst,4] = np.sqrt(simstats[kst,3] - simstats[kst,2]*simstats[kst,2]) |
---|
2254 | |
---|
2255 | # statisics obs |
---|
2256 | # Masking 'nan' |
---|
2257 | obsmask0 = np.where(arrayvals[:,1] != arrayvals[:,1], fillValueF, \ |
---|
2258 | arrayvals[:,1]) |
---|
2259 | |
---|
2260 | obsmask = ma.masked_equal(obsmask0, fillValueF) |
---|
2261 | obsmask2 = obsmask*obsmask |
---|
2262 | |
---|
2263 | obsstats[kst,0] = obsmask.min() |
---|
2264 | obsstats[kst,1] = obsmask.max() |
---|
2265 | obsstats[kst,2] = obsmask.mean() |
---|
2266 | obsstats[kst,3] = obsmask2.mean() |
---|
2267 | obsstats[kst,4] = np.sqrt(obsstats[kst,3] - obsstats[kst,2]*obsstats[kst,2]) |
---|
2268 | |
---|
2269 | # Statistics sim-obs |
---|
2270 | diffvals = np.zeros((dimt), dtype=np.float) |
---|
2271 | |
---|
2272 | diffvals = arrayvals[:,0] - obsmask |
---|
2273 | |
---|
2274 | diff2vals = diffvals*diffvals |
---|
2275 | sumdiff = diffvals.sum() |
---|
2276 | sumdiff2 = diff2vals.sum() |
---|
2277 | |
---|
2278 | simobsstats[kst,0] = simstats[kst,0] - obsstats[kst,0] |
---|
2279 | simobsstats[kst,1] = np.mean(arrayvals[:,0]*obsmask) |
---|
2280 | simobsstats[kst,2] = diffvals.min() |
---|
2281 | simobsstats[kst,3] = diffvals.max() |
---|
2282 | simobsstats[kst,4] = diffvals.mean() |
---|
2283 | simobsstats[kst,5] = np.abs(diffvals).mean() |
---|
2284 | simobsstats[kst,6] = np.sqrt(diff2vals.mean()) |
---|
2285 | simobsstats[kst,7], simobsstats[kst,8] = sts.mstats.pearsonr(arrayvals[:,0], \ |
---|
2286 | obsmask) |
---|
2287 | # From: |
---|
2288 | #Willmott, C. J. 1981. 'On the validation of models. Physical Geography', 2, 184-194 |
---|
2289 | #Willmott, C. J. (1984). 'On the evaluation of model performance in physical |
---|
2290 | # geography'. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., |
---|
2291 | # 443-460 |
---|
2292 | #Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. |
---|
2293 | # Legates, J. O'Donnell, and C. M. Rowe (1985), 'Statistics for the Evaluation and |
---|
2294 | # Comparison of Models', J. Geophys. Res., 90(C5), 8995-9005 |
---|
2295 | #Legates, D. R., and G. J. McCabe Jr. (1999), 'Evaluating the Use of "Goodness-of-Fit" |
---|
2296 | # Measures in Hydrologic and Hydroclimatic Model Validation', Water Resour. Res., |
---|
2297 | # 35(1), 233-241 |
---|
2298 | # |
---|
2299 | # Deviation of residuals (SDR) |
---|
2300 | simobsstats[kst,9] = np.mean(np.sqrt(np.abs((diffvals-simobsstats[kst,0])* \ |
---|
2301 | (diffvals-obsstats[kst,0])))) |
---|
2302 | # Index of Efficiency (IOE) |
---|
2303 | obsbias2series = (obsmask - obsstats[kst,0])*(obsmask - obsstats[kst,0]) |
---|
2304 | sumobsbias2series = obsbias2series.sum() |
---|
2305 | |
---|
2306 | simobsstats[kst,10] = 1. - sumdiff2/(sumobsbias2series) |
---|
2307 | # Index of Agreement (IOA) |
---|
2308 | simbias2series = arrayvals[:,0] - obsstats[kst,0] |
---|
2309 | obsbias2series = obsmask - obsstats[kst,0] |
---|
2310 | |
---|
2311 | abssimbias2series = np.abs(simbias2series) |
---|
2312 | absobsbias2series = np.where(obsbias2series<0, -obsbias2series, \ |
---|
2313 | obsbias2series) |
---|
2314 | |
---|
2315 | abssimobsbias2series = (abssimbias2series+absobsbias2series)*( \ |
---|
2316 | abssimbias2series + absobsbias2series) |
---|
2317 | |
---|
2318 | simobsstats[kst,11] = 1. - sumdiff2/(abssimobsbias2series.sum()) |
---|
2319 | # Fractional Mean Bias (FMB) |
---|
2320 | simobsstats[kst,12]=(simstats[kst,0]-obsstats[kst,0])/(0.5*(simstats[kst,0] +\ |
---|
2321 | obsstats[kst,0])) |
---|
2322 | |
---|
2323 | # Statistics around sim values |
---|
2324 | aroundstats = np.zeros((5,dimt), dtype=np.float) |
---|
2325 | for it in range(dimt): |
---|
2326 | aroundstats[0,it] = np.min(simobsSvalues[it,]) |
---|
2327 | aroundstats[1,it] = np.max(simobsSvalues[it,]) |
---|
2328 | aroundstats[2,it] = np.mean(simobsSvalues[it,]) |
---|
2329 | aroundstats[3,it] = np.mean(simobsSvalues[it,]*simobsSvalues[it,]) |
---|
2330 | aroundstats[4,it] = np.sqrt(aroundstats[3,it] - aroundstats[2,it]* \ |
---|
2331 | aroundstats[2,it]) |
---|
2332 | |
---|
2333 | # sim Values to netCDF |
---|
2334 | newvar = onewnc.createVariable(valvars[ivar][0] + '_' + stdescsim[kst] + \ |
---|
2335 | 'sim', 'f', (timedn), fill_value=fillValueF) |
---|
2336 | descvar = prestdescsim[kst] + ' time simulated: ' + valvars[ivar][0] |
---|
2337 | basicvardef(newvar, valvars[ivar][0], descvar, ovobs.getncattr('units')) |
---|
2338 | if stdescsim[kst] == 'E' and Nexactt == 0: |
---|
2339 | newvar[:] = fillValueF |
---|
2340 | else: |
---|
2341 | newvar[:] = arrayvals[:,0] |
---|
2342 | |
---|
2343 | # obs Values to netCDF |
---|
2344 | if stdescsim[kst] != 'E': |
---|
2345 | newvar = onewnc.createVariable(valvars[ivar][1] + '_' + stdescsim[kst] + \ |
---|
2346 | 'obs', 'f', (timeobsdn), fill_value=fillValueF) |
---|
2347 | else: |
---|
2348 | newvar = onewnc.createVariable(valvars[ivar][1] + '_' + stdescsim[kst] + \ |
---|
2349 | 'obs', 'f', (timedn), fill_value=fillValueF) |
---|
2350 | |
---|
2351 | descvar = prestdescsim[kst] + ' time observed: ' + valvars[ivar][1] |
---|
2352 | basicvardef(newvar, valvars[ivar][1], descvar, ovobs.getncattr('units')) |
---|
2353 | |
---|
2354 | if stdescsim[kst] == 'E' and Nexactt == 0: |
---|
2355 | newvar[:] = fillValueF |
---|
2356 | else: |
---|
2357 | newvar[:] = arrayvals[:,1] |
---|
2358 | |
---|
2359 | # Including statistics of the between simulated values |
---|
2360 | if stdescsim[kst] == 'B': |
---|
2361 | if not searchInlist(onewnc.dimensions, 'Bstats'): |
---|
2362 | newdim = onewnc.createDimension('Bstats',3) |
---|
2363 | |
---|
2364 | newvar = onewnc.createVariable('Bstats','c',('Bstats','StrLength')) |
---|
2365 | descvar = prestdescsim[kst] + ' time simulated: ' + valvars[ivar][0] |
---|
2366 | basicvardef(newvar, 'Bstats', 'Between values statistics', \ |
---|
2367 | ovobs.getncattr('units')) |
---|
2368 | Bstsvals=['minimum','maximum','stdandard deviation'] |
---|
2369 | writing_str_nc(newvar,Bstsvals,StringLength) |
---|
2370 | |
---|
2371 | newvar = onewnc.createVariable(valvars[ivar][0] + '_Bstats_sim', 'f', \ |
---|
2372 | (timedn,'Bstats'), fill_value=fillValueF) |
---|
2373 | descvar = prestdescsim[kst] + ' time simulated: ' + valvars[ivar][0] + \ |
---|
2374 | ' statistics' |
---|
2375 | basicvardef(newvar, valvars[ivar][0], descvar, ovobs.getncattr('units')) |
---|
2376 | newvar[0,:] = [fillValueF, fillValueF, fillValueF] |
---|
2377 | for it in range(dimt-1): |
---|
2378 | newvar[it+1,:] = simobsvalues[it][2:5] |
---|
2379 | |
---|
2380 | # Around values |
---|
2381 | if not onewnc.variables.has_key(valvars[ivar][0] + 'around'): |
---|
2382 | vname = prestdescsim[kst] + valvars[ivar][0] + 'around' |
---|
2383 | else: |
---|
2384 | vname = prestdescsim[kst] + valvars[ivar][0] + 'Around' |
---|
2385 | |
---|
2386 | if dims.has_key('Z'): |
---|
2387 | if not onewnc.dimensions.has_key('zaround'): |
---|
2388 | newdim = onewnc.createDimension('zaround',Ngrid*2+1) |
---|
2389 | newvar = onewnc.createVariable(vname, 'f', (timedn,'zaround', \ |
---|
2390 | 'yaround','xaround'), fill_value=fillValueF) |
---|
2391 | else: |
---|
2392 | newvar = onewnc.createVariable(vname, 'f', (timedn,'yaround','xaround'), \ |
---|
2393 | fill_value=fillValueF) |
---|
2394 | |
---|
2395 | descvar = prestdescsim[kst] + 'around simulated values +/- grid values: ' + \ |
---|
2396 | valvars[ivar][0] |
---|
2397 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2398 | |
---|
2399 | if stdescsim[kst] == 'E' and Nexactt == 0: |
---|
2400 | newvar[:] = np.ones((0,Ngrid*2+1,Ngrid*2+1))*fillValueF |
---|
2401 | else: |
---|
2402 | newvar[:] = simobsSvalues |
---|
2403 | |
---|
2404 | |
---|
2405 | # around sim Statistics |
---|
2406 | if not searchInlist(onewnc.variables,prestdescsim[kst] + valvars[ivar][0] + \ |
---|
2407 | 'staround'): |
---|
2408 | vname = prestdescsim[kst] + valvars[ivar][0] + 'staround' |
---|
2409 | else: |
---|
2410 | vname = prestdescsim[kst] + valvars[ivar][0] + 'Staround' |
---|
2411 | |
---|
2412 | newvar = onewnc.createVariable(vname, 'f', (timedn,'stats'), \ |
---|
2413 | fill_value=fillValueF) |
---|
2414 | descvar = prestdescsim[kst] + ' around (' + str(Ngrid) + ', ' + str(Ngrid) +\ |
---|
2415 | ') simulated statisitcs: ' + valvars[ivar][0] |
---|
2416 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2417 | set_attribute(newvar, 'cell_methods', 'time_bnds') |
---|
2418 | if stdescsim[kst] == 'E' and Nexactt == 0: |
---|
2419 | newvar[:] = np.ones((0,5))*fillValueF |
---|
2420 | else: |
---|
2421 | newvar[:] = aroundstats.transpose() |
---|
2422 | |
---|
2423 | if stdescsim[kst] == 'B': |
---|
2424 | if not searchInlist(onewnc.variables, 'time_bnds'): |
---|
2425 | newvar = onewnc.createVariable('time_bnds','f8',(timedn,'bnds')) |
---|
2426 | basicvardef(newvar, 'time_bnds', timedn, obstunits ) |
---|
2427 | set_attribute(newvar, 'calendar', 'standard') |
---|
2428 | newvar[:] = simobsTtvalues |
---|
2429 | |
---|
2430 | # sim Statistics |
---|
2431 | if not searchInlist(onewnc.variables,valvars[ivar][0] + 'stsim'): |
---|
2432 | vname = valvars[ivar][0] + 'stsim' |
---|
2433 | else: |
---|
2434 | vname = valvars[ivar][0] + 'stSim' |
---|
2435 | |
---|
2436 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'stats'), \ |
---|
2437 | fill_value=fillValueF) |
---|
2438 | descvar = 'simulated statisitcs: ' + valvars[ivar][0] |
---|
2439 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2440 | newvar[:] = simstats |
---|
2441 | |
---|
2442 | # obs Statistics |
---|
2443 | if not searchInlist(onewnc.variables,valvars[ivar][1] + 'stobs'): |
---|
2444 | vname = valvars[ivar][1] + 'stobs' |
---|
2445 | else: |
---|
2446 | vname = valvars[ivar][1] + 'stObs' |
---|
2447 | |
---|
2448 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'stats'), \ |
---|
2449 | fill_value=fillValueF) |
---|
2450 | descvar = 'observed statisitcs: ' + valvars[ivar][1] |
---|
2451 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2452 | newvar[:] = obsstats |
---|
2453 | |
---|
2454 | # sim-obs Statistics |
---|
2455 | if not searchInlist(onewnc.variables,varsimobs + 'st'): |
---|
2456 | vname = varsimobs + 'st' |
---|
2457 | else: |
---|
2458 | vname = varSimobs + 'st' |
---|
2459 | |
---|
2460 | newvar = onewnc.createVariable(vname, 'f', ('Nstsim', 'gstats'), \ |
---|
2461 | fill_value=fillValueF) |
---|
2462 | descvar = 'simulated-observed tatisitcs: ' + varsimobs |
---|
2463 | basicvardef(newvar, vname, descvar, ovobs.getncattr('units')) |
---|
2464 | newvar[:] = simobsstats |
---|
2465 | |
---|
2466 | onewnc.sync() |
---|
2467 | |
---|
2468 | if trjsim is not None: |
---|
2469 | newvar = onewnc.createVariable('simtrj','i',('betweentime','simtrj')) |
---|
2470 | basicvardef(newvar,'simtrj','coordinates [X,Y,Z,T] of the coincident ' + \ |
---|
2471 | 'trajectory in sim', obstunits) |
---|
2472 | newvar[:] = trjsim.transpose() |
---|
2473 | |
---|
2474 | # Adding three variables with the station location, longitude, latitude and height |
---|
2475 | if obskind == 'single-station': |
---|
2476 | adding_station_desc(onewnc,stationdesc) |
---|
2477 | |
---|
2478 | # Global attributes |
---|
2479 | ## |
---|
2480 | set_attribute(onewnc,'author_nc','Lluis Fita') |
---|
2481 | set_attribute(onewnc,'institution_nc','Laboratoire de Meteorology Dynamique, ' + \ |
---|
2482 | 'LMD-Jussieu, UPMC, Paris') |
---|
2483 | set_attribute(onewnc,'country_nc','France') |
---|
2484 | set_attribute(onewnc,'script_nc',main) |
---|
2485 | set_attribute(onewnc,'version_script',version) |
---|
2486 | set_attribute(onewnc,'information', \ |
---|
2487 | 'http://www.lmd.jussieu.fr/~lflmd/ASCIIobs_nc/index.html') |
---|
2488 | set_attribute(onewnc,'simfile',opts.fsim) |
---|
2489 | set_attribute(onewnc,'obsfile',opts.fobs) |
---|
2490 | |
---|
2491 | onewnc.sync() |
---|
2492 | onewnc.close() |
---|
2493 | |
---|
2494 | print main + ": successfull writting of '" + ofile + "' !!" |
---|