[330] | 1 | |
---|
| 2 | # L. Fita, LMD-Jussieu. February 2015 |
---|
[337] | 3 | ## e.g. sfcEneAvigon # validation_sim.py -d X@west_east@None,Y@south_north@None,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,T@time@time -k single-station -l 4.878773,43.915876,12. -o /home/lluis/DATA/obs/HyMeX/IOP15/sfcEnergyBalance_Avignon/OBSnetcdf.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v HFX@H,LH@LE,GRDFLX@G |
---|
[339] | 4 | ## e.g. AIREP # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@time -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@alti,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/AIREP/2012/10/AIREP_121018.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@t,WRFtd@td,WRFws@u,WRFwd@dd |
---|
[340] | 5 | ## e.g. ATRCore # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/ATRCore/V3/ATR_1Hz-HYMEXBDD-SOP1-v3_20121018_as120051.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@air_temperature@subc@273.15,WRFp@air_pressure,WRFrh@relative_humidity,WRFrh@relative_humidity_Rosemount,WRFwd@wind_from_direction,WRFws@wind_speed |
---|
| 6 | ## e.g. BAMED # validation_sim.py -d X@west_east@lon2D,Y@south_north@lat2D,Z@bottom_top@z2D,T@Time@CFtime -D X@XLONG@longitude,Y@XLAT@latitude,Z@WRFz@altitude,T@time@time -k trajectory -o /home/lluis/DATA/obs/HyMeX/IOP15/BAMED/BAMED_SOP1_B12_TOT5.nc -s /home/lluis/PY/wrfout_d01_2012-10-18_00:00:00.tests -v WRFt@tas_north,WRFp@pressure,WRFrh@hus,U@uas,V@vas |
---|
[337] | 7 | |
---|
[330] | 8 | import numpy as np |
---|
| 9 | import os |
---|
| 10 | import re |
---|
| 11 | from optparse import OptionParser |
---|
| 12 | from netCDF4 import Dataset as NetCDFFile |
---|
[343] | 13 | from scipy import stats as sts |
---|
| 14 | import numpy.ma as ma |
---|
[330] | 15 | |
---|
| 16 | main = 'validarion_sim.py' |
---|
| 17 | errormsg = 'ERROR -- errror -- ERROR -- error' |
---|
| 18 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
| 19 | |
---|
| 20 | # version |
---|
| 21 | version=1.0 |
---|
| 22 | |
---|
| 23 | # Filling values for floats, integer and string |
---|
| 24 | fillValueF = 1.e20 |
---|
| 25 | fillValueI = -99999 |
---|
| 26 | fillValueS = '---' |
---|
| 27 | |
---|
[333] | 28 | StringLength = 50 |
---|
| 29 | |
---|
[337] | 30 | # Number of grid points to take as 'environment' around the observed point |
---|
| 31 | Ngrid = 1 |
---|
| 32 | |
---|
[333] | 33 | def searchInlist(listname, nameFind): |
---|
| 34 | """ Function to search a value within a list |
---|
| 35 | listname = list |
---|
| 36 | nameFind = value to find |
---|
| 37 | >>> searInlist(['1', '2', '3', '5'], '5') |
---|
| 38 | True |
---|
| 39 | """ |
---|
| 40 | for x in listname: |
---|
| 41 | if x == nameFind: |
---|
| 42 | return True |
---|
| 43 | return False |
---|
| 44 | |
---|
| 45 | def set_attribute(ncvar, attrname, attrvalue): |
---|
| 46 | """ Sets a value of an attribute of a netCDF variable. Removes previous attribute value if exists |
---|
| 47 | ncvar = object netcdf variable |
---|
| 48 | attrname = name of the attribute |
---|
| 49 | attrvalue = value of the attribute |
---|
| 50 | """ |
---|
| 51 | import numpy as np |
---|
| 52 | from netCDF4 import Dataset as NetCDFFile |
---|
| 53 | |
---|
| 54 | attvar = ncvar.ncattrs() |
---|
| 55 | if searchInlist(attvar, attrname): |
---|
| 56 | attr = ncvar.delncattr(attrname) |
---|
| 57 | |
---|
| 58 | attr = ncvar.setncattr(attrname, attrvalue) |
---|
| 59 | |
---|
| 60 | return ncvar |
---|
| 61 | |
---|
| 62 | def basicvardef(varobj, vstname, vlname, vunits): |
---|
| 63 | """ Function to give the basic attributes to a variable |
---|
| 64 | varobj= netCDF variable object |
---|
| 65 | vstname= standard name of the variable |
---|
| 66 | vlname= long name of the variable |
---|
| 67 | vunits= units of the variable |
---|
| 68 | """ |
---|
| 69 | attr = varobj.setncattr('standard_name', vstname) |
---|
| 70 | attr = varobj.setncattr('long_name', vlname) |
---|
| 71 | attr = varobj.setncattr('units', vunits) |
---|
| 72 | |
---|
| 73 | return |
---|
| 74 | |
---|
| 75 | def writing_str_nc(varo, values, Lchar): |
---|
| 76 | """ Function to write string values in a netCDF variable as a chain of 1char values |
---|
| 77 | varo= netCDF variable object |
---|
| 78 | values = list of values to introduce |
---|
| 79 | Lchar = length of the string in the netCDF file |
---|
| 80 | """ |
---|
| 81 | |
---|
| 82 | Nvals = len(values) |
---|
| 83 | for iv in range(Nvals): |
---|
| 84 | stringv=values[iv] |
---|
| 85 | charvals = np.chararray(Lchar) |
---|
| 86 | Lstr = len(stringv) |
---|
| 87 | charvals[Lstr:Lchar] = '' |
---|
| 88 | |
---|
| 89 | for ich in range(Lstr): |
---|
| 90 | charvals[ich] = stringv[ich:ich+1] |
---|
| 91 | |
---|
| 92 | varo[iv,:] = charvals |
---|
| 93 | |
---|
| 94 | return |
---|
| 95 | |
---|
[330] | 96 | def index_3mat(matA,matB,matC,val): |
---|
| 97 | """ Function to provide the coordinates of a given value inside three matrix simultaneously |
---|
| 98 | index_mat(matA,matB,matC,val) |
---|
| 99 | matA= matrix with one set of values |
---|
| 100 | matB= matrix with the other set of values |
---|
| 101 | matB= matrix with the third set of values |
---|
| 102 | val= triplet of values to search |
---|
| 103 | >>> index_mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),np.arange(200,227).reshape(3,3,3),[22,122,222]) |
---|
| 104 | [2 1 1] |
---|
| 105 | """ |
---|
| 106 | fname = 'index_3mat' |
---|
| 107 | |
---|
| 108 | matAshape = matA.shape |
---|
| 109 | matBshape = matB.shape |
---|
| 110 | matCshape = matC.shape |
---|
| 111 | |
---|
| 112 | for idv in range(len(matAshape)): |
---|
| 113 | if matAshape[idv] != matBshape[idv]: |
---|
| 114 | print errormsg |
---|
| 115 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
| 116 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
| 117 | quit(-1) |
---|
| 118 | if matAshape[idv] != matCshape[idv]: |
---|
| 119 | print errormsg |
---|
| 120 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
| 121 | 'and C:',matCshape[idv],'does not coincide!!' |
---|
| 122 | quit(-1) |
---|
| 123 | |
---|
| 124 | minA = np.min(matA) |
---|
| 125 | maxA = np.max(matA) |
---|
| 126 | minB = np.min(matB) |
---|
| 127 | maxB = np.max(matB) |
---|
| 128 | minC = np.min(matC) |
---|
| 129 | maxC = np.max(matC) |
---|
| 130 | |
---|
| 131 | if val[0] < minA or val[0] > maxA: |
---|
| 132 | print warnmsg |
---|
| 133 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
| 134 | maxA,'!!' |
---|
| 135 | if val[1] < minB or val[1] > maxB: |
---|
| 136 | print warnmsg |
---|
| 137 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
| 138 | maxB,'!!' |
---|
| 139 | if val[2] < minC or val[2] > maxC: |
---|
| 140 | print warnmsg |
---|
| 141 | print ' ' + fname + ': second value:',val[2],'outside matC range',minC,',', \ |
---|
| 142 | maxC,'!!' |
---|
| 143 | |
---|
| 144 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
| 145 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2 + \ |
---|
| 146 | (matC - np.float(val[2]))**2) |
---|
| 147 | |
---|
| 148 | mindist = np.min(dist) |
---|
| 149 | |
---|
| 150 | matlist = list(dist.flatten()) |
---|
| 151 | ifound = matlist.index(mindist) |
---|
| 152 | |
---|
| 153 | Ndims = len(matAshape) |
---|
| 154 | valpos = np.zeros((Ndims), dtype=int) |
---|
| 155 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
| 156 | |
---|
| 157 | for dimid in range(Ndims): |
---|
| 158 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
| 159 | if dimid == 0: |
---|
| 160 | alreadyplaced = 0 |
---|
| 161 | else: |
---|
| 162 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
| 163 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
| 164 | |
---|
| 165 | return valpos |
---|
| 166 | |
---|
| 167 | def index_2mat(matA,matB,val): |
---|
| 168 | """ Function to provide the coordinates of a given value inside two matrix simultaneously |
---|
| 169 | index_mat(matA,matB,val) |
---|
| 170 | matA= matrix with one set of values |
---|
| 171 | matB= matrix with the pother set of values |
---|
| 172 | val= couple of values to search |
---|
[337] | 173 | >>> index_2mat(np.arange(27).reshape(3,3,3),np.arange(100,127).reshape(3,3,3),[22,111]) |
---|
[330] | 174 | [2 1 1] |
---|
| 175 | """ |
---|
| 176 | fname = 'index_2mat' |
---|
| 177 | |
---|
| 178 | matAshape = matA.shape |
---|
| 179 | matBshape = matB.shape |
---|
| 180 | |
---|
| 181 | for idv in range(len(matAshape)): |
---|
| 182 | if matAshape[idv] != matBshape[idv]: |
---|
| 183 | print errormsg |
---|
| 184 | print ' ' + fname + ': Dimension',idv,'of matrices A:',matAshape[idv], \ |
---|
| 185 | 'and B:',matBshape[idv],'does not coincide!!' |
---|
| 186 | quit(-1) |
---|
| 187 | |
---|
| 188 | minA = np.min(matA) |
---|
| 189 | maxA = np.max(matA) |
---|
| 190 | minB = np.min(matB) |
---|
| 191 | maxB = np.max(matB) |
---|
| 192 | |
---|
[337] | 193 | Ndims = len(matAshape) |
---|
| 194 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
| 195 | valpos = np.zeros((Ndims), dtype=int) |
---|
| 196 | |
---|
[330] | 197 | if val[0] < minA or val[0] > maxA: |
---|
| 198 | print warnmsg |
---|
| 199 | print ' ' + fname + ': first value:',val[0],'outside matA range',minA,',', \ |
---|
| 200 | maxA,'!!' |
---|
[337] | 201 | return valpos |
---|
[330] | 202 | if val[1] < minB or val[1] > maxB: |
---|
| 203 | print warnmsg |
---|
| 204 | print ' ' + fname + ': second value:',val[1],'outside matB range',minB,',', \ |
---|
| 205 | maxB,'!!' |
---|
[337] | 206 | return valpos |
---|
[330] | 207 | |
---|
| 208 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
| 209 | dist = np.sqrt((matA - np.float(val[0]))**2 + (matB - np.float(val[1]))**2) |
---|
| 210 | |
---|
| 211 | mindist = np.min(dist) |
---|
| 212 | |
---|
[337] | 213 | if mindist != mindist: |
---|
| 214 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
| 215 | return valpos |
---|
| 216 | else: |
---|
| 217 | matlist = list(dist.flatten()) |
---|
| 218 | ifound = matlist.index(mindist) |
---|
[330] | 219 | |
---|
| 220 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
| 221 | for dimid in range(Ndims): |
---|
| 222 | baseprevdims[dimid] = np.product(matAshape[dimid+1:Ndims]) |
---|
| 223 | if dimid == 0: |
---|
| 224 | alreadyplaced = 0 |
---|
| 225 | else: |
---|
| 226 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
| 227 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
| 228 | |
---|
| 229 | return valpos |
---|
| 230 | |
---|
[337] | 231 | def index_mat(matA,val): |
---|
[330] | 232 | """ Function to provide the coordinates of a given value inside a matrix |
---|
[337] | 233 | index_mat(matA,val) |
---|
| 234 | matA= matrix with one set of values |
---|
| 235 | val= couple of values to search |
---|
| 236 | >>> index_mat(np.arange(27),22.3) |
---|
| 237 | 22 |
---|
| 238 | """ |
---|
| 239 | fname = 'index_mat' |
---|
| 240 | |
---|
| 241 | matAshape = matA.shape |
---|
| 242 | |
---|
| 243 | minA = np.min(matA) |
---|
| 244 | maxA = np.max(matA) |
---|
| 245 | |
---|
| 246 | Ndims = len(matAshape) |
---|
| 247 | # valpos = np.ones((Ndims), dtype=int)*-1. |
---|
| 248 | valpos = np.zeros((Ndims), dtype=int) |
---|
| 249 | |
---|
| 250 | if val < minA or val > maxA: |
---|
| 251 | print warnmsg |
---|
| 252 | print ' ' + fname + ': first value:',val,'outside matA range',minA,',', \ |
---|
| 253 | maxA,'!!' |
---|
| 254 | return valpos |
---|
| 255 | |
---|
| 256 | dist = np.zeros(tuple(matAshape), dtype=np.float) |
---|
| 257 | dist = (matA - np.float(val))**2 |
---|
| 258 | |
---|
| 259 | mindist = np.min(dist) |
---|
| 260 | if mindist != mindist: |
---|
| 261 | print ' ' + fname + ': wrong minimal distance',mindist,'!!' |
---|
| 262 | return valpos |
---|
| 263 | |
---|
| 264 | matlist = list(dist.flatten()) |
---|
| 265 | valpos = matlist.index(mindist) |
---|
| 266 | |
---|
| 267 | return valpos |
---|
| 268 | |
---|
| 269 | def index_mat_exact(mat,val): |
---|
| 270 | """ Function to provide the coordinates of a given exact value inside a matrix |
---|
[330] | 271 | index_mat(mat,val) |
---|
| 272 | mat= matrix with values |
---|
| 273 | val= value to search |
---|
| 274 | >>> index_mat(np.arange(27).reshape(3,3,3),22) |
---|
| 275 | [2 1 1] |
---|
| 276 | """ |
---|
| 277 | |
---|
| 278 | fname = 'index_mat' |
---|
| 279 | |
---|
| 280 | matshape = mat.shape |
---|
| 281 | |
---|
| 282 | matlist = list(mat.flatten()) |
---|
| 283 | ifound = matlist.index(val) |
---|
| 284 | |
---|
| 285 | Ndims = len(matshape) |
---|
| 286 | valpos = np.zeros((Ndims), dtype=int) |
---|
| 287 | baseprevdims = np.zeros((Ndims), dtype=int) |
---|
| 288 | |
---|
| 289 | for dimid in range(Ndims): |
---|
| 290 | baseprevdims[dimid] = np.product(matshape[dimid+1:Ndims]) |
---|
| 291 | if dimid == 0: |
---|
| 292 | alreadyplaced = 0 |
---|
| 293 | else: |
---|
| 294 | alreadyplaced = np.sum(baseprevdims[0:dimid]*valpos[0:dimid]) |
---|
| 295 | valpos[dimid] = int((ifound - alreadyplaced )/ baseprevdims[dimid]) |
---|
| 296 | |
---|
| 297 | return valpos |
---|
| 298 | |
---|
[343] | 299 | def datetimeStr_datetime(StringDT): |
---|
| 300 | """ Function to transform a string date ([YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format) to a date object |
---|
| 301 | >>> datetimeStr_datetime('1976-02-17_00:00:00') |
---|
| 302 | 1976-02-17 00:00:00 |
---|
| 303 | """ |
---|
| 304 | import datetime as dt |
---|
| 305 | |
---|
| 306 | fname = 'datetimeStr_datetime' |
---|
| 307 | |
---|
| 308 | dateD = np.zeros((3), dtype=int) |
---|
| 309 | timeT = np.zeros((3), dtype=int) |
---|
| 310 | |
---|
| 311 | dateD[0] = int(StringDT[0:4]) |
---|
| 312 | dateD[1] = int(StringDT[5:7]) |
---|
| 313 | dateD[2] = int(StringDT[8:10]) |
---|
| 314 | |
---|
| 315 | trefT = StringDT.find(':') |
---|
| 316 | if not trefT == -1: |
---|
| 317 | # print ' ' + fname + ': refdate with time!' |
---|
| 318 | timeT[0] = int(StringDT[11:13]) |
---|
| 319 | timeT[1] = int(StringDT[14:16]) |
---|
| 320 | timeT[2] = int(StringDT[17:19]) |
---|
| 321 | |
---|
| 322 | if int(dateD[0]) == 0: |
---|
| 323 | print warnmsg |
---|
| 324 | print ' ' + fname + ': 0 reference year!! changing to 1' |
---|
| 325 | dateD[0] = 1 |
---|
| 326 | |
---|
| 327 | newdatetime = dt.datetime(dateD[0], dateD[1], dateD[2], timeT[0], timeT[1], timeT[2]) |
---|
| 328 | |
---|
| 329 | return newdatetime |
---|
| 330 | |
---|
| 331 | def datetimeStr_conversion(StringDT,typeSi,typeSo): |
---|
| 332 | """ Function to transform a string date to an another date object |
---|
| 333 | StringDT= string with the date and time |
---|
| 334 | typeSi= type of datetime string input |
---|
| 335 | typeSo= type of datetime string output |
---|
| 336 | [typeSi/o] |
---|
| 337 | 'cfTime': [time],[units]; ]time in CF-convention format [units] = [tunits] since [refdate] |
---|
| 338 | 'matYmdHMS': numerical vector with [[YYYY], [MM], [DD], [HH], [MI], [SS]] |
---|
| 339 | 'YmdHMS': [YYYY][MM][DD][HH][MI][SS] format |
---|
| 340 | 'Y-m-d_H:M:S': [YYYY]-[MM]-[DD]_[HH]:[MI]:[SS] format |
---|
| 341 | 'Y-m-d H:M:S': [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] format |
---|
| 342 | 'Y/m/d H-M-S': [YYYY]/[MM]/[DD] [HH]-[MI]-[SS] format |
---|
| 343 | 'WRFdatetime': [Y], [Y], [Y], [Y], '-', [M], [M], '-', [D], [D], '_', [H], |
---|
| 344 | [H], ':', [M], [M], ':', [S], [S] |
---|
| 345 | >>> datetimeStr_conversion('1976-02-17_08:32:05','Y-m-d_H:M:S','matYmdHMS') |
---|
| 346 | [1976 2 17 8 32 5] |
---|
| 347 | >>> datetimeStr_conversion(str(137880)+',minutes since 1979-12-01_00:00:00','cfTime','Y/m/d H-M-S') |
---|
| 348 | 1980/03/05 18-00-00 |
---|
| 349 | """ |
---|
| 350 | import datetime as dt |
---|
| 351 | |
---|
| 352 | fname = 'datetimeStr_conversion' |
---|
| 353 | |
---|
| 354 | if StringDT[0:1] == 'h': |
---|
| 355 | print fname + '_____________________________________________________________' |
---|
| 356 | print datetimeStr_conversion.__doc__ |
---|
| 357 | quit() |
---|
| 358 | |
---|
| 359 | if typeSi == 'cfTime': |
---|
| 360 | timeval = np.float(StringDT.split(',')[0]) |
---|
| 361 | tunits = StringDT.split(',')[1].split(' ')[0] |
---|
| 362 | Srefdate = StringDT.split(',')[1].split(' ')[2] |
---|
| 363 | |
---|
| 364 | # Does reference date contain a time value [YYYY]-[MM]-[DD] [HH]:[MI]:[SS] |
---|
| 365 | ## |
---|
| 366 | yrref=Srefdate[0:4] |
---|
| 367 | monref=Srefdate[5:7] |
---|
| 368 | dayref=Srefdate[8:10] |
---|
| 369 | |
---|
| 370 | trefT = Srefdate.find(':') |
---|
| 371 | if not trefT == -1: |
---|
| 372 | # print ' ' + fname + ': refdate with time!' |
---|
| 373 | horref=Srefdate[11:13] |
---|
| 374 | minref=Srefdate[14:16] |
---|
| 375 | secref=Srefdate[17:19] |
---|
| 376 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
| 377 | '_' + horref + ':' + minref + ':' + secref) |
---|
| 378 | else: |
---|
| 379 | refdate = datetimeStr_datetime( yrref + '-' + monref + '-' + dayref + \ |
---|
| 380 | + '_00:00:00') |
---|
| 381 | |
---|
| 382 | if tunits == 'weeks': |
---|
| 383 | newdate = refdate + dt.timedelta(weeks=float(timeval)) |
---|
| 384 | elif tunits == 'days': |
---|
| 385 | newdate = refdate + dt.timedelta(days=float(timeval)) |
---|
| 386 | elif tunits == 'hours': |
---|
| 387 | newdate = refdate + dt.timedelta(hours=float(timeval)) |
---|
| 388 | elif tunits == 'minutes': |
---|
| 389 | newdate = refdate + dt.timedelta(minutes=float(timeval)) |
---|
| 390 | elif tunits == 'seconds': |
---|
| 391 | newdate = refdate + dt.timedelta(seconds=float(timeval)) |
---|
| 392 | elif tunits == 'milliseconds': |
---|
| 393 | newdate = refdate + dt.timedelta(milliseconds=float(timeval)) |
---|
| 394 | else: |
---|
| 395 | print errormsg |
---|
| 396 | print ' timeref_datetime: time units "' + tunits + '" not ready!!!!' |
---|
| 397 | quit(-1) |
---|
| 398 | |
---|
| 399 | yr = newdate.year |
---|
| 400 | mo = newdate.month |
---|
| 401 | da = newdate.day |
---|
| 402 | ho = newdate.hour |
---|
| 403 | mi = newdate.minute |
---|
| 404 | se = newdate.second |
---|
| 405 | elif typeSi == 'matYmdHMS': |
---|
| 406 | yr = StringDT[0] |
---|
| 407 | mo = StringDT[1] |
---|
| 408 | da = StringDT[2] |
---|
| 409 | ho = StringDT[3] |
---|
| 410 | mi = StringDT[4] |
---|
| 411 | se = StringDT[5] |
---|
| 412 | elif typeSi == 'YmdHMS': |
---|
| 413 | yr = int(StringDT[0:4]) |
---|
| 414 | mo = int(StringDT[4:6]) |
---|
| 415 | da = int(StringDT[6:8]) |
---|
| 416 | ho = int(StringDT[8:10]) |
---|
| 417 | mi = int(StringDT[10:12]) |
---|
| 418 | se = int(StringDT[12:14]) |
---|
| 419 | elif typeSi == 'Y-m-d_H:M:S': |
---|
| 420 | dateDT = StringDT.split('_') |
---|
| 421 | dateD = dateDT[0].split('-') |
---|
| 422 | timeT = dateDT[1].split(':') |
---|
| 423 | yr = int(dateD[0]) |
---|
| 424 | mo = int(dateD[1]) |
---|
| 425 | da = int(dateD[2]) |
---|
| 426 | ho = int(timeT[0]) |
---|
| 427 | mi = int(timeT[1]) |
---|
| 428 | se = int(timeT[2]) |
---|
| 429 | elif typeSi == 'Y-m-d H:M:S': |
---|
| 430 | dateDT = StringDT.split(' ') |
---|
| 431 | dateD = dateDT[0].split('-') |
---|
| 432 | timeT = dateDT[1].split(':') |
---|
| 433 | yr = int(dateD[0]) |
---|
| 434 | mo = int(dateD[1]) |
---|
| 435 | da = int(dateD[2]) |
---|
| 436 | ho = int(timeT[0]) |
---|
| 437 | mi = int(timeT[1]) |
---|
| 438 | se = int(timeT[2]) |
---|
| 439 | elif typeSi == 'Y/m/d H-M-S': |
---|
| 440 | dateDT = StringDT.split(' ') |
---|
| 441 | dateD = dateDT[0].split('/') |
---|
| 442 | timeT = dateDT[1].split('-') |
---|
| 443 | yr = int(dateD[0]) |
---|
| 444 | mo = int(dateD[1]) |
---|
| 445 | da = int(dateD[2]) |
---|
| 446 | ho = int(timeT[0]) |
---|
| 447 | mi = int(timeT[1]) |
---|
| 448 | se = int(timeT[2]) |
---|
| 449 | elif typeSi == 'WRFdatetime': |
---|
| 450 | yr = int(StringDT[0])*1000 + int(StringDT[1])*100 + int(StringDT[2])*10 + \ |
---|
| 451 | int(StringDT[3]) |
---|
| 452 | mo = int(StringDT[5])*10 + int(StringDT[6]) |
---|
| 453 | da = int(StringDT[8])*10 + int(StringDT[9]) |
---|
| 454 | ho = int(StringDT[11])*10 + int(StringDT[12]) |
---|
| 455 | mi = int(StringDT[14])*10 + int(StringDT[15]) |
---|
| 456 | se = int(StringDT[17])*10 + int(StringDT[18]) |
---|
| 457 | else: |
---|
| 458 | print errormsg |
---|
| 459 | print ' ' + fname + ': type of String input date "' + typeSi + \ |
---|
| 460 | '" not ready !!!!' |
---|
| 461 | quit(-1) |
---|
| 462 | |
---|
| 463 | if typeSo == 'matYmdHMS': |
---|
| 464 | dateYmdHMS = np.zeros((6), dtype=int) |
---|
| 465 | dateYmdHMS[0] = yr |
---|
| 466 | dateYmdHMS[1] = mo |
---|
| 467 | dateYmdHMS[2] = da |
---|
| 468 | dateYmdHMS[3] = ho |
---|
| 469 | dateYmdHMS[4] = mi |
---|
| 470 | dateYmdHMS[5] = se |
---|
| 471 | elif typeSo == 'YmdHMS': |
---|
| 472 | dateYmdHMS = str(yr).zfill(4) + str(mo).zfill(2) + str(da).zfill(2) + \ |
---|
| 473 | str(ho).zfill(2) + str(mi).zfill(2) + str(se).zfill(2) |
---|
| 474 | elif typeSo == 'Y-m-d_H:M:S': |
---|
| 475 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
| 476 | str(da).zfill(2) + '_' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
| 477 | str(se).zfill(2) |
---|
| 478 | elif typeSo == 'Y-m-d H:M:S': |
---|
| 479 | dateYmdHMS = str(yr).zfill(4) + '-' + str(mo).zfill(2) + '-' + \ |
---|
| 480 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + ':' + str(mi).zfill(2) + ':' + \ |
---|
| 481 | str(se).zfill(2) |
---|
| 482 | elif typeSo == 'Y/m/d H-M-S': |
---|
| 483 | dateYmdHMS = str(yr).zfill(4) + '/' + str(mo).zfill(2) + '/' + \ |
---|
| 484 | str(da).zfill(2) + ' ' + str(ho).zfill(2) + '-' + str(mi).zfill(2) + '-' + \ |
---|
| 485 | str(se).zfill(2) |
---|
| 486 | elif typeSo == 'WRFdatetime': |
---|
| 487 | dateYmdHMS = [] |
---|
| 488 | yM = yr/1000 |
---|
| 489 | yC = (yr-yM*1000)/100 |
---|
| 490 | yD = (yr-yM*1000-yC*100)/10 |
---|
| 491 | yU = yr-yM*1000-yC*100-yD*10 |
---|
| 492 | |
---|
| 493 | mD = mo/10 |
---|
| 494 | mU = mo-mD*10 |
---|
| 495 | |
---|
| 496 | dD = da/10 |
---|
| 497 | dU = da-dD*10 |
---|
| 498 | |
---|
| 499 | hD = ho/10 |
---|
| 500 | hU = ho-hD*10 |
---|
| 501 | |
---|
| 502 | miD = mi/10 |
---|
| 503 | miU = mi-miD*10 |
---|
| 504 | |
---|
| 505 | sD = se/10 |
---|
| 506 | sU = se-sD*10 |
---|
| 507 | |
---|
| 508 | dateYmdHMS.append(str(yM)) |
---|
| 509 | dateYmdHMS.append(str(yC)) |
---|
| 510 | dateYmdHMS.append(str(yD)) |
---|
| 511 | dateYmdHMS.append(str(yU)) |
---|
| 512 | dateYmdHMS.append('-') |
---|
| 513 | dateYmdHMS.append(str(mD)) |
---|
| 514 | dateYmdHMS.append(str(mU)) |
---|
| 515 | dateYmdHMS.append('-') |
---|
| 516 | dateYmdHMS.append(str(dD)) |
---|
| 517 | dateYmdHMS.append(str(dU)) |
---|
| 518 | dateYmdHMS.append('_') |
---|
| 519 | dateYmdHMS.append(str(hD)) |
---|
| 520 | dateYmdHMS.append(str(hU)) |
---|
| 521 | dateYmdHMS.append(':') |
---|
| 522 | dateYmdHMS.append(str(miD)) |
---|
| 523 | dateYmdHMS.append(str(miU)) |
---|
| 524 | dateYmdHMS.append(':') |
---|
| 525 | dateYmdHMS.append(str(sD)) |
---|
| 526 | dateYmdHMS.append(str(sU)) |
---|
| 527 | else: |
---|
| 528 | print errormsg |
---|
| 529 | print ' ' + fname + ': type of output date "' + typeSo + '" not ready !!!!' |
---|
| 530 | quit(-1) |
---|
| 531 | |
---|
| 532 | return dateYmdHMS |
---|
| 533 | |
---|
[330] | 534 | def coincident_CFtimes(tvalB, tunitA, tunitB): |
---|
| 535 | """ Function to make coincident times for two different sets of CFtimes |
---|
| 536 | tvalB= time values B |
---|
| 537 | tunitA= time units times A to which we want to make coincidence |
---|
| 538 | tunitB= time units times B |
---|
| 539 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
| 540 | 'hours since 1949-12-01 00:00:00') |
---|
| 541 | [ 0. 3600. 7200. 10800. 14400. 18000. 21600. 25200. 28800. 32400.] |
---|
| 542 | >>> coincident_CFtimes(np.arange(10),'seconds since 1949-12-01 00:00:00', |
---|
| 543 | 'hours since 1979-12-01 00:00:00') |
---|
| 544 | [ 9.46684800e+08 9.46688400e+08 9.46692000e+08 9.46695600e+08 |
---|
| 545 | 9.46699200e+08 9.46702800e+08 9.46706400e+08 9.46710000e+08 |
---|
| 546 | 9.46713600e+08 9.46717200e+08] |
---|
| 547 | """ |
---|
| 548 | import datetime as dt |
---|
| 549 | fname = 'coincident_CFtimes' |
---|
| 550 | |
---|
| 551 | trefA = tunitA.split(' ')[2] + ' ' + tunitA.split(' ')[3] |
---|
| 552 | trefB = tunitB.split(' ')[2] + ' ' + tunitB.split(' ')[3] |
---|
| 553 | tuA = tunitA.split(' ')[0] |
---|
| 554 | tuB = tunitB.split(' ')[0] |
---|
| 555 | |
---|
| 556 | if tuA != tuB: |
---|
| 557 | if tuA == 'microseconds': |
---|
| 558 | if tuB == 'microseconds': |
---|
| 559 | tB = tvalB*1. |
---|
| 560 | elif tuB == 'seconds': |
---|
| 561 | tB = tvalB*10.e6 |
---|
| 562 | elif tuB == 'minutes': |
---|
| 563 | tB = tvalB*60.*10.e6 |
---|
| 564 | elif tuB == 'hours': |
---|
| 565 | tB = tvalB*3600.*10.e6 |
---|
| 566 | elif tuB == 'days': |
---|
| 567 | tB = tvalB*3600.*24.*10.e6 |
---|
| 568 | else: |
---|
| 569 | print errormsg |
---|
| 570 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
| 571 | "' & '" + tuB + "' not ready !!" |
---|
| 572 | quit(-1) |
---|
| 573 | elif tuA == 'seconds': |
---|
| 574 | if tuB == 'microseconds': |
---|
| 575 | tB = tvalB/10.e6 |
---|
| 576 | elif tuB == 'seconds': |
---|
| 577 | tB = tvalB*1. |
---|
| 578 | elif tuB == 'minutes': |
---|
| 579 | tB = tvalB*60. |
---|
| 580 | elif tuB == 'hours': |
---|
| 581 | tB = tvalB*3600. |
---|
| 582 | elif tuB == 'days': |
---|
| 583 | tB = tvalB*3600.*24. |
---|
| 584 | else: |
---|
| 585 | print errormsg |
---|
| 586 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
| 587 | "' & '" + tuB + "' not ready !!" |
---|
| 588 | quit(-1) |
---|
| 589 | elif tuA == 'minutes': |
---|
| 590 | if tuB == 'microseconds': |
---|
| 591 | tB = tvalB/(60.*10.e6) |
---|
| 592 | elif tuB == 'seconds': |
---|
| 593 | tB = tvalB/60. |
---|
| 594 | elif tuB == 'minutes': |
---|
| 595 | tB = tvalB*1. |
---|
| 596 | elif tuB == 'hours': |
---|
| 597 | tB = tvalB*60. |
---|
| 598 | elif tuB == 'days': |
---|
| 599 | tB = tvalB*60.*24. |
---|
| 600 | else: |
---|
| 601 | print errormsg |
---|
| 602 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
| 603 | "' & '" + tuB + "' not ready !!" |
---|
| 604 | quit(-1) |
---|
| 605 | elif tuA == 'hours': |
---|
| 606 | if tuB == 'microseconds': |
---|
| 607 | tB = tvalB/(3600.*10.e6) |
---|
| 608 | elif tuB == 'seconds': |
---|
| 609 | tB = tvalB/3600. |
---|
| 610 | elif tuB == 'minutes': |
---|
| 611 | tB = tvalB/60. |
---|
| 612 | elif tuB == 'hours': |
---|
| 613 | tB = tvalB*1. |
---|
| 614 | elif tuB == 'days': |
---|
| 615 | tB = tvalB*24. |
---|
| 616 | else: |
---|
| 617 | print errormsg |
---|
| 618 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
| 619 | "' & '" + tuB + "' not ready !!" |
---|
| 620 | quit(-1) |
---|
| 621 | elif tuA == 'days': |
---|
| 622 | if tuB == 'microseconds': |
---|
| 623 | tB = tvalB/(24.*3600.*10.e6) |
---|
| 624 | elif tuB == 'seconds': |
---|
| 625 | tB = tvalB/(24.*3600.) |
---|
| 626 | elif tuB == 'minutes': |
---|
| 627 | tB = tvalB/(24.*60.) |
---|
| 628 | elif tuB == 'hours': |
---|
| 629 | tB = tvalB/24. |
---|
| 630 | elif tuB == 'days': |
---|
| 631 | tB = tvalB*1. |
---|
| 632 | else: |
---|
| 633 | print errormsg |
---|
| 634 | print ' ' + fname + ": combination of time untis: '" + tuA + \ |
---|
| 635 | "' & '" + tuB + "' not ready !!" |
---|
| 636 | quit(-1) |
---|
| 637 | else: |
---|
| 638 | print errormsg |
---|
| 639 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
| 640 | quit(-1) |
---|
| 641 | else: |
---|
| 642 | tB = tvalB*1. |
---|
| 643 | |
---|
| 644 | if trefA != trefB: |
---|
| 645 | trefTA = dt.datetime.strptime(trefA, '%Y-%m-%d %H:%M:%S') |
---|
| 646 | trefTB = dt.datetime.strptime(trefB, '%Y-%m-%d %H:%M:%S') |
---|
| 647 | |
---|
| 648 | difft = trefTB - trefTA |
---|
| 649 | diffv = difft.days*24.*3600.*10.e6 + difft.seconds*10.e6 + difft.microseconds |
---|
| 650 | print ' ' + fname + ': different reference refA:',trefTA,'refB',trefTB |
---|
| 651 | print ' difference:',difft,':',diffv,'microseconds' |
---|
| 652 | |
---|
| 653 | if tuA == 'microseconds': |
---|
| 654 | tB = tB + diffv |
---|
| 655 | elif tuA == 'seconds': |
---|
| 656 | tB = tB + diffv/10.e6 |
---|
| 657 | elif tuA == 'minutes': |
---|
| 658 | tB = tB + diffv/(60.*10.e6) |
---|
| 659 | elif tuA == 'hours': |
---|
| 660 | tB = tB + diffv/(3600.*10.e6) |
---|
| 661 | elif tuA == 'dayss': |
---|
| 662 | tB = tB + diffv/(24.*3600.*10.e6) |
---|
| 663 | else: |
---|
| 664 | print errormsg |
---|
| 665 | print ' ' + fname + ": time untis: '" + tuA + "' not ready !!" |
---|
| 666 | quit(-1) |
---|
| 667 | |
---|
| 668 | return tB |
---|
| 669 | |
---|
[333] | 670 | |
---|
| 671 | def slice_variable(varobj, dimslice): |
---|
| 672 | """ Function to return a slice of a given variable according to values to its |
---|
| 673 | dimensions |
---|
| 674 | slice_variable(varobj, dimslice) |
---|
| 675 | varobj= object wit the variable |
---|
| 676 | dimslice= [[dimname1]:[value1]|[[dimname2]:[value2], ...] pairs of dimension |
---|
| 677 | [value]: |
---|
| 678 | * [integer]: which value of the dimension |
---|
| 679 | * -1: all along the dimension |
---|
| 680 | * -9: last value of the dimension |
---|
| 681 | * [beg]@[end] slice from [beg] to [end] |
---|
| 682 | """ |
---|
| 683 | fname = 'slice_variable' |
---|
| 684 | |
---|
| 685 | if varobj == 'h': |
---|
| 686 | print fname + '_____________________________________________________________' |
---|
| 687 | print slice_variable.__doc__ |
---|
| 688 | quit() |
---|
| 689 | |
---|
| 690 | vardims = varobj.dimensions |
---|
| 691 | Ndimvar = len(vardims) |
---|
| 692 | |
---|
| 693 | Ndimcut = len(dimslice.split('|')) |
---|
| 694 | dimsl = dimslice.split('|') |
---|
| 695 | |
---|
| 696 | varvalsdim = [] |
---|
| 697 | dimnslice = [] |
---|
| 698 | |
---|
| 699 | for idd in range(Ndimvar): |
---|
| 700 | for idc in range(Ndimcut): |
---|
| 701 | dimcutn = dimsl[idc].split(':')[0] |
---|
| 702 | dimcutv = dimsl[idc].split(':')[1] |
---|
| 703 | if vardims[idd] == dimcutn: |
---|
| 704 | posfrac = dimcutv.find('@') |
---|
| 705 | if posfrac != -1: |
---|
| 706 | inifrac = int(dimcutv.split('@')[0]) |
---|
| 707 | endfrac = int(dimcutv.split('@')[1]) |
---|
| 708 | varvalsdim.append(slice(inifrac,endfrac)) |
---|
| 709 | dimnslice.append(vardims[idd]) |
---|
| 710 | else: |
---|
| 711 | if int(dimcutv) == -1: |
---|
| 712 | varvalsdim.append(slice(0,varobj.shape[idd])) |
---|
| 713 | dimnslice.append(vardims[idd]) |
---|
| 714 | elif int(dimcutv) == -9: |
---|
| 715 | varvalsdim.append(int(varobj.shape[idd])-1) |
---|
| 716 | else: |
---|
| 717 | varvalsdim.append(int(dimcutv)) |
---|
| 718 | break |
---|
| 719 | |
---|
| 720 | varvalues = varobj[tuple(varvalsdim)] |
---|
| 721 | |
---|
| 722 | return varvalues, dimnslice |
---|
| 723 | |
---|
[337] | 724 | def func_compute_varNOcheck(ncobj, varn): |
---|
| 725 | """ Function to compute variables which are not originary in the file |
---|
| 726 | ncobj= netCDF object file |
---|
| 727 | varn = variable to compute: |
---|
| 728 | 'WRFdens': air density from WRF variables |
---|
| 729 | 'WRFght': geopotential height from WRF variables |
---|
| 730 | 'WRFp': pressure from WRF variables |
---|
| 731 | 'WRFrh': relative humidty fom WRF variables |
---|
| 732 | 'WRFt': temperature from WRF variables |
---|
| 733 | 'WRFz': height from WRF variables |
---|
| 734 | """ |
---|
| 735 | fname = 'compute_varNOcheck' |
---|
[333] | 736 | |
---|
[337] | 737 | if varn == 'WRFdens': |
---|
| 738 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
| 739 | # 'DNW)/g ...' |
---|
| 740 | grav = 9.81 |
---|
| 741 | |
---|
| 742 | # Just we need in in absolute values: Size of the central grid cell |
---|
| 743 | ## dxval = ncobj.getncattr('DX') |
---|
| 744 | ## dyval = ncobj.getncattr('DY') |
---|
| 745 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 746 | ## area = dxval*dyval*mapfac |
---|
| 747 | dimensions = ncobj.variables['MU'].dimensions |
---|
| 748 | |
---|
| 749 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
| 750 | dnw = ncobj.variables['DNW'][:] |
---|
| 751 | |
---|
| 752 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
| 753 | dtype=np.float) |
---|
| 754 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
| 755 | |
---|
| 756 | for it in range(mu.shape[0]): |
---|
| 757 | for iz in range(dnw.shape[1]): |
---|
| 758 | levval.fill(np.abs(dnw[it,iz])) |
---|
| 759 | varNOcheck[it,iz,:,:] = levval |
---|
| 760 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
| 761 | |
---|
| 762 | elif varn == 'WRFght': |
---|
| 763 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 764 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 765 | dimensions = ncobj.variables['PH'].dimensions |
---|
| 766 | |
---|
| 767 | elif varn == 'WRFp': |
---|
| 768 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
| 769 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 770 | dimensions = ncobj.variables['P'].dimensions |
---|
| 771 | |
---|
| 772 | elif varn == 'WRFrh': |
---|
| 773 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
| 774 | # ' equation (T,P) ...' |
---|
| 775 | p0=100000. |
---|
| 776 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 777 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 778 | qv = ncobj.variables['QVAPOR'][:] |
---|
| 779 | |
---|
| 780 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 781 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 782 | |
---|
| 783 | varNOcheckv = qv/data2 |
---|
| 784 | dimensions = ncobj.variables['P'].dimensions |
---|
| 785 | |
---|
| 786 | elif varn == 'WRFt': |
---|
| 787 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
| 788 | p0=100000. |
---|
| 789 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 790 | |
---|
| 791 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 792 | dimensions = ncobj.variables['T'].dimensions |
---|
| 793 | |
---|
| 794 | elif varn == 'WRFz': |
---|
| 795 | grav = 9.81 |
---|
| 796 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 797 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
| 798 | dimensions = ncobj.variables['PH'].dimensions |
---|
| 799 | |
---|
| 800 | else: |
---|
| 801 | print erromsg |
---|
| 802 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
| 803 | quit(-1) |
---|
| 804 | |
---|
| 805 | return varNOcheck |
---|
| 806 | |
---|
| 807 | class compute_varNOcheck(object): |
---|
| 808 | """ Class to compute variables which are not originary in the file |
---|
| 809 | ncobj= netCDF object file |
---|
| 810 | varn = variable to compute: |
---|
| 811 | 'WRFdens': air density from WRF variables |
---|
| 812 | 'WRFght': geopotential height from WRF variables |
---|
| 813 | 'WRFp': pressure from WRF variables |
---|
| 814 | 'WRFrh': relative humidty fom WRF variables |
---|
[343] | 815 | 'WRFT': CF-time from WRF variables |
---|
[337] | 816 | 'WRFt': temperature from WRF variables |
---|
[339] | 817 | 'WRFtd': dew-point temperature from WRF variables |
---|
| 818 | 'WRFws': wind speed from WRF variables |
---|
| 819 | 'WRFwd': wind direction from WRF variables |
---|
[337] | 820 | 'WRFz': height from WRF variables |
---|
| 821 | """ |
---|
| 822 | fname = 'compute_varNOcheck' |
---|
| 823 | |
---|
| 824 | def __init__(self, ncobj, varn): |
---|
| 825 | |
---|
| 826 | if ncobj is None: |
---|
| 827 | self = None |
---|
| 828 | self.dimensions = None |
---|
| 829 | self.shape = None |
---|
| 830 | self.__values = None |
---|
| 831 | else: |
---|
| 832 | if varn == 'WRFdens': |
---|
| 833 | # print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
| 834 | # 'DNW)/g ...' |
---|
| 835 | grav = 9.81 |
---|
| 836 | |
---|
| 837 | # Just we need in in absolute values: Size of the central grid cell |
---|
| 838 | ## dxval = ncobj.getncattr('DX') |
---|
| 839 | ## dyval = ncobj.getncattr('DY') |
---|
| 840 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 841 | ## area = dxval*dyval*mapfac |
---|
| 842 | dimensions = ncobj.variables['MU'].dimensions |
---|
| 843 | shape = ncobj.variables['MU'].shape |
---|
| 844 | |
---|
| 845 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
| 846 | dnw = ncobj.variables['DNW'][:] |
---|
| 847 | |
---|
| 848 | varNOcheckv = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
| 849 | dtype=np.float) |
---|
| 850 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
| 851 | |
---|
| 852 | for it in range(mu.shape[0]): |
---|
| 853 | for iz in range(dnw.shape[1]): |
---|
| 854 | levval.fill(np.abs(dnw[it,iz])) |
---|
| 855 | varNOcheck[it,iz,:,:] = levval |
---|
| 856 | varNOcheck[it,iz,:,:] = mu[it,:,:]*varNOcheck[it,iz,:,:]/grav |
---|
| 857 | |
---|
| 858 | elif varn == 'WRFght': |
---|
| 859 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 860 | varNOcheckv = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 861 | dimensions = ncobj.variables['PH'].dimensions |
---|
| 862 | shape = ncobj.variables['PH'].shape |
---|
| 863 | |
---|
| 864 | elif varn == 'WRFp': |
---|
| 865 | # print ' ' + fname + ': Retrieving pressure value from WRF as P + PB' |
---|
| 866 | varNOcheckv = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 867 | dimensions = ncobj.variables['P'].dimensions |
---|
| 868 | shape = ncobj.variables['P'].shape |
---|
| 869 | |
---|
| 870 | elif varn == 'WRFrh': |
---|
| 871 | # print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" +\ |
---|
| 872 | # ' equation (T,P) ...' |
---|
| 873 | p0=100000. |
---|
| 874 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 875 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 876 | qv = ncobj.variables['QVAPOR'][:] |
---|
| 877 | |
---|
| 878 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 879 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 880 | |
---|
| 881 | varNOcheckv = qv/data2 |
---|
| 882 | dimensions = ncobj.variables['P'].dimensions |
---|
| 883 | shape = ncobj.variables['P'].shape |
---|
| 884 | |
---|
[343] | 885 | elif varn == 'WRFT': |
---|
| 886 | # To compute CF-times from WRF kind |
---|
| 887 | # |
---|
| 888 | import datetime as dt |
---|
| 889 | |
---|
| 890 | times = ncobj.variables['Times'] |
---|
| 891 | dimt = times.shape[0] |
---|
| 892 | varNOcheckv = np.zeros((dimt), dtype=np.float64) |
---|
| 893 | self.unitsval = 'seconds since 1949-12-01 00:00:00' |
---|
| 894 | refdate = datetimeStr_datetime('1949-12-01_00:00:00') |
---|
| 895 | |
---|
| 896 | dimensions = tuple([ncobj.variables['Times'].dimensions[0]]) |
---|
| 897 | shape = tuple([dimt]) |
---|
| 898 | |
---|
| 899 | for it in range(dimt): |
---|
| 900 | datevalS = datetimeStr_conversion(times[it,:], 'WRFdatetime', \ |
---|
| 901 | 'YmdHMS') |
---|
| 902 | dateval = dt.datetime.strptime(datevalS, '%Y%m%d%H%M%S') |
---|
| 903 | difft = dateval - refdate |
---|
| 904 | varNOcheckv[it] = difft.days*3600.*24. + difft.seconds + \ |
---|
| 905 | np.float(int(difft.microseconds/10.e6)) |
---|
| 906 | |
---|
[337] | 907 | elif varn == 'WRFt': |
---|
| 908 | # print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
| 909 | p0=100000. |
---|
| 910 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 911 | |
---|
| 912 | varNOcheckv = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 913 | dimensions = ncobj.variables['T'].dimensions |
---|
| 914 | shape = ncobj.variables['P'].shape |
---|
| 915 | |
---|
[339] | 916 | elif varn == 'WRFtd': |
---|
| 917 | # print ' ' + main + ': computing dew-point temperature from WRF as inv_potT(T + 300) and Tetens...' |
---|
| 918 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
| 919 | p0=100000. |
---|
| 920 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 921 | |
---|
| 922 | temp = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 923 | |
---|
| 924 | qv = ncobj.variables['QVAPOR'][:] |
---|
| 925 | |
---|
| 926 | tk = temp - 273.15 |
---|
| 927 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 928 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 929 | |
---|
| 930 | rh = qv/data2 |
---|
| 931 | |
---|
| 932 | pa = rh * data1/100. |
---|
| 933 | varNOcheckv = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 934 | |
---|
| 935 | dimensions = ncobj.variables['T'].dimensions |
---|
| 936 | shape = ncobj.variables['P'].shape |
---|
| 937 | |
---|
| 938 | elif varn == 'WRFws': |
---|
| 939 | # print ' ' + main + ': computing wind speed from WRF as SQRT(U**2 + V**2) ...' |
---|
| 940 | uwind = ncobj.variables['U'][:] |
---|
| 941 | vwind = ncobj.variables['V'][:] |
---|
| 942 | dx = uwind.shape[3] |
---|
| 943 | dy = vwind.shape[2] |
---|
| 944 | |
---|
| 945 | # de-staggering |
---|
| 946 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
| 947 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
| 948 | |
---|
| 949 | varNOcheckv = np.sqrt(ua*ua + va*va) |
---|
| 950 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
| 951 | shape = ua.shape |
---|
| 952 | |
---|
| 953 | elif varn == 'WRFwd': |
---|
| 954 | # print ' ' + main + ': computing wind direction from WRF as ATAN2PI(V,U) ...' |
---|
| 955 | uwind = ncobj.variables['U'][:] |
---|
| 956 | vwind = ncobj.variables['V'][:] |
---|
| 957 | dx = uwind.shape[3] |
---|
| 958 | dy = vwind.shape[2] |
---|
| 959 | |
---|
| 960 | # de-staggering |
---|
| 961 | ua = 0.5*(uwind[:,:,:,0:dx-1] + uwind[:,:,:,1:dx]) |
---|
| 962 | va = 0.5*(vwind[:,:,0:dy-1,:] + vwind[:,:,1:dy,:]) |
---|
| 963 | |
---|
| 964 | theta = np.arctan2(ua, va) |
---|
| 965 | dimensions = tuple(['Time','bottom_top','south_north','west_east']) |
---|
| 966 | shape = ua.shape |
---|
| 967 | varNOcheckv = 360.*(1. + theta/(2.*np.pi)) |
---|
| 968 | |
---|
[337] | 969 | elif varn == 'WRFz': |
---|
| 970 | grav = 9.81 |
---|
| 971 | # print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 972 | varNOcheckv = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/grav |
---|
| 973 | dimensions = ncobj.variables['PH'].dimensions |
---|
| 974 | shape = ncobj.variables['PH'].shape |
---|
| 975 | |
---|
| 976 | else: |
---|
[339] | 977 | print errormsg |
---|
[337] | 978 | print ' ' + fname + ": variable '" + varn + "' nor ready !!" |
---|
| 979 | quit(-1) |
---|
| 980 | |
---|
| 981 | self.dimensions = dimensions |
---|
| 982 | self.shape = shape |
---|
| 983 | self.__values = varNOcheckv |
---|
| 984 | |
---|
| 985 | def __getitem__(self,elem): |
---|
| 986 | return self.__values[elem] |
---|
| 987 | |
---|
[330] | 988 | ####### ###### ##### #### ### ## # |
---|
| 989 | |
---|
| 990 | strCFt="Refdate,tunits (CF reference date [YYYY][MM][DD][HH][MI][SS] format and " + \ |
---|
| 991 | " and time units: 'weeks', 'days', 'hours', 'miuntes', 'seconds')" |
---|
| 992 | |
---|
| 993 | kindobs=['multi-points', 'single-station', 'trajectory'] |
---|
| 994 | strkObs="kind of observations; 'multi-points': multiple individual punctual obs " + \ |
---|
| 995 | "(e.g., lightning strikes), 'single-station': single station on a fixed position,"+\ |
---|
| 996 | "'trajectory': following a trajectory" |
---|
[337] | 997 | simopers = ['sumc','subc','mulc','divc'] |
---|
| 998 | opersinf = 'sumc,[constant]: add [constant] to variables values; subc,[constant]: '+ \ |
---|
| 999 | 'substract [constant] to variables values; mulc,[constant]: multipy by ' + \ |
---|
| 1000 | '[constant] to variables values; divc,[constant]: divide by [constant] to ' + \ |
---|
| 1001 | 'variables values' |
---|
[343] | 1002 | varNOcheck = ['WRFdens', 'WRFght', 'WRFp', 'WRFrh', 'WRFT', 'WRFt', 'WRFtd', 'WRFws',\ |
---|
[339] | 1003 | 'WRFwd', 'WRFz'] |
---|
[337] | 1004 | varNOcheckinf = "'WRFdens': air density from WRF variables; 'WRFght': geopotential"+ \ |
---|
| 1005 | " height from WRF variables; 'WRFp': pressure from WRF variables; 'WRFrh': " + \ |
---|
[343] | 1006 | "relative humidty fom WRF variables; 'WRFT': CF-time from WRF variables'WRFt'; " + \ |
---|
| 1007 | " temperature from WRF variables; 'WRFtd': dew-point temperature from WRF " + \ |
---|
| 1008 | "variables; 'WRFws': wind speed from WRF variables; 'WRFwd': wind speed " + \ |
---|
| 1009 | "direction from WRF variables; 'WRFz': height from WRF variables" |
---|
[330] | 1010 | |
---|
[337] | 1011 | dimshelp = "[DIM]@[simdim]@[obsdim] ',' list of couples of dimensions names from " + \ |
---|
| 1012 | "each source ([DIM]='X','Y','Z','T'; None, no value)" |
---|
| 1013 | vardimshelp = "[DIM]@[simvardim]@[obsvardim] ',' list of couples of variables " + \ |
---|
| 1014 | "names with dimensions values from each source ([DIM]='X','Y','Z','T'; None, " + \ |
---|
| 1015 | "no value, WRFdiagnosted variables also available: " + varNOcheckinf + ")" |
---|
| 1016 | varshelp="[simvar]@[obsvar]@[[oper]@[val]] ',' list of couples of variables to " + \ |
---|
| 1017 | "validate and if necessary operation and value operations: " + opersinf + \ |
---|
| 1018 | "(WRFdiagnosted variables also available: " + varNOcheckinf + ")" |
---|
| 1019 | statsn = ['minimum', 'maximum', 'mean', 'mean2', 'standard deviation'] |
---|
[344] | 1020 | gstatsn = ['bias', 'simobs_mean', 'sim_obsmin', 'sim_obsmax', 'sim_obsmean', 'mae', \ |
---|
| 1021 | 'rmse', 'r_pearsoncorr', 'p_pearsoncorr'] |
---|
[346] | 1022 | ostatsn = ['number of points', 'minimum', 'maximum', 'mean', 'mean2', \ |
---|
| 1023 | 'standard deviation'] |
---|
[337] | 1024 | |
---|
[330] | 1025 | parser = OptionParser() |
---|
[337] | 1026 | parser.add_option("-d", "--dimensions", dest="dims", help=dimshelp, metavar="VALUES") |
---|
[330] | 1027 | parser.add_option("-D", "--vardimensions", dest="vardims", |
---|
[337] | 1028 | help=vardimshelp, metavar="VALUES") |
---|
[330] | 1029 | parser.add_option("-k", "--kindObs", dest="obskind", type='choice', choices=kindobs, |
---|
| 1030 | help=strkObs, metavar="FILE") |
---|
| 1031 | parser.add_option("-l", "--stationLocation", dest="stloc", |
---|
| 1032 | help="longitude, latitude and height of the station (only for 'single-station')", |
---|
| 1033 | metavar="FILE") |
---|
| 1034 | parser.add_option("-o", "--observation", dest="fobs", |
---|
| 1035 | help="observations file to validate", metavar="FILE") |
---|
| 1036 | parser.add_option("-s", "--simulation", dest="fsim", |
---|
| 1037 | help="simulation file to validate", metavar="FILE") |
---|
[337] | 1038 | parser.add_option("-t", "--trajectoryfile", dest="trajf", |
---|
| 1039 | help="file with grid points of the trajectory in the simulation grid ('simtrj')", |
---|
| 1040 | metavar="FILE") |
---|
[330] | 1041 | parser.add_option("-v", "--variables", dest="vars", |
---|
[337] | 1042 | help=varshelp, metavar="VALUES") |
---|
[330] | 1043 | |
---|
| 1044 | (opts, args) = parser.parse_args() |
---|
| 1045 | |
---|
| 1046 | ####### ####### |
---|
| 1047 | ## MAIN |
---|
| 1048 | ####### |
---|
| 1049 | |
---|
| 1050 | ofile='validation_sim.nc' |
---|
| 1051 | |
---|
| 1052 | if opts.dims is None: |
---|
| 1053 | print errormsg |
---|
| 1054 | print ' ' + main + ': No list of dimensions are provided!!' |
---|
| 1055 | print ' a ',' list of values X@[dimxsim]@[dimxobs],...,T@[dimtsim]@[dimtobs]'+\ |
---|
| 1056 | ' is needed' |
---|
| 1057 | quit(-1) |
---|
| 1058 | else: |
---|
[340] | 1059 | simdims = {} |
---|
| 1060 | obsdims = {} |
---|
[330] | 1061 | print main +': couple of dimensions _______' |
---|
| 1062 | dims = {} |
---|
| 1063 | ds = opts.dims.split(',') |
---|
| 1064 | for d in ds: |
---|
| 1065 | dsecs = d.split('@') |
---|
| 1066 | if len(dsecs) != 3: |
---|
| 1067 | print errormsg |
---|
| 1068 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
| 1069 | print ' [DIM]@[dimnsim]@[dimnobs]' |
---|
| 1070 | quit(-1) |
---|
| 1071 | dims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
[340] | 1072 | simdims[dsecs[0]] = dsecs[1] |
---|
| 1073 | obsdims[dsecs[0]] = dsecs[2] |
---|
| 1074 | |
---|
[333] | 1075 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
[330] | 1076 | |
---|
| 1077 | if opts.vardims is None: |
---|
| 1078 | print errormsg |
---|
| 1079 | print ' ' + main + ': No list of variables with dimension values are provided!!' |
---|
| 1080 | print ' a ',' list of values X@[vardimxsim]@[vardimxobs],...,T@' + \ |
---|
| 1081 | '[vardimtsim]@[vardimtobs] is needed' |
---|
| 1082 | quit(-1) |
---|
| 1083 | else: |
---|
| 1084 | print main +': couple of variable dimensions _______' |
---|
| 1085 | vardims = {} |
---|
| 1086 | ds = opts.vardims.split(',') |
---|
| 1087 | for d in ds: |
---|
| 1088 | dsecs = d.split('@') |
---|
| 1089 | if len(dsecs) != 3: |
---|
| 1090 | print errormsg |
---|
| 1091 | print ' ' + main + ': wrong number of values in:',dsecs,' 3 are needed !!' |
---|
| 1092 | print ' [DIM]@[vardimnsim]@[vardimnobs]' |
---|
| 1093 | quit(-1) |
---|
| 1094 | vardims[dsecs[0]] = [dsecs[1], dsecs[2]] |
---|
[333] | 1095 | print ' ',dsecs[0],':',dsecs[1],',',dsecs[2] |
---|
[330] | 1096 | |
---|
| 1097 | if opts.obskind is None: |
---|
| 1098 | print errormsg |
---|
| 1099 | print ' ' + main + ': No kind of observations provided !!' |
---|
| 1100 | quit(-1) |
---|
| 1101 | else: |
---|
| 1102 | obskind = opts.obskind |
---|
| 1103 | if obskind == 'single-station': |
---|
| 1104 | if opts.stloc is None: |
---|
| 1105 | print errormsg |
---|
| 1106 | print ' ' + main + ': No station location provided !!' |
---|
| 1107 | quit(-1) |
---|
| 1108 | else: |
---|
| 1109 | stationdesc = [np.float(opts.stloc.split(',')[0]), \ |
---|
| 1110 | np.float(opts.stloc.split(',')[1]), np.float(opts.stloc.split(',')[2])] |
---|
| 1111 | |
---|
| 1112 | if opts.fobs is None: |
---|
| 1113 | print errormsg |
---|
| 1114 | print ' ' + main + ': No observations file is provided!!' |
---|
| 1115 | quit(-1) |
---|
| 1116 | else: |
---|
| 1117 | if not os.path.isfile(opts.fobs): |
---|
| 1118 | print errormsg |
---|
| 1119 | print ' ' + main + ": observations file '" + opts.fobs + "' does not exist !!" |
---|
| 1120 | quit(-1) |
---|
| 1121 | |
---|
| 1122 | if opts.fsim is None: |
---|
| 1123 | print errormsg |
---|
| 1124 | print ' ' + main + ': No simulation file is provided!!' |
---|
| 1125 | quit(-1) |
---|
| 1126 | else: |
---|
| 1127 | if not os.path.isfile(opts.fsim): |
---|
| 1128 | print errormsg |
---|
| 1129 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
| 1130 | quit(-1) |
---|
| 1131 | |
---|
| 1132 | if opts.vars is None: |
---|
| 1133 | print errormsg |
---|
| 1134 | print ' ' + main + ': No list of couples of variables is provided!!' |
---|
| 1135 | print ' a ',' list of values [varsim]@[varobs],... is needed' |
---|
| 1136 | quit(-1) |
---|
| 1137 | else: |
---|
| 1138 | valvars = [] |
---|
[333] | 1139 | vs = opts.vars.split(',') |
---|
[330] | 1140 | for v in vs: |
---|
| 1141 | vsecs = v.split('@') |
---|
[333] | 1142 | if len(vsecs) < 2: |
---|
[330] | 1143 | print errormsg |
---|
| 1144 | print ' ' + main + ': wrong number of values in:',vsecs, \ |
---|
| 1145 | ' at least 2 are needed !!' |
---|
| 1146 | print ' [varsim]@[varobs]@[[oper][val]]' |
---|
| 1147 | quit(-1) |
---|
[333] | 1148 | if len(vsecs) > 2: |
---|
| 1149 | if not searchInlist(simopers,vsecs[2]): |
---|
| 1150 | print errormsg |
---|
| 1151 | print main + ": operation on simulation values '" + vsecs[2] + \ |
---|
| 1152 | "' not ready !!" |
---|
| 1153 | quit(-1) |
---|
| 1154 | |
---|
[330] | 1155 | valvars.append(vsecs) |
---|
| 1156 | |
---|
| 1157 | # Openning observations trajectory |
---|
| 1158 | ## |
---|
| 1159 | oobs = NetCDFFile(opts.fobs, 'r') |
---|
| 1160 | |
---|
| 1161 | valdimobs = {} |
---|
| 1162 | for dn in dims: |
---|
| 1163 | print dn,':',dims[dn] |
---|
| 1164 | if dims[dn][1] != 'None': |
---|
| 1165 | if not oobs.dimensions.has_key(dims[dn][1]): |
---|
| 1166 | print errormsg |
---|
| 1167 | print ' ' + main + ": observations file does not have dimension '" + \ |
---|
| 1168 | dims[dn][1] + "' !!" |
---|
| 1169 | quit(-1) |
---|
| 1170 | if vardims[dn][1] != 'None': |
---|
| 1171 | if not oobs.variables.has_key(vardims[dn][1]): |
---|
| 1172 | print errormsg |
---|
| 1173 | print ' ' + main + ": observations file does not have varibale " + \ |
---|
| 1174 | "dimension '" + vardims[dn][1] + "' !!" |
---|
| 1175 | quit(-1) |
---|
| 1176 | valdimobs[dn] = oobs.variables[vardims[dn][1]][:] |
---|
| 1177 | else: |
---|
| 1178 | if dn == 'X': |
---|
| 1179 | valdimobs[dn] = stationdesc[0] |
---|
| 1180 | elif dn == 'Y': |
---|
| 1181 | valdimobs[dn] = stationdesc[1] |
---|
| 1182 | elif dn == 'Z': |
---|
| 1183 | valdimobs[dn] = stationdesc[2] |
---|
| 1184 | |
---|
| 1185 | osim = NetCDFFile(opts.fsim, 'r') |
---|
| 1186 | |
---|
| 1187 | valdimsim = {} |
---|
| 1188 | for dn in dims: |
---|
| 1189 | if not osim.dimensions.has_key(dims[dn][0]): |
---|
| 1190 | print errormsg |
---|
[343] | 1191 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not have " + \ |
---|
| 1192 | "dimension '" + dims[dn][0] + "' !!" |
---|
| 1193 | print ' it has: ',osim.dimensions |
---|
[330] | 1194 | quit(-1) |
---|
[343] | 1195 | |
---|
[337] | 1196 | if not osim.variables.has_key(vardims[dn][0]) and not \ |
---|
| 1197 | searchInlist(varNOcheck,vardims[dn][0]): |
---|
[330] | 1198 | print errormsg |
---|
[343] | 1199 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not have " + \ |
---|
| 1200 | "varibale dimension '" + vardims[dn][0] + "' !!" |
---|
| 1201 | print ' it has variables:',osim.variables |
---|
[330] | 1202 | quit(-1) |
---|
[337] | 1203 | if searchInlist(varNOcheck,vardims[dn][0]): |
---|
| 1204 | valdimsim[dn] = compute_varNOcheck(osim, vardims[dn][0]) |
---|
| 1205 | else: |
---|
| 1206 | valdimsim[dn] = osim.variables[vardims[dn][0]][:] |
---|
[330] | 1207 | |
---|
| 1208 | # General characteristics |
---|
[343] | 1209 | dimtobs = valdimobs['T'].shape[0] |
---|
| 1210 | dimtsim = valdimsim['T'].shape[0] |
---|
[330] | 1211 | |
---|
| 1212 | print main +': observational time-steps:',dimtobs,'simulation:',dimtsim |
---|
| 1213 | |
---|
[337] | 1214 | notfound = np.zeros((dimtobs), dtype=int) |
---|
| 1215 | |
---|
[330] | 1216 | if obskind == 'multi-points': |
---|
| 1217 | trajpos = np.zeros((2,dimt),dtype=int) |
---|
[337] | 1218 | for it in range(dimtobs): |
---|
[330] | 1219 | trajpos[:,it] = index_2mat(valdimsim['X'],valdimsim['Y'], \ |
---|
| 1220 | [valdimobs['X'][it],valdimobss['Y'][it]]) |
---|
| 1221 | elif obskind == 'single-station': |
---|
| 1222 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'],[valdimobs['Y'], \ |
---|
| 1223 | valdimobs['X']]) |
---|
[333] | 1224 | stationpos = np.zeros((2), dtype=int) |
---|
| 1225 | iid = 0 |
---|
| 1226 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
| 1227 | if idn == dims['X'][0]: |
---|
| 1228 | stationpos[1] = stsimpos[iid] |
---|
| 1229 | elif idn == dims['Y'][0]: |
---|
| 1230 | stationpos[0] = stsimpos[iid] |
---|
| 1231 | |
---|
| 1232 | iid = iid + 1 |
---|
| 1233 | print main + ': station point in simulation:', stationpos |
---|
[330] | 1234 | print ' station position:',valdimobs['X'],',',valdimobs['Y'] |
---|
| 1235 | print ' simulation coord.:',valdimsim['X'][tuple(stsimpos)],',', \ |
---|
| 1236 | valdimsim['Y'][tuple(stsimpos)] |
---|
[333] | 1237 | |
---|
[330] | 1238 | elif obskind == 'trajectory': |
---|
[337] | 1239 | if opts.trajf is not None: |
---|
| 1240 | if not os.path.isfile(opts.fsim): |
---|
| 1241 | print errormsg |
---|
| 1242 | print ' ' + main + ": simulation file '" + opts.fsim + "' does not exist !!" |
---|
| 1243 | quit(-1) |
---|
| 1244 | else: |
---|
| 1245 | otrjf = NetCDFFile(opts.fsim, 'r') |
---|
| 1246 | trajpos[0,:] = otrjf.variables['obssimtrj'][0] |
---|
| 1247 | trajpos[1,:] = otrjf.variables['obssimtrj'][1] |
---|
| 1248 | otrjf.close() |
---|
[330] | 1249 | else: |
---|
[337] | 1250 | if dims.has_key('Z'): |
---|
| 1251 | trajpos = np.zeros((3,dimtobs),dtype=int) |
---|
| 1252 | for it in range(dimtobs): |
---|
| 1253 | if np.mod(it*100./dimtobs,10.) == 0.: |
---|
| 1254 | print ' trajectory done: ',it*100./dimtobs,'%' |
---|
| 1255 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
| 1256 | [valdimobs['Y'][it],valdimobs['X'][it]]) |
---|
| 1257 | stationpos = np.zeros((2), dtype=int) |
---|
| 1258 | iid = 0 |
---|
| 1259 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
| 1260 | if idn == dims['X'][0]: |
---|
| 1261 | stationpos[1] = stsimpos[iid] |
---|
| 1262 | elif idn == dims['Y'][0]: |
---|
| 1263 | stationpos[0] = stsimpos[iid] |
---|
| 1264 | iid = iid + 1 |
---|
| 1265 | if stationpos[0] == 0 and stationpos[1] == 0: notfound[it] = 1 |
---|
| 1266 | |
---|
| 1267 | trajpos[0,it] = stationpos[0] |
---|
| 1268 | trajpos[1,it] = stationpos[1] |
---|
| 1269 | # In the simulation 'Z' varies with time ... non-hydrostatic model! ;) |
---|
| 1270 | # trajpos[2,it] = index_mat(valdimsim['Z'][it,:,stationpos[0], \ |
---|
| 1271 | # stationpos[1]], valdimobs['Z'][it]) |
---|
| 1272 | else: |
---|
| 1273 | trajpos = np.zeros((2,dimtobs),dtype=int) |
---|
| 1274 | for it in range(dimtobs): |
---|
| 1275 | stsimpos = index_2mat(valdimsim['Y'],valdimsim['X'], \ |
---|
| 1276 | [valdimobs['Y'][it],valdimobss['X'][it]]) |
---|
| 1277 | stationpos = np.zeros((2), dtype=int) |
---|
| 1278 | iid = 0 |
---|
| 1279 | for idn in osim.variables[vardims['X'][0]].dimensions: |
---|
| 1280 | if idn == dims['X'][0]: |
---|
| 1281 | stationpos[1] = stsimpos[iid] |
---|
| 1282 | elif idn == dims['Y'][0]: |
---|
| 1283 | stationpos[0] = stsimpos[iid] |
---|
| 1284 | iid = iid + 1 |
---|
[338] | 1285 | if stationpos[0] == 0 or stationpos[1] == 0: notfound[it] = 1 |
---|
[330] | 1286 | |
---|
[337] | 1287 | trajpos[0,it] = stationspos[0] |
---|
| 1288 | trajpos[1,it] = stationspos[1] |
---|
| 1289 | |
---|
| 1290 | print main + ': not found',np.sum(notfound),'points of the trajectory' |
---|
| 1291 | |
---|
[330] | 1292 | # Getting times |
---|
| 1293 | tobj = oobs.variables[vardims['T'][1]] |
---|
| 1294 | obstunits = tobj.getncattr('units') |
---|
[343] | 1295 | if vardims['T'][0] == 'WRFT': |
---|
| 1296 | tsim = valdimsim['T'][:] |
---|
| 1297 | simtunits = 'seconds since 1949-12-01 00:00:00' |
---|
| 1298 | else: |
---|
| 1299 | tsim = osim.variables[vardims['T'][0]] |
---|
| 1300 | simtunits = tobj.getncattr('units') |
---|
[330] | 1301 | |
---|
[343] | 1302 | simobstimes = coincident_CFtimes(valdimsim['T'][:], obstunits, simtunits) |
---|
[330] | 1303 | |
---|
[333] | 1304 | # Concident times |
---|
| 1305 | ## |
---|
[337] | 1306 | coindtvalues0 = [] |
---|
[333] | 1307 | for it in range(dimtsim): |
---|
| 1308 | ot = 0 |
---|
| 1309 | for ito in range(ot,dimtobs-1): |
---|
| 1310 | if valdimobs['T'][ito] < simobstimes[it] and valdimobs['T'][ito+1] > \ |
---|
| 1311 | simobstimes[it]: |
---|
| 1312 | ot = ito |
---|
| 1313 | tdist = simobstimes[it] - valdimobs['T'][ito] |
---|
[337] | 1314 | coindtvalues0.append([it, ito, simobstimes[it], valdimobs['T'][ito], \ |
---|
| 1315 | tdist]) |
---|
[330] | 1316 | |
---|
[337] | 1317 | coindtvalues = np.array(coindtvalues0, dtype=np.float) |
---|
| 1318 | |
---|
| 1319 | Ncoindt = len(coindtvalues[:,0]) |
---|
[333] | 1320 | print main + ': found',Ncoindt,'coincident times between simulation and observations' |
---|
| 1321 | |
---|
[337] | 1322 | if Ncoindt == 0: |
---|
| 1323 | print warnmsg |
---|
| 1324 | print main + ': no coincident times found !!' |
---|
| 1325 | print ' stopping it' |
---|
| 1326 | quit(-1) |
---|
| 1327 | |
---|
[333] | 1328 | # Validating |
---|
| 1329 | ## |
---|
| 1330 | |
---|
| 1331 | onewnc = NetCDFFile(ofile, 'w') |
---|
| 1332 | |
---|
| 1333 | # Dimensions |
---|
| 1334 | newdim = onewnc.createDimension('time',None) |
---|
[346] | 1335 | newdim = onewnc.createDimension('bnds',2) |
---|
[337] | 1336 | newdim = onewnc.createDimension('obstime',None) |
---|
[333] | 1337 | newdim = onewnc.createDimension('couple',2) |
---|
| 1338 | newdim = onewnc.createDimension('StrLength',StringLength) |
---|
[337] | 1339 | newdim = onewnc.createDimension('xaround',Ngrid*2+1) |
---|
| 1340 | newdim = onewnc.createDimension('yaround',Ngrid*2+1) |
---|
[344] | 1341 | newdim = onewnc.createDimension('gstats',9) |
---|
[337] | 1342 | newdim = onewnc.createDimension('stats',5) |
---|
[346] | 1343 | newdim = onewnc.createDimension('tstats',6) |
---|
[333] | 1344 | |
---|
| 1345 | # Variable dimensions |
---|
| 1346 | ## |
---|
| 1347 | newvar = onewnc.createVariable('obstime','f8',('time')) |
---|
| 1348 | basicvardef(newvar, 'obstime', 'time observations', obstunits ) |
---|
| 1349 | set_attribute(newvar, 'calendar', 'standard') |
---|
[346] | 1350 | set_attribute(newvar, 'bounds', 'time_bnds') |
---|
[337] | 1351 | newvar[:] = coindtvalues[:,3] |
---|
[333] | 1352 | |
---|
| 1353 | newvar = onewnc.createVariable('couple', 'c', ('couple','StrLength')) |
---|
| 1354 | basicvardef(newvar, 'couple', 'couples of values', '-') |
---|
| 1355 | writing_str_nc(newvar, ['sim','obs'], StringLength) |
---|
| 1356 | |
---|
[337] | 1357 | newvar = onewnc.createVariable('statistics', 'c', ('stats','StrLength')) |
---|
| 1358 | basicvardef(newvar, 'statistics', 'statitics from values', '-') |
---|
| 1359 | writing_str_nc(newvar, statsn, StringLength) |
---|
| 1360 | |
---|
[344] | 1361 | newvar = onewnc.createVariable('gstatistics', 'c', ('gstats','StrLength')) |
---|
| 1362 | basicvardef(newvar, 'gstatistics', 'global statitics from values', '-') |
---|
| 1363 | writing_str_nc(newvar, gstatsn, StringLength) |
---|
| 1364 | |
---|
| 1365 | newvar = onewnc.createVariable('tstatistics', 'c', ('tstats','StrLength')) |
---|
| 1366 | basicvardef(newvar, 'tstatistics', 'statitics from values along time', '-') |
---|
| 1367 | writing_str_nc(newvar, ostatsn, StringLength) |
---|
| 1368 | |
---|
[337] | 1369 | if obskind == 'trajectory': |
---|
| 1370 | if dims.has_key('Z'): |
---|
| 1371 | newdim = onewnc.createDimension('trj',3) |
---|
| 1372 | else: |
---|
| 1373 | newdim = onewnc.createDimension('trj',2) |
---|
| 1374 | |
---|
| 1375 | newvar = onewnc.createVariable('obssimtrj','i',('obstime','trj')) |
---|
| 1376 | basicvardef(newvar, 'obssimtrj', 'trajectory on the simulation grid', '-') |
---|
| 1377 | newvar[:] = trajpos.transpose() |
---|
| 1378 | |
---|
| 1379 | if dims.has_key('Z'): |
---|
| 1380 | newdim = onewnc.createDimension('simtrj',4) |
---|
| 1381 | trjsim = np.zeros((4,Ncoindt), dtype=int) |
---|
| 1382 | trjsimval = np.zeros((4,Ncoindt), dtype=np.float) |
---|
| 1383 | else: |
---|
| 1384 | newdim = onewnc.createDimension('simtrj',3) |
---|
| 1385 | trjsim = np.zeros((3,Ncoindt), dtype=int) |
---|
| 1386 | trjsimval = np.zeros((3,Ncoindt), dtype=np.float) |
---|
| 1387 | |
---|
[333] | 1388 | Nvars = len(valvars) |
---|
| 1389 | for ivar in range(Nvars): |
---|
| 1390 | simobsvalues = [] |
---|
| 1391 | |
---|
| 1392 | varsimobs = valvars[ivar][0] + '_' + valvars[ivar][1] |
---|
[340] | 1393 | print ' ' + varsimobs + '... .. .' |
---|
[333] | 1394 | |
---|
| 1395 | if not oobs.variables.has_key(valvars[ivar][1]): |
---|
| 1396 | print errormsg |
---|
| 1397 | print ' ' + main + ": observations file has not '" + valvars[ivar][1] + \ |
---|
| 1398 | "' !!" |
---|
| 1399 | quit(-1) |
---|
[337] | 1400 | |
---|
[333] | 1401 | if not osim.variables.has_key(valvars[ivar][0]): |
---|
[337] | 1402 | if not searchInlist(varNOcheck, valvars[ivar][0]): |
---|
| 1403 | print errormsg |
---|
| 1404 | print ' ' + main + ": simulation file has not '" + valvars[ivar][0] + \ |
---|
| 1405 | "' !!" |
---|
| 1406 | quit(-1) |
---|
| 1407 | else: |
---|
| 1408 | ovsim = compute_varNOcheck(osim, valvars[ivar][0]) |
---|
| 1409 | else: |
---|
| 1410 | ovsim = osim.variables[valvars[ivar][0]] |
---|
[333] | 1411 | |
---|
[340] | 1412 | for idn in ovsim.dimensions: |
---|
| 1413 | if not searchInlist(simdims.values(),idn): |
---|
| 1414 | print errormsg |
---|
| 1415 | print ' ' + main + ": dimension '" + idn + "' of variable '" + \ |
---|
| 1416 | valvars[ivar][0] + "' not provided as reference coordinate [X,Y,Z,T] !!" |
---|
| 1417 | quit(-1) |
---|
| 1418 | |
---|
[333] | 1419 | ovobs = oobs.variables[valvars[ivar][1]] |
---|
[344] | 1420 | |
---|
| 1421 | # Simulated values spatially around coincident times |
---|
[337] | 1422 | if dims.has_key('Z'): |
---|
| 1423 | simobsSvalues = np.zeros((Ncoindt, Ngrid*2+1, Ngrid*2+1, Ngrid*2+1), \ |
---|
| 1424 | dtype = np.float) |
---|
| 1425 | else: |
---|
| 1426 | simobsSvalues = np.zeros((Ncoindt, Ngrid*2+1, Ngrid*2+1), dtype = np.float) |
---|
[333] | 1427 | |
---|
[344] | 1428 | # Observed values temporally around coincident times |
---|
| 1429 | simobsTvalues = {} |
---|
| 1430 | simobsTtvalues = np.zeros((Ncoindt,2), dtype=np.float) |
---|
| 1431 | |
---|
[333] | 1432 | if obskind == 'multi-points': |
---|
| 1433 | for it in range(Ncoindt): |
---|
[337] | 1434 | slicev = dims['X'][0] + ':' + str(trajpos[2,it]) + '|' + \ |
---|
| 1435 | dims['Y'][0]+ ':' + str(trajpos[1,it]) + '|' + \ |
---|
| 1436 | dims['T'][0]+ ':' + str(coindtvalues[it][0]) |
---|
| 1437 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
| 1438 | simobsvalues.append([ slicevar, ovobs[coindtvalues[it][1]]]) |
---|
| 1439 | slicev = dims['X'][0] + ':' + str(trajpos[2,it]-Ngrid) + '@' + \ |
---|
| 1440 | str(trajpos[2,it]+Ngrid) + '|' + dims['Y'][0] + ':' + \ |
---|
| 1441 | str(trajpos[1,it]-Ngrid) + '@' + str(trajpos[1,it]+Ngrid) + '|' + \ |
---|
[333] | 1442 | dims['T'][0]+':'+str(coindtvalues[it][0]) |
---|
| 1443 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
[337] | 1444 | simobsSvalues[it,:,:] = slicevar |
---|
| 1445 | |
---|
[333] | 1446 | elif obskind == 'single-station': |
---|
| 1447 | for it in range(Ncoindt): |
---|
[343] | 1448 | ito = int(coindtvalues[it,1]) |
---|
| 1449 | slicev = dims['X'][0] + ':' + str(stationpos[1]) + '|' + \ |
---|
| 1450 | dims['Y'][0] + ':' + str(stationpos[0]) + '|' + \ |
---|
| 1451 | dims['T'][0] + ':' + str(int(coindtvalues[it][0])) |
---|
[333] | 1452 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
[343] | 1453 | if ovobs[int(ito)] != ovobs[int(ito)]: |
---|
| 1454 | simobsvalues.append([ slicevar, fillValueF]) |
---|
| 1455 | else: |
---|
| 1456 | simobsvalues.append([ slicevar, ovobs[int(ito)]]) |
---|
| 1457 | slicev = dims['X'][0] + ':' + str(stationpos[1]-Ngrid) + '@' + \ |
---|
| 1458 | str(stationpos[1]+Ngrid+1) + '|' + dims['Y'][0] + ':' + \ |
---|
| 1459 | str(stationpos[0]-Ngrid) + '@' + str(stationpos[0]+Ngrid+1) + '|' + \ |
---|
| 1460 | dims['T'][0] + ':' + str(int(coindtvalues[it,0])) |
---|
[337] | 1461 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
| 1462 | simobsSvalues[it,:,:] = slicevar |
---|
[343] | 1463 | |
---|
[344] | 1464 | if it == 0: |
---|
| 1465 | itoi = 0 |
---|
| 1466 | itof = int(coindtvalues[it,1]) / 2 |
---|
| 1467 | elif it == Ncoindt-1: |
---|
| 1468 | itoi = int( (ito + int(coindtvalues[it-1,1])) / 2) |
---|
| 1469 | itof = int(coindtvalues[it,1]) |
---|
| 1470 | else: |
---|
| 1471 | itod = int( (ito - int(coindtvalues[it-1,1])) / 2 ) |
---|
| 1472 | itoi = ito - itod |
---|
| 1473 | itod = int( (int(coindtvalues[it+1,1]) - ito) / 2 ) |
---|
| 1474 | itof = ito + itod |
---|
| 1475 | |
---|
| 1476 | slicev = dims['T'][1] + ':' + str(itoi) + '@' + str(itof + 1) |
---|
| 1477 | |
---|
| 1478 | slicevar, dimslice = slice_variable(ovobs, slicev) |
---|
| 1479 | simobsTvalues[str(it)] = slicevar |
---|
| 1480 | |
---|
| 1481 | simobsTtvalues[it,0] = valdimobs['T'][itoi] |
---|
| 1482 | simobsTtvalues[it,1] = valdimobs['T'][itof] |
---|
| 1483 | |
---|
[333] | 1484 | elif obskind == 'trajectory': |
---|
| 1485 | if dims.has_key('Z'): |
---|
| 1486 | for it in range(Ncoindt): |
---|
[338] | 1487 | ito = int(coindtvalues[it,1]) |
---|
| 1488 | if notfound[ito] == 0: |
---|
| 1489 | trajpos[2,ito] = index_mat(valdimsim['Z'][coindtvalues[it,0],:, \ |
---|
| 1490 | trajpos[1,ito],trajpos[0,ito]], valdimobs['Z'][ito]) |
---|
[337] | 1491 | slicev = dims['X'][0]+':'+str(trajpos[0,ito]) + '|' + \ |
---|
| 1492 | dims['Y'][0]+':'+str(trajpos[1,ito]) + '|' + \ |
---|
| 1493 | dims['Z'][0]+':'+str(trajpos[2,ito]) + '|' + \ |
---|
| 1494 | dims['T'][0]+':'+str(int(coindtvalues[it,0])) |
---|
| 1495 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
| 1496 | simobsvalues.append([ slicevar, ovobs[int(ito)]]) |
---|
[338] | 1497 | minx = np.max([trajpos[0,ito]-Ngrid,0]) |
---|
| 1498 | maxx = np.min([trajpos[0,ito]+Ngrid+1,ovsim.shape[3]]) |
---|
| 1499 | miny = np.max([trajpos[1,ito]-Ngrid,0]) |
---|
| 1500 | maxy = np.min([trajpos[1,ito]+Ngrid+1,ovsim.shape[2]]) |
---|
| 1501 | minz = np.max([trajpos[2,ito]-Ngrid,0]) |
---|
| 1502 | maxz = np.min([trajpos[2,ito]+Ngrid+1,ovsim.shape[1]]) |
---|
| 1503 | |
---|
| 1504 | slicev = dims['X'][0] + ':' + str(minx) + '@' + str(maxx) + '|' +\ |
---|
| 1505 | dims['Y'][0] + ':' + str(miny) + '@' + str(maxy) + '|' + \ |
---|
| 1506 | dims['Z'][0] + ':' + str(minz) + '@' + str(maxz) + '|' + \ |
---|
| 1507 | dims['T'][0] + ':' + str(int(coindtvalues[it,0])) |
---|
[337] | 1508 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
[338] | 1509 | |
---|
| 1510 | sliceS = [] |
---|
| 1511 | sliceS.append(it) |
---|
| 1512 | sliceS.append(slice(0,maxz-minz)) |
---|
| 1513 | sliceS.append(slice(0,maxy-miny)) |
---|
| 1514 | sliceS.append(slice(0,maxx-minx)) |
---|
[340] | 1515 | |
---|
[338] | 1516 | simobsSvalues[tuple(sliceS)] = slicevar |
---|
[337] | 1517 | if ivar == 0: |
---|
| 1518 | trjsim[0,it] = trajpos[0,ito] |
---|
| 1519 | trjsim[1,it] = trajpos[1,ito] |
---|
| 1520 | trjsim[2,it] = trajpos[2,ito] |
---|
| 1521 | trjsim[3,it] = coindtvalues[it,0] |
---|
| 1522 | else: |
---|
| 1523 | simobsvalues.append([fillValueF, fillValueF]) |
---|
| 1524 | simobsSvalues[it,:,:,:]= np.ones((Ngrid*2+1,Ngrid*2+1,Ngrid*2+1),\ |
---|
| 1525 | dtype = np.float)*fillValueF |
---|
[333] | 1526 | else: |
---|
| 1527 | for it in range(Ncoindt): |
---|
[337] | 1528 | if notfound[it] == 0: |
---|
| 1529 | ito = coindtvalues[it,1] |
---|
| 1530 | slicev = dims['X'][0]+':'+str(trajpos[2,ito]) + '|' + \ |
---|
| 1531 | dims['Y'][0]+':'+str(trajpos[1,ito]) + '|' + \ |
---|
| 1532 | dims['T'][0]+':'+str(coindtvalues[ito,0]) |
---|
| 1533 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
| 1534 | simobsvalues.append([ slicevar, ovobs[coindtvalues[it,1]]]) |
---|
| 1535 | slicev = dims['X'][0] + ':' + str(trajpos[0,it]-Ngrid) + '@' + \ |
---|
| 1536 | str(trajpos[0,it]+Ngrid) + '|' + dims['Y'][0] + ':' + \ |
---|
| 1537 | str(trajpos[1,it]-Ngrid) + '@' + str(trajpos[1,it]+Ngrid) + \ |
---|
| 1538 | '|' + dims['T'][0] + ':' + str(coindtvalues[it,0]) |
---|
| 1539 | slicevar, dimslice = slice_variable(ovsim, slicev) |
---|
| 1540 | simobsSvalues[it,:,:] = slicevar |
---|
| 1541 | else: |
---|
| 1542 | simobsvalues.append([fillValue, fillValue]) |
---|
| 1543 | simobsSvalues[it,:,:] = np.ones((Ngrid*2+1,Ngrid*2+1), \ |
---|
| 1544 | dtype = np.float)*fillValueF |
---|
[333] | 1545 | print simobsvalues[varsimobs][:][it] |
---|
| 1546 | |
---|
[339] | 1547 | arrayvals = np.array(simobsvalues) |
---|
| 1548 | if len(valvars[ivar]) > 2: |
---|
| 1549 | const=np.float(valvars[ivar][3]) |
---|
| 1550 | if valvars[ivar][2] == 'sumc': |
---|
| 1551 | simobsSvalues = simobsSvalues + const |
---|
| 1552 | arrayvals[:,0] = arrayvals[:,0] + const |
---|
| 1553 | elif valvars[ivar][2] == 'subc': |
---|
| 1554 | simobsSvalues = simobsSvalues - const |
---|
| 1555 | arrayvals[:,0] = arrayvals[:,0] - const |
---|
| 1556 | elif valvars[ivar][2] == 'mulc': |
---|
| 1557 | simobsSvalues = simobsSvalues * const |
---|
| 1558 | arrayvals[:,0] = arrayvals[:,0] * const |
---|
| 1559 | elif valvars[ivar][2] == 'divc': |
---|
| 1560 | simobsSvalues = simobsSvalues / const |
---|
| 1561 | arrayvals[:,0] = arrayvals[:,0] / const |
---|
| 1562 | else: |
---|
| 1563 | print errormsg |
---|
| 1564 | print ' ' + fname + ": operation '" + valvars[ivar][2] + "' not ready!!" |
---|
| 1565 | quit(-1) |
---|
| 1566 | |
---|
[343] | 1567 | # statisics sim |
---|
| 1568 | simstats = np.zeros((5), dtype=np.float) |
---|
| 1569 | simstats[0] = np.min(arrayvals[:,0]) |
---|
| 1570 | simstats[1] = np.max(arrayvals[:,0]) |
---|
| 1571 | simstats[2] = np.mean(arrayvals[:,0]) |
---|
| 1572 | simstats[3] = np.mean(arrayvals[:,0]*arrayvals[:,0]) |
---|
| 1573 | simstats[4] = np.sqrt(simstats[3] - simstats[2]*simstats[2]) |
---|
| 1574 | |
---|
| 1575 | # statisics obs |
---|
[344] | 1576 | obsmask = ma.masked_equal(arrayvals[:,1], fillValueF) |
---|
[343] | 1577 | obsmask2 = obsmask*obsmask |
---|
| 1578 | |
---|
| 1579 | obsstats = np.zeros((5), dtype=np.float) |
---|
| 1580 | obsstats[0] = obsmask.min() |
---|
| 1581 | obsstats[1] = obsmask.max() |
---|
| 1582 | obsstats[2] = obsmask.mean() |
---|
| 1583 | obsstats[3] = obsmask2.mean() |
---|
| 1584 | obsstats[4] = np.sqrt(obsstats[3] - obsstats[2]*obsstats[2]) |
---|
| 1585 | |
---|
| 1586 | # Statistics sim-obs |
---|
[344] | 1587 | simobsstats = np.zeros((9), dtype=np.float) |
---|
[343] | 1588 | diffvals = np.zeros((Ncoindt), dtype=np.float) |
---|
| 1589 | |
---|
[344] | 1590 | diffvals = arrayvals[:,0] - obsmask |
---|
| 1591 | |
---|
[343] | 1592 | simobsstats[0] = simstats[0] - obsstats[0] |
---|
[344] | 1593 | simobsstats[1] = np.mean(arrayvals[:,0]*obsmask) |
---|
| 1594 | simobsstats[2] = np.min(diffvals) |
---|
| 1595 | simobsstats[3] = np.max(diffvals) |
---|
| 1596 | simobsstats[4] = np.mean(diffvals) |
---|
| 1597 | simobsstats[5] = np.mean(np.abs(diffvals)) |
---|
| 1598 | simobsstats[6] = np.sqrt(np.mean(diffvals*diffvals)) |
---|
| 1599 | simobsstats[7], simobsstats[8] = sts.pearsonr(arrayvals[:,0], arrayvals[:,1]) |
---|
[343] | 1600 | |
---|
[344] | 1601 | # Statistics around sim values |
---|
[337] | 1602 | aroundstats = np.zeros((5,Ncoindt), dtype=np.float) |
---|
| 1603 | for it in range(Ncoindt): |
---|
| 1604 | aroundstats[0,it] = np.min(simobsSvalues[it,]) |
---|
| 1605 | aroundstats[1,it] = np.max(simobsSvalues[it,]) |
---|
| 1606 | aroundstats[2,it] = np.mean(simobsSvalues[it,]) |
---|
| 1607 | aroundstats[3,it] = np.mean(simobsSvalues[it,]*simobsSvalues[it,]) |
---|
| 1608 | aroundstats[4,it] = np.sqrt(aroundstats[3,it] - aroundstats[2,it]* \ |
---|
| 1609 | aroundstats[2,it]) |
---|
| 1610 | |
---|
[344] | 1611 | # Statistics around obs values |
---|
[346] | 1612 | aroundostats = np.zeros((6,Ncoindt), dtype=np.float) |
---|
[344] | 1613 | |
---|
| 1614 | for it in range(Ncoindt): |
---|
| 1615 | obsmask = ma.masked_equal(simobsTvalues[str(it)], fillValueF) |
---|
| 1616 | obsmask2 = obsmask*obsmask |
---|
| 1617 | |
---|
| 1618 | aroundostats[0,it] = len(obsmask.flatten()) |
---|
[346] | 1619 | aroundostats[1,it] = obsmask.min() |
---|
| 1620 | aroundostats[2,it] = obsmask.max() |
---|
| 1621 | aroundostats[3,it] = obsmask.mean() |
---|
| 1622 | aroundostats[4,it] = obsmask2.mean() |
---|
| 1623 | aroundostats[5,it] = np.sqrt(aroundostats[4,it] - aroundostats[3,it]* \ |
---|
| 1624 | aroundostats[3,it]) |
---|
[344] | 1625 | |
---|
[346] | 1626 | # sim Values to netCDF |
---|
| 1627 | newvar = onewnc.createVariable(valvars[ivar][0], 'f', ('time'), \ |
---|
[337] | 1628 | fill_value=fillValueF) |
---|
[346] | 1629 | descvar = 'simulated: ' + valvars[ivar][0] |
---|
| 1630 | basicvardef(newvar, valvars[ivar][0], descvar, ovobs.getncattr('units')) |
---|
| 1631 | newvar[:] = arrayvals[:,0] |
---|
[333] | 1632 | |
---|
[346] | 1633 | # obs Values to netCDF |
---|
| 1634 | newvar = onewnc.createVariable(valvars[ivar][1], 'f', ('time'), \ |
---|
| 1635 | fill_value=fillValueF) |
---|
| 1636 | descvar = 'observed: ' + valvars[ivar][1] |
---|
| 1637 | basicvardef(newvar, valvars[ivar][1], descvar, ovobs.getncattr('units')) |
---|
| 1638 | newvar[:] = arrayvals[:,1] |
---|
| 1639 | |
---|
[337] | 1640 | # Around values |
---|
[341] | 1641 | if not onewnc.variables.has_key(valvars[ivar][0] + 'around'): |
---|
| 1642 | if dims.has_key('Z'): |
---|
| 1643 | if not onewnc.dimensions.has_key('zaround'): |
---|
| 1644 | newdim = onewnc.createDimension('zaround',Ngrid*2+1) |
---|
| 1645 | newvar = onewnc.createVariable(valvars[ivar][0] + 'around', 'f', \ |
---|
| 1646 | ('time','zaround','yaround','xaround'), fill_value=fillValueF) |
---|
| 1647 | else: |
---|
| 1648 | newvar = onewnc.createVariable(valvars[ivar][0] + 'around', 'f', \ |
---|
| 1649 | ('time','yaround','xaround'), fill_value=fillValueF) |
---|
[339] | 1650 | |
---|
[341] | 1651 | descvar = 'around simulated values +/- grid values: ' + valvars[ivar][0] |
---|
| 1652 | basicvardef(newvar, varsimobs + 'around', descvar, ovobs.getncattr('units')) |
---|
| 1653 | newvar[:] = simobsSvalues |
---|
[337] | 1654 | |
---|
[344] | 1655 | # sim Statistics |
---|
| 1656 | if not searchInlist(onewnc.variables,valvars[ivar][0] + 'stsim'): |
---|
| 1657 | newvar = onewnc.createVariable(valvars[ivar][0] + 'stsim', 'f', ('stats'), \ |
---|
| 1658 | fill_value=fillValueF) |
---|
| 1659 | descvar = 'simulated statisitcs: ' + valvars[ivar][0] |
---|
| 1660 | basicvardef(newvar, valvars[ivar][0] + 'stsim', descvar, ovobs.getncattr('units')) |
---|
| 1661 | newvar[:] = simstats |
---|
| 1662 | |
---|
| 1663 | # obs Statistics |
---|
| 1664 | if not searchInlist(onewnc.variables,valvars[ivar][1] + 'stobs'): |
---|
| 1665 | newvar = onewnc.createVariable(valvars[ivar][1] + 'stobs', 'f', ('stats'), \ |
---|
| 1666 | fill_value=fillValueF) |
---|
| 1667 | descvar = 'observed statisitcs: ' + valvars[ivar][1] |
---|
| 1668 | basicvardef(newvar, valvars[ivar][1] + 'stobs', descvar, \ |
---|
| 1669 | ovobs.getncattr('units')) |
---|
| 1670 | newvar[:] = obsstats |
---|
| 1671 | |
---|
| 1672 | # sim-obs Statistics |
---|
| 1673 | if not searchInlist(onewnc.variables,varsimobs + 'st'): |
---|
| 1674 | newvar = onewnc.createVariable(varsimobs + 'st', 'f', ('gstats'), \ |
---|
| 1675 | fill_value=fillValueF) |
---|
| 1676 | descvar = 'simulated-observed statisitcs: ' + varsimobs |
---|
| 1677 | basicvardef(newvar, varsimobs + 'st', descvar, ovobs.getncattr('units')) |
---|
| 1678 | newvar[:] = simobsstats |
---|
| 1679 | |
---|
| 1680 | # around sim Statistics |
---|
| 1681 | if not searchInlist(onewnc.variables,valvars[ivar][0] + 'staround'): |
---|
[341] | 1682 | newvar = onewnc.createVariable(valvars[ivar][0] + 'staround', 'f', \ |
---|
| 1683 | ('time','stats'), fill_value=fillValueF) |
---|
[344] | 1684 | descvar = 'around (' + str(Ngrid) + ', ' + str(Ngrid) + \ |
---|
| 1685 | ') simulated statisitcs: ' + valvars[ivar][0] |
---|
| 1686 | basicvardef(newvar, valvars[ivar][0] + 'staround', descvar, \ |
---|
| 1687 | ovobs.getncattr('units')) |
---|
[341] | 1688 | newvar[:] = aroundstats.transpose() |
---|
[337] | 1689 | |
---|
[346] | 1690 | if not searchInlist(onewnc.variables, 'time_bnds'): |
---|
| 1691 | newvar = onewnc.createVariable('time_bnds','f8',('time','bnds')) |
---|
| 1692 | basicvardef(newvar, 'time_bnds', 'time', obstunits ) |
---|
| 1693 | set_attribute(newvar, 'calendar', 'standard') |
---|
| 1694 | newvar[:] = simobsTtvalues |
---|
| 1695 | |
---|
[344] | 1696 | # around obs Statistics |
---|
| 1697 | if not searchInlist(onewnc.variables,valvars[ivar][1] + 'staround'): |
---|
| 1698 | newvar = onewnc.createVariable(valvars[ivar][1] + 'staround', 'f', \ |
---|
| 1699 | ('time','tstats'), fill_value=fillValueF) |
---|
| 1700 | descvar = 'around temporal observed statisitcs: ' + valvars[ivar][1] |
---|
| 1701 | basicvardef(newvar, valvars[ivar][1] + 'staround', descvar, \ |
---|
| 1702 | ovobs.getncattr('units')) |
---|
[346] | 1703 | set_attribute(newvar, 'cell_methods', 'statistics') |
---|
| 1704 | |
---|
[344] | 1705 | newvar[:] = aroundostats.transpose() |
---|
| 1706 | |
---|
[341] | 1707 | onewnc.sync() |
---|
[333] | 1708 | |
---|
[337] | 1709 | newvar = onewnc.createVariable('simtrj','i',('time','simtrj')) |
---|
| 1710 | basicvardef(newvar, 'simtrj', 'coordinates [X,Y,Z,T] of the coincident trajectory ' +\ |
---|
| 1711 | 'in sim', obstunits) |
---|
| 1712 | newvar[:] = trjsim.transpose() |
---|
| 1713 | |
---|
[333] | 1714 | # Global attributes |
---|
| 1715 | ## |
---|
| 1716 | set_attribute(onewnc,'author_nc','Lluis Fita') |
---|
| 1717 | set_attribute(onewnc,'institution_nc','Laboratoire de Meteorology Dynamique, ' + \ |
---|
| 1718 | 'LMD-Jussieu, UPMC, Paris') |
---|
| 1719 | set_attribute(onewnc,'country_nc','France') |
---|
| 1720 | set_attribute(onewnc,'script_nc',main) |
---|
| 1721 | set_attribute(onewnc,'version_script',version) |
---|
| 1722 | set_attribute(onewnc,'information', \ |
---|
| 1723 | 'http://www.lmd.jussieu.fr/~lflmd/ASCIIobs_nc/index.html') |
---|
| 1724 | set_attribute(onewnc,'simfile',opts.fsim) |
---|
| 1725 | set_attribute(onewnc,'obsfile',opts.fobs) |
---|
| 1726 | |
---|
| 1727 | onewnc.sync() |
---|
| 1728 | onewnc.close() |
---|
| 1729 | |
---|
| 1730 | print main + ": successfull writting of '" + ofile + "' !!" |
---|