1 | MODULE module_scientific |
---|
2 | ! Module of the scientific function/subroutines |
---|
3 | |
---|
4 | !!!!!!! Functions & subroutines |
---|
5 | ! all_polygons_properties: Subroutine to determine the properties of all polygons in a 2D field: |
---|
6 | ! borders_matrixL: Subroutine to provide the borders of a logical array (interested in .TRUE.) |
---|
7 | ! coincidence_all_polys: Subtourine to determine which is the coincident polygon when a boolean polygon is provided |
---|
8 | ! to a map of integer polygons |
---|
9 | ! coincidence_all_polys_area: Subtourine to determine which is the coincident polygon when a boolean polygon is provided |
---|
10 | ! to a map of integer polygons filtrered by a minimal area |
---|
11 | ! coincidence_poly: Subtourine to determine which is the coincident polygon when a boolean polygon is provided |
---|
12 | ! to a map of integer polygons |
---|
13 | ! coincidence_poly_area: Subtourine to determine which is the coincident polygon when a boolean polygon is provided |
---|
14 | ! to a map of integer polygons filtrered by a minimal area |
---|
15 | ! coincident_gridsin2D: Subroutine to determine which lists of 2D gridsin points of an A list are also found in a B list |
---|
16 | ! coincident_list_2Dcoords: Subroutine to determine which 2D points of an A list are also found in a B list |
---|
17 | ! clean_polygons: Subroutine to clean polygons from non-used paths, polygons only left as path since they are inner path of a hole |
---|
18 | ! coincident_polygon: Subroutine to provide the intersection polygon between two polygons |
---|
19 | ! distanceRK: Function to provide the distance between two points |
---|
20 | ! FindMinimumR_K*: Function returns the location of the minimum in the section between Start and End. |
---|
21 | ! fill3DI_2Dvec: Subroutine to fill a 3D integer matrix from a series of indices from a 2D matrix |
---|
22 | ! fill3DR_2Dvec: Subroutine to fill a 3D float matrix from a series of indices from a 2D matrix |
---|
23 | ! grid_within_polygon: Subroutine to determine which grid cells from a matrix lay inside a polygon |
---|
24 | ! grid_spacepercen: Subroutine to compute the space-percentages of a series of grid cells (B) which lay inside another |
---|
25 | ! series of grid-cells (A) |
---|
26 | ! grid_spacepercen_providing_polys: Subroutine to compute the space-percentages of a series of grid cells (B) which lay inside another |
---|
27 | ! series of grid-cells (A) providing coincident polygons |
---|
28 | ! grid_spacepercen_within_reg: Subroutine to compute the percentage of grid space of a series of grid cells which are encompassed |
---|
29 | ! by a polygon |
---|
30 | ! grid_spacepercen_within_reg_providing_polys: Subroutine to compute the percentage of grid space of a series of grid |
---|
31 | ! cells which are encompassed by a polygon providing coordinates of the resultant polygons |
---|
32 | ! gridpoints_InsidePolygon: Subroutine to determine if a series of grid points are inside a polygon |
---|
33 | ! following ray casting algorithm |
---|
34 | ! Heron_area_triangle: Subroutine to compute area of a triangle using Heron's formula |
---|
35 | ! intersectfaces: Subroutine to provide if two faces of two polygons intersect |
---|
36 | ! intersection_2Dlines: Subroutine to provide the intersection point between two lines on the plane using Cramer's method |
---|
37 | ! join_polygon: Subroutine to join two polygons |
---|
38 | ! look_clockwise_borders: Subroutine to look clock-wise for a next point within a collection of borders |
---|
39 | ! (limits of a region) |
---|
40 | ! multi_index_mat2DI: Subroutine to provide the indices of the different locations of a value inside a 2D integer matrix |
---|
41 | ! multi_index_mat3DI: Subroutine to provide the indices of the different locations of a value inside a 3D integer matrix |
---|
42 | ! multi_index_mat4DI: Subroutine to provide the indices of the different locations of a value inside a 4D integer matrix |
---|
43 | ! multi_index_mat2DRK: Subroutine to provide the indices of the different locations of a value inside a 2D RK matrix |
---|
44 | ! multi_index_mat3DRK: Subroutine to provide the indices of the different locations of a value inside a 3D RK matrix |
---|
45 | ! multi_index_mat4DRK: Subroutine to provide the indices of the different locations of a value inside a 4D RK matrix |
---|
46 | ! multi_spaceweightstats_in1DRKno_slc3v3: Subroutine to compute an spatial statistics value from a 1D RK matrix without |
---|
47 | ! running one into a matrix of 3-variables slices of rank 3 using spatial weights |
---|
48 | ! multi_spaceweightstats_in2DRKno_slc3v3: Subroutine to compute an spatial statistics value from a 2D RK matrix without |
---|
49 | ! running one into a matrix of 3-variables slices of rank 3 using spatial weights |
---|
50 | ! multi_spaceweightstats_in3DRK3_slc3v3: Subroutine to compute an spatial statistics value from a 3D RK matrix using |
---|
51 | ! 3rd dimension as running one into a matrix of 3-variables slices of rank 3 using spatial weights |
---|
52 | ! multi_spaceweightstats_in3DRK3_slc3v4: Subroutine to compute an spatial statistics value from a 3D RK matrix using |
---|
53 | ! 3rd dimension as running one into a matrix of 3-variables slices of rank 4 using spatial weights |
---|
54 | ! NcountR: Subroutine to count real values |
---|
55 | ! paths_border: Subroutine to search the paths of a border field. |
---|
56 | ! path_properties: Subroutine to determine the properties of a path |
---|
57 | ! percentiles_R_K*D: Subroutine to compute the percentiles of a *D R_K array along given set of axis |
---|
58 | ! point_in_face: Function to determine if a given point is on a face of a polygon |
---|
59 | ! point_inside: Function to determine if a given point is inside a polygon providing its sorted vertices |
---|
60 | ! poly_has_point: Function to determine if a polygon has already a given point as one of its vertex |
---|
61 | ! polygon_properties: Subroutine to determine the properties of a polygon (as .TRUE. matrix) |
---|
62 | ! polygons: Subroutine to search the polygons of a border field. FORTRAN based. 1st = 1! |
---|
63 | ! polygons_t: Subroutine to search the polygons of a temporal series of boolean fields. FORTRAN based. 1st = 1! |
---|
64 | ! poly_overlap_tracks: Subroutine to determine tracks of a series of consecutive 2D field with polygons using |
---|
65 | ! maximum overlaping/coincidence |
---|
66 | ! PrintQuantilesR_K: Subroutine to print the quantiles of values REAL(r_k) |
---|
67 | ! poly_overlap_tracks_area: Subroutine to determine tracks of a series of consecutive 2D field with polygons using |
---|
68 | ! maximum overlaping/coincidence filtrered by a minimal area |
---|
69 | ! poly_overlap_tracks_area_ascii: Subroutine to determine tracks of a series of consecutive 2D field with polygons using maximum |
---|
70 | ! overlaping/coincidence filtrered by a minimal area writting theoutput on an ASCII file (memory limitations) |
---|
71 | ! quantilesR_K: Subroutine to provide the quantiles of a given set of values of type real 'r_k' |
---|
72 | ! rand_sample: Subroutine to randomly sample a range of indices |
---|
73 | ! read_finaltrack_ascii: Subroutine to read the final trajectories from an ASCII file |
---|
74 | ! read_overlap_single_track_ascii: Subroutine to read the values for a given trajectory |
---|
75 | ! read_overlap_polys_ascii: Subroutine to read from an ASCII file the associated polygons at a given time-step |
---|
76 | ! read_overlap_tracks_ascii: Subroutine to write to an ASCII the polygons associated to a trajectory at a given time step |
---|
77 | ! reconstruct_matrix: Subroutine to reconstruct a 2D matrix from a pair of syncronized vectors with the positions on x |
---|
78 | ! and y coordinates |
---|
79 | ! runmean_F1D: Subroutine fo computing the running mean of a given set of float 1D values |
---|
80 | ! shoelace_area_polygon: Computing the area of a polygon using sholace formula |
---|
81 | ! sort_polygon: Subroutine to sort a polygon using its center as average of the coordinates and remove duplicates |
---|
82 | ! SortR_K*: Subroutine receives an array x() r_K and sorts it into ascending order. |
---|
83 | ! spacepercen: Subroutine to compute the space-percentages of a series of grid cells (B) into another series of grid-cells (A) |
---|
84 | ! spaceweightstats: Subroutine to compute an spatial statistics value from a matrix B into a matrix A using weights |
---|
85 | ! StatsR_K: Subroutine to provide the minmum, maximum, mean, the quadratic mean, and the standard deviation of a |
---|
86 | ! series of r_k numbers |
---|
87 | ! SwapR_K*: Subroutine swaps the values of its two formal arguments. |
---|
88 | ! unique_matrixRK2D: Subroutine to provide the unique values within a 2D RK matrix |
---|
89 | ! write_finaltrack_ascii: Subroutine to read the final trajectories into an ASCII file |
---|
90 | ! write_overlap_polys_ascii: Subroutine to write to an ASCII file the associated polygons at a given time-step |
---|
91 | ! write_overlap_tracks_ascii: Subroutine to write to an ASCII the polygons associated to a trajectory at a given time step |
---|
92 | |
---|
93 | !!! *Functions/Subroutines to sort values adpated. The method used is usually referred to as "selection" method. |
---|
94 | ! from: http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/chap08/sorting.f90 |
---|
95 | |
---|
96 | USE module_definitions |
---|
97 | USE module_generic |
---|
98 | |
---|
99 | CONTAINS |
---|
100 | |
---|
101 | SUBROUTINE fill3DI_2Dvec(matind, inmat, id1, id2, od1, od2, od3, outmat) |
---|
102 | ! Subroutine to fill a 3D integer matrix from a series of indices from a 2D matrix |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | |
---|
106 | INTEGER, INTENT(in) :: id1, id2, od1, od2, od3 |
---|
107 | INTEGER, DIMENSION(id1,id2), INTENT(in) :: inmat |
---|
108 | INTEGER, DIMENSION(od1,od2), INTENT(in) :: matind |
---|
109 | INTEGER, DIMENSION(od1,od2,od3), INTENT(out) :: outmat |
---|
110 | |
---|
111 | ! Local |
---|
112 | INTEGER :: i, j |
---|
113 | |
---|
114 | !!!!!!! Variables |
---|
115 | ! matind: equivalence on the 2D space of the location in inmat |
---|
116 | ! inmat: values of the input matrix (1Dvec, time) |
---|
117 | ! id1/2: dimensions of the input matrix |
---|
118 | ! od1/3: dimensions of the output matrix |
---|
119 | ! outmat: output matrix |
---|
120 | ! NOTE: id2 == od3 |
---|
121 | |
---|
122 | fname = 'fill3DR_2Dvec' |
---|
123 | |
---|
124 | DO i=1, od1 |
---|
125 | DO j=1, od2 |
---|
126 | IF (matind(i,j) /= -1) THEN |
---|
127 | outmat(i,j,:) = inmat(matind(i,j),:) |
---|
128 | ELSE |
---|
129 | outmat(i,j,:) = fillvalI |
---|
130 | END IF |
---|
131 | END DO |
---|
132 | END DO |
---|
133 | |
---|
134 | END SUBROUTINE fill3DI_2Dvec |
---|
135 | |
---|
136 | SUBROUTINE fill3DR_2Dvec(matind, inmat, id1, id2, od1, od2, od3, outmat) |
---|
137 | ! Subroutine to fill a 3D float matrix from a series of indices from a 2D matrix |
---|
138 | |
---|
139 | IMPLICIT NONE |
---|
140 | |
---|
141 | INTEGER, INTENT(in) :: id1, id2, od1, od2, od3 |
---|
142 | REAL(r_k), DIMENSION(id1,id2), INTENT(in) :: inmat |
---|
143 | INTEGER, DIMENSION(od1,od2), INTENT(in) :: matind |
---|
144 | REAL(r_k), DIMENSION(od1,od2,od3), INTENT(out) :: outmat |
---|
145 | |
---|
146 | ! Local |
---|
147 | INTEGER :: i, j |
---|
148 | |
---|
149 | !!!!!!! Variables |
---|
150 | ! matind: equivalence on the 2D space of the location in inmat |
---|
151 | ! inmat: values of the input matrix (1Dvec, time) |
---|
152 | ! id1/2: dimensions of the input matrix |
---|
153 | ! od1/3: dimensions of the output matrix |
---|
154 | ! outmat: output matrix |
---|
155 | ! NOTE: id2 == od3 |
---|
156 | |
---|
157 | fname = 'fill3DR_2Dvec' |
---|
158 | |
---|
159 | DO i=1, od1 |
---|
160 | DO j=1, od2 |
---|
161 | IF (matind(i,j) /= -1) THEN |
---|
162 | outmat(i,j,:) = inmat(matind(i,j),:) |
---|
163 | ELSE |
---|
164 | outmat(i,j,:) = fillval64 |
---|
165 | END IF |
---|
166 | END DO |
---|
167 | END DO |
---|
168 | |
---|
169 | END SUBROUTINE fill3DR_2Dvec |
---|
170 | |
---|
171 | SUBROUTINE reconstruct_matrix(vectorXpos, vectorYpos, dvec, Xmin, Xmax, Ymin, Ymax, dmatx, dmaty, & |
---|
172 | matProj, maxdiff, matind, matX, matY, matdiff) |
---|
173 | ! Subroutine to reconstruct a 2D matrix from a pair of syncronized vectors with the positions on x |
---|
174 | ! and y coordinates |
---|
175 | |
---|
176 | IMPLICIT NONE |
---|
177 | |
---|
178 | INTEGER, INTENT(in) :: dvec, dmatx, dmaty |
---|
179 | REAL(r_k), DIMENSION(dvec), INTENT(in) :: vectorXpos, vectorYpos |
---|
180 | REAL(r_k), INTENT(in) :: Xmin, Xmax, Ymin, Ymax, maxdiff |
---|
181 | CHARACTER(len=50), INTENT(in) :: matPRoj |
---|
182 | INTEGER, DIMENSION(dmatx, dmaty), INTENT(out) :: matind |
---|
183 | REAL(r_k), DIMENSION(dmatx, dmaty), INTENT(out) :: matX, matY, matdiff |
---|
184 | |
---|
185 | ! Local |
---|
186 | INTEGER :: i,j,iv, idiff, jdiff |
---|
187 | REAL(r_k) :: ddx, ddy, Xpos, Ypos, mindiff |
---|
188 | REAL(r_k), DIMENSION(dmatx,dmaty) :: diff |
---|
189 | REAL(r_k) :: nXpos, xXpos, nYpos, xYpos |
---|
190 | INTEGER, DIMENSION(2) :: mindiffloc |
---|
191 | CHARACTER(LEN=50) :: RSa, RSb |
---|
192 | |
---|
193 | !!!!!!! Variables |
---|
194 | ! vectorXpos, vectorYpos: syncronized vectors with the x,y coordinates from which the matrix will be reconstructed |
---|
195 | ! dvec: quantitiy of coordinates to use |
---|
196 | ! Xmin,Xmax,Ymin,Ymax: Location range of the matrix to be reconstructed |
---|
197 | ! maxdiff: Authorized maximum distance between matrix location and vector location |
---|
198 | ! dmatx, dmaty: Size in grid points of the matrix to be reconstructed |
---|
199 | ! matProj: Assumed projection of the values of the matrix |
---|
200 | ! 'latlon': regular lat/lon projection |
---|
201 | ! matind: matrix with the correspondant indiced from the vector of positions |
---|
202 | ! matX, matY: matrix with the coordinates of the elements of the matrix |
---|
203 | ! matdiff: matrix with the differences at each grid point |
---|
204 | |
---|
205 | fname = 'reconstruct_matrix' |
---|
206 | |
---|
207 | matind = -oneRK |
---|
208 | matdiff = -oneRK |
---|
209 | |
---|
210 | nXpos = MINVAL(vectorXpos) |
---|
211 | xXpos = MAXVAL(vectorXpos) |
---|
212 | nYpos = MINVAL(vectorYpos) |
---|
213 | xYpos = MAXVAL(vectorYpos) |
---|
214 | PRINT *, 'Limits of the positions to localize in a matrix: longitudes:', nXpos, & |
---|
215 | ' ,',xXpos, ' latitudes:', nYpos, ' ,', xYpos |
---|
216 | |
---|
217 | Projection: SELECT CASE(TRIM(matProj)) |
---|
218 | |
---|
219 | CASE('latlon') |
---|
220 | ! Resolution along matrix axes |
---|
221 | ddx = (Xmax - Xmin)/(dmatx-1) |
---|
222 | ddy = (Ymax - Ymin)/(dmaty-1) |
---|
223 | |
---|
224 | ! Filling matrix positions |
---|
225 | DO i=1,dmatx |
---|
226 | Xpos = Xmin + ddx*(i-1) |
---|
227 | DO j=1,dmaty |
---|
228 | Ypos = Ymin + ddy*(j-1) |
---|
229 | matX(i,j) = Xpos |
---|
230 | matY(i,j) = Ypos |
---|
231 | END DO |
---|
232 | END DO |
---|
233 | |
---|
234 | CASE DEFAULT |
---|
235 | msg = "Projection of matrix '" // TRIM(matProj) // "' not ready " // CHAR(10) // & |
---|
236 | " Available ones: 'latlon'" |
---|
237 | CALL ErrMsg(msg, fname, -1) |
---|
238 | END SELECT Projection |
---|
239 | |
---|
240 | ! Let's do it properly... |
---|
241 | DO iv=1,dvec |
---|
242 | diff = SQRT((matX - vectorXpos(iv))**2 + (matY - vectorYpos(iv))**2) |
---|
243 | mindiffloc = MINLOC(diff) |
---|
244 | mindiff = MINVAL(diff) |
---|
245 | IF (mindiff > maxdiff) THEN |
---|
246 | PRINT *,' vectorXpos:', vectorXpos(iv), 'vectorYpos:', vectorYpos(iv) |
---|
247 | !PRINT *,' Xpos:', Xpos, 'Ypos:', Ypos |
---|
248 | WRITE(RSa, '(f20.10)')mindiff |
---|
249 | WRITE(RSb, '(f20.10)')maxdiff |
---|
250 | msg = 'Difference: ' // TRIM(RSa) // ' overpasses the maximum authorized distance: ' // & |
---|
251 | TRIM(RSb) |
---|
252 | CALL ErrMsg(msg, fname, -1) |
---|
253 | ELSE |
---|
254 | i = mindiffloc(1) |
---|
255 | j = mindiffloc(2) |
---|
256 | matind(i,j) = iv |
---|
257 | matdiff(i,j) = mindiff |
---|
258 | END IF |
---|
259 | END DO |
---|
260 | |
---|
261 | RETURN |
---|
262 | |
---|
263 | END SUBROUTINE reconstruct_matrix |
---|
264 | |
---|
265 | SUBROUTINE read_finaltrack_ascii(funit, dt, itrack, ftrack) |
---|
266 | ! Subroutine to read the final trajectories from an ASCII file |
---|
267 | |
---|
268 | IMPLICIT NONE |
---|
269 | |
---|
270 | INTEGER, INTENT(in) :: funit, dt, itrack |
---|
271 | REAL(r_k), DIMENSION(5,dt), INTENT(out) :: ftrack |
---|
272 | |
---|
273 | ! Local |
---|
274 | INTEGER :: i, j, it |
---|
275 | LOGICAL :: found |
---|
276 | |
---|
277 | !!!!!!! Variables |
---|
278 | ! funit: unit where to write the trajectory |
---|
279 | ! dt: number of time-steps |
---|
280 | ! itrack: trajectory to read the values |
---|
281 | ! ftrack: values of the trajectory |
---|
282 | |
---|
283 | fname = 'read_finaltrack_ascii' |
---|
284 | |
---|
285 | ftrack = 0. |
---|
286 | |
---|
287 | REWIND(funit) |
---|
288 | |
---|
289 | it = 1 |
---|
290 | DO WHILE (.NOT.found) |
---|
291 | |
---|
292 | READ(funit,10)ftrack(1,1), Str1, ((ftrack(i,j),Str1,i=2,5),Str1,j=1,dt) |
---|
293 | IF (INT(ftrack(1,1)) == itrack) THEN |
---|
294 | ftrack(1,2:dt) = ftrack(1,1) |
---|
295 | found = .TRUE. |
---|
296 | END IF |
---|
297 | |
---|
298 | ! Just in case |
---|
299 | IF (it >= dt) found = .TRUE. |
---|
300 | |
---|
301 | END DO |
---|
302 | |
---|
303 | RETURN |
---|
304 | |
---|
305 | 10 FORMAT(I10000000,1x,A1,1x,10000000(4(F20.10,A1),A1)) |
---|
306 | |
---|
307 | END SUBROUTINE read_finaltrack_ascii |
---|
308 | |
---|
309 | SUBROUTINE write_finaltrack_ascii(funit, dt, ftrack) |
---|
310 | ! Subroutine to write the final trajectories into an ASCII file |
---|
311 | |
---|
312 | IMPLICIT NONE |
---|
313 | |
---|
314 | INTEGER, INTENT(in) :: funit, dt |
---|
315 | REAL(r_k), DIMENSION(5,dt), INTENT(in) :: ftrack |
---|
316 | |
---|
317 | ! Local |
---|
318 | INTEGER :: i, j |
---|
319 | |
---|
320 | !!!!!!! Variables |
---|
321 | ! funit: unit where to write the trajectory |
---|
322 | ! dt: number of time-steps |
---|
323 | ! ftrack: values of the trajectory |
---|
324 | |
---|
325 | fname = 'write_finaltrack_ascii' |
---|
326 | WRITE(funit,10)INT(ftrack(1,1)), ';', ((ftrack(i,j), ',', i=2,5), ':', j=1,dt) |
---|
327 | |
---|
328 | RETURN |
---|
329 | |
---|
330 | 10 FORMAT(I10,1x,A1,1x,10000000(4(F20.10,A1),A1)) |
---|
331 | |
---|
332 | END SUBROUTINE write_finaltrack_ascii |
---|
333 | |
---|
334 | SUBROUTINE read_overlap_single_track_ascii(funit, dt, Nxp, Nxtr, itrack, strack) |
---|
335 | ! Subroutine to read the values for a given trajectory |
---|
336 | |
---|
337 | IMPLICIT NONE |
---|
338 | |
---|
339 | INTEGER, INTENT(in) :: funit, dt, Nxp, Nxtr, itrack |
---|
340 | REAL(r_k), DIMENSION(5,Nxp,dt), INTENT(out) :: strack |
---|
341 | |
---|
342 | ! Local |
---|
343 | INTEGER :: i,j,k,l |
---|
344 | INTEGER :: read_it, itt, it, Ntrcks |
---|
345 | INTEGER, DIMENSION(Nxp) :: Npindep |
---|
346 | LOGICAL :: looking |
---|
347 | REAL(r_k), DIMENSION(5,Nxp,Nxtr) :: trcks |
---|
348 | |
---|
349 | !!!!!!! Variables |
---|
350 | ! funit: unit from where retrieve the values of the trajectory |
---|
351 | ! dt: time-dimension |
---|
352 | ! Nxp: maximum allowed number of polygons per time-step |
---|
353 | ! Nxp: maximum allowed number of trajectories |
---|
354 | ! itrack: trajectory Id to look for |
---|
355 | ! strack: Values for the given trajectory |
---|
356 | |
---|
357 | fname = 'read_overlap_single_track_ascii' |
---|
358 | |
---|
359 | strack = 0. |
---|
360 | |
---|
361 | REWIND(funit) |
---|
362 | |
---|
363 | looking = .TRUE. |
---|
364 | itt = 0 |
---|
365 | it = 1 |
---|
366 | DO WHILE (looking) |
---|
367 | READ(funit,5,END=100)Str10, read_it |
---|
368 | |
---|
369 | READ(funit,*)Ntrcks |
---|
370 | DO i=1, Ntrcks |
---|
371 | READ(funit,10)l, Str1, Npindep(i), Str1, ((trcks(k,j,i),Str1,k=1,5),Str1,j=1,Npindep(i)) |
---|
372 | END DO |
---|
373 | |
---|
374 | ! There is the desired trajectory at this time-step? |
---|
375 | IF (ANY(INT(trcks(1,1,:)) == itrack)) THEN |
---|
376 | itt = itt + 1 |
---|
377 | DO i=1, Ntrcks |
---|
378 | IF (INT(trcks(1,1,i)) == itrack) THEN |
---|
379 | DO j=1, Npindep(i) |
---|
380 | strack(:,j,it) = trcks(:,j,i) |
---|
381 | END DO |
---|
382 | END IF |
---|
383 | END DO |
---|
384 | ELSE |
---|
385 | ! It trajectory has already been initialized this is the end |
---|
386 | IF (itt > 0) looking = .FALSE. |
---|
387 | END IF |
---|
388 | |
---|
389 | ! Just in case... ;) |
---|
390 | IF (read_it >= dt) looking = .FALSE. |
---|
391 | it = it + 1 |
---|
392 | |
---|
393 | IF (it > dt) looking = .FALSE. |
---|
394 | |
---|
395 | END DO |
---|
396 | |
---|
397 | 100 CONTINUE |
---|
398 | |
---|
399 | RETURN |
---|
400 | |
---|
401 | 5 FORMAT(A10,1x,I4) |
---|
402 | 10 FORMAT(I4,1x,A1,I4,1x,A1,1x,1000000(5(F20.10,A1),A1)) |
---|
403 | |
---|
404 | END SUBROUTINE read_overlap_single_track_ascii |
---|
405 | |
---|
406 | SUBROUTINE read_overlap_tracks_ascii(funit, tstep, Nxp, Ntrcks, trcks) |
---|
407 | ! Subroutine to write to an ASCII the polygons associated to a trajectory at a given time step |
---|
408 | |
---|
409 | IMPLICIT NONE |
---|
410 | |
---|
411 | INTEGER, INTENT(in) :: funit, tstep, Nxp |
---|
412 | INTEGER, INTENT(out) :: Ntrcks |
---|
413 | REAL(r_k), DIMENSION(5,Nxp,Nxp), INTENT(out) :: trcks |
---|
414 | |
---|
415 | ! Local |
---|
416 | INTEGER :: i, j, k, l, Npindep |
---|
417 | INTEGER :: read_it |
---|
418 | |
---|
419 | !!!!!!! Variables |
---|
420 | ! funit: unit where to write the file |
---|
421 | ! tstep: time-step to write the trajectories |
---|
422 | ! Nxp: maximum number of polygons per time-step |
---|
423 | ! Nrtcks: Number of trajectories of the given time-step |
---|
424 | ! trcks: trajectories |
---|
425 | |
---|
426 | fname = 'read_overlap_tracks_ascii' |
---|
427 | |
---|
428 | Ntrcks = 0 |
---|
429 | trcks = 0 |
---|
430 | |
---|
431 | READ(funit,5)Str10, read_it |
---|
432 | |
---|
433 | IF (read_it /= tstep) THEN |
---|
434 | WRITE(numSa,'(I4)')read_it |
---|
435 | WRITE(numSb,'(I4)')tstep |
---|
436 | msg = 'File time-step;' // TRIM(numSa) // ' does not coincide with the one from program:' // & |
---|
437 | TRIM(numSb) |
---|
438 | END IF |
---|
439 | |
---|
440 | READ(funit,*)Ntrcks |
---|
441 | DO i=1, Ntrcks |
---|
442 | READ(funit,10)l, Str1, Npindep, Str1, ((trcks(k,j,i),Str1,k=1,5),Str1,j=1,Npindep) |
---|
443 | END DO |
---|
444 | |
---|
445 | RETURN |
---|
446 | |
---|
447 | 5 FORMAT(A10,1x,I4) |
---|
448 | 10 FORMAT(I4,1x,A1,I4,1x,A1,1x,1000000(5(F20.10,A1),A1)) |
---|
449 | |
---|
450 | END SUBROUTINE read_overlap_tracks_ascii |
---|
451 | |
---|
452 | SUBROUTINE write_overlap_tracks_ascii(funit, tstep, Nxp, Ntrcks, trcks) |
---|
453 | ! Subroutine to write to an ASCII the polygons associated to a trajectory at a given time step |
---|
454 | |
---|
455 | IMPLICIT NONE |
---|
456 | |
---|
457 | INTEGER, INTENT(in) :: funit, tstep, Nxp, Ntrcks |
---|
458 | REAL(r_k), DIMENSION(5,Nxp,Ntrcks) :: trcks |
---|
459 | |
---|
460 | ! Local |
---|
461 | INTEGER :: i, j, k, ii, Npindep, Nrealtracks |
---|
462 | |
---|
463 | !!!!!!! Variables |
---|
464 | ! funit: unit where to write the file |
---|
465 | ! tstep: time-step to write the trajectories |
---|
466 | ! Nxp: maximum number of polygons per time-step |
---|
467 | ! Nrtcks: Number of trajectories of the given time-step |
---|
468 | ! trcks: trajectories |
---|
469 | |
---|
470 | fname = 'write_overlap_tracks_ascii' |
---|
471 | |
---|
472 | WRITE(funit,5)'time-step:', tstep |
---|
473 | |
---|
474 | ! Looking for the non-zero trajectories |
---|
475 | Nrealtracks = 0 |
---|
476 | DO i=1, Ntrcks |
---|
477 | Npindep = COUNT(trcks(2,:,i) /= zeroRK) |
---|
478 | IF (Npindep /= 0) Nrealtracks = Nrealtracks + 1 |
---|
479 | END DO |
---|
480 | WRITE(funit,*)Nrealtracks |
---|
481 | |
---|
482 | ! Only writting the trajectories with values |
---|
483 | ii = 1 |
---|
484 | DO i=1, Ntrcks |
---|
485 | Npindep = COUNT(trcks(2,:,i) /= zeroRK) |
---|
486 | IF (Npindep /= 0) THEN |
---|
487 | WRITE(funit,10)ii,';', Npindep, ';', ((trcks(k,j,i),',',k=1,5),':',j=1,Npindep) |
---|
488 | ii = ii + 1 |
---|
489 | END IF |
---|
490 | END DO |
---|
491 | |
---|
492 | RETURN |
---|
493 | |
---|
494 | 5 FORMAT(A10,1x,I4) |
---|
495 | 10 FORMAT(I4,1x,A1,I4,1x,A1,1x,1000000(5(F20.10,A1),A1)) |
---|
496 | |
---|
497 | END SUBROUTINE write_overlap_tracks_ascii |
---|
498 | |
---|
499 | SUBROUTINE read_overlap_polys_ascii(funit, tstep, Nxp, Nindep, SpIndep, NpIndep, pIndep) |
---|
500 | ! Subroutine to read from an ASCII file the associated polygons at a given time-step |
---|
501 | |
---|
502 | IMPLICIT NONE |
---|
503 | |
---|
504 | INTEGER, INTENT(in) :: funit, tstep, Nxp |
---|
505 | INTEGER, INTENT(out) :: Nindep |
---|
506 | INTEGER, DIMENSION(Nxp), INTENT(out) :: SpIndep, NpIndep |
---|
507 | INTEGER, DIMENSION(Nxp,Nxp), INTENT(out) :: pIndep |
---|
508 | |
---|
509 | ! Local |
---|
510 | INTEGER :: i, j, k |
---|
511 | INTEGER :: read_it |
---|
512 | |
---|
513 | !!!!!!! Variables |
---|
514 | ! funit: unit associated to the file |
---|
515 | ! tstep: time-step of the values |
---|
516 | ! Nxp: allowed maximum numbe of polygons per time-step |
---|
517 | ! Nindpe: Number of independent polygons at this time-step |
---|
518 | ! SpIndep: Associated polygon to the independent one from the previous time-step |
---|
519 | ! NpIndep: Number of associated polygons to the independent time-step |
---|
520 | ! pIndep: polygons associated to a given independent polygon |
---|
521 | |
---|
522 | fname = 'read_overlap_polys_ascii' |
---|
523 | |
---|
524 | Nindep = 0 |
---|
525 | SpIndep = 0 |
---|
526 | NpIndep = 0 |
---|
527 | |
---|
528 | READ(funit,5)Str10, read_it |
---|
529 | |
---|
530 | IF (read_it /= tstep) THEN |
---|
531 | WRITE(numSa,'(I4)')read_it |
---|
532 | WRITE(numSb,'(I4)')tstep |
---|
533 | msg = 'File time-step;' // TRIM(numSa) // ' does not coincide with the one from program:' // & |
---|
534 | TRIM(numSb) |
---|
535 | END IF |
---|
536 | |
---|
537 | READ(funit,*)Nindep |
---|
538 | DO i=1, Nindep |
---|
539 | READ(funit,10) k, Str1, SpIndep(i), Str1, NpIndep(i), Str1, (pIndep(i,j), Str1, j=1,NpIndep(i)) |
---|
540 | END DO |
---|
541 | |
---|
542 | RETURN |
---|
543 | |
---|
544 | 5 FORMAT(A10,1x,I4) |
---|
545 | 10 FORMAT(I4,1x,A1,1x,I4,1x,A1,1x,I4,A1,1x,100000(I4,A1)) |
---|
546 | |
---|
547 | END SUBROUTINE read_overlap_polys_ascii |
---|
548 | |
---|
549 | SUBROUTINE write_overlap_polys_ascii(funit, tstep, Nxp, Nindep, SpIndep, NpIndep, pIndep) |
---|
550 | ! Subroutine to write into an ASCII file the associated polygons at a given time-step |
---|
551 | |
---|
552 | IMPLICIT NONE |
---|
553 | |
---|
554 | INTEGER, INTENT(in) :: funit, tstep, Nxp, Nindep |
---|
555 | INTEGER, DIMENSION(Nindep), INTENT(in) :: SpIndep, NpIndep |
---|
556 | INTEGER, DIMENSION(Nindep,Nxp), INTENT(in) :: pIndep |
---|
557 | |
---|
558 | ! Local |
---|
559 | INTEGER :: i, j |
---|
560 | |
---|
561 | !!!!!!! Variables |
---|
562 | ! funit: unit associated to the file |
---|
563 | ! tstep: time-step of the values |
---|
564 | ! Nxp: allowed maximum numbe of polygons per time-step |
---|
565 | ! Nindpe: Number of independent polygons at this time-step |
---|
566 | ! SpIndep: Associated polygon to the independent one from the previous time-step |
---|
567 | ! NpIndep: Number of associated polygons to the independent time-step |
---|
568 | ! pIndep: polygons associated to a given independent polygon |
---|
569 | |
---|
570 | fname = 'write_overlap_polys_ascii' |
---|
571 | |
---|
572 | WRITE(funit,5)'time-step:', tstep |
---|
573 | WRITE(funit,*)Nindep, ' ! Number of independent polygons' |
---|
574 | DO i=1, Nindep |
---|
575 | WRITE(funit,10) i, ';', SpIndep(i), ';', NpIndep(i), ':', (pIndep(i,j), ',', j=1,NpIndep(i)) |
---|
576 | END DO |
---|
577 | |
---|
578 | RETURN |
---|
579 | |
---|
580 | 5 FORMAT(A10,1x,I4) |
---|
581 | 10 FORMAT(I4,1x,A1,1x,I4,1x,A1,1x,I4,A1,1x,100000(I4,A1)) |
---|
582 | |
---|
583 | END SUBROUTINE write_overlap_polys_ascii |
---|
584 | |
---|
585 | SUBROUTINE poly_overlap_tracks_area_ascii(dbg, compute, dx, dy, dt, minarea, inNallpolys, allpolys, & |
---|
586 | ctrpolys, areapolys, Nmaxpoly, Nmaxtracks, methodmulti) |
---|
587 | ! Subroutine to determine tracks of a series of consecutive 2D field with polygons using maximum |
---|
588 | ! overlaping/coincidence filtrered by a minimal area writting theoutput on an ASCII file (memory limitations) |
---|
589 | |
---|
590 | IMPLICIT NONE |
---|
591 | |
---|
592 | LOGICAL, INTENT(in) :: dbg |
---|
593 | CHARACTER(LEN=*), INTENT(in) :: compute, methodmulti |
---|
594 | INTEGER, INTENT(in) :: dx, dy, dt, Nmaxpoly, Nmaxtracks |
---|
595 | INTEGER, DIMENSION(dt), INTENT(in) :: inNallpolys |
---|
596 | INTEGER, DIMENSION(dx,dy,dt), INTENT(in) :: allpolys |
---|
597 | REAL(r_k), INTENT(in) :: minarea |
---|
598 | REAL(r_k), DIMENSION(2,Nmaxpoly,dt), INTENT(in) :: ctrpolys |
---|
599 | REAL(r_k), DIMENSION(Nmaxpoly,dt), INTENT(in) :: areapolys |
---|
600 | |
---|
601 | ! Local |
---|
602 | INTEGER :: i, j, ip, it, iip, itt, iit |
---|
603 | INTEGER :: fprevunit, ftrackunit, ftrunit, ierr, ios |
---|
604 | LOGICAL :: file_exist, dooverlap, dotracks, doftracks |
---|
605 | REAL(r_k), DIMENSION(Nmaxpoly) :: Aprevpolys, Acurrpolys |
---|
606 | REAL(r_k), DIMENSION(2,Nmaxpoly) :: Cprevpolys, Ccurrpolys |
---|
607 | INTEGER, DIMENSION(dx,dy) :: meetpolys, searchpolys |
---|
608 | INTEGER, DIMENSION(Nmaxpoly) :: coincidencies |
---|
609 | INTEGER, DIMENSION(Nmaxpoly) :: prevID, currID |
---|
610 | REAL(r_k), DIMENSION(5,Nmaxpoly,Nmaxtracks,2) :: tracks |
---|
611 | REAL(r_k), DIMENSION(5,dt) :: finaltracks |
---|
612 | INTEGER, DIMENSION(:), ALLOCATABLE :: coins |
---|
613 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: coinsNpts |
---|
614 | INTEGER :: Nmeet, Nsearch, Nindep |
---|
615 | INTEGER, DIMENSION(2) :: Nindeppolys, Npolystime |
---|
616 | CHARACTER(len=5) :: NcoinS |
---|
617 | INTEGER, DIMENSION(Nmaxpoly,Nmaxpoly,2) :: polysIndep |
---|
618 | INTEGER, DIMENSION(Nmaxpoly,2) :: NpolysIndep |
---|
619 | INTEGER, DIMENSION(Nmaxpoly,2) :: SpolysIndep |
---|
620 | INTEGER :: iindep, iiprev |
---|
621 | INTEGER :: Nprev, NNprev, Ntprev |
---|
622 | LOGICAL :: Indeppolychained |
---|
623 | INTEGER :: itrack, ictrack |
---|
624 | INTEGER :: ixp, iyp, ttrack |
---|
625 | INTEGER, DIMENSION(2) :: Ntracks |
---|
626 | INTEGER :: idtrack, maxtrack |
---|
627 | REAL(r_k), DIMENSION(5,Nmaxpoly,dt) :: singletrack |
---|
628 | REAL(r_k) :: totArea, dist, mindist, maxarea, areai |
---|
629 | |
---|
630 | !!!!!!! Variables |
---|
631 | ! dx,dy,dt: space/time dimensions |
---|
632 | ! compute: how to copmute |
---|
633 | ! 'scratch': everything from the beginning |
---|
634 | ! 'continue': skipt that parts which already have the ascii file written |
---|
635 | ! inNallpolys: Vector with the original number of polygons at each time-step |
---|
636 | ! allpolys: Series of 2D field with the polygons |
---|
637 | ! minarea: minimal area (in same units as areapolys) to perform the tracking |
---|
638 | ! ctrpolys: center of the polygons |
---|
639 | ! areapolys: area of the polygons |
---|
640 | ! Nmaxpoly: Maximum possible number of polygons |
---|
641 | ! Nmaxtracks: maximum number of tracks |
---|
642 | ! methodmulti: methodology to follow when multiple polygons are given for the same track |
---|
643 | ! 'mean': get coordinates from the areal-weighted mean of the centers of the given polygons and their areas |
---|
644 | ! 'largest': get the coorindates of the largest polygon |
---|
645 | ! 'closest': get the coordinates of the closest polygon |
---|
646 | |
---|
647 | fname = 'poly_overlap_tracks_area_ascii' |
---|
648 | |
---|
649 | IF (dbg) PRINT *,TRIM(fname) |
---|
650 | |
---|
651 | SELECT CASE (TRIM(compute)) |
---|
652 | CASE ('scratch') |
---|
653 | dooverlap = .TRUE. |
---|
654 | dotracks = .TRUE. |
---|
655 | doftracks = .TRUE. |
---|
656 | CASE ('continue') |
---|
657 | INQUIRE(file='polygons_overlap.dat', exist=file_exist) |
---|
658 | IF (.NOT.file_exist) THEN |
---|
659 | dooverlap = .TRUE. |
---|
660 | ELSE |
---|
661 | IF (dbg) THEN |
---|
662 | PRINT *, TRIM(warnmsg) |
---|
663 | PRINT *," "//TRIM(fname) // ": File 'polygons_overlap.dat' already exists, skipping it !!" |
---|
664 | END IF |
---|
665 | dooverlap = .FALSE. |
---|
666 | END IF |
---|
667 | INQUIRE(file='trajectories_overlap.dat', exist=file_exist) |
---|
668 | IF (.NOT.file_exist) THEN |
---|
669 | dotracks = .TRUE. |
---|
670 | ELSE |
---|
671 | IF (dbg) THEN |
---|
672 | PRINT *, TRIM(warnmsg) |
---|
673 | PRINT *, " " // TRIM(fname) // ": File 'trajectories_overlap.dat' already exists, " // & |
---|
674 | "skipping it !!" |
---|
675 | END IF |
---|
676 | dotracks = .FALSE. |
---|
677 | END IF |
---|
678 | INQUIRE(file='trajectories.dat', exist=file_exist) |
---|
679 | IF (.NOT.file_exist) THEN |
---|
680 | doftracks = .TRUE. |
---|
681 | ELSE |
---|
682 | IF (dbg) THEN |
---|
683 | PRINT *, TRIM(warnmsg) |
---|
684 | PRINT *," "//TRIM(fname) // ": File 'trajectories.dat' already exists, skipping it !!" |
---|
685 | END IF |
---|
686 | doftracks = .FALSE. |
---|
687 | END IF |
---|
688 | CASE DEFAULT |
---|
689 | msg = "compute case: '" // TRIM(compute) // "' not ready !!" |
---|
690 | CALL ErrMsg(msg, fname, -1) |
---|
691 | END SELECT |
---|
692 | |
---|
693 | ! Checking multi-polygon methodology |
---|
694 | IF ( (TRIM(methodmulti) /= 'mean') .AND. (TRIM(methodmulti) /= 'largest') .AND. & |
---|
695 | (TRIM(methodmulti) /= 'closest')) THEN |
---|
696 | msg= "methodology for multiple-polygons: '"//TRIM(methodmulti)//"' not ready" // NEW_LINE('a')//& |
---|
697 | " available ones: 'mean', 'largest', 'closest'" |
---|
698 | CALL ErrMsg(msg, fname, -1) |
---|
699 | END IF |
---|
700 | |
---|
701 | IF (dooverlap) THEN |
---|
702 | ! ASCII file for all the polygons and their previous associated one |
---|
703 | fprevunit = freeunit() |
---|
704 | OPEN(fprevunit, file='polygons_overlap.dat', status='new', form='formatted', iostat=ios) |
---|
705 | msg = "Problems opening file: 'polygons_overlap.dat'" |
---|
706 | IF (ios == 17) PRINT *," Careful: 'polygons_overlap.dat' already exists!!" |
---|
707 | CALL ErrMsg(msg, fname, ios) |
---|
708 | |
---|
709 | ! Number of independent polygons by time step |
---|
710 | Nindeppolys = 0 |
---|
711 | ! Number of polygons attached to each independent polygons by time step |
---|
712 | NpolysIndep = 0 |
---|
713 | ! ID of searching polygon attached to each independent polygons by time step |
---|
714 | SpolysIndep = 0 |
---|
715 | ! ID of polygons attached to each independent polygons by time step |
---|
716 | polysIndep = 0 |
---|
717 | ! ID of polygons from previous time-step |
---|
718 | prevID = 0 |
---|
719 | ! ID of polygons from current time-step |
---|
720 | currID = 0 |
---|
721 | |
---|
722 | ! First time-step all are independent polygons |
---|
723 | it = 1 |
---|
724 | Nmeet = inNallpolys(it) |
---|
725 | Nindeppolys(it) = Nmeet |
---|
726 | ip = 0 |
---|
727 | meetpolys = allpolys(:,:,it) |
---|
728 | DO i=1, Nmeet |
---|
729 | IF (areapolys(i,it) >= minarea) THEN |
---|
730 | ip = ip + 1 |
---|
731 | SpolysIndep(ip,it) = i |
---|
732 | currID(ip) = i |
---|
733 | Acurrpolys(ip) = areapolys(i,it) |
---|
734 | Ccurrpolys(1,ip) = ctrpolys(1,i,it) |
---|
735 | Ccurrpolys(2,ip) = ctrpolys(2,i,it) |
---|
736 | NpolysIndep(ip,it) = 1 |
---|
737 | polysIndep(ip,1,it) = i |
---|
738 | ELSE |
---|
739 | WHERE (meetpolys == i) |
---|
740 | meetpolys = 0 |
---|
741 | END WHERE |
---|
742 | END IF |
---|
743 | END DO |
---|
744 | Nindeppolys(1) = ip |
---|
745 | Npolystime(1) = ip |
---|
746 | |
---|
747 | ! Starting step |
---|
748 | it = 0 |
---|
749 | IF (dbg) THEN |
---|
750 | PRINT *,' time step:',it+1,' number to look polygons:', Nmeet,' searching polygons:',0 |
---|
751 | PRINT *,' number of independent polygons:', Nindeppolys(it+1) |
---|
752 | PRINT *,' indep_polygon prev_step_polygon Nassociated_polygons curr_ass_polygons _______' |
---|
753 | DO i=1, Nindeppolys(it+1) |
---|
754 | PRINT *,i, SpolysIndep(i,it+1), NpolysIndep(i,it+1), ':', & |
---|
755 | polysIndep(i,1:NpolysIndep(i,it+1),it+1) |
---|
756 | END DO |
---|
757 | END IF |
---|
758 | ! Writting to the ASCII file Independent polygons and their associated |
---|
759 | CALL write_overlap_polys_ascii(fprevunit,it+1, Nmaxpoly, Nindeppolys(it+1), & |
---|
760 | SpolysIndep(1:Nindeppolys(it+1),it+1), NpolysIndep(1:Nindeppolys(it+1),it+1), & |
---|
761 | polysIndep(1:Nindeppolys(it+1),:,it+1)) |
---|
762 | |
---|
763 | it = 1 |
---|
764 | ! Looking for the coincidencies at each time step |
---|
765 | DO iit=1, dt-1 |
---|
766 | ! Number of times that a polygon has a coincidence |
---|
767 | coincidencies = 0 |
---|
768 | |
---|
769 | ! Preparing for next time-step |
---|
770 | searchpolys = meetpolys |
---|
771 | prevID = 0 |
---|
772 | prevID = currID |
---|
773 | Aprevpolys = Acurrpolys |
---|
774 | Cprevpolys = Ccurrpolys |
---|
775 | |
---|
776 | Nmeet = inNallpolys(iit+1) |
---|
777 | meetpolys = allpolys(:,:,iit+1) |
---|
778 | ip = 0 |
---|
779 | DO i=1, Nmeet |
---|
780 | IF (areapolys(i,iit+1) >= minarea) THEN |
---|
781 | ip = ip + 1 |
---|
782 | currID(ip) = i |
---|
783 | Acurrpolys(ip) = areapolys(i,iit+1) |
---|
784 | Acurrpolys(ip) = areapolys(i,iit+1) |
---|
785 | Ccurrpolys(1,ip) = ctrpolys(1,i,iit+1) |
---|
786 | Ccurrpolys(2,ip) = ctrpolys(2,i,iit+1) |
---|
787 | ELSE |
---|
788 | WHERE (meetpolys == i) |
---|
789 | meetpolys = 0 |
---|
790 | END WHERE |
---|
791 | END IF |
---|
792 | END DO |
---|
793 | Nindeppolys(it+1) = ip |
---|
794 | Npolystime(it+1) = ip |
---|
795 | |
---|
796 | ! Looking throughout the independent polygons |
---|
797 | Nmeet = Nindeppolys(it+1) |
---|
798 | !Nsearch = Nindeppolys(it) |
---|
799 | ! Previous space might have more polygons that their number of independent ones |
---|
800 | Nsearch = Npolystime(it) |
---|
801 | |
---|
802 | IF (ALLOCATED(coins)) DEALLOCATE(coins) |
---|
803 | ALLOCATE(coins(Nmeet), STAT=ierr) |
---|
804 | msg="Problems allocating 'coins'" |
---|
805 | CALL ErrMsg(msg,fname,ierr) |
---|
806 | |
---|
807 | IF (ALLOCATED(coinsNpts)) DEALLOCATE(coinsNpts) |
---|
808 | ALLOCATE(coinsNpts(Nmeet, Nsearch), STAT=ierr) |
---|
809 | msg="Problems allocating 'coinsNpts'" |
---|
810 | CALL ErrMsg(msg,fname,ierr) |
---|
811 | |
---|
812 | CALL coincidence_all_polys_area(dbg, dx, dy, Nmeet, currID, meetpolys, Ccurrpolys(:,1:Nmeet), & |
---|
813 | Nsearch, prevID, searchpolys, Cprevpolys(:,1:Nsearch), Aprevpolys(1:Nsearch), coins, & |
---|
814 | coinsNpts) |
---|
815 | |
---|
816 | ! Counting the number of times that a polygon has a coincidency |
---|
817 | IF (dbg) THEN |
---|
818 | PRINT *,' Coincidencies for the given time-step:', iit+1,' _______' |
---|
819 | DO i=1, Nmeet |
---|
820 | PRINT *,currID(i), coins(i),' N search pts:', coinsNpts(i,:) |
---|
821 | END DO |
---|
822 | END IF |
---|
823 | |
---|
824 | ! Looking for the same equivalencies |
---|
825 | Nindep = 0 |
---|
826 | DO i=1, Nmeet |
---|
827 | IF (coins(i) == -1) THEN |
---|
828 | Nindep = Nindep + 1 |
---|
829 | SpolysIndep(Nindep,it+1) = -1 |
---|
830 | NpolysIndep(Nindep,it+1) = NpolysIndep(Nindep,it+1) + 1 |
---|
831 | polysIndep(Nindep,NpolysIndep(Nindep,it+1),it+1) = currID(i) |
---|
832 | ELSE IF (coins(i) == -9) THEN |
---|
833 | WRITE(NcoinS,'(I5)')coins(i) |
---|
834 | msg="coins= "//TRIM(NcoinS)//" This is an error. One should have always only one " // & |
---|
835 | "coincidence of polygon" |
---|
836 | CALL ErrMsg(msg, fname, -1) |
---|
837 | ELSE |
---|
838 | ! Looking for coincidences with previous independent polygons |
---|
839 | DO ip=1, Nsearch |
---|
840 | ! Looking into the polygons associated |
---|
841 | NNprev = NpolysIndep(ip,it) |
---|
842 | DO j=1, NNprev |
---|
843 | IF (coins(i) == polysIndep(ip,j,it)) THEN |
---|
844 | ! Which index corresponds to this coincidence? |
---|
845 | iindep = Index1DArrayI(SpolysIndep(1:Nindep,it+1), Nindep, coins(i)) |
---|
846 | IF (iindep == -1) THEN |
---|
847 | Nindep = Nindep + 1 |
---|
848 | SpolysIndep(Nindep,it+1) = coins(i) |
---|
849 | END IF |
---|
850 | iindep = Index1DArrayI(SpolysIndep(1:Nindep,it+1), Nindep, coins(i)) |
---|
851 | IF (iindep < 0) THEN |
---|
852 | PRINT *,' Looking for:', coins(i) |
---|
853 | PRINT *,' Within:', SpolysIndep(1:Nindep,it+1) |
---|
854 | PRINT *,' Might content:', polysIndep(ip,1:NNprev,it) |
---|
855 | PRINT *,' From an initial list:', coins(1:Nmeet) |
---|
856 | msg = 'Wrong index! There must be an index here' |
---|
857 | CALL ErrMsg(msg,fname,iindep) |
---|
858 | END IF |
---|
859 | coincidencies(ip) = coincidencies(ip) + 1 |
---|
860 | NpolysIndep(iindep,it+1) = NpolysIndep(iindep,it+1) + 1 |
---|
861 | polysIndep(iindep,NpolysIndep(iindep,it+1),it+1) = currID(i) |
---|
862 | EXIT |
---|
863 | END IF |
---|
864 | END DO |
---|
865 | END DO |
---|
866 | END IF |
---|
867 | END DO |
---|
868 | Nindeppolys(it+1) = Nindep |
---|
869 | |
---|
870 | IF (dbg) THEN |
---|
871 | PRINT *,' time step:',iit+1,' number to look polygons:', Nmeet,' searching polygons:',Nsearch |
---|
872 | PRINT *,' number of independent polygons:', Nindeppolys(it+1) |
---|
873 | PRINT *,' indep_polygon prev_step_polygon Nassociated_polygons curr_ass_polygons _______' |
---|
874 | DO i=1, Nindeppolys(it+1) |
---|
875 | PRINT *,i, SpolysIndep(i,it+1), NpolysIndep(i,it+1), ':', & |
---|
876 | polysIndep(i,1:NpolysIndep(i,it+1),it+1) |
---|
877 | END DO |
---|
878 | END IF |
---|
879 | |
---|
880 | ! Writting to the ASCII file Independent polygons and their associated |
---|
881 | CALL write_overlap_polys_ascii(fprevunit, iit+1, Nmaxpoly, Nindeppolys(it+1), & |
---|
882 | SpolysIndep(1:Nindeppolys(it+1),it+1), NpolysIndep(1:Nindeppolys(it+1),it+1), & |
---|
883 | polysIndep(1:Nindeppolys(it+1),:,it+1)) |
---|
884 | ! Preparing for the next time-step |
---|
885 | SpolysIndep(:,it) = 0 |
---|
886 | NpolysIndep(:,it) = 0 |
---|
887 | polysIndep(:,:,it) = 0 |
---|
888 | Nindeppolys(it) = Nindeppolys(it+1) |
---|
889 | SpolysIndep(1:Nindeppolys(it),it) = SpolysIndep(1:Nindeppolys(it+1),it+1) |
---|
890 | NpolysIndep(1:Nindeppolys(it),it) = NpolysIndep(1:Nindeppolys(it+1),it+1) |
---|
891 | Npolystime(it) = Npolystime(it+1) |
---|
892 | |
---|
893 | DO ip=1, Nindeppolys(it) |
---|
894 | polysIndep(ip,1,it) = polysIndep(ip,1,it+1) |
---|
895 | polysIndep(ip,2,it) = polysIndep(ip,2,it+1) |
---|
896 | END DO |
---|
897 | SpolysIndep(:,it+1) = 0 |
---|
898 | NpolysIndep(:,it+1) = 0 |
---|
899 | polysIndep(:,:,it+1) = 0 |
---|
900 | |
---|
901 | END DO |
---|
902 | CLOSE(fprevunit) |
---|
903 | IF (dbg) PRINT *," Succesful writting of ASCII chain of polygons 'polygons_overlap.dat' !!" |
---|
904 | END IF |
---|
905 | ! ASCII file for all the polygons and their previous associated one |
---|
906 | fprevunit = freeunit() |
---|
907 | OPEN(fprevunit, file='polygons_overlap.dat', status='old', form='formatted', iostat=ios) |
---|
908 | msg = "Problems opening file: 'polygons_overlap.dat'" |
---|
909 | CALL ErrMsg(msg, fname, ios) |
---|
910 | |
---|
911 | it = 1 |
---|
912 | IF (dbg) THEN |
---|
913 | PRINT *, 'Coincidencies to connect _______' |
---|
914 | DO iit=1, dt |
---|
915 | ! Reading from the ASCII file Independent polygons and their associated |
---|
916 | CALL read_overlap_polys_ascii(fprevunit, iit, Nmaxpoly, Nindeppolys(it), SpolysIndep(:,it), & |
---|
917 | NpolysIndep(:,it), polysIndep(:,:,it)) |
---|
918 | PRINT *,' it:', iit, ' Nindep:', Nindeppolys(it) |
---|
919 | PRINT '(4x,3(A6,1x))','Nindep', 'PrevID', 'IDs' |
---|
920 | DO ip=1, Nindeppolys(it) |
---|
921 | PRINT '(4x,I6,A1,I6,A1,100(I6))', ip, ',', SpolysIndep(ip,it), ':', & |
---|
922 | polysIndep(ip,1:NpolysIndep(ip,it),it) |
---|
923 | END DO |
---|
924 | END DO |
---|
925 | END IF |
---|
926 | |
---|
927 | REWIND(fprevunit) |
---|
928 | |
---|
929 | ! Trajectories |
---|
930 | ! It should be done following the number of 'independent' polygons |
---|
931 | ! One would concatenate that independent polygons which share IDs from one step to another |
---|
932 | IF (dotracks) THEN |
---|
933 | |
---|
934 | ! ASCII file for the trajectories |
---|
935 | ftrackunit = freeunit() |
---|
936 | OPEN(ftrackunit, file='trajectories_overlap.dat', status='new', form='formatted', iostat=ios) |
---|
937 | msg = "Problems opening file: 'trajectories_overlap.dat'" |
---|
938 | IF (ios == 17) PRINT *," Careful: 'trajectories_overlap.dat' already exists!!" |
---|
939 | CALL ErrMsg(msg,fname,ios) |
---|
940 | |
---|
941 | ! First time-step. Take all polygons |
---|
942 | itrack = 0 |
---|
943 | tracks = zeroRK |
---|
944 | Ntracks = 0 |
---|
945 | it = 1 |
---|
946 | iit = 1 |
---|
947 | CALL read_overlap_polys_ascii(fprevunit, iit, Nmaxpoly, Nindeppolys(it), SpolysIndep(:,it), & |
---|
948 | NpolysIndep(:,it), polysIndep(:,:,it)) |
---|
949 | |
---|
950 | DO ip=1, Nindeppolys(1) |
---|
951 | itrack = itrack + 1 |
---|
952 | tracks(1,1,itrack,1) = itrack*1. |
---|
953 | tracks(2,1,itrack,1) = SpolysIndep(ip,1) |
---|
954 | tracks(3,1,itrack,1) = ctrpolys(1,ip,1) |
---|
955 | tracks(4,1,itrack,1) = ctrpolys(2,ip,1) |
---|
956 | tracks(5,1,itrack,1) = 1 |
---|
957 | Ntracks(1) = Ntracks(1) + 1 |
---|
958 | END DO |
---|
959 | |
---|
960 | ! Writting first time-step trajectories to the intermediate file |
---|
961 | CALL write_overlap_tracks_ascii(ftrackunit,iit,Nmaxpoly, Ntracks(it), tracks(:,:,1:Ntracks(it),it)) |
---|
962 | |
---|
963 | ! Looping allover already assigned tracks |
---|
964 | it = 2 |
---|
965 | maxtrack = Ntracks(1) |
---|
966 | timesteps: DO iit=2, dt |
---|
967 | CALL read_overlap_polys_ascii(fprevunit, iit, Nmaxpoly, Nindeppolys(it), SpolysIndep(:,it), & |
---|
968 | NpolysIndep(:,it), polysIndep(:,:,it)) |
---|
969 | IF (dbg) PRINT *,'track-timestep:', iit, 'N indep polys:', Nindeppolys(it) |
---|
970 | ! Indep polygons current time-step |
---|
971 | current_poly: DO i=1, Nindeppolys(it) |
---|
972 | IF (dbg) PRINT *,' curent poly:', i, 'Prev poly:', SpolysIndep(i,it), ' N ass. polygons:', & |
---|
973 | NpolysIndep(i,it), 'ass. poly:', polysIndep(i,1:NpolysIndep(i,it),it) |
---|
974 | Indeppolychained = .FALSE. |
---|
975 | |
---|
976 | ! Number of tracks previous time-step |
---|
977 | ! Looping overall |
---|
978 | it1_tracks: DO itt=1, Ntracks(it-1) |
---|
979 | itrack = tracks(1,1,itt,it-1) |
---|
980 | ! Number polygons ID assigned |
---|
981 | Ntprev = COUNT(tracks(2,:,itt,it-1) /= 0) |
---|
982 | IF (dbg) PRINT *,itt,' track:', itrack, 'assigned:', tracks(2,1:Ntprev,itt,it-1) |
---|
983 | |
---|
984 | ! Looking for coincidencies |
---|
985 | DO iip=1, Ntprev |
---|
986 | IF (tracks(2,iip,itt,it-1) == SpolysIndep(i,it)) THEN |
---|
987 | Indeppolychained = .TRUE. |
---|
988 | IF (dbg) PRINT *,' coincidence found by polygon:', tracks(2,iip,itt,it-1) |
---|
989 | EXIT |
---|
990 | END IF |
---|
991 | END DO |
---|
992 | IF (Indeppolychained) THEN |
---|
993 | Ntracks(it) = Ntracks(it) + 1 |
---|
994 | ictrack = Ntracks(it) |
---|
995 | ! Assigning all the IDs to the next step of the track |
---|
996 | DO iip=1, NpolysIndep(i,it) |
---|
997 | iiprev = polysIndep(i,iip,it) |
---|
998 | tracks(1,iip,ictrack,it) = itrack |
---|
999 | tracks(2,iip,ictrack,it) = iiprev |
---|
1000 | tracks(3,iip,ictrack,it) = ctrpolys(1,iiprev,iit) |
---|
1001 | tracks(4,iip,ictrack,it) = ctrpolys(2,iiprev,iit) |
---|
1002 | tracks(5,iip,ictrack,it) = iit |
---|
1003 | END DO |
---|
1004 | EXIT |
---|
1005 | END IF |
---|
1006 | IF (Indeppolychained) EXIT |
---|
1007 | END DO it1_tracks |
---|
1008 | |
---|
1009 | ! Creation of a new track |
---|
1010 | IF (.NOT.Indeppolychained) THEN |
---|
1011 | Ntracks(it) = Ntracks(it) + 1 |
---|
1012 | ictrack = Ntracks(it) |
---|
1013 | ! ID of new track |
---|
1014 | maxtrack = maxtrack + 1 |
---|
1015 | IF (dbg) PRINT *,' New track!', maxtrack |
---|
1016 | |
---|
1017 | ! Assigning all the IDs to the next step of the track |
---|
1018 | DO j=1, NpolysIndep(i,it) |
---|
1019 | iiprev = polysIndep(i,j,it) |
---|
1020 | tracks(1,j,ictrack,it) = maxtrack |
---|
1021 | tracks(2,j,ictrack,it) = iiprev |
---|
1022 | tracks(3,j,ictrack,it) = ctrpolys(1,iiprev,iit) |
---|
1023 | tracks(4,j,ictrack,it) = ctrpolys(2,iiprev,iit) |
---|
1024 | tracks(5,j,ictrack,it) = iit |
---|
1025 | END DO |
---|
1026 | END IF |
---|
1027 | |
---|
1028 | END DO current_poly |
---|
1029 | |
---|
1030 | IF (dbg) THEN |
---|
1031 | PRINT *,' At this time-step:', iit, ' N trajectories:', Ntracks(it) |
---|
1032 | DO i=1, Ntracks(it) |
---|
1033 | Nprev = COUNT(INT(tracks(2,:,i,it)) /= 0) |
---|
1034 | PRINT *,i ,'ID tracks:', tracks(1,1,i,it), 'ID polygon:', tracks(2,1:Nprev,i,it) |
---|
1035 | END DO |
---|
1036 | END IF |
---|
1037 | |
---|
1038 | CALL write_overlap_tracks_ascii(ftrackunit,iit,Nmaxpoly,Ntracks(it),tracks(:,:,1:Ntracks(it),it)) |
---|
1039 | ! Re-initializing for the next time-step |
---|
1040 | tracks(:,:,:,it-1) = zeroRK |
---|
1041 | Ntracks(it-1) = Ntracks(it) |
---|
1042 | tracks(:,:,1:Ntracks(it-1),it-1) = tracks(:,:,1:Ntracks(it),it) |
---|
1043 | Ntracks(it) = 0 |
---|
1044 | tracks(:,:,:,it) = zeroRK |
---|
1045 | |
---|
1046 | END DO timesteps |
---|
1047 | CLOSE(ftrackunit) |
---|
1048 | IF (dbg) PRINT *," Succesful writting of ASCII chain of polygons 'trajectories_overlap.dat' !!" |
---|
1049 | CLOSE(fprevunit) |
---|
1050 | END IF |
---|
1051 | |
---|
1052 | ! Summarizing trajectories |
---|
1053 | ! When multiple polygons are available, the mean of their central positions determines the position |
---|
1054 | |
---|
1055 | IF (doftracks) THEN |
---|
1056 | ! ASCII file for the trajectories |
---|
1057 | ftrackunit = freeunit() |
---|
1058 | OPEN(ftrackunit, file='trajectories_overlap.dat', status='old', form='formatted', iostat=ios) |
---|
1059 | msg = "Problems opening file: 'trajectories_overlap.dat'" |
---|
1060 | CALL ErrMsg(msg,fname,ios) |
---|
1061 | |
---|
1062 | ! ASCII file for the final trajectories |
---|
1063 | ftrunit = freeunit() |
---|
1064 | OPEN(ftrunit, file='trajectories.dat', status='new', form='formatted', iostat=ios) |
---|
1065 | msg = "Problems opening file: 'trajectories.dat'" |
---|
1066 | IF (ios == 17) PRINT *," Careful: 'trajectories.dat' already exists!!" |
---|
1067 | CALL ErrMsg(msg,fname,ios) |
---|
1068 | |
---|
1069 | finaltracks = zeroRK |
---|
1070 | |
---|
1071 | DO itt=1, Nmaxtracks |
---|
1072 | CALL read_overlap_single_track_ascii(ftrackunit, dt, Nmaxpoly, Nmaxtracks, itt, singletrack) |
---|
1073 | |
---|
1074 | ! It might reach the las trajectory |
---|
1075 | IF (ALL(singletrack == zeroRK)) EXIT |
---|
1076 | |
---|
1077 | itrack = INT(MAXVAL(singletrack(1,1,:))) |
---|
1078 | IF (dbg) THEN |
---|
1079 | PRINT *,' Trajectory:', itt, '_______', itrack |
---|
1080 | DO it=1, dt |
---|
1081 | IF (singletrack(2,1,it) /= zeroRK) THEN |
---|
1082 | j = COUNT(singletrack(2,:,it) /= zeroRK) |
---|
1083 | PRINT *,it,':',(singletrack(3,i,it),',',singletrack(4,i,it),' ; ',i=1,j) |
---|
1084 | END IF |
---|
1085 | END DO |
---|
1086 | END IF |
---|
1087 | |
---|
1088 | finaltracks = zeroRK |
---|
1089 | finaltracks(1,:) = itrack*oneRK |
---|
1090 | DO it =1, dt |
---|
1091 | Nprev = COUNT(INT(singletrack(2,:,it)) /= zeroRK) |
---|
1092 | IF (Nprev /= 0) THEN |
---|
1093 | finaltracks(5,it) = it*oneRK |
---|
1094 | IF (TRIM(methodmulti) == 'largest') THEN |
---|
1095 | maxarea = -10.*oneRK |
---|
1096 | DO ip=1, Nprev |
---|
1097 | IF (areapolys(singletrack(2,ip,it),it) > maxarea) THEN |
---|
1098 | maxarea = areapolys(singletrack(2,ip,it),it) |
---|
1099 | i = ip |
---|
1100 | END IF |
---|
1101 | END DO |
---|
1102 | IF (dbg) THEN |
---|
1103 | PRINT *,' Determine the trajectory coordinates to the largest polygon:', i, & |
---|
1104 | ' area:', maxarea |
---|
1105 | END IF |
---|
1106 | finaltracks(2,it) = singletrack(2,i,it)*oneRK |
---|
1107 | finaltracks(3,it) = singletrack(3,i,it) |
---|
1108 | finaltracks(4,it) = singletrack(4,i,it) |
---|
1109 | ELSE IF (TRIM(methodmulti) == 'closest') THEN |
---|
1110 | IF (it > 1) THEN |
---|
1111 | mindist = 10000000.*oneRK |
---|
1112 | DO ip=1, Nprev |
---|
1113 | dist = SQRT((singletrack(3,ip,it)-finaltracks(3,it-1))**2 + & |
---|
1114 | (singletrack(4,ip,it)-finaltracks(4,it-1))**2 ) |
---|
1115 | IF (dist < mindist) THEN |
---|
1116 | mindist = dist |
---|
1117 | i = ip |
---|
1118 | END IF |
---|
1119 | END DO |
---|
1120 | finaltracks(2,it) = singletrack(3,i,it)*oneRK |
---|
1121 | finaltracks(3,it) = singletrack(3,i,it) |
---|
1122 | finaltracks(4,it) = singletrack(4,i,it) |
---|
1123 | IF (dbg) THEN |
---|
1124 | PRINT *,' Determine the trajectory coordinates to the closest previous polygon:',i,& |
---|
1125 | ' distance:', mindist |
---|
1126 | END IF |
---|
1127 | ELSE |
---|
1128 | maxarea = -10.*oneRK |
---|
1129 | DO ip=1, Nprev |
---|
1130 | IF (areapolys(singletrack(2,ip,it),it) > maxarea) THEN |
---|
1131 | maxarea = areapolys(singletrack(2,ip,it),it) |
---|
1132 | i = ip |
---|
1133 | END IF |
---|
1134 | END DO |
---|
1135 | IF (dbg) THEN |
---|
1136 | PRINT *, ' Determine the trajectory coordinates to the largest polygon:', i, & |
---|
1137 | ' area:', maxarea, ' at the first time-step then to the closest' |
---|
1138 | END IF |
---|
1139 | finaltracks(2,it) = i*oneRK |
---|
1140 | finaltracks(3,it) = singletrack(3,i,it) |
---|
1141 | finaltracks(4,it) = singletrack(4,i,it) |
---|
1142 | END IF |
---|
1143 | ELSE |
---|
1144 | totArea = zeroRK |
---|
1145 | finaltracks(2,it) = -oneRK |
---|
1146 | finaltracks(3,it) = zeroRK |
---|
1147 | finaltracks(4,it) = zeroRK |
---|
1148 | DO ip=1, Nprev |
---|
1149 | areai = areapolys(singletrack(2,ip,it),it) |
---|
1150 | totArea = totArea + areai |
---|
1151 | finaltracks(3,it) = finaltracks(3,it) + singletrack(3,ip,it)*areai |
---|
1152 | finaltracks(4,it) = finaltracks(4,it) + singletrack(4,ip,it)*areai |
---|
1153 | END DO |
---|
1154 | finaltracks(3,it) = finaltracks(3,it)/totArea |
---|
1155 | finaltracks(4,it) = finaltracks(4,it)/totArea |
---|
1156 | IF (dbg) THEN |
---|
1157 | PRINT *,' Determine the trajectory coordinates to the area-averaged polygon ' // & |
---|
1158 | ' total area:', totArea |
---|
1159 | END IF |
---|
1160 | |
---|
1161 | END IF |
---|
1162 | |
---|
1163 | END IF |
---|
1164 | END DO |
---|
1165 | ! Writting the final track into the ASCII file |
---|
1166 | CALL write_finaltrack_ascii(ftrunit, dt, finaltracks) |
---|
1167 | |
---|
1168 | END DO |
---|
1169 | CLOSE(ftrackunit) |
---|
1170 | IF (dbg) PRINT *," Succesful writting of ASCII trajectories 'trajectories.dat' !!" |
---|
1171 | CLOSE(ftrunit) |
---|
1172 | END IF |
---|
1173 | |
---|
1174 | IF (ALLOCATED(coins)) DEALLOCATE(coins) |
---|
1175 | IF (ALLOCATED(coinsNpts)) DEALLOCATE(coinsNpts) |
---|
1176 | |
---|
1177 | RETURN |
---|
1178 | |
---|
1179 | END SUBROUTINE poly_overlap_tracks_area_ascii |
---|
1180 | |
---|
1181 | SUBROUTINE poly_overlap_tracks_area(dbg, dx, dy, dt, minarea, inNallpolys, allpolys, ctrpolys, & |
---|
1182 | areapolys, Nmaxpoly, Nmaxtracks, tracks, finaltracks) |
---|
1183 | ! Subroutine to determine tracks of a series of consecutive 2D field with polygons using maximum |
---|
1184 | ! overlaping/coincidence filtrered by a minimal area |
---|
1185 | |
---|
1186 | IMPLICIT NONE |
---|
1187 | |
---|
1188 | LOGICAL, INTENT(in) :: dbg |
---|
1189 | INTEGER, INTENT(in) :: dx, dy, dt, Nmaxpoly, Nmaxtracks |
---|
1190 | INTEGER, DIMENSION(dt), INTENT(in) :: inNallpolys |
---|
1191 | INTEGER, DIMENSION(dx,dy,dt), INTENT(in) :: allpolys |
---|
1192 | REAL(r_k), INTENT(in) :: minarea |
---|
1193 | REAL(r_k), DIMENSION(2,Nmaxpoly,dt), INTENT(in) :: ctrpolys |
---|
1194 | REAL(r_k), DIMENSION(Nmaxpoly,dt), INTENT(in) :: areapolys |
---|
1195 | REAL(r_k), DIMENSION(5,Nmaxpoly,Nmaxtracks,dt), & |
---|
1196 | INTENT(out) :: tracks |
---|
1197 | REAL(r_k), DIMENSION(4,Nmaxtracks,dt), INTENT(out) :: finaltracks |
---|
1198 | |
---|
1199 | ! Local |
---|
1200 | INTEGER :: i, j, ip, it, iip, itt |
---|
1201 | INTEGER :: ierr |
---|
1202 | REAL(r_k), DIMENSION(Nmaxpoly) :: Aprevpolys, Acurrpolys |
---|
1203 | REAL(r_k), DIMENSION(2,Nmaxpoly) :: Cprevpolys, Ccurrpolys |
---|
1204 | INTEGER, DIMENSION(dt) :: Nallpolys |
---|
1205 | INTEGER, DIMENSION(dx,dy) :: meetpolys, searchpolys |
---|
1206 | INTEGER, DIMENSION(Nmaxpoly) :: coincidencies |
---|
1207 | INTEGER, DIMENSION(Nmaxpoly) :: prevID, currID |
---|
1208 | INTEGER, DIMENSION(:), ALLOCATABLE :: coins |
---|
1209 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: coinsNpts |
---|
1210 | INTEGER :: Nmeet, Nsearch, Nindep |
---|
1211 | INTEGER, DIMENSION(dt) :: Nindeppolys |
---|
1212 | CHARACTER(len=5) :: NcoinS |
---|
1213 | INTEGER, DIMENSION(Nmaxpoly,Nmaxpoly,dt) :: polysIndep |
---|
1214 | INTEGER, DIMENSION(Nmaxpoly,dt) :: NpolysIndep |
---|
1215 | INTEGER, DIMENSION(Nmaxpoly,dt) :: SpolysIndep |
---|
1216 | INTEGER :: iindep, iiprev |
---|
1217 | INTEGER :: Nprev, NNprev, Ntprev |
---|
1218 | LOGICAL :: Indeppolychained |
---|
1219 | INTEGER :: itrack, ictrack |
---|
1220 | REAL(r_k) :: ixp, iyp |
---|
1221 | INTEGER :: ttrack |
---|
1222 | INTEGER, DIMENSION(dt) :: Ntracks |
---|
1223 | INTEGER :: idtrack, maxtrack |
---|
1224 | |
---|
1225 | !!!!!!! Variables |
---|
1226 | ! dx,dy,dt: space/time dimensions |
---|
1227 | ! Nallpolys: Vector with the number of polygons at each time-step |
---|
1228 | ! allpolys: Series of 2D field with the polygons |
---|
1229 | ! minarea: minimal area (in same units as areapolys) to perform the tracking |
---|
1230 | ! ctrpolys: center of the polygons |
---|
1231 | ! areapolys: area of the polygons |
---|
1232 | ! Nmaxpoly: Maximum possible number of polygons |
---|
1233 | ! Nmaxtracks: maximum number of tracks |
---|
1234 | ! tracks: series of consecutive polygons |
---|
1235 | ! trackperiod: period of the track in time-steps |
---|
1236 | |
---|
1237 | fname = 'poly_overlap_tracks_area' |
---|
1238 | |
---|
1239 | IF (dbg) PRINT *,TRIM(fname) |
---|
1240 | |
---|
1241 | ! Number of independent polygons by time step |
---|
1242 | Nindeppolys = 0 |
---|
1243 | ! Number of polygons attached to each independent polygons by time step |
---|
1244 | NpolysIndep = 0 |
---|
1245 | ! ID of searching polygon attached to each independent polygons by time step |
---|
1246 | SpolysIndep = 0 |
---|
1247 | ! ID of polygons attached to each independent polygons by time step |
---|
1248 | polysIndep = 0 |
---|
1249 | ! ID of polygons from previous time-step |
---|
1250 | prevID = 0 |
---|
1251 | ! ID of polygons from current time-step |
---|
1252 | currID = 0 |
---|
1253 | |
---|
1254 | ! First time-step all are independent polygons |
---|
1255 | it = 1 |
---|
1256 | Nmeet = inNallpolys(it) |
---|
1257 | Nindeppolys(it) = Nmeet |
---|
1258 | ip = 0 |
---|
1259 | meetpolys = allpolys(:,:,it) |
---|
1260 | DO i=1, Nmeet |
---|
1261 | IF (areapolys(i,it) >= minarea) THEN |
---|
1262 | ip = ip + 1 |
---|
1263 | SpolysIndep(ip,it) = i |
---|
1264 | currID(ip) = i |
---|
1265 | Acurrpolys(ip) = areapolys(i,it) |
---|
1266 | Ccurrpolys(1,ip) = ctrpolys(1,i,it) |
---|
1267 | Ccurrpolys(2,ip) = ctrpolys(2,i,it) |
---|
1268 | NpolysIndep(ip,it) = 1 |
---|
1269 | polysIndep(ip,1,it) = i |
---|
1270 | ELSE |
---|
1271 | WHERE (meetpolys == i) |
---|
1272 | meetpolys = 0 |
---|
1273 | END WHERE |
---|
1274 | END IF |
---|
1275 | END DO |
---|
1276 | Nallpolys(1) = ip |
---|
1277 | Nindeppolys(1) = ip |
---|
1278 | |
---|
1279 | ! Starting step |
---|
1280 | it = 0 |
---|
1281 | IF (dbg) THEN |
---|
1282 | PRINT *,' time step:',it+1,' number to look polygons:', Nmeet,' searching polygons:',0 |
---|
1283 | PRINT *,' number of independent polygons:', Nindeppolys(it+1) |
---|
1284 | PRINT *,' indep_polygon prev_step_polygon Nassociated_polygons curr_ass_polygons _______' |
---|
1285 | DO i=1, Nindeppolys(it+1) |
---|
1286 | PRINT *,i, SpolysIndep(i,it+1), NpolysIndep(i,it+1), ':', & |
---|
1287 | polysIndep(i,1:NpolysIndep(i,it+1),it+1) |
---|
1288 | END DO |
---|
1289 | END IF |
---|
1290 | |
---|
1291 | ! Looking for the coincidencies at each time step |
---|
1292 | DO it=1, dt-1 |
---|
1293 | ! Number of times that a polygon has a coincidence |
---|
1294 | coincidencies = 0 |
---|
1295 | |
---|
1296 | Nmeet = inNallpolys(it+1) |
---|
1297 | searchpolys = meetpolys |
---|
1298 | meetpolys = allpolys(:,:,it+1) |
---|
1299 | prevID = 0 |
---|
1300 | prevID = currID |
---|
1301 | Aprevpolys = Acurrpolys |
---|
1302 | Cprevpolys = Ccurrpolys |
---|
1303 | ip = 0 |
---|
1304 | |
---|
1305 | DO i=1, Nmeet |
---|
1306 | IF (areapolys(i,it+1) >= minarea) THEN |
---|
1307 | ip = ip + 1 |
---|
1308 | currID(ip) = i |
---|
1309 | Acurrpolys(ip) = areapolys(i,it+1) |
---|
1310 | Acurrpolys(ip) = areapolys(i,it+1) |
---|
1311 | Ccurrpolys(1,ip) = ctrpolys(1,i,it+1) |
---|
1312 | Ccurrpolys(2,ip) = ctrpolys(2,i,it+1) |
---|
1313 | ELSE |
---|
1314 | WHERE (meetpolys == i) |
---|
1315 | meetpolys = 0 |
---|
1316 | END WHERE |
---|
1317 | END IF |
---|
1318 | END DO |
---|
1319 | Nallpolys(it+1) = ip |
---|
1320 | Nindeppolys(it+1) = ip |
---|
1321 | |
---|
1322 | Nmeet = Nallpolys(it+1) |
---|
1323 | ! Looking throughout the independent polygons |
---|
1324 | Nsearch = Nindeppolys(it) |
---|
1325 | |
---|
1326 | IF (ALLOCATED(coins)) DEALLOCATE(coins) |
---|
1327 | ALLOCATE(coins(Nmeet), STAT=ierr) |
---|
1328 | msg="Problems allocating 'coins'" |
---|
1329 | CALL ErrMsg(msg,fname,ierr) |
---|
1330 | |
---|
1331 | IF (ALLOCATED(coinsNpts)) DEALLOCATE(coinsNpts) |
---|
1332 | ALLOCATE(coinsNpts(Nmeet, Nsearch), STAT=ierr) |
---|
1333 | msg="Problems allocating 'coinsNpts'" |
---|
1334 | CALL ErrMsg(msg,fname,ierr) |
---|
1335 | |
---|
1336 | CALL coincidence_all_polys_area(dbg, dx,dy, Nmeet, currID, meetpolys, Acurrpolys(1:Nmeet), & |
---|
1337 | Nsearch, prevID, searchpolys, Cprevpolys(:,1:Nsearch), Aprevpolys(1:Nsearch), coins, & |
---|
1338 | coinsNpts) |
---|
1339 | |
---|
1340 | ! Counting the number of times that a polygon has a coincidency |
---|
1341 | IF (dbg) THEN |
---|
1342 | PRINT *,' Coincidencies for the given time-step:', it+1,' _______' |
---|
1343 | DO i=1, Nmeet |
---|
1344 | PRINT *,currID(i), coins(i),' N search pts:', coinsNpts(i,:) |
---|
1345 | END DO |
---|
1346 | END IF |
---|
1347 | |
---|
1348 | ! Looking for the same equivalencies |
---|
1349 | Nindep = 0 |
---|
1350 | DO i=1, Nmeet |
---|
1351 | IF (coins(i) == -1) THEN |
---|
1352 | Nindep = Nindep + 1 |
---|
1353 | SpolysIndep(Nindep,it+1) = -1 |
---|
1354 | NpolysIndep(Nindep,it+1) = NpolysIndep(Nindep,it+1) + 1 |
---|
1355 | polysIndep(Nindep,NpolysIndep(Nindep,it+1),it+1) = currID(i) |
---|
1356 | ELSE IF (coins(i) == -9) THEN |
---|
1357 | WRITE(NcoinS,'(I5)')coins(i) |
---|
1358 | msg="coins= "//TRIM(NcoinS)//" This is an error. One should have always only one " // & |
---|
1359 | "coincidence of polygon" |
---|
1360 | CALL ErrMsg(msg, fname, -1) |
---|
1361 | ELSE |
---|
1362 | ! Looking for coincidences with previous independent polygons |
---|
1363 | DO ip=1, Nsearch |
---|
1364 | ! Looking into the polygons associated |
---|
1365 | NNprev = NpolysIndep(ip,it) |
---|
1366 | DO j=1, NNprev |
---|
1367 | IF (coins(i) == polysIndep(ip,j,it)) THEN |
---|
1368 | ! Which index corresponds to this coincidence? |
---|
1369 | iindep = Index1DArrayI(SpolysIndep(1:Nindep,it+1), Nindep, coins(i)) |
---|
1370 | IF (iindep == -1) THEN |
---|
1371 | Nindep = Nindep + 1 |
---|
1372 | SpolysIndep(Nindep,it+1) = coins(i) |
---|
1373 | END IF |
---|
1374 | iindep = Index1DArrayI(SpolysIndep(1:Nindep,it+1), Nindep, coins(i)) |
---|
1375 | IF (iindep < 0) THEN |
---|
1376 | PRINT *,' Looking for:', coins(i) |
---|
1377 | PRINT *,' Within:', SpolysIndep(1:Nindep,it+1) |
---|
1378 | PRINT *,' Might content:', polysIndep(ip,1:NNprev,it) |
---|
1379 | PRINT *,' From an initial list:', coins(1:Nmeet) |
---|
1380 | msg = 'Wrong index! There must be an index here' |
---|
1381 | CALL ErrMsg(msg,fname,iindep) |
---|
1382 | END IF |
---|
1383 | coincidencies(ip) = coincidencies(ip) + 1 |
---|
1384 | NpolysIndep(iindep,it+1) = NpolysIndep(iindep,it+1) + 1 |
---|
1385 | polysIndep(iindep,NpolysIndep(iindep,it+1),it+1) = currID(i) |
---|
1386 | EXIT |
---|
1387 | END IF |
---|
1388 | END DO |
---|
1389 | END DO |
---|
1390 | END IF |
---|
1391 | END DO |
---|
1392 | Nindeppolys(it+1) = Nindep |
---|
1393 | |
---|
1394 | IF (dbg) THEN |
---|
1395 | PRINT *,' time step:',it+1,' number to look polygons:', Nmeet,' searching polygons:',Nsearch |
---|
1396 | PRINT *,' number of independent polygons:', Nindeppolys(it+1) |
---|
1397 | PRINT *,' indep_polygon prev_step_polygon Nassociated_polygons curr_ass_polygons _______' |
---|
1398 | DO i=1, Nindeppolys(it+1) |
---|
1399 | PRINT *,i, SpolysIndep(i,it+1), NpolysIndep(i,it+1), ':', & |
---|
1400 | polysIndep(i,1:NpolysIndep(i,it+1),it+1) |
---|
1401 | END DO |
---|
1402 | END IF |
---|
1403 | END DO |
---|
1404 | |
---|
1405 | IF (dbg) THEN |
---|
1406 | PRINT *, 'Coincidencies to connect _______' |
---|
1407 | DO it=1, dt |
---|
1408 | PRINT *,' it:', it, ' Nindep:', Nindeppolys(it) |
---|
1409 | PRINT '(4x,3(A6,1x))','Nindep', 'PrevID', 'IDs' |
---|
1410 | DO ip=1, Nindeppolys(it) |
---|
1411 | PRINT '(4x,I6,A1,I6,A1,100(I6))', ip, ',', SpolysIndep(ip,it), ':', & |
---|
1412 | polysIndep(ip,1:NpolysIndep(ip,it),it) |
---|
1413 | END DO |
---|
1414 | END DO |
---|
1415 | |
---|
1416 | END IF |
---|
1417 | |
---|
1418 | ! Trajectories |
---|
1419 | ! It should be done following the number of 'independent' polygons |
---|
1420 | ! One would concatenate that independent polygons which share IDs from one step to another |
---|
1421 | |
---|
1422 | ! First time-step. Take all polygons |
---|
1423 | itrack = 0 |
---|
1424 | tracks = 0. |
---|
1425 | Ntracks = 0 |
---|
1426 | DO ip=1, Nindeppolys(1) |
---|
1427 | itrack = itrack + 1 |
---|
1428 | tracks(1,1,itrack,1) = itrack*1. |
---|
1429 | tracks(2,1,itrack,1) = SpolysIndep(ip,1) |
---|
1430 | tracks(3,1,itrack,1) = ctrpolys(1,ip,1) |
---|
1431 | tracks(4,1,itrack,1) = ctrpolys(2,ip,1) |
---|
1432 | tracks(5,1,itrack,1) = 1 |
---|
1433 | Ntracks(1) = Ntracks(1) + 1 |
---|
1434 | END DO |
---|
1435 | |
---|
1436 | ! Looping allover already assigned tracks |
---|
1437 | timesteps: DO it=2, dt |
---|
1438 | IF (dbg) PRINT *,'track-timestep:', it, 'N indep polys:', Nindeppolys(it) |
---|
1439 | ! Indep polygons current time-step |
---|
1440 | current_poly: DO i=1, Nindeppolys(it) |
---|
1441 | IF (dbg) PRINT *,' curent poly:', i, 'Prev poly:', SpolysIndep(i,it), ' N ass. polygons:', & |
---|
1442 | NpolysIndep(i,it), 'ass. poly:', polysIndep(i,1:NpolysIndep(i,it),it) |
---|
1443 | Indeppolychained = .FALSE. |
---|
1444 | |
---|
1445 | ! Number of tracks previous time-step |
---|
1446 | ! Looping overall |
---|
1447 | it1_tracks: DO itt=1, Ntracks(it-1) |
---|
1448 | itrack = tracks(1,1,itt,it-1) |
---|
1449 | ! Number polygons ID assigned |
---|
1450 | Ntprev = COUNT(tracks(2,:,itt,it-1) /= 0) |
---|
1451 | IF (dbg) PRINT *,itt,' track:', itrack, 'assigned:', tracks(2,1:Ntprev,itt,it-1) |
---|
1452 | |
---|
1453 | ! Looking for coincidencies |
---|
1454 | DO iip=1, Ntprev |
---|
1455 | IF (tracks(2,iip,itt,it-1) == SpolysIndep(i,it)) THEN |
---|
1456 | Indeppolychained = .TRUE. |
---|
1457 | IF (dbg) PRINT *,' coincidence found by polygon:', tracks(2,iip,itt,it-1) |
---|
1458 | EXIT |
---|
1459 | END IF |
---|
1460 | END DO |
---|
1461 | IF (Indeppolychained) THEN |
---|
1462 | Ntracks(it) = Ntracks(it) + 1 |
---|
1463 | ictrack = Ntracks(it) |
---|
1464 | ! Assigning all the IDs to the next step of the track |
---|
1465 | DO iip=1, NpolysIndep(i,it) |
---|
1466 | iiprev = polysIndep(i,iip,it) |
---|
1467 | tracks(1,iip,ictrack,it) = itrack |
---|
1468 | tracks(2,iip,ictrack,it) = iiprev |
---|
1469 | ixp = ctrpolys(1,iiprev,it) |
---|
1470 | iyp = ctrpolys(2,iiprev,it) |
---|
1471 | tracks(3,iip,ictrack,it) = ixp |
---|
1472 | tracks(4,iip,ictrack,it) = iyp |
---|
1473 | tracks(5,iip,ictrack,it) = it |
---|
1474 | END DO |
---|
1475 | EXIT |
---|
1476 | END IF |
---|
1477 | IF (Indeppolychained) EXIT |
---|
1478 | END DO it1_tracks |
---|
1479 | |
---|
1480 | ! Creation of a new track |
---|
1481 | IF (.NOT.Indeppolychained) THEN |
---|
1482 | Ntracks(it) = Ntracks(it) + 1 |
---|
1483 | ictrack = Ntracks(it) |
---|
1484 | ! ID of new track |
---|
1485 | maxtrack = INT(MAXVAL(tracks(1,:,:,:)*1.)) |
---|
1486 | IF (dbg) PRINT *,' New track!', maxtrack+1 |
---|
1487 | |
---|
1488 | ! Assigning all the IDs to the next step of the track |
---|
1489 | DO j=1, NpolysIndep(i,it) |
---|
1490 | iiprev = polysIndep(i,j,it) |
---|
1491 | tracks(1,j,ictrack,it) = maxtrack+1 |
---|
1492 | tracks(2,j,ictrack,it) = iiprev |
---|
1493 | ixp = ctrpolys(1,iiprev,it) |
---|
1494 | iyp = ctrpolys(2,iiprev,it) |
---|
1495 | tracks(3,j,ictrack,it) = ixp |
---|
1496 | tracks(4,j,ictrack,it) = iyp |
---|
1497 | tracks(5,j,ictrack,it) = it |
---|
1498 | END DO |
---|
1499 | END IF |
---|
1500 | |
---|
1501 | END DO current_poly |
---|
1502 | |
---|
1503 | IF (dbg) THEN |
---|
1504 | PRINT *,' At this time-step:', it, ' N trajectories:', Ntracks(it) |
---|
1505 | DO i=1, Ntracks(it) |
---|
1506 | Nprev = COUNT(INT(tracks(2,:,i,it)) /= 0) |
---|
1507 | PRINT *,i ,'ID tracks:', tracks(1,1,i,it), 'ID polygon:', tracks(2,1:Nprev,i,it) |
---|
1508 | END DO |
---|
1509 | END IF |
---|
1510 | |
---|
1511 | END DO timesteps |
---|
1512 | |
---|
1513 | ! Summarizing trajectories |
---|
1514 | ! When multiple polygons are available, the mean of their central positions determines the position |
---|
1515 | |
---|
1516 | finaltracks = 0. |
---|
1517 | maxtrack = MAXVAL(tracks(1,:,:,:)) |
---|
1518 | |
---|
1519 | DO it=1, dt |
---|
1520 | DO itt=1, Ntracks(it) |
---|
1521 | itrack = INT(tracks(1,1,itt,it)) |
---|
1522 | Nprev = COUNT(INT(tracks(2,:,itt,it)) /= 0) |
---|
1523 | finaltracks(1,itrack,it) = itrack*1. |
---|
1524 | finaltracks(2,itrack,it) = SUM(tracks(3,:,itt,it))/Nprev*1. |
---|
1525 | finaltracks(3,itrack,it) = SUM(tracks(4,:,itt,it))/Nprev*1. |
---|
1526 | finaltracks(4,itrack,it) = it*1. |
---|
1527 | END DO |
---|
1528 | END DO |
---|
1529 | |
---|
1530 | DEALLOCATE(coins) |
---|
1531 | DEALLOCATE(coinsNpts) |
---|
1532 | |
---|
1533 | RETURN |
---|
1534 | |
---|
1535 | END SUBROUTINE poly_overlap_tracks_area |
---|
1536 | |
---|
1537 | SUBROUTINE coincidence_all_polys_area(dbg, dx, dy, Nallpoly, IDallpoly, allpoly, icpolys, Npoly, & |
---|
1538 | IDpolys, polys, cpolys, apolys, polycoins, coinNptss) |
---|
1539 | ! Subtourine to determine which is the coincident polygon when a boolean polygon is provided to a map of integer polygons |
---|
1540 | ! In case of multiple coincidencies, the closest and then the largest is taken filtrered by a minimal area |
---|
1541 | ! Here the difference is that the index does not coincide with its ID |
---|
1542 | |
---|
1543 | IMPLICIT NONE |
---|
1544 | |
---|
1545 | LOGICAL, INTENT(in) :: dbg |
---|
1546 | INTEGER, INTENT(in) :: dx, dy, Nallpoly, Npoly |
---|
1547 | INTEGER, DIMENSION(dx,dy), INTENT(in) :: allpoly, polys |
---|
1548 | INTEGER, DIMENSION(Nallpoly), INTENT(in) :: IDallpoly |
---|
1549 | INTEGER, DIMENSION(Npoly), INTENT(in) :: IDpolys |
---|
1550 | REAL(r_k), DIMENSION(2,Nallpoly), INTENT(in) :: icpolys |
---|
1551 | REAL(r_k), DIMENSION(2,Npoly), INTENT(in) :: cpolys |
---|
1552 | REAL(r_k), DIMENSION(Npoly), INTENT(in) :: apolys |
---|
1553 | INTEGER, DIMENSION(Nallpoly), INTENT(out) :: polycoins |
---|
1554 | INTEGER, DIMENSION(Nallpoly,Npoly), INTENT(out) :: coinNptss |
---|
1555 | |
---|
1556 | ! Local |
---|
1557 | INTEGER :: i, j, ip |
---|
1558 | INTEGER :: maxcorr |
---|
1559 | INTEGER :: Nmaxcorr |
---|
1560 | LOGICAL, DIMENSION(dx,dy) :: boolpoly |
---|
1561 | INTEGER :: maxcoin |
---|
1562 | REAL :: dist, maxcoindist, maxcoinarea |
---|
1563 | INTEGER, DIMENSION(Npoly) :: IDcoins |
---|
1564 | |
---|
1565 | !!!!!!! Variables |
---|
1566 | ! dx,dy: dimension of the space |
---|
1567 | ! Nallpoly: Number of polygons to find coincidence |
---|
1568 | ! allpoly: space with the polygons to meet |
---|
1569 | ! IDallpoly: ID of the polygon to find coincidence |
---|
1570 | ! icpolys: center of the polygons to look for the coincidence |
---|
1571 | ! Npoly: number of polygons on the 2D space |
---|
1572 | ! polys: 2D field of polygons identified by their integer number (0 for no polygon) |
---|
1573 | ! IDpolys: ID of the polygon to search for coincidences |
---|
1574 | ! cpolys: center of the polygons |
---|
1575 | ! apolys: area of the polygons |
---|
1576 | ! polycoins: coincident polyogn |
---|
1577 | ! -1: no-coincidence |
---|
1578 | ! 1 < Npoly: single coincidence with a given polygon |
---|
1579 | ! -9: coincidence with more than one polygon |
---|
1580 | ! coinNptss: number of points coincident with each polygon |
---|
1581 | |
---|
1582 | fname = 'coincidence_all_polys_area' |
---|
1583 | IF (dbg) PRINT *,TRIM(fname) |
---|
1584 | |
---|
1585 | DO ip=1, Nallpoly |
---|
1586 | boolpoly = allpoly == IDallpoly(ip) |
---|
1587 | CALL coincidence_poly_area(dbg, dx, dy, boolpoly, Npoly, polys, polycoins(ip), IDcoins, & |
---|
1588 | coinNptss(ip,:)) |
---|
1589 | IF (dbg) PRINT *,' polygon', IDallpoly(ip), ' coincidence with:', polycoins(ip), 'IDpolys:', IDpolys(1:Npoly) |
---|
1590 | |
---|
1591 | ! Coincidence with more than one polygon |
---|
1592 | IF (polycoins(ip) == -9) THEN |
---|
1593 | maxcoindist = -10. |
---|
1594 | maxcoinarea = -10. |
---|
1595 | maxcoin = MAXVAL(coinNptss(ip,:)) |
---|
1596 | DO j=1, Npoly |
---|
1597 | IF (coinNptss(ip,j) == maxcoin) THEN |
---|
1598 | dist = SQRT( (icpolys(1,ip)*1.-cpolys(1,j)*1.)**2 + (icpolys(2,ip)*1.-cpolys(2,j)*1.)**2 ) |
---|
1599 | IF ( dist > maxcoindist) THEN |
---|
1600 | maxcoindist = dist |
---|
1601 | maxcoinarea = apolys(j) |
---|
1602 | polycoins(ip) = IDcoins(j) |
---|
1603 | ELSE IF ( dist == maxcoindist) THEN |
---|
1604 | IF (apolys(j) > maxcoinarea) THEN |
---|
1605 | polycoins(ip) = IDcoins(j) |
---|
1606 | maxcoinarea = apolys(j) |
---|
1607 | END IF |
---|
1608 | END IF |
---|
1609 | END IF |
---|
1610 | END DO |
---|
1611 | END IF |
---|
1612 | END DO |
---|
1613 | |
---|
1614 | RETURN |
---|
1615 | |
---|
1616 | END SUBROUTINE coincidence_all_polys_area |
---|
1617 | |
---|
1618 | SUBROUTINE coincidence_poly_area(dbg, dx, dy, poly, Npoly, polys, polycoin, IDpoly, coinNpts) |
---|
1619 | ! Subtourine to determine which is the coincident polygon when a boolean polygon is provided to a map of integer polygons |
---|
1620 | ! Here the difference is that the index does not coincide with its ID |
---|
1621 | |
---|
1622 | IMPLICIT NONE |
---|
1623 | |
---|
1624 | LOGICAL, INTENT(in) :: dbg |
---|
1625 | INTEGER, INTENT(in) :: dx, dy, Npoly |
---|
1626 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: poly |
---|
1627 | INTEGER, DIMENSION(dx,dy), INTENT(in) :: polys |
---|
1628 | INTEGER, INTENT(out) :: polycoin |
---|
1629 | INTEGER, DIMENSION(Npoly), INTENT(out) :: IDpoly, coinNpts |
---|
1630 | |
---|
1631 | ! Local |
---|
1632 | INTEGER :: i, j, ip |
---|
1633 | INTEGER :: maxcorr |
---|
1634 | INTEGER :: Nmaxcorr |
---|
1635 | ! Lluis |
---|
1636 | INTEGER :: Ndiffvals |
---|
1637 | INTEGER, DIMENSION(:), ALLOCATABLE :: diffvals |
---|
1638 | |
---|
1639 | !!!!!!! Variables |
---|
1640 | ! dx,dy: dimension of the space |
---|
1641 | ! poly: bolean polygon to meet |
---|
1642 | ! Npoly: number of polygons on the 2D space |
---|
1643 | ! polys: 2D field of polygons identified by their integer number (0 for no polygon) |
---|
1644 | ! polycoin: coincident polyogn |
---|
1645 | ! -1: no-coincidence |
---|
1646 | ! 1 < Npoly: single coincidence with a given polygon |
---|
1647 | ! -9: coincidence with more than one polygon |
---|
1648 | ! IDpoly: ID of the found polygon |
---|
1649 | ! coinNpts: number of points coincident with each polygon |
---|
1650 | |
---|
1651 | fname = 'coincidence_poly_area' |
---|
1652 | IF (dbg) PRINT *,TRIM(fname) |
---|
1653 | |
---|
1654 | IF (dbg) THEN |
---|
1655 | PRINT *,' Boolean polygon to search coincidences ...' |
---|
1656 | DO i=1,dx |
---|
1657 | PRINT *,poly(i,:) |
---|
1658 | END DO |
---|
1659 | |
---|
1660 | PRINT *,' 2D polygons space ...' |
---|
1661 | DO i=1,dx |
---|
1662 | PRINT '(1000(I7,1x))',polys(i,:) |
---|
1663 | END DO |
---|
1664 | END IF |
---|
1665 | |
---|
1666 | IF (ALLOCATED(diffvals)) DEALLOCATE(diffvals) |
---|
1667 | ALLOCATE(diffvals(dx*dy)) |
---|
1668 | |
---|
1669 | ! Checking for consistency on number of polygons and real content (except 0 value) |
---|
1670 | CALL Nvalues_2DArrayI(dx, dy, dx*dy, polys, Ndiffvals, diffvals) |
---|
1671 | IF (Ndiffvals -1 /= Npoly) THEN |
---|
1672 | PRINT *,TRIM(emsg) |
---|
1673 | PRINT *,' number of different values:', Ndiffvals-1, ' theoretical Npoly:', Npoly |
---|
1674 | PRINT *,' Different values:', diffvals(1:Ndiffvals) |
---|
1675 | msg = 'Number of different values and Npoly must coincide' |
---|
1676 | CALL ErrMsg(msg, fname, -1) |
---|
1677 | END IF |
---|
1678 | |
---|
1679 | ! Looking for coincient points for the polygon |
---|
1680 | coinNpts = 0 |
---|
1681 | IDpoly = 0 |
---|
1682 | ip = 0 |
---|
1683 | DO i=1,dx |
---|
1684 | DO j=1,dy |
---|
1685 | IF (poly(i,j) .AND. polys(i,j) .NE. 0) THEN |
---|
1686 | IF (.NOT.ANY(IDpoly == polys(i,j))) THEN |
---|
1687 | ip = ip + 1 |
---|
1688 | IDpoly(ip) = polys(i,j) |
---|
1689 | ELSE |
---|
1690 | ip = Index1DarrayI(IDpoly, Npoly, polys(i,j)) |
---|
1691 | END IF |
---|
1692 | coinNpts(ip) = coinNpts(ip) + 1 |
---|
1693 | END IF |
---|
1694 | END DO |
---|
1695 | END DO |
---|
1696 | |
---|
1697 | maxcorr = 0 |
---|
1698 | maxcorr = INT(MAXVAL(coinNpts*1.)) |
---|
1699 | |
---|
1700 | IF (dbg) PRINT *,' Maximum coincidence:', maxcorr |
---|
1701 | IF (maxcorr == 0) THEN |
---|
1702 | polycoin = -1 |
---|
1703 | ELSE |
---|
1704 | Nmaxcorr = 0 |
---|
1705 | DO ip=1, Npoly |
---|
1706 | IF (coinNpts(ip) == maxcorr) THEN |
---|
1707 | Nmaxcorr = Nmaxcorr+1 |
---|
1708 | polycoin = IDpoly(ip) |
---|
1709 | END IF |
---|
1710 | END DO |
---|
1711 | IF (Nmaxcorr > 1) polycoin = -9 |
---|
1712 | END IF |
---|
1713 | |
---|
1714 | IF (dbg) THEN |
---|
1715 | PRINT *,' Coincidences for each polygon _______', Npoly |
---|
1716 | DO ip=1, Npoly |
---|
1717 | PRINT *,' ',ip, ' ID:', IDpoly(ip),': ', coinNpts(ip) |
---|
1718 | END DO |
---|
1719 | END IF |
---|
1720 | |
---|
1721 | RETURN |
---|
1722 | |
---|
1723 | END SUBROUTINE coincidence_poly_area |
---|
1724 | |
---|
1725 | SUBROUTINE poly_overlap_tracks(dbg, dx, dy, dt, minarea, Nallpolys, allpolys, ctrpolys, & |
---|
1726 | areapolys, Nmaxpoly, Nmaxtracks, tracks, finaltracks) |
---|
1727 | ! Subroutine to determine tracks of a series of consecutive 2D field with polygons using maximum overlaping/coincidence |
---|
1728 | |
---|
1729 | IMPLICIT NONE |
---|
1730 | |
---|
1731 | LOGICAL, INTENT(in) :: dbg |
---|
1732 | INTEGER, INTENT(in) :: dx, dy, dt, Nmaxpoly, Nmaxtracks |
---|
1733 | INTEGER, DIMENSION(dt), INTENT(in) :: Nallpolys |
---|
1734 | INTEGER, DIMENSION(dx,dy,dt), INTENT(in) :: allpolys |
---|
1735 | REAL(r_k), INTENT(in) :: minarea |
---|
1736 | REAL(r_k), DIMENSION(2,Nmaxpoly,dt), INTENT(in) :: ctrpolys |
---|
1737 | REAL(r_k), DIMENSION(Nmaxpoly,dt), INTENT(in) :: areapolys |
---|
1738 | REAL(r_k), DIMENSION(5,Nmaxpoly,Nmaxtracks,dt), & |
---|
1739 | INTENT(out) :: tracks |
---|
1740 | REAL(r_k), DIMENSION(4,Nmaxtracks,dt), INTENT(out) :: finaltracks |
---|
1741 | |
---|
1742 | ! Local |
---|
1743 | INTEGER :: i, j, ip, it, iip, itt |
---|
1744 | INTEGER :: ierr |
---|
1745 | INTEGER, DIMENSION(Nmaxpoly,dt) :: coincidencies, NOcoincidencies |
---|
1746 | INTEGER, DIMENSION(:), ALLOCATABLE :: coins |
---|
1747 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: coinsNpts |
---|
1748 | INTEGER, DIMENSION(Nmaxpoly,dt) :: polycoincidencies |
---|
1749 | INTEGER, DIMENSION(Nmaxpoly,Nmaxpoly,dt) :: coincidenciesNpts |
---|
1750 | INTEGER :: Nmeet, Nsearch, Nindep |
---|
1751 | INTEGER, DIMENSION(dt) :: Nindeppolys |
---|
1752 | CHARACTER(len=5) :: NcoinS |
---|
1753 | INTEGER, DIMENSION(Nmaxpoly,Nmaxpoly,dt) :: polysIndep |
---|
1754 | INTEGER, DIMENSION(Nmaxpoly,dt) :: NpolysIndep |
---|
1755 | INTEGER, DIMENSION(Nmaxpoly,dt) :: SpolysIndep |
---|
1756 | INTEGER :: iindep, iiprev |
---|
1757 | INTEGER :: Nprev, NNprev, Ntprev |
---|
1758 | LOGICAL :: Indeppolychained |
---|
1759 | INTEGER :: itrack, ictrack |
---|
1760 | INTEGER :: ixp, iyp, ttrack |
---|
1761 | INTEGER, DIMENSION(dt) :: Ntracks |
---|
1762 | INTEGER :: idtrack, maxtrack |
---|
1763 | |
---|
1764 | !!!!!!! Variables |
---|
1765 | ! dx,dy,dt: space/time dimensions |
---|
1766 | ! Nallpolys: Vector with the number of polygons at each time-step |
---|
1767 | ! allpolys: Series of 2D field with the polygons |
---|
1768 | ! minarea: minimal area (in same units as areapolys) to perform the tracking |
---|
1769 | ! ctrpolys: center of the polygons |
---|
1770 | ! areapolys: area of the polygons |
---|
1771 | ! Nmaxpoly: Maximum possible number of polygons |
---|
1772 | ! Nmaxtracks: maximum number of tracks |
---|
1773 | ! tracks: series of consecutive polygons |
---|
1774 | ! trackperiod: period of the track in time-steps |
---|
1775 | |
---|
1776 | fname = 'poly_overlap_tracks' |
---|
1777 | |
---|
1778 | IF (dbg) PRINT *,TRIM(fname) |
---|
1779 | |
---|
1780 | polycoincidencies = fillvalI |
---|
1781 | coincidenciesNpts = fillvalI |
---|
1782 | ! Number of times that a polygon has a coincidence |
---|
1783 | coincidencies = 0 |
---|
1784 | ! Polygons without a coincidence |
---|
1785 | NOcoincidencies = 0 |
---|
1786 | ! Number of independent polygons by time step |
---|
1787 | Nindeppolys = 0 |
---|
1788 | ! Number of polygons attached to each independent polygons by time step |
---|
1789 | NpolysIndep = 0 |
---|
1790 | ! ID of searching polygon attached to each independent polygons by time step |
---|
1791 | SpolysIndep = 0 |
---|
1792 | ! ID of polygons attached to each independent polygons by time step |
---|
1793 | polysIndep = 0 |
---|
1794 | |
---|
1795 | ! First time-step all are independent polygons |
---|
1796 | it = 1 |
---|
1797 | Nmeet = Nallpolys(it) |
---|
1798 | Nindeppolys(it) = Nmeet |
---|
1799 | DO i=1, Nmeet |
---|
1800 | SpolysIndep(i,it) = i |
---|
1801 | NpolysIndep(1:Nmeet,it) = 1 |
---|
1802 | polysIndep(1,i,it) = i |
---|
1803 | END DO |
---|
1804 | |
---|
1805 | ! Looking for the coincidencies at each time step |
---|
1806 | DO it=1, dt-1 |
---|
1807 | Nmeet = Nallpolys(it+1) |
---|
1808 | Nsearch = Nallpolys(it) |
---|
1809 | |
---|
1810 | IF (ALLOCATED(coins)) DEALLOCATE(coins) |
---|
1811 | ALLOCATE(coins(Nmeet), STAT=ierr) |
---|
1812 | msg="Problems allocating 'coins'" |
---|
1813 | CALL ErrMsg(msg,fname,ierr) |
---|
1814 | |
---|
1815 | IF (ALLOCATED(coinsNpts)) DEALLOCATE(coinsNpts) |
---|
1816 | ALLOCATE(coinsNpts(Nmeet, Nsearch), STAT=ierr) |
---|
1817 | msg="Problems allocating 'coinsNpts'" |
---|
1818 | CALL ErrMsg(msg,fname,ierr) |
---|
1819 | |
---|
1820 | CALL coincidence_all_polys(dbg, dx, dy, Nmeet, allpolys(:,:,it+1), ctrpolys(:,1:Nmeet,it+1), & |
---|
1821 | Nsearch, allpolys(:,:,it), ctrpolys(:,1:Nsearch,it), areapolys(1:Nsearch,it), coins, coinsNpts) |
---|
1822 | |
---|
1823 | polycoincidencies(1:Nmeet,it+1) = coins |
---|
1824 | coincidenciesNpts(1:Nmeet,1:Nsearch,it+1) = coinsNpts |
---|
1825 | |
---|
1826 | ! Counting the number of times that a polygon has a coincidency |
---|
1827 | IF (dbg) THEN |
---|
1828 | PRINT *,' Coincidencies for the given time-step:', it+1,' _______' |
---|
1829 | DO i=1, Nmeet |
---|
1830 | PRINT *,coins(i),' N search pts:', coinsNpts(i,:) |
---|
1831 | END DO |
---|
1832 | END IF |
---|
1833 | |
---|
1834 | Nindep = 0 |
---|
1835 | DO i=1, Nmeet |
---|
1836 | IF (coins(i) == -1) THEN |
---|
1837 | Nindep = Nindep + 1 |
---|
1838 | NOcoincidencies(i,it+1) = 1 |
---|
1839 | SpolysIndep(Nindep,it+1) = -1 |
---|
1840 | NpolysIndep(Nindep,it+1) = NpolysIndep(Nindep,it+1) + 1 |
---|
1841 | polysIndep(Nindep,NpolysIndep(Nindep,it+1),it+1) = i |
---|
1842 | ELSE IF (coins(i) == -9) THEN |
---|
1843 | WRITE(NcoinS,'(I5)')coins(i) |
---|
1844 | msg="coins= "//TRIM(NcoinS)//" This is an error. One should have always only one " // & |
---|
1845 | "coincidence of polygon" |
---|
1846 | CALL ErrMsg(msg, fname, -1) |
---|
1847 | ELSE |
---|
1848 | DO ip=1, Nsearch |
---|
1849 | IF (coins(i) == ip) THEN |
---|
1850 | IF (coincidencies(ip,it+1) == 0) THEN |
---|
1851 | Nindep = Nindep + 1 |
---|
1852 | SpolysIndep(Nindep,it+1) = ip |
---|
1853 | END IF |
---|
1854 | coincidencies(ip,it+1) = coincidencies(ip,it+1) + 1 |
---|
1855 | DO iindep=1, Nindep |
---|
1856 | IF (SpolysIndep(iindep,it+1) == coins(i)) THEN |
---|
1857 | NpolysIndep(iindep,it+1) = NpolysIndep(iindep,it+1) + 1 |
---|
1858 | polysIndep(iindep,NpolysIndep(iindep,it+1),it+1) = i |
---|
1859 | END IF |
---|
1860 | END DO |
---|
1861 | END IF |
---|
1862 | END DO |
---|
1863 | END IF |
---|
1864 | END DO |
---|
1865 | Nindeppolys(it+1) = Nindep |
---|
1866 | |
---|
1867 | IF (dbg) THEN |
---|
1868 | PRINT *,' time step:',it+1,' number to look polygons:', Nmeet,' searching polygons:',Nsearch |
---|
1869 | PRINT *,' number of independent polygons:', Nindeppolys(it+1) |
---|
1870 | PRINT *,' indep_polygon prev_step_polygon Nassociated_polygons curr_ass_polygons _______' |
---|
1871 | DO i=1, Nindeppolys(it+1) |
---|
1872 | PRINT *,i, SpolysIndep(i,it+1), NpolysIndep(i,it+1), ':', & |
---|
1873 | polysIndep(i,1:NpolysIndep(i,it+1),it+1) |
---|
1874 | END DO |
---|
1875 | END IF |
---|
1876 | END DO |
---|
1877 | |
---|
1878 | IF (dbg) THEN |
---|
1879 | PRINT *, 'Coincidencies to connect _______' |
---|
1880 | DO it=1, dt |
---|
1881 | PRINT *,' it:', it, ' Nindep:', Nindeppolys(it) |
---|
1882 | PRINT '(4x,3(A6,1x))','Nindep', 'PrevID', 'IDs' |
---|
1883 | DO ip=1, Nindeppolys(it) |
---|
1884 | PRINT '(4x,I6,A1,I6,A1,100(I6))', ip, ',', SpolysIndep(ip,it), ':', & |
---|
1885 | polysIndep(ip,1:NpolysIndep(ip,it),it) |
---|
1886 | END DO |
---|
1887 | END DO |
---|
1888 | |
---|
1889 | END IF |
---|
1890 | |
---|
1891 | ! Trajectories |
---|
1892 | ! It should be done following the number of 'independent' polygons |
---|
1893 | ! One would concatenate that independent polygons which share IDs from one step to another |
---|
1894 | |
---|
1895 | ! First time-step. Take all polygons |
---|
1896 | itrack = 0 |
---|
1897 | tracks = 0. |
---|
1898 | Ntracks = 0 |
---|
1899 | DO ip=1, Nindeppolys(1) |
---|
1900 | itrack = itrack + 1 |
---|
1901 | tracks(1,1,itrack,1) = itrack*1. |
---|
1902 | tracks(2,1,itrack,1) = SpolysIndep(ip,1) |
---|
1903 | tracks(3,1,itrack,1) = ctrpolys(1,ip,1) |
---|
1904 | tracks(4,1,itrack,1) = ctrpolys(2,ip,1) |
---|
1905 | tracks(5,1,itrack,1) = 1 |
---|
1906 | Ntracks(1) = Ntracks(1) + 1 |
---|
1907 | END DO |
---|
1908 | |
---|
1909 | ! Looping allover already assigned tracks |
---|
1910 | timesteps: DO it=2, dt |
---|
1911 | IF (dbg) PRINT *,'timestep:', it, 'N indep polys:', Nindeppolys(it) |
---|
1912 | ! Indep polygons current time-step |
---|
1913 | current_poly: DO i=1, Nindeppolys(it) |
---|
1914 | IF (dbg) PRINT *,' curent poly:', i, 'Prev poly:', SpolysIndep(i,it), ' N ass. polygons:', & |
---|
1915 | NpolysIndep(i,it), 'ass. poly:', polysIndep(i,1:NpolysIndep(i,it),it) |
---|
1916 | Indeppolychained = .FALSE. |
---|
1917 | |
---|
1918 | ! Number of tracks previous time-step |
---|
1919 | ! Looping overall |
---|
1920 | it1_tracks: DO itt=1, Ntracks(it-1) |
---|
1921 | itrack = tracks(1,1,itt,it-1) |
---|
1922 | ! Number polygons ID assigned |
---|
1923 | Ntprev = COUNT(tracks(2,:,itt,it-1) /= 0) |
---|
1924 | IF (dbg) PRINT *,itt,' track:', itrack, 'assigned:', tracks(2,1:Ntprev,itt,it-1) |
---|
1925 | |
---|
1926 | ! Looking for coincidencies |
---|
1927 | DO iip=1, Ntprev |
---|
1928 | IF (tracks(2,iip,itt,it-1) == SpolysIndep(i,it)) THEN |
---|
1929 | Indeppolychained = .TRUE. |
---|
1930 | IF (dbg) PRINT *,' coincidence found by polygon:', tracks(2,iip,itt,it-1) |
---|
1931 | EXIT |
---|
1932 | END IF |
---|
1933 | END DO |
---|
1934 | IF (Indeppolychained) THEN |
---|
1935 | Ntracks(it) = Ntracks(it) + 1 |
---|
1936 | ictrack = Ntracks(it) |
---|
1937 | ! Assigning all the IDs to the next step of the track |
---|
1938 | DO iip=1, NpolysIndep(i,it) |
---|
1939 | iiprev = polysIndep(i,iip,it) |
---|
1940 | tracks(1,iip,ictrack,it) = itrack |
---|
1941 | tracks(2,iip,ictrack,it) = iiprev |
---|
1942 | ixp = ctrpolys(1,iiprev,it) |
---|
1943 | iyp = ctrpolys(2,iiprev,it) |
---|
1944 | tracks(3,iip,ictrack,it) = ixp |
---|
1945 | tracks(4,iip,ictrack,it) = iyp |
---|
1946 | tracks(5,iip,ictrack,it) = it |
---|
1947 | END DO |
---|
1948 | EXIT |
---|
1949 | END IF |
---|
1950 | END DO it1_tracks |
---|
1951 | |
---|
1952 | ! Creation of a new track |
---|
1953 | IF (.NOT.Indeppolychained) THEN |
---|
1954 | Ntracks(it) = Ntracks(it) + 1 |
---|
1955 | ictrack = Ntracks(it) |
---|
1956 | ! ID of new track |
---|
1957 | maxtrack = INT(MAXVAL(tracks(1,:,:,:)*1.)) |
---|
1958 | IF (dbg) PRINT *,' New track!', maxtrack+1 |
---|
1959 | |
---|
1960 | ! Assigning all the IDs to the next step of the track |
---|
1961 | DO j=1, NpolysIndep(i,it) |
---|
1962 | iiprev = polysIndep(i,j,it) |
---|
1963 | tracks(1,j,ictrack,it) = maxtrack+1 |
---|
1964 | tracks(2,j,ictrack,it) = iiprev |
---|
1965 | ixp = ctrpolys(1,iiprev,it) |
---|
1966 | iyp = ctrpolys(2,iiprev,it) |
---|
1967 | tracks(3,j,ictrack,it) = ixp |
---|
1968 | tracks(4,j,ictrack,it) = iyp |
---|
1969 | tracks(5,j,ictrack,it) = it |
---|
1970 | END DO |
---|
1971 | END IF |
---|
1972 | |
---|
1973 | END DO current_poly |
---|
1974 | |
---|
1975 | IF (dbg) THEN |
---|
1976 | PRINT *,' At this time-step:', it, ' N trajectories:', Ntracks(it) |
---|
1977 | DO i=1, Ntracks(it) |
---|
1978 | Nprev = COUNT(INT(tracks(2,:,i,it)) /= 0) |
---|
1979 | PRINT *,i,'tracks:', tracks(2,1:Nprev,i,it) |
---|
1980 | END DO |
---|
1981 | END IF |
---|
1982 | |
---|
1983 | END DO timesteps |
---|
1984 | |
---|
1985 | ! Summarizing trajectories |
---|
1986 | ! When multiple polygons are available, the mean of their central positions determines the position |
---|
1987 | |
---|
1988 | finaltracks = 0. |
---|
1989 | maxtrack = MAXVAL(tracks(1,:,:,:)) |
---|
1990 | |
---|
1991 | DO it=1, dt |
---|
1992 | DO itt=1, Ntracks(it) |
---|
1993 | itrack = INT(tracks(1,1,itt,it)) |
---|
1994 | Nprev = COUNT(INT(tracks(2,:,itt,it)) /= 0) |
---|
1995 | PRINT *,'it:', it,'itrack:', itrack, 'Nprev:', Nprev |
---|
1996 | finaltracks(1,itrack,it) = itrack*1. |
---|
1997 | finaltracks(2,itrack,it) = SUM(tracks(3,:,itt,it))/Nprev |
---|
1998 | finaltracks(3,itrack,it) = SUM(tracks(4,:,itt,it))/Nprev |
---|
1999 | finaltracks(4,itrack,it) = it*1. |
---|
2000 | PRINT *,' finaltrack:', finaltracks(:,itrack,it) |
---|
2001 | END DO |
---|
2002 | END DO |
---|
2003 | |
---|
2004 | RETURN |
---|
2005 | |
---|
2006 | END SUBROUTINE poly_overlap_tracks |
---|
2007 | |
---|
2008 | SUBROUTINE coincidence_all_polys(dbg, dx, dy, Nallpoly, allpoly, icpolys, Npoly, polys, cpolys, & |
---|
2009 | apolys, polycoins, coinNptss) |
---|
2010 | ! Subtourine to determine which is the coincident polygon when a boolean polygon is provided to a map of integer polygons |
---|
2011 | ! In case of multiple coincidencies, the closest and then the largest is taken |
---|
2012 | |
---|
2013 | IMPLICIT NONE |
---|
2014 | |
---|
2015 | LOGICAL, INTENT(in) :: dbg |
---|
2016 | INTEGER, INTENT(in) :: dx, dy, Nallpoly, Npoly |
---|
2017 | INTEGER, DIMENSION(dx,dy), INTENT(in) :: allpoly, polys |
---|
2018 | REAL(r_k), DIMENSION(2,Nallpoly), INTENT(in) :: icpolys |
---|
2019 | REAL(r_k), DIMENSION(2,Npoly), INTENT(in) :: cpolys |
---|
2020 | REAL(r_k), DIMENSION(Npoly), INTENT(in) :: apolys |
---|
2021 | INTEGER, DIMENSION(Nallpoly), INTENT(out) :: polycoins |
---|
2022 | INTEGER, DIMENSION(Nallpoly,Npoly), INTENT(out) :: coinNptss |
---|
2023 | |
---|
2024 | ! Local |
---|
2025 | INTEGER :: i, j, ip |
---|
2026 | INTEGER :: maxcorr |
---|
2027 | INTEGER :: Nmaxcorr |
---|
2028 | LOGICAL, DIMENSION(dx,dy) :: boolpoly |
---|
2029 | INTEGER :: maxcoin |
---|
2030 | REAL :: dist, maxcoindist, maxcoinarea |
---|
2031 | |
---|
2032 | !!!!!!! Variables |
---|
2033 | ! dx,dy: dimension of the space |
---|
2034 | ! Nallpoly: Number of polygons to find coincidence |
---|
2035 | ! allpoly: space with the polygons to meet |
---|
2036 | ! icpolys: center of the polygons to look for the coincidence |
---|
2037 | ! Npoly: number of polygons on the 2D space |
---|
2038 | ! polys: 2D field of polygons identified by their integer number (0 for no polygon) |
---|
2039 | ! cpolys: center of the polygons |
---|
2040 | ! apolys: area of the polygons |
---|
2041 | ! polycoins: coincident polyogn |
---|
2042 | ! -1: no-coincidence |
---|
2043 | ! 1 < Npoly: single coincidence with a given polygon |
---|
2044 | ! -9: coincidence with more than one polygon |
---|
2045 | ! coinNptss: number of points coincident with each polygon |
---|
2046 | |
---|
2047 | fname = 'coincidence_all_polys' |
---|
2048 | IF (dbg) PRINT *,TRIM(fname) |
---|
2049 | |
---|
2050 | DO ip=1, Nallpoly |
---|
2051 | boolpoly = allpoly == ip |
---|
2052 | CALL coincidence_poly(dbg, dx, dy, boolpoly, Npoly, polys, polycoins(ip), coinNptss(ip,:)) |
---|
2053 | IF (dbg) PRINT *,' polygon', ip, ' coincidence with:', polycoins(ip) |
---|
2054 | |
---|
2055 | ! Coincidence with more than one polygon |
---|
2056 | IF (polycoins(ip) == -9) THEN |
---|
2057 | maxcoindist = -10. |
---|
2058 | maxcoinarea = -10. |
---|
2059 | maxcoin = MAXVAL(coinNptss(ip,:)) |
---|
2060 | DO j=1, Npoly |
---|
2061 | IF (coinNptss(ip,j) == maxcoin) THEN |
---|
2062 | dist = SQRT( (icpolys(1,ip)*1.-cpolys(1,j)*1.)**2 + (icpolys(2,ip)*1.-cpolys(2,j)*1.)**2 ) |
---|
2063 | IF ( dist > maxcoindist) THEN |
---|
2064 | maxcoindist = dist |
---|
2065 | maxcoinarea = apolys(j) |
---|
2066 | polycoins(ip) = j |
---|
2067 | ELSE IF ( dist == maxcoindist) THEN |
---|
2068 | IF (apolys(j) > maxcoinarea) THEN |
---|
2069 | polycoins(ip) = j |
---|
2070 | maxcoinarea = apolys(j) |
---|
2071 | END IF |
---|
2072 | END IF |
---|
2073 | END IF |
---|
2074 | END DO |
---|
2075 | END IF |
---|
2076 | END DO |
---|
2077 | |
---|
2078 | RETURN |
---|
2079 | |
---|
2080 | END SUBROUTINE coincidence_all_polys |
---|
2081 | |
---|
2082 | SUBROUTINE coincidence_poly(dbg, dx, dy, poly, Npoly, polys, polycoin, coinNpts) |
---|
2083 | ! Subtourine to determine which is the coincident polygon when a boolean polygon is provided to a map of integer polygons |
---|
2084 | |
---|
2085 | IMPLICIT NONE |
---|
2086 | |
---|
2087 | LOGICAL, INTENT(in) :: dbg |
---|
2088 | INTEGER, INTENT(in) :: dx, dy, Npoly |
---|
2089 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: poly |
---|
2090 | INTEGER, DIMENSION(dx,dy), INTENT(in) :: polys |
---|
2091 | INTEGER, INTENT(out) :: polycoin |
---|
2092 | INTEGER, DIMENSION(Npoly), INTENT(out) :: coinNpts |
---|
2093 | |
---|
2094 | ! Local |
---|
2095 | INTEGER :: i, j, ip |
---|
2096 | INTEGER :: maxcorr |
---|
2097 | INTEGER :: Nmaxcorr |
---|
2098 | |
---|
2099 | !!!!!!! Variables |
---|
2100 | ! dx,dy: dimension of the space |
---|
2101 | ! poly: bolean polygon to meet |
---|
2102 | ! Npoly: number of polygons on the 2D space |
---|
2103 | ! polys: 2D field of polygons identified by their integer number (0 for no polygon) |
---|
2104 | ! polycoin: coincident polyogn |
---|
2105 | ! -1: no-coincidence |
---|
2106 | ! 1 < Npoly: single coincidence with a given polygon |
---|
2107 | ! -9: coincidence with more than one polygon |
---|
2108 | ! coinNpts: number of points coincident with each polygon |
---|
2109 | |
---|
2110 | fname = 'coincidence_poly' |
---|
2111 | IF (dbg) PRINT *,TRIM(fname) |
---|
2112 | |
---|
2113 | IF (dbg) THEN |
---|
2114 | PRINT *,' Boolean polygon to search coincidences ...' |
---|
2115 | DO i=1,dx |
---|
2116 | PRINT *,poly(i,:) |
---|
2117 | END DO |
---|
2118 | |
---|
2119 | PRINT *,' 2D polygons space ...' |
---|
2120 | DO i=1,dx |
---|
2121 | PRINT '(1000(I7,1x))',polys(i,:) |
---|
2122 | END DO |
---|
2123 | END IF |
---|
2124 | |
---|
2125 | ! Looking for coincient points for the polygon |
---|
2126 | coinNpts = 0 |
---|
2127 | DO i=1,dx |
---|
2128 | DO j=1,dy |
---|
2129 | IF (poly(i,j) .AND. polys(i,j) .NE. 0) coinNpts(polys(i,j)) = coinNpts(polys(i,j)) + 1 |
---|
2130 | END DO |
---|
2131 | END DO |
---|
2132 | |
---|
2133 | maxcorr = 0 |
---|
2134 | maxcorr = INT(MAXVAL(coinNpts*1.)) |
---|
2135 | |
---|
2136 | IF (dbg) PRINT *,' Maximum coincidence:', maxcorr |
---|
2137 | IF (maxcorr == 0) THEN |
---|
2138 | polycoin = -1 |
---|
2139 | ELSE |
---|
2140 | Nmaxcorr = 0 |
---|
2141 | DO ip=1, Npoly |
---|
2142 | IF (coinNpts(ip) == maxcorr) THEN |
---|
2143 | Nmaxcorr=Nmaxcorr+1 |
---|
2144 | polycoin = ip |
---|
2145 | END IF |
---|
2146 | END DO |
---|
2147 | IF (Nmaxcorr > 1) polycoin = -9 |
---|
2148 | END IF |
---|
2149 | |
---|
2150 | IF (dbg) THEN |
---|
2151 | PRINT *,' Coincidences for each polygon _______' |
---|
2152 | DO ip=1, Npoly |
---|
2153 | PRINT *,' ', ip,': ', coinNpts(ip) |
---|
2154 | END DO |
---|
2155 | END IF |
---|
2156 | |
---|
2157 | RETURN |
---|
2158 | |
---|
2159 | END SUBROUTINE coincidence_poly |
---|
2160 | |
---|
2161 | SUBROUTINE all_polygons_properties(dbg, dx, dy, Npoly, polys, lon, lat, values, xres, yres, projN, & |
---|
2162 | Npolyptss, xxtrms, yxtrms, meanctrs, meanwctrs, areas, nvals, xvals, mvals, m2vals, stdvals, & |
---|
2163 | Nquant, quants, nvcoords, xvcoords, meanvnctrs, meanvxctrs) |
---|
2164 | ! Subroutine to determine the properties of all polygons in a 2D field: |
---|
2165 | ! Number of grid points |
---|
2166 | ! grid-point coordinates of the minimum and maximum of the path along x,y axes |
---|
2167 | ! grid coordinates of center from the mean of the coordinates of the poygon locations |
---|
2168 | ! lon, lat center from the area weighted mean of the coordinates of the polygon locations |
---|
2169 | ! area of the polygon (km2) |
---|
2170 | ! minimum and maximum of the values within the polygon |
---|
2171 | ! mean of the values within the polygon |
---|
2172 | ! quadratic mean of the values within the polygon |
---|
2173 | ! standard deviation of the values within the polygon |
---|
2174 | ! number of quantiles |
---|
2175 | ! quantiles of the values within the polygon |
---|
2176 | ! grid coordinates of the minimum, maximum value within the polygon |
---|
2177 | ! lon, lat coordinates of the area center weighted and also by distance to the lowest or highest values of the polygon |
---|
2178 | |
---|
2179 | IMPLICIT NONE |
---|
2180 | |
---|
2181 | LOGICAL, INTENT(in) :: dbg |
---|
2182 | INTEGER, INTENT(in) :: dx, dy, Npoly, Nquant |
---|
2183 | INTEGER, DIMENSION(dx,dy), INTENT(in) :: polys |
---|
2184 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: lon, lat, values |
---|
2185 | REAL(r_k), INTENT(in) :: xres, yres |
---|
2186 | CHARACTER(len=1000), INTENT(in) :: projN |
---|
2187 | INTEGER, DIMENSION(Npoly), INTENT(out) :: Npolyptss |
---|
2188 | INTEGER, DIMENSION(Npoly,2), INTENT(out) :: xxtrms, yxtrms, meanctrs |
---|
2189 | REAL(r_k), DIMENSION(Npoly), INTENT(out) :: areas |
---|
2190 | REAL(r_k), DIMENSION(Npoly), INTENT(out) :: nvals, xvals, mvals, m2vals, stdvals |
---|
2191 | REAL(r_k), DIMENSION(Npoly, Nquant), INTENT(out) :: quants |
---|
2192 | INTEGER, DIMENSION(Npoly,2), INTENT(out) :: nvcoords, xvcoords |
---|
2193 | REAL(r_k), DIMENSION(Npoly,2), INTENT(out) :: meanwctrs, meanvnctrs, meanvxctrs |
---|
2194 | |
---|
2195 | ! Local |
---|
2196 | INTEGER :: ip |
---|
2197 | LOGICAL, DIMENSION(dx,dy) :: boolpoly |
---|
2198 | |
---|
2199 | !!!!!!! Variables |
---|
2200 | ! dx,dy: size of the space |
---|
2201 | ! Npoly: number of polygons |
---|
2202 | ! polys: polygon matrix with all polygons (as integer number per polygon) |
---|
2203 | ! lon, lat: geographical coordinates of the grid-points of the matrix |
---|
2204 | ! values: values of the 2D field to use |
---|
2205 | ! [x/y]res resolution along the x and y axis |
---|
2206 | ! projN: name of the projection |
---|
2207 | ! 'ctsarea': Constant Area |
---|
2208 | ! 'lon/lat': for regular longitude-latitude |
---|
2209 | ! 'nadir-sat,[lonNADIR],[latNADIR]': for satellite data with the resolution given at nadir (lonNADIR, latNADIR) |
---|
2210 | ! Npolyptss: number of points of the polygons |
---|
2211 | ! [x/y]xtrms: grid-point coordinates of minimum and maximum coordinates of the polygons |
---|
2212 | ! meanctrs: center from the mean of the coordinates of the polygons |
---|
2213 | ! meanwctrs: lon, lat coordinates of the center from the spatial-weighted mean of the polygons |
---|
2214 | ! areas: area of the polygons [km] |
---|
2215 | ! [n/x]vals: minimum and maximum of the values within the polygons |
---|
2216 | ! mvals: mean of the values within the polygons |
---|
2217 | ! m2vals: quadratic mean of the values within the polygons |
---|
2218 | ! stdvals: standard deviation of the values within the polygons |
---|
2219 | ! Nquant: number of quantiles |
---|
2220 | ! quants: quantiles of the values within the polygons |
---|
2221 | ! [n/x]vcoords: grid coordinates of the minimum/maximum of the values within the polygons |
---|
2222 | ! meanv[n/x]ctrs: lon, lat coordinates of the area center weighted and also by distance to the lowest or highest values of the polygons |
---|
2223 | |
---|
2224 | fname = 'all_polygons_properties' |
---|
2225 | |
---|
2226 | ! Initializing matrices |
---|
2227 | Npolyptss = -1 |
---|
2228 | xxtrms = fillval64 |
---|
2229 | yxtrms = fillval64 |
---|
2230 | meanctrs = fillval64 |
---|
2231 | meanwctrs = fillval64 |
---|
2232 | areas = fillval64 |
---|
2233 | nvals = fillvalI |
---|
2234 | xvals = fillval64 |
---|
2235 | mvals = fillval64 |
---|
2236 | m2vals = fillval64 |
---|
2237 | stdvals = fillval64 |
---|
2238 | quants = fillval64 |
---|
2239 | nvcoords = fillvalI |
---|
2240 | xvcoords = fillvalI |
---|
2241 | meanvnctrs = fillval64 |
---|
2242 | meanvxctrs = fillval64 |
---|
2243 | |
---|
2244 | DO ip=1, Npoly |
---|
2245 | boolpoly = polys == ip |
---|
2246 | CALL polygon_properties(dbg, dx, dy, boolpoly, lon, lat, values, xres, yres, projN, Npolyptss(ip),& |
---|
2247 | xxtrms(ip,:), yxtrms(ip,:), meanctrs(ip,:), meanwctrs(ip,:), areas(ip), nvals(ip), xvals(ip), & |
---|
2248 | mvals(ip), m2vals(ip), stdvals(ip), Nquant, quants(ip,:), nvcoords(ip,:), xvcoords(ip,:), & |
---|
2249 | meanvnctrs(ip,:), meanvxctrs(ip,:)) |
---|
2250 | END DO |
---|
2251 | |
---|
2252 | RETURN |
---|
2253 | |
---|
2254 | END SUBROUTINE all_polygons_properties |
---|
2255 | |
---|
2256 | SUBROUTINE polygon_properties(dbg, dx, dy, poly, lon, lat, values, xres, yres, projN, Npolypts, & |
---|
2257 | xxtrm, yxtrm, meanctr, meanwctr, area, nval, xval, mval, m2val, stdval, Nquant, quant, nvcoord, & |
---|
2258 | xvcoord, meanvnctr, meanvxctr) |
---|
2259 | ! Subroutine to determine the properties of a polygon (as .TRUE. matrix) |
---|
2260 | ! Number of grid points |
---|
2261 | ! grid-point coordinates of the minimum and maximum of the path along x,y axes |
---|
2262 | ! grid coordinates of center from the mean of the coordinates of the poygon locations |
---|
2263 | ! lon, lat center from the area weighted mean of the coordinates of the polygon locations |
---|
2264 | ! area of the polygon (km2) |
---|
2265 | ! minimum and maximum of the values within the polygon |
---|
2266 | ! mean of the values within the polygon |
---|
2267 | ! quadratic mean of the values within the polygon |
---|
2268 | ! standard deviation of the values within the polygon |
---|
2269 | ! number of quantiles |
---|
2270 | ! quantiles of the values within the polygon |
---|
2271 | ! grid coordinates of the minimum, maximum value within the polygon |
---|
2272 | ! lon, lat coordinates of the area center weighted and also by distance to the lowest or highest values of the polygon |
---|
2273 | |
---|
2274 | IMPLICIT NONE |
---|
2275 | |
---|
2276 | LOGICAL, INTENT(in) :: dbg |
---|
2277 | INTEGER, INTENT(in) :: dx, dy, Nquant |
---|
2278 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: poly |
---|
2279 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: lon, lat, values |
---|
2280 | REAL(r_k), INTENT(in) :: xres, yres |
---|
2281 | CHARACTER(len=1000), INTENT(in) :: projN |
---|
2282 | INTEGER, INTENT(out) :: Npolypts |
---|
2283 | INTEGER, DIMENSION(2), INTENT(out) :: xxtrm, yxtrm, meanctr |
---|
2284 | INTEGER, DIMENSION(2), INTENT(out) :: nvcoord, xvcoord |
---|
2285 | REAL(r_k), DIMENSION(2), INTENT(out) :: meanwctr, meanvnctr, meanvxctr |
---|
2286 | REAL(r_k), INTENT(out) :: area |
---|
2287 | REAL(r_k), INTENT(out) :: nval, xval, mval, m2val, stdval |
---|
2288 | REAL(r_k), DIMENSION(Nquant), INTENT(out) :: quant |
---|
2289 | |
---|
2290 | ! Local |
---|
2291 | INTEGER :: i, j, ip |
---|
2292 | INTEGER :: ierr |
---|
2293 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: polypts |
---|
2294 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: polyvals, distvn, distvx |
---|
2295 | REAL(r_k) :: lonNADIR, latNADIR |
---|
2296 | REAL(r_k) :: sumRESx, sumRESy |
---|
2297 | REAL(r_k), DIMENSION(dx,dy) :: xcorr, ycorr |
---|
2298 | CHARACTER(len=200), DIMENSION(3) :: satSvals |
---|
2299 | CHARACTER(len=50) :: projS |
---|
2300 | REAL(r_k) :: sumDISTnlon, sumDISTnlat, sumDISTxlon, & |
---|
2301 | sumDISTxlat |
---|
2302 | |
---|
2303 | !!!!!!! Variables |
---|
2304 | ! dx,dy: size of the space |
---|
2305 | ! poly: polygon matrix (boolean) |
---|
2306 | ! lon, lat: geographical coordinates of the grid-points of the matrix |
---|
2307 | ! values: values of the 2D field to use |
---|
2308 | ! [x/y]res resolution along the x and y axis |
---|
2309 | ! projN: name of the projection |
---|
2310 | ! 'ctsarea': Constant Area |
---|
2311 | ! 'lon/lat': for regular longitude-latitude |
---|
2312 | ! 'nadir-sat,[lonNADIR],[latNADIR]': for satellite data with the resolution given at nadir (lonNADIR, latNADIR) |
---|
2313 | ! Npolypts: number of points of the polygon |
---|
2314 | ! [x/y]xtrm: grid-point coordinates of minimum and maximum coordinates of the polygon |
---|
2315 | ! meanctr: center from the mean of the coordinates of the polygon |
---|
2316 | ! meanwctr: lon, lat coordinates of the center from the spatial-weighted mean of the polygon |
---|
2317 | ! area: area of the polygon [km] |
---|
2318 | ! [n/x]val: minimum and maximum of the values within the polygon |
---|
2319 | ! mval: mean of the values within the polygon |
---|
2320 | ! m2val: quadratic mean of the values within the polygon |
---|
2321 | ! stdval: standard deviation of the values within the polygon |
---|
2322 | ! Nquant: number of quantiles |
---|
2323 | ! quant: quantiles of the values within the polygon |
---|
2324 | ! [n/x]vcoord: grid coordinates of the minimum/maximum of the values within the polygon |
---|
2325 | ! meanv[n/x]ctr: lon, lat coordinates of the area center weighted and also by distance to the lowest or highest values of the polygon |
---|
2326 | |
---|
2327 | fname = 'polygon_properties' |
---|
2328 | |
---|
2329 | IF (dbg) PRINT *," '" // TRIM(fname) // "' ..." |
---|
2330 | |
---|
2331 | ! Getting grid-point coordinates of the polygon |
---|
2332 | Npolypts = COUNT(poly) |
---|
2333 | |
---|
2334 | IF (ALLOCATED(polypts)) DEALLOCATE(polypts) |
---|
2335 | ALLOCATE(polypts(Npolypts,2), STAT=ierr) |
---|
2336 | msg = "Problems allocating 'polypts'" |
---|
2337 | CALL ErrMsg(msg, fname, ierr) |
---|
2338 | |
---|
2339 | IF (ALLOCATED(polyvals)) DEALLOCATE(polyvals) |
---|
2340 | ALLOCATE(polyvals(Npolypts), STAT=ierr) |
---|
2341 | msg = "Problems allocating 'polyvals'" |
---|
2342 | CALL ErrMsg(msg, fname, ierr) |
---|
2343 | |
---|
2344 | IF (ALLOCATED(distvn)) DEALLOCATE(distvn) |
---|
2345 | ALLOCATE(distvn(Npolypts), STAT=ierr) |
---|
2346 | msg = "Problems allocating 'distvn'" |
---|
2347 | CALL ErrMsg(msg, fname, ierr) |
---|
2348 | |
---|
2349 | IF (ALLOCATED(distvx)) DEALLOCATE(distvx) |
---|
2350 | ALLOCATE(distvx(Npolypts), STAT=ierr) |
---|
2351 | msg = "Problems allocating 'distvx'" |
---|
2352 | CALL ErrMsg(msg, fname, ierr) |
---|
2353 | |
---|
2354 | IF (projN(1:7) == 'lon/lat') THEN |
---|
2355 | projS = projN |
---|
2356 | ELSE IF (projN(1:7) == 'ctsarea') THEN |
---|
2357 | projS = projN |
---|
2358 | ELSE IF (projN(1:9) == 'nadir-sat') THEN |
---|
2359 | projS = 'nadir-sat' |
---|
2360 | CALL split(projN, ',', 3, satSvals) |
---|
2361 | READ(satSvals(2),'(F200.100)')lonNadir |
---|
2362 | READ(satSvals(3),'(F200.100)')latNadir |
---|
2363 | IF (dbg) PRINT *," 'nadir-geostationary-satellite' based projection of data with nadir " // & |
---|
2364 | "location at:", lonNadir, latNadir |
---|
2365 | ELSE |
---|
2366 | msg = "Projection '" // TRIM(projN) // "' not ready" // CHAR(10) // " available ones: " // & |
---|
2367 | "'ctsarea', 'lon/lat', 'nadir-sat'" |
---|
2368 | CALL ErrMsg(msg,fname,-1) |
---|
2369 | END IF |
---|
2370 | |
---|
2371 | area = 0. |
---|
2372 | sumRESx = 0. |
---|
2373 | sumRESy = 0. |
---|
2374 | meanwctr = 0. |
---|
2375 | meanvnctr = 0. |
---|
2376 | meanvxctr = 0. |
---|
2377 | xcorr = 0. |
---|
2378 | ycorr = 0. |
---|
2379 | |
---|
2380 | nval = fillval64 |
---|
2381 | xval = -fillval64 |
---|
2382 | |
---|
2383 | ip = 1 |
---|
2384 | DO i=1,dx |
---|
2385 | DO j=1,dy |
---|
2386 | IF (poly(i,j)) THEN |
---|
2387 | polypts(ip,1) = i |
---|
2388 | polypts(ip,2) = j |
---|
2389 | polyvals(ip) = values(i,j) |
---|
2390 | SELECT CASE (TRIM(projS)) |
---|
2391 | CASE ('ctsarea') |
---|
2392 | ! Constant Area |
---|
2393 | xcorr(i,j) = 1. |
---|
2394 | ycorr(i,j) = 1. |
---|
2395 | CASE ('lon/lat') |
---|
2396 | ! Area as fixed yres and sinus-lat varying for xres |
---|
2397 | ! IF (KIND(xcorr(i,j)) == KIND(1.d0)) THEN |
---|
2398 | ! xcorr(i,j) = DABS(DSIN(lon(i,j)*DegRad)) |
---|
2399 | ! ELSE |
---|
2400 | xcorr(i,j) = ABS(SIN(lon(i,j)*DegRad)) |
---|
2401 | ! END IF |
---|
2402 | ycorr(i,j) = 1. |
---|
2403 | CASE ('nadir-sat') |
---|
2404 | ! Area from nadir resolution and degrading as we get far from satellite's nadir |
---|
2405 | ! GOES-E: 0 N, 75 W |
---|
2406 | ! IF (KIND(xcorr(i,j)) == KIND(1.d0)) THEN |
---|
2407 | ! xcorr(i,j) = DABS(DSIN(lon(i,j)*DegRad)) |
---|
2408 | ! ELSE |
---|
2409 | xcorr(i,j) = ABS(SIN(lon(i,j)*DegRad)) |
---|
2410 | ! END IF |
---|
2411 | ycorr(i,j) = 1. |
---|
2412 | END SELECT |
---|
2413 | area = area + xres*xcorr(i,j)*yres*ycorr(i,j) |
---|
2414 | meanwctr(1) = meanwctr(1) + lon(i,j)*xres*xcorr(i,j) |
---|
2415 | meanwctr(2) = meanwctr(2) + lat(i,j)*yres*ycorr(i,j) |
---|
2416 | IF (nval > values(i,j)) THEN |
---|
2417 | nvcoord(1) = i |
---|
2418 | nvcoord(2) = j |
---|
2419 | nval = values(i,j) |
---|
2420 | END IF |
---|
2421 | IF (xval < values(i,j)) THEN |
---|
2422 | xvcoord(1) = i |
---|
2423 | xvcoord(2) = j |
---|
2424 | xval = values(i,j) |
---|
2425 | END IF |
---|
2426 | ip = ip + 1 |
---|
2427 | END IF |
---|
2428 | END DO |
---|
2429 | END DO |
---|
2430 | |
---|
2431 | IF (dbg) THEN |
---|
2432 | PRINT *,' grid_coord lon lat value _______ ' |
---|
2433 | DO ip=1, Npolypts |
---|
2434 | PRINT *, polypts(ip,:), ';', lon(polypts(ip,1),polypts(ip,2)), lat(polypts(ip,1),polypts(ip,2)),& |
---|
2435 | ':', polyvals(ip) |
---|
2436 | END DO |
---|
2437 | END IF |
---|
2438 | |
---|
2439 | sumRESx = xres*SUM(xcorr) |
---|
2440 | sumRESy = yres*SUM(ycorr) |
---|
2441 | |
---|
2442 | xxtrm = (/ MINVAL(polypts(:,1)), MAXVAL(polypts(:,1)) /) |
---|
2443 | yxtrm = (/ MINVAL(polypts(:,2)), MAXVAL(polypts(:,2)) /) |
---|
2444 | meanctr = (/ SUM(polypts(:,1))/Npolypts, SUM(polypts(:,2))/Npolypts /) |
---|
2445 | meanwctr = (/ meanwctr(1)/sumRESx, meanwctr(2)/sumRESy /) |
---|
2446 | |
---|
2447 | IF (dbg) THEN |
---|
2448 | PRINT *,' mean grid center: ', meanctr, ' weighted mean center: ', meanwctr |
---|
2449 | END IF |
---|
2450 | |
---|
2451 | ! Statistics of the values within the polygon |
---|
2452 | CALL StatsR_K(Npolypts, polyvals, nval, xval, mval, m2val, stdval) |
---|
2453 | |
---|
2454 | IF (dbg) THEN |
---|
2455 | PRINT *,' minimum value: ', nval, ' maximum:', xval, ' mean:', mval |
---|
2456 | PRINT *,' coor. minimum: ', nvcoord |
---|
2457 | PRINT *,' coor. maximum: ', xvcoord |
---|
2458 | END IF |
---|
2459 | |
---|
2460 | ! Mean center weighted to minimum and maximum values |
---|
2461 | ! IF (KIND(polyvals(1)) == KIND(1.d0)) THEN |
---|
2462 | ! distvn = DABS(polyvals - nval) |
---|
2463 | ! distvx = DABS(polyvals - xval) |
---|
2464 | ! ELSE |
---|
2465 | distvn = ABS(polyvals - nval) |
---|
2466 | distvx = ABS(polyvals - xval) |
---|
2467 | ! END IF |
---|
2468 | |
---|
2469 | meanvnctr = 0. |
---|
2470 | meanvxctr = 0. |
---|
2471 | sumDISTnlon = 0. |
---|
2472 | sumDISTnlat = 0. |
---|
2473 | sumDISTxlon = 0. |
---|
2474 | sumDISTxlat = 0. |
---|
2475 | |
---|
2476 | ip = 1 |
---|
2477 | DO i=1,dx |
---|
2478 | DO j=1,dy |
---|
2479 | IF (poly(i,j)) THEN |
---|
2480 | meanvnctr(1) = meanvnctr(1)+lon(i,j)*distvn(ip)*xres*xcorr(i,j) |
---|
2481 | meanvnctr(2) = meanvnctr(2)+lat(i,j)*distvn(ip)*yres*ycorr(i,j) |
---|
2482 | |
---|
2483 | meanvxctr(1) = meanvxctr(1)+lon(i,j)*distvx(ip)*xres*xcorr(i,j) |
---|
2484 | meanvxctr(2) = meanvxctr(2)+lat(i,j)*distvx(ip)*yres*ycorr(i,j) |
---|
2485 | |
---|
2486 | sumDISTnlon = sumDISTnlon + distvn(ip)*xres*xcorr(i,j) |
---|
2487 | sumDISTnlat = sumDISTnlat + distvn(ip)*yres*ycorr(i,j) |
---|
2488 | sumDISTxlon = sumDISTxlon + distvx(ip)*xres*xcorr(i,j) |
---|
2489 | sumDISTxlat = sumDISTxlat + distvx(ip)*yres*ycorr(i,j) |
---|
2490 | |
---|
2491 | ip = ip + 1 |
---|
2492 | END IF |
---|
2493 | END DO |
---|
2494 | END DO |
---|
2495 | |
---|
2496 | meanvnctr = (/ meanvnctr(1)/sumDISTnlon, meanvnctr(2)/sumDISTnlat /) |
---|
2497 | meanvxctr = (/ meanvxctr(1)/sumDISTxlon, meanvxctr(2)/sumDISTxlat /) |
---|
2498 | |
---|
2499 | IF (dbg) THEN |
---|
2500 | PRINT *,' mean center to minimum: ', meanvnctr, ' to maximum: ', meanvxctr |
---|
2501 | END IF |
---|
2502 | |
---|
2503 | ! Quantiles of the values within the polygon |
---|
2504 | quant = -9999.d0 |
---|
2505 | IF (Npolypts > Nquant) THEN |
---|
2506 | CALL quantilesR_K(Npolypts, polyvals, Nquant, quant) |
---|
2507 | ELSE |
---|
2508 | CALL SortR_K(polyvals, Npolypts) |
---|
2509 | END IF |
---|
2510 | |
---|
2511 | DEALLOCATE (polypts) |
---|
2512 | DEALLOCATE (polyvals) |
---|
2513 | |
---|
2514 | RETURN |
---|
2515 | |
---|
2516 | END SUBROUTINE polygon_properties |
---|
2517 | |
---|
2518 | SUBROUTINE polygons_t(dbg, dx, dy, dt, boolmatt, polys, Npoly) |
---|
2519 | ! Subroutine to search the polygons of a temporal series of boolean fields. FORTRAN based. 1st = 1! |
---|
2520 | |
---|
2521 | IMPLICIT NONE |
---|
2522 | |
---|
2523 | INTEGER, INTENT(in) :: dx, dy, dt |
---|
2524 | LOGICAL, DIMENSION(dx,dy,dt), INTENT(in) :: boolmatt |
---|
2525 | LOGICAL, INTENT(in) :: dbg |
---|
2526 | INTEGER, DIMENSION(dt), INTENT(out) :: Npoly |
---|
2527 | INTEGER, DIMENSION(dx,dy,dt), INTENT(out) :: polys |
---|
2528 | |
---|
2529 | ! Local |
---|
2530 | INTEGER :: i,it |
---|
2531 | |
---|
2532 | !!!!!!! Variables |
---|
2533 | ! dx,dy: spatial dimensions of the space |
---|
2534 | ! boolmatt: boolean matrix tolook for the polygons (.TRUE. based) |
---|
2535 | ! polys: found polygons |
---|
2536 | ! Npoly: number of polygons found |
---|
2537 | |
---|
2538 | fname = 'polygons' |
---|
2539 | |
---|
2540 | IF (dbg) PRINT *,TRIM(fname) |
---|
2541 | |
---|
2542 | polys = -1 |
---|
2543 | Npoly = 0 |
---|
2544 | |
---|
2545 | DO it=1,dt |
---|
2546 | IF (ANY(boolmatt(:,:,it))) THEN |
---|
2547 | IF (dbg) THEN |
---|
2548 | PRINT *,' it:', it, ' num. TRUE:', COUNT(boolmatt(:,:,it)), 'bool _______' |
---|
2549 | DO i=1,dx |
---|
2550 | PRINT *,boolmatt(i,:,it) |
---|
2551 | END DO |
---|
2552 | END IF |
---|
2553 | CALL polygons(dbg, dx, dy, boolmatt(:,:,it), polys(:,:,it), Npoly(it)) |
---|
2554 | ELSE |
---|
2555 | IF (dbg) THEN |
---|
2556 | PRINT *,' it:', it, " without '.TRUE.' values skipiing it!!" |
---|
2557 | END IF |
---|
2558 | END IF |
---|
2559 | END DO |
---|
2560 | |
---|
2561 | END SUBROUTINE polygons_t |
---|
2562 | |
---|
2563 | SUBROUTINE polygons(dbg, dx, dy, boolmat, polys, Npoly) |
---|
2564 | ! Subroutine to search the polygons of a boolean field. FORTRAN based. 1st = 1! |
---|
2565 | |
---|
2566 | IMPLICIT NONE |
---|
2567 | |
---|
2568 | INTEGER, INTENT(in) :: dx, dy |
---|
2569 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: boolmat |
---|
2570 | LOGICAL, INTENT(in) :: dbg |
---|
2571 | INTEGER, INTENT(out) :: Npoly |
---|
2572 | INTEGER, DIMENSION(dx,dy), INTENT(out) :: polys |
---|
2573 | |
---|
2574 | ! Local |
---|
2575 | INTEGER :: i, j, ip, ipp, Nppt |
---|
2576 | INTEGER :: ierr |
---|
2577 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: borders |
---|
2578 | LOGICAL, DIMENSION(dx,dy) :: isborder, isbordery, borderp |
---|
2579 | INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: paths |
---|
2580 | INTEGER :: Npath |
---|
2581 | INTEGER, DIMENSION(:), ALLOCATABLE :: Nptpaths |
---|
2582 | INTEGER, DIMENSION(2) :: xtrx, xtry, meanpth |
---|
2583 | INTEGER :: Nvertx, Npts |
---|
2584 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: vertxs, points |
---|
2585 | LOGICAL, DIMENSION(:), ALLOCATABLE :: isin |
---|
2586 | CHARACTER(len=1000) :: boundsS |
---|
2587 | |
---|
2588 | !!!!!!! Variables |
---|
2589 | ! dx,dy: spatial dimensions of the space |
---|
2590 | ! boolmat: boolean matrix tolook for the polygons (.TRUE. based) |
---|
2591 | ! polys: found polygons |
---|
2592 | ! Npoly: number of polygons found |
---|
2593 | |
---|
2594 | fname = 'polygons' |
---|
2595 | |
---|
2596 | polys = -1 |
---|
2597 | |
---|
2598 | ! The mathematical maximum woiuld be dx*dy/4, but let's be optimistic... (sorry Jero) |
---|
2599 | Nppt = dx*dy/100 |
---|
2600 | |
---|
2601 | IF (ALLOCATED(borders)) DEALLOCATE(borders) |
---|
2602 | ALLOCATE(borders(Nppt,2), STAT=ierr) |
---|
2603 | msg = "Problems allocating matrix 'borders'" |
---|
2604 | CALL ErrMsg(msg, fname, ierr) |
---|
2605 | |
---|
2606 | IF (ALLOCATED(paths)) DEALLOCATE(paths) |
---|
2607 | ALLOCATE(paths(Nppt,Nppt,2), STAT=ierr) |
---|
2608 | boundsS = vectorI_S(3, (/Nppt, Nppt, 2/)) |
---|
2609 | msg = "Problems allocating matrix 'paths' shape: " // TRIM(boundsS) // " try to reduce Nppt " // & |
---|
2610 | "and recompile" |
---|
2611 | CALL ErrMsg(msg, fname, ierr) |
---|
2612 | |
---|
2613 | IF (ALLOCATED(Nptpaths)) DEALLOCATE(Nptpaths) |
---|
2614 | ALLOCATE(Nptpaths(Nppt), STAT=ierr) |
---|
2615 | msg = "Problems allocating matrix 'Nptpaths'" |
---|
2616 | CALL ErrMsg(msg, fname, ierr) |
---|
2617 | |
---|
2618 | ! Filling with the points of all the space with .TRUE. |
---|
2619 | Npts = COUNT(boolmat) |
---|
2620 | PRINT * ,'Lluis Npts:', Npts, 'Nppt:', Nppt |
---|
2621 | |
---|
2622 | IF (ALLOCATED(points)) DEALLOCATE(points) |
---|
2623 | ALLOCATE(points(Npts,2), STAT=ierr) |
---|
2624 | msg = "Problems allocating matrix 'points'" |
---|
2625 | CALL ErrMsg(msg, fname, ierr) |
---|
2626 | |
---|
2627 | ! We only want to localize that points 'inside' |
---|
2628 | ip = 1 |
---|
2629 | DO i=1, dx |
---|
2630 | DO j=1, dy |
---|
2631 | IF (boolmat(i,j)) THEN |
---|
2632 | points(ip,1) = i |
---|
2633 | points(ip,2) = j |
---|
2634 | ip = ip + 1 |
---|
2635 | END IF |
---|
2636 | END DO |
---|
2637 | END DO |
---|
2638 | |
---|
2639 | CALL borders_matrixL(dbg, dx, dy, Nppt, boolmat, borders, isborder, isbordery) |
---|
2640 | CALL paths_border(dbg, dx, dy, isborder, Nppt, borders, paths, Npath, Nptpaths) |
---|
2641 | |
---|
2642 | Npoly = Npath |
---|
2643 | |
---|
2644 | DO ip=1, Npath |
---|
2645 | IF (ALLOCATED(vertxs)) DEALLOCATE(vertxs) |
---|
2646 | ALLOCATE(vertxs(Nptpaths(ip),2)) |
---|
2647 | msg = "Problems allocating matrix 'vertxs'" |
---|
2648 | CALL ErrMsg(msg, fname, ierr) |
---|
2649 | |
---|
2650 | IF (ALLOCATED(isin)) DEALLOCATE(isin) |
---|
2651 | ALLOCATE(isin(Npts), STAT=ierr) |
---|
2652 | msg = "Problems allocating matrix 'isin'" |
---|
2653 | CALL ErrMsg(msg, fname, ierr) |
---|
2654 | |
---|
2655 | isin = .FALSE. |
---|
2656 | |
---|
2657 | IF (dbg) THEN |
---|
2658 | PRINT *, ' path:', ip, ' N pts:', Nptpaths(ip) |
---|
2659 | DO j=1, Nptpaths(ip) |
---|
2660 | PRINT *, ' ',j,':',paths(ip,j,:) |
---|
2661 | END DO |
---|
2662 | END IF |
---|
2663 | |
---|
2664 | borderp = .FALSE. |
---|
2665 | DO j=1,Nptpaths(ip) |
---|
2666 | borderp(paths(ip,j,1),paths(ip,j,2)) = .TRUE. |
---|
2667 | END DO |
---|
2668 | |
---|
2669 | CALL path_properties(dx, dy, boolmat, Nptpaths(ip), paths(ip,1:Nptpaths(ip),:), xtrx, xtry, & |
---|
2670 | meanpth, 'y', Nvertx, vertxs) |
---|
2671 | |
---|
2672 | IF (dbg) THEN |
---|
2673 | PRINT *, ' properties _______' |
---|
2674 | PRINT *, ' x-extremes:', xtrx |
---|
2675 | PRINT *, ' y-extremes:', xtry |
---|
2676 | PRINT *, ' center mean:', meanpth |
---|
2677 | PRINT *, ' y-vertexs:', Nvertx,' ________' |
---|
2678 | DO i=1, Nvertx |
---|
2679 | PRINT *,' ',i,':',vertxs(i,:) |
---|
2680 | END DO |
---|
2681 | END IF |
---|
2682 | |
---|
2683 | CALL gridpoints_InsidePolygon(dbg, dx, dy, isbordery, Nptpaths(ip), paths(ip,1:Nptpaths(ip),:), & |
---|
2684 | Nvertx, xtrx, xtry, vertxs, Npts, points, isin) |
---|
2685 | |
---|
2686 | ! Filling polygons |
---|
2687 | DO ipp=1, Npts |
---|
2688 | IF (isin(ipp)) polys(points(ipp,1),points(ipp,2)) = ip |
---|
2689 | END DO |
---|
2690 | |
---|
2691 | IF (dbg) THEN |
---|
2692 | PRINT *,' boolmat isborder isbordery polygon (',xtrx(1),',',xtry(1),')x(',xtrx(2),',',xtry(2), & |
---|
2693 | ') _______' |
---|
2694 | DO i=xtrx(1), xtrx(2) |
---|
2695 | PRINT *,i,':',boolmat(i,xtry(1):xtry(2)), ' border ', isborder(i,xtry(1):xtry(2)), & |
---|
2696 | ' isbordery ', isbordery(i,xtry(1):xtry(2)), ' polygon ', polys(i,xtry(1):xtry(2)) |
---|
2697 | END DO |
---|
2698 | END IF |
---|
2699 | |
---|
2700 | END DO |
---|
2701 | |
---|
2702 | ! Cleaning polygons matrix of not-used and paths around holes |
---|
2703 | CALL clean_polygons(dx, dy, boolmat, polys, Npoly, dbg) |
---|
2704 | |
---|
2705 | IF (ALLOCATED(borders)) DEALLOCATE (borders) |
---|
2706 | IF (ALLOCATED(Nptpaths)) DEALLOCATE (Nptpaths) |
---|
2707 | IF (ALLOCATED(paths)) DEALLOCATE (paths) |
---|
2708 | IF (ALLOCATED(vertxs)) DEALLOCATE (vertxs) |
---|
2709 | IF (ALLOCATED(points)) DEALLOCATE (points) |
---|
2710 | IF (ALLOCATED(isin)) DEALLOCATE (isin) |
---|
2711 | |
---|
2712 | RETURN |
---|
2713 | |
---|
2714 | END SUBROUTINE polygons |
---|
2715 | |
---|
2716 | SUBROUTINE clean_polygons(dx, dy, Lmat, pols, Npols, dbg) |
---|
2717 | ! Subroutine to clean polygons from non-used paths, polygons only left as path since they are inner path of a hole |
---|
2718 | |
---|
2719 | IMPLICIT NONE |
---|
2720 | |
---|
2721 | INTEGER, INTENT(in) :: dx, dy |
---|
2722 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: Lmat |
---|
2723 | INTEGER, INTENT(inout) :: Npols |
---|
2724 | INTEGER, DIMENSION(dx,dy), INTENT(inout) :: pols |
---|
2725 | LOGICAL, INTENT(in) :: dbg |
---|
2726 | |
---|
2727 | ! Local |
---|
2728 | INTEGER :: i,j,ip,iprm |
---|
2729 | INTEGER, DIMENSION(Npols) :: origPol, NotPol, neigPol |
---|
2730 | INTEGER :: ispol, NnotPol |
---|
2731 | CHARACTER(len=4) :: ISa |
---|
2732 | |
---|
2733 | !!!!!!! Variables |
---|
2734 | ! dx, dy: size of the space |
---|
2735 | ! Lmat: original bolean matrix from which the polygons come from |
---|
2736 | ! Npols: original number of polygons |
---|
2737 | ! pols: polygons space |
---|
2738 | |
---|
2739 | fname = 'clean_polygons' |
---|
2740 | IF (dbg) PRINT *," At '" // TRIM(fname) // "' ..." |
---|
2741 | |
---|
2742 | origPol = -1 |
---|
2743 | |
---|
2744 | ! Looking for polygons already in space |
---|
2745 | NnotPol = 0 |
---|
2746 | DO ip=1, Npols |
---|
2747 | ispol = COUNT(pols-ip == 0) |
---|
2748 | IF (ispol > 0) THEN |
---|
2749 | origPol(ip) = ip |
---|
2750 | ELSE |
---|
2751 | NnotPol = NnotPol + 1 |
---|
2752 | NotPol(NnotPol) = ip |
---|
2753 | neigPol(NnotPol) = -1 |
---|
2754 | END IF |
---|
2755 | END DO |
---|
2756 | |
---|
2757 | IF (NnotPol == Npols) THEN |
---|
2758 | PRINT *,' ' // TRIM(fname) // ": avoiding to remove all polygons !!" |
---|
2759 | NnotPol = 0 |
---|
2760 | END IF |
---|
2761 | |
---|
2762 | IF (dbg) THEN |
---|
2763 | PRINT *,' It should be:', Npols, ' polygons, but already there are:', Npols - NnotPol |
---|
2764 | PRINT *,' Polygons to remove:', NotPol(1:NnotPol) |
---|
2765 | END IF |
---|
2766 | |
---|
2767 | ! Looking for the hole border of a polygon. This is identify as such polygon point which along |
---|
2768 | ! y-axis has NpolygonA, Npolygon, .FALSE. |
---|
2769 | DO i=1,dx |
---|
2770 | DO j=2,dy-1 |
---|
2771 | IF ( (pols(i,j-1) /= pols(i,j) .AND. pols(i,j+1) == -1) .AND. (COUNT(NotPol-pols(i,j)==0)==0) & |
---|
2772 | .AND. (pols(i,j) /= -1) .AND. (pols(i,j-1) /= -1)) THEN |
---|
2773 | IF (dbg) PRINT *,' Polygon:', pols(i,j), ' to be removed at point (',i,',',j,'); j-1:', & |
---|
2774 | pols(i,j-1), ' j:', pols(i,j), ' j+1:', pols(i,j+1) |
---|
2775 | NnotPol = NnotPol + 1 |
---|
2776 | NotPol(NnotPol) = pols(i,j) |
---|
2777 | neigPol(NnotPol) = pols(i,j-1) |
---|
2778 | END IF |
---|
2779 | END DO |
---|
2780 | END DO |
---|
2781 | |
---|
2782 | IF (dbg) THEN |
---|
2783 | PRINT *,' It should be:', Npols, ' polygons, but already there are:', Npols - NnotPol |
---|
2784 | PRINT *,' Polygons to remove after looking for fake border-of-hole polygons _______' |
---|
2785 | DO i=1, NnotPol |
---|
2786 | PRINT *, ' Polygon:', NotPol(i), ' to be replaced by:', neigPol(i) |
---|
2787 | END DO |
---|
2788 | END IF |
---|
2789 | |
---|
2790 | ! Removing polygons |
---|
2791 | DO iprm=1, NnotPol |
---|
2792 | IF (neigPol(iprm) == -1) THEN |
---|
2793 | WHERE (pols == NotPol(iprm)) |
---|
2794 | pols = -1 |
---|
2795 | END WHERE |
---|
2796 | IF (dbg) THEN |
---|
2797 | PRINT *,' removing polygon:', NotPol(iprm) |
---|
2798 | END IF |
---|
2799 | ELSE |
---|
2800 | WHERE (pols == NotPol(iprm)) |
---|
2801 | pols = neigPol(iprm) |
---|
2802 | END WHERE |
---|
2803 | IF (dbg) THEN |
---|
2804 | PRINT *,' replacing polygon:', NotPol(iprm), ' by:', neigPol(iprm) |
---|
2805 | END IF |
---|
2806 | END IF |
---|
2807 | END DO |
---|
2808 | |
---|
2809 | ! Re-numbering (descending values) |
---|
2810 | DO i = 1, NnotPol |
---|
2811 | iprm = MAXVAL(NotPol(1:NnotPol)) |
---|
2812 | WHERE(pols > iprm) |
---|
2813 | pols = pols - 1 |
---|
2814 | END WHERE |
---|
2815 | j = Index1DArrayI(NotPol, NnotPol, iprm) |
---|
2816 | NotPol(j) = -9 |
---|
2817 | END DO |
---|
2818 | |
---|
2819 | Npols = Npols - NnotPol |
---|
2820 | |
---|
2821 | RETURN |
---|
2822 | |
---|
2823 | END SUBROUTINE clean_polygons |
---|
2824 | |
---|
2825 | SUBROUTINE path_properties(dx, dy, Lmat, Nptspth, pth, xxtrm, yxtrm, meanctr, axs, Nvrtx, vrtxs) |
---|
2826 | ! Subroutine to determine the properties of a path: |
---|
2827 | ! extremes: minimum and maximum of the path along x,y axes |
---|
2828 | ! meancenter: center from the mean of the coordinates of the paths locations |
---|
2829 | ! vertexs: path point, without neighbours along a given axis |
---|
2830 | |
---|
2831 | IMPLICIT NONE |
---|
2832 | |
---|
2833 | INTEGER, INTENT(in) :: dx, dy, Nptspth |
---|
2834 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: Lmat |
---|
2835 | INTEGER, DIMENSION(Nptspth,2), INTENT(in) :: pth |
---|
2836 | CHARACTER, INTENT(in) :: axs |
---|
2837 | INTEGER, DIMENSION(2), INTENT(out) :: meanctr, xxtrm, yxtrm |
---|
2838 | INTEGER, INTENT(out) :: Nvrtx |
---|
2839 | INTEGER, DIMENSION(Nptspth,2), INTENT(out) :: vrtxs |
---|
2840 | |
---|
2841 | ! Local |
---|
2842 | INTEGER :: i, ip, jp |
---|
2843 | INTEGER :: neig1, neig2 |
---|
2844 | |
---|
2845 | !!!!!!! Variables |
---|
2846 | ! dx,dy: size of the space |
---|
2847 | ! Lmat: original matrix of logical values for the path |
---|
2848 | ! Nptspth: number of points of the path |
---|
2849 | ! pth: path coordinates (clockwise) |
---|
2850 | ! axs: axis of finding the vertex |
---|
2851 | ! [x/y]xtrm: minimum and maximum coordinates of the path |
---|
2852 | ! meanctr: center from the mean of the coordinates of the path |
---|
2853 | ! Nvrtx: Number of vertexs of the path |
---|
2854 | ! vrtxs: coordinates of the vertexs |
---|
2855 | |
---|
2856 | fname = 'path_properties' |
---|
2857 | |
---|
2858 | vrtxs = -1 |
---|
2859 | Nvrtx = 0 |
---|
2860 | |
---|
2861 | xxtrm = (/ MINVAL(pth(:,1)), MAXVAL(pth(:,1)) /) |
---|
2862 | yxtrm = (/ MINVAL(pth(:,2)), MAXVAL(pth(:,2)) /) |
---|
2863 | meanctr = (/ SUM(pth(:,1))/Nptspth, SUM(pth(:,2))/Nptspth /) |
---|
2864 | |
---|
2865 | IF (axs == 'x' .OR. axs == 'X') THEN |
---|
2866 | ! Looking vertexs along x-axis |
---|
2867 | DO i=1, Nptspth |
---|
2868 | ip = pth(i,1) |
---|
2869 | jp = pth(i,2) |
---|
2870 | neig1 = 0 |
---|
2871 | neig2 = 0 |
---|
2872 | ! W-point |
---|
2873 | IF (ip == 1) THEN |
---|
2874 | neig1 = -1 |
---|
2875 | ELSE |
---|
2876 | IF (.NOT.Lmat(ip-1,jp)) neig1 = -1 |
---|
2877 | END IF |
---|
2878 | ! E-point |
---|
2879 | IF (ip == dx) THEN |
---|
2880 | neig2 = -1 |
---|
2881 | ELSE |
---|
2882 | IF (.NOT.Lmat(ip+1,jp)) neig2 = -1 |
---|
2883 | END IF |
---|
2884 | |
---|
2885 | IF (neig1 == -1 .AND. neig2 == -1) THEN |
---|
2886 | Nvrtx = Nvrtx + 1 |
---|
2887 | vrtxs(Nvrtx,:) = (/ip,jp/) |
---|
2888 | END IF |
---|
2889 | END DO |
---|
2890 | ELSE IF (axs == 'y' .OR. axs == 'Y') THEN |
---|
2891 | ! Looking vertexs along x-axis |
---|
2892 | DO i=1, Nptspth |
---|
2893 | ip = pth(i,1) |
---|
2894 | jp = pth(i,2) |
---|
2895 | |
---|
2896 | neig1 = 0 |
---|
2897 | neig2 = 0 |
---|
2898 | ! S-point |
---|
2899 | IF (jp == 1) THEN |
---|
2900 | neig1 = -1 |
---|
2901 | ELSE |
---|
2902 | IF (.NOT.Lmat(ip,jp-1)) neig1 = -1 |
---|
2903 | END IF |
---|
2904 | ! N-point |
---|
2905 | IF (jp == dy) THEN |
---|
2906 | neig2 = -1 |
---|
2907 | ELSE |
---|
2908 | IF (.NOT.Lmat(ip,jp+1)) neig2 = -1 |
---|
2909 | END IF |
---|
2910 | |
---|
2911 | IF (neig1 == -1 .AND. neig2 == -1) THEN |
---|
2912 | Nvrtx = Nvrtx + 1 |
---|
2913 | vrtxs(Nvrtx,:) = (/ ip, jp /) |
---|
2914 | END IF |
---|
2915 | END DO |
---|
2916 | ELSE |
---|
2917 | msg = "Axis '" // axs // "' not available" // CHAR(10) // " Available ones: 'x', 'X', 'y, 'Y'" |
---|
2918 | CALL ErrMsg(msg, fname, -1) |
---|
2919 | END IF |
---|
2920 | |
---|
2921 | RETURN |
---|
2922 | |
---|
2923 | END SUBROUTINE path_properties |
---|
2924 | |
---|
2925 | SUBROUTINE gridpoints_InsidePolygon(dbg, dx, dy, isbrdr, Npath, path, Nvrtx, xpathxtrm, ypathxtrm, & |
---|
2926 | vrtxs, Npts, pts, inside) |
---|
2927 | ! Subroutine to determine if a series of grid points are inside a polygon following ray casting algorithm |
---|
2928 | ! FROM: https://en.wikipedia.org/wiki/Point_in_polygon |
---|
2929 | |
---|
2930 | IMPLICIT NONE |
---|
2931 | |
---|
2932 | INTEGER, INTENT(in) :: dx,dy,Npath,Nvrtx,Npts |
---|
2933 | LOGICAL, INTENT(in) :: dbg |
---|
2934 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: isbrdr |
---|
2935 | INTEGER, DIMENSION(Npath,2), INTENT(in) :: path |
---|
2936 | INTEGER, DIMENSION(2), INTENT(in) :: xpathxtrm, ypathxtrm |
---|
2937 | INTEGER, DIMENSION(Npath,2) :: vrtxs |
---|
2938 | INTEGER, DIMENSION(Npts,2), INTENT(in) :: pts |
---|
2939 | LOGICAL, DIMENSION(Npts), INTENT(out) :: inside |
---|
2940 | |
---|
2941 | ! Local |
---|
2942 | INTEGER :: i,j,ip,ix,iy |
---|
2943 | INTEGER :: Nintersecs, isvertex, ispath |
---|
2944 | INTEGER :: ierr |
---|
2945 | LOGICAL, DIMENSION(:,:), ALLOCATABLE :: halo_brdr |
---|
2946 | INTEGER :: Nbrbrdr |
---|
2947 | |
---|
2948 | !!!!!!! Variables |
---|
2949 | ! dx,dy: space size |
---|
2950 | ! Npath: number of points of the path of the polygon |
---|
2951 | ! path: path of the polygon |
---|
2952 | ! isbrdr: boolean matrix of the space wqith .T. on polygon border |
---|
2953 | ! Nvrtx: number of vertexs of the path |
---|
2954 | ! [x/y]pathxtrm extremes of the path |
---|
2955 | ! vrtxs: vertexs of the path along y-axis |
---|
2956 | ! Npts: number of points |
---|
2957 | ! pts: points to look for |
---|
2958 | ! inside: vector wether point is inside or not (coincident to a border is inside) |
---|
2959 | |
---|
2960 | fname = 'gridpoints_InsidePolygon' |
---|
2961 | |
---|
2962 | ! Creation of a 1-grid point larger matrix to deal with points reaching the limits |
---|
2963 | IF (ALLOCATED(halo_brdr)) DEALLOCATE(halo_brdr) |
---|
2964 | ALLOCATE(halo_brdr(dx+2,dy+2), STAT=ierr) |
---|
2965 | msg = "Problems allocating matrix 'halo_brdr'" |
---|
2966 | CALL ErrMsg(msg, fname, ierr) |
---|
2967 | halo_brdr = .FALSE. |
---|
2968 | |
---|
2969 | IF (dbg) PRINT *,'Border _______' |
---|
2970 | DO i=1,dx |
---|
2971 | halo_brdr(i+1,2:dy+1) = isbrdr(i,:) |
---|
2972 | IF (dbg) PRINT *,isbrdr(i,:) |
---|
2973 | END DO |
---|
2974 | |
---|
2975 | inside = .FALSE. |
---|
2976 | |
---|
2977 | DO ip=1,Npts |
---|
2978 | Nintersecs = 0 |
---|
2979 | ix = pts(ip,1) |
---|
2980 | iy = pts(ip,2) |
---|
2981 | ! Point might be outside path range... |
---|
2982 | IF (ix >= xpathxtrm(1) .AND. ix <= xpathxtrm(2) .AND. iy >= ypathxtrm(1) .AND. & |
---|
2983 | iy <= ypathxtrm(2)) THEN |
---|
2984 | |
---|
2985 | ! It is a border point? |
---|
2986 | ispath = index_list_coordsI(Npath, path, (/ix,iy/)) |
---|
2987 | IF (isbrdr(ix,iy) .AND. (ispath /= -1)) THEN |
---|
2988 | inside(ip) = .TRUE. |
---|
2989 | CYCLE |
---|
2990 | END IF |
---|
2991 | |
---|
2992 | ! Looking along y-axis |
---|
2993 | ! Accounting for consecutives borders |
---|
2994 | Nbrbrdr = 0 |
---|
2995 | DO j=MAX(1,ypathxtrm(1)-1),iy-1 |
---|
2996 | ! Only counting that borders that are not vertexs |
---|
2997 | ispath = index_list_coordsI(Npath, path, (/ix,j/)) |
---|
2998 | isvertex = index_list_coordsI(Npath, vrtxs, (/ix,j/)) |
---|
2999 | |
---|
3000 | IF (halo_brdr(ix+1,j+1) .AND. (ispath /= -1) .AND. (isvertex == -1) ) Nintersecs = Nintersecs + 1 |
---|
3001 | IF (halo_brdr(ix+1,j+1) .AND. (ispath /= -1) .AND. (halo_brdr(ix+1,j+1) .EQV. halo_brdr(ix+1,j+2))) THEN |
---|
3002 | Nbrbrdr = Nbrbrdr + 1 |
---|
3003 | IF (dbg) PRINT *,' ',Nbrbrdr,' Consec brdrs:', halo_brdr(ix+1,j+1), halo_brdr(ix+1,j+2), & |
---|
3004 | '(', ix,j,';', ix,j+1,')', isbrdr(ix,j), isbrdr(ix,j+1) |
---|
3005 | ELSE |
---|
3006 | ! Will remove that consecutive borders above 2 |
---|
3007 | IF (Nbrbrdr /= 0) THEN |
---|
3008 | IF (dbg) PRINT *, ix,',',iy,';', Nintersecs, ' amount of consecutive borders:', Nbrbrdr, & |
---|
3009 | ' removing:', MAX(Nbrbrdr-1, 0) |
---|
3010 | Nintersecs = Nintersecs - MAX(Nbrbrdr-1, 0) |
---|
3011 | Nbrbrdr = 0 |
---|
3012 | END IF |
---|
3013 | END IF |
---|
3014 | END DO |
---|
3015 | IF (MOD(Nintersecs,2) /= 0) inside(ip) = .TRUE. |
---|
3016 | IF (dbg) PRINT *,ip,' point:', ix, iy, 'isbrdr:', isbrdr(ix,1:iy-1), 'y-ray:', halo_brdr(ix+1,1:iy), 'inside:', inside(ip) |
---|
3017 | END IF |
---|
3018 | |
---|
3019 | END DO |
---|
3020 | |
---|
3021 | RETURN |
---|
3022 | |
---|
3023 | END SUBROUTINE gridpoints_InsidePolygon |
---|
3024 | |
---|
3025 | SUBROUTINE look_clockwise_borders(dx,dy,Nbrdrs,brdrs,gbrdr,isbrdr,ix,iy,dbg,xf,yf,iff) |
---|
3026 | ! Subroutine to look clock-wise for a next point within a collection of borders (limits of a region) |
---|
3027 | |
---|
3028 | IMPLICIT NONE |
---|
3029 | |
---|
3030 | INTEGER, INTENT(in) :: dx, dy, Nbrdrs, ix, iy |
---|
3031 | INTEGER, DIMENSION(Nbrdrs,2), INTENT(in) :: brdrs |
---|
3032 | LOGICAL, DIMENSION(Nbrdrs), INTENT(in) :: gbrdr |
---|
3033 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: isbrdr |
---|
3034 | LOGICAL, INTENT(in) :: dbg |
---|
3035 | INTEGER, INTENT(out) :: xf, yf, iff |
---|
3036 | |
---|
3037 | ! Local |
---|
3038 | INTEGER :: isch |
---|
3039 | CHARACTER(len=2), DIMENSION(8) :: Lclock |
---|
3040 | INTEGER, DIMENSION(8,2) :: spt |
---|
3041 | INTEGER :: iif, jjf |
---|
3042 | |
---|
3043 | !!!!!!! Variables |
---|
3044 | ! dx, dy: 2D shape ot the space |
---|
3045 | ! Nbrdrs: number of brdrs found in this 2D space |
---|
3046 | ! brdrs: list of coordinates of the borders |
---|
3047 | ! gbrdr: accounts for the use if the given border point |
---|
3048 | ! isbrdr: accounts for the matrix of the point is a border or not |
---|
3049 | ! ix,iy: coordinates of the point to start to find for |
---|
3050 | ! xf,yf: coordinates of the found point |
---|
3051 | ! iff: position of the border found within the list of borders |
---|
3052 | |
---|
3053 | fname = 'look_clockwise_borders' |
---|
3054 | |
---|
3055 | ! Looking clock-wise assuming that one starts from the westernmost point |
---|
3056 | |
---|
3057 | ! Label of the search |
---|
3058 | lclock = (/ 'W ', 'NW', 'N ', 'NE', 'E ', 'SE', 'S ', 'SW' /) |
---|
3059 | ! Transformation to apply |
---|
3060 | !spt = (/ (/-1,0/), (/-1,1/), (/0,1/), (/1,1/), (/1,0/), (/1,-1/), (/0,-1/), (/-1,-1/) /) |
---|
3061 | spt(:,1) = (/ -1, -1, 0, 1, 1, 1, 0, -1 /) |
---|
3062 | spt(:,2) = (/ 0, 1, 1, 1, 0, -1, -1, -1 /) |
---|
3063 | |
---|
3064 | xf = -1 |
---|
3065 | yf = -1 |
---|
3066 | DO isch=1, 8 |
---|
3067 | ! clock-wise search |
---|
3068 | IF (spt(isch,1) >= 0) THEN |
---|
3069 | iif = MIN(dx,ix+spt(isch,1)) |
---|
3070 | ELSE |
---|
3071 | iif = MAX(1,ix+spt(isch,1)) |
---|
3072 | END IF |
---|
3073 | IF (spt(isch,2) >= 0) THEN |
---|
3074 | jjf = MIN(dy,iy+spt(isch,2)) |
---|
3075 | ELSE |
---|
3076 | jjf = MAX(1,iy+spt(isch,2)) |
---|
3077 | END IF |
---|
3078 | iff = index_list_coordsI(Nbrdrs, brdrs,(/iif,jjf/)) |
---|
3079 | IF (iff > 0) THEN |
---|
3080 | IF (dbg) PRINT *,' ' // lclock(isch) // '-point:', iif,jjf, ':', iff, 'is',isbrdr(iif,jjf), & |
---|
3081 | 'got',gbrdr(iff) |
---|
3082 | IF (isbrdr(iif,jjf) .AND. .NOT.gbrdr(iff)) THEN |
---|
3083 | xf = iif |
---|
3084 | yf = jjf |
---|
3085 | EXIT |
---|
3086 | END IF |
---|
3087 | END IF |
---|
3088 | END DO |
---|
3089 | |
---|
3090 | RETURN |
---|
3091 | |
---|
3092 | END SUBROUTINE look_clockwise_borders |
---|
3093 | |
---|
3094 | SUBROUTINE borders_matrixL(dbg,dx,dy,dxy,Lmat,brdrs,isbrdr,isbrdry) |
---|
3095 | ! Subroutine to provide the borders of a logical array (interested in .TRUE.) |
---|
3096 | |
---|
3097 | IMPLICIT NONE |
---|
3098 | |
---|
3099 | INTEGER, INTENT(in) :: dx,dy,dxy |
---|
3100 | LOGICAL, INTENT(in) :: dbg |
---|
3101 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: Lmat |
---|
3102 | INTEGER, DIMENSION(dxy,2), INTENT(out) :: brdrs |
---|
3103 | LOGICAL, DIMENSION(dx,dy), INTENT(out) :: isbrdr, isbrdry |
---|
3104 | |
---|
3105 | ! Local |
---|
3106 | INTEGER :: i,j,ib |
---|
3107 | |
---|
3108 | !!!!!!! Variables |
---|
3109 | ! dx,dy: size of the space |
---|
3110 | ! dxy: maximum number of border points |
---|
3111 | ! Lmat: Matrix to look for the borders |
---|
3112 | ! brdrs: list of coordinates of the borders |
---|
3113 | ! isbrdr: matrix with .T./.F. wether the given matrix point is a border or not |
---|
3114 | ! isbrdry: matrix with .T./.F. wether the given matrix point is a border or not only along y-axis |
---|
3115 | |
---|
3116 | fname = 'borders_matrixL' |
---|
3117 | |
---|
3118 | isbrdr = .FALSE. |
---|
3119 | brdrs = -1 |
---|
3120 | ib = 1 |
---|
3121 | |
---|
3122 | ! Starting with the borders. If a given point is TRUE it is a path-vertex |
---|
3123 | ! Along y-axis |
---|
3124 | DO i=1, dx |
---|
3125 | IF (Lmat(i,1) .AND. .NOT.isbrdr(i,1)) THEN |
---|
3126 | brdrs(ib,1) = i |
---|
3127 | brdrs(ib,2) = 1 |
---|
3128 | isbrdr(i,1) = .TRUE. |
---|
3129 | ib=ib+1 |
---|
3130 | END IF |
---|
3131 | IF (Lmat(i,dy) .AND. .NOT.isbrdr(i,dy)) THEN |
---|
3132 | brdrs(ib,1) = i |
---|
3133 | brdrs(ib,2) = dy |
---|
3134 | isbrdr(i,dy) = .TRUE. |
---|
3135 | ib=ib+1 |
---|
3136 | END IF |
---|
3137 | END DO |
---|
3138 | ! Along x-axis |
---|
3139 | DO j=1, dy |
---|
3140 | IF (Lmat(1,j) .AND. .NOT.isbrdr(1,j)) THEN |
---|
3141 | brdrs(ib,1) = 1 |
---|
3142 | brdrs(ib,2) = j |
---|
3143 | isbrdr(1,j) = .TRUE. |
---|
3144 | ib=ib+1 |
---|
3145 | END IF |
---|
3146 | IF (Lmat(dx,j) .AND. .NOT.isbrdr(dx,j)) THEN |
---|
3147 | brdrs(ib,1) = dx |
---|
3148 | brdrs(ib,2) = j |
---|
3149 | isbrdr(dx,j) = .TRUE. |
---|
3150 | ib=ib+1 |
---|
3151 | END IF |
---|
3152 | END DO |
---|
3153 | |
---|
3154 | isbrdry = isbrdr |
---|
3155 | |
---|
3156 | ! Border as that when looking on x-axis points with Lmat(i) /= Lmat(i+1) |
---|
3157 | DO i=1, dx-1 |
---|
3158 | DO j=1, dy-1 |
---|
3159 | IF ( Lmat(i,j) .NEQV. Lmat(i+1,j) ) THEN |
---|
3160 | IF (Lmat(i,j) .AND. .NOT.isbrdr(i,j)) THEN |
---|
3161 | brdrs(ib,1) = i |
---|
3162 | brdrs(ib,2) = j |
---|
3163 | isbrdr(i,j) = .TRUE. |
---|
3164 | ib=ib+1 |
---|
3165 | ELSE IF (Lmat(i+1,j) .AND. .NOT.isbrdr(i+1,j)) THEN |
---|
3166 | brdrs(ib,1) = i+1 |
---|
3167 | brdrs(ib,2) = j |
---|
3168 | isbrdr(i+1,j) = .TRUE. |
---|
3169 | ib=ib+1 |
---|
3170 | END IF |
---|
3171 | END IF |
---|
3172 | ! y-axis |
---|
3173 | IF ( Lmat(i,j) .NEQV. Lmat(i,j+1) ) THEN |
---|
3174 | IF (Lmat(i,j) .AND. .NOT.isbrdr(i,j)) THEN |
---|
3175 | brdrs(ib,1) = i |
---|
3176 | brdrs(ib,2) = j |
---|
3177 | isbrdr(i,j) = .TRUE. |
---|
3178 | isbrdry(i,j) = .TRUE. |
---|
3179 | ib=ib+1 |
---|
3180 | ELSE IF (Lmat(i,j+1) .AND. .NOT.isbrdr(i,j+1)) THEN |
---|
3181 | brdrs(ib,1) = i |
---|
3182 | brdrs(ib,2) = j+1 |
---|
3183 | isbrdr(i,j+1) = .TRUE. |
---|
3184 | isbrdry(i,j+1) = .TRUE. |
---|
3185 | ib=ib+1 |
---|
3186 | END IF |
---|
3187 | END IF |
---|
3188 | END DO |
---|
3189 | END DO |
---|
3190 | |
---|
3191 | DO i=1, dx-1 |
---|
3192 | DO j=1, dy-1 |
---|
3193 | ! y-axis |
---|
3194 | IF ( Lmat(i,j) .NEQV. Lmat(i,j+1) ) THEN |
---|
3195 | IF (Lmat(i,j)) THEN |
---|
3196 | isbrdry(i,j) = .TRUE. |
---|
3197 | ELSE IF (Lmat(i,j+1)) THEN |
---|
3198 | isbrdry(i,j+1) = .TRUE. |
---|
3199 | END IF |
---|
3200 | END IF |
---|
3201 | END DO |
---|
3202 | END DO |
---|
3203 | ! only y-axis adding bands of 2 grid points |
---|
3204 | DO i=1, dx-1 |
---|
3205 | DO j=2, dy-2 |
---|
3206 | IF ( (Lmat(i,j) .EQV. Lmat(i,j+1)) .AND. (Lmat(i,j).NEQV.Lmat(i,j-1)) .AND. (Lmat(i,j).NEQV.Lmat(i,j+2)) ) THEN |
---|
3207 | IF (Lmat(i,j)) THEN |
---|
3208 | isbrdry(i,j) = .TRUE. |
---|
3209 | isbrdry(i,j+1) = .TRUE. |
---|
3210 | END IF |
---|
3211 | END IF |
---|
3212 | END DO |
---|
3213 | END DO |
---|
3214 | |
---|
3215 | IF (dbg) THEN |
---|
3216 | PRINT *,' BORDERS _______ x y' |
---|
3217 | DO i=1,dx |
---|
3218 | PRINT *,isbrdr(i,:), ' ', isbrdry(i,:) |
---|
3219 | END DO |
---|
3220 | END IF |
---|
3221 | |
---|
3222 | RETURN |
---|
3223 | |
---|
3224 | END SUBROUTINE borders_matrixL |
---|
3225 | |
---|
3226 | SUBROUTINE paths_border(dbg, dx, dy, isborder, Nppt, borders, paths, Npath, Nptpaths) |
---|
3227 | ! Subroutine to search the paths of a border field. |
---|
3228 | |
---|
3229 | IMPLICIT NONE |
---|
3230 | |
---|
3231 | INTEGER, INTENT(in) :: dx, dy, Nppt |
---|
3232 | LOGICAL, INTENT(in) :: dbg |
---|
3233 | LOGICAL, DIMENSION(dx,dy), INTENT(in) :: isborder |
---|
3234 | INTEGER, DIMENSION(Nppt,2), INTENT(in) :: borders |
---|
3235 | INTEGER, DIMENSION(Nppt,Nppt,2), INTENT(out) :: paths |
---|
3236 | INTEGER, INTENT(out) :: Npath |
---|
3237 | INTEGER, DIMENSION(Nppt), INTENT(out) :: Nptpaths |
---|
3238 | |
---|
3239 | ! Local |
---|
3240 | INTEGER :: i,j,k,ib |
---|
3241 | INTEGER :: ierr |
---|
3242 | INTEGER :: Nbrdr |
---|
3243 | LOGICAL, DIMENSION(:), ALLOCATABLE :: gotbrdr, emptygotbrdr |
---|
3244 | INTEGER :: iipth, ipath, ip, Nptspath |
---|
3245 | INTEGER :: iib, jjb, iip, ijp, iif, jjf, iff |
---|
3246 | LOGICAL :: found, finishedstep |
---|
3247 | |
---|
3248 | !!!!!!! Variables |
---|
3249 | ! dx,dy: spatial dimensions of the space |
---|
3250 | ! Nppt: possible number of paths and points that the paths can have |
---|
3251 | ! isborder: boolean matrix which provide the borders of the polygon |
---|
3252 | ! borders: coordinates of the borders of the polygon |
---|
3253 | ! paths: coordinates of each found path |
---|
3254 | ! Npath: number of paths found |
---|
3255 | ! Nptpaths: number of points per path |
---|
3256 | |
---|
3257 | fname = 'paths_border' |
---|
3258 | |
---|
3259 | IF (dbg) PRINT *, TRIM(fname) // ' ...' |
---|
3260 | |
---|
3261 | ! Sarting matrix |
---|
3262 | paths = -1 |
---|
3263 | Npath = 0 |
---|
3264 | Nptspath = 0 |
---|
3265 | Nptpaths = -1 |
---|
3266 | |
---|
3267 | ib=1 |
---|
3268 | finishedstep = .FALSE. |
---|
3269 | |
---|
3270 | ! Number of border points |
---|
3271 | DO ib=1, Nppt |
---|
3272 | IF (borders(ib,1) == -1 ) EXIT |
---|
3273 | END DO |
---|
3274 | Nbrdr = ib-1 |
---|
3275 | |
---|
3276 | IF (dbg) THEN |
---|
3277 | PRINT *,' isborder ______' |
---|
3278 | DO i=1,dx |
---|
3279 | PRINT *,isborder(i,:) |
---|
3280 | END DO |
---|
3281 | |
---|
3282 | PRINT *,' borders _______' |
---|
3283 | DO i=1,Nbrdr |
---|
3284 | PRINT *,' ',i,':',borders(i,:) |
---|
3285 | END DO |
---|
3286 | END IF |
---|
3287 | |
---|
3288 | ! Matrix which keeps track if a border point has been located |
---|
3289 | IF (ALLOCATED(gotbrdr)) DEALLOCATE(gotbrdr) |
---|
3290 | ALLOCATE(gotbrdr(Nbrdr), STAT=ierr) |
---|
3291 | msg = "Problems allocating matrix 'gotbrdr'" |
---|
3292 | CALL ErrMsg(msg, fname, ierr) |
---|
3293 | IF (ALLOCATED(emptygotbrdr)) DEALLOCATE(emptygotbrdr) |
---|
3294 | ALLOCATE(emptygotbrdr(Nbrdr), STAT=ierr) |
---|
3295 | msg = "Problems allocating matrix 'emptygotbrdr'" |
---|
3296 | CALL ErrMsg(msg, fname, ierr) |
---|
3297 | |
---|
3298 | gotbrdr = .FALSE. |
---|
3299 | emptygotbrdr = .FALSE. |
---|
3300 | |
---|
3301 | ! Starting the fun... |
---|
3302 | |
---|
3303 | ! Looking along the lines and when a border is found, starting from there in a clock-wise way |
---|
3304 | iipth = 1 |
---|
3305 | ipath = 1 |
---|
3306 | DO ib=1,Nbrdr |
---|
3307 | iib = borders(iipth,1) |
---|
3308 | jjb = borders(iipth,2) |
---|
3309 | ! Starting new path |
---|
3310 | newpath: IF (.NOT.gotbrdr(iipth)) THEN |
---|
3311 | ip = 1 |
---|
3312 | Nptspath = 1 |
---|
3313 | paths(ipath,ip,:) = borders(iipth,:) |
---|
3314 | gotbrdr(iipth) = .TRUE. |
---|
3315 | ! Looking for following clock-wise search |
---|
3316 | ! Not looking for W, because search starts from the W |
---|
3317 | iip = iib |
---|
3318 | ijp = jjb |
---|
3319 | DO k=1,Nbrdr |
---|
3320 | IF (dbg) PRINT *,ipath,'iip jip:', iip, ijp |
---|
3321 | found = .FALSE. |
---|
3322 | CALL look_clockwise_borders(dx,dy,Nppt,borders,gotbrdr,isborder,iip,ijp,dbg,iif,jjf,iff) |
---|
3323 | IF (iif /= -1) THEN |
---|
3324 | ip=ip+1 |
---|
3325 | paths(ipath,ip,:) = (/ iif,jjf /) |
---|
3326 | found = .TRUE. |
---|
3327 | gotbrdr(iff) = .TRUE. |
---|
3328 | iip = iif |
---|
3329 | ijp = jjf |
---|
3330 | Nptspath = Nptspath + 1 |
---|
3331 | END IF |
---|
3332 | |
---|
3333 | IF (dbg) THEN |
---|
3334 | PRINT *,iib,jjb,' end of this round path:', ipath, '_____', gotbrdr |
---|
3335 | DO i=1, Nptspath |
---|
3336 | PRINT *,' ',i,':',paths(ipath,i,:) |
---|
3337 | END DO |
---|
3338 | END IF |
---|
3339 | ! If it is not found a next point, might be because it is a non-polygon related value |
---|
3340 | IF (.NOT.found) THEN |
---|
3341 | IF (dbg) PRINT *,'NOT FOUND !!!', gotbrdr |
---|
3342 | ! Are still there available borders? |
---|
3343 | IF (ALL(gotbrdr) .EQV. .TRUE.) THEN |
---|
3344 | finishedstep = .TRUE. |
---|
3345 | Npath = ipath |
---|
3346 | Nptpaths(ipath) = Nptspath |
---|
3347 | EXIT |
---|
3348 | ELSE |
---|
3349 | Nptpaths(ipath) = Nptspath |
---|
3350 | ! Let's have a look if the previous points in the path have already some 'non-located' neighbourgs |
---|
3351 | DO i=Nptspath,1,-1 |
---|
3352 | iip = paths(ipath,i,1) |
---|
3353 | ijp = paths(ipath,i,2) |
---|
3354 | CALL look_clockwise_borders(dx,dy,Nppt,borders, gotbrdr, isborder,iip, ijp, dbg, iif, & |
---|
3355 | jjf,iff) |
---|
3356 | IF (iif /= -1 .AND. iff /= -1) THEN |
---|
3357 | IF (dbg) PRINT *,' re-take path from point:', iif,',',jjf,' n-path:', iff |
---|
3358 | found = .TRUE. |
---|
3359 | iipth = index_list_coordsI(Nppt, borders, (/iip,ijp/)) |
---|
3360 | EXIT |
---|
3361 | END IF |
---|
3362 | END DO |
---|
3363 | IF (.NOT.found) THEN |
---|
3364 | ! Looking for the next available border point for the new path |
---|
3365 | DO i=1,Nbrdr |
---|
3366 | IF (.NOT.gotbrdr(i)) THEN |
---|
3367 | iipth = i |
---|
3368 | EXIT |
---|
3369 | END IF |
---|
3370 | END DO |
---|
3371 | IF (dbg) PRINT *,' Looking for next path starting at:', iipth, ' point:', & |
---|
3372 | borders(iipth,:) |
---|
3373 | ipath=ipath+1 |
---|
3374 | EXIT |
---|
3375 | END IF |
---|
3376 | END IF |
---|
3377 | ELSE |
---|
3378 | IF (dbg) PRINT *,' looking for next point...' |
---|
3379 | END IF |
---|
3380 | IF (finishedstep) EXIT |
---|
3381 | END DO |
---|
3382 | END IF newpath |
---|
3383 | END DO |
---|
3384 | Npath = ipath |
---|
3385 | Nptpaths(ipath) = Nptspath |
---|
3386 | |
---|
3387 | DEALLOCATE (gotbrdr) |
---|
3388 | DEALLOCATE (emptygotbrdr) |
---|
3389 | |
---|
3390 | RETURN |
---|
3391 | |
---|
3392 | END SUBROUTINE paths_border |
---|
3393 | |
---|
3394 | SUBROUTINE rand_sample(Nvals, Nsample, sample) |
---|
3395 | ! Subroutine to randomly sample a range of indices |
---|
3396 | |
---|
3397 | IMPLICIT NONE |
---|
3398 | |
---|
3399 | INTEGER, INTENT(in) :: Nvals, Nsample |
---|
3400 | INTEGER, DIMENSION(Nsample), INTENT(out) :: sample |
---|
3401 | |
---|
3402 | ! Local |
---|
3403 | INTEGER :: i, ind, jmax |
---|
3404 | REAL, DIMENSION(Nsample) :: randv |
---|
3405 | CHARACTER(len=50) :: fname |
---|
3406 | LOGICAL :: found |
---|
3407 | LOGICAL, DIMENSION(Nvals) :: issampled |
---|
3408 | CHARACTER(len=256) :: msg |
---|
3409 | CHARACTER(len=10) :: IS1, IS2 |
---|
3410 | |
---|
3411 | !!!!!!! Variables |
---|
3412 | ! Nvals: number of values |
---|
3413 | ! Nsamples: number of samples |
---|
3414 | ! sample: samnple |
---|
3415 | fname = 'rand_sample' |
---|
3416 | |
---|
3417 | IF (Nsample > Nvals) THEN |
---|
3418 | WRITE(IS1,'(I10)')Nvals |
---|
3419 | WRITE(IS2,'(I10)')Nsample |
---|
3420 | msg = 'Sampling of ' // TRIM(IS1) // ' is too big for ' // TRIM(IS1) // 'values' |
---|
3421 | CALL ErrMsg(msg, fname, -1) |
---|
3422 | END IF |
---|
3423 | |
---|
3424 | ! Generation of random numbers always the same series during the whole program! |
---|
3425 | CALL RANDOM_NUMBER(randv) |
---|
3426 | |
---|
3427 | ! Making sure that we do not repeat any value |
---|
3428 | issampled = .FALSE. |
---|
3429 | |
---|
3430 | DO i=1, Nsample |
---|
3431 | ! Generation of the index from the random numbers |
---|
3432 | ind = MAX(INT(randv(i)*Nvals), 1) |
---|
3433 | |
---|
3434 | IF (.NOT.issampled(ind)) THEN |
---|
3435 | sample(i) = ind |
---|
3436 | issampled(ind) = .TRUE. |
---|
3437 | ELSE |
---|
3438 | ! Looking around the given index |
---|
3439 | !PRINT *,' Index :', ind, ' already sampled!', issampled(ind) |
---|
3440 | found = .FALSE. |
---|
3441 | DO jmax=1, Nvals |
---|
3442 | ind = MIN(ind+jmax, Nvals) |
---|
3443 | IF (.NOT.issampled(ind)) THEN |
---|
3444 | sample(i) = ind |
---|
3445 | issampled(ind) = .TRUE. |
---|
3446 | found = .TRUE. |
---|
3447 | EXIT |
---|
3448 | END IF |
---|
3449 | ind = MAX(1, ind-jmax) |
---|
3450 | IF (.NOT.issampled(ind)) THEN |
---|
3451 | sample(i) = ind |
---|
3452 | issampled(ind) = .TRUE. |
---|
3453 | found = .TRUE. |
---|
3454 | EXIT |
---|
3455 | END IF |
---|
3456 | END DO |
---|
3457 | IF (.NOT.found) THEN |
---|
3458 | msg = 'sampling could not be finished due to absence of available value!!' |
---|
3459 | CALL ErrMsg(msg, fname, -1) |
---|
3460 | END IF |
---|
3461 | END IF |
---|
3462 | |
---|
3463 | END DO |
---|
3464 | |
---|
3465 | RETURN |
---|
3466 | |
---|
3467 | END SUBROUTINE rand_sample |
---|
3468 | |
---|
3469 | SUBROUTINE PrintQuantilesR_K(Nvals, vals, Nquants, qtvs, bspc) |
---|
3470 | ! Subroutine to print the quantiles of values REAL(r_k) |
---|
3471 | |
---|
3472 | IMPLICIT NONE |
---|
3473 | |
---|
3474 | INTEGER, INTENT(in) :: Nvals, Nquants |
---|
3475 | REAL(r_k), DIMENSION(Nvals), INTENT(in) :: vals |
---|
3476 | REAL(r_k), DIMENSION(Nquants), INTENT(in) :: qtvs |
---|
3477 | CHARACTER(len=1000), OPTIONAL :: bspc |
---|
3478 | |
---|
3479 | ! Local |
---|
3480 | INTEGER :: iq |
---|
3481 | LOGICAL, DIMENSION(Nvals) :: search1, search2, search |
---|
3482 | CHARACTER(len=6) :: RS1 |
---|
3483 | CHARACTER(len=50) :: fname |
---|
3484 | CHARACTER(len=1000) :: bspcS |
---|
3485 | |
---|
3486 | !!!!!!! Variables |
---|
3487 | ! vals: series of values |
---|
3488 | ! qtvs: values of the quantiles |
---|
3489 | ! bspc: base quantity of spaces |
---|
3490 | |
---|
3491 | fname = 'PrintQuantilesR_K' |
---|
3492 | |
---|
3493 | IF (PRESENT(bspc)) THEN |
---|
3494 | bspcS = bspc |
---|
3495 | ELSE |
---|
3496 | bspcS = ' ' |
---|
3497 | END IF |
---|
3498 | |
---|
3499 | DO iq=1, Nquants-1 |
---|
3500 | |
---|
3501 | WHERE (vals >= qtvs(iq)) |
---|
3502 | search1 = .TRUE. |
---|
3503 | ELSEWHERE |
---|
3504 | search1 = .FALSE. |
---|
3505 | END WHERE |
---|
3506 | |
---|
3507 | WHERE (vals < qtvs(iq+1)) |
---|
3508 | search2 = .TRUE. |
---|
3509 | ELSEWHERE |
---|
3510 | search2 = .FALSE. |
---|
3511 | END WHERE |
---|
3512 | |
---|
3513 | WHERE (search1 .AND. search2) |
---|
3514 | search = .TRUE. |
---|
3515 | ELSEWHERE |
---|
3516 | search = .FALSE. |
---|
3517 | END WHERE |
---|
3518 | |
---|
3519 | WRITE(RS1, '(F6.2)')(iq)*100./(Nquants-1) |
---|
3520 | PRINT *, TRIM(bspcS) // '[',iq,']', TRIM(RS1) // ' %:', qtvs(iq), 'N:', COUNT(search) |
---|
3521 | |
---|
3522 | END DO |
---|
3523 | |
---|
3524 | RETURN |
---|
3525 | |
---|
3526 | END SUBROUTINE PrintQuantilesR_K |
---|
3527 | |
---|
3528 | INTEGER FUNCTION FindMinimumR_K(x, dsize, Startv, Endv) |
---|
3529 | ! Function returns the location of the minimum in the section between Start and End. |
---|
3530 | |
---|
3531 | IMPLICIT NONE |
---|
3532 | |
---|
3533 | INTEGER, INTENT(in) :: dsize |
---|
3534 | REAL(r_k), DIMENSION(dsize), INTENT(in) :: x |
---|
3535 | INTEGER, INTENT(in) :: Startv, Endv |
---|
3536 | |
---|
3537 | ! Local |
---|
3538 | REAL(r_k) :: Minimum |
---|
3539 | INTEGER :: Location |
---|
3540 | INTEGER :: i |
---|
3541 | |
---|
3542 | Minimum = x(Startv) ! assume the first is the min |
---|
3543 | Location = Startv ! record its position |
---|
3544 | DO i = Startv+1, Endv ! start with next elements |
---|
3545 | IF (x(i) < Minimum) THEN ! if x(i) less than the min? |
---|
3546 | Minimum = x(i) ! Yes, a new minimum found |
---|
3547 | Location = i ! record its position |
---|
3548 | END IF |
---|
3549 | END DO |
---|
3550 | |
---|
3551 | FindMinimumR_K = Location ! return the position |
---|
3552 | |
---|
3553 | END FUNCTION FindMinimumR_K |
---|
3554 | |
---|
3555 | SUBROUTINE SwapR_K(a, b) |
---|
3556 | ! Subroutine swaps the values of its two formal arguments. |
---|
3557 | |
---|
3558 | IMPLICIT NONE |
---|
3559 | |
---|
3560 | REAL(r_k), INTENT(INOUT) :: a, b |
---|
3561 | ! Local |
---|
3562 | REAL(r_k) :: Temp |
---|
3563 | |
---|
3564 | Temp = a |
---|
3565 | a = b |
---|
3566 | b = Temp |
---|
3567 | |
---|
3568 | END SUBROUTINE SwapR_K |
---|
3569 | |
---|
3570 | SUBROUTINE SortR_K(x, Nx) |
---|
3571 | ! Subroutine receives an array x() r_K and sorts it into ascending order. |
---|
3572 | |
---|
3573 | IMPLICIT NONE |
---|
3574 | |
---|
3575 | INTEGER, INTENT(IN) :: Nx |
---|
3576 | REAL(r_k), DIMENSION(Nx), INTENT(INOUT) :: x |
---|
3577 | |
---|
3578 | ! Local |
---|
3579 | INTEGER :: i |
---|
3580 | INTEGER :: Location |
---|
3581 | |
---|
3582 | DO i = 1, Nx-1 ! except for the last |
---|
3583 | Location = FindMinimumR_K(x, Nx-i+1, i, Nx) ! find min from this to last |
---|
3584 | CALL SwapR_K(x(i), x(Location)) ! swap this and the minimum |
---|
3585 | END DO |
---|
3586 | |
---|
3587 | END SUBROUTINE SortR_K |
---|
3588 | |
---|
3589 | SUBROUTINE quantilesR_K(Nvals, vals, Nquants, quants) |
---|
3590 | ! Subroutine to provide the quantiles of a given set of values of type real 'r_k' |
---|
3591 | |
---|
3592 | IMPLICIT NONE |
---|
3593 | |
---|
3594 | INTEGER, INTENT(in) :: Nvals, Nquants |
---|
3595 | REAL(r_k), DIMENSION(Nvals), INTENT(in) :: vals |
---|
3596 | REAL(r_k), DIMENSION(Nquants), INTENT(out) :: quants |
---|
3597 | |
---|
3598 | ! Local |
---|
3599 | INTEGER :: i |
---|
3600 | REAL(r_k) :: minv, maxv |
---|
3601 | REAL(r_k), DIMENSION(Nvals) :: sortedvals |
---|
3602 | |
---|
3603 | !!!!!!! Variables |
---|
3604 | ! Nvals: number of values |
---|
3605 | ! Rk: kind of real of the values |
---|
3606 | ! vals: values |
---|
3607 | ! Nquants: number of quants |
---|
3608 | ! quants: values at which the quantile start |
---|
3609 | |
---|
3610 | minv = MINVAL(vals) |
---|
3611 | maxv = MAXVAL(vals) |
---|
3612 | |
---|
3613 | sortedvals = vals |
---|
3614 | ! Using from: http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/chap08/sorting.f90 |
---|
3615 | CALL SortR_K(sortedvals, Nvals) |
---|
3616 | |
---|
3617 | quants(1) = minv |
---|
3618 | DO i=2, Nquants |
---|
3619 | quants(i) = sortedvals(INT((i-1)*Nvals/Nquants)) |
---|
3620 | END DO |
---|
3621 | |
---|
3622 | END SUBROUTINE quantilesR_K |
---|
3623 | |
---|
3624 | |
---|
3625 | SUBROUTINE StatsR_K(Nvals, vals, minv, maxv, mean, mean2, stdev) |
---|
3626 | ! Subroutine to provide the minmum, maximum, mean, the quadratic mean, and the standard deviation of a |
---|
3627 | ! series of r_k numbers |
---|
3628 | |
---|
3629 | IMPLICIT NONE |
---|
3630 | |
---|
3631 | INTEGER, INTENT(in) :: Nvals |
---|
3632 | REAL(r_k), DIMENSION(Nvals), INTENT(in) :: vals |
---|
3633 | REAL(r_k), INTENT(out) :: minv, maxv, mean, mean2, stdev |
---|
3634 | |
---|
3635 | !!!!!!! Variables |
---|
3636 | ! Nvals: number of values |
---|
3637 | ! vals: values |
---|
3638 | ! minv: minimum value of values |
---|
3639 | ! maxv: maximum value of values |
---|
3640 | ! mean: mean value of values |
---|
3641 | ! mean2: quadratic mean value of values |
---|
3642 | ! stdev: standard deviation of values |
---|
3643 | |
---|
3644 | minv = MINVAL(vals) |
---|
3645 | maxv = MAXVAL(vals) |
---|
3646 | |
---|
3647 | mean=SUM(vals) |
---|
3648 | mean2=SUM(vals*vals) |
---|
3649 | |
---|
3650 | mean=mean/Nvals |
---|
3651 | mean2=mean2/Nvals |
---|
3652 | |
---|
3653 | stdev=SQRT(mean2 - mean*mean) |
---|
3654 | |
---|
3655 | RETURN |
---|
3656 | |
---|
3657 | END SUBROUTINE StatsR_k |
---|
3658 | |
---|
3659 | SUBROUTINE NcountR(values, d1, Ndiffvals, counts) |
---|
3660 | ! Subroutine to count real values |
---|
3661 | |
---|
3662 | IMPLICIT NONE |
---|
3663 | |
---|
3664 | INTEGER, INTENT(in) :: d1 |
---|
3665 | REAL(r_k), DIMENSION(d1), INTENT(in) :: values |
---|
3666 | INTEGER, INTENT(out) :: Ndiffvals |
---|
3667 | REAL(r_k), DIMENSION(d1,2), INTENT(out) :: counts |
---|
3668 | ! Local |
---|
3669 | INTEGER :: i, ival |
---|
3670 | REAL(r_k), DIMENSION(d1) :: diffv |
---|
3671 | |
---|
3672 | !!!!!!! Variables |
---|
3673 | ! values: values to count |
---|
3674 | ! counts: counts of time for each value |
---|
3675 | |
---|
3676 | fname = 'NcountR' |
---|
3677 | |
---|
3678 | counts = -1. |
---|
3679 | |
---|
3680 | counts(1,1) = values(1) |
---|
3681 | counts(1,2) = 1 |
---|
3682 | Ndiffvals = 1 |
---|
3683 | DO i=2,d1 |
---|
3684 | diffv(1:Ndiffvals) = counts(1:Ndiffvals,1) - values(i) |
---|
3685 | IF (ANY(diffv(1:Ndiffvals) == 0)) THEN |
---|
3686 | ival = Index1DArrayR(counts(1:Ndiffvals,1), Ndiffvals, values(i)) |
---|
3687 | counts(ival,2) = counts(ival,2) + 1 |
---|
3688 | ELSE |
---|
3689 | Ndiffvals = Ndiffvals + 1 |
---|
3690 | counts(Ndiffvals,1) = values(i) |
---|
3691 | counts(Ndiffvals,2) = 1 |
---|
3692 | END IF |
---|
3693 | END DO |
---|
3694 | |
---|
3695 | END SUBROUTINE NcountR |
---|
3696 | |
---|
3697 | SUBROUTINE runmean_F1D(d1, values, Nmean, headertail, runmean) |
---|
3698 | ! Subroutine fo computing the running mean of a given set of float 1D values |
---|
3699 | |
---|
3700 | IMPLICIT NONE |
---|
3701 | |
---|
3702 | INTEGER, INTENT(in) :: d1, Nmean |
---|
3703 | REAL(r_k), DIMENSION(d1), INTENT(in) :: values |
---|
3704 | CHARACTER(len=*), INTENT(in) :: headertail |
---|
3705 | REAL(r_k), DIMENSION(d1), INTENT(out) :: runmean |
---|
3706 | |
---|
3707 | ! Local |
---|
3708 | INTEGER :: i, j, Nmean2 |
---|
3709 | CHARACTER(len=5) :: NmeanS |
---|
3710 | |
---|
3711 | !!!!!!! Variables |
---|
3712 | ! values: values to compute the running mean |
---|
3713 | ! Nmean: number of odd points to use for the running mean |
---|
3714 | ! headertail: How to proceed for the grid points at the beginning of the values which are not |
---|
3715 | ! encompassed by the Nmean |
---|
3716 | ! 'miss': set as missing values (1.d20) |
---|
3717 | ! 'original': keep the original values |
---|
3718 | ! 'progressfill': mean the values as a progressive running filter (e.g. for Nmean=5): |
---|
3719 | ! runmean[values(1)] = values(1) |
---|
3720 | ! runmean[values(2)] = MEAN(values(1:3)) |
---|
3721 | ! runmean[values(3)] = MEAN(values(1:5)) |
---|
3722 | ! runmean[values(4)] = MEAN(values(2:6)) |
---|
3723 | ! (...) |
---|
3724 | ! runmean[values(d1-2)] = MEAN(values(d1-5:d1)) |
---|
3725 | ! runmean[values(d1-1)] = MEAN(values(d1-2:d1)) |
---|
3726 | ! runmean[values(d1)] = MEAN(values(dd1)) |
---|
3727 | ! 'zero': set as zero values |
---|
3728 | ! runmean: runnig mean values |
---|
3729 | |
---|
3730 | fname = 'runmean_F1D' |
---|
3731 | |
---|
3732 | IF (MOD(Nmean,2) == 0) THEN |
---|
3733 | WRITE(NmeanS,'(I5)')Nmean |
---|
3734 | msg="Nmean has to be odd!! value provided: "// NmeanS |
---|
3735 | CALL ErrMsg(msg, fname, -1) |
---|
3736 | END IF |
---|
3737 | Nmean2 = Nmean/2 |
---|
3738 | |
---|
3739 | SELECT CASE (TRIM(headertail)) |
---|
3740 | CASE ('missing') |
---|
3741 | runmean = fillval64 |
---|
3742 | CASE ('original') |
---|
3743 | runmean = values |
---|
3744 | CASE ('progressfill') |
---|
3745 | DO i=1, Nmean2 |
---|
3746 | runmean(i) = SUM(values(1:2*(i-1)+1))/(2*(i-1)+1) |
---|
3747 | END DO |
---|
3748 | runmean(d1) = values(d1) |
---|
3749 | DO i=2, Nmean2 |
---|
3750 | j = d1-(2*(i-1)) |
---|
3751 | runmean(d1-(i-1)) = SUM(values(j:d1))/(2*(i-1)+1) |
---|
3752 | END DO |
---|
3753 | CASE ('zero') |
---|
3754 | runmean = zeroRK |
---|
3755 | CASE DEFAULT |
---|
3756 | msg = "'" // TRIM(headertail) // "' not available !!" //CHAR(44) // " available ones: " // & |
---|
3757 | "'missing', 'original', 'progressfill', 'zero'" |
---|
3758 | CALL ErrMsg(msg, fname, -1) |
---|
3759 | END SELECT |
---|
3760 | |
---|
3761 | DO i= 1+Nmean2, d1 - Nmean2 |
---|
3762 | runmean(i) = SUM(values(i-Nmean2:i+Nmean2))/Nmean |
---|
3763 | END DO |
---|
3764 | |
---|
3765 | END SUBROUTINE runmean_F1D |
---|
3766 | |
---|
3767 | SUBROUTINE percentiles_R_K2D(values, axisS, Npercen, d1, d2, percentiles) |
---|
3768 | ! Subroutine to compute the percentiles of a 2D R_K array along given set of axis |
---|
3769 | |
---|
3770 | IMPLICIT NONE |
---|
3771 | |
---|
3772 | INTEGER, INTENT(in) :: d1, d2, Npercen |
---|
3773 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: values |
---|
3774 | CHARACTER(LEN=*), INTENT(in) :: axisS |
---|
3775 | REAL(r_k), DIMENSION(d1, d2, Npercen), INTENT(out) :: percentiles |
---|
3776 | |
---|
3777 | ! Local |
---|
3778 | INTEGER :: i |
---|
3779 | INTEGER :: Lstring, LaxisS, iichar |
---|
3780 | CHARACTER(LEN=1000) :: splitaxis |
---|
3781 | INTEGER, DIMENSION(1) :: axis1 |
---|
3782 | CHARACTER(LEN=200), DIMENSION(2) :: axis2S |
---|
3783 | INTEGER, DIMENSION(2) :: axis2 |
---|
3784 | CHARACTER(LEN=1) :: Naxs |
---|
3785 | |
---|
3786 | !!!!!!! Variables |
---|
3787 | ! d1,d2: length of the 2D dimensions |
---|
3788 | ! values: values to use to compute the percentiles |
---|
3789 | ! axisS: ':' separated list of axis to use to compute the percentiles ('all' for all axes) |
---|
3790 | ! Npercen: number of percentiles |
---|
3791 | ! percentiles: percentiles of the daata |
---|
3792 | |
---|
3793 | fname = 'percentiles_R_K2D' |
---|
3794 | |
---|
3795 | LaxisS = LEN_TRIM(axisS) |
---|
3796 | iichar = numberTimes(axisS(1:LaxisS), ':') |
---|
3797 | |
---|
3798 | splitaxis = '' |
---|
3799 | splitaxis(1:LaxisS) = axisS(1:LaxisS) |
---|
3800 | percentiles = 0. |
---|
3801 | |
---|
3802 | IF (iichar == 0) THEN |
---|
3803 | READ(axisS,'(I1)')axis1(1) |
---|
3804 | ELSE IF (iichar == 1) THEN |
---|
3805 | CALL split(splitaxis, ':', 2, axis2S) |
---|
3806 | ELSE |
---|
3807 | WRITE(Naxs,'(A1)')iichar |
---|
3808 | msg = "' rank 2 values can not compute percentiles using " // Naxs // "' number of axis !!" |
---|
3809 | CALL ErrMsg(msg, fname, -1) |
---|
3810 | END IF |
---|
3811 | |
---|
3812 | IF (TRIM(axisS) == 'all') iichar = 2 |
---|
3813 | |
---|
3814 | IF (iichar == 0) THEN |
---|
3815 | ! Might be a better way, but today I can't think it !! |
---|
3816 | IF (axis1(1) == 1) THEN |
---|
3817 | DO i=1, d2 |
---|
3818 | CALL quantilesR_K(d1, values(:,i), Npercen, percentiles(1,i,:)) |
---|
3819 | END DO |
---|
3820 | ELSE IF (axis1(1) == 2) THEN |
---|
3821 | DO i=1, d1 |
---|
3822 | CALL quantilesR_K(d2, values(i,:), Npercen, percentiles(i,1,:)) |
---|
3823 | END DO |
---|
3824 | ELSE |
---|
3825 | WRITE(Naxs,'(A1)')axis1(1) |
---|
3826 | msg = "' rank 2 values can not compute percentiles using axis " // Naxs // "' !!" |
---|
3827 | CALL ErrMsg(msg, fname, -1) |
---|
3828 | END IF |
---|
3829 | ELSE |
---|
3830 | CALL quantilesR_K(d1*d2, RESHAPE(values, (/d1*d2/)), Npercen, percentiles(1,1,:)) |
---|
3831 | END IF |
---|
3832 | |
---|
3833 | END SUBROUTINE percentiles_R_K2D |
---|
3834 | |
---|
3835 | SUBROUTINE percentiles_R_K3D(values, axisS, Npercen, d1, d2, d3, percentiles) |
---|
3836 | ! Subroutine to compute the percentiles of a 3D R_K array along given set of axis |
---|
3837 | |
---|
3838 | IMPLICIT NONE |
---|
3839 | |
---|
3840 | INTEGER, INTENT(in) :: d1, d2, d3, Npercen |
---|
3841 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: values |
---|
3842 | CHARACTER(LEN=*), INTENT(in) :: axisS |
---|
3843 | REAL(r_k), DIMENSION(d1, d2, d3, Npercen), INTENT(out) :: percentiles |
---|
3844 | |
---|
3845 | ! Local |
---|
3846 | INTEGER :: i, j |
---|
3847 | INTEGER :: Lstring, LaxisS, iichar |
---|
3848 | CHARACTER(LEN=1000) :: splitaxis |
---|
3849 | INTEGER, DIMENSION(1) :: axis1 |
---|
3850 | CHARACTER(LEN=200), DIMENSION(2) :: axis2S |
---|
3851 | INTEGER, DIMENSION(2) :: axis2 |
---|
3852 | CHARACTER(LEN=200), DIMENSION(3) :: axis3S |
---|
3853 | INTEGER, DIMENSION(3) :: axis3 |
---|
3854 | CHARACTER(LEN=1) :: Naxs1, Naxs2 |
---|
3855 | |
---|
3856 | !!!!!!! Variables |
---|
3857 | ! d1,d2: length of the 2D dimensions |
---|
3858 | ! values: values to use to compute the percentiles |
---|
3859 | ! axisS: ':' separated list of axis to use to compute the percentiles ('all' for all axes) |
---|
3860 | ! Npercen: number of percentiles |
---|
3861 | ! percentiles: percentiles of the daata |
---|
3862 | |
---|
3863 | fname = 'percentiles_R_K3D' |
---|
3864 | |
---|
3865 | LaxisS = LEN_TRIM(axisS) |
---|
3866 | iichar = numberTimes(axisS(1:LaxisS), ':') |
---|
3867 | |
---|
3868 | splitaxis = '' |
---|
3869 | splitaxis(1:LaxisS) = axisS(1:LaxisS) |
---|
3870 | |
---|
3871 | percentiles = 0. |
---|
3872 | |
---|
3873 | IF (iichar == 0) THEN |
---|
3874 | READ(axisS,'(I1)')axis1(1) |
---|
3875 | ELSE IF (iichar == 1) THEN |
---|
3876 | CALL split(splitaxis, ':', 2, axis2S) |
---|
3877 | DO i=1,2 |
---|
3878 | READ(axis2S(i), '(I1)')axis2(i) |
---|
3879 | END DO |
---|
3880 | ELSE IF (iichar == 2) THEN |
---|
3881 | CALL split(splitaxis, ':', 3, axis3S) |
---|
3882 | ELSE |
---|
3883 | READ(Naxs1,'(A1)')iichar |
---|
3884 | msg = "' rank 3 values can not compute percentiles using " // Naxs1 // "' number of axis !!" |
---|
3885 | CALL ErrMsg(msg, fname, -1) |
---|
3886 | END IF |
---|
3887 | |
---|
3888 | IF (TRIM(axisS) == 'all') iichar = 3 |
---|
3889 | |
---|
3890 | IF (iichar == 0) THEN |
---|
3891 | ! Might be a better way, but today I can't think it !! |
---|
3892 | IF (axis1(1) == 1) THEN |
---|
3893 | DO i=1, d2 |
---|
3894 | DO j=1, d3 |
---|
3895 | CALL quantilesR_K(d1, values(:,i,j), Npercen, percentiles(1,i,j,:)) |
---|
3896 | END DO |
---|
3897 | END DO |
---|
3898 | ELSE IF (axis1(1) == 2) THEN |
---|
3899 | DO i=1, d1 |
---|
3900 | DO j=1, d3 |
---|
3901 | CALL quantilesR_K(d2, values(i,:,j), Npercen, percentiles(i,1,j,:)) |
---|
3902 | END DO |
---|
3903 | END DO |
---|
3904 | ELSE IF (axis1(1) == 3) THEN |
---|
3905 | DO i=1, d1 |
---|
3906 | DO j=1, d2 |
---|
3907 | CALL quantilesR_K(d3, values(i,j,:), Npercen, percentiles(i,j,1,:)) |
---|
3908 | END DO |
---|
3909 | END DO |
---|
3910 | ELSE |
---|
3911 | WRITE(Naxs1,'(A1)')axis1(1) |
---|
3912 | msg = "' rank 3 values can not compute percentiles using axis " // Naxs1 // "' !!" |
---|
3913 | CALL ErrMsg(msg, fname, -1) |
---|
3914 | END IF |
---|
3915 | ELSE IF (iichar == 1) THEN |
---|
3916 | ! Might be a better way, but today I can't think it !! |
---|
3917 | IF (axis2(1) == 1 .AND. axis2(2) == 2) THEN |
---|
3918 | DO i=1, d3 |
---|
3919 | CALL quantilesR_K(d1*d2, RESHAPE(values(:,:,i), (/d1*d2/)), Npercen, percentiles(1,1,i,:)) |
---|
3920 | END DO |
---|
3921 | ELSE IF (axis2(1) == 1 .AND. axis2(2) == 3) THEN |
---|
3922 | DO i=1, d2 |
---|
3923 | CALL quantilesR_K(d1*d3, RESHAPE(values(:,i,:), (/d1*d3/)), Npercen, percentiles(1,i,1,:)) |
---|
3924 | END DO |
---|
3925 | ELSE IF (axis2(1) == 2 .AND. axis2(2) == 3) THEN |
---|
3926 | DO i=1, d1 |
---|
3927 | CALL quantilesR_K(d2*d3, RESHAPE(values(i,:,:), (/d2*d3/)), Npercen, percentiles(i,1,1,:)) |
---|
3928 | END DO |
---|
3929 | ELSE |
---|
3930 | WRITE(Naxs1,'(A1)')axis2(1) |
---|
3931 | WRITE(Naxs2,'(A1)')axis2(2) |
---|
3932 | msg="' rank 3 values can not compute percentiles using axis "//Naxs1// ', ' // Naxs2 // "' !!" |
---|
3933 | CALL ErrMsg(msg, fname, -1) |
---|
3934 | END IF |
---|
3935 | ELSE |
---|
3936 | CALL quantilesR_K(d1*d2*d3, RESHAPE(values, (/d1*d2*d3/)), Npercen, percentiles(1,1,1,:)) |
---|
3937 | END IF |
---|
3938 | |
---|
3939 | END SUBROUTINE percentiles_R_K3D |
---|
3940 | |
---|
3941 | SUBROUTINE percentiles_R_K4D(values, axisS, Npercen, d1, d2, d3, d4, percentiles) |
---|
3942 | ! Subroutine to compute the percentiles of a 4D R_K array along given set of axis |
---|
3943 | |
---|
3944 | IMPLICIT NONE |
---|
3945 | |
---|
3946 | INTEGER, INTENT(in) :: d1, d2, d3, d4, Npercen |
---|
3947 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: values |
---|
3948 | CHARACTER(LEN=*), INTENT(in) :: axisS |
---|
3949 | REAL(r_k), DIMENSION(d1,d2,d3,d4,Npercen), INTENT(out) :: percentiles |
---|
3950 | |
---|
3951 | ! Local |
---|
3952 | INTEGER :: i, j, k |
---|
3953 | INTEGER :: Lstring, LaxisS, iichar |
---|
3954 | CHARACTER(LEN=1000) :: splitaxis |
---|
3955 | INTEGER, DIMENSION(1) :: axis1 |
---|
3956 | CHARACTER(LEN=200), DIMENSION(2) :: axis2S |
---|
3957 | INTEGER, DIMENSION(2) :: axis2 |
---|
3958 | CHARACTER(LEN=200), DIMENSION(3) :: axis3S |
---|
3959 | INTEGER, DIMENSION(3) :: axis3 |
---|
3960 | CHARACTER(LEN=200), DIMENSION(4) :: axis4S |
---|
3961 | CHARACTER(LEN=1) :: Naxs1, Naxs2, Naxs3 |
---|
3962 | |
---|
3963 | !!!!!!! Variables |
---|
3964 | ! d1,d2: length of the 2D dimensions |
---|
3965 | ! values: values to use to compute the percentiles |
---|
3966 | ! axisS: ':' separated list of axis to use to compute the percentiles ('all' for all axes) |
---|
3967 | ! Npercen: number of percentiles |
---|
3968 | ! percentiles: percentiles of the daata |
---|
3969 | |
---|
3970 | fname = 'percentiles_R_K3D' |
---|
3971 | |
---|
3972 | LaxisS = LEN_TRIM(axisS) |
---|
3973 | iichar = numberTimes(axisS(1:LaxisS), ':') |
---|
3974 | |
---|
3975 | splitaxis = '' |
---|
3976 | splitaxis(1:LaxisS) = axisS(1:LaxisS) |
---|
3977 | |
---|
3978 | percentiles = 0. |
---|
3979 | |
---|
3980 | PRINT *,'iichar:', iichar, axisS(1:LaxisS) |
---|
3981 | |
---|
3982 | IF (iichar == 0) THEN |
---|
3983 | READ(axisS,'(I1)')axis1(1) |
---|
3984 | ELSE IF (iichar == 1) THEN |
---|
3985 | CALL split(splitaxis, ':', 2, axis2S) |
---|
3986 | DO i=1,2 |
---|
3987 | READ(axis2S(i), '(I1)')axis2(i) |
---|
3988 | END DO |
---|
3989 | ELSE IF (iichar == 2) THEN |
---|
3990 | CALL split(splitaxis, ':', 3, axis3S) |
---|
3991 | DO i=1,3 |
---|
3992 | READ(axis3S(i), '(I1)')axis3(i) |
---|
3993 | END DO |
---|
3994 | ELSE IF (iichar == 3) THEN |
---|
3995 | CALL split(splitaxis, ':', 4, axis4S) |
---|
3996 | ELSE |
---|
3997 | READ(Naxs1,'(A1)')iichar |
---|
3998 | msg = "' rank 4 values can not compute percentiles using " // Naxs1 // "' number of axis !!" |
---|
3999 | CALL ErrMsg(msg, fname, -1) |
---|
4000 | END IF |
---|
4001 | |
---|
4002 | IF (TRIM(axisS) == 'all') iichar = 4 |
---|
4003 | |
---|
4004 | IF (iichar == 0) THEN |
---|
4005 | ! Might be a better way, but today I can't think it !! |
---|
4006 | IF (axis1(1) == 1) THEN |
---|
4007 | DO i=1, d2 |
---|
4008 | DO j=1, d3 |
---|
4009 | DO k=1, d4 |
---|
4010 | CALL quantilesR_K(d1, values(:,i,j,k), Npercen, percentiles(1,i,j,k,:)) |
---|
4011 | END DO |
---|
4012 | END DO |
---|
4013 | END DO |
---|
4014 | ELSE IF (axis1(1) == 2) THEN |
---|
4015 | DO i=1, d1 |
---|
4016 | DO j=1, d3 |
---|
4017 | DO k=1, d4 |
---|
4018 | CALL quantilesR_K(d2, values(i,:,j,k), Npercen, percentiles(i,1,j,k,:)) |
---|
4019 | END DO |
---|
4020 | END DO |
---|
4021 | END DO |
---|
4022 | ELSE IF (axis1(1) == 3) THEN |
---|
4023 | DO i=1, d1 |
---|
4024 | DO j=1, d2 |
---|
4025 | DO k=1, d4 |
---|
4026 | CALL quantilesR_K(d3, values(i,j,:,k), Npercen, percentiles(i,j,1,k,:)) |
---|
4027 | END DO |
---|
4028 | END DO |
---|
4029 | END DO |
---|
4030 | ELSE IF (axis1(1) == 4) THEN |
---|
4031 | DO i=1, d1 |
---|
4032 | DO j=1, d2 |
---|
4033 | DO k=1, d3 |
---|
4034 | CALL quantilesR_K(d4, values(i,j,k,:), Npercen, percentiles(i,j,k,1,:)) |
---|
4035 | END DO |
---|
4036 | END DO |
---|
4037 | END DO |
---|
4038 | ELSE |
---|
4039 | WRITE(Naxs1,'(A1)')axis1(1) |
---|
4040 | msg = "' rank 3 values can not compute percentiles using axis " // Naxs1 // "' !!" |
---|
4041 | CALL ErrMsg(msg, fname, -1) |
---|
4042 | END IF |
---|
4043 | ELSE IF (iichar == 1) THEN |
---|
4044 | ! Might be a better way, but today I can't think it !! |
---|
4045 | IF (axis2(1) == 1 .AND. axis2(2) == 2) THEN |
---|
4046 | DO i=1, d3 |
---|
4047 | DO j=1, d4 |
---|
4048 | CALL quantilesR_K(d1*d2, RESHAPE(values(:,:,i,j), (/d1*d2/)), Npercen, & |
---|
4049 | percentiles(1,1,i,j,:)) |
---|
4050 | END DO |
---|
4051 | END DO |
---|
4052 | ELSE IF (axis2(1) == 1 .AND. axis2(2) == 3) THEN |
---|
4053 | DO i=1, d2 |
---|
4054 | DO j=1, d4 |
---|
4055 | CALL quantilesR_K(d1*d3, RESHAPE(values(:,i,:,j), (/d1*d3/)), Npercen, & |
---|
4056 | percentiles(1,i,1,j,:)) |
---|
4057 | END DO |
---|
4058 | END DO |
---|
4059 | ELSE IF (axis2(1) == 1 .AND. axis2(2) == 4) THEN |
---|
4060 | DO i=1, d2 |
---|
4061 | DO j=1, d3 |
---|
4062 | CALL quantilesR_K(d1*d4, RESHAPE(values(:,i,j,:), (/d1*d4/)), Npercen, & |
---|
4063 | percentiles(1,i,j,1,:)) |
---|
4064 | END DO |
---|
4065 | END DO |
---|
4066 | ELSE IF (axis2(1) == 2 .AND. axis2(2) == 3) THEN |
---|
4067 | DO i=1, d1 |
---|
4068 | DO j=1, d4 |
---|
4069 | CALL quantilesR_K(d2*d3, RESHAPE(values(i,:,:,j), (/d2*d3/)), Npercen, & |
---|
4070 | percentiles(i,1,1,j,:)) |
---|
4071 | END DO |
---|
4072 | END DO |
---|
4073 | ELSE IF (axis2(1) == 2 .AND. axis2(2) == 4) THEN |
---|
4074 | DO i=1, d1 |
---|
4075 | DO j=1, d3 |
---|
4076 | CALL quantilesR_K(d2*d4, RESHAPE(values(i,:,j,:), (/d2*d4/)), Npercen, & |
---|
4077 | percentiles(i,1,j,1,:)) |
---|
4078 | END DO |
---|
4079 | END DO |
---|
4080 | ELSE IF (axis2(1) == 3 .AND. axis2(2) == 4) THEN |
---|
4081 | DO i=1, d1 |
---|
4082 | DO j=1, d2 |
---|
4083 | CALL quantilesR_K(d3*d4, RESHAPE(values(i,j,:,:), (/d3*d4/)), Npercen, & |
---|
4084 | percentiles(i,j,1,1,:)) |
---|
4085 | END DO |
---|
4086 | END DO |
---|
4087 | ELSE |
---|
4088 | WRITE(Naxs1,'(A1)')axis2(1) |
---|
4089 | WRITE(Naxs2,'(A1)')axis2(2) |
---|
4090 | msg="' rank 4 values can not compute percentiles using axis "//Naxs1// ', ' // Naxs2 // "' !!" |
---|
4091 | CALL ErrMsg(msg, fname, -1) |
---|
4092 | END IF |
---|
4093 | ELSE IF (iichar == 2) THEN |
---|
4094 | IF (axis2(1) == 1 .AND. axis2(2) == 2 .AND. axis3(3) == 3) THEN |
---|
4095 | DO i=1, d4 |
---|
4096 | CALL quantilesR_K(d1*d2*d3, RESHAPE(values(:,:,:,i), (/d1*d2*d3/)), Npercen, & |
---|
4097 | percentiles(1,1,1,i,:)) |
---|
4098 | END DO |
---|
4099 | ELSE IF (axis2(1) == 1 .AND. axis2(2) == 2 .AND. axis3(3) == 4) THEN |
---|
4100 | DO i=1, d3 |
---|
4101 | CALL quantilesR_K(d1*d2*d4, RESHAPE(values(:,:,i,:), (/d1*d2*d4/)), Npercen, & |
---|
4102 | percentiles(1,1,i,1,:)) |
---|
4103 | END DO |
---|
4104 | ELSE IF (axis2(1) == 1 .AND. axis2(2) == 3 .AND. axis3(3) == 4) THEN |
---|
4105 | DO i=1, d2 |
---|
4106 | CALL quantilesR_K(d1*d3*d4, RESHAPE(values(:,i,:,:), (/d1*d3*d4/)), Npercen, & |
---|
4107 | percentiles(1,i,1,1,:)) |
---|
4108 | END DO |
---|
4109 | ELSE IF (axis2(1) == 2 .AND. axis2(2) == 3 .AND. axis3(3) == 4) THEN |
---|
4110 | DO i=1, d1 |
---|
4111 | CALL quantilesR_K(d2*d3*d4, RESHAPE(values(i,:,:,:), (/d2*d3*d4/)), Npercen, & |
---|
4112 | percentiles(i,1,1,1,:)) |
---|
4113 | END DO |
---|
4114 | ELSE |
---|
4115 | WRITE(Naxs1,'(A1)')axis3(1) |
---|
4116 | WRITE(Naxs2,'(A1)')axis3(2) |
---|
4117 | WRITE(Naxs3,'(A1)')axis3(2) |
---|
4118 | msg="' rank 4 values can not compute percentiles using axis "// Naxs1 // ', ' // Naxs2 // & |
---|
4119 | ', ' // Naxs3 //"' !!" |
---|
4120 | CALL ErrMsg(msg, fname, -1) |
---|
4121 | END IF |
---|
4122 | ELSE |
---|
4123 | CALL quantilesR_K(d1*d2*d3*d4, RESHAPE(values, (/d1*d2*d3*d4/)), Npercen, percentiles(1,1,1,1,:)) |
---|
4124 | END IF |
---|
4125 | |
---|
4126 | END SUBROUTINE percentiles_R_K4D |
---|
4127 | |
---|
4128 | REAL(r_k) FUNCTION distanceRK(pointA, pointB) |
---|
4129 | ! Function to provide the distance between two points |
---|
4130 | |
---|
4131 | IMPLICIT NONE |
---|
4132 | |
---|
4133 | REAL(r_k), DIMENSION(2), INTENT(in) :: pointA, pointB |
---|
4134 | |
---|
4135 | !!!!!!! Variables |
---|
4136 | ! pointA, B: couple of points to compute the distance between them |
---|
4137 | |
---|
4138 | fname = 'distanceRK' |
---|
4139 | |
---|
4140 | distanceRK = SQRT( (pointB(1)-pointA(1))**2 + (pointB(2)-pointA(2))**2 ) |
---|
4141 | |
---|
4142 | END FUNCTION distanceRK |
---|
4143 | |
---|
4144 | REAL(r_k) FUNCTION shoelace_area_polygon(Nvertex, poly) |
---|
4145 | ! Computing the area of a polygon using sholace formula |
---|
4146 | ! FROM: https://en.wikipedia.org/wiki/Shoelace_formula |
---|
4147 | |
---|
4148 | IMPLICIT NONE |
---|
4149 | |
---|
4150 | INTEGER, INTENT(in) :: Nvertex |
---|
4151 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(in) :: poly |
---|
4152 | |
---|
4153 | ! Local |
---|
4154 | INTEGER :: i |
---|
4155 | REAL(r_k) :: areapos, areaneg |
---|
4156 | |
---|
4157 | !!!!!!! Variables |
---|
4158 | ! Nvertex: number of vertices of the polygon |
---|
4159 | ! poly: coordinates of the vertex of the polygon (sorted) |
---|
4160 | |
---|
4161 | fname = 'shoelace_area_polygon' |
---|
4162 | |
---|
4163 | areapos = 0. |
---|
4164 | areaneg = 0. |
---|
4165 | |
---|
4166 | DO i=1, Nvertex-1 |
---|
4167 | areapos = areapos + poly(i,1)*poly(i+1,2) |
---|
4168 | areaneg = areaneg + poly(i+1,1)*poly(i,2) |
---|
4169 | END DO |
---|
4170 | |
---|
4171 | areapos = areapos + poly(Nvertex,1)*poly(1,2) |
---|
4172 | areaneg = areaneg + poly(1,1)*poly(Nvertex,2) |
---|
4173 | |
---|
4174 | shoelace_area_polygon = 0.5*(areapos - areaneg) |
---|
4175 | |
---|
4176 | END FUNCTION shoelace_area_polygon |
---|
4177 | |
---|
4178 | SUBROUTINE intersection_2Dlines(lineA, lineB, intersect, ptintersect) |
---|
4179 | ! Subroutine to provide the intersection point between two lines on the plane using Cramer's method |
---|
4180 | |
---|
4181 | IMPLICIT NONE |
---|
4182 | |
---|
4183 | REAL(r_k), DIMENSION(2,2), INTENT(in) :: lineA, lineB |
---|
4184 | LOGICAL, INTENT(out) :: intersect |
---|
4185 | REAL(r_k), DIMENSION(2), INTENT(out) :: ptintersect |
---|
4186 | |
---|
4187 | ! Local |
---|
4188 | REAL(r_k), DIMENSION(2) :: segmentA, segmentB |
---|
4189 | REAL(r_k) :: a11, a12, a21, a22, z1, z2 |
---|
4190 | REAL(r_k) :: det, detX, detY |
---|
4191 | LOGICAL :: axisAx, axisBx, axisAy, axisBy |
---|
4192 | |
---|
4193 | !!!!!!! Variables |
---|
4194 | ! lineA: couple of coordinates for the line A |
---|
4195 | ! lineB: couple of coordinates for the line B |
---|
4196 | ! intersect: whether two lines intersect |
---|
4197 | ! ptintersect: point of intersection [(0,0) if they do not intersect] |
---|
4198 | |
---|
4199 | fname = 'intersection_2Dlines' |
---|
4200 | |
---|
4201 | axisAx = .FALSE. |
---|
4202 | axisAy = .FALSE. |
---|
4203 | axisBx = .FALSE. |
---|
4204 | axisBy = .FALSE. |
---|
4205 | ! Setting segment parameters y = A + B*x |
---|
4206 | IF (lineA(2,1) /= lineA(1,1)) THEN |
---|
4207 | segmentA(2) = (lineA(2,2)-lineA(1,2))/(lineA(2,1)-lineA(1,1)) |
---|
4208 | ! This might be to ask too much... ? |
---|
4209 | !IF ( (lineA(1,1)*segmentA(2) - lineA(1,2)) /= (lineA(2,1)*segmentA(2) - lineA(2,2)) ) THEN |
---|
4210 | ! PRINT *,'A = y1 - x2*B = ', lineA(1,2) - lineA(1,1)*segmentA(2) |
---|
4211 | ! PRINT *,'A = y2 - x2*B = ', lineA(2,2) - lineA(2,1)*segmentA(2) |
---|
4212 | ! msg = 'Wrong calculation of parameter A, for lineA' |
---|
4213 | ! CALL ErrMSg(msg, fname, -1) |
---|
4214 | !END IF |
---|
4215 | segmentA(1) = lineA(1,2) - lineA(1,1)*segmentA(2) |
---|
4216 | a11 = segmentA(2) |
---|
4217 | a12 = -oneRK |
---|
4218 | z1 = -segmentA(1) |
---|
4219 | IF (lineA(2,2) == lineA(1,2)) axisAx = .TRUE. |
---|
4220 | ELSE |
---|
4221 | ! lineA || y-axis |
---|
4222 | axisAy = .TRUE. |
---|
4223 | END IF |
---|
4224 | |
---|
4225 | IF (lineB(2,1) /= lineB(1,1)) THEN |
---|
4226 | segmentB(2) = (lineB(2,2)-lineB(1,2))/(lineB(2,1)-lineB(1,1)) |
---|
4227 | ! This might be to ask too much... ? |
---|
4228 | !IF ( (lineB(1,1)*segmentB(2) - lineB(1,2)) /= (lineB(2,1)*segmentB(2) - lineB(2,2)) ) THEN |
---|
4229 | ! PRINT *,'A = x1*B -y1 = ', lineB(1,1)*segmentB(2) - lineB(1,2) |
---|
4230 | ! PRINT *,'A = x2*B -y2 = ', lineB(2,1)*segmentB(2) - lineB(2,2) |
---|
4231 | ! msg = 'Wrong calculation of parameter A, for lineB' |
---|
4232 | ! CALL ErrMSg(msg, fname, -1) |
---|
4233 | !END IF |
---|
4234 | segmentB(1) = lineB(1,2) - lineB(1,1)*segmentB(2) |
---|
4235 | a21 = segmentB(2) |
---|
4236 | a22 = -oneRK |
---|
4237 | z2 = -segmentB(1) |
---|
4238 | IF (lineB(2,2) == lineB(1,2)) axisBx = .TRUE. |
---|
4239 | ELSE |
---|
4240 | ! lineB || y-axis |
---|
4241 | axisBy = .TRUE. |
---|
4242 | END IF |
---|
4243 | ! Cramer's method |
---|
4244 | ! a11 = B1; a12 = -1 |
---|
4245 | ! a21 = B2; a22 = -1 |
---|
4246 | ! z1 = -A1 |
---|
4247 | ! z2 = -A2 |
---|
4248 | ! (a11 a12)(x) (z1) |
---|
4249 | ! (a21 a22)(y) (z2) |
---|
4250 | ! -------- ------ ----- ---- --- -- - |
---|
4251 | ! det = (a11*a22-a12*a21) |
---|
4252 | ! detX = (z1*a22-z2*a21) |
---|
4253 | ! detY = (a11*z1-a12*z2) |
---|
4254 | ! ptintercept = (detX/det, detY/det) |
---|
4255 | |
---|
4256 | ! Cases when some of the lines are parallel to any given axis |
---|
4257 | ! PRINT *,' axisAx', axisAx, 'axisAy', axisAy, 'axisBx', axisBx, 'axisBy', axisBy |
---|
4258 | IF (axisAx .OR. axisAy .OR. axisBx .OR. axisBy) THEN |
---|
4259 | IF (axisAx) THEN |
---|
4260 | IF (axisBy) THEN |
---|
4261 | intersect = .TRUE. |
---|
4262 | ptintersect(1) = lineB(1,1) |
---|
4263 | ptintersect(2) = lineA(1,2) |
---|
4264 | ELSE |
---|
4265 | intersect = .TRUE. |
---|
4266 | ptintersect(1) = (lineA(1,2)-segmentB(1))/segmentB(2) |
---|
4267 | ptintersect(2) = lineA(1,2) |
---|
4268 | END IF |
---|
4269 | END IF |
---|
4270 | IF (axisAy) THEN |
---|
4271 | IF (axisBy) THEN |
---|
4272 | intersect = .TRUE. |
---|
4273 | ptintersect(1) = lineA(1,1) |
---|
4274 | ptintersect(2) = lineB(1,2) |
---|
4275 | ELSE |
---|
4276 | intersect = .TRUE. |
---|
4277 | ptintersect(1) = lineA(1,1) |
---|
4278 | ptintersect(2) = segmentB(1) + lineA(1,1)*segmentB(2) |
---|
4279 | END IF |
---|
4280 | END IF |
---|
4281 | IF (axisBx) THEN |
---|
4282 | IF (axisAy) THEN |
---|
4283 | intersect = .TRUE. |
---|
4284 | ptintersect(1) = lineA(1,1) |
---|
4285 | ptintersect(2) = lineB(1,2) |
---|
4286 | ELSE |
---|
4287 | intersect = .TRUE. |
---|
4288 | ptintersect(1) = (lineB(1,2)-segmentA(1))/segmentA(2) |
---|
4289 | ptintersect(2) = lineB(1,2) |
---|
4290 | END IF |
---|
4291 | END IF |
---|
4292 | IF (axisBy) THEN |
---|
4293 | IF (axisAx) THEN |
---|
4294 | intersect = .TRUE. |
---|
4295 | ptintersect(1) = lineB(1,1) |
---|
4296 | ptintersect(2) = lineA(1,2) |
---|
4297 | ELSE |
---|
4298 | intersect = .TRUE. |
---|
4299 | ptintersect(1) = lineB(1,1) |
---|
4300 | ptintersect(2) = segmentA(1) + lineB(1,1)*segmentA(2) |
---|
4301 | END IF |
---|
4302 | END IF |
---|
4303 | ELSE |
---|
4304 | det = (a11*a22-a12*a21) |
---|
4305 | ! Parallel lines ! |
---|
4306 | IF (det == zeroRK) THEN |
---|
4307 | intersect = .FALSE. |
---|
4308 | ptintersect = zeroRK |
---|
4309 | ELSE |
---|
4310 | intersect = .TRUE. |
---|
4311 | detX = (z1*a22-z2*a12) |
---|
4312 | detY = (a11*z2-a21*z1) |
---|
4313 | |
---|
4314 | ptintersect(1) = detX/det |
---|
4315 | ptintersect(2) = detY/det |
---|
4316 | END IF |
---|
4317 | END IF |
---|
4318 | |
---|
4319 | END SUBROUTINE intersection_2Dlines |
---|
4320 | |
---|
4321 | !refs: |
---|
4322 | !https://www.mathopenref.com/heronsformula.html |
---|
4323 | !https://math.stackexchange.com/questions/1406340/intersect-area-of-two-polygons-in-cartesian-plan |
---|
4324 | !http://www.cap-lore.com/MathPhys/IP/ |
---|
4325 | !http://www.cap-lore.com/MathPhys/IP/IL.html |
---|
4326 | !https://www.element84.com/blog/determining-the-winding-of-a-polygon-given-as-a-set-of-ordered-points |
---|
4327 | !https://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order |
---|
4328 | !https://en.wikipedia.org/wiki/Shoelace_formula |
---|
4329 | !https://en.wikipedia.org/wiki/Winding_number |
---|
4330 | !https://en.wikipedia.org/wiki/Simple_polygon |
---|
4331 | !https://en.wikipedia.org/wiki/Polygon#Properties |
---|
4332 | !https://en.wikipedia.org/wiki/Convex_polygon |
---|
4333 | !https://en.wikipedia.org/wiki/Jordan_curve_theorem |
---|
4334 | !https://www.sangakoo.com/ca/temes/metode-de-cramer |
---|
4335 | !https://www.geogebra.org/m/pw4QHFYT |
---|
4336 | |
---|
4337 | SUBROUTINE intersectfaces(faceA, faceB, intersect, intersectpt) |
---|
4338 | ! Subroutine to provide if two faces of two polygons intersect |
---|
4339 | ! AFTER: http://www.cap-lore.com/MathPhys/IP/IL.html |
---|
4340 | ! A: faceA(1,:) |
---|
4341 | ! B: faceA(2,:) |
---|
4342 | ! C: faceB(1,:) |
---|
4343 | ! D: faceB(2,:) |
---|
4344 | |
---|
4345 | IMPLICIT NONE |
---|
4346 | |
---|
4347 | REAL(r_k), DIMENSION(2,2), INTENT(in) :: faceA, faceB |
---|
4348 | INTEGER, INTENT(out) :: intersect |
---|
4349 | REAL(r_k), DIMENSION(2), INTENT(out) :: intersectpt |
---|
4350 | |
---|
4351 | ! Local |
---|
4352 | REAL(r_k) :: Axmin, Aymin, Axmax, Aymax |
---|
4353 | REAL(r_k) :: Bxmin, Bymin, Bxmax, Bymax |
---|
4354 | REAL(r_k) :: areaABD, areaACD, areaBDC, areaDAB |
---|
4355 | REAL(r_k), DIMENSION(3,2) :: triangle |
---|
4356 | LOGICAL :: Lintersect |
---|
4357 | |
---|
4358 | !!!!!!! Variables |
---|
4359 | ! faceA/B: coordinates of faces A and B to determine if they intersect |
---|
4360 | ! intersect: integer to say if they intersect (0, no-intersect, +/-1 intersect) |
---|
4361 | ! intersectpt: point where faces intersect [(0,0) otherwise] |
---|
4362 | |
---|
4363 | fname = 'intersectfaces' |
---|
4364 | |
---|
4365 | ! PRINT *,' ' // TRIM(fname) // ' ________' |
---|
4366 | ! PRINT *,' faceA:', faceA(1,:), ';',faceA(2,:) |
---|
4367 | ! PRINT *,' faceB:', faceB(1,:), ';',faceB(2,:) |
---|
4368 | |
---|
4369 | Axmin = MINVAL(faceA(:,1)) |
---|
4370 | Axmax = MAXVAL(faceA(:,1)) |
---|
4371 | Aymin = MINVAL(faceA(:,2)) |
---|
4372 | Aymax = MAXVAL(faceA(:,2)) |
---|
4373 | Bxmin = MINVAL(faceB(:,1)) |
---|
4374 | Bxmax = MAXVAL(faceB(:,1)) |
---|
4375 | Bymin = MINVAL(faceB(:,2)) |
---|
4376 | Bymax = MAXVAL(faceB(:,2)) |
---|
4377 | |
---|
4378 | ! No intersection |
---|
4379 | IF ( (Axmax <= Bxmin) .OR. (Axmin >= Bxmax) .OR. (Aymax <= Bymin) .OR. (Aymin >= Bymax) ) THEN |
---|
4380 | intersect = 0 |
---|
4381 | intersectpt = zeroRK |
---|
4382 | ELSE |
---|
4383 | ! Triangle ABD |
---|
4384 | triangle(1,:) = faceA(1,:) |
---|
4385 | triangle(2,:) = faceA(2,:) |
---|
4386 | triangle(3,:) = faceB(2,:) |
---|
4387 | areaABD = shoelace_area_polygon(3, triangle) |
---|
4388 | |
---|
4389 | ! Triangle ACD |
---|
4390 | triangle(1,:) = faceA(1,:) |
---|
4391 | triangle(2,:) = faceB(1,:) |
---|
4392 | triangle(3,:) = faceB(2,:) |
---|
4393 | areaACD = shoelace_area_polygon(3, triangle) |
---|
4394 | |
---|
4395 | ! Triangle BDC |
---|
4396 | triangle(1,:) = faceA(2,:) |
---|
4397 | triangle(2,:) = faceB(2,:) |
---|
4398 | triangle(3,:) = faceB(1,:) |
---|
4399 | areaBDC = shoelace_area_polygon(3, triangle) |
---|
4400 | |
---|
4401 | ! Triangle DAB |
---|
4402 | triangle(1,:) = faceB(2,:) |
---|
4403 | triangle(2,:) = faceA(1,:) |
---|
4404 | triangle(3,:) = faceA(2,:) |
---|
4405 | areaDAB = shoelace_area_polygon(3, triangle) |
---|
4406 | |
---|
4407 | IF (areaABD>zeroRK .AND. areaACD>zeroRK .AND. areaBDC>zeroRK .AND. areaDAB>zeroRK) THEN |
---|
4408 | intersect = INT(ABS(areaABD)/areaABD) |
---|
4409 | CALL intersection_2Dlines(faceA, faceB, Lintersect, intersectpt) |
---|
4410 | ELSE IF (areaABD<zeroRK .AND. areaACD<zeroRK .AND. areaBDC<zeroRK .AND. areaDAB<zeroRK) THEN |
---|
4411 | intersect = INT(ABS(areaABD)/areaABD) |
---|
4412 | CALL intersection_2Dlines(faceA, faceB, Lintersect, intersectpt) |
---|
4413 | ELSE |
---|
4414 | intersect = 0 |
---|
4415 | intersectpt = zeroRK |
---|
4416 | END IF |
---|
4417 | ! PRINT *,' intersect faces: areaABD',areaABD, 'areaACD', areaACD, 'areaBDC',areaBDC, 'areaDAB',areaDAB, 'prod', & |
---|
4418 | ! areaABD*areaACD*areaBDC*areaDAB, 'L:', areaABD*areaACD*areaBDC*areaDAB > zeroRK, 'I', intersect |
---|
4419 | |
---|
4420 | END IF |
---|
4421 | |
---|
4422 | END SUBROUTINE intersectfaces |
---|
4423 | |
---|
4424 | LOGICAL FUNCTION poly_has_point(Nvertex, polygon, point) |
---|
4425 | ! Function to determine if a polygon has already a given point as one of its vertex |
---|
4426 | |
---|
4427 | IMPLICIT NONE |
---|
4428 | |
---|
4429 | INTEGER, INTENT(in) :: Nvertex |
---|
4430 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(in) :: polygon |
---|
4431 | REAL(r_k), DIMENSION(2), INTENT(in) :: point |
---|
4432 | |
---|
4433 | ! Local |
---|
4434 | INTEGER :: iv |
---|
4435 | REAL(r_k), DIMENSION(2) :: diff |
---|
4436 | |
---|
4437 | !!!!!!! Vertrex |
---|
4438 | ! Nvertex: number of vertexs of the polygon |
---|
4439 | ! polygon: vertexs of the polygon |
---|
4440 | ! point: point to look for its ownership into the polygon |
---|
4441 | |
---|
4442 | fname = 'poly_has_point' |
---|
4443 | |
---|
4444 | poly_has_point = .FALSE. |
---|
4445 | DO iv=1, Nvertex |
---|
4446 | diff = polygon(iv,:)-point |
---|
4447 | IF ( (diff(1) == zeroRK) .AND. (diff(2) == zeroRK)) THEN |
---|
4448 | poly_has_point = .TRUE. |
---|
4449 | EXIT |
---|
4450 | END IF |
---|
4451 | END DO |
---|
4452 | |
---|
4453 | END FUNCTION poly_has_point |
---|
4454 | |
---|
4455 | SUBROUTINE join_polygon(NvertexA, NvertexB, NvertexAB, polyA, polyB, Ncoinvertex, coinpoly) |
---|
4456 | ! Subroutine to join two polygons |
---|
4457 | ! AFTER: http://www.cap-lore.com/MathPhys/IP/ and http://www.cap-lore.com/MathPhys/IP/IL.html |
---|
4458 | |
---|
4459 | IMPLICIT NONE |
---|
4460 | |
---|
4461 | INTEGER, INTENT(in) :: NvertexA, NvertexB, NvertexAB |
---|
4462 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polyA |
---|
4463 | REAL(r_k), DIMENSION(NvertexB,2), INTENT(in) :: polyB |
---|
4464 | INTEGER, INTENT(out) :: Ncoinvertex |
---|
4465 | REAL(r_k), DIMENSION(NvertexAB,2), INTENT(out) :: coinpoly |
---|
4466 | |
---|
4467 | ! Local |
---|
4468 | INTEGER :: iA, iB, icoin, ii |
---|
4469 | REAL(r_k), DIMENSION(2,2) :: face1, face2 |
---|
4470 | INTEGER :: intersct |
---|
4471 | REAL(r_k), DIMENSION(2) :: ptintersct |
---|
4472 | |
---|
4473 | |
---|
4474 | !!!!!!! variables |
---|
4475 | ! NvertexA: number of vertexs polygon A |
---|
4476 | ! NvertexB: number of vertexs polygon B |
---|
4477 | ! polyA: pairs of coordinates for the polygon A (clockwise) |
---|
4478 | ! polyB: pairs of coordinates for the polygon B (clockwise) |
---|
4479 | ! Ncoinvertex: number of vertexes for the coincident polygon |
---|
4480 | ! coinpoly: pairs of coordinates for the coincident polygon (clockwise) |
---|
4481 | |
---|
4482 | fname = 'join_polygon' |
---|
4483 | |
---|
4484 | icoin = 0 |
---|
4485 | coinpoly = 0. |
---|
4486 | |
---|
4487 | ! First, include that vertex which do not lay within any polygon |
---|
4488 | DO iA=1, NvertexA |
---|
4489 | !PRINT *, ' iA:', iA, ':', polyA(iA,:), point_inside(polyA(iA,:), NvertexB, polyB) |
---|
4490 | IF (.NOT. point_inside(polyA(iA,:), NvertexB, polyB)) THEN |
---|
4491 | icoin = icoin + 1 |
---|
4492 | coinpoly(icoin,:) = polyA(iA,:) |
---|
4493 | END IF |
---|
4494 | END DO |
---|
4495 | |
---|
4496 | DO iB=1, NvertexB |
---|
4497 | !PRINT *, ' iB:', iB, ':', polyB(iB,:), point_inside(polyB(iB,:), NvertexA, polyA) |
---|
4498 | IF (.NOT. point_inside(polyB(iB,:), NvertexA, polyA)) THEN |
---|
4499 | icoin = icoin + 1 |
---|
4500 | coinpoly(icoin,:) = polyB(iB,:) |
---|
4501 | END IF |
---|
4502 | END DO |
---|
4503 | |
---|
4504 | DO iA=1, NvertexA |
---|
4505 | ! Getting couple of vertexs from polyA and polyB |
---|
4506 | IF (iA /= NvertexA) THEN |
---|
4507 | face1(1,:) = polyA(iA,:) |
---|
4508 | face1(2,:) = polyA(iA+1,:) |
---|
4509 | ELSE |
---|
4510 | face1(1,:) = polyA(iA,:) |
---|
4511 | face1(2,:) = polyA(1,:) |
---|
4512 | END IF |
---|
4513 | DO iB=1, NvertexB |
---|
4514 | IF (iB /= NvertexB) THEN |
---|
4515 | face2(1,:) = polyB(iB,:) |
---|
4516 | face2(2,:) = polyB(iB+1,:) |
---|
4517 | ELSE |
---|
4518 | face2(1,:) = polyB(iB,:) |
---|
4519 | face2(2,:) = polyB(1,:) |
---|
4520 | END IF |
---|
4521 | |
---|
4522 | ! Compute areas of the four possible triangles. Introduce the coincident vertexs not included |
---|
4523 | CALL intersectfaces(face1, face2, intersct, ptintersct) |
---|
4524 | !PRINT *,iA,':',face1(1,:),';',face1(2,:), '=', iB, face2(1,:),';',face2(2,:), '<>', intersct,':', ptintersct |
---|
4525 | IF (intersct == 1) THEN |
---|
4526 | IF (.NOT.poly_has_point(icoin,coinpoly(1:icoin,:),ptintersct) ) THEN |
---|
4527 | icoin = icoin + 1 |
---|
4528 | coinpoly(icoin,:) = ptintersct |
---|
4529 | END IF |
---|
4530 | ELSE IF (intersct == -1) THEN |
---|
4531 | IF (.NOT.poly_has_point(icoin,coinpoly(1:icoin,:),ptintersct) ) THEN |
---|
4532 | icoin = icoin + 1 |
---|
4533 | coinpoly(icoin,:) = ptintersct |
---|
4534 | END IF |
---|
4535 | END IF |
---|
4536 | |
---|
4537 | END DO |
---|
4538 | END DO |
---|
4539 | Ncoinvertex = icoin |
---|
4540 | |
---|
4541 | END SUBROUTINE join_polygon |
---|
4542 | |
---|
4543 | SUBROUTINE sort_polygon(Nvertex, polygon, sense, Nnewvertex, newpoly) |
---|
4544 | ! Subroutine to sort a polygon using its center as average of the coordinates and remove duplicates |
---|
4545 | ! Should be used the centroid instead, but by now let do it simple |
---|
4546 | ! https://en.wikipedia.org/wiki/Centroid |
---|
4547 | |
---|
4548 | |
---|
4549 | IMPLICIT NONE |
---|
4550 | |
---|
4551 | INTEGER, INTENT(in) :: Nvertex, sense |
---|
4552 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(in) :: polygon |
---|
4553 | INTEGER, INTENT(out) :: Nnewvertex |
---|
4554 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(out) :: newpoly |
---|
4555 | |
---|
4556 | ! Local |
---|
4557 | INTEGER :: iv, j |
---|
4558 | REAL(r_k) :: vang |
---|
4559 | REAL(r_k), DIMENSION(2) :: center |
---|
4560 | REAL(r_k), DIMENSION(Nvertex) :: angles |
---|
4561 | REAL(r_k), DIMENSION(Nvertex,2) :: sortpoly |
---|
4562 | |
---|
4563 | !!!!!!! Variables |
---|
4564 | ! Nvertex: number of vertices |
---|
4565 | ! polygon: coordinates of the vertices of the polygon |
---|
4566 | ! sense: sens of sorting thepolygon (1: clockwise, -1: anti-clockwise) |
---|
4567 | ! sortpoly: sorted polygon |
---|
4568 | ! Nnewvertex: number of vertices new polygon |
---|
4569 | ! newpoly: sorted and duplicate removed polygon |
---|
4570 | |
---|
4571 | fname = 'sort_polygon' |
---|
4572 | |
---|
4573 | ! To be substituted by centroid calculation (which requires already sorted vetexs...) |
---|
4574 | center(1) = SUM(polygon(:,1))/Nvertex |
---|
4575 | center(2) = SUM(polygon(:,2))/Nvertex |
---|
4576 | |
---|
4577 | DO iv=1, Nvertex |
---|
4578 | angles(iv) = ATAN2(polygon(iv,2)-center(2),polygon(iv,1)-center(1)) |
---|
4579 | END DO |
---|
4580 | CALL sortR_K(angles, Nvertex) |
---|
4581 | |
---|
4582 | sortpoly = zeroRK |
---|
4583 | DO iv=1, Nvertex |
---|
4584 | DO j=1, Nvertex |
---|
4585 | vang = ATAN2(polygon(j,2)-center(2), polygon(j,1)-center(1)) |
---|
4586 | IF (angles(iv) == vang) THEN |
---|
4587 | IF (sense == -1) THEN |
---|
4588 | sortpoly(iv,:) = polygon(j,:) |
---|
4589 | ELSE |
---|
4590 | sortpoly(Nvertex-iv+1,:) = polygon(j,:) |
---|
4591 | END IF |
---|
4592 | EXIT |
---|
4593 | END IF |
---|
4594 | END DO |
---|
4595 | END DO |
---|
4596 | |
---|
4597 | newpoly(1,:) = sortpoly(1,:) |
---|
4598 | j = 1 |
---|
4599 | DO iv=2, Nvertex |
---|
4600 | IF (.NOT.poly_has_point(j,newpoly(1:j,:),sortpoly(iv,:)) ) THEN |
---|
4601 | j = j+1 |
---|
4602 | newpoly(j,:) = sortpoly(iv,:) |
---|
4603 | END IF |
---|
4604 | END DO |
---|
4605 | Nnewvertex = j |
---|
4606 | |
---|
4607 | END SUBROUTINE sort_polygon |
---|
4608 | |
---|
4609 | LOGICAL FUNCTION point_inside(point, Nvertex, polygon) |
---|
4610 | ! Function to determine if a given point is inside a polygon providing its sorted vertices |
---|
4611 | ! FROM: https://en.wikipedia.org/wiki/Point_in_polygon |
---|
4612 | |
---|
4613 | IMPLICIT NONE |
---|
4614 | |
---|
4615 | REAL(r_k), DIMENSION(2), INTENT(in) :: point |
---|
4616 | INTEGER, INTENT(in) :: Nvertex |
---|
4617 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(in) :: polygon |
---|
4618 | |
---|
4619 | ! Local |
---|
4620 | INTEGER :: iv, Nintersect |
---|
4621 | INTEGER :: cross |
---|
4622 | REAL(r_k) :: xmin |
---|
4623 | REAL(r_k), DIMENSION(2) :: crosspoint |
---|
4624 | REAL(r_k), DIMENSION(2,2) :: face1, face2 |
---|
4625 | REAL(r_k), DIMENSION(Nvertex) :: abovebelow |
---|
4626 | |
---|
4627 | !!!!!!! Variables |
---|
4628 | ! point: point to look for |
---|
4629 | ! Nvertrex: number of vertices of a polygon |
---|
4630 | ! polygon: vertices of a polygon |
---|
4631 | |
---|
4632 | fname = 'point_inside' |
---|
4633 | |
---|
4634 | xmin = MINVAL(polygon(:,1)) |
---|
4635 | |
---|
4636 | ! Looking for the intersection with the ray |
---|
4637 | Nintersect = 0 |
---|
4638 | face1(1,:) = (/ xmin-0.5, point(2) /) |
---|
4639 | face1(2,:) = (/ point(1), point(2) /) |
---|
4640 | |
---|
4641 | DO iv = 1, Nvertex |
---|
4642 | IF (iv /= Nvertex) THEN |
---|
4643 | face2(1,:) = polygon(iv,:) |
---|
4644 | face2(2,:) = polygon(iv+1,:) |
---|
4645 | ELSE |
---|
4646 | face2(1,:) = polygon(iv,:) |
---|
4647 | face2(2,:) = polygon(1,:) |
---|
4648 | END IF |
---|
4649 | CALL intersectfaces(face1, face2, cross, crosspoint) |
---|
4650 | IF (cross /= 0) THEN |
---|
4651 | Nintersect = Nintersect + 1 |
---|
4652 | abovebelow(Nintersect) = iv |
---|
4653 | END IF |
---|
4654 | END DO |
---|
4655 | |
---|
4656 | IF (MOD(Nintersect,2) == 0) THEN |
---|
4657 | point_inside = .FALSE. |
---|
4658 | ELSE |
---|
4659 | point_inside = .TRUE. |
---|
4660 | END IF |
---|
4661 | |
---|
4662 | END FUNCTION point_inside |
---|
4663 | |
---|
4664 | LOGICAL FUNCTION point_in_face(pt, Nvertex, poly) |
---|
4665 | ! Function to determine if a given point is on a face of a polygon |
---|
4666 | |
---|
4667 | IMPLICIT NONE |
---|
4668 | |
---|
4669 | REAL(r_k), DIMENSION(2), INTENT(in) :: pt |
---|
4670 | INTEGER, INTENT(in) :: Nvertex |
---|
4671 | REAL(r_k), DIMENSION(Nvertex,2), INTENT(in) :: poly |
---|
4672 | ! Local |
---|
4673 | INTEGER :: iv |
---|
4674 | REAL(r_k) :: ix, ex, iy, ey, tmpv |
---|
4675 | REAL(r_k) :: dx, dy, A, B |
---|
4676 | |
---|
4677 | !!!!!!! Variables |
---|
4678 | ! pt: point to look for |
---|
4679 | ! Nvertex: Number of vertices of the polygon |
---|
4680 | ! poly: polygon |
---|
4681 | fname = 'point_in_face' |
---|
4682 | |
---|
4683 | point_in_face = .FALSE. |
---|
4684 | DO iv=1, Nvertex |
---|
4685 | IF (iv < Nvertex) THEN |
---|
4686 | ix = poly(iv,1) |
---|
4687 | ex = poly(iv+1,1) |
---|
4688 | iy = poly(iv,2) |
---|
4689 | ey = poly(iv+1,2) |
---|
4690 | ELSE |
---|
4691 | ix = poly(iv,1) |
---|
4692 | ex = poly(1,1) |
---|
4693 | iy = poly(iv,2) |
---|
4694 | ey = poly(1,2) |
---|
4695 | END IF |
---|
4696 | dx = ex - ix |
---|
4697 | dy = ey - iy |
---|
4698 | |
---|
4699 | IF (dx == zeroRK) THEN |
---|
4700 | IF (pt(1) == ix) THEN |
---|
4701 | IF ( (iy < ey) .AND. (pt(2) >= iy) .AND. pt(2) <= ey) THEN |
---|
4702 | point_in_face = .TRUE. |
---|
4703 | EXIT |
---|
4704 | ELSE IF ( (iy > ey) .AND. (pt(2) >= ey) .AND. pt(2) <= iy) THEN |
---|
4705 | point_in_face = .TRUE. |
---|
4706 | EXIT |
---|
4707 | END IF |
---|
4708 | END IF |
---|
4709 | ELSE |
---|
4710 | IF (dy == zeroRK) THEN |
---|
4711 | IF (pt(2) == iy) THEN |
---|
4712 | IF ((ix < ex) .AND. (pt(1) >= ix) .AND. pt(1) <= ex) THEN |
---|
4713 | point_in_face = .TRUE. |
---|
4714 | EXIT |
---|
4715 | ELSE IF ((ix > ex) .AND. (pt(1) >= ex) .AND. pt(1) <= ix) THEN |
---|
4716 | point_in_face = .TRUE. |
---|
4717 | EXIT |
---|
4718 | END IF |
---|
4719 | END IF |
---|
4720 | ELSE |
---|
4721 | A = iy |
---|
4722 | B = (ey-iy)/(ex-ix) |
---|
4723 | IF (A+B*(pt(1)-ix) == pt(2)) THEN |
---|
4724 | point_in_face = .TRUE. |
---|
4725 | EXIT |
---|
4726 | END IF |
---|
4727 | END IF |
---|
4728 | END IF |
---|
4729 | END DO |
---|
4730 | |
---|
4731 | END FUNCTION point_in_face |
---|
4732 | |
---|
4733 | SUBROUTINE coincident_polygon(NvertexA, NvertexB, NvertexAB, polyA, polyB, Ncoinvertex, coinpoly) |
---|
4734 | ! Subroutine to provide the intersection polygon between two polygons |
---|
4735 | ! AFTER: http://www.cap-lore.com/MathPhys/IP/ and http://www.cap-lore.com/MathPhys/IP/IL.html |
---|
4736 | |
---|
4737 | IMPLICIT NONE |
---|
4738 | |
---|
4739 | INTEGER, INTENT(in) :: NvertexA, NvertexB, NvertexAB |
---|
4740 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polyA |
---|
4741 | REAL(r_k), DIMENSION(NvertexB,2), INTENT(in) :: polyB |
---|
4742 | INTEGER, INTENT(out) :: Ncoinvertex |
---|
4743 | REAL(r_k), DIMENSION(NvertexAB,2), INTENT(out) :: coinpoly |
---|
4744 | |
---|
4745 | ! Local |
---|
4746 | INTEGER :: iA, iB, icoin, ii |
---|
4747 | REAL(r_k), DIMENSION(2,2) :: face1, face2 |
---|
4748 | INTEGER :: intersct |
---|
4749 | REAL(r_k), DIMENSION(2) :: ptintersct |
---|
4750 | |
---|
4751 | !!!!!!! variables |
---|
4752 | ! NvertexA: number of vertexs polygon A |
---|
4753 | ! NvertexB: number of vertexs polygon B |
---|
4754 | ! polyA: pairs of coordinates for the polygon A (clockwise) |
---|
4755 | ! polyB: pairs of coordinates for the polygon B (clockwise) |
---|
4756 | ! Ncoinvertex: number of vertexes for the coincident polygon |
---|
4757 | ! coinpoly: pairs of coordinates for the coincident polygon (clockwise) |
---|
4758 | |
---|
4759 | fname = 'coincident_polygon' |
---|
4760 | |
---|
4761 | icoin = 0 |
---|
4762 | coinpoly = 0. |
---|
4763 | ! First, include that vertex which lay within any polygon |
---|
4764 | DO iA=1, NvertexA |
---|
4765 | IF (point_inside(polyA(iA,:), NvertexB, polyB)) THEN |
---|
4766 | icoin = icoin + 1 |
---|
4767 | coinpoly(icoin,:) = polyA(iA,:) |
---|
4768 | END IF |
---|
4769 | IF (point_in_face(polyA(iA,:), NvertexB, polyB)) THEN |
---|
4770 | icoin = icoin + 1 |
---|
4771 | coinpoly(icoin,:) = polyA(iA,:) |
---|
4772 | END IF |
---|
4773 | END DO |
---|
4774 | |
---|
4775 | DO iB=1, NvertexB |
---|
4776 | IF (point_inside(polyB(iB,:), NvertexA, polyA)) THEN |
---|
4777 | icoin = icoin + 1 |
---|
4778 | coinpoly(icoin,:) = polyB(iB,:) |
---|
4779 | END IF |
---|
4780 | IF (point_in_face(polyB(iB,:), NvertexA, polyA)) THEN |
---|
4781 | icoin = icoin + 1 |
---|
4782 | coinpoly(icoin,:) = polyB(iB,:) |
---|
4783 | END IF |
---|
4784 | END DO |
---|
4785 | |
---|
4786 | ! Look interesections |
---|
4787 | DO iA=1, NvertexA |
---|
4788 | ! Getting couple of vertexs from polyA and polyB |
---|
4789 | IF (iA /= NvertexA) THEN |
---|
4790 | face1(1,:) = polyA(iA,:) |
---|
4791 | face1(2,:) = polyA(iA+1,:) |
---|
4792 | ELSE |
---|
4793 | face1(1,:) = polyA(iA,:) |
---|
4794 | face1(2,:) = polyA(1,:) |
---|
4795 | END IF |
---|
4796 | DO iB=1, NvertexB |
---|
4797 | IF (iB /= NvertexB) THEN |
---|
4798 | face2(1,:) = polyB(iB,:) |
---|
4799 | face2(2,:) = polyB(iB+1,:) |
---|
4800 | ELSE |
---|
4801 | face2(1,:) = polyB(iB,:) |
---|
4802 | face2(2,:) = polyB(1,:) |
---|
4803 | END IF |
---|
4804 | |
---|
4805 | ! Compute areas of the four possible triangles. Introduce the coincident vertexs not included |
---|
4806 | CALL intersectfaces(face1, face2, intersct, ptintersct) |
---|
4807 | !PRINT *,iA,':',face1(1,:),';',face1(2,:), '=', iB, face2(1,:),';',face2(2,:), '<>', intersct,':', ptintersct |
---|
4808 | IF ((intersct /= 0) .AND. (.NOT.poly_has_point(icoin,coinpoly(1:icoin,:),ptintersct)) ) THEN |
---|
4809 | icoin = icoin + 1 |
---|
4810 | coinpoly(icoin,:) = ptintersct |
---|
4811 | END IF |
---|
4812 | |
---|
4813 | END DO |
---|
4814 | END DO |
---|
4815 | Ncoinvertex = icoin |
---|
4816 | |
---|
4817 | END SUBROUTINE coincident_polygon |
---|
4818 | |
---|
4819 | SUBROUTINE grid_within_polygon(NvertexA, polygonA, dx, dy, dxy, xCvals, yCvals, Nvertexmax, xBvals, & |
---|
4820 | yBvals, Ngridsin, gridsin) |
---|
4821 | ! Subroutine to determine which grid cells from a matrix lay inside a polygon |
---|
4822 | |
---|
4823 | IMPLICIT NONE |
---|
4824 | |
---|
4825 | INTEGER, INTENT(in) :: NvertexA, dx, dy, dxy, Nvertexmax |
---|
4826 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polygonA |
---|
4827 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: xCvals, yCvals |
---|
4828 | REAL(r_k), DIMENSION(dx,dy,Nvertexmax), INTENT(in) :: xBvals, yBvals |
---|
4829 | INTEGER, INTENT(out) :: Ngridsin |
---|
4830 | INTEGER, DIMENSION(dxy,2), INTENT(out) :: gridsin |
---|
4831 | |
---|
4832 | ! Local |
---|
4833 | INTEGER :: ix, iy, iv |
---|
4834 | REAL(r_k), DIMENSION(2) :: centergrid, vertex |
---|
4835 | LOGICAL, DIMENSION(dx,dy) :: within |
---|
4836 | |
---|
4837 | !!!!!!! Variables |
---|
4838 | ! NvertexA: Number of vertices of the polygin to find the grids |
---|
4839 | ! polygonA: ordered vertices of the polygon |
---|
4840 | ! dx, dy: shape of the matrix with the grid points |
---|
4841 | ! xCvals, yCvals: coordinates of the center of the grid cells |
---|
4842 | ! Nvertexmax: Maximum number of vertices of the grid cells |
---|
4843 | ! xBvals, yBvals: coordinates of th vertices of the grid cells (-99999 for no vertex) |
---|
4844 | ! Ngridsin: number of grids with some extension within the polygon |
---|
4845 | ! gridsin: grids within the polygin |
---|
4846 | ! percentages: percentages of area of each of the grids within the polygon |
---|
4847 | |
---|
4848 | fname = 'spacepercen_within_reg' |
---|
4849 | |
---|
4850 | Ngridsin = 0 |
---|
4851 | gridsin = 0 |
---|
4852 | within = .FALSE. |
---|
4853 | DO ix = 1, dx |
---|
4854 | DO iy = 1, dy |
---|
4855 | IF (.NOT.within(ix,iy)) THEN |
---|
4856 | centergrid = (/ xCvals(ix,iy), yCvals(ix,iy) /) |
---|
4857 | ! By grid center |
---|
4858 | IF (point_inside(centergrid, NvertexA, polygonA)) THEN |
---|
4859 | Ngridsin = Ngridsin + 1 |
---|
4860 | ! Getting coordinates |
---|
4861 | gridsin(Ngridsin,1) = ix |
---|
4862 | gridsin(Ngridsin,2) = iy |
---|
4863 | within(ix,iy) = .TRUE. |
---|
4864 | CYCLE |
---|
4865 | END IF |
---|
4866 | |
---|
4867 | ! Getting grid vertices |
---|
4868 | DO iv=1, Nvertexmax |
---|
4869 | IF (.NOT.within(ix,iy)) THEN |
---|
4870 | IF (xBvals(ix,iy,iv) /= fillvalI) THEN |
---|
4871 | vertex = (/ xBvals(ix,iy,iv), yBvals(ix,iy,iv) /) |
---|
4872 | IF (point_inside(vertex, NvertexA, polygonA)) THEN |
---|
4873 | Ngridsin = Ngridsin + 1 |
---|
4874 | ! Getting coordinates |
---|
4875 | gridsin(Ngridsin,1) = ix |
---|
4876 | gridsin(Ngridsin,2) = iy |
---|
4877 | within(ix,iy) = .TRUE. |
---|
4878 | CYCLE |
---|
4879 | END IF |
---|
4880 | END IF |
---|
4881 | END IF |
---|
4882 | END DO |
---|
4883 | |
---|
4884 | END IF |
---|
4885 | END DO |
---|
4886 | END DO |
---|
4887 | |
---|
4888 | END SUBROUTINE grid_within_polygon |
---|
4889 | |
---|
4890 | SUBROUTINE spacepercen_within_reg(NvertexA, polygonA, dx, dy, Nvertexmax, xBvals, yBvals, & |
---|
4891 | Ngridsin, gridsin, strict, percentages) |
---|
4892 | ! Subroutine to compute the percentage of a series of grid cells which are encompassed by a polygon |
---|
4893 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
4894 | ! and y axes. |
---|
4895 | |
---|
4896 | IMPLICIT NONE |
---|
4897 | |
---|
4898 | INTEGER, INTENT(in) :: NvertexA, dx, dy, Nvertexmax |
---|
4899 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polygonA |
---|
4900 | REAL(r_k), DIMENSION(dx,dy,Nvertexmax), INTENT(in) :: xBvals, yBvals |
---|
4901 | INTEGER, INTENT(in) :: Ngridsin |
---|
4902 | INTEGER, DIMENSION(Ngridsin,2), INTENT(in) :: gridsin |
---|
4903 | LOGICAL, INTENT(in) :: strict |
---|
4904 | REAL(r_k), DIMENSION(Ngridsin), INTENT(out) :: percentages |
---|
4905 | |
---|
4906 | ! Local |
---|
4907 | INTEGER :: ig, iv, ix, iy |
---|
4908 | INTEGER :: Nvertex, NvertexAgrid, Ncoin, Nsort |
---|
4909 | CHARACTER(len=20) :: DS |
---|
4910 | REAL(r_k) :: areapoly, areagpoly, totarea, totpercent |
---|
4911 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid, icoinpoly, coinpoly, & |
---|
4912 | sortpoly, poly |
---|
4913 | |
---|
4914 | !!!!!!! Variables |
---|
4915 | ! NvertexA: Number of vertices of the polygin to find the grids |
---|
4916 | ! polygonA: ordered vertices of the polygon |
---|
4917 | ! dx, dy: shape of the matrix with the grid points |
---|
4918 | ! xCvals, yCvals: coordinates of the center of the grid cells |
---|
4919 | ! Nvertexmax: Maximum number of vertices of the grid cells |
---|
4920 | ! xBvals, yBvals: coordinates of th vertices of the grid cells (-99999 for no vertex) |
---|
4921 | ! Ngridsin: number of grids with some extension within the polygon |
---|
4922 | ! gridsin: grids within the polygon |
---|
4923 | ! strict: give an error if the area of the polygon is not fully covered |
---|
4924 | ! percentages: percentages of area of each of the grids within the polygon |
---|
4925 | |
---|
4926 | fname = 'spacepercen_within_reg' |
---|
4927 | |
---|
4928 | percentages = zeroRK |
---|
4929 | totpercent = zeroRK |
---|
4930 | totarea = zeroRK |
---|
4931 | |
---|
4932 | areapoly = shoelace_area_polygon(NvertexA, polygonA) |
---|
4933 | |
---|
4934 | DO ig = 1, Ngridsin |
---|
4935 | ix = gridsin(ig,1) |
---|
4936 | iy = gridsin(ig,2) |
---|
4937 | |
---|
4938 | ! Getting grid vertices |
---|
4939 | Nvertex = 0 |
---|
4940 | DO iv=1, Nvertexmax |
---|
4941 | IF (xBvals(ix,iy,iv) /= fillvalI) THEN |
---|
4942 | Nvertex = Nvertex + 1 |
---|
4943 | END IF |
---|
4944 | END DO |
---|
4945 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
4946 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
4947 | vertexgrid(:,1) = xBvals(ix,iy,1:Nvertex) |
---|
4948 | vertexgrid(:,2) = yBvals(ix,iy,1:Nvertex) |
---|
4949 | |
---|
4950 | ! Getting common vertices |
---|
4951 | NvertexAgrid = NvertexA*Nvertex*2 |
---|
4952 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
4953 | ALLOCATE(icoinpoly(NvertexAgrid,2)) |
---|
4954 | CALL coincident_polygon(NvertexA, Nvertex, NvertexAgrid, polygonA, vertexgrid, Ncoin, icoinpoly) |
---|
4955 | |
---|
4956 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
4957 | ALLOCATE(coinpoly(Ncoin,2)) |
---|
4958 | DO iv=1, Ncoin |
---|
4959 | coinpoly(iv,:) = icoinpoly(iv,:) |
---|
4960 | END DO |
---|
4961 | |
---|
4962 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
4963 | ALLOCATE(sortpoly(Ncoin,2)) |
---|
4964 | CALL sort_polygon(Ncoin, coinpoly, 1, Nsort, sortpoly) |
---|
4965 | |
---|
4966 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
4967 | ALLOCATE(poly(Nsort,2)) |
---|
4968 | DO iv=1, Nsort |
---|
4969 | poly(iv,:) = sortpoly(iv,:) |
---|
4970 | END DO |
---|
4971 | |
---|
4972 | areagpoly = shoelace_area_polygon(Nsort, poly) |
---|
4973 | IF (INT(LOG10(EPSILON(totpercent))) < 12) THEN |
---|
4974 | totarea = totarea + ABS(areagpoly) |
---|
4975 | percentages(ig) = ABS(areagpoly / areapoly) |
---|
4976 | ! f2py does not like it! |
---|
4977 | ! ELSE |
---|
4978 | ! totarea = totarea + DABS(areagpoly) |
---|
4979 | ! percentages(ig) = DABS(areagpoly / areapoly) |
---|
4980 | END IF |
---|
4981 | totpercent = totpercent + percentages(ig) |
---|
4982 | END DO |
---|
4983 | |
---|
4984 | IF (INT(LOG10(EPSILON(totpercent))) < 12) THEN |
---|
4985 | IF (strict .AND. ABS(totpercent - oneRK) > epsilonRK) THEN |
---|
4986 | PRINT *, 'totarea:', totarea, ' area polygon:', areapoly |
---|
4987 | PRINT *, 'totpercent:', totpercent, ' oneRK:', oneRK, ' diff:', totpercent - oneRK |
---|
4988 | WRITE(DS,'(F20.8)')ABS(totpercent - oneRK) |
---|
4989 | msg = 'sum of all grid space percentages does not cover (' // TRIM(DS) // ') all polygon' |
---|
4990 | CALL ErrMsg(msg, fname, -1) |
---|
4991 | END IF |
---|
4992 | ELSE |
---|
4993 | ! f2py does not like it! |
---|
4994 | ! IF (strict .AND. ABS(totpercent - oneRK) > epsilonRK) THEN |
---|
4995 | ! PRINT *, 'totarea:', totarea, ' area polygon:', areapoly |
---|
4996 | ! PRINT *, 'totpercent:', totpercent, ' oneRK:', oneRK, ' diff:', totpercent - oneRK |
---|
4997 | ! WRITE(DS,'(F20.16)')ABS(totpercent - oneRK) |
---|
4998 | ! msg = 'sum of all grid space percentages does not cover (' // TRIM(DS) // ') all polygon' |
---|
4999 | ! CALL ErrMsg(msg, fname, -1) |
---|
5000 | ! END IF |
---|
5001 | END IF |
---|
5002 | |
---|
5003 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5004 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
5005 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
5006 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
5007 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
5008 | |
---|
5009 | END SUBROUTINE spacepercen_within_reg |
---|
5010 | |
---|
5011 | SUBROUTINE grid_spacepercen_within_reg(NvertexA, polygonA, dx, dy, Nvertexmax, xBvals, yBvals, & |
---|
5012 | Ngridsin, gridsin, strict, gridspace, percentages) |
---|
5013 | ! Subroutine to compute the percentage of grid space of a series of grid cells which are encompassed |
---|
5014 | ! by a polygon |
---|
5015 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
5016 | ! and y axes. |
---|
5017 | |
---|
5018 | IMPLICIT NONE |
---|
5019 | |
---|
5020 | INTEGER, INTENT(in) :: NvertexA, dx, dy, Nvertexmax |
---|
5021 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polygonA |
---|
5022 | REAL(r_k), DIMENSION(dx,dy,Nvertexmax), INTENT(in) :: xBvals, yBvals |
---|
5023 | INTEGER, INTENT(in) :: Ngridsin |
---|
5024 | INTEGER, DIMENSION(Ngridsin,2), INTENT(in) :: gridsin |
---|
5025 | LOGICAL, INTENT(in) :: strict |
---|
5026 | REAL(r_k), DIMENSION(Ngridsin), INTENT(out) :: gridspace, percentages |
---|
5027 | |
---|
5028 | ! Local |
---|
5029 | INTEGER :: ig, iv, ix, iy |
---|
5030 | INTEGER :: Nvertex, NvertexAgrid, Ncoin, Nsort |
---|
5031 | CHARACTER(len=20) :: DS |
---|
5032 | REAL(r_k) :: areapoly, areagpoly |
---|
5033 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid, icoinpoly, coinpoly, & |
---|
5034 | sortpoly, poly |
---|
5035 | |
---|
5036 | !!!!!!! Variables |
---|
5037 | ! NvertexA: Number of vertices of the polygon to find the grids |
---|
5038 | ! polygonA: ordered vertices of the polygon |
---|
5039 | ! dx, dy: shape of the matrix with the grid points |
---|
5040 | ! xCvals, yCvals: coordinates of the center of the grid cells |
---|
5041 | ! Nvertexmax: Maximum number of vertices of the grid cells |
---|
5042 | ! xBvals, yBvals: coordinates of th vertices of the grid cells (-99999 for no vertex) |
---|
5043 | ! Ngridsin: number of grids with some extension within the polygon |
---|
5044 | ! gridsin: grids within the polygon |
---|
5045 | ! strict: give an error if the area of the polygon is not fully covered |
---|
5046 | ! gridspace: area of each of the grids |
---|
5047 | ! percentages: percentages of grid area of each of the grids within the polygon |
---|
5048 | |
---|
5049 | fname = 'grid_spacepercen_within_reg' |
---|
5050 | |
---|
5051 | gridspace = zeroRK |
---|
5052 | percentages = zeroRK |
---|
5053 | |
---|
5054 | DO ig = 1, Ngridsin |
---|
5055 | ix = gridsin(ig,1) |
---|
5056 | iy = gridsin(ig,2) |
---|
5057 | |
---|
5058 | ! Getting grid vertices |
---|
5059 | Nvertex = 0 |
---|
5060 | DO iv=1, Nvertexmax |
---|
5061 | IF (xBvals(ix,iy,iv) /= fillvalI) THEN |
---|
5062 | Nvertex = Nvertex + 1 |
---|
5063 | END IF |
---|
5064 | END DO |
---|
5065 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5066 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
5067 | vertexgrid(:,1) = xBvals(ix,iy,1:Nvertex) |
---|
5068 | vertexgrid(:,2) = yBvals(ix,iy,1:Nvertex) |
---|
5069 | areapoly = shoelace_area_polygon(Nvertex, vertexgrid) |
---|
5070 | |
---|
5071 | ! Getting common vertices |
---|
5072 | NvertexAgrid = NvertexA*Nvertex*2 |
---|
5073 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
5074 | ALLOCATE(icoinpoly(NvertexAgrid,2)) |
---|
5075 | CALL coincident_polygon(NvertexA, Nvertex, NvertexAgrid, polygonA, vertexgrid, Ncoin, icoinpoly) |
---|
5076 | |
---|
5077 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
5078 | ALLOCATE(coinpoly(Ncoin,2)) |
---|
5079 | DO iv=1, Ncoin |
---|
5080 | coinpoly(iv,:) = icoinpoly(iv,:) |
---|
5081 | END DO |
---|
5082 | |
---|
5083 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
5084 | ALLOCATE(sortpoly(Ncoin,2)) |
---|
5085 | CALL sort_polygon(Ncoin, coinpoly, 1, Nsort, sortpoly) |
---|
5086 | |
---|
5087 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
5088 | ALLOCATE(poly(Nsort,2)) |
---|
5089 | DO iv=1, Nsort |
---|
5090 | poly(iv,:) = sortpoly(iv,:) |
---|
5091 | END DO |
---|
5092 | |
---|
5093 | areagpoly = shoelace_area_polygon(Nsort, poly) |
---|
5094 | gridspace(ig) = ABS(areapoly) |
---|
5095 | percentages(ig) = ABS(areagpoly / areapoly) |
---|
5096 | END DO |
---|
5097 | |
---|
5098 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5099 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
5100 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
5101 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
5102 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
5103 | |
---|
5104 | END SUBROUTINE grid_spacepercen_within_reg |
---|
5105 | |
---|
5106 | SUBROUTINE grid_spacepercen_within_reg_providing_polys(NvertexA, polygonA, dx, dy, Nvertexmax, & |
---|
5107 | xBvals, yBvals, Ngridsin, gridsin, strict, Nmaxver2, Ncoinpoly, ccoinpoly, gridspace, percentages) |
---|
5108 | ! Subroutine to compute the percentage of grid space of a series of grid cells which are encompassed |
---|
5109 | ! by a polygon providing coordinates of the resultant polygons |
---|
5110 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
5111 | ! and y axes. |
---|
5112 | |
---|
5113 | IMPLICIT NONE |
---|
5114 | |
---|
5115 | INTEGER, INTENT(in) :: NvertexA, dx, dy, Nvertexmax, Nmaxver2 |
---|
5116 | REAL(r_k), DIMENSION(NvertexA,2), INTENT(in) :: polygonA |
---|
5117 | REAL(r_k), DIMENSION(dx,dy,Nvertexmax), INTENT(in) :: xBvals, yBvals |
---|
5118 | INTEGER, INTENT(in) :: Ngridsin |
---|
5119 | INTEGER, DIMENSION(Ngridsin,2), INTENT(in) :: gridsin |
---|
5120 | LOGICAL, INTENT(in) :: strict |
---|
5121 | INTEGER, DIMENSION(Ngridsin), INTENT(out) :: Ncoinpoly |
---|
5122 | REAL(r_k), DIMENSION(Ngridsin,Nmaxver2,2), & |
---|
5123 | INTENT(out) :: ccoinpoly |
---|
5124 | REAL(r_k), DIMENSION(Ngridsin), INTENT(out) :: gridspace, percentages |
---|
5125 | |
---|
5126 | ! Local |
---|
5127 | INTEGER :: ig, iv, ix, iy |
---|
5128 | INTEGER :: Nvertex, NvertexAgrid, Ncoin, Nsort |
---|
5129 | CHARACTER(len=20) :: DS |
---|
5130 | REAL(r_k) :: areapoly, areagpoly |
---|
5131 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid, icoinpoly, coinpoly, & |
---|
5132 | sortpoly, poly |
---|
5133 | |
---|
5134 | !!!!!!! Variables |
---|
5135 | ! NvertexA: Number of vertices of the polygon to find the grids |
---|
5136 | ! polygonA: ordered vertices of the polygon |
---|
5137 | ! dx, dy: shape of the matrix with the grid points |
---|
5138 | ! xCvals, yCvals: coordinates of the center of the grid cells |
---|
5139 | ! Nvertexmax: Maximum number of vertices of the grid cells |
---|
5140 | ! xBvals, yBvals: coordinates of th vertices of the grid cells (-99999 for no vertex) |
---|
5141 | ! Ngridsin: number of grids with some extension within the polygon |
---|
5142 | ! gridsin: grids within the polygon |
---|
5143 | ! strict: give an error if the area of the polygon is not fully covered |
---|
5144 | ! Nmaxver2: maximum possible number of vertices of the coincident polygon |
---|
5145 | ! Ncoinpoly: number of vertices of the coincident polygon |
---|
5146 | ! coinpoly: coordinates of the vertices of the coincident polygon |
---|
5147 | ! gridspace: area of each of the grids |
---|
5148 | ! percentages: percentages of grid area of each of the grids within the polygon |
---|
5149 | |
---|
5150 | fname = 'grid_spacepercen_within_reg_providing_polys' |
---|
5151 | |
---|
5152 | gridspace = zeroRK |
---|
5153 | percentages = zeroRK |
---|
5154 | |
---|
5155 | DO ig = 1, Ngridsin |
---|
5156 | ix = gridsin(ig,1) |
---|
5157 | iy = gridsin(ig,2) |
---|
5158 | |
---|
5159 | ! Getting grid vertices |
---|
5160 | Nvertex = 0 |
---|
5161 | DO iv=1, Nvertexmax |
---|
5162 | IF (xBvals(ix,iy,iv) /= fillvalI) THEN |
---|
5163 | Nvertex = Nvertex + 1 |
---|
5164 | END IF |
---|
5165 | END DO |
---|
5166 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5167 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
5168 | vertexgrid(:,1) = xBvals(ix,iy,1:Nvertex) |
---|
5169 | vertexgrid(:,2) = yBvals(ix,iy,1:Nvertex) |
---|
5170 | areapoly = shoelace_area_polygon(Nvertex, vertexgrid) |
---|
5171 | |
---|
5172 | ! Getting common vertices |
---|
5173 | NvertexAgrid = NvertexA*Nvertex*2 |
---|
5174 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
5175 | ALLOCATE(icoinpoly(NvertexAgrid,2)) |
---|
5176 | CALL coincident_polygon(NvertexA, Nvertex, NvertexAgrid, polygonA, vertexgrid, Ncoin, icoinpoly) |
---|
5177 | |
---|
5178 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
5179 | ALLOCATE(coinpoly(Ncoin,2)) |
---|
5180 | DO iv=1, Ncoin |
---|
5181 | coinpoly(iv,:) = icoinpoly(iv,:) |
---|
5182 | END DO |
---|
5183 | |
---|
5184 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
5185 | ALLOCATE(sortpoly(Ncoin,2)) |
---|
5186 | CALL sort_polygon(Ncoin, coinpoly, 1, Nsort, sortpoly) |
---|
5187 | |
---|
5188 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
5189 | ALLOCATE(poly(Nsort,2)) |
---|
5190 | DO iv=1, Nsort |
---|
5191 | poly(iv,:) = sortpoly(iv,:) |
---|
5192 | END DO |
---|
5193 | |
---|
5194 | areagpoly = shoelace_area_polygon(Nsort, poly) |
---|
5195 | Ncoinpoly(ig)= Nsort |
---|
5196 | ccoinpoly(ig,:,:) = poly(:,:) |
---|
5197 | gridspace(ig) = ABS(areapoly) |
---|
5198 | percentages(ig) = ABS(areagpoly / areapoly) |
---|
5199 | END DO |
---|
5200 | |
---|
5201 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5202 | IF (ALLOCATED(icoinpoly)) DEALLOCATE(icoinpoly) |
---|
5203 | IF (ALLOCATED(coinpoly)) DEALLOCATE(coinpoly) |
---|
5204 | IF (ALLOCATED(sortpoly)) DEALLOCATE(sortpoly) |
---|
5205 | IF (ALLOCATED(poly)) DEALLOCATE(poly) |
---|
5206 | |
---|
5207 | END SUBROUTINE grid_spacepercen_within_reg_providing_polys |
---|
5208 | |
---|
5209 | SUBROUTINE spacepercen(xCAvals, yCAvals, xBAvals, yBAvals, xCBvals, yCBvals, xBBvals, yBBvals, & |
---|
5210 | dxA, dyA, NAvertexmax, dxB, dyB, dxyB, NBvertexmax, strict, Ngridsin, gridsin, areas, percentages) |
---|
5211 | ! Subroutine to compute the space-percentages of a series of grid cells (B) into another series of |
---|
5212 | ! grid-cells (A) |
---|
5213 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
5214 | ! and y axes. |
---|
5215 | |
---|
5216 | IMPLICIT NONE |
---|
5217 | |
---|
5218 | INTEGER, INTENT(in) :: dxA, dyA, NAvertexmax |
---|
5219 | INTEGER, INTENT(in) :: dxB, dyB, NBvertexmax, dxyB |
---|
5220 | REAL(r_k), DIMENSION(dxA,dyA), INTENT(in) :: xCAvals, yCAvals |
---|
5221 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(in) :: xCBvals, yCBvals |
---|
5222 | REAL(r_k), DIMENSION(dxA,dyA,NAvertexmax), INTENT(in):: xBAvals, yBAvals |
---|
5223 | REAL(r_k), DIMENSION(dxB,dyB,NBvertexmax), INTENT(in):: xBBvals, yBBvals |
---|
5224 | LOGICAL, INTENT(in) :: strict |
---|
5225 | INTEGER, DIMENSION(dxA,dyA), INTENT(out) :: Ngridsin |
---|
5226 | INTEGER, DIMENSION(dxA,dyA,dxyB,2), INTENT(out) :: gridsin |
---|
5227 | REAL(r_k), DIMENSION(dxA,dyA), INTENT(out) :: areas |
---|
5228 | REAL(r_k), DIMENSION(dxA,dyA,dxyB), INTENT(out) :: percentages |
---|
5229 | |
---|
5230 | ! Local |
---|
5231 | INTEGER :: iv, ix, iy |
---|
5232 | INTEGER :: Nvertex |
---|
5233 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: poinsin |
---|
5234 | CHARACTER(len=20) :: IS |
---|
5235 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid |
---|
5236 | |
---|
5237 | !!!!!!! Variables |
---|
5238 | ! dxA, dyA: shape of the matrix with the grid points A |
---|
5239 | ! xCAvals, yCAvals: coordinates of the center of the grid cells A |
---|
5240 | ! NAvertexmax: Maximum number of vertices of the grid cells A |
---|
5241 | ! xBAvals, yBAvals: coordinates of th vertices of the grid cells A (-99999 for no vertex) |
---|
5242 | ! dxB, dyB: shape of the matrix with the grid points B |
---|
5243 | ! xCBvals, yCBvals: coordinates of the center of the grid cells B |
---|
5244 | ! NBvertexmax: Maximum number of vertices of the grid cells B |
---|
5245 | ! xBBvals, yBBvals: coordinates of th vertices of the grid cells B (-99999 for no vertex) |
---|
5246 | ! strict: give an error if the area of the polygon is not fully covered |
---|
5247 | ! Ngridsin: number of grids from grid B with some extension within the grid cell A |
---|
5248 | ! gridsin: indices of B grids within the grids of A |
---|
5249 | ! areas: areas of the polygons |
---|
5250 | ! percentages: percentages of area of cells B of each of the grids within the grid cell A |
---|
5251 | |
---|
5252 | fname = 'spacepercen' |
---|
5253 | |
---|
5254 | DO ix = 1, dxA |
---|
5255 | DO iy = 1, dyA |
---|
5256 | |
---|
5257 | ! Getting grid vertices |
---|
5258 | Nvertex = 0 |
---|
5259 | DO iv=1, NAvertexmax |
---|
5260 | IF (xBAvals(ix,iy,iv) /= fillval64) THEN |
---|
5261 | Nvertex = Nvertex + 1 |
---|
5262 | END IF |
---|
5263 | END DO |
---|
5264 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5265 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
5266 | vertexgrid(:,1) = xBAvals(ix,iy,1:Nvertex) |
---|
5267 | vertexgrid(:,2) = yBAvals(ix,iy,1:Nvertex) |
---|
5268 | |
---|
5269 | CALL grid_within_polygon(Nvertex, vertexgrid, dxB, dyB, dxB*dyB, xCBvals, yCBvals, & |
---|
5270 | NBvertexmax, xBBvals, yBBvals, Ngridsin(ix,iy), gridsin(ix,iy,:,:)) |
---|
5271 | |
---|
5272 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5273 | ALLOCATE(poinsin(Ngridsin(ix,iy),2)) |
---|
5274 | |
---|
5275 | DO iv=1, Ngridsin(ix,iy) |
---|
5276 | poinsin(iv,1) = gridsin(ix,iy,iv,1) |
---|
5277 | poinsin(iv,2) = gridsin(ix,iy,iv,2) |
---|
5278 | END DO |
---|
5279 | |
---|
5280 | areas(ix,iy) = shoelace_area_polygon(Nvertex, vertexgrid) |
---|
5281 | CALL spacepercen_within_reg(Nvertex, vertexgrid, dxB, dyB, NBvertexmax, xBBvals, yBBvals, & |
---|
5282 | Ngridsin(ix,iy), poinsin, strict, percentages(ix,iy,:)) |
---|
5283 | |
---|
5284 | END DO |
---|
5285 | END DO |
---|
5286 | |
---|
5287 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5288 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5289 | |
---|
5290 | END SUBROUTINE spacepercen |
---|
5291 | |
---|
5292 | SUBROUTINE grid_spacepercen(xCAvals, yCAvals, xBAvals, yBAvals, xCBvals, yCBvals, xBBvals, yBBvals, & |
---|
5293 | dxA, dyA, NAvertexmax, dxB, dyB, dxyB, NBvertexmax, strict, Ngridsin, gridsin, areas2D, areas, & |
---|
5294 | percentages) |
---|
5295 | ! Subroutine to compute the space-percentages of a series of grid cells (B) which lay inside another |
---|
5296 | ! series of grid-cells (A) porviding coincident polygons |
---|
5297 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
5298 | ! and y axes. |
---|
5299 | |
---|
5300 | IMPLICIT NONE |
---|
5301 | |
---|
5302 | INTEGER, INTENT(in) :: dxA, dyA, NAvertexmax |
---|
5303 | INTEGER, INTENT(in) :: dxB, dyB, NBvertexmax, dxyB |
---|
5304 | REAL(r_k), DIMENSION(dxA,dyA), INTENT(in) :: xCAvals, yCAvals |
---|
5305 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(in) :: xCBvals, yCBvals |
---|
5306 | REAL(r_k), DIMENSION(dxA,dyA,NAvertexmax), INTENT(in):: xBAvals, yBAvals |
---|
5307 | REAL(r_k), DIMENSION(dxB,dyB,NBvertexmax), INTENT(in):: xBBvals, yBBvals |
---|
5308 | LOGICAL, INTENT(in) :: strict |
---|
5309 | INTEGER, DIMENSION(dxA,dyA), INTENT(out) :: Ngridsin |
---|
5310 | INTEGER, DIMENSION(dxA,dyA,dxyB,2), INTENT(out) :: gridsin |
---|
5311 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(out) :: areas2D |
---|
5312 | REAL(r_k), DIMENSION(dxA,dyA,dxyB), INTENT(out) :: areas,percentages |
---|
5313 | |
---|
5314 | ! Local |
---|
5315 | INTEGER :: iv, ix, iy |
---|
5316 | INTEGER :: Nvertex, Nptin |
---|
5317 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: poinsin |
---|
5318 | CHARACTER(len=20) :: IS |
---|
5319 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid |
---|
5320 | |
---|
5321 | !!!!!!! Variables |
---|
5322 | ! dxA, dyA: shape of the matrix with the grid points A |
---|
5323 | ! xCAvals, yCAvals: coordinates of the center of the grid cells A |
---|
5324 | ! NAvertexmax: Maximum number of vertices of the grid cells A |
---|
5325 | ! xBAvals, yBAvals: coordinates of th vertices of the grid cells A (-99999 for no vertex) |
---|
5326 | ! dxB, dyB: shape of the matrix with the grid points B |
---|
5327 | ! xCBvals, yCBvals: coordinates of the center of the grid cells B |
---|
5328 | ! NBvertexmax: Maximum number of vertices of the grid cells B |
---|
5329 | ! xBBvals, yBBvals: coordinates of th vertices of the grid cells B (-99999 for no vertex) |
---|
5330 | ! strict: give an error if the area of the polygon is not fully covered |
---|
5331 | ! Ngridsin: number of grids from grid B with some extension within the grid cell A |
---|
5332 | ! gridsin: indices of B grids within the grids of A |
---|
5333 | ! areas2D: areas of the grids as 2D matrix in the original shape |
---|
5334 | ! areas: areas of cells B of each of the grids inside the grid cell A |
---|
5335 | ! percentages: percentages of area of cells B of each of the grids inside the grid cell A |
---|
5336 | |
---|
5337 | fname = 'grid_spacepercen' |
---|
5338 | |
---|
5339 | areas2D = zeroRK |
---|
5340 | areas = zeroRK |
---|
5341 | percentages = zeroRK |
---|
5342 | |
---|
5343 | DO ix = 1, dxA |
---|
5344 | DO iy = 1, dyA |
---|
5345 | |
---|
5346 | ! Getting grid vertices |
---|
5347 | Nvertex = 0 |
---|
5348 | DO iv=1, NAvertexmax |
---|
5349 | IF (xBAvals(ix,iy,iv) /= fillval64) THEN |
---|
5350 | Nvertex = Nvertex + 1 |
---|
5351 | END IF |
---|
5352 | END DO |
---|
5353 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5354 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
5355 | vertexgrid(:,1) = xBAvals(ix,iy,1:Nvertex) |
---|
5356 | vertexgrid(:,2) = yBAvals(ix,iy,1:Nvertex) |
---|
5357 | |
---|
5358 | CALL grid_within_polygon(Nvertex, vertexgrid, dxB, dyB, dxB*dyB, xCBvals, yCBvals, & |
---|
5359 | NBvertexmax, xBBvals, yBBvals, Ngridsin(ix,iy), gridsin(ix,iy,1:dxyB,:)) |
---|
5360 | |
---|
5361 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5362 | ALLOCATE(poinsin(Ngridsin(ix,iy),2)) |
---|
5363 | |
---|
5364 | DO iv=1, Ngridsin(ix,iy) |
---|
5365 | poinsin(iv,1) = gridsin(ix,iy,iv,1) |
---|
5366 | poinsin(iv,2) = gridsin(ix,iy,iv,2) |
---|
5367 | END DO |
---|
5368 | |
---|
5369 | Nptin = Ngridsin(ix,iy) |
---|
5370 | CALL grid_spacepercen_within_reg(Nvertex, vertexgrid, dxB, dyB, NBvertexmax, xBBvals, & |
---|
5371 | yBBvals, Ngridsin(ix,iy), poinsin, strict, areas(ix,iy,1:Nptin), percentages(ix,iy,1:Nptin)) |
---|
5372 | |
---|
5373 | ! Filling areas |
---|
5374 | DO iv = 1, Ngridsin(ix,iy) |
---|
5375 | IF (areas2D(poinsin(iv,1), poinsin(iv,2)) == zeroRK) THEN |
---|
5376 | areas2D(poinsin(iv,1), poinsin(iv,2)) = areas(ix,iy,iv) |
---|
5377 | END IF |
---|
5378 | END DO |
---|
5379 | |
---|
5380 | END DO |
---|
5381 | END DO |
---|
5382 | |
---|
5383 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5384 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5385 | |
---|
5386 | END SUBROUTINE grid_spacepercen |
---|
5387 | |
---|
5388 | SUBROUTINE grid_spacepercen_providing_polys(xCAvals, yCAvals, xBAvals, yBAvals, xCBvals, yCBvals, & |
---|
5389 | xBBvals, yBBvals, dxA, dyA, NAvertexmax, dxB, dyB, dxyB, NBvertexmax, strict, Nmaxvercoin, & |
---|
5390 | Nvercoinpolys, vercoinpolys, Ngridsin, gridsin, areas, percentages) |
---|
5391 | ! Subroutine to compute the space-percentages of a series of grid cells (B) which lay inside another |
---|
5392 | ! series of grid-cells (A) providing coincident polygons |
---|
5393 | ! NOTE: Assuming coordinates on the plane with rectilinar, distance preserved and perpendicular x |
---|
5394 | ! and y axes. |
---|
5395 | |
---|
5396 | IMPLICIT NONE |
---|
5397 | |
---|
5398 | INTEGER, INTENT(in) :: dxA, dyA, NAvertexmax |
---|
5399 | INTEGER, INTENT(in) :: dxB, dyB, NBvertexmax, dxyB |
---|
5400 | INTEGER, INTENT(in) :: Nmaxvercoin |
---|
5401 | REAL(r_k), DIMENSION(dxA,dyA), INTENT(in) :: xCAvals, yCAvals |
---|
5402 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(in) :: xCBvals, yCBvals |
---|
5403 | REAL(r_k), DIMENSION(dxA,dyA,NAvertexmax), INTENT(in):: xBAvals, yBAvals |
---|
5404 | REAL(r_k), DIMENSION(dxB,dyB,NBvertexmax), INTENT(in):: xBBvals, yBBvals |
---|
5405 | LOGICAL, INTENT(in) :: strict |
---|
5406 | INTEGER, DIMENSION(dxA,dyA,dxyB,Nmaxvercoin), & |
---|
5407 | INTENT(out) :: Nvercoinpolys |
---|
5408 | REAL(r_k), DIMENSION(dxA,dyA,dxyB,Nmaxvercoin,2), & |
---|
5409 | INTENT(out) :: vercoinpolys |
---|
5410 | INTEGER, DIMENSION(dxA,dyA), INTENT(out) :: Ngridsin |
---|
5411 | INTEGER, DIMENSION(dxA,dyA,dxyB,2), INTENT(out) :: gridsin |
---|
5412 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(out) :: areas |
---|
5413 | REAL(r_k), DIMENSION(dxA,dyA,dxyB), INTENT(out) :: percentages |
---|
5414 | |
---|
5415 | ! Local |
---|
5416 | INTEGER :: iv, ix, iy |
---|
5417 | INTEGER :: Nvertex |
---|
5418 | INTEGER, ALLOCATABLE, DIMENSION(:,:) :: poinsin |
---|
5419 | CHARACTER(len=20) :: IS |
---|
5420 | REAL(r_k), ALLOCATABLE, DIMENSION(:) :: pareas |
---|
5421 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: vertexgrid |
---|
5422 | |
---|
5423 | !!!!!!! Variables |
---|
5424 | ! dxA, dyA: shape of the matrix with the grid points A |
---|
5425 | ! xCAvals, yCAvals: coordinates of the center of the grid cells A |
---|
5426 | ! NAvertexmax: Maximum number of vertices of the grid cells A |
---|
5427 | ! xBAvals, yBAvals: coordinates of th vertices of the grid cells A (-99999 for no vertex) |
---|
5428 | ! dxB, dyB: shape of the matrix with the grid points B |
---|
5429 | ! xCBvals, yCBvals: coordinates of the center of the grid cells B |
---|
5430 | ! NBvertexmax: Maximum number of vertices of the grid cells B |
---|
5431 | ! xBBvals, yBBvals: coordinates of th vertices of the grid cells B (-99999 for no vertex) |
---|
5432 | ! strict: give an error if the area of the polygon is not fully covered |
---|
5433 | ! Nvercoinpolys: number of vertices of the coincident polygon of each grid |
---|
5434 | ! coinpolys: of vertices of the coincident polygon of each grid |
---|
5435 | ! Ngridsin: number of grids from grid B with some extension within the grid cell A |
---|
5436 | ! gridsin: indices of B grids within the grids of A |
---|
5437 | ! areas: areas of the grids |
---|
5438 | ! percentages: percentages of area of cells B of each of the grids inside the grid cell A |
---|
5439 | |
---|
5440 | fname = 'grid_spacepercen_providing_polys' |
---|
5441 | |
---|
5442 | areas = zeroRK |
---|
5443 | |
---|
5444 | DO ix = 1, dxA |
---|
5445 | DO iy = 1, dyA |
---|
5446 | |
---|
5447 | ! Getting grid vertices |
---|
5448 | Nvertex = 0 |
---|
5449 | DO iv=1, NAvertexmax |
---|
5450 | IF (xBAvals(ix,iy,iv) /= fillval64) THEN |
---|
5451 | Nvertex = Nvertex + 1 |
---|
5452 | END IF |
---|
5453 | END DO |
---|
5454 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5455 | ALLOCATE(vertexgrid(Nvertex,2)) |
---|
5456 | vertexgrid(:,1) = xBAvals(ix,iy,1:Nvertex) |
---|
5457 | vertexgrid(:,2) = yBAvals(ix,iy,1:Nvertex) |
---|
5458 | |
---|
5459 | CALL grid_within_polygon(Nvertex, vertexgrid, dxB, dyB, dxB*dyB, xCBvals, yCBvals, & |
---|
5460 | NBvertexmax, xBBvals, yBBvals, Ngridsin(ix,iy), gridsin(ix,iy,:,:)) |
---|
5461 | |
---|
5462 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5463 | ALLOCATE(poinsin(Ngridsin(ix,iy),2)) |
---|
5464 | IF (ALLOCATED(pareas)) DEALLOCATE(pareas) |
---|
5465 | ALLOCATE(pareas(Ngridsin(ix,iy))) |
---|
5466 | |
---|
5467 | DO iv=1, Ngridsin(ix,iy) |
---|
5468 | poinsin(iv,1) = gridsin(ix,iy,iv,1) |
---|
5469 | poinsin(iv,2) = gridsin(ix,iy,iv,2) |
---|
5470 | END DO |
---|
5471 | |
---|
5472 | CALL grid_spacepercen_within_reg_providing_polys(Nvertex, vertexgrid, dxB, dyB, NBvertexmax, & |
---|
5473 | xBBvals, yBBvals, Ngridsin(ix,iy), poinsin, strict, Nmaxvercoin, Nvercoinpolys(ix,iy,:,:), & |
---|
5474 | vercoinpolys(ix,iy,:,:,:), pareas, percentages(ix,iy,:)) |
---|
5475 | |
---|
5476 | ! Filling areas |
---|
5477 | DO iv = 1, Ngridsin(ix,iy) |
---|
5478 | IF (areas(poinsin(iv,1), poinsin(iv,2)) == zeroRK) THEN |
---|
5479 | areas(poinsin(iv,1), poinsin(iv,2)) = pareas(iv) |
---|
5480 | END IF |
---|
5481 | END DO |
---|
5482 | |
---|
5483 | END DO |
---|
5484 | END DO |
---|
5485 | |
---|
5486 | IF (ALLOCATED(vertexgrid)) DEALLOCATE(vertexgrid) |
---|
5487 | IF (ALLOCATED(pareas)) DEALLOCATE(pareas) |
---|
5488 | IF (ALLOCATED(poinsin)) DEALLOCATE(poinsin) |
---|
5489 | |
---|
5490 | END SUBROUTINE grid_spacepercen_providing_polys |
---|
5491 | |
---|
5492 | SUBROUTINE unique_matrixRK2D(dx, dy, dxy, matrix2D, Nunique, unique) |
---|
5493 | ! Subroutine to provide the unique values within a 2D RK matrix |
---|
5494 | |
---|
5495 | IMPLICIT NONE |
---|
5496 | |
---|
5497 | INTEGER, INTENT(in) :: dx, dy, dxy |
---|
5498 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: matrix2D |
---|
5499 | INTEGER, INTENT(out) :: Nunique |
---|
5500 | REAL(r_k), DIMENSION(dxy), INTENT(out) :: unique |
---|
5501 | |
---|
5502 | ! Local |
---|
5503 | INTEGER :: ix, iy, iu, minvalv |
---|
5504 | LOGICAL :: single |
---|
5505 | REAL(r_k), ALLOCATABLE, DIMENSION(:) :: uniques |
---|
5506 | |
---|
5507 | |
---|
5508 | !!!!!!! Variables |
---|
5509 | ! dx, dy: dimensions of the matrix |
---|
5510 | ! dxy: dx*dy, maximum possible amount of different values |
---|
5511 | ! matrix2D: matgrix of values |
---|
5512 | ! Nunique: amount of unique values |
---|
5513 | ! unique: sorted from minimum to maximum vector with the unique values |
---|
5514 | |
---|
5515 | fname = 'unique_matrixRK2D' |
---|
5516 | |
---|
5517 | minvalv = MINVAL(matrix2D) |
---|
5518 | |
---|
5519 | Nunique = 1 |
---|
5520 | unique(1) = minvalv |
---|
5521 | DO ix= 1, dx |
---|
5522 | DO iy= 1, dy |
---|
5523 | single = .TRUE. |
---|
5524 | DO iu = 1, Nunique |
---|
5525 | IF (matrix2D(ix,iy) == unique(iu)) THEN |
---|
5526 | single = .FALSE. |
---|
5527 | EXIT |
---|
5528 | END IF |
---|
5529 | END DO |
---|
5530 | IF (single) THEN |
---|
5531 | Nunique = Nunique + 1 |
---|
5532 | unique(Nunique) = matrix2D(ix,iy) |
---|
5533 | END IF |
---|
5534 | END DO |
---|
5535 | END DO |
---|
5536 | IF (ALLOCATED(uniques)) DEALLOCATE(uniques) |
---|
5537 | ALLOCATE(uniques(Nunique)) |
---|
5538 | uniques(1:Nunique) = unique(1:Nunique) |
---|
5539 | |
---|
5540 | CALL sortR_K(uniques(1:Nunique), Nunique) |
---|
5541 | unique(1:Nunique) = uniques(1:Nunique) |
---|
5542 | |
---|
5543 | END SUBROUTINE unique_matrixRK2D |
---|
5544 | |
---|
5545 | SUBROUTINE spaceweightstats(varin, Ngridsin, gridsin, percentages, stats, varout, dxA, dyA, dxB, & |
---|
5546 | dyB, maxNgridsin, Lstats) |
---|
5547 | ! Subroutine to compute an spatial statistics value from a matrix B into a matrix A using weights |
---|
5548 | |
---|
5549 | IMPLICIT NONE |
---|
5550 | |
---|
5551 | INTEGER, INTENT(in) :: dxA, dyA, dxB, dyB, maxNgridsin, Lstats |
---|
5552 | CHARACTER(len=*), INTENT(in) :: stats |
---|
5553 | INTEGER, DIMENSION(dxA,dyA), INTENT(in) :: Ngridsin |
---|
5554 | INTEGER, DIMENSION(dxA,dyA,maxNgridsin,2), INTENT(in):: gridsin |
---|
5555 | REAL(r_k), DIMENSION(dxB,dyB), INTENT(in) :: varin |
---|
5556 | REAL(r_k), DIMENSION(dxA,dyA,maxNgridsin), INTENT(in):: percentages |
---|
5557 | REAL(r_k), DIMENSION(dxA,dyA,Lstats), INTENT(out) :: varout |
---|
5558 | |
---|
5559 | ! Local |
---|
5560 | INTEGER :: ix, iy, iv, ic, iu, ii, jj |
---|
5561 | INTEGER :: Ncounts |
---|
5562 | CHARACTER(len=3) :: val1S, val2S |
---|
5563 | CHARACTER(len=30) :: val3S |
---|
5564 | REAL(r_k) :: val1, val2 |
---|
5565 | REAL(r_k), DIMENSION(Lstats) :: icounts |
---|
5566 | |
---|
5567 | !!!!!!! Variables |
---|
5568 | ! dxA, dyA: length of dimensions of matrix A |
---|
5569 | ! dxB, dyB: length of dimensions of matrix B |
---|
5570 | ! maxNgridsin: maximum number of grid points from B to be used to compute into a grid of matrix A |
---|
5571 | ! Lstats: length of the dimension of the statistics |
---|
5572 | ! varin: variable from matrix B to be used |
---|
5573 | ! Ngridsin: number of grids from matrix B for each grid of matrix A |
---|
5574 | ! gridsin: coordinates of grids of matrix B for each grid of matrix A |
---|
5575 | ! percentages: weights as percentages of space of grid in matrix A covered by grid of matrix B |
---|
5576 | ! stats: name of the spatial statistics to compute inside each grid of matrix A using values from |
---|
5577 | ! matrix B. Avaialbe ones: |
---|
5578 | ! 'min': minimum value |
---|
5579 | ! 'max': maximum value |
---|
5580 | ! 'mean': space weighted mean value |
---|
5581 | ! 'mean2': space weighted quadratic mean value |
---|
5582 | ! 'stddev': space weighted standard deviation value |
---|
5583 | ! 'count': percentage of the space of matrix A covered by each different value of matrix B |
---|
5584 | ! varout: output statistical variable |
---|
5585 | |
---|
5586 | fname = 'spaceweightstats' |
---|
5587 | |
---|
5588 | ! Let's be efficvient? |
---|
5589 | statn: SELECT CASE(TRIM(stats)) |
---|
5590 | CASE('min') |
---|
5591 | varout = fillVal64 |
---|
5592 | DO ix=1, dxA |
---|
5593 | DO iy=1, dyA |
---|
5594 | DO iv=1, Ngridsin(ix,iy) |
---|
5595 | ii = gridsin(ix,iy,iv,1) |
---|
5596 | jj = gridsin(ix,iy,iv,2) |
---|
5597 | IF (varin(ii,jj) < varout(ix,iy,Lstats)) varout(ix,iy,1) = varin(ii,jj) |
---|
5598 | END DO |
---|
5599 | END DO |
---|
5600 | END DO |
---|
5601 | CASE('max') |
---|
5602 | varout = -fillVal64 |
---|
5603 | DO ix=1, dxA |
---|
5604 | DO iy=1, dyA |
---|
5605 | DO iv=1, Ngridsin(ix,iy) |
---|
5606 | ii = gridsin(ix,iy,iv,1) |
---|
5607 | jj = gridsin(ix,iy,iv,2) |
---|
5608 | IF (varin(ii,jj) > varout(ix,iy,Lstats)) varout(ix,iy,1) = varin(ii,jj) |
---|
5609 | END DO |
---|
5610 | END DO |
---|
5611 | END DO |
---|
5612 | CASE('mean') |
---|
5613 | varout = zeroRK |
---|
5614 | DO ix=1, dxA |
---|
5615 | DO iy=1, dyA |
---|
5616 | DO iv=1, Ngridsin(ix,iy) |
---|
5617 | ii = gridsin(ix,iy,iv,1) |
---|
5618 | jj = gridsin(ix,iy,iv,2) |
---|
5619 | varout(ix,iy,1) = varout(ix,iy,1) + varin(ii,jj)*percentages(ix,iy,iv) |
---|
5620 | END DO |
---|
5621 | END DO |
---|
5622 | END DO |
---|
5623 | CASE('mean2') |
---|
5624 | varout = zeroRK |
---|
5625 | DO ix=1, dxA |
---|
5626 | DO iy=1, dyA |
---|
5627 | DO iv=1, Ngridsin(ix,iy) |
---|
5628 | ii = gridsin(ix,iy,iv,1) |
---|
5629 | jj = gridsin(ix,iy,iv,2) |
---|
5630 | varout(ix,iy,1) = varout(ix,iy,1) + percentages(ix,iy,iv)*(varin(ii,jj))**2 |
---|
5631 | END DO |
---|
5632 | varout(ix,iy,1) = varout(ix,iy,1) / Ngridsin(ix,iy) |
---|
5633 | END DO |
---|
5634 | END DO |
---|
5635 | CASE('stddev') |
---|
5636 | varout = zeroRK |
---|
5637 | DO ix=1, dxA |
---|
5638 | DO iy=1, dyA |
---|
5639 | val1 = zeroRK |
---|
5640 | val2 = zeroRK |
---|
5641 | DO iv=1, Ngridsin(ix,iy) |
---|
5642 | ii = gridsin(ix,iy,iv,1) |
---|
5643 | jj = gridsin(ix,iy,iv,2) |
---|
5644 | val1 = val1 + varin(ii,jj)*percentages(ix,iy,iv) |
---|
5645 | val2 = val2 + percentages(ix,iy,iv)*(varin(ii,jj))**2 |
---|
5646 | END DO |
---|
5647 | varout(ix,iy,1) = SQRT(val2 - val1**2) |
---|
5648 | END DO |
---|
5649 | END DO |
---|
5650 | CASE('count') |
---|
5651 | CALL unique_matrixRK2D(dxB, dyB, dxB*dyB, varin, Ncounts, icounts) |
---|
5652 | IF (Lstats /= Ncounts) THEN |
---|
5653 | PRINT *,' ' // TRIM(fname) // 'provided:', Lstats |
---|
5654 | PRINT *,' ' // TRIM(fname) // 'found:', Ncounts, ' :', icounts |
---|
5655 | WRITE(val1S,'(I3)')Lstats |
---|
5656 | WRITE(val2S,'(I3)')Ncounts |
---|
5657 | msg = "for 'count' different amount of passed categories: " // TRIM(val1S) // & |
---|
5658 | ' and found ' // TRIM(val2S) |
---|
5659 | CALL ErrMsg(msg, fname, -1) |
---|
5660 | END IF |
---|
5661 | varout = zeroRK |
---|
5662 | DO ix=1, dxA |
---|
5663 | DO iy=1, dyA |
---|
5664 | DO iv=1, Ngridsin(ix,iy) |
---|
5665 | ii = gridsin(ix,iy,iv,1) |
---|
5666 | jj = gridsin(ix,iy,iv,2) |
---|
5667 | ic = Index1DArrayR_K(icounts, Ncounts, varin(ii,jj)) |
---|
5668 | IF (ic == -1) THEN |
---|
5669 | WRITE(val3S,'(f30.20)')varin(ii,jj) |
---|
5670 | msg = "value '" // val3S // "' for 'count' not found" |
---|
5671 | CALL ErrMSg(msg, fname, -1) |
---|
5672 | ELSE |
---|
5673 | varout(ix,iy,ic) = varout(ix,iy,ic) + percentages(ix,iy,iv) |
---|
5674 | END IF |
---|
5675 | END DO |
---|
5676 | END DO |
---|
5677 | END DO |
---|
5678 | CASE DEFAULT |
---|
5679 | msg = "statisitcs '" // TRIM(stats) // "' not ready !!" // CHAR(44) // " available ones: " // & |
---|
5680 | "'min', 'max', 'mean', 'mean2', 'stddev', 'count'" |
---|
5681 | CALL ErrMsg(msg, fname, -1) |
---|
5682 | END SELECT statn |
---|
5683 | |
---|
5684 | END SUBROUTINE spaceweightstats |
---|
5685 | |
---|
5686 | SUBROUTINE multi_spaceweightstats_in1DRKno_slc3v3(varin, idv, Ngridsin, gridsin, percentages, & |
---|
5687 | varout, di1, ds1, ds2, ds3, maxNgridsin) |
---|
5688 | ! Subroutine to compute an spatial statistics value from a 1D RK matrix without running one into a |
---|
5689 | ! matrix of 3-variables slices of rank 3 using spatial weights |
---|
5690 | |
---|
5691 | IMPLICIT NONE |
---|
5692 | |
---|
5693 | INTEGER, INTENT(in) :: di1, idv, ds1, ds2, ds3 |
---|
5694 | INTEGER, INTENT(in) :: maxNgridsin |
---|
5695 | INTEGER, DIMENSION(ds1,ds2,ds3), INTENT(in) :: Ngridsin |
---|
5696 | INTEGER, DIMENSION(ds1,ds2,ds3,maxNgridsin,2), & |
---|
5697 | INTENT(in) :: gridsin |
---|
5698 | REAL(r_k), DIMENSION(di1), INTENT(in) :: varin |
---|
5699 | REAL(r_k), INTENT(in), & |
---|
5700 | DIMENSION(ds1,ds2,ds3,maxNgridsin) :: percentages |
---|
5701 | REAL(r_k), DIMENSION(ds1,ds2,ds3,7), INTENT(out) :: varout |
---|
5702 | |
---|
5703 | ! Local |
---|
5704 | INTEGER :: i1, i2, i3, s1, s2, s3, iv |
---|
5705 | INTEGER :: ii3, ss1, ss2, ss3 |
---|
5706 | INTEGER :: Ncounts, Nin |
---|
5707 | INTEGER, DIMENSION(1) :: dmaxvarin |
---|
5708 | CHARACTER(len=3) :: val1S, val2S |
---|
5709 | CHARACTER(len=30) :: val3S |
---|
5710 | REAL(r_k) :: minv, maxv, meanv, mean2v, stdv, medv |
---|
5711 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: pin |
---|
5712 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: gin |
---|
5713 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: svin |
---|
5714 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: vin |
---|
5715 | |
---|
5716 | !!!!!!! Variables |
---|
5717 | ! di1: length of dimensions of the 1D matrix of values |
---|
5718 | ! ds[1-3]: length of dimensions of matrix with the slices |
---|
5719 | ! maxNgridsin: maximum number of grid points from the 3D matrix in any slice |
---|
5720 | ! varin: 1D RK variable to be used |
---|
5721 | ! idv: which dimension of the sliced grids coincide with the dimension of 1D varin |
---|
5722 | ! Ngridsin: number of grids from 3D RK matrix for each slice |
---|
5723 | ! gridsin: coordinates of grids of the 3D RK matrix B to matrix of slices |
---|
5724 | ! percentages: weights as percentages of space of 3D RK matrix for each slice |
---|
5725 | !!!!! |
---|
5726 | ! Available spatial statistics to compute inside each slice using values from 3D RK matrix |
---|
5727 | ! 'min': minimum value |
---|
5728 | ! 'max': maximum value |
---|
5729 | ! 'mean': space weighted mean value |
---|
5730 | ! 'mean2': space weighted quadratic mean value |
---|
5731 | ! 'stddev': space weighted standard deviation value |
---|
5732 | ! 'median': median value |
---|
5733 | ! 'count': percentage of the space of matrix A covered by each different value of matrix B |
---|
5734 | ! varout: output statistical variable |
---|
5735 | |
---|
5736 | fname = 'multi_spaceweightstats_in1DRKno_slc3v3' |
---|
5737 | |
---|
5738 | varout = fillval64 |
---|
5739 | |
---|
5740 | ss1 = 8 + 1 |
---|
5741 | ss2 = 5 + 1 |
---|
5742 | ss3 = 3 + 1 |
---|
5743 | ii3 = 1 + 1 |
---|
5744 | |
---|
5745 | dmaxvarin = UBOUND(varin) |
---|
5746 | |
---|
5747 | ! Let's be efficient? |
---|
5748 | varout = fillVal64 |
---|
5749 | DO s1 =1, ds1 |
---|
5750 | DO s2 =1, ds2 |
---|
5751 | DO s3 =1, ds3 |
---|
5752 | Nin = Ngridsin(s1,s2,s3) |
---|
5753 | ! Computing along d3 |
---|
5754 | IF (Nin > 1) THEN |
---|
5755 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
5756 | ALLOCATE(gin(Nin,2)) |
---|
5757 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
5758 | ALLOCATE(pin(Nin)) |
---|
5759 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
5760 | ALLOCATE(vin(Nin)) |
---|
5761 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
5762 | ALLOCATE(svin(Nin)) |
---|
5763 | gin = gridsin(s1,s2,s3,1:Nin,:) |
---|
5764 | pin = percentages(s1,s2,s3,1:Nin) |
---|
5765 | |
---|
5766 | ! Getting the values |
---|
5767 | DO iv=1, Nin |
---|
5768 | i1 = gin(iv,idv) |
---|
5769 | vin(iv) = varin(i1) |
---|
5770 | END DO |
---|
5771 | minv = fillVal64 |
---|
5772 | maxv = -fillVal64 |
---|
5773 | meanv = zeroRK |
---|
5774 | mean2v = zeroRK |
---|
5775 | stdv = zeroRK |
---|
5776 | minv = MINVAL(vin) |
---|
5777 | maxv = MAXVAL(vin) |
---|
5778 | meanv = SUM(vin*pin) |
---|
5779 | mean2v = SUM(vin**2*pin) |
---|
5780 | DO iv=1,Nin |
---|
5781 | stdv = stdv + ( (meanv - vin(iv))*pin(iv) )**2 |
---|
5782 | END DO |
---|
5783 | stdv = SQRT(stdv) |
---|
5784 | svin = vin(:) |
---|
5785 | CALL SortR_K(svin, Nin) |
---|
5786 | medv = svin(INT(Nin/2)) |
---|
5787 | varout(s1,s2,s3,1) = minv |
---|
5788 | varout(s1,s2,s3,2) = maxv |
---|
5789 | varout(s1,s2,s3,3) = meanv |
---|
5790 | varout(s1,s2,s3,4) = mean2v |
---|
5791 | varout(s1,s2,s3,5) = stdv |
---|
5792 | varout(s1,s2,s3,6) = medv |
---|
5793 | varout(s1,s2,s3,7) = Nin*1. |
---|
5794 | ELSE |
---|
5795 | i1 = gridsin(s1,s2,s3,1,idv) |
---|
5796 | IF (i1 > 0 .AND. i1 <= dmaxvarin(1)) THEN |
---|
5797 | varout(s1,s2,s3,1) = varin(i1) |
---|
5798 | varout(s1,s2,s3,2) = varin(i1) |
---|
5799 | varout(s1,s2,s3,3) = varin(i1) |
---|
5800 | varout(s1,s2,s3,4) = varin(i1)*varin(i1) |
---|
5801 | varout(s1,s2,s3,5) = zeroRK |
---|
5802 | varout(s1,s2,s3,6) = varin(i1) |
---|
5803 | varout(s1,s2,s3,7) = Nin*1. |
---|
5804 | END IF |
---|
5805 | END IF |
---|
5806 | END DO |
---|
5807 | END DO |
---|
5808 | END DO |
---|
5809 | |
---|
5810 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
5811 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
5812 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
5813 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
5814 | |
---|
5815 | RETURN |
---|
5816 | |
---|
5817 | END SUBROUTINE multi_spaceweightstats_in1DRKno_slc3v3 |
---|
5818 | |
---|
5819 | SUBROUTINE multi_spaceweightstats_in2DRKno_slc3v3(varin, Ngridsin, gridsin, percentages, varout, & |
---|
5820 | di1, di2, ds1, ds2, ds3, maxNgridsin) |
---|
5821 | ! Subroutine to compute an spatial statistics value from a 2D RK matrix without running one into a |
---|
5822 | ! matrix of 3-variables slices of rank 3 using spatial weights |
---|
5823 | |
---|
5824 | IMPLICIT NONE |
---|
5825 | |
---|
5826 | INTEGER, INTENT(in) :: di1, di2, ds1, ds2, ds3 |
---|
5827 | INTEGER, INTENT(in) :: maxNgridsin |
---|
5828 | INTEGER, DIMENSION(ds1,ds2,ds3), INTENT(in) :: Ngridsin |
---|
5829 | INTEGER, DIMENSION(ds1,ds2,ds3,maxNgridsin,2), & |
---|
5830 | INTENT(in) :: gridsin |
---|
5831 | REAL(r_k), DIMENSION(di1,di2), INTENT(in) :: varin |
---|
5832 | REAL(r_k), INTENT(in), & |
---|
5833 | DIMENSION(ds1,ds2,ds3,maxNgridsin) :: percentages |
---|
5834 | REAL(r_k), DIMENSION(ds1,ds2,ds3,7), INTENT(out) :: varout |
---|
5835 | |
---|
5836 | ! Local |
---|
5837 | INTEGER :: i1, i2, i3, s1, s2, s3, iv |
---|
5838 | INTEGER :: ii3, ss1, ss2, ss3 |
---|
5839 | INTEGER :: Ncounts, Nin |
---|
5840 | CHARACTER(len=3) :: val1S, val2S |
---|
5841 | CHARACTER(len=30) :: val3S |
---|
5842 | REAL(r_k) :: minv, maxv, meanv, mean2v, stdv, medv |
---|
5843 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: pin |
---|
5844 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: gin |
---|
5845 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: svin |
---|
5846 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: vin |
---|
5847 | |
---|
5848 | !!!!!!! Variables |
---|
5849 | ! di1, di2: length of dimensions of the 2D matrix of values |
---|
5850 | ! ds[1-3]: length of dimensions of matrix with the slices |
---|
5851 | ! maxNgridsin: maximum number of grid points from the 3D matrix in any slice |
---|
5852 | ! varin: 2D RK variable to be used |
---|
5853 | ! Ngridsin: number of grids from 3D RK matrix for each slice |
---|
5854 | ! gridsin: coordinates of grids of the 3D RK matrix B to matrix of slices |
---|
5855 | ! percentages: weights as percentages of space of 3D RK matrix for each slice |
---|
5856 | !!!!! |
---|
5857 | ! Available spatial statistics to compute inside each slice using values from 3D RK matrix |
---|
5858 | ! 'min': minimum value |
---|
5859 | ! 'max': maximum value |
---|
5860 | ! 'mean': space weighted mean value |
---|
5861 | ! 'mean2': space weighted quadratic mean value |
---|
5862 | ! 'stddev': space weighted standard deviation value |
---|
5863 | ! 'median': median value |
---|
5864 | ! 'count': percentage of the space of matrix A covered by each different value of matrix B |
---|
5865 | ! varout: output statistical variable |
---|
5866 | |
---|
5867 | fname = 'multi_spaceweightstats_in2DRKno_slc3v3' |
---|
5868 | |
---|
5869 | varout = fillval64 |
---|
5870 | |
---|
5871 | ss1 = 8 + 1 |
---|
5872 | ss2 = 5 + 1 |
---|
5873 | ss3 = 3 + 1 |
---|
5874 | ii3 = 1 + 1 |
---|
5875 | |
---|
5876 | ! Let's be efficient? |
---|
5877 | varout = fillVal64 |
---|
5878 | DO s1 =1, ds1 |
---|
5879 | DO s2 =1, ds2 |
---|
5880 | DO s3 =1, ds3 |
---|
5881 | Nin = Ngridsin(s1,s2,s3) |
---|
5882 | ! Computing along d3 |
---|
5883 | IF (Nin > 1) THEN |
---|
5884 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
5885 | ALLOCATE(gin(Nin,2)) |
---|
5886 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
5887 | ALLOCATE(pin(Nin)) |
---|
5888 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
5889 | ALLOCATE(vin(Nin)) |
---|
5890 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
5891 | ALLOCATE(svin(Nin)) |
---|
5892 | gin = gridsin(s1,s2,s3,1:Nin,:) |
---|
5893 | pin = percentages(s1,s2,s3,1:Nin) |
---|
5894 | |
---|
5895 | ! Getting the values |
---|
5896 | DO iv=1, Nin |
---|
5897 | i1 = gin(iv,1) |
---|
5898 | i2 = gin(iv,2) |
---|
5899 | vin(iv) = varin(i1,i2) |
---|
5900 | END DO |
---|
5901 | minv = fillVal64 |
---|
5902 | maxv = -fillVal64 |
---|
5903 | meanv = zeroRK |
---|
5904 | mean2v = zeroRK |
---|
5905 | stdv = zeroRK |
---|
5906 | minv = MINVAL(vin) |
---|
5907 | maxv = MAXVAL(vin) |
---|
5908 | meanv = SUM(vin*pin) |
---|
5909 | mean2v = SUM(vin**2*pin) |
---|
5910 | DO iv=1,Nin |
---|
5911 | stdv = stdv + ( (meanv - vin(iv))*pin(iv) )**2 |
---|
5912 | END DO |
---|
5913 | stdv = SQRT(stdv) |
---|
5914 | svin = vin(:) |
---|
5915 | CALL SortR_K(svin, Nin) |
---|
5916 | medv = svin(INT(Nin/2)) |
---|
5917 | varout(s1,s2,s3,1) = minv |
---|
5918 | varout(s1,s2,s3,2) = maxv |
---|
5919 | varout(s1,s2,s3,3) = meanv |
---|
5920 | varout(s1,s2,s3,4) = mean2v |
---|
5921 | varout(s1,s2,s3,5) = stdv |
---|
5922 | varout(s1,s2,s3,6) = medv |
---|
5923 | varout(s1,s2,s3,7) = Nin*1. |
---|
5924 | ELSE |
---|
5925 | i1 = gridsin(s1,s2,s3,1,1) |
---|
5926 | i2 = gridsin(s1,s2,s3,1,2) |
---|
5927 | varout(s1,s2,s3,1) = varin(i1,i2) |
---|
5928 | varout(s1,s2,s3,2) = varin(i1,i2) |
---|
5929 | varout(s1,s2,s3,3) = varin(i1,i2) |
---|
5930 | varout(s1,s2,s3,4) = varin(i1,i2)*varin(i1,i2) |
---|
5931 | varout(s1,s2,s3,5) = zeroRK |
---|
5932 | varout(s1,s2,s3,6) = varin(i1,i2) |
---|
5933 | varout(s1,s2,s3,7) = Nin*1. |
---|
5934 | END IF |
---|
5935 | END DO |
---|
5936 | END DO |
---|
5937 | END DO |
---|
5938 | |
---|
5939 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
5940 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
5941 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
5942 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
5943 | |
---|
5944 | RETURN |
---|
5945 | |
---|
5946 | END SUBROUTINE multi_spaceweightstats_in2DRKno_slc3v3 |
---|
5947 | |
---|
5948 | SUBROUTINE multi_spaceweightstats_in3DRK3_slc3v3(varin, Ngridsin, gridsin, percentages, varout, & |
---|
5949 | di1, di2, di3, ds1, ds2, ds3, maxNgridsin) |
---|
5950 | ! Subroutine to compute an spatial statistics value from a 3D RK matrix using 3rd dimension as |
---|
5951 | ! running one into a matrix of 3-variables slices of rank 3 using spatial weights |
---|
5952 | |
---|
5953 | IMPLICIT NONE |
---|
5954 | |
---|
5955 | INTEGER, INTENT(in) :: di1, di2, di3, ds1, ds2, ds3 |
---|
5956 | INTEGER, INTENT(in) :: maxNgridsin |
---|
5957 | INTEGER, DIMENSION(ds1,ds2,ds3), INTENT(in) :: Ngridsin |
---|
5958 | INTEGER, DIMENSION(ds1,ds2,ds3,maxNgridsin,2), & |
---|
5959 | INTENT(in) :: gridsin |
---|
5960 | REAL(r_k), DIMENSION(di1,di2,di3), INTENT(in) :: varin |
---|
5961 | REAL(r_k), INTENT(in), & |
---|
5962 | DIMENSION(ds1,ds2,ds3,maxNgridsin) :: percentages |
---|
5963 | REAL(r_k), DIMENSION(ds1,ds2,ds3,di3,7), INTENT(out) :: varout |
---|
5964 | |
---|
5965 | ! Local |
---|
5966 | INTEGER :: i1, i2, i3, s1, s2, s3, iv |
---|
5967 | INTEGER :: ii3, ss1, ss2, ss3 |
---|
5968 | INTEGER :: Ncounts, Nin |
---|
5969 | CHARACTER(len=3) :: val1S, val2S |
---|
5970 | CHARACTER(len=30) :: val3S |
---|
5971 | REAL(r_k) :: minv, maxv, meanv, mean2v, stdv, medv |
---|
5972 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: pin |
---|
5973 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: gin |
---|
5974 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: svin |
---|
5975 | REAL(r_k), DIMENSION(:,:), ALLOCATABLE :: vin |
---|
5976 | |
---|
5977 | !!!!!!! Variables |
---|
5978 | ! di1, di2, di3: length of dimensions of the 3D matrix of values |
---|
5979 | ! ds[1-3]: length of dimensions of matrix with the slices |
---|
5980 | ! maxNgridsin: maximum number of grid points from the 3D matrix in any slice |
---|
5981 | ! varin: 3D RK variable to be used |
---|
5982 | ! Ngridsin: number of grids from 3D RK matrix for each slice |
---|
5983 | ! gridsin: coordinates of grids of the 3D RK matrix B to matrix of slices |
---|
5984 | ! percentages: weights as percentages of space of 3D RK matrix for each slice |
---|
5985 | !!!!! |
---|
5986 | ! Available spatial statistics to compute inside each slice using values from 3D RK matrix |
---|
5987 | ! 'min': minimum value |
---|
5988 | ! 'max': maximum value |
---|
5989 | ! 'mean': space weighted mean value |
---|
5990 | ! 'mean2': space weighted quadratic mean value |
---|
5991 | ! 'stddev': space weighted standard deviation value |
---|
5992 | ! 'median': median value |
---|
5993 | ! 'count': percentage of the space of matrix A covered by each different value of matrix B |
---|
5994 | ! varout: output statistical variable |
---|
5995 | |
---|
5996 | fname = 'multi_spaceweightstats_in3DRK3_slc3v3' |
---|
5997 | |
---|
5998 | varout = fillval64 |
---|
5999 | |
---|
6000 | ss1 = 8 + 1 |
---|
6001 | ss2 = 5 + 1 |
---|
6002 | ss3 = 3 + 1 |
---|
6003 | ii3 = 1 + 1 |
---|
6004 | |
---|
6005 | ! Let's be efficient? |
---|
6006 | varout = fillVal64 |
---|
6007 | DO s1 =1, ds1 |
---|
6008 | DO s2 =1, ds2 |
---|
6009 | DO s3 =1, ds3 |
---|
6010 | Nin = Ngridsin(s1,s2,s3) |
---|
6011 | ! Computing along d3 |
---|
6012 | IF (Nin > 1) THEN |
---|
6013 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
6014 | ALLOCATE(gin(Nin,2)) |
---|
6015 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
6016 | ALLOCATE(pin(Nin)) |
---|
6017 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
6018 | ALLOCATE(vin(Nin,di3)) |
---|
6019 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
6020 | ALLOCATE(svin(Nin)) |
---|
6021 | gin = gridsin(s1,s2,s3,1:Nin,:) |
---|
6022 | pin = percentages(s1,s2,s3,1:Nin) |
---|
6023 | |
---|
6024 | ! Getting the values |
---|
6025 | DO iv=1, Nin |
---|
6026 | i1 = gin(iv,1) |
---|
6027 | i2 = gin(iv,2) |
---|
6028 | vin(iv,:) = varin(i1,i2,:) |
---|
6029 | END DO |
---|
6030 | DO i3=1, di3 |
---|
6031 | minv = fillVal64 |
---|
6032 | maxv = -fillVal64 |
---|
6033 | meanv = zeroRK |
---|
6034 | mean2v = zeroRK |
---|
6035 | stdv = zeroRK |
---|
6036 | minv = MINVAL(vin(:,i3)) |
---|
6037 | maxv = MAXVAL(vin(:,i3)) |
---|
6038 | meanv = SUM(vin(:,i3)*pin) |
---|
6039 | mean2v = SUM(vin(:,i3)**2*pin) |
---|
6040 | DO iv=1,Nin |
---|
6041 | stdv = stdv + ( (meanv - vin(iv,i3))*pin(iv) )**2 |
---|
6042 | END DO |
---|
6043 | stdv = SQRT(stdv) |
---|
6044 | svin = vin(:,i3) |
---|
6045 | CALL SortR_K(svin, Nin) |
---|
6046 | medv = svin(INT(Nin/2)) |
---|
6047 | varout(s1,s2,s3,i3,1) = minv |
---|
6048 | varout(s1,s2,s3,i3,2) = maxv |
---|
6049 | varout(s1,s2,s3,i3,3) = meanv |
---|
6050 | varout(s1,s2,s3,i3,4) = mean2v |
---|
6051 | varout(s1,s2,s3,i3,5) = stdv |
---|
6052 | varout(s1,s2,s3,i3,6) = medv |
---|
6053 | varout(s1,s2,s3,i3,7) = Nin*1. |
---|
6054 | END DO |
---|
6055 | ELSE |
---|
6056 | i1 = gridsin(s1,s2,s3,1,1) |
---|
6057 | i2 = gridsin(s1,s2,s3,1,2) |
---|
6058 | varout(s1,s2,s3,:,1) = varin(i1,i2,:) |
---|
6059 | varout(s1,s2,s3,:,2) = varin(i1,i2,:) |
---|
6060 | varout(s1,s2,s3,:,3) = varin(i1,i2,:) |
---|
6061 | varout(s1,s2,s3,:,4) = varin(i1,i2,:)*varin(i1,i2,:) |
---|
6062 | varout(s1,s2,s3,:,5) = zeroRK |
---|
6063 | varout(s1,s2,s3,:,6) = varin(i1,i2,:) |
---|
6064 | varout(s1,s2,s3,:,7) = Nin*1. |
---|
6065 | END IF |
---|
6066 | END DO |
---|
6067 | END DO |
---|
6068 | END DO |
---|
6069 | |
---|
6070 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
6071 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
6072 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
6073 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
6074 | |
---|
6075 | RETURN |
---|
6076 | |
---|
6077 | END SUBROUTINE multi_spaceweightstats_in3DRK3_slc3v3 |
---|
6078 | |
---|
6079 | SUBROUTINE multi_spaceweightstats_in3DRK3_slc3v4(varin, Ngridsin, gridsin, percentages, varout, & |
---|
6080 | di1, di2, di3, ds1, ds2, ds3, ds4, maxNgridsin) |
---|
6081 | ! Subroutine to compute an spatial statistics value from a 3D RK matrix using 3rd dimension as |
---|
6082 | ! running one into a matrix of 3-variables slices of rank 4 using spatial weights |
---|
6083 | |
---|
6084 | IMPLICIT NONE |
---|
6085 | |
---|
6086 | INTEGER, INTENT(in) :: di1, di2, di3, ds1, ds2, ds3, ds4 |
---|
6087 | INTEGER, INTENT(in) :: maxNgridsin |
---|
6088 | INTEGER, DIMENSION(ds1,ds2,ds3,ds4), INTENT(in) :: Ngridsin |
---|
6089 | INTEGER, INTENT(in), & |
---|
6090 | DIMENSION(ds1,ds2,ds3,ds4,maxNgridsin,2) :: gridsin |
---|
6091 | REAL(r_k), DIMENSION(di1,di2,di3), INTENT(in) :: varin |
---|
6092 | REAL(r_k), INTENT(in), & |
---|
6093 | DIMENSION(ds1,ds2,ds3,ds4,maxNgridsin) :: percentages |
---|
6094 | REAL(r_k), DIMENSION(ds1,ds2,ds3,ds4,di3,7), & |
---|
6095 | INTENT(out) :: varout |
---|
6096 | |
---|
6097 | ! Local |
---|
6098 | INTEGER :: i1, i2, i3, s1, s2, s3, s4, iv |
---|
6099 | INTEGER :: Ncounts, Nin |
---|
6100 | CHARACTER(len=3) :: val1S, val2S |
---|
6101 | CHARACTER(len=30) :: val3S |
---|
6102 | REAL(r_k) :: minv, maxv, meanv, mean2v, stdv, medv |
---|
6103 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: pin |
---|
6104 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: gin |
---|
6105 | REAL(r_k), DIMENSION(:), ALLOCATABLE :: svin |
---|
6106 | REAL(r_k), DIMENSION(:,:), ALLOCATABLE :: vin |
---|
6107 | |
---|
6108 | !!!!!!! Variables |
---|
6109 | ! di1, di2, di3: length of dimensions of the 3D matrix of values |
---|
6110 | ! ds[1-4]: length of dimensions of matrix with the slices |
---|
6111 | ! maxNgridsin: maximum number of grid points from the 3D matrix in any slice |
---|
6112 | ! varin: 3D RK variable to be used |
---|
6113 | ! Ngridsin: number of grids from 3D RK matrix for each slice |
---|
6114 | ! gridsin: coordinates of grids of the 3D RK matrix B to matrix of slices |
---|
6115 | ! percentages: weights as percentages of space of 3D RK matrix for each slice |
---|
6116 | !!!!! |
---|
6117 | ! Available spatial statistics to compute inside each slice using values from 3D RK matrix |
---|
6118 | ! 'min': minimum value |
---|
6119 | ! 'max': maximum value |
---|
6120 | ! 'mean': space weighted mean value |
---|
6121 | ! 'mean2': space weighted quadratic mean value |
---|
6122 | ! 'stddev': space weighted standard deviation value |
---|
6123 | ! 'median': median value |
---|
6124 | ! 'count': percentage of the space of matrix A covered by each different value of matrix B |
---|
6125 | ! varout: output statistical variable |
---|
6126 | |
---|
6127 | fname = 'multi_spaceweightstats_in3DRK3_slc3v4' |
---|
6128 | |
---|
6129 | varout = fillval64 |
---|
6130 | |
---|
6131 | ! Let's be efficient? |
---|
6132 | varout = fillVal64 |
---|
6133 | DO s1 =1, ds1 |
---|
6134 | DO s2 =1, ds2 |
---|
6135 | DO s3 =1, ds3 |
---|
6136 | DO s4 =1, ds4 |
---|
6137 | Nin = Ngridsin(s1,s2,s3,s4) |
---|
6138 | IF (Nin > 1) THEN |
---|
6139 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
6140 | ALLOCATE(gin(Nin,2)) |
---|
6141 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
6142 | ALLOCATE(pin(Nin)) |
---|
6143 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
6144 | ALLOCATE(vin(Nin,di3)) |
---|
6145 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
6146 | ALLOCATE(svin(Nin)) |
---|
6147 | gin = gridsin(s1,s2,s3,s4,1:Nin,:) |
---|
6148 | pin = percentages(s1,s2,s3,s4,1:Nin) |
---|
6149 | |
---|
6150 | ! Getting the values |
---|
6151 | DO iv=1, Nin |
---|
6152 | i1 = gin(iv,1) |
---|
6153 | i2 = gin(iv,2) |
---|
6154 | vin(iv,:) = varin(i1,i2,:) |
---|
6155 | END DO |
---|
6156 | ! Computing along d3 |
---|
6157 | DO i3=1, di3 |
---|
6158 | minv = fillVal64 |
---|
6159 | maxv = -fillVal64 |
---|
6160 | meanv = zeroRK |
---|
6161 | mean2v = zeroRK |
---|
6162 | stdv = zeroRK |
---|
6163 | |
---|
6164 | minv = MINVAL(vin(:,i3)) |
---|
6165 | maxv = MAXVAL(vin(:,i3)) |
---|
6166 | meanv = SUM(vin(:,i3)*pin) |
---|
6167 | mean2v = SUM(vin(:,i3)**2*pin) |
---|
6168 | DO iv=1,Nin |
---|
6169 | stdv = stdv + ( (meanv - vin(iv,i3))*pin(iv) )**2 |
---|
6170 | END DO |
---|
6171 | stdv = SQRT(stdv) |
---|
6172 | svin = vin(:,i3) |
---|
6173 | CALL SortR_K(svin, Nin) |
---|
6174 | medv = svin(INT(Nin/2)) |
---|
6175 | varout(s1,s2,s3,s4,i3,1) = minv |
---|
6176 | varout(s1,s2,s3,s4,i3,2) = maxv |
---|
6177 | varout(s1,s2,s3,s4,i3,3) = meanv |
---|
6178 | varout(s1,s2,s3,s4,i3,4) = mean2v |
---|
6179 | varout(s1,s2,s3,s4,i3,5) = stdv |
---|
6180 | varout(s1,s2,s3,s4,i3,6) = medv |
---|
6181 | varout(s1,s2,s3,s4,i3,7) = Nin*1. |
---|
6182 | END DO |
---|
6183 | ELSE |
---|
6184 | i1 = gridsin(s1,s2,s3,s4,1,1) |
---|
6185 | i2 = gridsin(s1,s2,s3,s4,1,2) |
---|
6186 | varout(s1,s2,s3,s4,:,1) = varin(i1,i2,:) |
---|
6187 | varout(s1,s2,s3,s4,:,2) = varin(i1,i2,:) |
---|
6188 | varout(s1,s2,s3,s4,:,3) = varin(i1,i2,:) |
---|
6189 | varout(s1,s2,s3,s4,:,4) = varin(i1,i2,:)*varin(i1,i2,:) |
---|
6190 | varout(s1,s2,s3,s4,:,5) = zeroRK |
---|
6191 | varout(s1,s2,s3,s4,:,6) = varin(i1,i2,:) |
---|
6192 | varout(s1,s2,s3,s4,:,7) = Nin*1. |
---|
6193 | END IF |
---|
6194 | END DO |
---|
6195 | END DO |
---|
6196 | END DO |
---|
6197 | END DO |
---|
6198 | |
---|
6199 | IF (ALLOCATED(gin)) DEALLOCATE(gin) |
---|
6200 | IF (ALLOCATED(pin)) DEALLOCATE(pin) |
---|
6201 | IF (ALLOCATED(vin)) DEALLOCATE(vin) |
---|
6202 | IF (ALLOCATED(svin)) DEALLOCATE(svin) |
---|
6203 | |
---|
6204 | RETURN |
---|
6205 | |
---|
6206 | END SUBROUTINE multi_spaceweightstats_in3DRK3_slc3v4 |
---|
6207 | |
---|
6208 | SUBROUTINE multi_index_mat2DI(d1, d2, d12, mat, value, Nindices, indices) |
---|
6209 | ! Subroutine to provide the indices of the different locations of a value inside a 2D integer matrix |
---|
6210 | |
---|
6211 | IMPLICIT NONE |
---|
6212 | |
---|
6213 | INTEGER, INTENT(in) :: d1, d2, d12 |
---|
6214 | INTEGER, DIMENSION(d1,d2), INTENT(in) :: mat |
---|
6215 | INTEGER,INTENT(in) :: value |
---|
6216 | INTEGER, INTENT(out) :: Nindices |
---|
6217 | INTEGER, DIMENSION(2,d12), INTENT(out) :: indices |
---|
6218 | |
---|
6219 | ! Local |
---|
6220 | INTEGER :: i,j |
---|
6221 | INTEGER :: Ncounts1D, icount1D |
---|
6222 | INTEGER, DIMENSION(d2) :: diffmat1D |
---|
6223 | |
---|
6224 | !!!!!!! Variables |
---|
6225 | ! d1, d2: shape of the 2D matrix |
---|
6226 | ! mat: 2D matrix |
---|
6227 | ! value: value to be looking for |
---|
6228 | ! Nindices: number of times value found within matrix |
---|
6229 | ! indices: indices of the found values |
---|
6230 | |
---|
6231 | fname = 'multi_index_mat2DI' |
---|
6232 | |
---|
6233 | Nindices = 0 |
---|
6234 | indices = 0 |
---|
6235 | DO i=1, d1 |
---|
6236 | diffmat1D = mat(i,:) - value |
---|
6237 | IF (ANY(diffmat1D == 0)) THEN |
---|
6238 | Ncounts1D = COUNT(diffmat1D == 0) |
---|
6239 | icount1D = 0 |
---|
6240 | DO j=1, d2 |
---|
6241 | IF (diffmat1D(j) == 0) THEN |
---|
6242 | Nindices = Nindices + 1 |
---|
6243 | indices(1,Nindices) = i |
---|
6244 | indices(2,Nindices) = j |
---|
6245 | icount1D = icount1D + 1 |
---|
6246 | IF (icount1D == Ncounts1D) EXIT |
---|
6247 | END IF |
---|
6248 | END DO |
---|
6249 | END IF |
---|
6250 | END DO |
---|
6251 | |
---|
6252 | END SUBROUTINE multi_index_mat2DI |
---|
6253 | |
---|
6254 | SUBROUTINE multi_index_mat3DI(d1, d2, d3, d123, mat, value, Nindices, indices) |
---|
6255 | ! Subroutine to provide the indices of the different locations of a value inside a 3D integer matrix |
---|
6256 | |
---|
6257 | IMPLICIT NONE |
---|
6258 | |
---|
6259 | INTEGER, INTENT(in) :: d1, d2, d3, d123 |
---|
6260 | INTEGER, DIMENSION(d1,d2,d3), INTENT(in) :: mat |
---|
6261 | INTEGER, INTENT(in) :: value |
---|
6262 | INTEGER, INTENT(out) :: Nindices |
---|
6263 | INTEGER, DIMENSION(3,d123), INTENT(out) :: indices |
---|
6264 | |
---|
6265 | ! Local |
---|
6266 | INTEGER :: i,j,k |
---|
6267 | INTEGER :: Ncounts1D, icount1D |
---|
6268 | INTEGER :: Ncounts2D, icount2D |
---|
6269 | INTEGER, DIMENSION(d2,d3) :: diffmat2D |
---|
6270 | INTEGER, DIMENSION(d3) :: diffmat1D |
---|
6271 | |
---|
6272 | !!!!!!! Variables |
---|
6273 | ! d1, d2, d3: shape of the 3D matrix |
---|
6274 | ! mat: 3D matrix |
---|
6275 | ! value: value to be looking for |
---|
6276 | ! Nindices: number of times value found within matrix |
---|
6277 | ! indices: indices of the found values |
---|
6278 | |
---|
6279 | fname = 'multi_index_mat3DI' |
---|
6280 | |
---|
6281 | Nindices = 0 |
---|
6282 | indices = 0 |
---|
6283 | DO i=1, d1 |
---|
6284 | diffmat2D = mat(i,:,:) - value |
---|
6285 | IF (ANY(diffmat2D == 0)) THEN |
---|
6286 | Ncounts2D = COUNT(diffmat2D == 0) |
---|
6287 | icount2D = 0 |
---|
6288 | DO j=1, d2 |
---|
6289 | diffmat1D = mat(i,j,:) - value |
---|
6290 | IF (ANY(diffmat1D == 0)) THEN |
---|
6291 | Ncounts1D = COUNT(diffmat1D == 0) |
---|
6292 | icount1D = 0 |
---|
6293 | DO k=1, d3 |
---|
6294 | IF (diffmat1D(k) == 0) THEN |
---|
6295 | Nindices = Nindices + 1 |
---|
6296 | indices(1,Nindices) = i |
---|
6297 | indices(2,Nindices) = j |
---|
6298 | indices(3,Nindices) = k |
---|
6299 | icount1D = icount1D + 1 |
---|
6300 | IF (icount1D == Ncounts1D) EXIT |
---|
6301 | END IF |
---|
6302 | END DO |
---|
6303 | icount2D = icount2D + icount1D |
---|
6304 | IF (icount2D == Ncounts2D) EXIT |
---|
6305 | END IF |
---|
6306 | END DO |
---|
6307 | END IF |
---|
6308 | END DO |
---|
6309 | |
---|
6310 | END SUBROUTINE multi_index_mat3DI |
---|
6311 | |
---|
6312 | SUBROUTINE multi_index_mat4DI(d1, d2, d3, d4, d1234, mat, value, Nindices, indices) |
---|
6313 | ! Subroutine to provide the indices of the different locations of a value inside a 4D integer matrix |
---|
6314 | |
---|
6315 | IMPLICIT NONE |
---|
6316 | |
---|
6317 | INTEGER, INTENT(in) :: d1, d2, d3, d4, d1234 |
---|
6318 | INTEGER, DIMENSION(d1,d2,d3,d4), INTENT(in) :: mat |
---|
6319 | INTEGER, INTENT(in) :: value |
---|
6320 | INTEGER, INTENT(out) :: Nindices |
---|
6321 | INTEGER, DIMENSION(4,d1234), INTENT(out) :: indices |
---|
6322 | |
---|
6323 | ! Local |
---|
6324 | INTEGER :: i,j,k,l |
---|
6325 | INTEGER :: Ncounts1D, icount1D |
---|
6326 | INTEGER :: Ncounts2D, icount2D |
---|
6327 | INTEGER :: Ncounts3D, icount3D |
---|
6328 | INTEGER, DIMENSION(d2,d3,d4) :: diffmat3D |
---|
6329 | INTEGER, DIMENSION(d3,d4) :: diffmat2D |
---|
6330 | INTEGER, DIMENSION(d4) :: diffmat1D |
---|
6331 | |
---|
6332 | !!!!!!! Variables |
---|
6333 | ! d1, d2, d3, d4: shape of the 4D matrix |
---|
6334 | ! mat: 4D matrix |
---|
6335 | ! value: value to be looking for |
---|
6336 | ! Nindices: number of times value found within matrix |
---|
6337 | ! indices: indices of the found values |
---|
6338 | |
---|
6339 | fname = 'multi_index_mat4DI' |
---|
6340 | |
---|
6341 | Nindices = 0 |
---|
6342 | indices = 0 |
---|
6343 | DO i=1, d1 |
---|
6344 | diffmat3D = mat(i,:,:,:) - value |
---|
6345 | IF (ANY(diffmat3D == 0)) THEN |
---|
6346 | Ncounts3D = COUNT(diffmat3D == 0) |
---|
6347 | icount3D = 0 |
---|
6348 | DO j=1, d2 |
---|
6349 | diffmat2D = mat(i,j,:,:) - value |
---|
6350 | IF (ANY(diffmat2D == 0)) THEN |
---|
6351 | Ncounts2D = COUNT(diffmat2D == 0) |
---|
6352 | icount2D = 0 |
---|
6353 | DO k=1, d3 |
---|
6354 | diffmat1D = mat(i,j,k,:) - value |
---|
6355 | IF (ANY(diffmat1D == 0)) THEN |
---|
6356 | Ncounts1D = COUNT(diffmat1D == 0) |
---|
6357 | icount1D = 0 |
---|
6358 | DO l=1, d4 |
---|
6359 | IF (diffmat1D(l) == 0) THEN |
---|
6360 | Nindices = Nindices + 1 |
---|
6361 | indices(1,Nindices) = i |
---|
6362 | indices(2,Nindices) = j |
---|
6363 | indices(3,Nindices) = k |
---|
6364 | indices(4,Nindices) = l |
---|
6365 | icount1D = icount1D + 1 |
---|
6366 | IF (icount1D == Ncounts1D) EXIT |
---|
6367 | END IF |
---|
6368 | END DO |
---|
6369 | icount2D = icount2D + icount1D |
---|
6370 | IF (icount2D == Ncounts2D) EXIT |
---|
6371 | END IF |
---|
6372 | END DO |
---|
6373 | icount3D = icount3D + icount1D |
---|
6374 | IF (icount3D == Ncounts3D) EXIT |
---|
6375 | END IF |
---|
6376 | END DO |
---|
6377 | END IF |
---|
6378 | END DO |
---|
6379 | |
---|
6380 | END SUBROUTINE multi_index_mat4DI |
---|
6381 | |
---|
6382 | SUBROUTINE multi_index_mat2DRK(d1, d2, d12, mat, value, Nindices, indices) |
---|
6383 | ! Subroutine to provide the indices of the different locations of a value inside a 2D RK matrix |
---|
6384 | |
---|
6385 | IMPLICIT NONE |
---|
6386 | |
---|
6387 | INTEGER, INTENT(in) :: d1, d2, d12 |
---|
6388 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: mat |
---|
6389 | REAL(r_k),INTENT(in) :: value |
---|
6390 | INTEGER, INTENT(out) :: Nindices |
---|
6391 | INTEGER, DIMENSION(2,d12), INTENT(out) :: indices |
---|
6392 | |
---|
6393 | ! Local |
---|
6394 | INTEGER :: i,j |
---|
6395 | INTEGER :: Ncounts1D, icount1D |
---|
6396 | REAL(r_k), DIMENSION(d2) :: diffmat1D |
---|
6397 | |
---|
6398 | !!!!!!! Variables |
---|
6399 | ! d1, d2: shape of the 2D matrix |
---|
6400 | ! mat: 2D matrix |
---|
6401 | ! value: value to be looking for |
---|
6402 | ! Nindices: number of times value found within matrix |
---|
6403 | ! indices: indices of the found values |
---|
6404 | |
---|
6405 | fname = 'multi_index_mat2DRK' |
---|
6406 | |
---|
6407 | Nindices = 0 |
---|
6408 | indices = 0 |
---|
6409 | DO i=1, d1 |
---|
6410 | diffmat1D = mat(i,:) - value |
---|
6411 | IF (ANY(diffmat1D == zeroRK)) THEN |
---|
6412 | Ncounts1D = COUNT(diffmat1D == zeroRK) |
---|
6413 | icount1D = 0 |
---|
6414 | DO j=1, d2 |
---|
6415 | IF (diffmat1D(j) == zeroRK) THEN |
---|
6416 | Nindices = Nindices + 1 |
---|
6417 | indices(1,Nindices) = i |
---|
6418 | indices(2,Nindices) = j |
---|
6419 | icount1D = icount1D + 1 |
---|
6420 | IF (icount1D == Ncounts1D) EXIT |
---|
6421 | END IF |
---|
6422 | END DO |
---|
6423 | END IF |
---|
6424 | END DO |
---|
6425 | |
---|
6426 | END SUBROUTINE multi_index_mat2DRK |
---|
6427 | |
---|
6428 | SUBROUTINE multi_index_mat3DRK(d1, d2, d3, d123, mat, value, Nindices, indices) |
---|
6429 | ! Subroutine to provide the indices of the different locations of a value inside a 3D RK matrix |
---|
6430 | |
---|
6431 | IMPLICIT NONE |
---|
6432 | |
---|
6433 | INTEGER, INTENT(in) :: d1, d2, d3, d123 |
---|
6434 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: mat |
---|
6435 | REAL(r_k),INTENT(in) :: value |
---|
6436 | INTEGER, INTENT(out) :: Nindices |
---|
6437 | INTEGER, DIMENSION(3,d123), INTENT(out) :: indices |
---|
6438 | |
---|
6439 | ! Local |
---|
6440 | INTEGER :: i,j,k |
---|
6441 | INTEGER :: Ncounts1D, icount1D |
---|
6442 | INTEGER :: Ncounts2D, icount2D |
---|
6443 | REAL(r_k), DIMENSION(d2,d3) :: diffmat2D |
---|
6444 | REAL(r_k), DIMENSION(d3) :: diffmat1D |
---|
6445 | |
---|
6446 | !!!!!!! Variables |
---|
6447 | ! d1, d2, d3: shape of the 3D matrix |
---|
6448 | ! mat: 3D matrix |
---|
6449 | ! value: value to be looking for |
---|
6450 | ! Nindices: number of times value found within matrix |
---|
6451 | ! indices: indices of the found values |
---|
6452 | |
---|
6453 | fname = 'multi_index_mat3DRK' |
---|
6454 | |
---|
6455 | Nindices = 0 |
---|
6456 | indices = 0 |
---|
6457 | DO i=1, d1 |
---|
6458 | diffmat2D = mat(i,:,:) - value |
---|
6459 | IF (ANY(diffmat2D == zeroRK)) THEN |
---|
6460 | Ncounts2D = COUNT(diffmat2D == zeroRK) |
---|
6461 | icount2D = 0 |
---|
6462 | DO j=1, d2 |
---|
6463 | diffmat1D = mat(i,j,:) - value |
---|
6464 | IF (ANY(diffmat1D == zeroRK)) THEN |
---|
6465 | Ncounts1D = COUNT(diffmat1D == zeroRK) |
---|
6466 | icount1D = 0 |
---|
6467 | DO k=1, d3 |
---|
6468 | IF (diffmat1D(k) == zeroRK) THEN |
---|
6469 | Nindices = Nindices + 1 |
---|
6470 | indices(1,Nindices) = i |
---|
6471 | indices(2,Nindices) = j |
---|
6472 | indices(3,Nindices) = k |
---|
6473 | icount1D = icount1D + 1 |
---|
6474 | IF (icount1D == Ncounts1D) EXIT |
---|
6475 | END IF |
---|
6476 | END DO |
---|
6477 | icount2D = icount2D + icount1D |
---|
6478 | IF (icount2D == Ncounts2D) EXIT |
---|
6479 | END IF |
---|
6480 | END DO |
---|
6481 | END IF |
---|
6482 | END DO |
---|
6483 | |
---|
6484 | END SUBROUTINE multi_index_mat3DRK |
---|
6485 | |
---|
6486 | SUBROUTINE multi_index_mat4DRK(d1, d2, d3, d4, d1234, mat, value, Nindices, indices) |
---|
6487 | ! Subroutine to provide the indices of the different locations of a value inside a 4D RK matrix |
---|
6488 | |
---|
6489 | IMPLICIT NONE |
---|
6490 | |
---|
6491 | INTEGER, INTENT(in) :: d1, d2, d3, d4, d1234 |
---|
6492 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: mat |
---|
6493 | REAL(r_k),INTENT(in) :: value |
---|
6494 | INTEGER, INTENT(out) :: Nindices |
---|
6495 | INTEGER, DIMENSION(4,d1234), INTENT(out) :: indices |
---|
6496 | |
---|
6497 | ! Local |
---|
6498 | INTEGER :: i,j,k,l |
---|
6499 | INTEGER :: Ncounts1D, icount1D |
---|
6500 | INTEGER :: Ncounts2D, icount2D |
---|
6501 | INTEGER :: Ncounts3D, icount3D |
---|
6502 | REAL(r_k), DIMENSION(d2,d3,d4) :: diffmat3D |
---|
6503 | REAL(r_k), DIMENSION(d3,d4) :: diffmat2D |
---|
6504 | REAL(r_k), DIMENSION(d4) :: diffmat1D |
---|
6505 | |
---|
6506 | !!!!!!! Variables |
---|
6507 | ! d1, d2, d3, d4: shape of the 4D matrix |
---|
6508 | ! mat: 4D matrix |
---|
6509 | ! value: value to be looking for |
---|
6510 | ! Nindices: number of times value found within matrix |
---|
6511 | ! indices: indices of the found values |
---|
6512 | |
---|
6513 | fname = 'multi_index_mat4DRK' |
---|
6514 | |
---|
6515 | Nindices = 0 |
---|
6516 | indices = 0 |
---|
6517 | DO i=1, d1 |
---|
6518 | diffmat3D = mat(i,:,:,:) - value |
---|
6519 | IF (ANY(diffmat3D == zeroRK)) THEN |
---|
6520 | Ncounts3D = COUNT(diffmat3D == zeroRK) |
---|
6521 | icount3D = 0 |
---|
6522 | DO j=1, d2 |
---|
6523 | diffmat2D = mat(i,j,:,:) - value |
---|
6524 | IF (ANY(diffmat2D == zeroRK)) THEN |
---|
6525 | Ncounts2D = COUNT(diffmat2D == zeroRK) |
---|
6526 | icount2D = 0 |
---|
6527 | DO k=1, d3 |
---|
6528 | diffmat1D = mat(i,j,k,:) - value |
---|
6529 | IF (ANY(diffmat1D == zeroRK)) THEN |
---|
6530 | Ncounts1D = COUNT(diffmat1D == zeroRK) |
---|
6531 | icount1D = 0 |
---|
6532 | DO l=1, d4 |
---|
6533 | IF (diffmat1D(l) == zeroRK) THEN |
---|
6534 | Nindices = Nindices + 1 |
---|
6535 | indices(1,Nindices) = i |
---|
6536 | indices(2,Nindices) = j |
---|
6537 | indices(3,Nindices) = k |
---|
6538 | indices(4,Nindices) = l |
---|
6539 | icount1D = icount1D + 1 |
---|
6540 | IF (icount1D == Ncounts1D) EXIT |
---|
6541 | END IF |
---|
6542 | END DO |
---|
6543 | icount2D = icount2D + icount1D |
---|
6544 | IF (icount2D == Ncounts2D) EXIT |
---|
6545 | END IF |
---|
6546 | END DO |
---|
6547 | icount3D = icount3D + icount1D |
---|
6548 | IF (icount3D == Ncounts3D) EXIT |
---|
6549 | END IF |
---|
6550 | END DO |
---|
6551 | END IF |
---|
6552 | END DO |
---|
6553 | |
---|
6554 | END SUBROUTINE multi_index_mat4DRK |
---|
6555 | |
---|
6556 | SUBROUTINE coincident_list_2Dcoords(NpointsA, pointsA, NpointsB, pointsB, Npoints, points, inpA, & |
---|
6557 | inpB) |
---|
6558 | ! Subroutine to determine which 2D points of an A list are also found in a B list |
---|
6559 | |
---|
6560 | IMPLICIT NONE |
---|
6561 | |
---|
6562 | INTEGER, INTENT(in) :: NpointsA, NpointsB |
---|
6563 | INTEGER, DIMENSION(NpointsA,2), INTENT(in) :: pointsA |
---|
6564 | INTEGER, DIMENSION(NpointsB,2), INTENT(in) :: pointsB |
---|
6565 | INTEGER, INTENT(out) :: Npoints |
---|
6566 | INTEGER, DIMENSION(NpointsA,2), INTENT(out) :: points |
---|
6567 | INTEGER, DIMENSION(NpointsA), INTENT(out) :: inpA, inpB |
---|
6568 | |
---|
6569 | ! Local |
---|
6570 | INTEGER :: iA, iB |
---|
6571 | |
---|
6572 | !!!!!!! Variables |
---|
6573 | ! NpointsA: Number of points of the list A |
---|
6574 | ! pointsA: points of the list A |
---|
6575 | ! NpointsB: Number of points of the list B |
---|
6576 | ! pointsB: points of the list B |
---|
6577 | ! Npoints: Number of coincident points |
---|
6578 | ! points: coincident points |
---|
6579 | ! inpA: coincident points list A |
---|
6580 | ! inpB: coincident points list B |
---|
6581 | |
---|
6582 | |
---|
6583 | fname = 'coincident_list_2Dcoords' |
---|
6584 | |
---|
6585 | Npoints = 0 |
---|
6586 | points = 0 |
---|
6587 | inpA = 0 |
---|
6588 | inpB = 0 |
---|
6589 | |
---|
6590 | DO iA = 1, NpointsA |
---|
6591 | DO iB = 1, NpointsB |
---|
6592 | IF ( (pointsA(iA,1) == pointsB(iB,1)) .AND. (pointsA(iA,2) == pointsB(iB,2)) ) THEN |
---|
6593 | Npoints = Npoints + 1 |
---|
6594 | points(Npoints,1) = pointsA(iA,1) |
---|
6595 | points(Npoints,2) = pointsA(iA,2) |
---|
6596 | inpA(Npoints) = iA |
---|
6597 | inpB(Npoints) = iB |
---|
6598 | EXIT |
---|
6599 | END IF |
---|
6600 | |
---|
6601 | END DO |
---|
6602 | END DO |
---|
6603 | |
---|
6604 | END SUBROUTINE coincident_list_2Dcoords |
---|
6605 | |
---|
6606 | SUBROUTINE coincident_gridsin2D_old(dxA, dyA, dxyA, NpointsA, pointsA, dxB, dyB, dxyB, NpointsB, & |
---|
6607 | pointsB, Npoints, points, inpointsA, inpointsB) |
---|
6608 | ! Subroutine to determine which lists of 2D gridsin points of an A list are also found in a B list |
---|
6609 | |
---|
6610 | IMPLICIT NONE |
---|
6611 | |
---|
6612 | INTEGER, INTENT(in) :: dxA, dyA, dxyA |
---|
6613 | INTEGER, INTENT(in) :: dxB, dyB, dxyB |
---|
6614 | INTEGER, DIMENSION(dxA, dyA), INTENT(in) :: NpointsA |
---|
6615 | INTEGER, DIMENSION(dxB, dyB), INTENT(in) :: NpointsB |
---|
6616 | INTEGER, DIMENSION(dxA, dyA, dxyA, 2), INTENT(in) :: pointsA |
---|
6617 | INTEGER, DIMENSION(dxB, dyB, dxyB, 2), INTENT(in) :: pointsB |
---|
6618 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB), INTENT(out) :: Npoints |
---|
6619 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA, 2), & |
---|
6620 | INTENT(out) :: points |
---|
6621 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA), & |
---|
6622 | INTENT(out) :: inpointsA |
---|
6623 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA), & |
---|
6624 | INTENT(out) :: inpointsB |
---|
6625 | |
---|
6626 | ! Local |
---|
6627 | INTEGER :: ixA, iyA, ixB, iyB, iv, ii |
---|
6628 | INTEGER :: NA, NB |
---|
6629 | INTEGER, DIMENSION(dxyA) :: ptsA, ptsB |
---|
6630 | INTEGER, DIMENSION(dxyA, 2) :: pts |
---|
6631 | |
---|
6632 | |
---|
6633 | !!!!!!! Variables |
---|
6634 | ! dxA, dyA: 2D shape of the list A |
---|
6635 | ! NpointsA: 2D Number of points of the list A |
---|
6636 | ! pointsA: points of the list A |
---|
6637 | ! dxB, dyB: 2D shape of the list B |
---|
6638 | ! NpointsB: 2D Number of points of the list B |
---|
6639 | ! pointsB: points of the list B |
---|
6640 | ! Npoints: Number of coincident points |
---|
6641 | ! points: coincident points |
---|
6642 | ! inpointsA: coincident points list A |
---|
6643 | ! inpointsB: coincident points list B |
---|
6644 | |
---|
6645 | fname = 'coincident_gridsin2D_old' |
---|
6646 | |
---|
6647 | Npoints = 0 |
---|
6648 | points = 0 |
---|
6649 | inpointsA = 0 |
---|
6650 | inpointsB = 0 |
---|
6651 | |
---|
6652 | DO ixA=1, dxA |
---|
6653 | DO iyA=1, dyA |
---|
6654 | NA = NpointsA(ixA,iyA) |
---|
6655 | DO ixB=1, dxB |
---|
6656 | DO iyB=1, dyB |
---|
6657 | NB = NpointsB(ixB,iyB) |
---|
6658 | pts = -1 |
---|
6659 | CALL coincident_list_2Dcoords(NA, pointsA(ixA,iyA,1:NA,:), NB, pointsB(ixB,iyB,1:NB,:), & |
---|
6660 | Npoints(ixA,iyA,ixB,iyB), pts(1:NA,:), ptsA, ptsB) |
---|
6661 | DO iv = 1, Npoints(ixA,iyA,ixB,iyB) |
---|
6662 | points(ixA,iyA,ixB,iyB,iv,1) = pts(iv,1) |
---|
6663 | points(ixA,iyA,ixB,iyB,iv,2) = pts(iv,2) |
---|
6664 | inpointsA(ixA,iyA,ixB,iyB,iv) = ptsA(iv) |
---|
6665 | inpointsB(ixA,iyA,ixB,iyB,iv) = ptsB(iv) |
---|
6666 | END DO |
---|
6667 | END DO |
---|
6668 | END DO |
---|
6669 | END DO |
---|
6670 | END DO |
---|
6671 | |
---|
6672 | END SUBROUTINE coincident_gridsin2D_old |
---|
6673 | |
---|
6674 | SUBROUTINE coincident_gridsin2D(dxA, dyA, dxyA, NpointsA, pointsA, dxB, dyB, dxyB, NpointsB, & |
---|
6675 | pointsB, Npoints, points, inpointsA, inpointsB) |
---|
6676 | ! Subroutine to determine which lists of 2D gridsin points of an A list are also found in a B list |
---|
6677 | |
---|
6678 | IMPLICIT NONE |
---|
6679 | |
---|
6680 | INTEGER, INTENT(in) :: dxA, dyA, dxyA |
---|
6681 | INTEGER, INTENT(in) :: dxB, dyB, dxyB |
---|
6682 | INTEGER, DIMENSION(dxA, dyA), INTENT(in) :: NpointsA |
---|
6683 | INTEGER, DIMENSION(dxB, dyB), INTENT(in) :: NpointsB |
---|
6684 | INTEGER, DIMENSION(dxA, dyA, dxyA, 2), INTENT(in) :: pointsA |
---|
6685 | INTEGER, DIMENSION(dxB, dyB, dxyB, 2), INTENT(in) :: pointsB |
---|
6686 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB), INTENT(out) :: Npoints |
---|
6687 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA, 2), & |
---|
6688 | INTENT(out) :: points |
---|
6689 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA), & |
---|
6690 | INTENT(out) :: inpointsA |
---|
6691 | INTEGER, DIMENSION(dxA, dyA, dxB, dyB, dxyA), & |
---|
6692 | INTENT(out) :: inpointsB |
---|
6693 | |
---|
6694 | ! Local |
---|
6695 | INTEGER :: ixA, iyA, ixB, iyB, iv, iv1, iv2 |
---|
6696 | INTEGER :: NA, NB |
---|
6697 | INTEGER, DIMENSION(dxyA) :: ptsA, ptsB |
---|
6698 | INTEGER, DIMENSION(dxyA, 2) :: pts |
---|
6699 | |
---|
6700 | |
---|
6701 | !!!!!!! Variables |
---|
6702 | ! dxA, dyA: 2D shape of the list A |
---|
6703 | ! NpointsA: 2D Number of points of the list A |
---|
6704 | ! pointsA: points of the list A |
---|
6705 | ! dxB, dyB: 2D shape of the list B |
---|
6706 | ! NpointsB: 2D Number of points of the list B |
---|
6707 | ! pointsB: points of the list B |
---|
6708 | ! Npoints: Number of coincident points |
---|
6709 | ! points: coincident points |
---|
6710 | ! inpointsA: coincident points list A |
---|
6711 | ! inpointsB: coincident points list B |
---|
6712 | |
---|
6713 | fname = 'coincident_gridsin2D' |
---|
6714 | |
---|
6715 | Npoints = 0 |
---|
6716 | points = 0 |
---|
6717 | inpointsA = 0 |
---|
6718 | inpointsB = 0 |
---|
6719 | |
---|
6720 | DO ixA=1, dxA |
---|
6721 | DO iyA=1, dyA |
---|
6722 | NA = NpointsA(ixA,iyA) |
---|
6723 | DO ixB=1, dxB |
---|
6724 | DO iyB=1, dyB |
---|
6725 | NB = NpointsB(ixB,iyB) |
---|
6726 | iv = 0 |
---|
6727 | DO iv1=1, NA |
---|
6728 | DO iv2=1, NB |
---|
6729 | IF ( (pointsA(ixA,iyA,iv1,1) == pointsB(ixB,iyB,iv2,1)) .AND. & |
---|
6730 | (pointsA(ixA,iyA,iv1,2) == pointsB(ixB,iyB,iv2,2)) ) THEN |
---|
6731 | iv = iv + 1 |
---|
6732 | points(ixA,iyA,ixB,iyB,iv,1) = pointsA(ixA,iyA,iv1,1) |
---|
6733 | points(ixA,iyA,ixB,iyB,iv,2) = pointsA(ixA,iyA,iv1,2) |
---|
6734 | inpointsA(ixA,iyA,ixB,iyB,iv) = iv1 |
---|
6735 | inpointsB(ixA,iyA,ixB,iyB,iv) = iv2 |
---|
6736 | END IF |
---|
6737 | END DO |
---|
6738 | END DO |
---|
6739 | Npoints(ixA,iyA,ixB,iyB) = iv |
---|
6740 | END DO |
---|
6741 | END DO |
---|
6742 | END DO |
---|
6743 | END DO |
---|
6744 | |
---|
6745 | END SUBROUTINE coincident_gridsin2D |
---|
6746 | |
---|
6747 | END MODULE module_scientific |
---|