1 | ! Module to interpolate values from a giving projection and pressure interpolation |
---|
2 | ! To be included in a python |
---|
3 | ! Follow compilation instructions from Makefile |
---|
4 | ! Content |
---|
5 | ! LlInterpolateProjection: Subroutine which provides the indices for a given interpolation of a projection |
---|
6 | ! var2D_IntProj: Subroutine to interpolate a 2D variable |
---|
7 | ! var3D_IntProj: Subroutine to interpolate a 3D variable |
---|
8 | ! var4D_IntProj: Subroutine to interpolate a 4D variable |
---|
9 | ! var5D_IntProj: Subroutine to interpolate a 5D variable |
---|
10 | MODULE module_ForInterpolate |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | SUBROUTINE CoarselonlatFind(dx, dy, ilon, ilat, nxlon, nxlat, fraclon, fraclat, lonv, latv, per, & |
---|
15 | Nperx, Npery, ilonlat, mindiffLl) |
---|
16 | ! Function to search a given value from a coarser version of the data |
---|
17 | |
---|
18 | USE module_generic |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | |
---|
22 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
23 | INTEGER, INTENT(in) :: dx, dy |
---|
24 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: ilon, ilat |
---|
25 | REAL(r_k), DIMENSION(Nperx,Npery), INTENT(in) :: fraclon, fraclat |
---|
26 | REAL(r_k), INTENT(in) :: lonv, latv, per |
---|
27 | REAL(r_k), DIMENSION(2), INTENT(in) :: nxlon, nxlat |
---|
28 | INTEGER, INTENT(in) :: Nperx, Npery |
---|
29 | INTEGER, DIMENSION(2), INTENT(out) :: ilonlat |
---|
30 | REAL(r_k), INTENT(out) :: mindiffLl |
---|
31 | ! Local |
---|
32 | REAL(r_k), DIMENSION(Nperx,Npery) :: difffraclonlat |
---|
33 | REAL(r_k) :: mindifffracLl |
---|
34 | INTEGER, DIMENSION(2) :: ilonlatfrac |
---|
35 | INTEGER :: ixbeg, ixend, iybeg, iyend |
---|
36 | INTEGER :: fracx, fracy |
---|
37 | REAL(r_k) :: fraclonv, fraclatv |
---|
38 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: difflonlat, lon, lat |
---|
39 | CHARACTER(LEN=50) :: fname |
---|
40 | |
---|
41 | ! Variables |
---|
42 | ! ilon, ilat: original 2D matrices with the longitudes and the latitudes |
---|
43 | ! lonv, latv: longitude and latitude to find |
---|
44 | ! nxlon, nxlat: minimum and maximum longitude and latitude of the target lon,lat |
---|
45 | ! per: fraction of the whole domain (as percentage) |
---|
46 | ! Nper[x/y]: period (as fraction over 1) of the fractions of the original grid to use to explore |
---|
47 | ! fraclon, fraclat: longitude and latitude fractional matricies to perform the first guess |
---|
48 | |
---|
49 | fname = 'CoarselonlatFind' |
---|
50 | |
---|
51 | IF (lonv < nxlon(1) .OR. lonv > nxlon(2)) THEN |
---|
52 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
53 | PRINT *,' ' // TRIM(fname) // ': longitude outside data range!!' |
---|
54 | PRINT *,' given value:', lonv,' outside (',nxlon(1),' ,',nxlon(2),' )' |
---|
55 | STOP |
---|
56 | END IF |
---|
57 | IF (latv < nxlat(1) .OR. latv > nxlat(2)) THEN |
---|
58 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
59 | PRINT *,' ' // TRIM(fname) // ': latitude outside data range!!' |
---|
60 | PRINT *,' given value:', latv,' outside (',nxlat(1),' ,',nxlat(2),' )' |
---|
61 | STOP |
---|
62 | END IF |
---|
63 | |
---|
64 | ! Initializing variables |
---|
65 | ixbeg = 0 |
---|
66 | ixend = 0 |
---|
67 | iybeg = 0 |
---|
68 | iyend = 0 |
---|
69 | |
---|
70 | fracx = int(dx*per) |
---|
71 | fracy = int(dy*per) |
---|
72 | |
---|
73 | ! PRINT *,'fraclon _______' |
---|
74 | ! PRINT *,fraclon |
---|
75 | |
---|
76 | ! PRINT *,'fraclat _______' |
---|
77 | ! PRINT *,fraclat |
---|
78 | |
---|
79 | ! Fraction point |
---|
80 | difffraclonlat = SQRT((fraclon-lonv)**2. + (fraclat-latv)**2.) |
---|
81 | mindifffracLl = MINVAL(difffraclonlat) |
---|
82 | ilonlatfrac = index2DArrayR(difffraclonlat, Nperx, Npery, mindifffracLl) |
---|
83 | |
---|
84 | ! PRINT *, 'mindifffracLl:', mindifffracLl, ' ilonlatfrac:', ilonlatfrac |
---|
85 | ! PRINT *, 'frac lon, lat:', fraclon(ilonlatfrac(1),ilonlatfrac(2)), ' ,', & |
---|
86 | ! fraclat(ilonlatfrac(1),ilonlatfrac(2)) |
---|
87 | ! PRINT *, 'values lon, lat:', lonv, latv |
---|
88 | |
---|
89 | ! Providing fraction range |
---|
90 | fraclonv = fraclon(ilonlatfrac(1),ilonlatfrac(2)) |
---|
91 | fraclatv = fraclat(ilonlatfrac(1),ilonlatfrac(2)) |
---|
92 | |
---|
93 | IF (fraclonv >= lonv .AND. fraclatv >= latv) THEN |
---|
94 | IF (ilonlatfrac(1) > 0) THEN |
---|
95 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
96 | ixend = ilonlatfrac(1)*fracx+1 |
---|
97 | ELSE |
---|
98 | ixbeg = 0 |
---|
99 | ixend = fracx+1 |
---|
100 | END IF |
---|
101 | IF (ilonlatfrac(2) > 0) THEN |
---|
102 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
103 | iyend = ilonlatfrac(2)*fracy+1 |
---|
104 | ELSE |
---|
105 | iybeg = 0 |
---|
106 | iyend = fracy+1 |
---|
107 | END IF |
---|
108 | ELSE IF (fraclonv < lonv .AND. fraclatv >= latv) THEN |
---|
109 | IF (ilonlatfrac(1) < Nperx) THEN |
---|
110 | IF (ilonlatfrac(1) /= 0) THEN |
---|
111 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
112 | ixend = ilonlatfrac(1)*fracx+1 |
---|
113 | ELSE |
---|
114 | ixbeg = 0 |
---|
115 | ixend = fracx+1 |
---|
116 | END IF |
---|
117 | ELSE |
---|
118 | ixbeg = Nperx*fracx |
---|
119 | ixend = dx+1 |
---|
120 | END IF |
---|
121 | IF (ilonlatfrac(2) > 0) THEN |
---|
122 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
123 | iyend = ilonlatfrac(2)*fracy+1 |
---|
124 | ELSE |
---|
125 | iybeg = 0 |
---|
126 | iyend = fracy+1 |
---|
127 | END IF |
---|
128 | ELSE IF (fraclonv < lonv .AND. fraclatv < latv) THEN |
---|
129 | IF (ilonlatfrac(1) < Nperx) THEN |
---|
130 | IF (ilonlatfrac(1) /= 0) THEN |
---|
131 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
132 | ixend = ilonlatfrac(1)*fracx+1 |
---|
133 | ELSE |
---|
134 | ixbeg = 0 |
---|
135 | ixend = fracx+1 |
---|
136 | END IF |
---|
137 | ELSE |
---|
138 | ixbeg = Nperx*fracx |
---|
139 | ixend = dx+1 |
---|
140 | ENDIF |
---|
141 | IF (ilonlatfrac(2) < Npery) THEN |
---|
142 | IF (ilonlatfrac(2) /= 0) THEN |
---|
143 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
144 | iyend = ilonlatfrac(2)*fracy+1 |
---|
145 | ELSE |
---|
146 | iybeg = 0 |
---|
147 | iyend = fracy+1 |
---|
148 | END IF |
---|
149 | ELSE |
---|
150 | iybeg = Npery*fracy |
---|
151 | iyend = dy+1 |
---|
152 | END IF |
---|
153 | ELSE IF (fraclonv >= lonv .AND. fraclatv < latv) THEN |
---|
154 | IF (ilonlatfrac(1) > 0) THEN |
---|
155 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
156 | ixend = ilonlatfrac(1)*fracx+1 |
---|
157 | ELSE |
---|
158 | ixbeg = 0 |
---|
159 | ixend = fracx+1 |
---|
160 | END IF |
---|
161 | IF (ilonlatfrac(2) < Npery) THEN |
---|
162 | IF (ilonlatfrac(2) /= 0) THEN |
---|
163 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
164 | iyend = ilonlatfrac(2)*fracy+1 |
---|
165 | ELSE |
---|
166 | iybeg = 0 |
---|
167 | iyend = fracy+1 |
---|
168 | END IF |
---|
169 | ELSE |
---|
170 | iybeg = Npery*fracy |
---|
171 | iyend = dy+1 |
---|
172 | END IF |
---|
173 | END IF |
---|
174 | |
---|
175 | IF (ALLOCATED(lon)) DEALLOCATE(lon) |
---|
176 | ALLOCATE(lon(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
177 | IF (ALLOCATED(lat)) DEALLOCATE(lat) |
---|
178 | ALLOCATE(lat(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
179 | IF (ALLOCATED(difflonlat)) DEALLOCATE(difflonlat) |
---|
180 | ALLOCATE(difflonlat(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
181 | |
---|
182 | lon = ilon(ixbeg:ixend,iybeg:iyend) |
---|
183 | lat = ilat(ixbeg:ixend,iybeg:iyend) |
---|
184 | |
---|
185 | ! print *,'lon _______' |
---|
186 | ! print *,lon |
---|
187 | ! print *,'lat _______' |
---|
188 | ! print *,lat |
---|
189 | |
---|
190 | ! Find point |
---|
191 | difflonlat = SQRT((lon-lonv)**2. + (lat-latv)**2.) |
---|
192 | mindiffLl = MINVAL(difflonlat) |
---|
193 | ilonlat = index2DArrayR(difflonlat, ixend-ixbeg+1, iyend-iybeg+1, mindiffLl) |
---|
194 | |
---|
195 | ilonlat(1) = ilonlat(1) + ixbeg |
---|
196 | ilonlat(2) = ilonlat(2) + iybeg |
---|
197 | |
---|
198 | ! PRINT *,'mindiffLl:', mindiffLl, ' ilatlon:', ilatlon |
---|
199 | ! PRINT *,'lon, lat:', lon(ilonlat(1),ilonlat(2)), ' ,', lat(ilonlat(1),ilonlat(2)) |
---|
200 | |
---|
201 | RETURN |
---|
202 | |
---|
203 | END SUBROUTINE CoarselonlatFind |
---|
204 | |
---|
205 | SUBROUTINE CoarselonlatFindExact(dx, dy, ilon, ilat, nxlon, nxlat, fracx, fracy, fraclon, fraclat, & |
---|
206 | iv, lonv, latv, per, Nperx, Npery, mindiff, ilonlat, mindiffLl) |
---|
207 | ! Function to search a given value from a coarser version of the data |
---|
208 | |
---|
209 | USE module_generic |
---|
210 | |
---|
211 | IMPLICIT NONE |
---|
212 | |
---|
213 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
214 | INTEGER, INTENT(in) :: dx, dy, iv |
---|
215 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: ilon, ilat |
---|
216 | INTEGER, INTENT(in) :: fracx, fracy |
---|
217 | REAL(r_k), DIMENSION(Nperx,Npery), INTENT(in) :: fraclon, fraclat |
---|
218 | REAL(r_k), INTENT(in) :: lonv, latv, per, mindiff |
---|
219 | REAL(r_k), DIMENSION(2), INTENT(in) :: nxlon, nxlat |
---|
220 | INTEGER, INTENT(in) :: Nperx, Npery |
---|
221 | INTEGER, DIMENSION(2), INTENT(out) :: ilonlat |
---|
222 | REAL(r_k), INTENT(out) :: mindiffLl |
---|
223 | ! Local |
---|
224 | INTEGER :: i |
---|
225 | REAL(r_k), DIMENSION(Nperx,Npery) :: difffraclonlat |
---|
226 | REAL(r_k) :: mindifffracLl |
---|
227 | INTEGER, DIMENSION(2) :: ilonlatfrac |
---|
228 | INTEGER :: ixbeg, ixend, iybeg, iyend |
---|
229 | REAL(r_k) :: fraclonv, fraclatv |
---|
230 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: difflonlat, lon, lat |
---|
231 | CHARACTER(LEN=50) :: fname |
---|
232 | |
---|
233 | ! Variables |
---|
234 | ! ilon, ilat: original 2D matrices with the longitudes and the latitudes |
---|
235 | ! lonv, latv: longitude and latitude to find |
---|
236 | ! iv: point in the input data |
---|
237 | ! nxlon, nxlat: minimum and maximum longitude and latitude of the target lon,lat |
---|
238 | ! per: fraction of the whole domain (as percentage) |
---|
239 | ! Nper[x/y]: period (as fraction over 1) of the fractions of the original grid to use to explore |
---|
240 | ! frac[x/y]: Number of grid points for each fraction |
---|
241 | ! fraclon, fraclat: longitude and latitude fractional matricies to perform the first guess |
---|
242 | ! mindiff: authorized minimal distance between input and interpolated point |
---|
243 | ! ilonlat: grid point on the total lon,lat matrix |
---|
244 | ! mindiffLl: distance between input and interpolated point |
---|
245 | |
---|
246 | fname = 'CoarselonlatFindExact' |
---|
247 | |
---|
248 | IF (lonv < nxlon(1) .OR. lonv > nxlon(2)) THEN |
---|
249 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
250 | PRINT *,' ' // TRIM(fname) // ': longitude outside data range!!' |
---|
251 | PRINT *,' given value:', lonv,' outside (',nxlon(1),' ,',nxlon(2),' )' |
---|
252 | STOP |
---|
253 | END IF |
---|
254 | IF (latv < nxlat(1) .OR. latv > nxlat(2)) THEN |
---|
255 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
256 | PRINT *,' ' // TRIM(fname) // ': latitude outside data range!!' |
---|
257 | PRINT *,' given value:', latv,' outside (',nxlat(1),' ,',nxlat(2),' )' |
---|
258 | STOP |
---|
259 | END IF |
---|
260 | |
---|
261 | ! Initializing variables |
---|
262 | ixbeg = 0 |
---|
263 | ixend = 0 |
---|
264 | iybeg = 0 |
---|
265 | iyend = 0 |
---|
266 | |
---|
267 | ! Fraction point |
---|
268 | difffraclonlat = SQRT((fraclon-lonv)**2. + (fraclat-latv)**2.) |
---|
269 | mindifffracLl = MINVAL(difffraclonlat) |
---|
270 | ilonlatfrac = index2DArrayR(difffraclonlat, Nperx, Npery, mindifffracLl) |
---|
271 | |
---|
272 | ! PRINT *, 'mindifffracLl:', mindifffracLl, ' ilonlatfrac:', ilonlatfrac |
---|
273 | ! PRINT *, 'frac lon, lat:', fraclon(ilonlatfrac(1),ilonlatfrac(2)), ' ,', & |
---|
274 | ! fraclat(ilonlatfrac(1),ilonlatfrac(2)) |
---|
275 | ! PRINT *, 'values lon, lat:', lonv, latv |
---|
276 | |
---|
277 | ! Providing fraction range |
---|
278 | fraclonv = fraclon(ilonlatfrac(1),ilonlatfrac(2)) |
---|
279 | fraclatv = fraclat(ilonlatfrac(1),ilonlatfrac(2)) |
---|
280 | |
---|
281 | IF (fraclonv >= lonv .AND. fraclatv >= latv) THEN |
---|
282 | PRINT *,'Lluis!',fraclonv, '>=', lonv,'&', fraclatv, '>=', latv |
---|
283 | IF (ilonlatfrac(1) > 1) THEN |
---|
284 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
285 | ixend = ilonlatfrac(1)*fracx+1 |
---|
286 | ELSE |
---|
287 | PRINT *,'Lluis 2' |
---|
288 | ixbeg = 1 |
---|
289 | ixend = fracx+1 |
---|
290 | END IF |
---|
291 | IF (ilonlatfrac(2) > 1) THEN |
---|
292 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
293 | iyend = ilonlatfrac(2)*fracy+1 |
---|
294 | ELSE |
---|
295 | iybeg = 1 |
---|
296 | iyend = fracy+1 |
---|
297 | END IF |
---|
298 | ELSE IF (fraclonv < lonv .AND. fraclatv >= latv) THEN |
---|
299 | PRINT *,'Lluis!',fraclonv, '<', lonv,'&', fraclatv, '>=', latv |
---|
300 | IF (ilonlatfrac(1) < Nperx) THEN |
---|
301 | PRINT *,'Lluis 2' |
---|
302 | IF (ilonlatfrac(1) /= 1) THEN |
---|
303 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
304 | ixend = ilonlatfrac(1)*fracx+1 |
---|
305 | ELSE |
---|
306 | ixbeg = 1 |
---|
307 | ixend = fracx+1 |
---|
308 | END IF |
---|
309 | ELSE |
---|
310 | ixbeg = Nperx*fracx |
---|
311 | ixend = dx+1 |
---|
312 | END IF |
---|
313 | IF (ilonlatfrac(2) > 1) THEN |
---|
314 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
315 | iyend = ilonlatfrac(2)*fracy+1 |
---|
316 | ELSE |
---|
317 | iybeg = 1 |
---|
318 | iyend = fracy+1 |
---|
319 | END IF |
---|
320 | ELSE IF (fraclonv < lonv .AND. fraclatv < latv) THEN |
---|
321 | PRINT *,'Lluis!',fraclonv, '<', lonv,'&', fraclatv, '<', latv |
---|
322 | IF (ilonlatfrac(1) < Nperx) THEN |
---|
323 | IF (ilonlatfrac(1) /= 1) THEN |
---|
324 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
325 | ixend = ilonlatfrac(1)*fracx+1 |
---|
326 | ELSE |
---|
327 | ixbeg = 1 |
---|
328 | ixend = fracx+1 |
---|
329 | END IF |
---|
330 | ELSE |
---|
331 | ixbeg = Nperx*fracx |
---|
332 | ixend = dx+1 |
---|
333 | ENDIF |
---|
334 | IF (ilonlatfrac(2) < Npery) THEN |
---|
335 | IF (ilonlatfrac(2) /= 1) THEN |
---|
336 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
337 | iyend = ilonlatfrac(2)*fracy+1 |
---|
338 | ELSE |
---|
339 | iybeg = 1 |
---|
340 | iyend = fracy+1 |
---|
341 | END IF |
---|
342 | ELSE |
---|
343 | iybeg = Npery*fracy |
---|
344 | iyend = dy+1 |
---|
345 | END IF |
---|
346 | ELSE IF (fraclonv >= lonv .AND. fraclatv < latv) THEN |
---|
347 | PRINT *,'Llui!',fraclonv, '>=', lonv,'&', fraclatv, '<', latv |
---|
348 | IF (ilonlatfrac(1) > 1) THEN |
---|
349 | ixbeg = (ilonlatfrac(1)-1)*fracx |
---|
350 | ixend = ilonlatfrac(1)*fracx+1 |
---|
351 | ELSE |
---|
352 | ixbeg = 1 |
---|
353 | ixend = fracx+1 |
---|
354 | END IF |
---|
355 | IF (ilonlatfrac(2) < Npery) THEN |
---|
356 | IF (ilonlatfrac(2) /= 1) THEN |
---|
357 | iybeg = (ilonlatfrac(2)-1)*fracy |
---|
358 | iyend = ilonlatfrac(2)*fracy+1 |
---|
359 | ELSE |
---|
360 | iybeg = 1 |
---|
361 | iyend = fracy+1 |
---|
362 | END IF |
---|
363 | ELSE |
---|
364 | iybeg = Npery*fracy |
---|
365 | iyend = dy+1 |
---|
366 | END IF |
---|
367 | END IF |
---|
368 | |
---|
369 | IF (ALLOCATED(lon)) DEALLOCATE(lon) |
---|
370 | ALLOCATE(lon(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
371 | IF (ALLOCATED(lat)) DEALLOCATE(lat) |
---|
372 | ALLOCATE(lat(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
373 | IF (ALLOCATED(difflonlat)) DEALLOCATE(difflonlat) |
---|
374 | ALLOCATE(difflonlat(ixend-ixbeg+1, iyend-iybeg+1)) |
---|
375 | |
---|
376 | lon = ilon(ixbeg:ixend,iybeg:iyend) |
---|
377 | lat = ilat(ixbeg:ixend,iybeg:iyend) |
---|
378 | |
---|
379 | ! print *,'lon _______' |
---|
380 | ! print *,lon |
---|
381 | ! print *,'lat _______' |
---|
382 | ! print *,lat |
---|
383 | |
---|
384 | ! Find point |
---|
385 | difflonlat = SQRT((lon-lonv)**2. + (lat-latv)**2.) |
---|
386 | mindiffLl = MINVAL(difflonlat) |
---|
387 | |
---|
388 | IF (mindiffLl > mindiff) THEN |
---|
389 | difflonlat = SQRT((lon-lonv)**2. + (lat-latv)**2.) |
---|
390 | mindiffLl = MINVAL(difflonlat) |
---|
391 | END IF |
---|
392 | |
---|
393 | IF (mindiffLl > mindiff) THEN |
---|
394 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
395 | PRINT *,' ' // TRIM(fname) // ': not equivalent point closer than:',mindiff,' found!!' |
---|
396 | PRINT *,' at input point iv:', iv,' lon/lat:', lonv,', ',latv,' distance:',mindiffLl |
---|
397 | PRINT *,' Fraction values _______ (',Nperx,', ',Npery ,')' |
---|
398 | PRINT *,' fraclon' |
---|
399 | DO i=1, Nperx |
---|
400 | PRINT *,' ',fraclon(i,:) |
---|
401 | END DO |
---|
402 | PRINT *,' fraclat' |
---|
403 | DO i=1, Nperx |
---|
404 | PRINT *,' ',fraclat(i,:) |
---|
405 | END DO |
---|
406 | PRINT *,' frac lon, lat:', fraclon(ilonlatfrac(1),ilonlatfrac(2)), ' ,', & |
---|
407 | fraclat(ilonlatfrac(1),ilonlatfrac(2)) |
---|
408 | PRINT *,' mindifffracLl:', mindifffracLl, ' ilonlatfrac:', ilonlatfrac |
---|
409 | PRINT *,' Coarse values _______' |
---|
410 | PRINT *,' indices. x:', ixbeg, ', ', ixend, ' y:', iybeg, ', ', iyend |
---|
411 | PRINT *,' lon range:', '(',ilon(ixbeg,iybeg),', ',ilon(ixend,iyend),')' |
---|
412 | PRINT *,' lat range:', '(',ilat(ixbeg,iybeg),', ',ilat(ixend,iyend),')' |
---|
413 | PRINT *,' lon', UBOUND(lon) |
---|
414 | DO i=1, ixend-ixbeg+1 |
---|
415 | PRINT *,' ',lon(i,:) |
---|
416 | END DO |
---|
417 | PRINT *,' lat', UBOUND(lat) |
---|
418 | DO i=1, ixend-ixbeg+1 |
---|
419 | PRINT *,' ',lat(i,:) |
---|
420 | END DO |
---|
421 | STOP |
---|
422 | END IF |
---|
423 | |
---|
424 | ilonlat = index2DArrayR(difflonlat, ixend-ixbeg+1, iyend-iybeg+1, mindiffLl) |
---|
425 | |
---|
426 | ilonlat(1) = ilonlat(1) + ixbeg |
---|
427 | ilonlat(2) = ilonlat(2) + iybeg |
---|
428 | |
---|
429 | ! PRINT *,'mindiffLl:', mindiffLl, ' ilatlon:', ilatlon |
---|
430 | ! PRINT *,'lon, lat:', lon(ilonlat(1),ilonlat(2)), ' ,', lat(ilonlat(1),ilonlat(2)) |
---|
431 | |
---|
432 | RETURN |
---|
433 | |
---|
434 | END SUBROUTINE CoarselonlatFindExact |
---|
435 | |
---|
436 | SUBROUTINE lonlatFind(dx, dy, ilon, ilat, nxlon, nxlat, lonv, latv, ilonlat, mindiffLl) |
---|
437 | ! Function to search a given value from a coarser version of the data |
---|
438 | |
---|
439 | USE module_generic |
---|
440 | |
---|
441 | IMPLICIT NONE |
---|
442 | |
---|
443 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
444 | INTEGER, INTENT(in) :: dx, dy |
---|
445 | REAL(r_k), DIMENSION(dx,dy), INTENT(in) :: ilon, ilat |
---|
446 | REAL(r_k), INTENT(in) :: lonv, latv |
---|
447 | REAL(r_k), DIMENSION(2), INTENT(in) :: nxlon, nxlat |
---|
448 | INTEGER, DIMENSION(2), INTENT(out) :: ilonlat |
---|
449 | REAL(r_k), INTENT(out) :: mindiffLl |
---|
450 | ! Local |
---|
451 | REAL(r_k), DIMENSION(dx,dy) :: difflonlat |
---|
452 | CHARACTER(LEN=50) :: fname |
---|
453 | |
---|
454 | ! Variables |
---|
455 | ! ilon, ilat: original 2D matrices with the longitudes and the latitudes |
---|
456 | ! lonv, latv: longitude and latitude to find |
---|
457 | ! nxlon, nxlat: minimum and maximum longitude and latitude of the target lon,lat |
---|
458 | |
---|
459 | fname = 'lonlatFind' |
---|
460 | |
---|
461 | IF (lonv < nxlon(1) .OR. lonv > nxlon(2)) THEN |
---|
462 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
463 | PRINT *,' ' // TRIM(fname) // ': longitude outside data range!!' |
---|
464 | PRINT *,' given value:', lonv,' outside (',nxlon(1),' ,',nxlon(2),' )' |
---|
465 | STOP |
---|
466 | END IF |
---|
467 | IF (latv < nxlat(1) .OR. latv > nxlat(2)) THEN |
---|
468 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
469 | PRINT *,' ' // TRIM(fname) // ': latitude outside data range!!' |
---|
470 | PRINT *,' given value:', latv,' outside (',nxlat(1),' ,',nxlat(2),' )' |
---|
471 | STOP |
---|
472 | END IF |
---|
473 | |
---|
474 | ! Find point |
---|
475 | difflonlat = SQRT((ilon-lonv)**2. + (ilat-latv)**2.) |
---|
476 | mindiffLl = MINVAL(difflonlat) |
---|
477 | ilonlat = index2DArrayR(difflonlat, dx, dy, mindiffLl) |
---|
478 | |
---|
479 | ! PRINT *,'mindiffLl:', mindiffLl, ' ilatlon:', ilatlon |
---|
480 | ! PRINT *,'lon, lat:', lon(ilonlat(1),ilonlat(2)), ' ,', lat(ilonlat(1),ilonlat(2)) |
---|
481 | |
---|
482 | RETURN |
---|
483 | |
---|
484 | END SUBROUTINE lonlatFind |
---|
485 | |
---|
486 | SUBROUTINE CoarseInterpolate(projlon, projlat, lonvs, latvs, percen, mindiff, inpt, ilonlat, & |
---|
487 | mindiffLl, dimx, dimy, Ninpts) |
---|
488 | ! Subroutine which finds the closest grid point within a projection throughout a first guest |
---|
489 | ! approche from percentages of the whole domain |
---|
490 | |
---|
491 | USE module_generic |
---|
492 | |
---|
493 | IMPLICIT NONE |
---|
494 | |
---|
495 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
496 | INTEGER, INTENT(in) :: dimx, dimy |
---|
497 | REAL(r_k), DIMENSION(dimx,dimy), INTENT(in) :: projlon, projlat |
---|
498 | INTEGER, INTENT(in) :: Ninpts |
---|
499 | REAL(r_k), DIMENSION(Ninpts), INTENT(in) :: inpt, lonvs, latvs |
---|
500 | REAL(r_k), INTENT(in) :: mindiff, percen |
---|
501 | INTEGER, DIMENSION(Ninpts,2), INTENT(out) :: ilonlat |
---|
502 | REAL(r_k), DIMENSION(Ninpts), INTENT(out) :: mindiffLl |
---|
503 | |
---|
504 | ! Local |
---|
505 | INTEGER :: iv,i,j |
---|
506 | INTEGER :: ierr |
---|
507 | INTEGER :: Ninpts1 |
---|
508 | REAL(r_k), DIMENSION(2) :: extremelon, extremelat |
---|
509 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: fractionlon, fractionlat |
---|
510 | INTEGER :: dfracdx, dfracdy, fracdx, fracdy |
---|
511 | CHARACTER(LEN=50) :: fname |
---|
512 | |
---|
513 | !!!!!!! Variables |
---|
514 | ! dimx, dimy: dimension length of the target interpolation |
---|
515 | ! proj[lon/lat]: longitudes and latitudes of the target interpolation |
---|
516 | ! Ninpts: number of points to interpolate |
---|
517 | ! [lon/lat]vs: longitudes and latitudes of the points to interpolate |
---|
518 | ! mindiff: minimal accepted distance to the target point |
---|
519 | ! percen: size (as percentage of the total domain) of the first guess portions to provide the first gues |
---|
520 | ! inpt: whether the point has already been localized (1) or not (0) |
---|
521 | ! ilonlat: Longitude and Latitude of the input points |
---|
522 | ! mindiffLl: minimum difference between target and source longitude/latitude (in degrees) |
---|
523 | |
---|
524 | fname = 'CoarseInterpolate' |
---|
525 | Ninpts1 = Ninpts/100 |
---|
526 | |
---|
527 | extremelon = (/ MINVAL(projlon), MAXVAL(projlon) /) |
---|
528 | extremelat = (/ MINVAL(projlat), MAXVAL(projlat) /) |
---|
529 | |
---|
530 | PRINT *,' ' // TRIM(fname) //' total space:', dimx, ', ', dimy, ' %', percen |
---|
531 | |
---|
532 | dfracdx = INT(1./percen+1) |
---|
533 | dfracdy = INT(1./percen+1) |
---|
534 | fracdx = INT(dimx*percen) |
---|
535 | fracdy = INT(dimy*percen) |
---|
536 | PRINT *,' ' // TRIM(fname) //' fraction:', dfracdx, ', ', dfracdy, ' freq:', fracdx,', ',fracdy |
---|
537 | |
---|
538 | IF (ALLOCATED(fractionlon)) DEALLOCATE(fractionlon) |
---|
539 | ALLOCATE(fractionlon(dfracdx, dfracdy), STAT=ierr) |
---|
540 | IF (ierr /= 0) THEN |
---|
541 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
542 | PRINT *,' ' // TRIM(fname) //": problem allocating 'fractionlon' !!" |
---|
543 | STOP |
---|
544 | END IF |
---|
545 | IF (ALLOCATED(fractionlat)) DEALLOCATE(fractionlat) |
---|
546 | ALLOCATE(fractionlat(dfracdx, dfracdy), STAT=ierr) |
---|
547 | IF (ierr /= 0) THEN |
---|
548 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
549 | PRINT *,' ' // TRIM(fname) //": problem allocating 'fractionlat' !!" |
---|
550 | STOP |
---|
551 | END IF |
---|
552 | |
---|
553 | DO i=1,dfracdx |
---|
554 | DO j=1,dfracdy |
---|
555 | fractionlon(i,j) = projlon(fracdx*(i-1)+1,fracdy*(j-1)+1) |
---|
556 | fractionlat(i,j) = projlat(fracdx*(i-1)+1,fracdy*(j-1)+1) |
---|
557 | ! PRINT *,'i,j:',i,', ',j,' frac ij:',fracdx*(i-1),', ',fracdy*(j-1),' lonlat:', fractionlon(i,j),& |
---|
558 | ! ', ',fractionlat(i,j) |
---|
559 | END DO |
---|
560 | END DO |
---|
561 | |
---|
562 | ! PRINT *,' ' // TRIM(fname) // ' fractions of:' |
---|
563 | ! PRINT *,' lon _______ (',dfracdx,', ',dfracdy,')' |
---|
564 | ! DO i=1,dfracdx |
---|
565 | ! PRINT *,fractionlon(i,:) |
---|
566 | ! END DO |
---|
567 | ! PRINT *,' lat_______' |
---|
568 | ! DO i=1,dfracdx |
---|
569 | ! PRINT *,fractionlat(i,:) |
---|
570 | ! END DO |
---|
571 | |
---|
572 | DO iv=1,Ninpts |
---|
573 | IF (inpt(iv) == 0) THEN |
---|
574 | CALL CoarselonlatFind(dimx, dimy, projlon, projlat, extremelon, extremelat, fractionlon, & |
---|
575 | fractionlat, lonvs(iv), latvs(iv), percen, dfracdx, dfracdy, ilonlat(iv,:), mindiffLl(iv)) |
---|
576 | |
---|
577 | IF ((mindiffLl(iv) <= mindiff) .AND. .NOT.(ilonlat(iv,1) >= 0 .AND. ilonlat(iv,1) >= 0)) THEN |
---|
578 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
579 | PRINT *,' ' // TRIM(fname) // ': point iv:', iv, ' at', lonvs(iv), ' ,', latvs(iv), & |
---|
580 | ' not relocated !!' |
---|
581 | PRINT *,' mindiffl:', mindiffLl(iv), ' ilon:', ilonlat(iv,1), ' ilat:', ilonlat(iv,2) |
---|
582 | STOP |
---|
583 | END IF |
---|
584 | |
---|
585 | END IF |
---|
586 | END DO |
---|
587 | |
---|
588 | END SUBROUTINE CoarseInterpolate |
---|
589 | |
---|
590 | SUBROUTINE CoarseInterpolateExact(projlon, projlat, lonvs, latvs, percen, mindiff, ivar, newvar, & |
---|
591 | newvarin, newvarinpt, newvarindiff, dimx, dimy, Ninpts) |
---|
592 | ! Subroutine which finds the closest grid point within a projection throughout a first guest |
---|
593 | ! and then whole domain approche from percentages of the whole domain |
---|
594 | |
---|
595 | USE module_generic |
---|
596 | |
---|
597 | IMPLICIT NONE |
---|
598 | |
---|
599 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
600 | INTEGER, INTENT(in) :: dimx, dimy |
---|
601 | REAL(r_k), DIMENSION(dimx,dimy), INTENT(in) :: projlon, projlat |
---|
602 | INTEGER, INTENT(in) :: Ninpts |
---|
603 | REAL(r_k), DIMENSION(Ninpts), INTENT(in) :: ivar, lonvs, latvs |
---|
604 | REAL(r_k), INTENT(in) :: mindiff, percen |
---|
605 | REAL(r_k), DIMENSION(dimx,dimy), INTENT(out) :: newvar |
---|
606 | INTEGER, DIMENSION(dimx,dimy), INTENT(out) :: newvarin |
---|
607 | INTEGER, DIMENSION(Ninpts), INTENT(out) :: newvarinpt |
---|
608 | REAL(r_k), DIMENSION(Ninpts), INTENT(out) :: newvarindiff |
---|
609 | |
---|
610 | ! Local |
---|
611 | INTEGER :: iv,i,j |
---|
612 | INTEGER :: ierr |
---|
613 | INTEGER, DIMENSION(2) :: ilonlat |
---|
614 | REAL(r_k) :: mindiffLl |
---|
615 | INTEGER :: Ninpts1 |
---|
616 | REAL(r_k), DIMENSION(2) :: extremelon, extremelat |
---|
617 | REAL(r_k), ALLOCATABLE, DIMENSION(:,:) :: fractionlon, fractionlat |
---|
618 | INTEGER :: dfracdx, dfracdy, fracdx, fracdy |
---|
619 | CHARACTER(LEN=50) :: fname |
---|
620 | |
---|
621 | !!!!!!! Variables |
---|
622 | ! dimx, dimy: dimension length of the target interpolation |
---|
623 | ! proj[lon/lat]: longitudes and latitudes of the target interpolation |
---|
624 | ! Ninpts: number of points to interpolate |
---|
625 | ! [lon/lat]vs: longitudes and latitudes of the points to interpolate |
---|
626 | ! mindiff: minimal accepted distance to the target point |
---|
627 | ! percen: size (as percentage of the total domain) of the first guess portions to provide the first gues |
---|
628 | ! ivar: values to localize in the target projection |
---|
629 | ! newvar: localisation of the [lon/lat]vs point in the target projection |
---|
630 | ! newvarin: number of point from the input data |
---|
631 | ! newvarinpt: integer value indicating if the value has been already located (0: no, 1: yes) |
---|
632 | ! newvarindiff: distance of point from the input data to the closest target point |
---|
633 | ! ncid: netCDF output file id |
---|
634 | |
---|
635 | fname = 'CoarseInterpolateExact' |
---|
636 | Ninpts1 = Ninpts/100 |
---|
637 | |
---|
638 | extremelon = (/ MINVAL(projlon), MAXVAL(projlon) /) |
---|
639 | extremelat = (/ MINVAL(projlat), MAXVAL(projlat) /) |
---|
640 | |
---|
641 | PRINT *,' ' // TRIM(fname) //' total space:', dimx, ', ', dimy, ' %', percen |
---|
642 | |
---|
643 | dfracdx = INT(1./percen+1) |
---|
644 | dfracdy = INT(1./percen+1) |
---|
645 | fracdx = INT(dimx*percen) |
---|
646 | fracdy = INT(dimy*percen) |
---|
647 | PRINT *,' ' // TRIM(fname) //' fraction:', dfracdx, ', ', dfracdy, ' freq:', fracdx,', ',fracdy |
---|
648 | |
---|
649 | IF (ALLOCATED(fractionlon)) DEALLOCATE(fractionlon) |
---|
650 | ALLOCATE(fractionlon(dfracdx, dfracdy), STAT=ierr) |
---|
651 | IF (ierr /= 0) THEN |
---|
652 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
653 | PRINT *,' ' // TRIM(fname) //": problem allocating 'fractionlon' !!" |
---|
654 | STOP |
---|
655 | END IF |
---|
656 | IF (ALLOCATED(fractionlat)) DEALLOCATE(fractionlat) |
---|
657 | ALLOCATE(fractionlat(dfracdx, dfracdy), STAT=ierr) |
---|
658 | IF (ierr /= 0) THEN |
---|
659 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
660 | PRINT *,' ' // TRIM(fname) //": problem allocating 'fractionlat' !!" |
---|
661 | STOP |
---|
662 | END IF |
---|
663 | |
---|
664 | DO i=1,dfracdx |
---|
665 | DO j=1,dfracdy |
---|
666 | fractionlon(i,j) = projlon(fracdx*(i-1)+1,fracdy*(j-1)+1) |
---|
667 | fractionlat(i,j) = projlat(fracdx*(i-1)+1,fracdy*(j-1)+1) |
---|
668 | ! PRINT *,'i,j:',i,', ',j,' frac ij:',fracdx*(i-1),', ',fracdy*(j-1),' lonlat:', fractionlon(i,j),& |
---|
669 | ! ', ',fractionlat(i,j) |
---|
670 | END DO |
---|
671 | END DO |
---|
672 | |
---|
673 | ! PRINT *,' ' // TRIM(fname) // ' fractions of:' |
---|
674 | ! PRINT *,' lon _______ (',dfracdx,', ',dfracdy,')' |
---|
675 | ! DO i=1,dfracdx |
---|
676 | ! PRINT *,fractionlon(i,:) |
---|
677 | ! END DO |
---|
678 | ! PRINT *,' lat_______' |
---|
679 | ! DO i=1,dfracdx |
---|
680 | ! PRINT *,fractionlat(i,:) |
---|
681 | ! END DO |
---|
682 | |
---|
683 | DO iv=1,Ninpts |
---|
684 | IF (newvarinpt(iv) == 0) THEN |
---|
685 | CALL CoarselonlatFindExact(dimx, dimy, projlon, projlat, extremelon, extremelat, fracdx, fracdy,& |
---|
686 | fractionlon, fractionlat, iv, lonvs(iv), latvs(iv), percen, dfracdx, dfracdy, mindiff, & |
---|
687 | ilonlat, mindiffLl) |
---|
688 | |
---|
689 | IF (mindiffLl >= mindiff) THEN |
---|
690 | ! percendone(iv,Ninpts,0.5,'done:') |
---|
691 | |
---|
692 | IF (ilonlat(1) >= 0 .AND. ilonlat(1) >= 0) THEN |
---|
693 | newvar(ilonlat(1),ilonlat(2)) = ivar(iv) |
---|
694 | newvarin(ilonlat(1),ilonlat(2)) = iv |
---|
695 | newvarinpt(iv) = 1 |
---|
696 | newvarindiff(iv) = mindiffLl |
---|
697 | ! PRINT *,'Lluis iv:', newvarin(ilonlat(1),ilonlat(2)), ' localized:', newvarinpt(iv), & |
---|
698 | ! ' values:', newvar(ilonlat(1),ilonlat(2)), ' invalues:', ivar(iv), ' mindist:', & |
---|
699 | ! newvarindiff(iv), ' point:',ilonlat |
---|
700 | ELSE |
---|
701 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
702 | PRINT *,' ' // TRIM(fname) // ': point iv:', iv, ' at', lonvs(iv), ' ,', latvs(iv), & |
---|
703 | ' not relocated !!' |
---|
704 | PRINT *,' mindiffl:', mindiffLl, ' ilon:', ilonlat(1), ' ilat:', ilonlat(2) |
---|
705 | STOP |
---|
706 | END IF |
---|
707 | |
---|
708 | ! IF (MOD(iv,Ninpts1) == 0) newnc.sync() |
---|
709 | ELSE |
---|
710 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
711 | PRINT *,' ' // TRIM(fname) // ': for point #', iv,' lon,lat in incomplet map:', lonvs(iv), & |
---|
712 | ' ,', latvs(iv), ' there is not a set of lon,lat in the completed map closer than: ', & |
---|
713 | mindiff, ' !!' |
---|
714 | PRINT *,' found minimum difference:', mindiffLl |
---|
715 | STOP |
---|
716 | END IF |
---|
717 | END IF |
---|
718 | END DO |
---|
719 | |
---|
720 | END SUBROUTINE CoarseInterpolateExact |
---|
721 | |
---|
722 | SUBROUTINE LlInterpolateProjection(inlonv, inlatv, projlon, projlat, intkind, outLlw, idimx, idimy, & |
---|
723 | pdimx, pdimy) |
---|
724 | ! Subroutine which provides the indices for a given interpolation of a projection |
---|
725 | |
---|
726 | USE module_generic |
---|
727 | |
---|
728 | IMPLICIT NONE |
---|
729 | |
---|
730 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
731 | INTEGER, INTENT(in) :: idimx, idimy, pdimx, pdimy |
---|
732 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(in) :: projlon, projlat |
---|
733 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: inlonv, inlatv |
---|
734 | CHARACTER(LEN=50), INTENT(in) :: intkind |
---|
735 | REAL(r_k), DIMENSION(3,16,pdimx,pdimy), INTENT(out) :: outLlw |
---|
736 | |
---|
737 | ! Local |
---|
738 | INTEGER :: i,j,iv, ix, iy |
---|
739 | REAL(r_k) :: mindiffLl, dist |
---|
740 | REAL(r_k) :: inclon, inclat, maxdiffprojlonlat |
---|
741 | REAL(r_k), DIMENSION(idimx,idimy) :: difflonlat |
---|
742 | REAL(r_k), DIMENSION(pdimx,pdimy) :: difflon, difflat |
---|
743 | REAL(r_k), DIMENSION(2) :: extremelon, extremelat, ipos |
---|
744 | INTEGER, DIMENSION(2) :: iLl |
---|
745 | CHARACTER(LEN=50) :: fname |
---|
746 | |
---|
747 | !!!!!!! Variables |
---|
748 | ! idimx, idimy: dimension length of the input projection |
---|
749 | ! pdimx, pdimy: dimension length of the target projection |
---|
750 | ! in[lon/lat]: longitudes and latitudes of the target projection |
---|
751 | ! proj[lon/lat]: longitudes and latitudes of the target projection |
---|
752 | ! intkind: kind of interpolation |
---|
753 | ! 'npp': nearest neighbourgh |
---|
754 | ! 'dis': weighted distance, grid-output for SW, NW, NE, SE |
---|
755 | ! outLlw: output interpolation result |
---|
756 | ! for point pi,pj; up to 16 different values of |
---|
757 | ! 1st: i-index in input projection |
---|
758 | ! 2nd: j-index in input projection |
---|
759 | ! 3rd: weight for i-index, j-index to use for ponderation (0<1.) |
---|
760 | fname = 'LlInterpolateProjection' |
---|
761 | |
---|
762 | extremelon = (/ MINVAL(projlon), MAXVAL(projlon) /) |
---|
763 | extremelat = (/ MINVAL(projlat), MAXVAL(projlat) /) |
---|
764 | |
---|
765 | ! Maximum distance between grid points in target projection |
---|
766 | difflon = 0. |
---|
767 | difflat = 0. |
---|
768 | difflon(1:pdimx-1,:) = projlon(2:pdimx,:)-projlon(1:pdimx-1,:) |
---|
769 | difflat(:,1:pdimy-1) = projlat(:,2:pdimy)-projlat(:,1:pdimy-1) |
---|
770 | maxdiffprojlonlat = MAXVAL(SQRT(difflon**2. + difflat**2.)) |
---|
771 | |
---|
772 | ! Using case outside loop to be more efficient |
---|
773 | SELECT CASE(TRIM(intkind)) |
---|
774 | CASE ('dis') |
---|
775 | inclon = inlonv(2,1) - inlonv(1,1) |
---|
776 | inclat = inlatv(1,2) - inlatv(1,1) |
---|
777 | |
---|
778 | DO i=1, pdimx |
---|
779 | DO j=1, pdimy |
---|
780 | ! Find point |
---|
781 | difflonlat = SQRT((projlon(i,j)-inlonv)**2. + (projlat(i,j)-inlatv)**2.) |
---|
782 | mindiffLl = MINVAL(difflonlat) |
---|
783 | IF (mindiffLl > maxdiffprojlonlat) THEN |
---|
784 | outLlw(3,:,i,j) = 0. |
---|
785 | outLlw(3,:,i,j) = -1. |
---|
786 | ELSE |
---|
787 | ! Getting the four surrounding values |
---|
788 | iLl = index2DArrayR(difflonlat, idimx, idimy, mindiffLl) |
---|
789 | IF ( (projlon(i,j) < inlonv(iLl(1),iLl(2)) .AND. inclon > 0.) .OR. & |
---|
790 | (projlon(i,j) > inlonv(iLl(1),iLl(2)) .AND. inclon < 0.) ) THEN |
---|
791 | outLlw(1,1,i,j) = MAX(iLl(1)-1,1) |
---|
792 | outLlw(1,2,i,j) = MAX(iLl(1)-1,1) |
---|
793 | outLlw(1,3,i,j) = MIN(iLl(1),idimx) |
---|
794 | outLlw(1,4,i,j) = MIN(iLl(1),idimx) |
---|
795 | ELSE |
---|
796 | outLlw(1,1,i,j) = MAX(iLl(1),1) |
---|
797 | outLlw(1,2,i,j) = MAX(iLl(1),1) |
---|
798 | outLlw(1,3,i,j) = MIN(iLl(1)+1,idimx) |
---|
799 | outLlw(1,4,i,j) = MIN(iLl(1)+1,idimx) |
---|
800 | END IF |
---|
801 | IF ( (projlat(i,j) < inlatv(iLl(2),iLl(2)) .AND. inclat > 0.) .OR. & |
---|
802 | (projlat(i,j) > inlatv(iLl(2),iLl(2)) .AND. inclat < 0.) ) THEN |
---|
803 | outLlw(2,1,i,j) = MAX(iLl(2)-1,1) |
---|
804 | outLlw(2,2,i,j) = MIN(iLl(2),idimy) |
---|
805 | outLlw(2,3,i,j) = MIN(iLl(2),idimy) |
---|
806 | outLlw(2,4,i,j) = MAX(iLl(2)-1,1) |
---|
807 | ELSE |
---|
808 | outLlw(2,1,i,j) = MAX(iLl(2),1) |
---|
809 | outLlw(2,2,i,j) = MIN(iLl(2)+1,idimy) |
---|
810 | outLlw(2,3,i,j) = MIN(iLl(2)+1,idimy) |
---|
811 | outLlw(2,4,i,j) = MAX(iLl(2),1) |
---|
812 | END IF |
---|
813 | ! Computing distances |
---|
814 | !Keep the print for future checks? |
---|
815 | ! IF (MOD(i+j,200) == 0) THEN |
---|
816 | ! PRINT *,'center point:',i,j,'=', iLl,':',projlon(i,j),projlat(i,j),' incs',inclon,' ,',inclat |
---|
817 | ! PRINT *,'SW:', outLlw(1,1,i,j), outLlw(2,1,i,j),':',inlonv(outLlw(1,1,i,j), outLlw(2,1,i,j)),& |
---|
818 | ! inlatv(outLlw(1,1,i,j), outLlw(2,1,i,j)) |
---|
819 | ! PRINT *,'NW:', outLlw(1,2,i,j), outLlw(2,2,i,j),':',inlonv(outLlw(1,2,i,j), outLlw(2,2,i,j)),& |
---|
820 | ! inlatv(outLlw(1,2,i,j), outLlw(2,2,i,j)) |
---|
821 | ! PRINT *,'NE:', outLlw(1,3,i,j), outLlw(2,3,i,j),':',inlonv(outLlw(1,3,i,j), outLlw(2,3,i,j)),& |
---|
822 | ! inlatv(outLlw(1,3,i,j), outLlw(2,3,i,j)) |
---|
823 | ! PRINT *,'SE:', outLlw(1,4,i,j), outLlw(2,4,i,j),':',inlonv(outLlw(1,4,i,j), outLlw(2,4,i,j)),& |
---|
824 | ! inlatv(outLlw(1,4,i,j), outLlw(2,4,i,j)) |
---|
825 | ! END IF |
---|
826 | DO iv=1,4 |
---|
827 | ix = INT(outLlw(1,iv,i,j)) |
---|
828 | iy = INT(outLlw(2,iv,i,j)) |
---|
829 | dist = SQRT( (projlon(i,j)-inlonv(ix,iy))**2. + (projlat(i,j)-inlatv(ix,iy))**2. ) |
---|
830 | IF ( dist /= 0.) THEN |
---|
831 | outLlw(3,iv,i,j) = 1./dist |
---|
832 | ELSE |
---|
833 | outLlw(3,iv,i,j) = 1. |
---|
834 | END IF |
---|
835 | ! IF (i+j == 2) PRINT *,'iv:',iv,'dist:',dist,'weight:',outLlw(3,iv,i,j) |
---|
836 | END DO |
---|
837 | ! Normalizing |
---|
838 | outLlw(3,:,i,j) = outLlw(3,:,i,j)/(SUM(outLlw(3,:,i,j))) |
---|
839 | ! IF (i+j == 2) PRINT *,'Normalized weights:',outLlw(3,:,i,j),':',SUM(outLlw(3,:,i,j)) |
---|
840 | END IF |
---|
841 | END DO |
---|
842 | END DO |
---|
843 | CASE ('npp') |
---|
844 | DO i=1, pdimx |
---|
845 | DO j=1, pdimy |
---|
846 | ! Find point |
---|
847 | difflonlat = SQRT((projlon(i,j)-inlonv)**2. + (projlat(i,j)-inlatv)**2.) |
---|
848 | mindiffLl = MINVAL(difflonlat) |
---|
849 | ipos = index2DArrayR(difflonlat, idimx, idimy, mindiffLl) |
---|
850 | outLlw(1,1,i,j) = REAL(ipos(1)) |
---|
851 | outLlw(2,1,i,j) = REAL(ipos(2)) |
---|
852 | ! We do not want that values larger that the maximum distance between target grid points |
---|
853 | ! PRINT *,i,j,':',mindiffLl,'maxdiffLl:',maxdiffprojlonlat |
---|
854 | IF (mindiffLl .gt. maxdiffprojlonlat) THEN |
---|
855 | ! PRINT *,' ' // TRIM(fname) // ': reprojected minimum distance to nearest grid point:', & |
---|
856 | ! mindiffLl, ' larger than the maximum distance between grid points in target projection!!' |
---|
857 | outLlw(3,1,i,j) = -1. |
---|
858 | ELSE |
---|
859 | outLlw(3,1,i,j) = 1. |
---|
860 | END IF |
---|
861 | ix = INT(outLlw(1,1,i,j)) |
---|
862 | iy = INT(outLlw(2,1,i,j)) |
---|
863 | END DO |
---|
864 | END DO |
---|
865 | END SELECT |
---|
866 | |
---|
867 | END SUBROUTINE LlInterpolateProjection |
---|
868 | |
---|
869 | SUBROUTINE var2D_IntProj(var2Din, inlonv, inlatv, projlon, projlat, intkind, mask, varout, idimx, & |
---|
870 | idimy, pdimx, pdimy) |
---|
871 | ! Subroutine to interpolate a 2D variable |
---|
872 | |
---|
873 | USE module_generic |
---|
874 | |
---|
875 | IMPLICIT NONE |
---|
876 | |
---|
877 | INTEGER, INTENT(in) :: idimx, idimy, pdimx, pdimy |
---|
878 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(in) :: projlon, projlat |
---|
879 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: inlonv, inlatv |
---|
880 | CHARACTER(LEN=50), INTENT(in) :: intkind |
---|
881 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: var2Din |
---|
882 | INTEGER, DIMENSION(idimx,idimy), INTENT(in) :: mask |
---|
883 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(out) :: varout |
---|
884 | |
---|
885 | ! Local |
---|
886 | INTEGER :: i, j, k, iv, ix, iy |
---|
887 | REAL(r_k) :: w |
---|
888 | REAL(r_k), DIMENSION(3,16,pdimx,pdimy) :: outLlw |
---|
889 | CHARACTER(LEN=50) :: fname |
---|
890 | |
---|
891 | !!!!!!! Variables |
---|
892 | ! idimx, idimy: dimension length of the input projection |
---|
893 | ! pdimx, pdimy: dimension length of the target projection |
---|
894 | ! in[lon/lat]: longitudes and latitudes of the target projection |
---|
895 | ! proj[lon/lat]: longitudes and latitudes of the target projection |
---|
896 | ! intkind: kind of interpolation |
---|
897 | ! 'npp': nearest neighbourgh |
---|
898 | ! 'dis': weighted distance, grid-output for SW, NW, NE, SE |
---|
899 | ! outLlw: output interpolation result |
---|
900 | ! for point pi,pj; up to 16 different values of |
---|
901 | ! 1st: i-index in input projection |
---|
902 | ! 2nd: j-index in input projection |
---|
903 | ! 3rd: weight for i-index, j-index to use for ponderation (0<1.) |
---|
904 | ! var2Din: 2D variable to interpolate |
---|
905 | ! mask: mask of the intpu values (1: good, 0: none) |
---|
906 | ! varout: variable interpolated on the target projection |
---|
907 | fname = 'var2D_IntProj' |
---|
908 | |
---|
909 | CALL LlInterpolateProjection(inlonv, inlatv, projlon, projlat, intkind, outLlw, idimx, idimy, pdimx,& |
---|
910 | pdimy) |
---|
911 | |
---|
912 | SELECT CASE (intkind) |
---|
913 | CASE('dis') |
---|
914 | DO i=1, pdimx |
---|
915 | DO j=1, pdimy |
---|
916 | IF (outLlw(3,1,i,j) == -1.) THEN |
---|
917 | varout(i,j) = fillVal64 |
---|
918 | ELSE |
---|
919 | varout(i,j) = 0. |
---|
920 | DO iv=1, 4 |
---|
921 | ix = INT(outLlw(1,iv,i,j)) |
---|
922 | iy = INT(outLlw(2,iv,i,j)) |
---|
923 | IF (mask(ix,iy) == 1) THEN |
---|
924 | w = outLlw(3,iv,i,j) |
---|
925 | varout(i,j) = varout(i,j) + w*var2Din(ix,iy) |
---|
926 | END IF |
---|
927 | END DO |
---|
928 | END IF |
---|
929 | END DO |
---|
930 | END DO |
---|
931 | CASE('npp') |
---|
932 | DO i=1, pdimx |
---|
933 | DO j=1, pdimy |
---|
934 | ix = INT(outLlw(1,1,i,j)) |
---|
935 | iy = INT(outLlw(2,1,i,j)) |
---|
936 | IF ( (outLlw(3,1,i,j) == -1.) .OR. (mask(ix,iy) == 0) ) THEN |
---|
937 | varout(i,j) = fillVal64 |
---|
938 | ELSE |
---|
939 | varout(i,j) = var2Din(ix,iy)*outLlw(3,1,i,j) |
---|
940 | END IF |
---|
941 | END DO |
---|
942 | END DO |
---|
943 | END SELECT |
---|
944 | |
---|
945 | END SUBROUTINE var2D_IntProj |
---|
946 | |
---|
947 | |
---|
948 | SUBROUTINE var3D_IntProj(var3Din, inlonv, inlatv, projlon, projlat, intkind, mask, varout, idimx, & |
---|
949 | idimy, pdimx, pdimy, d3) |
---|
950 | ! Subroutine to interpolate a 3D variable |
---|
951 | |
---|
952 | USE module_generic |
---|
953 | |
---|
954 | IMPLICIT NONE |
---|
955 | |
---|
956 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
957 | INTEGER, INTENT(in) :: idimx, idimy, pdimx, pdimy, d3 |
---|
958 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(in) :: projlon, projlat |
---|
959 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: inlonv, inlatv |
---|
960 | CHARACTER(LEN=50), INTENT(in) :: intkind |
---|
961 | REAL(r_k), DIMENSION(idimx,idimy,d3), INTENT(in) :: var3Din |
---|
962 | INTEGER, DIMENSION(idimx,idimy,d3), INTENT(in) :: mask |
---|
963 | REAL(r_k), DIMENSION(pdimx,pdimy,d3), INTENT(out) :: varout |
---|
964 | |
---|
965 | ! Local |
---|
966 | INTEGER :: i, j, k, iv, ix, iy |
---|
967 | REAL(r_k) :: w |
---|
968 | REAL(r_k), DIMENSION(3,16,pdimx,pdimy) :: outLlw |
---|
969 | CHARACTER(LEN=50) :: fname |
---|
970 | |
---|
971 | !!!!!!! Variables |
---|
972 | ! idimx, idimy: dimension length of the input projection |
---|
973 | ! pdimx, pdimy: dimension length of the target projection |
---|
974 | ! in[lon/lat]: longitudes and latitudes of the target projection |
---|
975 | ! proj[lon/lat]: longitudes and latitudes of the target projection |
---|
976 | ! intkind: kind of interpolation |
---|
977 | ! 'npp': nearest neighbourgh |
---|
978 | ! 'dis': weighted distance, grid-output for SW, NW, NE, SE |
---|
979 | ! outLlw: output interpolation result |
---|
980 | ! for point pi,pj; up to 16 different values of |
---|
981 | ! 1st: i-index in input projection |
---|
982 | ! 2nd: j-index in input projection |
---|
983 | ! 3rd: weight for i-index, j-index to use for ponderation (0<1.) |
---|
984 | ! var3Din: 3D variable to interpolate |
---|
985 | ! mask: mask of the intpu values (1: good, 0: none) |
---|
986 | ! varout: variable interpolated on the target projection |
---|
987 | fname = 'var3D_IntProj' |
---|
988 | |
---|
989 | CALL LlInterpolateProjection(inlonv, inlatv, projlon, projlat, intkind, outLlw, idimx, idimy, pdimx,& |
---|
990 | pdimy) |
---|
991 | |
---|
992 | SELECT CASE (intkind) |
---|
993 | CASE('dis') |
---|
994 | DO i=1, pdimx |
---|
995 | DO j=1, pdimy |
---|
996 | IF (ALL(outLlw(3,:,i,j) == -1.)) THEN |
---|
997 | varout(i,j,:) = fillVal64 |
---|
998 | ELSE |
---|
999 | DO k=1, d3 |
---|
1000 | varout(i,j,k) = 0. |
---|
1001 | DO iv=1, 4 |
---|
1002 | ix = INT(outLlw(1,iv,i,j)) |
---|
1003 | iy = INT(outLlw(2,iv,i,j)) |
---|
1004 | IF (mask(ix,iy,k) == 1) THEN |
---|
1005 | w = outLlw(3,iv,i,j) |
---|
1006 | varout(i,j,k) = varout(i,j,k) + w*var3Din(ix,iy,k) |
---|
1007 | END IF |
---|
1008 | END DO |
---|
1009 | END DO |
---|
1010 | END IF |
---|
1011 | END DO |
---|
1012 | END DO |
---|
1013 | CASE('npp') |
---|
1014 | DO i=1, pdimx |
---|
1015 | DO j=1, pdimy |
---|
1016 | ix = INT(outLlw(1,1,i,j)) |
---|
1017 | iy = INT(outLlw(2,1,i,j)) |
---|
1018 | IF ( (outLlw(3,1,i,j) == -1.) .OR. (mask(ix,iy,1) == 0) ) THEN |
---|
1019 | varout(i,j,:) = fillVal64 |
---|
1020 | ELSE |
---|
1021 | DO k=1, d3 |
---|
1022 | varout(i,j,k) = var3Din(ix,iy,k)*outLlw(3,1,i,j) |
---|
1023 | END DO |
---|
1024 | END IF |
---|
1025 | END DO |
---|
1026 | END DO |
---|
1027 | END SELECT |
---|
1028 | |
---|
1029 | END SUBROUTINE var3D_IntProj |
---|
1030 | |
---|
1031 | SUBROUTINE var4D_IntProj(var4Din, inlonv, inlatv, projlon, projlat, intkind, mask, varout, idimx, & |
---|
1032 | idimy, pdimx, pdimy, d3, d4) |
---|
1033 | ! Subroutine to interpolate a 4D variable |
---|
1034 | |
---|
1035 | USE module_generic |
---|
1036 | |
---|
1037 | IMPLICIT NONE |
---|
1038 | |
---|
1039 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
1040 | INTEGER, INTENT(in) :: idimx, idimy, pdimx, pdimy, d3, d4 |
---|
1041 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(in) :: projlon, projlat |
---|
1042 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: inlonv, inlatv |
---|
1043 | CHARACTER(LEN=50), INTENT(in) :: intkind |
---|
1044 | REAL(r_k), DIMENSION(idimx,idimy,d3,d4), INTENT(in) :: var4Din |
---|
1045 | INTEGER, DIMENSION(idimx,idimy,d3,d4), INTENT(in) :: mask |
---|
1046 | REAL(r_k), DIMENSION(pdimx,pdimy,d3,d4), INTENT(out) :: varout |
---|
1047 | |
---|
1048 | ! Local |
---|
1049 | INTEGER :: i, j, k, l, iv, ix, iy |
---|
1050 | REAL(r_k) :: w |
---|
1051 | REAL(r_k), DIMENSION(3,16,pdimx,pdimy) :: outLlw |
---|
1052 | CHARACTER(LEN=50) :: fname |
---|
1053 | |
---|
1054 | !!!!!!! Variables |
---|
1055 | ! idimx, idimy: dimension length of the input projection |
---|
1056 | ! pdimx, pdimy: dimension length of the target projection |
---|
1057 | ! in[lon/lat]: longitudes and latitudes of the target projection |
---|
1058 | ! proj[lon/lat]: longitudes and latitudes of the target projection |
---|
1059 | ! intkind: kind of interpolation |
---|
1060 | ! 'npp': nearest neighbourgh |
---|
1061 | ! 'dis': weighted distance, grid-output for SW, NW, NE, SE |
---|
1062 | ! outLlw: output interpolation result |
---|
1063 | ! for point pi,pj; up to 16 different values of |
---|
1064 | ! 1st: i-index in input projection |
---|
1065 | ! 2nd: j-index in input projection |
---|
1066 | ! 3rd: weight for i-index, j-index to use for ponderation (0<1.) |
---|
1067 | ! var4Din: 4D variable to interpolate |
---|
1068 | ! mask: mask of the intpu values (1: good, 0: none) |
---|
1069 | ! varout: variable interpolated on the target projection |
---|
1070 | fname = 'var4D_IntProj' |
---|
1071 | |
---|
1072 | CALL LlInterpolateProjection(inlonv, inlatv, projlon, projlat, intkind, outLlw, idimx, idimy, pdimx,& |
---|
1073 | pdimy) |
---|
1074 | |
---|
1075 | SELECT CASE (intkind) |
---|
1076 | CASE('dis') |
---|
1077 | DO i=1, pdimx |
---|
1078 | DO j=1, pdimy |
---|
1079 | IF (ALL(outLlw(3,:,i,j) == -1.)) THEN |
---|
1080 | varout(i,j,:,:) = fillVal64 |
---|
1081 | ELSE |
---|
1082 | DO k=1, d3 |
---|
1083 | DO l=1, d4 |
---|
1084 | varout(i,j,k,l) = 0. |
---|
1085 | DO iv=1, 4 |
---|
1086 | ix = INT(outLlw(1,iv,i,j)) |
---|
1087 | iy = INT(outLlw(2,iv,i,j)) |
---|
1088 | IF (mask(ix,iy,k,l) == 1) THEN |
---|
1089 | w = outLlw(3,iv,i,j) |
---|
1090 | varout(i,j,k,l) = varout(i,j,k,l) + w*var4Din(ix,iy,k,l) |
---|
1091 | END IF |
---|
1092 | END DO |
---|
1093 | END DO |
---|
1094 | END DO |
---|
1095 | END IF |
---|
1096 | END DO |
---|
1097 | END DO |
---|
1098 | CASE('npp') |
---|
1099 | DO i=1, pdimx |
---|
1100 | DO j=1, pdimy |
---|
1101 | ix = INT(outLlw(1,1,i,j)) |
---|
1102 | iy = INT(outLlw(2,1,i,j)) |
---|
1103 | IF ( (outLlw(3,1,i,j) == -1.) .OR. (mask(ix,iy,1,1) == 0) ) THEN |
---|
1104 | varout(i,j,:,:) = fillVal64 |
---|
1105 | ELSE |
---|
1106 | DO k=1, d3 |
---|
1107 | DO l=1, d4 |
---|
1108 | varout(i,j,k,l) = var4Din(ix,iy,k,l)*outLlw(3,1,i,j) |
---|
1109 | END DO |
---|
1110 | END DO |
---|
1111 | END IF |
---|
1112 | END DO |
---|
1113 | END DO |
---|
1114 | END SELECT |
---|
1115 | |
---|
1116 | END SUBROUTINE var4D_IntProj |
---|
1117 | |
---|
1118 | SUBROUTINE var5D_IntProj(var5Din, inlonv, inlatv, projlon, projlat, intkind, mask, varout, idimx, & |
---|
1119 | idimy, pdimx, pdimy, d3, d4, d5) |
---|
1120 | ! Subroutine to interpolate a 5D variable |
---|
1121 | |
---|
1122 | USE module_generic |
---|
1123 | |
---|
1124 | IMPLICIT NONE |
---|
1125 | |
---|
1126 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
1127 | INTEGER, INTENT(in) :: idimx, idimy, pdimx, pdimy, d3, d4, d5 |
---|
1128 | REAL(r_k), DIMENSION(pdimx,pdimy), INTENT(in) :: projlon, projlat |
---|
1129 | REAL(r_k), DIMENSION(idimx,idimy), INTENT(in) :: inlonv, inlatv |
---|
1130 | CHARACTER(LEN=50), INTENT(in) :: intkind |
---|
1131 | REAL(r_k), DIMENSION(idimx,idimy,d3,d4,d5), INTENT(in) :: var5Din |
---|
1132 | INTEGER, DIMENSION(idimx,idimy,d3,d4,d5), INTENT(in) :: mask |
---|
1133 | REAL(r_k), DIMENSION(pdimx,pdimy,d3,d4,d5), INTENT(out) :: varout |
---|
1134 | |
---|
1135 | ! Local |
---|
1136 | INTEGER :: i, j, k, l, m, iv, ix, iy |
---|
1137 | REAL(r_k) :: w |
---|
1138 | REAL(r_k), DIMENSION(3,16,pdimx,pdimy) :: outLlw |
---|
1139 | CHARACTER(LEN=50) :: fname |
---|
1140 | |
---|
1141 | !!!!!!! Variables |
---|
1142 | ! idimx, idimy: dimension length of the input projection |
---|
1143 | ! pdimx, pdimy: dimension length of the target projection |
---|
1144 | ! in[lon/lat]: longitudes and latitudes of the target projection |
---|
1145 | ! proj[lon/lat]: longitudes and latitudes of the target projection |
---|
1146 | ! intkind: kind of interpolation |
---|
1147 | ! 'npp': nearest neighbourgh |
---|
1148 | ! 'dis': weighted distance, grid-output for SW, NW, NE, SE |
---|
1149 | ! outLlw: output interpolation result |
---|
1150 | ! for point pi,pj; up to 16 different values of |
---|
1151 | ! 1st: i-index in input projection |
---|
1152 | ! 2nd: j-index in input projection |
---|
1153 | ! 3rd: weight for i-index, j-index to use for ponderation (0<1.) |
---|
1154 | ! var5Din: 5D variable to interpolate |
---|
1155 | ! mask: mask of the intpu values (1: good, 0: none) |
---|
1156 | ! varout: variable interpolated on the target projection |
---|
1157 | fname = 'var5D_IntProj' |
---|
1158 | |
---|
1159 | CALL LlInterpolateProjection(inlonv, inlatv, projlon, projlat, intkind, outLlw, idimx, idimy, pdimx,& |
---|
1160 | pdimy) |
---|
1161 | |
---|
1162 | SELECT CASE (intkind) |
---|
1163 | CASE('dis') |
---|
1164 | DO i=1, pdimx |
---|
1165 | DO j=1, pdimy |
---|
1166 | IF (ALL(outLlw(3,:,i,j) == -1.)) THEN |
---|
1167 | varout(i,j,:,:,:) = fillVal64 |
---|
1168 | ELSE |
---|
1169 | DO k=1, d3 |
---|
1170 | DO l=1, d4 |
---|
1171 | DO m=1, d5 |
---|
1172 | varout(i,j,k,l,m) = 0. |
---|
1173 | DO iv=1, 4 |
---|
1174 | ix = INT(outLlw(1,iv,i,j)) |
---|
1175 | iy = INT(outLlw(2,iv,i,j)) |
---|
1176 | IF (mask(ix,iy,k,l,m) == 1) THEN |
---|
1177 | w = outLlw(3,iv,i,j) |
---|
1178 | varout(i,j,k,l,m) = varout(i,j,k,l,m) + w*var5Din(ix,iy,k,l,m) |
---|
1179 | END IF |
---|
1180 | END DO |
---|
1181 | END DO |
---|
1182 | END DO |
---|
1183 | END DO |
---|
1184 | END IF |
---|
1185 | END DO |
---|
1186 | END DO |
---|
1187 | CASE('npp') |
---|
1188 | DO i=1, pdimx |
---|
1189 | DO j=1, pdimy |
---|
1190 | ix = INT(outLlw(1,1,i,j)) |
---|
1191 | iy = INT(outLlw(2,1,i,j)) |
---|
1192 | IF ( (outLlw(3,1,i,j) == -1.) .OR. (mask(ix,iy,1,1,1) == 0) ) THEN |
---|
1193 | varout(i,j,:,:,:) = fillVal64 |
---|
1194 | ELSE |
---|
1195 | DO k=1, d3 |
---|
1196 | DO l=1, d4 |
---|
1197 | DO m=1, d5 |
---|
1198 | varout(i,j,k,l,m) = var5Din(ix,iy,k,l,m)*outLlw(3,1,i,j) |
---|
1199 | END DO |
---|
1200 | END DO |
---|
1201 | END DO |
---|
1202 | END IF |
---|
1203 | END DO |
---|
1204 | END DO |
---|
1205 | END SELECT |
---|
1206 | |
---|
1207 | END SUBROUTINE var5D_IntProj |
---|
1208 | |
---|
1209 | SUBROUTINE Interpolate(projlon, projlat, lonvs, latvs, mindiff, inpt, diffs, ilonlat, dimx, dimy, & |
---|
1210 | Ninpts) |
---|
1211 | ! Subroutine which finds the closest grid point within a projection |
---|
1212 | |
---|
1213 | USE module_generic |
---|
1214 | |
---|
1215 | IMPLICIT NONE |
---|
1216 | |
---|
1217 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
1218 | INTEGER, INTENT(in) :: dimx, dimy |
---|
1219 | REAL(r_k), DIMENSION(dimx,dimy), INTENT(in) :: projlon, projlat |
---|
1220 | INTEGER, INTENT(in) :: Ninpts |
---|
1221 | REAL(r_k), DIMENSION(Ninpts), INTENT(in) :: lonvs, latvs |
---|
1222 | REAL(r_k), INTENT(in) :: mindiff |
---|
1223 | INTEGER, DIMENSION(Ninpts), INTENT(inout) :: inpt |
---|
1224 | REAL(r_k), DIMENSION(Ninpts), INTENT(out) :: diffs |
---|
1225 | INTEGER, DIMENSION(Ninpts,2), INTENT(out) :: ilonlat |
---|
1226 | |
---|
1227 | ! Local |
---|
1228 | INTEGER :: iv |
---|
1229 | REAL(r_k) :: mindiffLl |
---|
1230 | INTEGER :: Ninpts1 |
---|
1231 | REAL(r_k), DIMENSION(dimx,dimy) :: difflonlat |
---|
1232 | REAL(r_k), DIMENSION(2) :: extremelon, extremelat |
---|
1233 | CHARACTER(LEN=50) :: fname |
---|
1234 | |
---|
1235 | !!!!!!! Variables |
---|
1236 | ! dimx, dimy: dimension length of the target interpolation |
---|
1237 | ! proj[lon/lat]: longitudes and latitudes of the target interpolation |
---|
1238 | ! Ninpts: number of points to interpolate |
---|
1239 | ! [lon/lat]vs: longitudes and latitudes of the points to interpolate |
---|
1240 | ! mindiff: minimal accepted distance to the target point |
---|
1241 | ! inpt: whether the point has already been localized |
---|
1242 | ! diffs: distance of point from the input data to the closest target point |
---|
1243 | ! ilonlat: longitude and latitude of the point |
---|
1244 | ! ncid: netCDF output file id |
---|
1245 | |
---|
1246 | fname = 'Interpolate' |
---|
1247 | Ninpts1 = Ninpts/100 |
---|
1248 | |
---|
1249 | extremelon = (/ MINVAL(projlon), MAXVAL(projlon) /) |
---|
1250 | extremelat = (/ MINVAL(projlat), MAXVAL(projlat) /) |
---|
1251 | |
---|
1252 | DO iv=1,Ninpts |
---|
1253 | IF (inpt(iv) <= 0) THEN |
---|
1254 | ! Not using the subroutine, not efficient! |
---|
1255 | ! CALL lonlatFind(dimx, dimy, projlon, projlat, extremelon, extremelat, lonvs(iv), latvs(iv), & |
---|
1256 | ! ilonlat, mindiffLl) |
---|
1257 | |
---|
1258 | IF (lonvs(iv) < extremelon(1) .OR. lonvs(iv) > extremelon(2)) THEN |
---|
1259 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
1260 | PRINT *,' ' // TRIM(fname) // ': longitude outside data range!!' |
---|
1261 | PRINT *,' given value:', lonvs(iv),' outside (',extremelon(1),' ,',extremelon(2),' )' |
---|
1262 | STOP |
---|
1263 | END IF |
---|
1264 | IF (latvs(iv) < extremelat(1) .OR. latvs(iv) > extremelat(2)) THEN |
---|
1265 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
1266 | PRINT *,' ' // TRIM(fname) // ': latitude outside data range!!' |
---|
1267 | PRINT *,' given value:', latvs(iv),' outside (',extremelat(1),' ,',extremelat(2),' )' |
---|
1268 | STOP |
---|
1269 | END IF |
---|
1270 | |
---|
1271 | ! Find point |
---|
1272 | difflonlat = SQRT((projlon-lonvs(iv))**2. + (projlat-latvs(iv))**2.) |
---|
1273 | mindiffLl = MINVAL(difflonlat) |
---|
1274 | ilonlat(iv,:) = index2DArrayR(difflonlat, dimx, dimy, mindiffLl) |
---|
1275 | |
---|
1276 | IF (mindiffLl <= mindiff) THEN |
---|
1277 | ! percendone(iv,Ninpts,0.5,'done:') |
---|
1278 | |
---|
1279 | IF (ilonlat(iv,1) >= 0 .AND. ilonlat(iv,2) >= 0) THEN |
---|
1280 | diffs(iv) = mindiffLl |
---|
1281 | inpt(iv) = 1 |
---|
1282 | ! PRINT *,'Lluis iv:', newvarin(ilonlat(1),ilonlat(2)), ' localized:', newvarinpt(iv), & |
---|
1283 | ! ' values:', newvar(ilonlat(1),ilonlat(2)), ' invalues:', ivar(iv), ' mindist:', & |
---|
1284 | ! newvarindiff(iv), ' point:',ilonlat |
---|
1285 | ELSE |
---|
1286 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
1287 | PRINT *,' ' // TRIM(fname) // ': point iv:', iv, ' at', lonvs(iv), ' ,', latvs(iv), & |
---|
1288 | ' not relocated !!' |
---|
1289 | PRINT *,' mindiffl:', mindiffLl, ' ilon:', ilonlat(iv,1), ' ilat:', ilonlat(iv,2) |
---|
1290 | STOP |
---|
1291 | END IF |
---|
1292 | |
---|
1293 | ! IF (MOD(iv,Ninpts1) == 0) newnc.sync() |
---|
1294 | ELSE |
---|
1295 | ! Because doing boxes and Goode is not conitnuos, we should jump this error message |
---|
1296 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
1297 | PRINT *,' ' // TRIM(fname) // ': for point #', iv,' lon,lat in incomplet map:', lonvs(iv), & |
---|
1298 | ' ,', latvs(iv), ' there is not a set of lon,lat in the completed map closer than: ', & |
---|
1299 | mindiff, ' !!' |
---|
1300 | PRINT *,' found minimum difference:', mindiffLl |
---|
1301 | STOP |
---|
1302 | END IF |
---|
1303 | END IF |
---|
1304 | END DO |
---|
1305 | |
---|
1306 | END SUBROUTINE Interpolate |
---|
1307 | |
---|
1308 | SUBROUTINE Interpolate1DLl(projlon, projlat, lonvs, latvs, mindiff, inpt, diffs, ilonlat, dimx, dimy, & |
---|
1309 | Ninpts) |
---|
1310 | ! Subroutine which finds the closest grid point within a projection with 1D longitudes and latitudes |
---|
1311 | |
---|
1312 | USE module_generic |
---|
1313 | |
---|
1314 | IMPLICIT NONE |
---|
1315 | |
---|
1316 | ! INTEGER, PARAMETER :: r_k = KIND(1.d0) |
---|
1317 | INTEGER, INTENT(in) :: dimx, dimy |
---|
1318 | REAL(r_k), DIMENSION(dimx), INTENT(in) :: projlon |
---|
1319 | REAL(r_k), DIMENSION(dimy), INTENT(in) :: projlat |
---|
1320 | INTEGER, INTENT(in) :: Ninpts |
---|
1321 | REAL(r_k), DIMENSION(Ninpts), INTENT(in) :: lonvs, latvs |
---|
1322 | REAL(r_k), INTENT(in) :: mindiff |
---|
1323 | INTEGER, DIMENSION(Ninpts), INTENT(inout) :: inpt |
---|
1324 | REAL(r_k), DIMENSION(Ninpts), INTENT(out) :: diffs |
---|
1325 | INTEGER, DIMENSION(Ninpts,2), INTENT(out) :: ilonlat |
---|
1326 | |
---|
1327 | ! Local |
---|
1328 | INTEGER :: iv |
---|
1329 | REAL(r_k) :: mindifflo, mindiffLa, mindiffLl |
---|
1330 | INTEGER :: Ninpts1 |
---|
1331 | REAL(r_k), DIMENSION(dimx) :: difflon |
---|
1332 | REAL(r_k), DIMENSION(dimy) :: difflat |
---|
1333 | REAL(r_k), DIMENSION(2) :: extremelon, extremelat |
---|
1334 | CHARACTER(LEN=50) :: fname |
---|
1335 | |
---|
1336 | !!!!!!! Variables |
---|
1337 | ! dimx, dimy: dimension length of the target interpolation |
---|
1338 | ! proj[lon/lat]: longitudes and latitudes of the target interpolation |
---|
1339 | ! Ninpts: number of points to interpolate |
---|
1340 | ! [lon/lat]vs: longitudes and latitudes of the points to interpolate |
---|
1341 | ! mindiff: minimal accepted distance to the target point |
---|
1342 | ! inpt: whether the point has already been localized |
---|
1343 | ! diffs: distance of point from the input data to the closest target point |
---|
1344 | ! ilonlat: longitude and latitude of the point |
---|
1345 | ! ncid: netCDF output file id |
---|
1346 | |
---|
1347 | fname = 'Interpolate1DLl' |
---|
1348 | Ninpts1 = Ninpts/100 |
---|
1349 | |
---|
1350 | extremelon = (/ MINVAL(projlon), MAXVAL(projlon) /) |
---|
1351 | extremelat = (/ MINVAL(projlat), MAXVAL(projlat) /) |
---|
1352 | |
---|
1353 | DO iv=1,Ninpts |
---|
1354 | IF (inpt(iv) <= 0) THEN |
---|
1355 | ! Not using the subroutine, not efficient! |
---|
1356 | ! CALL lonlatFind(dimx, dimy, projlon, projlat, extremelon, extremelat, lonvs(iv), latvs(iv), & |
---|
1357 | ! ilonlat, mindiffLl) |
---|
1358 | |
---|
1359 | IF (lonvs(iv) < extremelon(1) .OR. lonvs(iv) > extremelon(2)) THEN |
---|
1360 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
1361 | PRINT *,' ' // TRIM(fname) // ': longitude outside data range!!' |
---|
1362 | PRINT *,' given value:', lonvs(iv),' outside (',extremelon(1),' ,',extremelon(2),' )' |
---|
1363 | STOP |
---|
1364 | END IF |
---|
1365 | IF (latvs(iv) < extremelat(1) .OR. latvs(iv) > extremelat(2)) THEN |
---|
1366 | PRINT *, TRIM(ErrWarnMsg('err')) |
---|
1367 | PRINT *,' ' // TRIM(fname) // ': latitude outside data range!!' |
---|
1368 | PRINT *,' given value:', latvs(iv),' outside (',extremelat(1),' ,',extremelat(2),' )' |
---|
1369 | STOP |
---|
1370 | END IF |
---|
1371 | |
---|
1372 | ! Find point |
---|
1373 | difflon = SQRT((projlon-lonvs(iv))**2.) |
---|
1374 | difflat = SQRT((projlat-latvs(iv))**2.) |
---|
1375 | mindifflo = MINVAL(difflon) |
---|
1376 | mindiffLa = MINVAL(difflat) |
---|
1377 | mindifflL = SQRT(mindifflo*mindifflo + mindiffLa*mindiffLa) |
---|
1378 | ilonlat(iv,1) = index1DArrayR(difflon, dimx, mindifflo) |
---|
1379 | ilonlat(iv,2) = index1DArrayR(difflat, dimy, mindiffLa) |
---|
1380 | ! PRINT *,' Lluis: iv',iv,' lonvs:', lonvs(iv),' latvs:',latvs(iv) |
---|
1381 | ! PRINT *,' Lluis: mindifflo:', mindifflo,' ilonlat(1):',ilonlat(iv,1) |
---|
1382 | ! PRINT *,' Lluis: mindiffLa:', mindiffLa,' ilonlat(2):',ilonlat(iv,2) |
---|
1383 | |
---|
1384 | |
---|
1385 | IF (mindiffLl <= mindiff) THEN |
---|
1386 | ! percendone(iv,Ninpts,0.5,'done:') |
---|
1387 | |
---|
1388 | IF (ilonlat(iv,1) >= 1 .AND. ilonlat(iv,2) >= 1) THEN |
---|
1389 | diffs(iv) = mindiffLl |
---|
1390 | inpt(iv) = 1 |
---|
1391 | ! PRINT *,'Lluis iv:', newvarin(ilonlat(1),ilonlat(2)), ' localized:', newvarinpt(iv), & |
---|
1392 | ! ' values:', newvar(ilonlat(1),ilonlat(2)), ' invalues:', ivar(iv), ' mindist:', & |
---|
1393 | ! newvarindiff(iv), ' point:',ilonlat |
---|
1394 | ELSE |
---|
1395 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
1396 | PRINT *,' ' // TRIM(fname) // ': point iv:', iv, ' at', lonvs(iv), ' ,', latvs(iv), & |
---|
1397 | ' not relocated !!' |
---|
1398 | PRINT *,' mindiffl:', mindiffLl, ' ilon:', ilonlat(iv,1), ' ilat:', ilonlat(iv,2) |
---|
1399 | STOP |
---|
1400 | END IF |
---|
1401 | |
---|
1402 | ! IF (MOD(iv,Ninpts1) == 0) newnc.sync() |
---|
1403 | ELSE |
---|
1404 | ! Because doing boxes and Goode is not conitnuos, we should jump this error message |
---|
1405 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
1406 | PRINT *,' ' // TRIM(fname) // ': for point #', iv,' lon,lat in incomplet map:', lonvs(iv), & |
---|
1407 | ' ,', latvs(iv), ' there is not a set of lon,lat in the completed map closer than: ', & |
---|
1408 | mindiff, ' !!' |
---|
1409 | PRINT *,' found minimum difference:', mindiffLl |
---|
1410 | STOP |
---|
1411 | END IF |
---|
1412 | END IF |
---|
1413 | END DO |
---|
1414 | |
---|
1415 | END SUBROUTINE Interpolate1DLl |
---|
1416 | |
---|
1417 | |
---|
1418 | SUBROUTINE interp (data_in, pres_field, interp_levels, psfc, ter, tk, qv, LINLOG, extrapolate, & |
---|
1419 | GEOPT, MISSING, data_out, ix, iy, iz, it, num_metgrid_levels) |
---|
1420 | ! Interpolation subroutine from the p_interp.F90 NCAR program |
---|
1421 | ! Program to read wrfout data and interpolate to pressure levels |
---|
1422 | ! The program reads namelist.pinterp |
---|
1423 | ! November 2007 - Cindy Bruyere |
---|
1424 | ! |
---|
1425 | INTEGER, INTENT(IN) :: ix, iy, iz, it |
---|
1426 | INTEGER, INTENT(IN) :: num_metgrid_levels, LINLOG |
---|
1427 | REAL, DIMENSION(ix,iy,iz,it), INTENT(IN) :: data_in, pres_field, tk, qv |
---|
1428 | REAL, DIMENSION(ix,iy,it), INTENT(IN) :: psfc |
---|
1429 | REAL, DIMENSION(ix,iy), INTENT(IN) :: ter |
---|
1430 | REAL, DIMENSION(num_metgrid_levels), INTENT(IN) :: interp_levels |
---|
1431 | INTEGER, INTENT(IN) :: extrapolate |
---|
1432 | REAL, INTENT(IN) :: MISSING |
---|
1433 | LOGICAL, INTENT(IN) :: GEOPT |
---|
1434 | REAL, DIMENSION(ix,iy,num_metgrid_levels,it), & |
---|
1435 | INTENT(OUT) :: data_out |
---|
1436 | |
---|
1437 | ! Local |
---|
1438 | INTEGER :: i, j, itt, k, kk, kin |
---|
1439 | REAL, DIMENSION(num_metgrid_levels) :: data_out1D |
---|
1440 | REAL, DIMENSION(iz) :: data_in1D, pres_field1D |
---|
1441 | REAL, DIMENSION(ix, iy, num_metgrid_levels, it) :: N |
---|
1442 | REAL :: sumA, sumN, AVE_geopt |
---|
1443 | |
---|
1444 | !!!!!!! Variables |
---|
1445 | ! data_out: interpolated field |
---|
1446 | ! data_in: field to interpolate |
---|
1447 | ! pres_field: pressure field [Pa] |
---|
1448 | ! interp_levels: pressure levels to interpolate [hPa] |
---|
1449 | ! psfc: surface pressure [Pa] |
---|
1450 | ! ter: terrein height [m] |
---|
1451 | ! tk: temperature [K] |
---|
1452 | ! qv: mositure mizing ratio [kg/kg] |
---|
1453 | ! i[x/y/z/t]: size of the matrices |
---|
1454 | ! num_metgrid_levels: number of pressure values to interpolate |
---|
1455 | ! LINLOG: if abs(linlog)=1 use linear interp in pressure |
---|
1456 | ! if abs(linlog)=2 linear interp in ln(pressure) |
---|
1457 | ! extrapolate: whether to set to missing value below/above model ground and top (0), or extrapolate (1) |
---|
1458 | ! GEOPT: Wether the file is the geopotential file or not |
---|
1459 | ! MISSING: Missing value |
---|
1460 | |
---|
1461 | N = 1.0 |
---|
1462 | |
---|
1463 | expon=287.04*.0065/9.81 |
---|
1464 | |
---|
1465 | do itt = 1, it |
---|
1466 | do j = 1, iy |
---|
1467 | do i = 1, ix |
---|
1468 | data_in1D(:) = data_in(i,j,:,itt) |
---|
1469 | pres_field1D(:) = pres_field(i,j,:,itt) |
---|
1470 | CALL int1D (data_out1D, data_in1D, pres_field1D, interp_levels, iz, num_metgrid_levels, LINLOG, MISSING) |
---|
1471 | data_out(i,j,:,itt) = data_out1D(:) |
---|
1472 | end do |
---|
1473 | end do |
---|
1474 | end do |
---|
1475 | |
---|
1476 | |
---|
1477 | ! Fill in missing values |
---|
1478 | IF ( extrapolate == 0 ) RETURN !! no extrapolation - we are out of here |
---|
1479 | |
---|
1480 | ! First find where about 400 hPa is located |
---|
1481 | kk = 0 |
---|
1482 | find_kk : do k = 1, num_metgrid_levels |
---|
1483 | kk = k |
---|
1484 | if ( interp_levels(k) <= 40000. ) exit find_kk |
---|
1485 | end do find_kk |
---|
1486 | |
---|
1487 | |
---|
1488 | IF ( GEOPT ) THEN !! geopt is treated different below ground |
---|
1489 | |
---|
1490 | do itt = 1, it |
---|
1491 | do k = 1, kk |
---|
1492 | do j = 1, iy |
---|
1493 | do i = 1, ix |
---|
1494 | IF ( data_out(i,j,k,itt) == MISSING .AND. interp_levels(k) < psfc(i,j,itt) ) THEN |
---|
1495 | |
---|
1496 | ! We are below the first model level, but above the ground |
---|
1497 | |
---|
1498 | data_out(i,j,k,itt) = ((interp_levels(k) - pres_field(i,j,1,itt))*ter(i,j)*9.81 + & |
---|
1499 | (psfc(i,j,itt) - interp_levels(k))*data_in(i,j,1,itt) ) / & |
---|
1500 | (psfc(i,j,itt) - pres_field(i,j,1,itt)) |
---|
1501 | |
---|
1502 | ELSEIF ( data_out(i,j,k,itt) == MISSING ) THEN |
---|
1503 | |
---|
1504 | ! We are below both the ground and the lowest data level. |
---|
1505 | |
---|
1506 | ! First, find the model level that is closest to a "target" pressure |
---|
1507 | ! level, where the "target" pressure is delta-p less that the local |
---|
1508 | ! value of a horizontally smoothed surface pressure field. We use |
---|
1509 | ! delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
1510 | ! passing through the temperature at this model level will be used |
---|
1511 | ! to define the temperature profile below ground. This is similar |
---|
1512 | ! to the Benjamin and Miller (1990) method, except that for |
---|
1513 | ! simplicity, they used 700 hPa everywhere for the "target" pressure. |
---|
1514 | ! Code similar to what is implemented in RIP4 |
---|
1515 | |
---|
1516 | ptarget = (psfc(i,j,itt)*.01) - 150. |
---|
1517 | dpmin=1.e4 |
---|
1518 | kupper = 0 |
---|
1519 | loop_kIN : do kin=iz,1,-1 |
---|
1520 | kupper = kin |
---|
1521 | dp=abs( (pres_field(i,j,kin,itt)*.01) - ptarget ) |
---|
1522 | if (dp.gt.dpmin) exit loop_kIN |
---|
1523 | dpmin=min(dpmin,dp) |
---|
1524 | enddo loop_kIN |
---|
1525 | |
---|
1526 | pbot=max(pres_field(i,j,1,itt),psfc(i,j,itt)) |
---|
1527 | zbot=min(data_in(i,j,1,itt)/9.81,ter(i,j)) |
---|
1528 | |
---|
1529 | tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
1530 | tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
1531 | |
---|
1532 | data_out(i,j,k,itt) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(k)/pbot)**expon))*9.81 |
---|
1533 | |
---|
1534 | ENDIF |
---|
1535 | enddo |
---|
1536 | enddo |
---|
1537 | enddo |
---|
1538 | enddo |
---|
1539 | |
---|
1540 | |
---|
1541 | !!! Code for filling missing data with an average - we don't want to do this |
---|
1542 | !!do itt = 1, it |
---|
1543 | !!loop_levels : do k = 1, num_metgrid_levels |
---|
1544 | !!sumA = SUM(data_out(:,:,k,itt), MASK = data_out(:,:,k,itt) /= MISSING) |
---|
1545 | !!sumN = SUM(N(:,:,k,itt), MASK = data_out(:,:,k,itt) /= MISSING) |
---|
1546 | !!IF ( sumN == 0. ) CYCLE loop_levels |
---|
1547 | !!AVE_geopt = sumA/sumN |
---|
1548 | !!WHERE ( data_out(:,:,k,itt) == MISSING ) |
---|
1549 | !!data_out(:,:,k,itt) = AVE_geopt |
---|
1550 | !!END WHERE |
---|
1551 | !!end do loop_levels |
---|
1552 | !!end do |
---|
1553 | |
---|
1554 | END IF |
---|
1555 | |
---|
1556 | !!! All other fields and geopt at higher levels come here |
---|
1557 | do itt = 1, it |
---|
1558 | do j = 1, iy |
---|
1559 | do i = 1, ix |
---|
1560 | do k = 1, kk |
---|
1561 | if ( data_out(i,j,k,itt) == MISSING ) data_out(i,j,k,itt) = data_in(i,j,1,itt) |
---|
1562 | end do |
---|
1563 | do k = kk+1, num_metgrid_levels |
---|
1564 | if ( data_out(i,j,k,itt) == MISSING ) data_out(i,j,k,itt) = data_in(i,j,iz,itt) |
---|
1565 | end do |
---|
1566 | end do |
---|
1567 | end do |
---|
1568 | end do |
---|
1569 | |
---|
1570 | END SUBROUTINE interp |
---|
1571 | |
---|
1572 | SUBROUTINE int1D(xxout, xxin, ppin, ppout, npin, npout, LINLOG, MISSING) |
---|
1573 | |
---|
1574 | ! Modified from int2p - NCL code |
---|
1575 | ! routine to interpolate from one set of pressure levels |
---|
1576 | ! . to another set using linear or ln(p) interpolation |
---|
1577 | ! |
---|
1578 | ! NCL: xout = int2p (pin,xin,pout,linlog) |
---|
1579 | ! This code was originally written for a specific purpose. |
---|
1580 | ! . Several features were added for incorporation into NCL's |
---|
1581 | ! . function suite including linear extrapolation. |
---|
1582 | ! |
---|
1583 | ! nomenclature: |
---|
1584 | ! |
---|
1585 | ! . ppin - input pressure levels. The pin can be |
---|
1586 | ! . be in ascending or descending order |
---|
1587 | ! . xxin - data at corresponding input pressure levels |
---|
1588 | ! . npin - number of input pressure levels >= 2 |
---|
1589 | ! . ppout - output pressure levels (input by user) |
---|
1590 | ! . same (ascending or descending) order as pin |
---|
1591 | ! . xxout - data at corresponding output pressure levels |
---|
1592 | ! . npout - number of output pressure levels |
---|
1593 | ! . linlog - if abs(linlog)=1 use linear interp in pressure |
---|
1594 | ! . if abs(linlog)=2 linear interp in ln(pressure) |
---|
1595 | ! . missing- missing data code. |
---|
1596 | |
---|
1597 | ! ! input types |
---|
1598 | INTEGER :: npin,npout,linlog,ier |
---|
1599 | real :: ppin(npin),xxin(npin),ppout(npout) |
---|
1600 | real :: MISSING |
---|
1601 | logical :: AVERAGE |
---|
1602 | ! ! output |
---|
1603 | real :: xxout(npout) |
---|
1604 | INTEGER :: j1,np,nl,nin,nlmax,nplvl |
---|
1605 | INTEGER :: nlsave,np1,no1,n1,n2,nlstrt |
---|
1606 | real :: slope,pa,pb,pc |
---|
1607 | |
---|
1608 | ! automatic arrays |
---|
1609 | real :: pin(npin),xin(npin),p(npin),x(npin) |
---|
1610 | real :: pout(npout),xout(npout) |
---|
1611 | |
---|
1612 | |
---|
1613 | xxout = MISSING |
---|
1614 | pout = ppout |
---|
1615 | p = ppin |
---|
1616 | x = xxin |
---|
1617 | nlmax = npin |
---|
1618 | |
---|
1619 | ! exact p-level matches |
---|
1620 | nlstrt = 1 |
---|
1621 | nlsave = 1 |
---|
1622 | do np = 1,npout |
---|
1623 | xout(np) = MISSING |
---|
1624 | do nl = nlstrt,nlmax |
---|
1625 | if (pout(np).eq.p(nl)) then |
---|
1626 | xout(np) = x(nl) |
---|
1627 | nlsave = nl + 1 |
---|
1628 | go to 10 |
---|
1629 | end if |
---|
1630 | end do |
---|
1631 | 10 nlstrt = nlsave |
---|
1632 | end do |
---|
1633 | |
---|
1634 | if (LINLOG.eq.1) then |
---|
1635 | do np = 1,npout |
---|
1636 | do nl = 1,nlmax - 1 |
---|
1637 | if (pout(np).lt.p(nl) .and. pout(np).gt.p(nl+1)) then |
---|
1638 | slope = (x(nl)-x(nl+1))/ (p(nl)-p(nl+1)) |
---|
1639 | xout(np) = x(nl+1) + slope* (pout(np)-p(nl+1)) |
---|
1640 | end if |
---|
1641 | end do |
---|
1642 | end do |
---|
1643 | elseif (LINLOG.eq.2) then |
---|
1644 | do np = 1,npout |
---|
1645 | do nl = 1,nlmax - 1 |
---|
1646 | if (pout(np).lt.p(nl) .and. pout(np).gt.p(nl+1)) then |
---|
1647 | pa = log(p(nl)) |
---|
1648 | pb = log(pout(np)) |
---|
1649 | ! special case: in case someone inadvertently enter p=0. |
---|
1650 | if (p(nl+1).gt.0.d0) then |
---|
1651 | pc = log(p(nl+1)) |
---|
1652 | else |
---|
1653 | pc = log(1.d-4) |
---|
1654 | end if |
---|
1655 | |
---|
1656 | slope = (x(nl)-x(nl+1))/ (pa-pc) |
---|
1657 | xout(np) = x(nl+1) + slope* (pb-pc) |
---|
1658 | end if |
---|
1659 | end do |
---|
1660 | end do |
---|
1661 | end if |
---|
1662 | |
---|
1663 | |
---|
1664 | ! place results in the return array; |
---|
1665 | xxout = xout |
---|
1666 | |
---|
1667 | END SUBROUTINE int1D |
---|
1668 | |
---|
1669 | FUNCTION virtual (tmp,rmix) |
---|
1670 | ! This function returns virtual temperature in K, given temperature |
---|
1671 | ! in K and mixing ratio in kg/kg. |
---|
1672 | |
---|
1673 | real :: tmp, rmix, virtual |
---|
1674 | |
---|
1675 | virtual=tmp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
1676 | |
---|
1677 | END FUNCTION virtual |
---|
1678 | |
---|
1679 | END MODULE module_ForInterpolate |
---|