[772] | 1 | !! Fortran version of different diagnostics |
---|
| 2 | ! L. Fita. LMD May 2016 |
---|
| 3 | ! gfortran module_generic.o -c module_ForDiagnostics.F90 |
---|
| 4 | ! |
---|
| 5 | ! f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnostics.F90 |
---|
| 6 | |
---|
| 7 | MODULE module_ForDiagnosticsVars |
---|
| 8 | |
---|
[1608] | 9 | USE module_definitions |
---|
[772] | 10 | USE module_generic |
---|
| 11 | |
---|
| 12 | IMPLICIT NONE |
---|
| 13 | |
---|
| 14 | CONTAINS |
---|
| 15 | |
---|
| 16 | !!!!!!! Variables |
---|
[1769] | 17 | ! compute_psl_ptarget4d2: Compute sea level pressure using a target pressure. Similar to the Benjamin |
---|
| 18 | ! and Miller (1990). Method found in p_interp.F90 |
---|
| 19 | ! compute_tv4d: 4D calculation of virtual temperaure |
---|
| 20 | ! SaturationMixingRatio: WRF's AFWA method to compute the saturation mixing ratio |
---|
| 21 | ! The2T: WRF's AFWA method to compute the temperature at any pressure level along a saturation adiabat |
---|
| 22 | ! by iteratively solving for it from the parcel thetae. |
---|
| 23 | ! Theta: WRF's AFWA method to compute potential temperature |
---|
| 24 | ! Thetae: WRF's AFWA method to compute equivalent potential temperature |
---|
| 25 | ! TLCL: WRF's AFWA method to compute the temperature of a parcel of air would have if lifed dry |
---|
| 26 | ! adiabatically to it's lifting condensation level (lcl) |
---|
| 27 | ! var_cape_afwa1D: WRF's AFWA method to compute cape, cin, fclp, fclz and li |
---|
[772] | 28 | ! var_cllmh: low, medium, high-cloud [0,1] |
---|
| 29 | ! var_clt: total cloudiness [0,1] |
---|
[1773] | 30 | ! var_zmla_generic: Subroutine to compute pbl-height following a generic method |
---|
[1776] | 31 | ! var_zwind: Subroutine to extrapolate the wind at a given height following the 'power law' methodology |
---|
[1769] | 32 | ! VirtualTemp1D: Function for 1D calculation of virtual temperaure |
---|
| 33 | ! VirtualTemperature: WRF's AFWA method to compute virtual temperature |
---|
[772] | 34 | |
---|
| 35 | !!!!!!! Calculations |
---|
| 36 | ! compute_clt: Computation of total cloudiness |
---|
| 37 | |
---|
| 38 | !!! |
---|
| 39 | ! Variables |
---|
| 40 | !!! |
---|
| 41 | |
---|
| 42 | FUNCTION var_cllmh(clfra, p, dz) |
---|
| 43 | ! Function to compute cllmh on a 1D column 1: low-cloud; 2: medium-cloud; 3: high-cloud [1] |
---|
| 44 | |
---|
| 45 | IMPLICIT NONE |
---|
| 46 | |
---|
| 47 | INTEGER, INTENT(in) :: dz |
---|
| 48 | REAL(r_k), DIMENSION(dz), INTENT(in) :: clfra, p |
---|
| 49 | REAL(r_k), DIMENSION(3) :: var_cllmh |
---|
| 50 | |
---|
| 51 | ! Local |
---|
| 52 | INTEGER :: iz |
---|
| 53 | REAL(r_k) :: zclearl, zcloudl, zclearm, zcloudm, & |
---|
| 54 | zclearh, zcloudh |
---|
| 55 | |
---|
| 56 | !!!!!!! Variables |
---|
| 57 | ! clfra: cloudfraction as 1D verical-column [1] |
---|
| 58 | ! p: pressure values of the column |
---|
| 59 | fname = 'var_cllmh' |
---|
| 60 | |
---|
[1608] | 61 | zclearl = oneRK |
---|
| 62 | zcloudl = zeroRK |
---|
| 63 | zclearm = oneRK |
---|
| 64 | zcloudm = zeroRK |
---|
| 65 | zclearh = oneRK |
---|
| 66 | zcloudh = zeroRK |
---|
[772] | 67 | |
---|
[1608] | 68 | var_cllmh = oneRK |
---|
[772] | 69 | |
---|
| 70 | DO iz=1, dz |
---|
| 71 | IF (p(iz) < prmhc) THEN |
---|
[1608] | 72 | var_cllmh(3) = var_cllmh(3)*(oneRK-MAX(clfra(iz),zcloudh))/(oneRK-MIN(zcloudh,oneRK-ZEPSEC)) |
---|
[772] | 73 | zcloudh = clfra(iz) |
---|
| 74 | ELSE IF ( (p(iz) >= prmhc) .AND. (p(iz) < prmlc) ) THEN |
---|
[1608] | 75 | var_cllmh(2) = var_cllmh(2)*(oneRK-MAX(clfra(iz),zcloudm))/(oneRK-MIN(zcloudm,oneRK-ZEPSEC)) |
---|
[772] | 76 | zcloudm = clfra(iz) |
---|
| 77 | ELSE IF (p(iz) >= prmlc) THEN |
---|
[1608] | 78 | var_cllmh(1) = var_cllmh(1)*(oneRK-MAX(clfra(iz),zcloudl))/(oneRK-MIN(zcloudl,oneRK-ZEPSEC)) |
---|
[772] | 79 | zcloudl = clfra(iz) |
---|
| 80 | ELSE |
---|
| 81 | PRINT *,' ' // TRIM(fname) // ': This is weird, pressure:', p(iz), ' Pa fails out!!' |
---|
| 82 | PRINT *,' from high, low cloud pressures:', prmhc, ' ,', prmlc,' Pa at z-level:', iz |
---|
| 83 | PRINT *,' p_high > p:', prmhc,'> ',p(iz),' Pa' |
---|
| 84 | PRINT *,' p_low > p >= p_high:', prmlc,'> ',p(iz),' >=', prmhc,' Pa' |
---|
| 85 | PRINT *,' p_low >= p:', prmlc,'>= ',p(iz),' Pa' |
---|
| 86 | STOP |
---|
| 87 | END IF |
---|
| 88 | END DO |
---|
| 89 | |
---|
[1608] | 90 | var_cllmh = oneRK - var_cllmh |
---|
[772] | 91 | |
---|
| 92 | RETURN |
---|
| 93 | |
---|
| 94 | END FUNCTION var_cllmh |
---|
| 95 | |
---|
| 96 | REAL(r_k) FUNCTION var_clt(clfra, dz) |
---|
| 97 | ! Function to compute the total cloud following 'newmicro.F90' from LMDZ using 1D vertical |
---|
| 98 | ! column values |
---|
| 99 | |
---|
| 100 | IMPLICIT NONE |
---|
| 101 | |
---|
[1141] | 102 | INTEGER, INTENT(in) :: dz |
---|
[772] | 103 | REAL(r_k), DIMENSION(dz), INTENT(in) :: clfra |
---|
| 104 | ! Local |
---|
| 105 | INTEGER :: iz |
---|
| 106 | REAL(r_k) :: zclear, zcloud |
---|
[1608] | 107 | |
---|
[772] | 108 | !!!!!!! Variables |
---|
| 109 | ! cfra: 1-column cloud fraction values |
---|
| 110 | |
---|
| 111 | fname = 'var_clt' |
---|
| 112 | |
---|
[1608] | 113 | zclear = oneRK |
---|
| 114 | zcloud = zeroRK |
---|
[772] | 115 | |
---|
| 116 | DO iz=1,dz |
---|
[1608] | 117 | zclear = zclear*(oneRK-MAX(clfra(iz),zcloud))/(oneRK-MIN(zcloud,1.-ZEPSEC)) |
---|
| 118 | var_clt = oneRK - zclear |
---|
[772] | 119 | zcloud = clfra(iz) |
---|
| 120 | END DO |
---|
| 121 | |
---|
| 122 | RETURN |
---|
| 123 | |
---|
| 124 | END FUNCTION var_clt |
---|
| 125 | |
---|
[1769] | 126 | |
---|
| 127 | SUBROUTINE compute_psl_ptarget4d2(press, ps, hgt, ta, qv, ptarget, psl, d1, d2, d3, d4) |
---|
| 128 | ! Subroutine to compute sea level pressure using a target pressure. Similar to the Benjamin |
---|
| 129 | ! and Miller (1990). Method found in p_interp.F90 |
---|
| 130 | |
---|
| 131 | IMPLICIT NONE |
---|
| 132 | |
---|
| 133 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 134 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: press, ta, qv |
---|
| 135 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: ps |
---|
| 136 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 137 | REAL(r_k), INTENT(in) :: ptarget |
---|
| 138 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: psl |
---|
| 139 | |
---|
| 140 | ! Local |
---|
| 141 | INTEGER :: i, j, it |
---|
| 142 | INTEGER :: kin |
---|
| 143 | INTEGER :: kupper |
---|
| 144 | REAL(r_k) :: dpmin, dp, tbotextrap, & |
---|
| 145 | tvbotextrap, virtual |
---|
| 146 | ! Exponential related to standard atmosphere lapse rate r_d*gammav/g |
---|
| 147 | REAL(r_k), PARAMETER :: expon=r_d*gammav/grav |
---|
| 148 | |
---|
| 149 | !!!!!!! Variables |
---|
| 150 | ! press: Atmospheric pressure [Pa] |
---|
| 151 | ! ps: surface pressure [Pa] |
---|
| 152 | ! hgt: surface height |
---|
| 153 | ! ta: temperature [K] |
---|
| 154 | ! qv: water vapor mixing ratio |
---|
| 155 | ! dz: number of vertical levels |
---|
| 156 | ! psl: sea-level pressure |
---|
| 157 | |
---|
| 158 | fname = 'compute_psl_ptarget4d2' |
---|
| 159 | |
---|
| 160 | ! Minimal distance between pressures [Pa] |
---|
| 161 | dpmin=1.e4 |
---|
| 162 | psl=0. |
---|
| 163 | |
---|
| 164 | DO i=1,d1 |
---|
| 165 | DO j=1,d2 |
---|
| 166 | IF (hgt(i,j) /= 0.) THEN |
---|
| 167 | DO it=1,d4 |
---|
| 168 | |
---|
| 169 | ! target pressure to be used for the extrapolation [Pa] (defined in namelist.input) |
---|
| 170 | ! ptarget = 70000. default value |
---|
| 171 | |
---|
| 172 | ! We are below both the ground and the lowest data level. |
---|
| 173 | |
---|
| 174 | ! First, find the model level that is closest to a "target" pressure |
---|
| 175 | ! level, where the "target" pressure is delta-p less that the local |
---|
| 176 | ! value of a horizontally smoothed surface pressure field. We use |
---|
| 177 | ! delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
| 178 | ! passing through the temperature at this model level will be used |
---|
| 179 | ! to define the temperature profile below ground. This is similar |
---|
| 180 | ! to the Benjamin and Miller (1990) method, using |
---|
| 181 | ! 700 hPa everywhere for the "target" pressure. |
---|
| 182 | |
---|
| 183 | kupper = 0 |
---|
| 184 | loop_kIN: DO kin=d3,1,-1 |
---|
| 185 | kupper = kin |
---|
| 186 | dp=abs( press(i,j,kin,it) - ptarget ) |
---|
| 187 | IF (dp .GT. dpmin) EXIT loop_kIN |
---|
| 188 | dpmin=min(dpmin,dp) |
---|
| 189 | ENDDO loop_kIN |
---|
| 190 | |
---|
| 191 | tbotextrap=ta(i,j,kupper,it)*(ps(i,j,it)/ptarget)**expon |
---|
| 192 | tvbotextrap=virtualTemp1D(tbotextrap,qv(i,j,kupper,it)) |
---|
| 193 | |
---|
| 194 | psl(i,j,it) = ps(i,j,it)*((tvbotextrap+gammav*hgt(i,j))/tvbotextrap)**(1/expon) |
---|
| 195 | END DO |
---|
| 196 | ELSE |
---|
| 197 | psl(i,j,:) = ps(i,j,:) |
---|
| 198 | END IF |
---|
| 199 | END DO |
---|
| 200 | END DO |
---|
| 201 | |
---|
| 202 | RETURN |
---|
| 203 | |
---|
| 204 | END SUBROUTINE compute_psl_ptarget4d2 |
---|
| 205 | |
---|
| 206 | SUBROUTINE compute_tv4d(ta,qv,tv,d1,d2,d3,d4) |
---|
| 207 | ! 4D calculation of virtual temperaure |
---|
| 208 | |
---|
| 209 | IMPLICIT NONE |
---|
| 210 | |
---|
| 211 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 212 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ta, qv |
---|
| 213 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(out) :: tv |
---|
| 214 | |
---|
| 215 | ! Variables |
---|
| 216 | ! ta: temperature [K] |
---|
| 217 | ! qv: mixing ratio [kgkg-1] |
---|
| 218 | ! tv: virtual temperature |
---|
| 219 | |
---|
| 220 | tv = ta*(oneRK+(qv/epsilonv))/(oneRK+qv) |
---|
| 221 | |
---|
| 222 | END SUBROUTINE compute_tv4d |
---|
| 223 | |
---|
| 224 | FUNCTION VirtualTemp1D (ta,qv) result (tv) |
---|
| 225 | ! 1D calculation of virtual temperaure |
---|
| 226 | |
---|
| 227 | IMPLICIT NONE |
---|
| 228 | |
---|
| 229 | REAL(r_k), INTENT(in) :: ta, qv |
---|
| 230 | REAL(r_k) :: tv |
---|
| 231 | |
---|
| 232 | ! Variables |
---|
| 233 | ! ta: temperature [K] |
---|
| 234 | ! qv: mixing ratio [kgkg-1] |
---|
| 235 | |
---|
| 236 | tv = ta*(oneRK+(qv/epsilonv))/(oneRK+qv) |
---|
| 237 | |
---|
| 238 | END FUNCTION VirtualTemp1D |
---|
| 239 | |
---|
| 240 | ! ---- BEGIN modified from module_diag_afwa.F ---- ! |
---|
| 241 | |
---|
| 242 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 243 | !~ |
---|
| 244 | !~ Name: |
---|
| 245 | !~ Theta |
---|
| 246 | !~ |
---|
| 247 | !~ Description: |
---|
| 248 | !~ This function calculates potential temperature as defined by |
---|
| 249 | !~ Poisson's equation, given temperature and pressure ( hPa ). |
---|
| 250 | !~ |
---|
| 251 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 252 | FUNCTION Theta ( t, p ) |
---|
| 253 | |
---|
| 254 | IMPLICIT NONE |
---|
| 255 | |
---|
| 256 | !~ Variable declaration |
---|
| 257 | ! -------------------- |
---|
| 258 | REAL(r_k), INTENT ( IN ) :: t |
---|
| 259 | REAL(r_k), INTENT ( IN ) :: p |
---|
| 260 | REAL(r_k) :: theta |
---|
| 261 | |
---|
| 262 | ! Using WRF values |
---|
| 263 | !REAL :: Rd ! Dry gas constant |
---|
| 264 | !REAL :: Cp ! Specific heat of dry air at constant pressure |
---|
| 265 | !REAL :: p00 ! Standard pressure ( 1000 hPa ) |
---|
| 266 | REAL(r_k) :: Rd, p00 |
---|
| 267 | |
---|
| 268 | !Rd = 287.04 |
---|
| 269 | !Cp = 1004.67 |
---|
| 270 | !p00 = 1000.00 |
---|
| 271 | |
---|
| 272 | Rd = r_d |
---|
| 273 | p00 = p1000mb/100. |
---|
| 274 | |
---|
| 275 | !~ Poisson's equation |
---|
| 276 | ! ------------------ |
---|
| 277 | theta = t * ( (p00/p)**(Rd/Cp) ) |
---|
| 278 | |
---|
| 279 | END FUNCTION Theta |
---|
| 280 | |
---|
| 281 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 282 | !~ |
---|
| 283 | !~ Name: |
---|
| 284 | !~ Thetae |
---|
| 285 | !~ |
---|
| 286 | !~ Description: |
---|
| 287 | !~ This function returns equivalent potential temperature using the |
---|
| 288 | !~ method described in Bolton 1980, Monthly Weather Review, equation 43. |
---|
| 289 | !~ |
---|
| 290 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 291 | FUNCTION Thetae ( tK, p, rh, mixr ) |
---|
| 292 | |
---|
| 293 | IMPLICIT NONE |
---|
| 294 | |
---|
| 295 | !~ Variable Declarations |
---|
| 296 | ! --------------------- |
---|
| 297 | REAL(r_k) :: tK ! Temperature ( K ) |
---|
| 298 | REAL(r_k) :: p ! Pressure ( hPa ) |
---|
| 299 | REAL(r_k) :: rh ! Relative humidity |
---|
| 300 | REAL(r_k) :: mixr ! Mixing Ratio ( kg kg^-1) |
---|
| 301 | REAL(r_k) :: te ! Equivalent temperature ( K ) |
---|
| 302 | REAL(r_k) :: thetae ! Equivalent potential temperature |
---|
| 303 | |
---|
| 304 | ! Using WRF values |
---|
| 305 | !REAL, PARAMETER :: R = 287.04 ! Universal gas constant (J/deg kg) |
---|
| 306 | !REAL, PARAMETER :: P0 = 1000.0 ! Standard pressure at surface (hPa) |
---|
| 307 | REAL(r_k) :: R, p00, Lv |
---|
| 308 | !REAL, PARAMETER :: lv = 2.54*(10**6) ! Latent heat of vaporization |
---|
| 309 | ! (J kg^-1) |
---|
| 310 | !REAL, PARAMETER :: cp = 1004.67 ! Specific heat of dry air constant |
---|
| 311 | ! at pressure (J/deg kg) |
---|
| 312 | REAL(r_k) :: tlc ! LCL temperature |
---|
| 313 | |
---|
| 314 | R = r_d |
---|
| 315 | p00 = p1000mb/100. |
---|
| 316 | lv = XLV |
---|
| 317 | |
---|
| 318 | !~ Calculate the temperature of the LCL |
---|
| 319 | ! ------------------------------------ |
---|
| 320 | tlc = TLCL ( tK, rh ) |
---|
| 321 | |
---|
| 322 | !~ Calculate theta-e |
---|
| 323 | ! ----------------- |
---|
| 324 | thetae = (tK * (p00/p)**( (R/Cp)*(1.- ( (.28E-3)*mixr*1000.) ) ) )* & |
---|
| 325 | exp( (((3.376/tlc)-.00254))*& |
---|
| 326 | (mixr*1000.*(1.+(.81E-3)*mixr*1000.)) ) |
---|
| 327 | |
---|
| 328 | END FUNCTION Thetae |
---|
| 329 | |
---|
| 330 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 331 | !~ |
---|
| 332 | !~ Name: |
---|
| 333 | !~ The2T.f90 |
---|
| 334 | !~ |
---|
| 335 | !~ Description: |
---|
| 336 | !~ This function returns the temperature at any pressure level along a |
---|
| 337 | !~ saturation adiabat by iteratively solving for it from the parcel |
---|
| 338 | !~ thetae. |
---|
| 339 | !~ |
---|
| 340 | !~ Dependencies: |
---|
| 341 | !~ function thetae.f90 |
---|
| 342 | !~ |
---|
| 343 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 344 | FUNCTION The2T ( thetaeK, pres, flag ) result ( tparcel ) |
---|
| 345 | |
---|
| 346 | IMPLICIT NONE |
---|
| 347 | |
---|
| 348 | !~ Variable Declaration |
---|
| 349 | ! -------------------- |
---|
| 350 | REAL(r_k), INTENT ( IN ) :: thetaeK |
---|
| 351 | REAL(r_k), INTENT ( IN ) :: pres |
---|
| 352 | LOGICAL, INTENT ( INOUT ) :: flag |
---|
| 353 | REAL(r_k) :: tparcel |
---|
| 354 | |
---|
| 355 | REAL(r_k) :: thetaK |
---|
| 356 | REAL(r_k) :: tovtheta |
---|
| 357 | REAL(r_k) :: tcheck |
---|
| 358 | REAL(r_k) :: svpr, svpr2 |
---|
| 359 | REAL(r_k) :: smixr, smixr2 |
---|
| 360 | REAL(r_k) :: thetae_check, thetae_check2 |
---|
| 361 | REAL(r_k) :: tguess_2, correction |
---|
| 362 | |
---|
| 363 | LOGICAL :: found |
---|
| 364 | INTEGER :: iter |
---|
| 365 | |
---|
| 366 | ! Using WRF values |
---|
| 367 | !REAL :: R ! Dry gas constant |
---|
| 368 | !REAL :: Cp ! Specific heat for dry air |
---|
| 369 | !REAL :: kappa ! Rd / Cp |
---|
| 370 | !REAL :: Lv ! Latent heat of vaporization at 0 deg. C |
---|
| 371 | REAL(r_k) :: R, kappa, Lv |
---|
| 372 | |
---|
| 373 | R = r_d |
---|
| 374 | Lv = XLV |
---|
| 375 | !R = 287.04 |
---|
| 376 | !Cp = 1004.67 |
---|
| 377 | Kappa = R/Cp |
---|
| 378 | !Lv = 2.500E+6 |
---|
| 379 | |
---|
| 380 | !~ Make initial guess for temperature of the parcel |
---|
| 381 | ! ------------------------------------------------ |
---|
| 382 | tovtheta = (pres/100000.0)**(r/cp) |
---|
| 383 | tparcel = thetaeK/exp(lv*.012/(cp*295.))*tovtheta |
---|
| 384 | |
---|
| 385 | iter = 1 |
---|
| 386 | found = .false. |
---|
| 387 | flag = .false. |
---|
| 388 | |
---|
| 389 | DO |
---|
| 390 | IF ( iter > 105 ) EXIT |
---|
| 391 | |
---|
| 392 | tguess_2 = tparcel + REAL ( 1 ) |
---|
| 393 | |
---|
| 394 | svpr = 6.122 * exp ( (17.67*(tparcel-273.15)) / (tparcel-29.66) ) |
---|
| 395 | smixr = ( 0.622*svpr ) / ( (pres/100.0)-svpr ) |
---|
| 396 | svpr2 = 6.122 * exp ( (17.67*(tguess_2-273.15)) / (tguess_2-29.66) ) |
---|
| 397 | smixr2 = ( 0.622*svpr2 ) / ( (pres/100.0)-svpr2 ) |
---|
| 398 | |
---|
| 399 | ! ------------------------------------------------------------------ ~! |
---|
| 400 | !~ When this function was orinially written, the final parcel ~! |
---|
| 401 | !~ temperature check was based off of the parcel temperature and ~! |
---|
| 402 | !~ not the theta-e it produced. As there are multiple temperature- ~! |
---|
| 403 | !~ mixing ratio combinations that can produce a single theta-e value, ~! |
---|
| 404 | !~ we change the check to be based off of the resultant theta-e ~! |
---|
| 405 | !~ value. This seems to be the most accurate way of backing out ~! |
---|
| 406 | !~ temperature from theta-e. ~! |
---|
| 407 | !~ ~! |
---|
| 408 | !~ Rentschler, April 2010 ~! |
---|
| 409 | ! ------------------------------------------------------------------ ! |
---|
| 410 | |
---|
| 411 | !~ Old way... |
---|
| 412 | !thetaK = thetaeK / EXP (lv * smixr /(cp*tparcel) ) |
---|
| 413 | !tcheck = thetaK * tovtheta |
---|
| 414 | |
---|
| 415 | !~ New way |
---|
| 416 | thetae_check = Thetae ( tparcel, pres/100., 100., smixr ) |
---|
| 417 | thetae_check2 = Thetae ( tguess_2, pres/100., 100., smixr2 ) |
---|
| 418 | |
---|
| 419 | !~ Whew doggies - that there is some accuracy... |
---|
| 420 | !IF ( ABS (tparcel-tcheck) < .05) THEN |
---|
| 421 | IF ( ABS (thetaeK-thetae_check) < .001) THEN |
---|
| 422 | found = .true. |
---|
| 423 | flag = .true. |
---|
| 424 | EXIT |
---|
| 425 | END IF |
---|
| 426 | |
---|
| 427 | !~ Old |
---|
| 428 | !tparcel = tparcel + (tcheck - tparcel)*.3 |
---|
| 429 | |
---|
| 430 | !~ New |
---|
| 431 | correction = ( thetaeK-thetae_check ) / ( thetae_check2-thetae_check ) |
---|
| 432 | tparcel = tparcel + correction |
---|
| 433 | |
---|
| 434 | iter = iter + 1 |
---|
| 435 | END DO |
---|
| 436 | |
---|
| 437 | !IF ( .not. found ) THEN |
---|
| 438 | ! print*, "Warning! Thetae to temperature calculation did not converge!" |
---|
| 439 | ! print*, "Thetae ", thetaeK, "Pressure ", pres |
---|
| 440 | !END IF |
---|
| 441 | |
---|
| 442 | END FUNCTION The2T |
---|
| 443 | |
---|
| 444 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 445 | !~ |
---|
| 446 | !~ Name: |
---|
| 447 | !~ VirtualTemperature |
---|
| 448 | !~ |
---|
| 449 | !~ Description: |
---|
| 450 | !~ This function returns virtual temperature given temperature ( K ) |
---|
| 451 | !~ and mixing ratio. |
---|
| 452 | !~ |
---|
| 453 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 454 | FUNCTION VirtualTemperature ( tK, w ) result ( Tv ) |
---|
| 455 | |
---|
| 456 | IMPLICIT NONE |
---|
| 457 | |
---|
| 458 | !~ Variable declaration |
---|
| 459 | real(r_k), intent ( in ) :: tK !~ Temperature |
---|
| 460 | real(r_k), intent ( in ) :: w !~ Mixing ratio ( kg kg^-1 ) |
---|
| 461 | real(r_k) :: Tv !~ Virtual temperature |
---|
| 462 | |
---|
| 463 | Tv = tK * ( 1.0 + (w/0.622) ) / ( 1.0 + w ) |
---|
| 464 | |
---|
| 465 | END FUNCTION VirtualTemperature |
---|
| 466 | |
---|
| 467 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 468 | !~ |
---|
| 469 | !~ Name: |
---|
| 470 | !~ SaturationMixingRatio |
---|
| 471 | !~ |
---|
| 472 | !~ Description: |
---|
| 473 | !~ This function calculates saturation mixing ratio given the |
---|
| 474 | !~ temperature ( K ) and the ambient pressure ( Pa ). Uses |
---|
| 475 | !~ approximation of saturation vapor pressure. |
---|
| 476 | !~ |
---|
| 477 | !~ References: |
---|
| 478 | !~ Bolton (1980), Monthly Weather Review, pg. 1047, Eq. 10 |
---|
| 479 | !~ |
---|
| 480 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 481 | FUNCTION SaturationMixingRatio ( tK, p ) result ( ws ) |
---|
| 482 | |
---|
| 483 | IMPLICIT NONE |
---|
| 484 | |
---|
| 485 | REAL(r_k), INTENT ( IN ) :: tK |
---|
| 486 | REAL(r_k), INTENT ( IN ) :: p |
---|
| 487 | REAL(r_k) :: ws |
---|
| 488 | |
---|
| 489 | REAL(r_k) :: es |
---|
| 490 | |
---|
| 491 | es = 6.122 * exp ( (17.67*(tK-273.15))/ (tK-29.66) ) |
---|
| 492 | ws = ( 0.622*es ) / ( (p/100.0)-es ) |
---|
| 493 | |
---|
| 494 | END FUNCTION SaturationMixingRatio |
---|
| 495 | |
---|
| 496 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 497 | !~ |
---|
| 498 | !~ Name: |
---|
| 499 | !~ tlcl |
---|
| 500 | !~ |
---|
| 501 | !~ Description: |
---|
| 502 | !~ This function calculates the temperature of a parcel of air would have |
---|
| 503 | !~ if lifed dry adiabatically to it's lifting condensation level (lcl). |
---|
| 504 | !~ |
---|
| 505 | !~ References: |
---|
| 506 | !~ Bolton (1980), Monthly Weather Review, pg. 1048, Eq. 22 |
---|
| 507 | !~ |
---|
| 508 | !!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!!! |
---|
| 509 | FUNCTION TLCL ( tk, rh ) |
---|
| 510 | |
---|
| 511 | IMPLICIT NONE |
---|
| 512 | |
---|
| 513 | REAL(r_k), INTENT ( IN ) :: tK !~ Temperature ( K ) |
---|
| 514 | REAL(r_k), INTENT ( IN ) :: rh !~ Relative Humidity ( % ) |
---|
| 515 | REAL(r_k) :: tlcl |
---|
| 516 | |
---|
| 517 | REAL(r_k) :: denom, term1, term2 |
---|
| 518 | |
---|
| 519 | term1 = 1.0 / ( tK - 55.0 ) |
---|
| 520 | !! Lluis |
---|
| 521 | ! IF ( rh > REAL (0) ) THEN |
---|
| 522 | IF ( rh > zeroRK ) THEN |
---|
| 523 | term2 = ( LOG (rh/100.0) / 2840.0 ) |
---|
| 524 | ELSE |
---|
| 525 | term2 = ( LOG (0.001/oneRK) / 2840.0 ) |
---|
| 526 | END IF |
---|
| 527 | denom = term1 - term2 |
---|
| 528 | !! Lluis |
---|
| 529 | ! tlcl = ( 1.0 / denom ) + REAL ( 55 ) |
---|
| 530 | tlcl = ( oneRK / denom ) + 55*oneRK |
---|
| 531 | |
---|
| 532 | END FUNCTION TLCL |
---|
| 533 | |
---|
| 534 | FUNCTION var_cape_afwa1D(nz, tk, rhv, p, hgt, sfc, cape, cin, zlfc, plfc, lidx, parcel) RESULT (ostat) |
---|
| 535 | ! Function to compute cape on a 1D column following implementation in phys/module_diag_afwa.F |
---|
| 536 | |
---|
| 537 | IMPLICIT NONE |
---|
| 538 | |
---|
| 539 | INTEGER, INTENT(in) :: nz, sfc |
---|
| 540 | REAL(r_k), DIMENSION(nz), INTENT(in) :: tk, rhv, p, hgt |
---|
| 541 | REAL(r_k), INTENT(out) :: cape, cin, zlfc, plfc, lidx |
---|
| 542 | INTEGER :: ostat |
---|
| 543 | INTEGER, INTENT(in) :: parcel |
---|
| 544 | |
---|
| 545 | ! Local |
---|
| 546 | !~ Derived profile variables |
---|
| 547 | ! ------------------------- |
---|
| 548 | REAL(r_k), DIMENSION(nz) :: rh, ws, w, dTvK, buoy |
---|
| 549 | REAL(r_k) :: tlclK, plcl, nbuoy, pbuoy |
---|
| 550 | |
---|
| 551 | !~ Source parcel information |
---|
| 552 | ! ------------------------- |
---|
| 553 | REAL(r_k) :: srctK, srcrh, srcws, srcw, srcp, & |
---|
| 554 | srctheta, srcthetaeK |
---|
| 555 | INTEGER :: srclev |
---|
| 556 | REAL(r_k) :: spdiff |
---|
| 557 | |
---|
| 558 | !~ Parcel variables |
---|
| 559 | ! ---------------- |
---|
| 560 | REAL(r_k) :: ptK, ptvK, tvK, pw |
---|
| 561 | |
---|
| 562 | !~ Other utility variables |
---|
| 563 | ! ----------------------- |
---|
| 564 | INTEGER :: i, j, k |
---|
| 565 | INTEGER :: lfclev |
---|
| 566 | INTEGER :: prcl |
---|
| 567 | INTEGER :: mlev |
---|
| 568 | INTEGER :: lyrcnt |
---|
| 569 | LOGICAL :: flag |
---|
| 570 | LOGICAL :: wflag |
---|
| 571 | REAL(r_k) :: freeze |
---|
| 572 | REAL(r_k) :: pdiff |
---|
| 573 | REAL(r_k) :: pm, pu, pd |
---|
| 574 | REAL(r_k) :: lidxu |
---|
| 575 | REAL(r_k) :: lidxd |
---|
| 576 | |
---|
| 577 | REAL(r_k), PARAMETER :: Rd = r_d |
---|
| 578 | REAL(r_k), PARAMETER :: RUNDEF = -9.999E30 |
---|
| 579 | |
---|
| 580 | !!!!!!! Variables |
---|
| 581 | ! nz: Number of vertical levels |
---|
| 582 | ! sfc: Surface level in the profile |
---|
| 583 | ! tk: Temperature profile [K] |
---|
| 584 | ! rhv: Relative Humidity profile [1] |
---|
| 585 | ! rh: Relative Humidity profile [%] |
---|
| 586 | ! p: Pressure profile [Pa] |
---|
| 587 | ! hgt: Geopotential height profile [gpm] |
---|
| 588 | ! cape: CAPE [Jkg-1] |
---|
| 589 | ! cin: CIN [Jkg-1] |
---|
| 590 | ! zlfc: LFC Height [gpm] |
---|
| 591 | ! plfc: LFC Pressure [Pa] |
---|
| 592 | ! lidx: Lifted index |
---|
| 593 | ! FROM: https://en.wikipedia.org/wiki/Lifted_index |
---|
| 594 | ! lidx >= 6: Very Stable Conditions |
---|
| 595 | ! 6 > lidx > 1: Stable Conditions, Thunderstorms Not Likely |
---|
| 596 | ! 0 > lidx > -2: Slightly Unstable, Thunderstorms Possible, With Lifting Mechanism (i.e., cold front, daytime heating, ...) |
---|
| 597 | ! -2 > lidx > -6: Unstable, Thunderstorms Likely, Some Severe With Lifting Mechanism |
---|
| 598 | ! -6 > lidx: Very Unstable, Severe Thunderstorms Likely With Lifting Mechanism |
---|
| 599 | ! ostat: Function return status (Nonzero is bad) |
---|
| 600 | ! parcel: |
---|
| 601 | ! Most Unstable = 1 (default) |
---|
| 602 | ! Mean layer = 2 |
---|
| 603 | ! Surface based = 3 |
---|
| 604 | !~ Derived profile variables |
---|
| 605 | ! ------------------------- |
---|
| 606 | ! ws: Saturation mixing ratio |
---|
| 607 | ! w: Mixing ratio |
---|
| 608 | ! dTvK: Parcel / ambient Tv difference |
---|
| 609 | ! buoy: Buoyancy |
---|
| 610 | ! tlclK: LCL temperature [K] |
---|
| 611 | ! plcl: LCL pressure [Pa] |
---|
| 612 | ! nbuoy: Negative buoyancy |
---|
| 613 | ! pbuoy: Positive buoyancy |
---|
| 614 | |
---|
| 615 | !~ Source parcel information |
---|
| 616 | ! ------------------------- |
---|
| 617 | ! srctK: Source parcel temperature [K] |
---|
| 618 | ! srcrh: Source parcel rh [%] |
---|
| 619 | ! srcws: Source parcel sat. mixing ratio |
---|
| 620 | ! srcw: Source parcel mixing ratio |
---|
| 621 | ! srcp: Source parcel pressure [Pa] |
---|
| 622 | ! srctheta: Source parcel theta [K] |
---|
| 623 | ! srcthetaeK: Source parcel theta-e [K] |
---|
| 624 | ! srclev: Level of the source parcel |
---|
| 625 | ! spdiff: Pressure difference |
---|
| 626 | |
---|
| 627 | !~ Parcel variables |
---|
| 628 | ! ---------------- |
---|
| 629 | ! ptK: Parcel temperature [K] |
---|
| 630 | ! ptvK: Parcel virtual temperature [K] |
---|
| 631 | ! tvK: Ambient virtual temperature [K] |
---|
| 632 | ! pw: Parcel mixing ratio |
---|
| 633 | |
---|
| 634 | !~ Other utility variables |
---|
| 635 | ! ----------------------- |
---|
| 636 | ! lfclev: Level of LFC |
---|
| 637 | ! prcl: Internal parcel type indicator |
---|
| 638 | ! mlev: Level for ML calculation |
---|
| 639 | ! lyrcnt: Number of layers in mean layer |
---|
| 640 | ! flag: Dummy flag |
---|
| 641 | ! wflag: Saturation flag |
---|
| 642 | ! freeze: Water loading multiplier |
---|
| 643 | ! pdiff: Pressure difference between levs |
---|
| 644 | ! pm, pu, pd: Middle, upper, lower pressures |
---|
| 645 | ! lidxu: Lifted index at upper level |
---|
| 646 | ! lidxd: Lifted index at lower level |
---|
| 647 | |
---|
| 648 | fname = 'var_cape_afwa' |
---|
| 649 | |
---|
| 650 | !~ Initialize variables |
---|
| 651 | ! -------------------- |
---|
| 652 | rh = rhv*100. |
---|
| 653 | ostat = 0 |
---|
| 654 | CAPE = zeroRK |
---|
| 655 | CIN = zeroRK |
---|
| 656 | ZLFC = RUNDEF |
---|
| 657 | PLFC = RUNDEF |
---|
| 658 | |
---|
| 659 | !~ Look for submitted parcel definition |
---|
| 660 | !~ 1 = Most unstable |
---|
| 661 | !~ 2 = Mean layer |
---|
| 662 | !~ 3 = Surface based |
---|
| 663 | ! ------------------------------------- |
---|
| 664 | IF ( parcel > 3 .or. parcel < 1 ) THEN |
---|
| 665 | prcl = 1 |
---|
| 666 | ELSE |
---|
| 667 | prcl = parcel |
---|
| 668 | END IF |
---|
| 669 | |
---|
| 670 | !~ Initalize our parcel to be (sort of) surface based. Because of |
---|
| 671 | !~ issues we've been observing in the WRF model, specifically with |
---|
| 672 | !~ excessive surface moisture values at the surface, using a true |
---|
| 673 | !~ surface based parcel is resulting a more unstable environment |
---|
| 674 | !~ than is actually occuring. To address this, our surface parcel |
---|
| 675 | !~ is now going to be defined as the parcel between 25-50 hPa |
---|
| 676 | !~ above the surface. UPDATE - now that this routine is in WRF, |
---|
| 677 | !~ going to trust surface info. GAC 20140415 |
---|
| 678 | ! ---------------------------------------------------------------- |
---|
| 679 | |
---|
| 680 | !~ Compute mixing ratio values for the layer |
---|
| 681 | ! ----------------------------------------- |
---|
| 682 | DO k = sfc, nz |
---|
| 683 | ws ( k ) = SaturationMixingRatio ( tK(k), p(k) ) |
---|
| 684 | w ( k ) = ( rh(k)/100.0 ) * ws ( k ) |
---|
| 685 | END DO |
---|
| 686 | |
---|
| 687 | srclev = sfc |
---|
| 688 | srctK = tK ( sfc ) |
---|
| 689 | srcrh = rh ( sfc ) |
---|
| 690 | srcp = p ( sfc ) |
---|
| 691 | srcws = ws ( sfc ) |
---|
| 692 | srcw = w ( sfc ) |
---|
| 693 | srctheta = Theta ( tK(sfc), p(sfc)/100.0 ) |
---|
| 694 | |
---|
| 695 | !~ Compute the profile mixing ratio. If the parcel is the MU parcel, |
---|
| 696 | !~ define our parcel to be the most unstable parcel within the lowest |
---|
| 697 | !~ 180 mb. |
---|
| 698 | ! ------------------------------------------------------------------- |
---|
| 699 | mlev = sfc + 1 |
---|
| 700 | DO k = sfc + 1, nz |
---|
| 701 | |
---|
| 702 | !~ Identify the last layer within 100 hPa of the surface |
---|
| 703 | ! ----------------------------------------------------- |
---|
| 704 | pdiff = ( p (sfc) - p (k) ) / REAL ( 100 ) |
---|
| 705 | IF ( pdiff <= REAL (100) ) mlev = k |
---|
| 706 | |
---|
| 707 | !~ If we've made it past the lowest 180 hPa, exit the loop |
---|
| 708 | ! ------------------------------------------------------- |
---|
| 709 | IF ( pdiff >= REAL (180) ) EXIT |
---|
| 710 | |
---|
| 711 | IF ( prcl == 1 ) THEN |
---|
| 712 | !IF ( (p(k) > 70000.0) .and. (w(k) > srcw) ) THEN |
---|
| 713 | IF ( (w(k) > srcw) ) THEN |
---|
| 714 | srctheta = Theta ( tK(k), p(k)/100.0 ) |
---|
| 715 | srcw = w ( k ) |
---|
| 716 | srclev = k |
---|
| 717 | srctK = tK ( k ) |
---|
| 718 | srcrh = rh ( k ) |
---|
| 719 | srcp = p ( k ) |
---|
| 720 | END IF |
---|
| 721 | END IF |
---|
| 722 | |
---|
| 723 | END DO |
---|
| 724 | |
---|
| 725 | !~ If we want the mean layer parcel, compute the mean values in the |
---|
| 726 | !~ lowest 100 hPa. |
---|
| 727 | ! ---------------------------------------------------------------- |
---|
| 728 | lyrcnt = mlev - sfc + 1 |
---|
| 729 | IF ( prcl == 2 ) THEN |
---|
| 730 | |
---|
| 731 | srclev = sfc |
---|
| 732 | srctK = SUM ( tK (sfc:mlev) ) / REAL ( lyrcnt ) |
---|
| 733 | srcw = SUM ( w (sfc:mlev) ) / REAL ( lyrcnt ) |
---|
| 734 | srcrh = SUM ( rh (sfc:mlev) ) / REAL ( lyrcnt ) |
---|
| 735 | srcp = SUM ( p (sfc:mlev) ) / REAL ( lyrcnt ) |
---|
| 736 | srctheta = Theta ( srctK, srcp/100. ) |
---|
| 737 | |
---|
| 738 | END IF |
---|
| 739 | |
---|
| 740 | srcthetaeK = Thetae ( srctK, srcp/100.0, srcrh, srcw ) |
---|
| 741 | |
---|
| 742 | !~ Calculate temperature and pressure of the LCL |
---|
| 743 | ! --------------------------------------------- |
---|
| 744 | tlclK = TLCL ( tK(srclev), rh(srclev) ) |
---|
| 745 | plcl = p(srclev) * ( (tlclK/tK(srclev))**(Cp/Rd) ) |
---|
| 746 | |
---|
| 747 | !~ Now lift the parcel |
---|
| 748 | ! ------------------- |
---|
| 749 | |
---|
| 750 | buoy = REAL ( 0 ) |
---|
| 751 | pw = srcw |
---|
| 752 | wflag = .false. |
---|
| 753 | DO k = srclev, nz |
---|
| 754 | IF ( p (k) <= plcl ) THEN |
---|
| 755 | |
---|
| 756 | !~ The first level after we pass the LCL, we're still going to |
---|
| 757 | !~ lift the parcel dry adiabatically, as we haven't added the |
---|
| 758 | !~ the required code to switch between the dry adiabatic and moist |
---|
| 759 | !~ adiabatic cooling. Since the dry version results in a greater |
---|
| 760 | !~ temperature loss, doing that for the first step so we don't over |
---|
| 761 | !~ guesstimate the instability. |
---|
| 762 | ! ---------------------------------------------------------------- |
---|
| 763 | |
---|
| 764 | IF ( wflag ) THEN |
---|
| 765 | flag = .false. |
---|
| 766 | |
---|
| 767 | !~ Above the LCL, our parcel is now undergoing moist adiabatic |
---|
| 768 | !~ cooling. Because of the latent heating being undergone as |
---|
| 769 | !~ the parcel rises above the LFC, must iterative solve for the |
---|
| 770 | !~ parcel temperature using equivalant potential temperature, |
---|
| 771 | !~ which is conserved during both dry adiabatic and |
---|
| 772 | !~ pseudoadiabatic displacements. |
---|
| 773 | ! -------------------------------------------------------------- |
---|
| 774 | ptK = The2T ( srcthetaeK, p(k), flag ) |
---|
| 775 | |
---|
| 776 | !~ Calculate the parcel mixing ratio, which is now changing |
---|
| 777 | !~ as we condense moisture out of the parcel, and is equivalent |
---|
| 778 | !~ to the saturation mixing ratio, since we are, in theory, at |
---|
| 779 | !~ saturation. |
---|
| 780 | ! ------------------------------------------------------------ |
---|
| 781 | pw = SaturationMixingRatio ( ptK, p(k) ) |
---|
| 782 | |
---|
| 783 | !~ Now we can calculate the virtual temperature of the parcel |
---|
| 784 | !~ and the surrounding environment to assess the buoyancy. |
---|
| 785 | ! ---------------------------------------------------------- |
---|
| 786 | ptvK = VirtualTemperature ( ptK, pw ) |
---|
| 787 | tvK = VirtualTemperature ( tK (k), w (k) ) |
---|
| 788 | |
---|
| 789 | !~ Modification to account for water loading |
---|
| 790 | ! ----------------------------------------- |
---|
| 791 | freeze = 0.033 * ( 263.15 - pTvK ) |
---|
| 792 | IF ( freeze > 1.0 ) freeze = 1.0 |
---|
| 793 | IF ( freeze < 0.0 ) freeze = 0.0 |
---|
| 794 | |
---|
| 795 | !~ Approximate how much of the water vapor has condensed out |
---|
| 796 | !~ of the parcel at this level |
---|
| 797 | ! --------------------------------------------------------- |
---|
| 798 | freeze = freeze * 333700.0 * ( srcw - pw ) / 1005.7 |
---|
| 799 | |
---|
| 800 | pTvK = pTvK - pTvK * ( srcw - pw ) + freeze |
---|
| 801 | dTvK ( k ) = ptvK - tvK |
---|
| 802 | buoy ( k ) = g * ( dTvK ( k ) / tvK ) |
---|
| 803 | |
---|
| 804 | ELSE |
---|
| 805 | |
---|
| 806 | !~ Since the theta remains constant whilst undergoing dry |
---|
| 807 | !~ adiabatic processes, can back out the parcel temperature |
---|
| 808 | !~ from potential temperature below the LCL |
---|
| 809 | ! -------------------------------------------------------- |
---|
| 810 | ptK = srctheta / ( 100000.0/p(k) )**(Rd/Cp) |
---|
| 811 | |
---|
| 812 | !~ Grab the parcel virtual temperture, can use the source |
---|
| 813 | !~ mixing ratio since we are undergoing dry adiabatic cooling |
---|
| 814 | ! ---------------------------------------------------------- |
---|
| 815 | ptvK = VirtualTemperature ( ptK, srcw ) |
---|
| 816 | |
---|
| 817 | !~ Virtual temperature of the environment |
---|
| 818 | ! -------------------------------------- |
---|
| 819 | tvK = VirtualTemperature ( tK (k), w (k) ) |
---|
| 820 | |
---|
| 821 | !~ Buoyancy at this level |
---|
| 822 | ! ---------------------- |
---|
| 823 | dTvK ( k ) = ptvK - tvK |
---|
| 824 | buoy ( k ) = g * ( dtvK ( k ) / tvK ) |
---|
| 825 | |
---|
| 826 | wflag = .true. |
---|
| 827 | |
---|
| 828 | END IF |
---|
| 829 | |
---|
| 830 | ELSE |
---|
| 831 | |
---|
| 832 | !~ Since the theta remains constant whilst undergoing dry |
---|
| 833 | !~ adiabatic processes, can back out the parcel temperature |
---|
| 834 | !~ from potential temperature below the LCL |
---|
| 835 | ! -------------------------------------------------------- |
---|
| 836 | ptK = srctheta / ( 100000.0/p(k) )**(Rd/Cp) |
---|
| 837 | |
---|
| 838 | !~ Grab the parcel virtual temperture, can use the source |
---|
| 839 | !~ mixing ratio since we are undergoing dry adiabatic cooling |
---|
| 840 | ! ---------------------------------------------------------- |
---|
| 841 | ptvK = VirtualTemperature ( ptK, srcw ) |
---|
| 842 | |
---|
| 843 | !~ Virtual temperature of the environment |
---|
| 844 | ! -------------------------------------- |
---|
| 845 | tvK = VirtualTemperature ( tK (k), w (k) ) |
---|
| 846 | |
---|
| 847 | !~ Buoyancy at this level |
---|
| 848 | ! --------------------- |
---|
| 849 | dTvK ( k ) = ptvK - tvK |
---|
| 850 | buoy ( k ) = g * ( dtvK ( k ) / tvK ) |
---|
| 851 | |
---|
| 852 | END IF |
---|
| 853 | |
---|
| 854 | !~ Chirp |
---|
| 855 | ! ----- |
---|
| 856 | ! WRITE ( *,'(I15,6F15.3)' )k,p(k)/100.,ptK,pw*1000.,ptvK,tvK,buoy(k) |
---|
| 857 | |
---|
| 858 | END DO |
---|
| 859 | |
---|
| 860 | !~ Add up the buoyancies, find the LFC |
---|
| 861 | ! ----------------------------------- |
---|
| 862 | flag = .false. |
---|
| 863 | lfclev = -1 |
---|
| 864 | nbuoy = REAL ( 0 ) |
---|
| 865 | pbuoy = REAL ( 0 ) |
---|
| 866 | DO k = sfc + 1, nz |
---|
| 867 | IF ( tK (k) < 253.15 ) EXIT |
---|
| 868 | CAPE = CAPE + MAX ( buoy (k), 0.0 ) * ( hgt (k) - hgt (k-1) ) |
---|
| 869 | CIN = CIN + MIN ( buoy (k), 0.0 ) * ( hgt (k) - hgt (k-1) ) |
---|
| 870 | |
---|
| 871 | !~ If we've already passed the LFC |
---|
| 872 | ! ------------------------------- |
---|
| 873 | IF ( flag .and. buoy (k) > REAL (0) ) THEN |
---|
| 874 | pbuoy = pbuoy + buoy (k) |
---|
| 875 | END IF |
---|
| 876 | |
---|
| 877 | !~ We are buoyant now - passed the LFC |
---|
| 878 | ! ----------------------------------- |
---|
| 879 | IF ( .not. flag .and. buoy (k) > REAL (0) .and. p (k) < plcl ) THEN |
---|
| 880 | flag = .true. |
---|
| 881 | pbuoy = pbuoy + buoy (k) |
---|
| 882 | lfclev = k |
---|
| 883 | END IF |
---|
| 884 | |
---|
| 885 | !~ If we think we've passed the LFC, but encounter a negative layer |
---|
| 886 | !~ start adding it up. |
---|
| 887 | ! ---------------------------------------------------------------- |
---|
| 888 | IF ( flag .and. buoy (k) < REAL (0) ) THEN |
---|
| 889 | nbuoy = nbuoy + buoy (k) |
---|
| 890 | |
---|
| 891 | !~ If the accumulated negative buoyancy is greater than the |
---|
| 892 | !~ positive buoyancy, then we are capped off. Got to go higher |
---|
| 893 | !~ to find the LFC. Reset positive and negative buoyancy summations |
---|
| 894 | ! ---------------------------------------------------------------- |
---|
| 895 | IF ( ABS (nbuoy) > pbuoy ) THEN |
---|
| 896 | flag = .false. |
---|
| 897 | nbuoy = REAL ( 0 ) |
---|
| 898 | pbuoy = REAL ( 0 ) |
---|
| 899 | lfclev = -1 |
---|
| 900 | END IF |
---|
| 901 | END IF |
---|
| 902 | |
---|
| 903 | END DO |
---|
| 904 | |
---|
| 905 | !~ Calculate lifted index by interpolating difference between |
---|
| 906 | !~ parcel and ambient Tv to 500mb. |
---|
| 907 | ! ---------------------------------------------------------- |
---|
| 908 | DO k = sfc + 1, nz |
---|
| 909 | |
---|
| 910 | pm = 50000. |
---|
| 911 | pu = p ( k ) |
---|
| 912 | pd = p ( k - 1 ) |
---|
| 913 | |
---|
| 914 | !~ If we're already above 500mb just set lifted index to 0. |
---|
| 915 | !~ -------------------------------------------------------- |
---|
| 916 | IF ( pd .le. pm ) THEN |
---|
| 917 | lidx = zeroRK |
---|
| 918 | EXIT |
---|
| 919 | |
---|
| 920 | ELSEIF ( pu .le. pm .and. pd .gt. pm) THEN |
---|
| 921 | |
---|
| 922 | !~ Found trapping pressure: up, middle, down. |
---|
| 923 | !~ We are doing first order interpolation. |
---|
| 924 | ! ------------------------------------------ |
---|
| 925 | lidxu = -dTvK ( k ) * ( pu / 100000. ) ** (Rd/Cp) |
---|
| 926 | lidxd = -dTvK ( k-1 ) * ( pd / 100000. ) ** (Rd/Cp) |
---|
| 927 | lidx = ( lidxu * (pm-pd) + lidxd * (pu-pm) ) / (pu-pd) |
---|
| 928 | EXIT |
---|
| 929 | |
---|
| 930 | ENDIF |
---|
| 931 | |
---|
| 932 | END DO |
---|
| 933 | |
---|
| 934 | !~ Assuming the the LFC is at a pressure level for now |
---|
| 935 | ! --------------------------------------------------- |
---|
| 936 | IF ( lfclev > zeroRK ) THEN |
---|
| 937 | PLFC = p ( lfclev ) |
---|
| 938 | ZLFC = hgt ( lfclev ) |
---|
| 939 | END IF |
---|
| 940 | |
---|
| 941 | IF ( PLFC /= PLFC .OR. PLFC < zeroRK ) THEN |
---|
| 942 | PLFC = -oneRK |
---|
| 943 | ZLFC = -oneRK |
---|
| 944 | END IF |
---|
| 945 | |
---|
| 946 | IF ( CAPE /= CAPE ) cape = zeroRK |
---|
| 947 | |
---|
| 948 | IF ( CIN /= CIN ) cin = zeroRK |
---|
| 949 | |
---|
| 950 | !~ Chirp |
---|
| 951 | ! ----- |
---|
| 952 | ! WRITE ( *,* ) ' CAPE: ', cape, ' CIN: ', cin |
---|
| 953 | ! WRITE ( *,* ) ' LFC: ', ZLFC, ' PLFC: ', PLFC |
---|
| 954 | ! WRITE ( *,* ) '' |
---|
| 955 | ! WRITE ( *,* ) ' Exiting buoyancy.' |
---|
| 956 | ! WRITE ( *,* ) ' ==================================== ' |
---|
| 957 | ! WRITE ( *,* ) '' |
---|
| 958 | |
---|
| 959 | RETURN |
---|
| 960 | |
---|
| 961 | END FUNCTION var_cape_afwa1D |
---|
| 962 | |
---|
| 963 | ! ---- END modified from module_diag_afwa.F ---- ! |
---|
| 964 | |
---|
[1773] | 965 | SUBROUTINE var_zmla_generic(dz, qv, tpot, z, topo, zmla) |
---|
| 966 | ! Subroutine to compute pbl-height following a generic method |
---|
| 967 | ! from Nielsen-Gammon et al., 2008 J. Appl. Meteor. Clim. |
---|
| 968 | ! applied also in Garcia-Diez et al., 2013, QJRMS |
---|
| 969 | ! where |
---|
| 970 | ! "The technique identifies the ML height as a threshold increase of potential temperature from |
---|
| 971 | ! its minimum value within the boundary layer." |
---|
| 972 | ! here applied similarly to Garcia-Diez et al. where |
---|
| 973 | ! zmla = "...first level where potential temperature exceeds the minimum potential temperature |
---|
| 974 | ! reached in the mixed layer by more than 1.5 K" |
---|
[1769] | 975 | |
---|
[1773] | 976 | IMPLICIT NONE |
---|
| 977 | |
---|
| 978 | INTEGER, INTENT(in) :: dz |
---|
| 979 | REAL(r_k), DIMENSION(dz), INTENT(in) :: qv, tpot, z |
---|
| 980 | REAL(r_k), INTENT(in) :: topo |
---|
| 981 | REAL(r_k), INTENT(out) :: zmla |
---|
| 982 | |
---|
| 983 | ! Local |
---|
| 984 | INTEGER :: i |
---|
| 985 | INTEGER :: mldlev, bllev |
---|
| 986 | REAL(r_k) :: dqvar, tpotmin, refdt |
---|
| 987 | |
---|
| 988 | !!!!!!! Variables |
---|
| 989 | ! qv: water vapour mixing ratio |
---|
| 990 | ! tpot: potential temperature [K] |
---|
| 991 | ! z: height above sea level [m] |
---|
| 992 | ! topo: topographic height [m] |
---|
| 993 | ! zmla: boundary layer height [m] |
---|
| 994 | |
---|
| 995 | fname = 'var_zmla_generic' |
---|
| 996 | |
---|
| 997 | ! Pecentage of difference of mixing ratio used to determine Mixed layer depth |
---|
| 998 | dqvar = 0.1 |
---|
| 999 | |
---|
| 1000 | ! MLD = Mixed layer with no substantial variation of mixing ratio /\qv < 10% ? |
---|
| 1001 | !PRINT *,' Mixed layer mixing ratios qv[1] lev qv[lev] dqvar% _______' |
---|
| 1002 | DO mldlev = 2, dz |
---|
| 1003 | IF (ABS(qv(mldlev)-qv(1))/qv(1) > dqvar ) EXIT |
---|
| 1004 | ! PRINT *,qv(1), mldlev, qv(mldlev), ABS(qv(mldlev)-qv(1))/qv(1) |
---|
| 1005 | END DO |
---|
| 1006 | |
---|
| 1007 | ! Looking for the minimum potential temperature within the MLD [tpotmin = min(tpot)_0^MLD] |
---|
| 1008 | tpotmin = MINVAL(tpot(1:mldlev)) |
---|
| 1009 | |
---|
| 1010 | ! Change in temperature to determine boundary layer height |
---|
| 1011 | refdt = 1.5 |
---|
| 1012 | |
---|
| 1013 | ! Determine the first level where tpot > tpotmin + 1.5 K |
---|
| 1014 | !PRINT *,' Mixed layer tpotmin lev tpotmin[lev] dtpot _______' |
---|
| 1015 | DO bllev = 1, dz |
---|
| 1016 | IF (ABS(tpot(bllev)-tpotmin) > refdt ) EXIT |
---|
| 1017 | ! PRINT *,tpotmin, bllev, tpot(bllev), ABS(tpot(bllev)-tpotmin) |
---|
| 1018 | END DO |
---|
| 1019 | |
---|
| 1020 | !PRINT *,' height end MLD:', z(mldlev) |
---|
| 1021 | !PRINT *,' pbl height:', z(bllev) |
---|
| 1022 | |
---|
| 1023 | zmla = z(bllev) - topo |
---|
| 1024 | |
---|
| 1025 | RETURN |
---|
| 1026 | |
---|
| 1027 | END SUBROUTINE var_zmla_generic |
---|
| 1028 | |
---|
[1776] | 1029 | SUBROUTINE var_zwind(d1, u, v, z, u10, v10, sa, ca, topo, newz, unewz, vnewz) |
---|
| 1030 | ! Subroutine to extrapolate the wind at a given height following the 'power law' methodology |
---|
| 1031 | ! wss[newz] = wss[z1]*(newz/z1)**alpha |
---|
| 1032 | ! alpha = (ln(wss[z2])-ln(wss[z1]))/(ln(z2)-ln(z1)) |
---|
| 1033 | ! AFTER: Phd Thesis: |
---|
| 1034 | ! Benedicte Jourdier. Ressource eolienne en France metropolitaine : methodes dâevaluation du |
---|
| 1035 | ! potentiel, variabilite et tendances. Climatologie. Ecole Doctorale Polytechnique, 2015. French |
---|
| 1036 | ! |
---|
| 1037 | IMPLICIT NONE |
---|
| 1038 | |
---|
| 1039 | INTEGER, INTENT(in) :: d1 |
---|
| 1040 | REAL(r_k), DIMENSION(d1), INTENT(in) :: u,v,z |
---|
| 1041 | REAL(r_k), INTENT(in) :: u10, v10, topo, sa, ca, newz |
---|
| 1042 | REAL(r_k), INTENT(out) :: unewz, vnewz |
---|
| 1043 | |
---|
| 1044 | ! Local |
---|
| 1045 | INTEGER :: inear |
---|
| 1046 | REAL(r_k) :: zaground |
---|
| 1047 | REAL(r_k), DIMENSION(2) :: v1, v2, zz, alpha, uvnewz |
---|
| 1048 | |
---|
| 1049 | !!!!!!! Variables |
---|
| 1050 | ! u,v: vertical wind components [ms-1] |
---|
| 1051 | ! z: height above surface [m] |
---|
| 1052 | ! u10,v10: 10-m wind components [ms-1] |
---|
| 1053 | ! topo: topographical height [m] |
---|
| 1054 | ! sa, ca: local sine and cosine of map rotation [1.] |
---|
| 1055 | ! newz: desired height above grpund of extrapolation |
---|
| 1056 | ! unewz,vnewz: Wind compoonents at the given height [ms-1] |
---|
| 1057 | |
---|
| 1058 | fname = 'var_zwind' |
---|
| 1059 | |
---|
| 1060 | PRINT *,' ilev zaground newz z[ilev+1] z[ilev+2] _______' |
---|
| 1061 | IF (z(1) < newz ) THEN |
---|
| 1062 | DO inear = 1,d1-2 |
---|
| 1063 | zaground = z(inear+2) |
---|
| 1064 | PRINT *, inear, z(inear), newz, z(inear+1), z(inear+2) |
---|
| 1065 | IF ( zaground >= newz) EXIT |
---|
| 1066 | END DO |
---|
| 1067 | ELSE |
---|
| 1068 | PRINT *, 1, z(1), newz, z(2), z(3), ' z(1) > newz' |
---|
| 1069 | inear = d1 - 2 |
---|
| 1070 | END IF |
---|
| 1071 | |
---|
| 1072 | IF (inear == d1-2) THEN |
---|
| 1073 | ! No vertical pair of levels is below newz, using 10m wind as first value and the first level as the second |
---|
| 1074 | v1(1) = u10 |
---|
| 1075 | v1(2) = v10 |
---|
| 1076 | v2(1) = u(1) |
---|
| 1077 | v2(2) = v(1) |
---|
| 1078 | zz(1) = 10. |
---|
| 1079 | zz(2) = z(1) |
---|
| 1080 | ELSE |
---|
| 1081 | v1(1) = u(inear) |
---|
| 1082 | v1(2) = v(inear) |
---|
| 1083 | v2(1) = u(inear+1) |
---|
| 1084 | v2(2) = v(inear+1) |
---|
| 1085 | zz(1) = z(inear) - topo |
---|
| 1086 | zz(2) = z(inear+1) - topo |
---|
| 1087 | END IF |
---|
| 1088 | |
---|
| 1089 | ! Computing for each component |
---|
| 1090 | alpha = (LOG(ABS(v2))-LOG(ABS(v1)))/(LOG(zz(2))-LOG(zz(1))) |
---|
| 1091 | PRINT *,' Computing with v1:', v1, ' ms-1 v2:', v2, ' ms-1' |
---|
| 1092 | PRINT *,' z1:', zz(1), 'm z2:', zz(2), ' m' |
---|
| 1093 | PRINT *,' alhpa u:', alpha(1), ' alpha 2:', alpha(2) |
---|
| 1094 | |
---|
| 1095 | uvnewz = v1*(newz/zz(1))**alpha |
---|
| 1096 | ! Earth-rotation |
---|
| 1097 | unewz = uvnewz(1)*ca - uvnewz(2)*sa |
---|
| 1098 | vnewz = uvnewz(1)*sa + uvnewz(2)*ca |
---|
| 1099 | |
---|
| 1100 | PRINT *,' result vz:', uvnewz |
---|
| 1101 | |
---|
| 1102 | !STOP |
---|
| 1103 | |
---|
| 1104 | RETURN |
---|
| 1105 | |
---|
| 1106 | END SUBROUTINE var_zwind |
---|
| 1107 | |
---|
[772] | 1108 | END MODULE module_ForDiagnosticsVars |
---|