1 | !! Fortran version of different diagnostics |
---|
2 | ! L. Fita. LMD May 2016 |
---|
3 | ! gfortran module_generic.o module_ForDiagnosticsVars.o -c module_ForDiagnostics.F90 |
---|
4 | ! |
---|
5 | ! f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 |
---|
6 | |
---|
7 | MODULE module_ForDiagnostics |
---|
8 | |
---|
9 | USE module_definitions |
---|
10 | USE module_generic |
---|
11 | USE module_ForDiagnosticsVars |
---|
12 | |
---|
13 | CONTAINS |
---|
14 | |
---|
15 | !!!!!!! Calculations |
---|
16 | ! compute_cape_afwa4D: Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute |
---|
17 | ! CAPE, CIN, ZLFC, PLFC, LI |
---|
18 | ! compute_cllmh4D3: Computation of low, medium and high cloudiness from a 4D CLDFRA and pressure being |
---|
19 | ! 3rd dimension the z-dim |
---|
20 | ! compute_cllmh3D3: Computation of low, medium and high cloudiness from a 3D CLDFRA and pressure being |
---|
21 | ! 3rd dimension the z-dim |
---|
22 | ! compute_cllmh: Computation of low, medium and high cloudiness |
---|
23 | ! compute_clt4D3: Computation of total cloudiness from a 4D CLDFRA being 3rd dimension the z-dim |
---|
24 | ! compute_clt3D3: Computation of total cloudiness from a 3D CLDFRA being 3rd dimension the z-dim |
---|
25 | ! compute_clt: Computation of total cloudiness |
---|
26 | ! compute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
27 | ! compute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
28 | ! compute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
29 | ! compute_massvertint1D: Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
30 | ! compute_psl_ecmwf: Compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
31 | ! compute_range_faces: Subroutine to compute faces [uphill, valleys, downhill] of a mountain range along a given face |
---|
32 | ! compute_vertint1D: Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
33 | ! compute_zint4D: Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
34 | ! compute_zmla_generic4D: Subroutine to compute pbl-height following a generic method |
---|
35 | ! compute_zwind4D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
36 | ! compute_zwind_log4D: Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
37 | ! compute_zwindMCO3D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodolog |
---|
38 | |
---|
39 | !!! |
---|
40 | ! Calculations |
---|
41 | !!! |
---|
42 | |
---|
43 | SUBROUTINE compute_cllmh4D2(cldfra4D, pres4D, cllmh4D2, d1, d2, d3, d4) |
---|
44 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA and pressure |
---|
45 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> cllmh(3,d1,d3,d4) 1: low, 2: medium, 3: high |
---|
46 | ! It should be properly done via an 'INTERFACE', but... |
---|
47 | |
---|
48 | IMPLICIT NONE |
---|
49 | |
---|
50 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
51 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D, pres4D |
---|
52 | REAL(r_k), DIMENSION(3,d1,d3,d4), INTENT(out) :: cllmh4D2 |
---|
53 | |
---|
54 | ! Local |
---|
55 | INTEGER :: i,j,k, zdim, Ndim |
---|
56 | |
---|
57 | !!!!!!! Variables |
---|
58 | ! cldfra4D: 4D cloud fraction values [1] |
---|
59 | ! pres4D: 4D pressure values [Pa] |
---|
60 | ! Ndim: number of dimensions of the input data |
---|
61 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
62 | ! zdim: number of the vertical-dimension within the matrix |
---|
63 | ! cltlmh4D2: low, medium, high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
64 | |
---|
65 | fname = 'compute_cllmh4D2' |
---|
66 | zdim = 2 |
---|
67 | Ndim = 4 |
---|
68 | |
---|
69 | DO i=1, d1 |
---|
70 | DO j=1, d3 |
---|
71 | DO k=1, d4 |
---|
72 | cllmh4D2(:,i,j,k) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
73 | END DO |
---|
74 | END DO |
---|
75 | END DO |
---|
76 | |
---|
77 | RETURN |
---|
78 | |
---|
79 | END SUBROUTINE compute_cllmh4D2 |
---|
80 | |
---|
81 | SUBROUTINE compute_cllmh3D1(cldfra3D, pres3D, cllmh3D1, d1, d2, d3) |
---|
82 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA and pressure |
---|
83 | ! where zdim is the 1st dimension (thus, cldfra3D(d1,d2,d3) --> cllmh(3,d2,d3) 1: low, 2: medium, 3: high |
---|
84 | ! It should be properly done via an 'INTERFACE', but... |
---|
85 | |
---|
86 | IMPLICIT NONE |
---|
87 | |
---|
88 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
89 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D, pres3D |
---|
90 | REAL(r_k), DIMENSION(3,d2,d3), INTENT(out) :: cllmh3D1 |
---|
91 | |
---|
92 | ! Local |
---|
93 | INTEGER :: i,j,k, zdim, Ndim |
---|
94 | |
---|
95 | !!!!!!! Variables |
---|
96 | ! cldfra3D: 3D cloud fraction values [1] |
---|
97 | ! pres3D: 3D pressure values [Pa] |
---|
98 | ! Ndim: number of dimensions of the input data |
---|
99 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
100 | ! zdim: number of the vertical-dimension within the matrix |
---|
101 | ! cltlmh3D1: low, medium, high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
102 | |
---|
103 | fname = 'compute_cllmh3D1' |
---|
104 | zdim = 1 |
---|
105 | Ndim = 3 |
---|
106 | |
---|
107 | DO i=1, d1 |
---|
108 | DO j=1, d2 |
---|
109 | cllmh3D1(:,i,j) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
110 | END DO |
---|
111 | END DO |
---|
112 | |
---|
113 | RETURN |
---|
114 | |
---|
115 | END SUBROUTINE compute_cllmh3D1 |
---|
116 | |
---|
117 | SUBROUTINE compute_cllmh(cldfra1D, cldfra2D, cldfra3D, cldfra4D, pres1D, pres2D, pres3D, pres4D, & |
---|
118 | Ndim, zdim, cllmh1D, cllmh2D1, cllmh2D2, cllmh3D1, cllmh3D2, cllmh3D3, cllmh4D1, cllmh4D2, & |
---|
119 | cllmh4D3, cllmh4D4, d1, d2, d3, d4) |
---|
120 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ |
---|
121 | |
---|
122 | IMPLICIT NONE |
---|
123 | |
---|
124 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
125 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D, pres1D |
---|
126 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D, pres2D |
---|
127 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D, pres3D |
---|
128 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
129 | INTENT(in) :: cldfra4D, pres4D |
---|
130 | REAL(r_k), DIMENSION(3), OPTIONAL, INTENT(out) :: cllmh1D |
---|
131 | REAL(r_k), DIMENSION(d1,3), OPTIONAL, INTENT(out) :: cllmh2D1 |
---|
132 | REAL(r_k), DIMENSION(d2,3), OPTIONAL, INTENT(out) :: cllmh2D2 |
---|
133 | REAL(r_k), DIMENSION(d2,d3,3), OPTIONAL, INTENT(out) :: cllmh3D1 |
---|
134 | REAL(r_k), DIMENSION(d1,d3,3), OPTIONAL, INTENT(out) :: cllmh3D2 |
---|
135 | REAL(r_k), DIMENSION(d1,d2,3), OPTIONAL, INTENT(out) :: cllmh3D3 |
---|
136 | REAL(r_k), DIMENSION(d2,d3,d4,3), OPTIONAL, & |
---|
137 | INTENT(out) :: cllmh4D1 |
---|
138 | REAL(r_k), DIMENSION(d1,d3,d4,3), OPTIONAL, & |
---|
139 | INTENT(out) :: cllmh4D2 |
---|
140 | REAL(r_k), DIMENSION(d1,d2,d4,3), OPTIONAL, & |
---|
141 | INTENT(out) :: cllmh4D3 |
---|
142 | REAL(r_k), DIMENSION(d1,d2,d3,3), OPTIONAL, & |
---|
143 | INTENT(out) :: cllmh4D4 |
---|
144 | |
---|
145 | ! Local |
---|
146 | INTEGER :: i,j,k |
---|
147 | |
---|
148 | !!!!!!! Variables |
---|
149 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
150 | ! pres[1-4]D: pressure values [Pa] |
---|
151 | ! Ndim: number of dimensions of the input data |
---|
152 | ! d[1-4]: dimensions of 'cldfra' |
---|
153 | ! zdim: number of the vertical-dimension within the matrix |
---|
154 | ! cllmh1D: low, medium and high cloudiness for the 1D cldfra |
---|
155 | ! cllmh2D1: low, medium and high cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
156 | ! cllmh2D2: low, medium and high cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
157 | ! cllmh3D1: low, medium and high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
158 | ! cllmh3D2: low, medium and high cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
159 | ! cllmh3D3: low, medium and high cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
160 | ! cllmh4D1: low, medium and high cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
161 | ! cllmh4D2: low, medium and high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
162 | ! cllmh4D3: low, medium and high cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
163 | ! cllmh4D4: low, medium and high cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
164 | |
---|
165 | fname = 'compute_cllmh' |
---|
166 | |
---|
167 | SELECT CASE (Ndim) |
---|
168 | CASE (1) |
---|
169 | cllmh1D = var_cllmh(cldfra1D, pres1D, d1) |
---|
170 | CASE (2) |
---|
171 | IF (zdim == 1) THEN |
---|
172 | DO i=1, d2 |
---|
173 | cllmh2D1(i,:) = var_cllmh(cldfra2D(:,i), pres2D(:,i), d1) |
---|
174 | END DO |
---|
175 | ELSE IF (zdim == 2) THEN |
---|
176 | DO i=1, d1 |
---|
177 | cllmh2D2(i,:) = var_cllmh(cldfra2D(:,i), pres2D(i,:), d2) |
---|
178 | END DO |
---|
179 | ELSE |
---|
180 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
181 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
182 | PRINT *,' accepted values: 1,2' |
---|
183 | STOP |
---|
184 | END IF |
---|
185 | CASE (3) |
---|
186 | IF (zdim == 1) THEN |
---|
187 | DO i=1, d2 |
---|
188 | DO j=1, d3 |
---|
189 | cllmh3D1(i,j,:) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
190 | END DO |
---|
191 | END DO |
---|
192 | ELSE IF (zdim == 2) THEN |
---|
193 | DO i=1, d1 |
---|
194 | DO j=1, d3 |
---|
195 | cllmh3D2(i,j,:) = var_cllmh(cldfra3D(i,:,j), pres3D(i,:,j), d2) |
---|
196 | END DO |
---|
197 | END DO |
---|
198 | ELSE IF (zdim == 3) THEN |
---|
199 | DO i=1, d1 |
---|
200 | DO j=1, d2 |
---|
201 | cllmh3D3(i,j,:) = var_cllmh(cldfra3D(i,j,:), pres3D(i,j,:), d3) |
---|
202 | END DO |
---|
203 | END DO |
---|
204 | ELSE |
---|
205 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
206 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
207 | PRINT *,' accepted values: 1,2,3' |
---|
208 | STOP |
---|
209 | END IF |
---|
210 | CASE (4) |
---|
211 | IF (zdim == 1) THEN |
---|
212 | DO i=1, d2 |
---|
213 | DO j=1, d3 |
---|
214 | DO k=1, d4 |
---|
215 | cllmh4D1(i,j,k,:) = var_cllmh(cldfra4D(:,i,j,k), pres4D(:,i,j,k), d1) |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | ELSE IF (zdim == 2) THEN |
---|
220 | DO i=1, d1 |
---|
221 | DO j=1, d3 |
---|
222 | DO k=1, d4 |
---|
223 | cllmh4D2(i,j,k,:) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
224 | END DO |
---|
225 | END DO |
---|
226 | END DO |
---|
227 | ELSE IF (zdim == 3) THEN |
---|
228 | DO i=1, d2 |
---|
229 | DO j=1, d3 |
---|
230 | DO k=1, d4 |
---|
231 | cllmh4D3(i,j,k,:) = var_cllmh(cldfra4D(i,j,:,k), pres4D(i,j,:,k), d3) |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | END DO |
---|
235 | ELSE IF (zdim == 4) THEN |
---|
236 | DO i=1, d1 |
---|
237 | DO j=1, d2 |
---|
238 | DO k=1, d3 |
---|
239 | cllmh4D4(i,j,k,:) = var_cllmh(cldfra4D(i,j,k,:), pres4D(i,j,k,:), d4) |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | ELSE |
---|
244 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
245 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
246 | PRINT *,' accepted values: 1,2,3,4' |
---|
247 | STOP |
---|
248 | END IF |
---|
249 | CASE DEFAULT |
---|
250 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
251 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
252 | STOP |
---|
253 | END SELECT |
---|
254 | |
---|
255 | RETURN |
---|
256 | |
---|
257 | END SUBROUTINE compute_cllmh |
---|
258 | |
---|
259 | SUBROUTINE compute_clt4D2(cldfra4D, clt4D2, d1, d2, d3, d4) |
---|
260 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA |
---|
261 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> clt(d1,d3,d4) |
---|
262 | ! It should be properly done via an 'INTERFACE', but... |
---|
263 | |
---|
264 | IMPLICIT NONE |
---|
265 | |
---|
266 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
267 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D |
---|
268 | REAL(r_k), DIMENSION(d1,d3,d4), INTENT(out) :: clt4D2 |
---|
269 | |
---|
270 | ! Local |
---|
271 | INTEGER :: i,j,k, zdim, Ndim |
---|
272 | |
---|
273 | !!!!!!! Variables |
---|
274 | ! cldfra4D: 4D cloud fraction values [1] |
---|
275 | ! Ndim: number of dimensions of the input data |
---|
276 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
277 | ! zdim: number of the vertical-dimension within the matrix |
---|
278 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
279 | |
---|
280 | fname = 'compute_clt4D2' |
---|
281 | zdim = 2 |
---|
282 | Ndim = 4 |
---|
283 | |
---|
284 | DO i=1, d1 |
---|
285 | DO j=1, d3 |
---|
286 | DO k=1, d4 |
---|
287 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
288 | END DO |
---|
289 | END DO |
---|
290 | END DO |
---|
291 | |
---|
292 | RETURN |
---|
293 | |
---|
294 | END SUBROUTINE compute_clt4D2 |
---|
295 | |
---|
296 | SUBROUTINE compute_clt3D1(cldfra3D, clt3D1, d1, d2, d3) |
---|
297 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA |
---|
298 | ! where zdim is the 1st dimension (thus, cldfra4D(d1,d2,d3) --> clt(d2,d3) |
---|
299 | ! It should be properly done via an 'INTERFACE', but... |
---|
300 | |
---|
301 | IMPLICIT NONE |
---|
302 | |
---|
303 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
304 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D |
---|
305 | REAL(r_k), DIMENSION(d2,d3), INTENT(out) :: clt3D1 |
---|
306 | |
---|
307 | ! Local |
---|
308 | INTEGER :: i,j,k, zdim, Ndim |
---|
309 | |
---|
310 | !!!!!!! Variables |
---|
311 | ! cldfra3D: 3D cloud fraction values [1] |
---|
312 | ! Ndim: number of dimensions of the input data |
---|
313 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
314 | ! zdim: number of the vertical-dimension within the matrix |
---|
315 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
316 | |
---|
317 | fname = 'compute_clt3D1' |
---|
318 | zdim = 1 |
---|
319 | Ndim = 3 |
---|
320 | |
---|
321 | DO i=1, d2 |
---|
322 | DO j=1, d3 |
---|
323 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
324 | END DO |
---|
325 | END DO |
---|
326 | |
---|
327 | RETURN |
---|
328 | |
---|
329 | END SUBROUTINE compute_clt3D1 |
---|
330 | |
---|
331 | SUBROUTINE compute_clt(cldfra1D, cldfra2D, cldfra3D, cldfra4D, Ndim, zdim, clt1D, clt2D1, clt2D2, & |
---|
332 | clt3D1, clt3D2, clt3D3, clt4D1, clt4D2, clt4D3, clt4D4, d1, d2, d3, d4) |
---|
333 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ |
---|
334 | |
---|
335 | IMPLICIT NONE |
---|
336 | |
---|
337 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
338 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D |
---|
339 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D |
---|
340 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D |
---|
341 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
342 | INTENT(in) :: cldfra4D |
---|
343 | REAL(r_k), OPTIONAL, INTENT(out) :: clt1D |
---|
344 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(out) :: clt2D1 |
---|
345 | REAL(r_k), DIMENSION(d2), OPTIONAL, INTENT(out) :: clt2D2 |
---|
346 | REAL(r_k), DIMENSION(d2,d3), OPTIONAL, INTENT(out) :: clt3D1 |
---|
347 | REAL(r_k), DIMENSION(d1,d3), OPTIONAL, INTENT(out) :: clt3D2 |
---|
348 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(out) :: clt3D3 |
---|
349 | REAL(r_k), DIMENSION(d2,d3,d4), OPTIONAL,INTENT(out) :: clt4D1 |
---|
350 | REAL(r_k), DIMENSION(d1,d3,d4), OPTIONAL,INTENT(out) :: clt4D2 |
---|
351 | REAL(r_k), DIMENSION(d1,d2,d4), OPTIONAL,INTENT(out) :: clt4D3 |
---|
352 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL,INTENT(out) :: clt4D4 |
---|
353 | |
---|
354 | ! Local |
---|
355 | INTEGER :: i,j,k |
---|
356 | |
---|
357 | !!!!!!! Variables |
---|
358 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
359 | ! Ndim: number of dimensions of the input data |
---|
360 | ! d[1-4]: dimensions of 'cldfra' |
---|
361 | ! zdim: number of the vertical-dimension within the matrix |
---|
362 | ! clt1D: total cloudiness for the 1D cldfra |
---|
363 | ! clt2D1: total cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
364 | ! clt2D2: total cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
365 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
366 | ! clt3D2: total cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
367 | ! clt3D3: total cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
368 | ! clt4D1: total cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
369 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
370 | ! clt4D3: total cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
371 | ! clt4D4: total cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
372 | |
---|
373 | fname = 'compute_clt' |
---|
374 | |
---|
375 | SELECT CASE (Ndim) |
---|
376 | CASE (1) |
---|
377 | clt1D = var_clt(cldfra1D, d1) |
---|
378 | CASE (2) |
---|
379 | IF (zdim == 1) THEN |
---|
380 | DO i=1, d2 |
---|
381 | clt2D1(i) = var_clt(cldfra2D(:,i), d1) |
---|
382 | END DO |
---|
383 | ELSE IF (zdim == 2) THEN |
---|
384 | DO i=1, d1 |
---|
385 | clt2D2(i) = var_clt(cldfra2D(:,i), d2) |
---|
386 | END DO |
---|
387 | ELSE |
---|
388 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
389 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
390 | PRINT *,' accepted values: 1,2' |
---|
391 | STOP |
---|
392 | END IF |
---|
393 | CASE (3) |
---|
394 | IF (zdim == 1) THEN |
---|
395 | DO i=1, d2 |
---|
396 | DO j=1, d3 |
---|
397 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
398 | END DO |
---|
399 | END DO |
---|
400 | ELSE IF (zdim == 2) THEN |
---|
401 | DO i=1, d1 |
---|
402 | DO j=1, d3 |
---|
403 | clt3D2(i,j) = var_clt(cldfra3D(i,:,j), d2) |
---|
404 | END DO |
---|
405 | END DO |
---|
406 | ELSE IF (zdim == 3) THEN |
---|
407 | DO i=1, d1 |
---|
408 | DO j=1, d2 |
---|
409 | clt3D3(i,j) = var_clt(cldfra3D(i,j,:), d3) |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | ELSE |
---|
413 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
414 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
415 | PRINT *,' accepted values: 1,2,3' |
---|
416 | STOP |
---|
417 | END IF |
---|
418 | CASE (4) |
---|
419 | IF (zdim == 1) THEN |
---|
420 | DO i=1, d2 |
---|
421 | DO j=1, d3 |
---|
422 | DO k=1, d4 |
---|
423 | clt4D1(i,j,k) = var_clt(cldfra4D(:,i,j,k), d1) |
---|
424 | END DO |
---|
425 | END DO |
---|
426 | END DO |
---|
427 | ELSE IF (zdim == 2) THEN |
---|
428 | DO i=1, d1 |
---|
429 | DO j=1, d3 |
---|
430 | DO k=1, d4 |
---|
431 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
432 | END DO |
---|
433 | END DO |
---|
434 | END DO |
---|
435 | ELSE IF (zdim == 3) THEN |
---|
436 | DO i=1, d2 |
---|
437 | DO j=1, d3 |
---|
438 | DO k=1, d4 |
---|
439 | clt4D3(i,j,k) = var_clt(cldfra4D(i,j,:,k), d3) |
---|
440 | END DO |
---|
441 | END DO |
---|
442 | END DO |
---|
443 | ELSE IF (zdim == 4) THEN |
---|
444 | DO i=1, d1 |
---|
445 | DO j=1, d2 |
---|
446 | DO k=1, d3 |
---|
447 | clt4D4(i,j,k) = var_clt(cldfra4D(i,j,k,:), d4) |
---|
448 | END DO |
---|
449 | END DO |
---|
450 | END DO |
---|
451 | ELSE |
---|
452 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
453 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
454 | PRINT *,' accepted values: 1,2,3,4' |
---|
455 | STOP |
---|
456 | END IF |
---|
457 | CASE DEFAULT |
---|
458 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
459 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
460 | STOP |
---|
461 | END SELECT |
---|
462 | |
---|
463 | RETURN |
---|
464 | |
---|
465 | END SUBROUTINE compute_clt |
---|
466 | |
---|
467 | SUBROUTINE compute_massvertint1D(var, mutot, dz, deta, integral) |
---|
468 | ! Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
469 | |
---|
470 | IMPLICIT NONE |
---|
471 | |
---|
472 | INTEGER, INTENT(in) :: dz |
---|
473 | REAL(r_k), INTENT(in) :: mutot |
---|
474 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta |
---|
475 | REAL(r_k), INTENT(out) :: integral |
---|
476 | |
---|
477 | ! Local |
---|
478 | INTEGER :: k |
---|
479 | |
---|
480 | !!!!!!! Variables |
---|
481 | ! var: vertical variable to integrate (assuming kgkg-1) |
---|
482 | ! mutot: total dry-air mass in column |
---|
483 | ! dz: vertical dimension |
---|
484 | ! deta: eta-levels difference between full eta-layers |
---|
485 | |
---|
486 | fname = 'compute_massvertint1D' |
---|
487 | |
---|
488 | ! integral=0. |
---|
489 | ! DO k=1,dz |
---|
490 | ! integral = integral + var(k)*deta(k) |
---|
491 | ! END DO |
---|
492 | integral = SUM(var*deta) |
---|
493 | |
---|
494 | integral=integral*mutot/g |
---|
495 | |
---|
496 | RETURN |
---|
497 | |
---|
498 | END SUBROUTINE compute_massvertint1D |
---|
499 | |
---|
500 | SUBROUTINE compute_zint4D(var4D, dlev, zweight, d1, d2, d3, d4, int3D) |
---|
501 | ! Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
502 | |
---|
503 | IMPLICIT NONE |
---|
504 | |
---|
505 | INTEGER, INTENT(in) :: d1,d2,d3,d4 |
---|
506 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: var4D, dlev, zweight |
---|
507 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: int3D |
---|
508 | |
---|
509 | ! Local |
---|
510 | INTEGER :: i,j,l |
---|
511 | |
---|
512 | !!!!!!! Variables |
---|
513 | ! var4D: vertical variable to integrate |
---|
514 | ! dlev: height of layers |
---|
515 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
516 | |
---|
517 | fname = 'compute_zint4D' |
---|
518 | |
---|
519 | DO i=1,d1 |
---|
520 | DO j=1,d2 |
---|
521 | DO l=1,d4 |
---|
522 | CALL compute_vertint1D(var4D(i,j,:,l),d3, dlev(i,j,:,l), zweight(i,j,:,l), & |
---|
523 | int3D(i,j,l)) |
---|
524 | END DO |
---|
525 | END DO |
---|
526 | END DO |
---|
527 | |
---|
528 | RETURN |
---|
529 | |
---|
530 | END SUBROUTINE compute_zint4D |
---|
531 | |
---|
532 | SUBROUTINE compute_vertint1D(var, dz, deta, zweight, integral) |
---|
533 | ! Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
534 | |
---|
535 | IMPLICIT NONE |
---|
536 | |
---|
537 | INTEGER, INTENT(in) :: dz |
---|
538 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta, zweight |
---|
539 | REAL(r_k), INTENT(out) :: integral |
---|
540 | |
---|
541 | ! Local |
---|
542 | INTEGER :: k |
---|
543 | |
---|
544 | !!!!!!! Variables |
---|
545 | ! var: vertical variable to integrate |
---|
546 | ! dz: vertical dimension |
---|
547 | ! deta: eta-levels difference between layers |
---|
548 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
549 | |
---|
550 | fname = 'compute_vertint1D' |
---|
551 | |
---|
552 | ! integral=0. |
---|
553 | ! DO k=1,dz |
---|
554 | ! integral = integral + var(k)*deta(k) |
---|
555 | ! END DO |
---|
556 | integral = SUM(var*deta*zweight) |
---|
557 | |
---|
558 | RETURN |
---|
559 | |
---|
560 | END SUBROUTINE compute_vertint1D |
---|
561 | |
---|
562 | SUBROUTINE compute_cape_afwa4D(ta, hur, press, zg, hgt, cape, cin, zlfc, plfc, li, parcelmethod, & |
---|
563 | d1, d2, d3, d4) |
---|
564 | ! Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute CAPE, CIN, ZLFC, PLFC, LI |
---|
565 | |
---|
566 | IMPLICIT NONE |
---|
567 | |
---|
568 | INTEGER, INTENT(in) :: d1, d2, d3, d4, parcelmethod |
---|
569 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ta, hur, press, zg |
---|
570 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
571 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: cape, cin, zlfc, plfc, li |
---|
572 | |
---|
573 | ! Local |
---|
574 | INTEGER :: i, j, it |
---|
575 | INTEGER :: ofunc |
---|
576 | |
---|
577 | !!!!!!! Variables |
---|
578 | ! ta: air temperature [K] |
---|
579 | ! hur: relative humidity [%] |
---|
580 | ! press: air pressure [Pa] |
---|
581 | ! zg: geopotential height [gpm] |
---|
582 | ! hgt: topographical height [m] |
---|
583 | ! cape: Convective available potential energy [Jkg-1] |
---|
584 | ! cin: Convective inhibition [Jkg-1] |
---|
585 | ! zlfc: height at the Level of free convection [m] |
---|
586 | ! plfc: pressure at the Level of free convection [Pa] |
---|
587 | ! li: lifted index [1] |
---|
588 | ! parcelmethod: |
---|
589 | ! Most Unstable = 1 (default) |
---|
590 | ! Mean layer = 2 |
---|
591 | ! Surface based = 3 |
---|
592 | |
---|
593 | fname = 'compute_cape_afwa4D' |
---|
594 | |
---|
595 | DO i=1, d1 |
---|
596 | DO j=1, d2 |
---|
597 | DO it=1, d4 |
---|
598 | ofunc = var_cape_afwa1D(d3, ta(i,j,:,it), hur(i,j,:,it), press(i,j,:,it), zg(i,j,:,it), & |
---|
599 | 1, cape(i,j,it), cin(i,j,it), zlfc(i,j,it), plfc(i,j,it), li(i,j,it), parcelmethod) |
---|
600 | IF (zlfc(i,j,it) /= -1.) zlfc(i,j,it) = zlfc(i,j,it) - hgt(i,j) |
---|
601 | END DO |
---|
602 | END DO |
---|
603 | END DO |
---|
604 | |
---|
605 | RETURN |
---|
606 | |
---|
607 | END SUBROUTINE compute_cape_afwa4D |
---|
608 | |
---|
609 | SUBROUTINE compute_psl_ecmwf(ps, hgt, T, press, unpress, psl, d1, d2, d4) |
---|
610 | ! Subroutine to compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
611 | |
---|
612 | IMPLICIT NONE |
---|
613 | |
---|
614 | INTEGER, INTENT(in) :: d1, d2, d4 |
---|
615 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: ps, T, press, unpress |
---|
616 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
617 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: psl |
---|
618 | |
---|
619 | ! Local |
---|
620 | INTEGER :: i, j, it |
---|
621 | |
---|
622 | !!!!!!! Variables |
---|
623 | ! ps: surface pressure [Pa] |
---|
624 | ! hgt: terrain height [m] |
---|
625 | ! T: temperature at first half-mass level [K] |
---|
626 | ! press: pressure at first full levels [Pa] |
---|
627 | ! unpress: pressure at first mass (half) levels [Pa] |
---|
628 | ! psl: sea-level pressure [Pa] |
---|
629 | |
---|
630 | fname = 'compute_psl_ecmwf' |
---|
631 | |
---|
632 | DO i=1, d1 |
---|
633 | DO j=1, d2 |
---|
634 | DO it=1, d4 |
---|
635 | CALL var_psl_ecmwf(ps(i,j,it), hgt(i,j), T(i,j,it), unpress(i,j,it), press(i,j,it), & |
---|
636 | psl(i,j,it)) |
---|
637 | END DO |
---|
638 | END DO |
---|
639 | END DO |
---|
640 | |
---|
641 | RETURN |
---|
642 | |
---|
643 | END SUBROUTINE compute_psl_ecmwf |
---|
644 | |
---|
645 | SUBROUTINE compute_zmla_generic4D(tpot, qratio, z, hgt, zmla3D, d1, d2, d3, d4) |
---|
646 | ! Subroutine to compute pbl-height following a generic method |
---|
647 | ! from Nielsen-Gammon et al., 2008 J. Appl. Meteor. Clim. |
---|
648 | ! applied also in Garcia-Diez et al., 2013, QJRMS |
---|
649 | ! where |
---|
650 | ! "The technique identifies the ML height as a threshold increase of potential temperature from |
---|
651 | ! its minimum value within the boundary layer." |
---|
652 | ! here applied similarly to Garcia-Diez et al. where |
---|
653 | ! zmla = "...first level where potential temperature exceeds the minimum potential temperature |
---|
654 | ! reached in the mixed layer by more than 1.5 K" |
---|
655 | |
---|
656 | IMPLICIT NONE |
---|
657 | |
---|
658 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
659 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: tpot, qratio, z |
---|
660 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
661 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: zmla3D |
---|
662 | |
---|
663 | ! Local |
---|
664 | INTEGER :: i, j, it |
---|
665 | |
---|
666 | !!!!!!! Variables |
---|
667 | ! tpot: potential air temperature [K] |
---|
668 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
669 | ! z: height above sea level [m] |
---|
670 | ! hgt: terrain height [m] |
---|
671 | ! zmla3D: boundary layer height from surface [m] |
---|
672 | |
---|
673 | fname = 'compute_zmla_generic4D' |
---|
674 | |
---|
675 | DO i=1, d1 |
---|
676 | DO j=1, d2 |
---|
677 | DO it=1, d4 |
---|
678 | CALL var_zmla_generic(d3, qratio(i,j,:,it), tpot(i,j,:,it), z(i,j,:,it), hgt(i,j), & |
---|
679 | zmla3D(i,j,it)) |
---|
680 | END DO |
---|
681 | END DO |
---|
682 | END DO |
---|
683 | |
---|
684 | RETURN |
---|
685 | |
---|
686 | END SUBROUTINE compute_zmla_generic4D |
---|
687 | |
---|
688 | SUBROUTINE compute_zwind4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
689 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
690 | |
---|
691 | IMPLICIT NONE |
---|
692 | |
---|
693 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
694 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
695 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
696 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
697 | REAL(r_k), INTENT(in) :: zextrap |
---|
698 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
699 | |
---|
700 | ! Local |
---|
701 | INTEGER :: i, j, it |
---|
702 | |
---|
703 | !!!!!!! Variables |
---|
704 | ! tpot: potential air temperature [K] |
---|
705 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
706 | ! z: height above surface [m] |
---|
707 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
708 | ! zmla3D: boundary layer height from surface [m] |
---|
709 | |
---|
710 | fname = 'compute_zwind4D' |
---|
711 | |
---|
712 | DO i=1, d1 |
---|
713 | DO j=1, d2 |
---|
714 | DO it=1, d4 |
---|
715 | CALL var_zwind(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
716 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
717 | END DO |
---|
718 | END DO |
---|
719 | END DO |
---|
720 | |
---|
721 | RETURN |
---|
722 | |
---|
723 | END SUBROUTINE compute_zwind4D |
---|
724 | |
---|
725 | SUBROUTINE compute_zwind_log4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
726 | ! Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
727 | |
---|
728 | IMPLICIT NONE |
---|
729 | |
---|
730 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
731 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
732 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
733 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
734 | REAL(r_k), INTENT(in) :: zextrap |
---|
735 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
736 | |
---|
737 | ! Local |
---|
738 | INTEGER :: i, j, it |
---|
739 | |
---|
740 | !!!!!!! Variables |
---|
741 | ! tpot: potential air temperature [K] |
---|
742 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
743 | ! z: height above surface [m] |
---|
744 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
745 | ! zmla3D: boundary layer height from surface [m] |
---|
746 | |
---|
747 | fname = 'compute_zwind_log4D' |
---|
748 | |
---|
749 | DO i=1, d1 |
---|
750 | DO j=1, d2 |
---|
751 | DO it=1, d4 |
---|
752 | CALL var_zwind_log(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
753 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
754 | END DO |
---|
755 | END DO |
---|
756 | END DO |
---|
757 | |
---|
758 | RETURN |
---|
759 | |
---|
760 | END SUBROUTINE compute_zwind_log4D |
---|
761 | |
---|
762 | SUBROUTINE compute_zwindMO3D(d1, d2, d3, ust, znt, rmol, uas, vas, sina, cosa, newz, uznew, vznew) |
---|
763 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
764 | ! NOTE: only usefull for newz < 80. m |
---|
765 | |
---|
766 | IMPLICIT NONE |
---|
767 | |
---|
768 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
769 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: ust, znt, rmol |
---|
770 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: uas, vas |
---|
771 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
772 | REAL(r_k), INTENT(in) :: newz |
---|
773 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: uznew, vznew |
---|
774 | |
---|
775 | ! Local |
---|
776 | INTEGER :: i, j, it |
---|
777 | |
---|
778 | !!!!!!! Variables |
---|
779 | ! ust: u* in similarity theory [ms-1] |
---|
780 | ! znt: thermal time-varying roughness length [m] |
---|
781 | ! rmol: Inverse of the Obukhov length [m-1] |
---|
782 | ! uas: x-component 10-m wind speed [ms-1] |
---|
783 | ! vas: y-component 10-m wind speed [ms-1] |
---|
784 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
785 | |
---|
786 | fname = 'compute_zwindMO3D' |
---|
787 | |
---|
788 | DO i=1, d1 |
---|
789 | DO j=1, d2 |
---|
790 | DO it=1, d3 |
---|
791 | CALL var_zwind_MOtheor(ust(i,j,it), znt(i,j,it), rmol(i,j,it), uas(i,j,it), vas(i,j,it), & |
---|
792 | sina(i,j), cosa(i,j), newz, uznew(i,j,it), vznew(i,j,it)) |
---|
793 | END DO |
---|
794 | END DO |
---|
795 | END DO |
---|
796 | |
---|
797 | RETURN |
---|
798 | |
---|
799 | END SUBROUTINE compute_zwindMO3D |
---|
800 | |
---|
801 | SUBROUTINE compute_potevap_orPM3D(d1, d2, d3, rho1, ust, uas, vas, tas, ps, qv1, potevap) |
---|
802 | ! Subroutine to compute potential evapotranspiration Penman-Monteith formulation implemented in |
---|
803 | ! ORCHIDEE in src_sechiba/enerbil.f90 |
---|
804 | |
---|
805 | IMPLICIT NONE |
---|
806 | |
---|
807 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
808 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: rho1, ust, uas, vas, tas, ps, qv1 |
---|
809 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: potevap |
---|
810 | |
---|
811 | ! Local |
---|
812 | INTEGER :: i, j, it |
---|
813 | |
---|
814 | !!!!!!! Variables |
---|
815 | ! rho1: atsmophere density at the first layer [kgm-3] |
---|
816 | ! ust: u* in similarity theory [ms-1] |
---|
817 | ! uas: x-component 10-m wind speed [ms-1] |
---|
818 | ! vas: y-component 10-m wind speed [ms-1] |
---|
819 | ! tas: 2-m atmosphere temperature [K] |
---|
820 | ! ps: surface pressure [Pa] |
---|
821 | ! qv1: 1st layer atmospheric mixing ratio [kgkg-1] |
---|
822 | ! potevap: potential evapo transpiration [kgm-2s-1] |
---|
823 | |
---|
824 | fname = 'compute_potevap_orPM3D' |
---|
825 | |
---|
826 | DO i=1, d1 |
---|
827 | DO j=1, d2 |
---|
828 | DO it=1, d3 |
---|
829 | CALL var_potevap_orPM(rho1(i,j,it), ust(i,j,it), uas(i,j,it), vas(i,j,it), tas(i,j,it), & |
---|
830 | ps(i,j,it), qv1(i,j,it), potevap(i,j,it)) |
---|
831 | END DO |
---|
832 | END DO |
---|
833 | END DO |
---|
834 | |
---|
835 | RETURN |
---|
836 | |
---|
837 | END SUBROUTINE compute_potevap_orPM3D |
---|
838 | |
---|
839 | SUBROUTINE compute_fog_K84(d1, d2, d3, qc, qi, fog, vis) |
---|
840 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
841 | ! And visibility following Kunkel, B. A., (1984): Parameterization of droplet terminal velocity and |
---|
842 | ! extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 34â41. |
---|
843 | |
---|
844 | IMPLICIT NONE |
---|
845 | |
---|
846 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
847 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qc, qi |
---|
848 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
849 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
850 | |
---|
851 | ! Local |
---|
852 | INTEGER :: i, j, it |
---|
853 | |
---|
854 | !!!!!!! Variables |
---|
855 | ! qc: cloud mixing ratio [kgkg-1] |
---|
856 | ! qi, ice mixing ratio [kgkg-1] |
---|
857 | ! fog: presence of fog (1: yes, 0: no) |
---|
858 | ! vis: visibility within fog [km] |
---|
859 | |
---|
860 | fname = 'compute_fog_K84' |
---|
861 | |
---|
862 | DO i=1, d1 |
---|
863 | DO j=1, d2 |
---|
864 | DO it=1, d3 |
---|
865 | CALL var_fog_K84(qc(i,j,it), qi(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
866 | END DO |
---|
867 | END DO |
---|
868 | END DO |
---|
869 | |
---|
870 | RETURN |
---|
871 | |
---|
872 | END SUBROUTINE compute_fog_K84 |
---|
873 | |
---|
874 | SUBROUTINE compute_fog_RUC(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
875 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
876 | ! And visibility following RUC method Smirnova, T. G., S. G. Benjamin, and J. M. Brown, 2000: Case |
---|
877 | ! study verification of RUC/MAPS fog and visibility forecasts. Preprints, 9 th Conference on |
---|
878 | ! Aviation, Range, and Aerospace Meteorlogy, AMS, Orlando, FL, Sep. 2000. Paper#2.3, 6 pp. |
---|
879 | |
---|
880 | IMPLICIT NONE |
---|
881 | |
---|
882 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
883 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
884 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
885 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
886 | |
---|
887 | ! Local |
---|
888 | INTEGER :: i, j, it |
---|
889 | |
---|
890 | !!!!!!! Variables |
---|
891 | ! qv: water vapor mixing ratio [kgkg-1] |
---|
892 | ! ta: temperature [K] |
---|
893 | ! pres: pressure [Pa] |
---|
894 | ! fog: presence of fog (1: yes, 0: no) |
---|
895 | ! vis: visibility within fog [km] |
---|
896 | |
---|
897 | fname = 'compute_fog_RUC' |
---|
898 | |
---|
899 | DO i=1, d1 |
---|
900 | DO j=1, d2 |
---|
901 | DO it=1, d3 |
---|
902 | CALL var_fog_RUC(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
903 | END DO |
---|
904 | END DO |
---|
905 | END DO |
---|
906 | |
---|
907 | RETURN |
---|
908 | |
---|
909 | END SUBROUTINE compute_fog_RUC |
---|
910 | |
---|
911 | SUBROUTINE compute_fog_FRAML50(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
912 | ! Subroutine to compute fog (vis < 1 km) and visibility following |
---|
913 | ! Gultepe, I. and J.A. Milbrandt, 2010: Probabilistic Parameterizations of Visibility Using |
---|
914 | ! Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteor. |
---|
915 | ! Climatol., 49, 36-46, https://doi.org/10.1175/2009JAMC1927.1 |
---|
916 | ! Interest is focused on a 'general' fog/visibilty approach, thus the fit at 50 % of probability is |
---|
917 | ! chosen |
---|
918 | ! Effects from precipitation are not considered |
---|
919 | |
---|
920 | IMPLICIT NONE |
---|
921 | |
---|
922 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
923 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
924 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
925 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
926 | |
---|
927 | ! Local |
---|
928 | INTEGER :: i, j, it |
---|
929 | |
---|
930 | !!!!!!! Variables |
---|
931 | ! qv: mixing ratio in [kgkg-1] |
---|
932 | ! ta: temperature [K] |
---|
933 | ! pres: pressure field [Pa] |
---|
934 | ! fog: presence of fog (1: yes, 0: no) |
---|
935 | ! vis: visibility within fog [km] |
---|
936 | |
---|
937 | fname = 'compute_fog_FRAML50' |
---|
938 | |
---|
939 | DO i=1, d1 |
---|
940 | DO j=1, d2 |
---|
941 | DO it=1, d3 |
---|
942 | CALL var_fog_FRAML50(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
943 | END DO |
---|
944 | END DO |
---|
945 | END DO |
---|
946 | |
---|
947 | RETURN |
---|
948 | |
---|
949 | END SUBROUTINE compute_fog_FRAML50 |
---|
950 | |
---|
951 | SUBROUTINE compute_range_faces(d1, d2, lon, lat, hgt, dist, face, dsfilt, dsnewrange, hvalrng, & |
---|
952 | hgtmax, pthgtmax, derivhgt, peaks, valleys, origfaces, filtfaces, rangeshgtmax, ptrangeshgtmax) |
---|
953 | ! Subroutine to compute faces [uphill, valleys, downhill] of a mountain range along a given face |
---|
954 | |
---|
955 | IMPLICIT NONE |
---|
956 | |
---|
957 | INTEGER, INTENT(in) :: d1, d2 |
---|
958 | REAL(r_k), INTENT(in) :: dsfilt, dsnewrange, hvalrng |
---|
959 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: lon, lat, hgt, dist |
---|
960 | CHARACTER(len=*) :: face |
---|
961 | REAL(r_k), DIMENSION(d1,d2), INTENT(out) :: derivhgt, hgtmax, rangeshgtmax |
---|
962 | INTEGER, DIMENSION(d1,d2), INTENT(out) :: pthgtmax, origfaces, filtfaces, peaks, & |
---|
963 | valleys, ptrangeshgtmax |
---|
964 | ! Local |
---|
965 | INTEGER :: i, j |
---|
966 | INTEGER :: pthgtmax1, Npeaks, Nvalleys, Nranges |
---|
967 | REAL(r_k) :: hgtmax1 |
---|
968 | INTEGER, DIMENSION(d1) :: ipeaks1, ivalleys1, irangeshgtmax1 |
---|
969 | INTEGER, DIMENSION(d2) :: ipeaks2, ivalleys2, irangeshgtmax2 |
---|
970 | REAL(r_k), DIMENSION(d1) :: rangeshgtmax1 |
---|
971 | REAL(r_k), DIMENSION(d2) :: rangeshgtmax2 |
---|
972 | INTEGER, DIMENSION(2,d1) :: ranges1 |
---|
973 | INTEGER, DIMENSION(2,d2) :: ranges2 |
---|
974 | |
---|
975 | !!!!!!! Variables |
---|
976 | ! lon: longitude [degrees east] |
---|
977 | ! lat: latitude [degrees north] |
---|
978 | ! hgt: topograpical height [m] |
---|
979 | ! face: which face (axis along which produce slices) to use to compute the faces: WE, SN |
---|
980 | ! dsfilt: distance to filter orography smaller scale of it [m] |
---|
981 | ! dsnewrange: distance to start a new mountain range [m] |
---|
982 | ! hvalrng: maximum height of a valley to mark change of range [m] |
---|
983 | ! hgtmax: maximum height of the face [m] |
---|
984 | ! pthgtmax: grid point of the maximum height [1] |
---|
985 | ! derivhgt: topograpic derivative along axis [m deg-1] |
---|
986 | ! peaks: peak point |
---|
987 | ! valleys: valley point |
---|
988 | ! origfaces: original faces (-1, downhill; 0: valley; 1: uphill) |
---|
989 | ! filtfaces: filtered faces (-1, downhill; 0: valley; 1: uphill) |
---|
990 | ! rangeshgtmax: maximum height for each individual range [m] |
---|
991 | ! ptrangeshgtmax: grid point maximum height for each individual range [1] |
---|
992 | |
---|
993 | fname = 'compute_range_faces' |
---|
994 | |
---|
995 | peaks = 0 |
---|
996 | valleys = 0 |
---|
997 | pthgtmax = 0 |
---|
998 | rangeshgtmax = fillVal64 |
---|
999 | IF (TRIM(face) == 'WE') THEN |
---|
1000 | DO j=1, d2 |
---|
1001 | PRINT *,'Lluis:', j-1, '***' |
---|
1002 | CALL var_range_faces(d1, lon(:,j), lat(:,j), hgt(:,j), dist(:,j), dsfilt, dsnewrange, hvalrng,& |
---|
1003 | hgtmax1, pthgtmax1, derivhgt(:,j), Npeaks, ipeaks1, Nvalleys, ivalleys1, origfaces(:,j), & |
---|
1004 | filtfaces(:,j), Nranges, ranges1, rangeshgtmax1, irangeshgtmax1) |
---|
1005 | hgtmax(:,j) = hgtmax1 |
---|
1006 | pthgtmax(pthgtmax1,j) = 1 |
---|
1007 | DO i=1, Npeaks |
---|
1008 | peaks(ipeaks1(i),j) = 1 |
---|
1009 | END DO |
---|
1010 | DO i=1, Nvalleys |
---|
1011 | valleys(ivalleys1(i),j) = 1 |
---|
1012 | END DO |
---|
1013 | DO i=1, Nranges |
---|
1014 | rangeshgtmax(ranges1(1,i):ranges1(2,i),j) = rangeshgtmax1(i) |
---|
1015 | ptrangeshgtmax(irangeshgtmax1(i),j) = 1 |
---|
1016 | END DO |
---|
1017 | END DO |
---|
1018 | ELSE IF (TRIM(face) == 'SN') THEN |
---|
1019 | DO i=1, d1 |
---|
1020 | CALL var_range_faces(d2, lon(i,:), lat(i,:), hgt(i,:), dist(i,:), dsfilt, dsnewrange, hvalrng,& |
---|
1021 | hgtmax1, pthgtmax1, derivhgt(i,:), Npeaks, ipeaks2, Nvalleys, ivalleys2, origfaces(i,:), & |
---|
1022 | filtfaces(i,:), Nranges, ranges2, rangeshgtmax2, irangeshgtmax2) |
---|
1023 | hgtmax(i,:) = hgtmax1 |
---|
1024 | pthgtmax(i,pthgtmax1) = 1 |
---|
1025 | DO j=1, Npeaks |
---|
1026 | peaks(i,ipeaks2(j)) = 1 |
---|
1027 | END DO |
---|
1028 | DO j=1, Nvalleys |
---|
1029 | valleys(i,ivalleys2(j)) = 1 |
---|
1030 | END DO |
---|
1031 | DO j=1, Nranges |
---|
1032 | rangeshgtmax(i,ranges2(1,j):ranges2(2,j)) = rangeshgtmax2(j) |
---|
1033 | ptrangeshgtmax(i,irangeshgtmax2(j)) = 1 |
---|
1034 | END DO |
---|
1035 | END DO |
---|
1036 | ELSE |
---|
1037 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
1038 | PRINT *,' ' // TRIM(fname) // ": wrong face: '" // TRIM(face) // "' !!" |
---|
1039 | PRINT *,' accepted ones: WE, SN' |
---|
1040 | STOP |
---|
1041 | END IF |
---|
1042 | |
---|
1043 | RETURN |
---|
1044 | |
---|
1045 | END SUBROUTINE compute_range_faces |
---|
1046 | |
---|
1047 | END MODULE module_ForDiagnostics |
---|