1 | !! Fortran version of different diagnostics |
---|
2 | ! L. Fita. LMD May 2016 |
---|
3 | ! gfortran module_generic.o module_ForDiagnosticsVars.o -c module_ForDiagnostics.F90 |
---|
4 | ! |
---|
5 | ! f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 |
---|
6 | |
---|
7 | MODULE module_ForDiagnostics |
---|
8 | |
---|
9 | USE module_definitions |
---|
10 | USE module_generic |
---|
11 | USE module_ForDiagnosticsVars |
---|
12 | |
---|
13 | CONTAINS |
---|
14 | |
---|
15 | !!!!!!! Calculations |
---|
16 | ! compute_cape_afwa4D: Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute |
---|
17 | ! CAPE, CIN, ZLFC, PLFC, LI |
---|
18 | ! compute_cllmh4D3: Computation of low, medium and high cloudiness from a 4D CLDFRA and pressure being |
---|
19 | ! 3rd dimension the z-dim |
---|
20 | ! compute_cllmh3D3: Computation of low, medium and high cloudiness from a 3D CLDFRA and pressure being |
---|
21 | ! 3rd dimension the z-dim |
---|
22 | ! compute_cllmh: Computation of low, medium and high cloudiness |
---|
23 | ! compute_clt4D3: Computation of total cloudiness from a 4D CLDFRA being 3rd dimension the z-dim |
---|
24 | ! compute_clt3D3: Computation of total cloudiness from a 3D CLDFRA being 3rd dimension the z-dim |
---|
25 | ! compute_clt: Computation of total cloudiness |
---|
26 | ! compute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
27 | ! compute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
28 | ! compute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
29 | ! compute_psl_ecmwf: Compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
30 | ! compute_massvertint1D: Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
31 | ! compute_vertint1D: Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
32 | ! compute_zint4D: Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
33 | ! compute_zmla_generic4D: Subroutine to compute pbl-height following a generic method |
---|
34 | ! compute_zwind4D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
35 | ! compute_zwind_log4D: Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
36 | ! compute_zwindMCO3D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodolog |
---|
37 | |
---|
38 | !!! |
---|
39 | ! Calculations |
---|
40 | !!! |
---|
41 | |
---|
42 | SUBROUTINE compute_cllmh4D2(cldfra4D, pres4D, cllmh4D2, d1, d2, d3, d4) |
---|
43 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA and pressure |
---|
44 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> cllmh(3,d1,d3,d4) 1: low, 2: medium, 3: high |
---|
45 | ! It should be properly done via an 'INTERFACE', but... |
---|
46 | |
---|
47 | IMPLICIT NONE |
---|
48 | |
---|
49 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
50 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D, pres4D |
---|
51 | REAL(r_k), DIMENSION(3,d1,d3,d4), INTENT(out) :: cllmh4D2 |
---|
52 | |
---|
53 | ! Local |
---|
54 | INTEGER :: i,j,k, zdim, Ndim |
---|
55 | |
---|
56 | !!!!!!! Variables |
---|
57 | ! cldfra4D: 4D cloud fraction values [1] |
---|
58 | ! pres4D: 4D pressure values [Pa] |
---|
59 | ! Ndim: number of dimensions of the input data |
---|
60 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
61 | ! zdim: number of the vertical-dimension within the matrix |
---|
62 | ! cltlmh4D2: low, medium, high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
63 | |
---|
64 | fname = 'compute_cllmh4D2' |
---|
65 | zdim = 2 |
---|
66 | Ndim = 4 |
---|
67 | |
---|
68 | DO i=1, d1 |
---|
69 | DO j=1, d3 |
---|
70 | DO k=1, d4 |
---|
71 | cllmh4D2(:,i,j,k) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
72 | END DO |
---|
73 | END DO |
---|
74 | END DO |
---|
75 | |
---|
76 | RETURN |
---|
77 | |
---|
78 | END SUBROUTINE compute_cllmh4D2 |
---|
79 | |
---|
80 | SUBROUTINE compute_cllmh3D1(cldfra3D, pres3D, cllmh3D1, d1, d2, d3) |
---|
81 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA and pressure |
---|
82 | ! where zdim is the 1st dimension (thus, cldfra3D(d1,d2,d3) --> cllmh(3,d2,d3) 1: low, 2: medium, 3: high |
---|
83 | ! It should be properly done via an 'INTERFACE', but... |
---|
84 | |
---|
85 | IMPLICIT NONE |
---|
86 | |
---|
87 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
88 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D, pres3D |
---|
89 | REAL(r_k), DIMENSION(3,d2,d3), INTENT(out) :: cllmh3D1 |
---|
90 | |
---|
91 | ! Local |
---|
92 | INTEGER :: i,j,k, zdim, Ndim |
---|
93 | |
---|
94 | !!!!!!! Variables |
---|
95 | ! cldfra3D: 3D cloud fraction values [1] |
---|
96 | ! pres3D: 3D pressure values [Pa] |
---|
97 | ! Ndim: number of dimensions of the input data |
---|
98 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
99 | ! zdim: number of the vertical-dimension within the matrix |
---|
100 | ! cltlmh3D1: low, medium, high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
101 | |
---|
102 | fname = 'compute_cllmh3D1' |
---|
103 | zdim = 1 |
---|
104 | Ndim = 3 |
---|
105 | |
---|
106 | DO i=1, d1 |
---|
107 | DO j=1, d2 |
---|
108 | cllmh3D1(:,i,j) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
109 | END DO |
---|
110 | END DO |
---|
111 | |
---|
112 | RETURN |
---|
113 | |
---|
114 | END SUBROUTINE compute_cllmh3D1 |
---|
115 | |
---|
116 | SUBROUTINE compute_cllmh(cldfra1D, cldfra2D, cldfra3D, cldfra4D, pres1D, pres2D, pres3D, pres4D, & |
---|
117 | Ndim, zdim, cllmh1D, cllmh2D1, cllmh2D2, cllmh3D1, cllmh3D2, cllmh3D3, cllmh4D1, cllmh4D2, & |
---|
118 | cllmh4D3, cllmh4D4, d1, d2, d3, d4) |
---|
119 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ |
---|
120 | |
---|
121 | IMPLICIT NONE |
---|
122 | |
---|
123 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
124 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D, pres1D |
---|
125 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D, pres2D |
---|
126 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D, pres3D |
---|
127 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
128 | INTENT(in) :: cldfra4D, pres4D |
---|
129 | REAL(r_k), DIMENSION(3), OPTIONAL, INTENT(out) :: cllmh1D |
---|
130 | REAL(r_k), DIMENSION(d1,3), OPTIONAL, INTENT(out) :: cllmh2D1 |
---|
131 | REAL(r_k), DIMENSION(d2,3), OPTIONAL, INTENT(out) :: cllmh2D2 |
---|
132 | REAL(r_k), DIMENSION(d2,d3,3), OPTIONAL, INTENT(out) :: cllmh3D1 |
---|
133 | REAL(r_k), DIMENSION(d1,d3,3), OPTIONAL, INTENT(out) :: cllmh3D2 |
---|
134 | REAL(r_k), DIMENSION(d1,d2,3), OPTIONAL, INTENT(out) :: cllmh3D3 |
---|
135 | REAL(r_k), DIMENSION(d2,d3,d4,3), OPTIONAL, & |
---|
136 | INTENT(out) :: cllmh4D1 |
---|
137 | REAL(r_k), DIMENSION(d1,d3,d4,3), OPTIONAL, & |
---|
138 | INTENT(out) :: cllmh4D2 |
---|
139 | REAL(r_k), DIMENSION(d1,d2,d4,3), OPTIONAL, & |
---|
140 | INTENT(out) :: cllmh4D3 |
---|
141 | REAL(r_k), DIMENSION(d1,d2,d3,3), OPTIONAL, & |
---|
142 | INTENT(out) :: cllmh4D4 |
---|
143 | |
---|
144 | ! Local |
---|
145 | INTEGER :: i,j,k |
---|
146 | |
---|
147 | !!!!!!! Variables |
---|
148 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
149 | ! pres[1-4]D: pressure values [Pa] |
---|
150 | ! Ndim: number of dimensions of the input data |
---|
151 | ! d[1-4]: dimensions of 'cldfra' |
---|
152 | ! zdim: number of the vertical-dimension within the matrix |
---|
153 | ! cllmh1D: low, medium and high cloudiness for the 1D cldfra |
---|
154 | ! cllmh2D1: low, medium and high cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
155 | ! cllmh2D2: low, medium and high cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
156 | ! cllmh3D1: low, medium and high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
157 | ! cllmh3D2: low, medium and high cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
158 | ! cllmh3D3: low, medium and high cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
159 | ! cllmh4D1: low, medium and high cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
160 | ! cllmh4D2: low, medium and high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
161 | ! cllmh4D3: low, medium and high cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
162 | ! cllmh4D4: low, medium and high cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
163 | |
---|
164 | fname = 'compute_cllmh' |
---|
165 | |
---|
166 | SELECT CASE (Ndim) |
---|
167 | CASE (1) |
---|
168 | cllmh1D = var_cllmh(cldfra1D, pres1D, d1) |
---|
169 | CASE (2) |
---|
170 | IF (zdim == 1) THEN |
---|
171 | DO i=1, d2 |
---|
172 | cllmh2D1(i,:) = var_cllmh(cldfra2D(:,i), pres2D(:,i), d1) |
---|
173 | END DO |
---|
174 | ELSE IF (zdim == 2) THEN |
---|
175 | DO i=1, d1 |
---|
176 | cllmh2D2(i,:) = var_cllmh(cldfra2D(:,i), pres2D(i,:), d2) |
---|
177 | END DO |
---|
178 | ELSE |
---|
179 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
180 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
181 | PRINT *,' accepted values: 1,2' |
---|
182 | STOP |
---|
183 | END IF |
---|
184 | CASE (3) |
---|
185 | IF (zdim == 1) THEN |
---|
186 | DO i=1, d2 |
---|
187 | DO j=1, d3 |
---|
188 | cllmh3D1(i,j,:) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | ELSE IF (zdim == 2) THEN |
---|
192 | DO i=1, d1 |
---|
193 | DO j=1, d3 |
---|
194 | cllmh3D2(i,j,:) = var_cllmh(cldfra3D(i,:,j), pres3D(i,:,j), d2) |
---|
195 | END DO |
---|
196 | END DO |
---|
197 | ELSE IF (zdim == 3) THEN |
---|
198 | DO i=1, d1 |
---|
199 | DO j=1, d2 |
---|
200 | cllmh3D3(i,j,:) = var_cllmh(cldfra3D(i,j,:), pres3D(i,j,:), d3) |
---|
201 | END DO |
---|
202 | END DO |
---|
203 | ELSE |
---|
204 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
205 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
206 | PRINT *,' accepted values: 1,2,3' |
---|
207 | STOP |
---|
208 | END IF |
---|
209 | CASE (4) |
---|
210 | IF (zdim == 1) THEN |
---|
211 | DO i=1, d2 |
---|
212 | DO j=1, d3 |
---|
213 | DO k=1, d4 |
---|
214 | cllmh4D1(i,j,k,:) = var_cllmh(cldfra4D(:,i,j,k), pres4D(:,i,j,k), d1) |
---|
215 | END DO |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | ELSE IF (zdim == 2) THEN |
---|
219 | DO i=1, d1 |
---|
220 | DO j=1, d3 |
---|
221 | DO k=1, d4 |
---|
222 | cllmh4D2(i,j,k,:) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
223 | END DO |
---|
224 | END DO |
---|
225 | END DO |
---|
226 | ELSE IF (zdim == 3) THEN |
---|
227 | DO i=1, d2 |
---|
228 | DO j=1, d3 |
---|
229 | DO k=1, d4 |
---|
230 | cllmh4D3(i,j,k,:) = var_cllmh(cldfra4D(i,j,:,k), pres4D(i,j,:,k), d3) |
---|
231 | END DO |
---|
232 | END DO |
---|
233 | END DO |
---|
234 | ELSE IF (zdim == 4) THEN |
---|
235 | DO i=1, d1 |
---|
236 | DO j=1, d2 |
---|
237 | DO k=1, d3 |
---|
238 | cllmh4D4(i,j,k,:) = var_cllmh(cldfra4D(i,j,k,:), pres4D(i,j,k,:), d4) |
---|
239 | END DO |
---|
240 | END DO |
---|
241 | END DO |
---|
242 | ELSE |
---|
243 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
244 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
245 | PRINT *,' accepted values: 1,2,3,4' |
---|
246 | STOP |
---|
247 | END IF |
---|
248 | CASE DEFAULT |
---|
249 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
250 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
251 | STOP |
---|
252 | END SELECT |
---|
253 | |
---|
254 | RETURN |
---|
255 | |
---|
256 | END SUBROUTINE compute_cllmh |
---|
257 | |
---|
258 | SUBROUTINE compute_clt4D2(cldfra4D, clt4D2, d1, d2, d3, d4) |
---|
259 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA |
---|
260 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> clt(d1,d3,d4) |
---|
261 | ! It should be properly done via an 'INTERFACE', but... |
---|
262 | |
---|
263 | IMPLICIT NONE |
---|
264 | |
---|
265 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
266 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D |
---|
267 | REAL(r_k), DIMENSION(d1,d3,d4), INTENT(out) :: clt4D2 |
---|
268 | |
---|
269 | ! Local |
---|
270 | INTEGER :: i,j,k, zdim, Ndim |
---|
271 | |
---|
272 | !!!!!!! Variables |
---|
273 | ! cldfra4D: 4D cloud fraction values [1] |
---|
274 | ! Ndim: number of dimensions of the input data |
---|
275 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
276 | ! zdim: number of the vertical-dimension within the matrix |
---|
277 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
278 | |
---|
279 | fname = 'compute_clt4D2' |
---|
280 | zdim = 2 |
---|
281 | Ndim = 4 |
---|
282 | |
---|
283 | DO i=1, d1 |
---|
284 | DO j=1, d3 |
---|
285 | DO k=1, d4 |
---|
286 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
287 | END DO |
---|
288 | END DO |
---|
289 | END DO |
---|
290 | |
---|
291 | RETURN |
---|
292 | |
---|
293 | END SUBROUTINE compute_clt4D2 |
---|
294 | |
---|
295 | SUBROUTINE compute_clt3D1(cldfra3D, clt3D1, d1, d2, d3) |
---|
296 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA |
---|
297 | ! where zdim is the 1st dimension (thus, cldfra4D(d1,d2,d3) --> clt(d2,d3) |
---|
298 | ! It should be properly done via an 'INTERFACE', but... |
---|
299 | |
---|
300 | IMPLICIT NONE |
---|
301 | |
---|
302 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
303 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D |
---|
304 | REAL(r_k), DIMENSION(d2,d3), INTENT(out) :: clt3D1 |
---|
305 | |
---|
306 | ! Local |
---|
307 | INTEGER :: i,j,k, zdim, Ndim |
---|
308 | |
---|
309 | !!!!!!! Variables |
---|
310 | ! cldfra3D: 3D cloud fraction values [1] |
---|
311 | ! Ndim: number of dimensions of the input data |
---|
312 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
313 | ! zdim: number of the vertical-dimension within the matrix |
---|
314 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
315 | |
---|
316 | fname = 'compute_clt3D1' |
---|
317 | zdim = 1 |
---|
318 | Ndim = 3 |
---|
319 | |
---|
320 | DO i=1, d2 |
---|
321 | DO j=1, d3 |
---|
322 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
323 | END DO |
---|
324 | END DO |
---|
325 | |
---|
326 | RETURN |
---|
327 | |
---|
328 | END SUBROUTINE compute_clt3D1 |
---|
329 | |
---|
330 | SUBROUTINE compute_clt(cldfra1D, cldfra2D, cldfra3D, cldfra4D, Ndim, zdim, clt1D, clt2D1, clt2D2, & |
---|
331 | clt3D1, clt3D2, clt3D3, clt4D1, clt4D2, clt4D3, clt4D4, d1, d2, d3, d4) |
---|
332 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ |
---|
333 | |
---|
334 | IMPLICIT NONE |
---|
335 | |
---|
336 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
337 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D |
---|
338 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D |
---|
339 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D |
---|
340 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
341 | INTENT(in) :: cldfra4D |
---|
342 | REAL(r_k), OPTIONAL, INTENT(out) :: clt1D |
---|
343 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(out) :: clt2D1 |
---|
344 | REAL(r_k), DIMENSION(d2), OPTIONAL, INTENT(out) :: clt2D2 |
---|
345 | REAL(r_k), DIMENSION(d2,d3), OPTIONAL, INTENT(out) :: clt3D1 |
---|
346 | REAL(r_k), DIMENSION(d1,d3), OPTIONAL, INTENT(out) :: clt3D2 |
---|
347 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(out) :: clt3D3 |
---|
348 | REAL(r_k), DIMENSION(d2,d3,d4), OPTIONAL,INTENT(out) :: clt4D1 |
---|
349 | REAL(r_k), DIMENSION(d1,d3,d4), OPTIONAL,INTENT(out) :: clt4D2 |
---|
350 | REAL(r_k), DIMENSION(d1,d2,d4), OPTIONAL,INTENT(out) :: clt4D3 |
---|
351 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL,INTENT(out) :: clt4D4 |
---|
352 | |
---|
353 | ! Local |
---|
354 | INTEGER :: i,j,k |
---|
355 | |
---|
356 | !!!!!!! Variables |
---|
357 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
358 | ! Ndim: number of dimensions of the input data |
---|
359 | ! d[1-4]: dimensions of 'cldfra' |
---|
360 | ! zdim: number of the vertical-dimension within the matrix |
---|
361 | ! clt1D: total cloudiness for the 1D cldfra |
---|
362 | ! clt2D1: total cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
363 | ! clt2D2: total cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
364 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
365 | ! clt3D2: total cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
366 | ! clt3D3: total cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
367 | ! clt4D1: total cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
368 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
369 | ! clt4D3: total cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
370 | ! clt4D4: total cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
371 | |
---|
372 | fname = 'compute_clt' |
---|
373 | |
---|
374 | SELECT CASE (Ndim) |
---|
375 | CASE (1) |
---|
376 | clt1D = var_clt(cldfra1D, d1) |
---|
377 | CASE (2) |
---|
378 | IF (zdim == 1) THEN |
---|
379 | DO i=1, d2 |
---|
380 | clt2D1(i) = var_clt(cldfra2D(:,i), d1) |
---|
381 | END DO |
---|
382 | ELSE IF (zdim == 2) THEN |
---|
383 | DO i=1, d1 |
---|
384 | clt2D2(i) = var_clt(cldfra2D(:,i), d2) |
---|
385 | END DO |
---|
386 | ELSE |
---|
387 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
388 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
389 | PRINT *,' accepted values: 1,2' |
---|
390 | STOP |
---|
391 | END IF |
---|
392 | CASE (3) |
---|
393 | IF (zdim == 1) THEN |
---|
394 | DO i=1, d2 |
---|
395 | DO j=1, d3 |
---|
396 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
397 | END DO |
---|
398 | END DO |
---|
399 | ELSE IF (zdim == 2) THEN |
---|
400 | DO i=1, d1 |
---|
401 | DO j=1, d3 |
---|
402 | clt3D2(i,j) = var_clt(cldfra3D(i,:,j), d2) |
---|
403 | END DO |
---|
404 | END DO |
---|
405 | ELSE IF (zdim == 3) THEN |
---|
406 | DO i=1, d1 |
---|
407 | DO j=1, d2 |
---|
408 | clt3D3(i,j) = var_clt(cldfra3D(i,j,:), d3) |
---|
409 | END DO |
---|
410 | END DO |
---|
411 | ELSE |
---|
412 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
413 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
414 | PRINT *,' accepted values: 1,2,3' |
---|
415 | STOP |
---|
416 | END IF |
---|
417 | CASE (4) |
---|
418 | IF (zdim == 1) THEN |
---|
419 | DO i=1, d2 |
---|
420 | DO j=1, d3 |
---|
421 | DO k=1, d4 |
---|
422 | clt4D1(i,j,k) = var_clt(cldfra4D(:,i,j,k), d1) |
---|
423 | END DO |
---|
424 | END DO |
---|
425 | END DO |
---|
426 | ELSE IF (zdim == 2) THEN |
---|
427 | DO i=1, d1 |
---|
428 | DO j=1, d3 |
---|
429 | DO k=1, d4 |
---|
430 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
431 | END DO |
---|
432 | END DO |
---|
433 | END DO |
---|
434 | ELSE IF (zdim == 3) THEN |
---|
435 | DO i=1, d2 |
---|
436 | DO j=1, d3 |
---|
437 | DO k=1, d4 |
---|
438 | clt4D3(i,j,k) = var_clt(cldfra4D(i,j,:,k), d3) |
---|
439 | END DO |
---|
440 | END DO |
---|
441 | END DO |
---|
442 | ELSE IF (zdim == 4) THEN |
---|
443 | DO i=1, d1 |
---|
444 | DO j=1, d2 |
---|
445 | DO k=1, d3 |
---|
446 | clt4D4(i,j,k) = var_clt(cldfra4D(i,j,k,:), d4) |
---|
447 | END DO |
---|
448 | END DO |
---|
449 | END DO |
---|
450 | ELSE |
---|
451 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
452 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
453 | PRINT *,' accepted values: 1,2,3,4' |
---|
454 | STOP |
---|
455 | END IF |
---|
456 | CASE DEFAULT |
---|
457 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
458 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
459 | STOP |
---|
460 | END SELECT |
---|
461 | |
---|
462 | RETURN |
---|
463 | |
---|
464 | END SUBROUTINE compute_clt |
---|
465 | |
---|
466 | SUBROUTINE compute_massvertint1D(var, mutot, dz, deta, integral) |
---|
467 | ! Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
468 | |
---|
469 | IMPLICIT NONE |
---|
470 | |
---|
471 | INTEGER, INTENT(in) :: dz |
---|
472 | REAL(r_k), INTENT(in) :: mutot |
---|
473 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta |
---|
474 | REAL(r_k), INTENT(out) :: integral |
---|
475 | |
---|
476 | ! Local |
---|
477 | INTEGER :: k |
---|
478 | |
---|
479 | !!!!!!! Variables |
---|
480 | ! var: vertical variable to integrate (assuming kgkg-1) |
---|
481 | ! mutot: total dry-air mass in column |
---|
482 | ! dz: vertical dimension |
---|
483 | ! deta: eta-levels difference between full eta-layers |
---|
484 | |
---|
485 | fname = 'compute_massvertint1D' |
---|
486 | |
---|
487 | ! integral=0. |
---|
488 | ! DO k=1,dz |
---|
489 | ! integral = integral + var(k)*deta(k) |
---|
490 | ! END DO |
---|
491 | integral = SUM(var*deta) |
---|
492 | |
---|
493 | integral=integral*mutot/g |
---|
494 | |
---|
495 | RETURN |
---|
496 | |
---|
497 | END SUBROUTINE compute_massvertint1D |
---|
498 | |
---|
499 | SUBROUTINE compute_zint4D(var4D, dlev, zweight, d1, d2, d3, d4, int3D) |
---|
500 | ! Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
501 | |
---|
502 | IMPLICIT NONE |
---|
503 | |
---|
504 | INTEGER, INTENT(in) :: d1,d2,d3,d4 |
---|
505 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: var4D, dlev, zweight |
---|
506 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: int3D |
---|
507 | |
---|
508 | ! Local |
---|
509 | INTEGER :: i,j,l |
---|
510 | |
---|
511 | !!!!!!! Variables |
---|
512 | ! var4D: vertical variable to integrate |
---|
513 | ! dlev: height of layers |
---|
514 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
515 | |
---|
516 | fname = 'compute_zint4D' |
---|
517 | |
---|
518 | DO i=1,d1 |
---|
519 | DO j=1,d2 |
---|
520 | DO l=1,d4 |
---|
521 | CALL compute_vertint1D(var4D(i,j,:,l),d3, dlev(i,j,:,l), zweight(i,j,:,l), & |
---|
522 | int3D(i,j,l)) |
---|
523 | END DO |
---|
524 | END DO |
---|
525 | END DO |
---|
526 | |
---|
527 | RETURN |
---|
528 | |
---|
529 | END SUBROUTINE compute_zint4D |
---|
530 | |
---|
531 | SUBROUTINE compute_vertint1D(var, dz, deta, zweight, integral) |
---|
532 | ! Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
533 | |
---|
534 | IMPLICIT NONE |
---|
535 | |
---|
536 | INTEGER, INTENT(in) :: dz |
---|
537 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta, zweight |
---|
538 | REAL(r_k), INTENT(out) :: integral |
---|
539 | |
---|
540 | ! Local |
---|
541 | INTEGER :: k |
---|
542 | |
---|
543 | !!!!!!! Variables |
---|
544 | ! var: vertical variable to integrate |
---|
545 | ! dz: vertical dimension |
---|
546 | ! deta: eta-levels difference between layers |
---|
547 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
548 | |
---|
549 | fname = 'compute_vertint1D' |
---|
550 | |
---|
551 | ! integral=0. |
---|
552 | ! DO k=1,dz |
---|
553 | ! integral = integral + var(k)*deta(k) |
---|
554 | ! END DO |
---|
555 | integral = SUM(var*deta*zweight) |
---|
556 | |
---|
557 | RETURN |
---|
558 | |
---|
559 | END SUBROUTINE compute_vertint1D |
---|
560 | |
---|
561 | SUBROUTINE compute_cape_afwa4D(ta, hur, press, zg, hgt, cape, cin, zlfc, plfc, li, parcelmethod, & |
---|
562 | d1, d2, d3, d4) |
---|
563 | ! Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute CAPE, CIN, ZLFC, PLFC, LI |
---|
564 | |
---|
565 | IMPLICIT NONE |
---|
566 | |
---|
567 | INTEGER, INTENT(in) :: d1, d2, d3, d4, parcelmethod |
---|
568 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ta, hur, press, zg |
---|
569 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
570 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: cape, cin, zlfc, plfc, li |
---|
571 | |
---|
572 | ! Local |
---|
573 | INTEGER :: i, j, it |
---|
574 | INTEGER :: ofunc |
---|
575 | |
---|
576 | !!!!!!! Variables |
---|
577 | ! ta: air temperature [K] |
---|
578 | ! hur: relative humidity [%] |
---|
579 | ! press: air pressure [Pa] |
---|
580 | ! zg: geopotential height [gpm] |
---|
581 | ! hgt: topographical height [m] |
---|
582 | ! cape: Convective available potential energy [Jkg-1] |
---|
583 | ! cin: Convective inhibition [Jkg-1] |
---|
584 | ! zlfc: height at the Level of free convection [m] |
---|
585 | ! plfc: pressure at the Level of free convection [Pa] |
---|
586 | ! li: lifted index [1] |
---|
587 | ! parcelmethod: |
---|
588 | ! Most Unstable = 1 (default) |
---|
589 | ! Mean layer = 2 |
---|
590 | ! Surface based = 3 |
---|
591 | |
---|
592 | fname = 'compute_cape_afwa4D' |
---|
593 | |
---|
594 | DO i=1, d1 |
---|
595 | DO j=1, d2 |
---|
596 | DO it=1, d4 |
---|
597 | ofunc = var_cape_afwa1D(d3, ta(i,j,:,it), hur(i,j,:,it), press(i,j,:,it), zg(i,j,:,it), & |
---|
598 | 1, cape(i,j,it), cin(i,j,it), zlfc(i,j,it), plfc(i,j,it), li(i,j,it), parcelmethod) |
---|
599 | IF (zlfc(i,j,it) /= -1.) zlfc(i,j,it) = zlfc(i,j,it) - hgt(i,j) |
---|
600 | END DO |
---|
601 | END DO |
---|
602 | END DO |
---|
603 | |
---|
604 | RETURN |
---|
605 | |
---|
606 | END SUBROUTINE compute_cape_afwa4D |
---|
607 | |
---|
608 | SUBROUTINE compute_psl_ecmwf(ps, hgt, T, press, unpress, psl, d1, d2, d4) |
---|
609 | ! Subroutine to compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
610 | |
---|
611 | IMPLICIT NONE |
---|
612 | |
---|
613 | INTEGER, INTENT(in) :: d1, d2, d4 |
---|
614 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: ps, T, press, unpress |
---|
615 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
616 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: psl |
---|
617 | |
---|
618 | ! Local |
---|
619 | INTEGER :: i, j, it |
---|
620 | |
---|
621 | !!!!!!! Variables |
---|
622 | ! ps: surface pressure [Pa] |
---|
623 | ! hgt: terrain height [m] |
---|
624 | ! T: temperature at first half-mass level [K] |
---|
625 | ! press: pressure at first full levels [Pa] |
---|
626 | ! unpress: pressure at first mass (half) levels [Pa] |
---|
627 | ! psl: sea-level pressure [Pa] |
---|
628 | |
---|
629 | fname = 'compute_psl_ecmwf' |
---|
630 | |
---|
631 | DO i=1, d1 |
---|
632 | DO j=1, d2 |
---|
633 | DO it=1, d4 |
---|
634 | CALL var_psl_ecmwf(ps(i,j,it), hgt(i,j), T(i,j,it), unpress(i,j,it), press(i,j,it), & |
---|
635 | psl(i,j,it)) |
---|
636 | END DO |
---|
637 | END DO |
---|
638 | END DO |
---|
639 | |
---|
640 | RETURN |
---|
641 | |
---|
642 | END SUBROUTINE compute_psl_ecmwf |
---|
643 | |
---|
644 | SUBROUTINE compute_zmla_generic4D(tpot, qratio, z, hgt, zmla3D, d1, d2, d3, d4) |
---|
645 | ! Subroutine to compute pbl-height following a generic method |
---|
646 | ! from Nielsen-Gammon et al., 2008 J. Appl. Meteor. Clim. |
---|
647 | ! applied also in Garcia-Diez et al., 2013, QJRMS |
---|
648 | ! where |
---|
649 | ! "The technique identifies the ML height as a threshold increase of potential temperature from |
---|
650 | ! its minimum value within the boundary layer." |
---|
651 | ! here applied similarly to Garcia-Diez et al. where |
---|
652 | ! zmla = "...first level where potential temperature exceeds the minimum potential temperature |
---|
653 | ! reached in the mixed layer by more than 1.5 K" |
---|
654 | |
---|
655 | IMPLICIT NONE |
---|
656 | |
---|
657 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
658 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: tpot, qratio, z |
---|
659 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
660 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: zmla3D |
---|
661 | |
---|
662 | ! Local |
---|
663 | INTEGER :: i, j, it |
---|
664 | |
---|
665 | !!!!!!! Variables |
---|
666 | ! tpot: potential air temperature [K] |
---|
667 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
668 | ! z: height above sea level [m] |
---|
669 | ! hgt: terrain height [m] |
---|
670 | ! zmla3D: boundary layer height from surface [m] |
---|
671 | |
---|
672 | fname = 'compute_zmla_generic4D' |
---|
673 | |
---|
674 | DO i=1, d1 |
---|
675 | DO j=1, d2 |
---|
676 | DO it=1, d4 |
---|
677 | CALL var_zmla_generic(d3, qratio(i,j,:,it), tpot(i,j,:,it), z(i,j,:,it), hgt(i,j), & |
---|
678 | zmla3D(i,j,it)) |
---|
679 | END DO |
---|
680 | END DO |
---|
681 | END DO |
---|
682 | |
---|
683 | RETURN |
---|
684 | |
---|
685 | END SUBROUTINE compute_zmla_generic4D |
---|
686 | |
---|
687 | SUBROUTINE compute_zwind4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
688 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
689 | |
---|
690 | IMPLICIT NONE |
---|
691 | |
---|
692 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
693 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
694 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
695 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
696 | REAL(r_k), INTENT(in) :: zextrap |
---|
697 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
698 | |
---|
699 | ! Local |
---|
700 | INTEGER :: i, j, it |
---|
701 | |
---|
702 | !!!!!!! Variables |
---|
703 | ! tpot: potential air temperature [K] |
---|
704 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
705 | ! z: height above surface [m] |
---|
706 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
707 | ! zmla3D: boundary layer height from surface [m] |
---|
708 | |
---|
709 | fname = 'compute_zwind4D' |
---|
710 | |
---|
711 | DO i=1, d1 |
---|
712 | DO j=1, d2 |
---|
713 | DO it=1, d4 |
---|
714 | CALL var_zwind(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
715 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
716 | END DO |
---|
717 | END DO |
---|
718 | END DO |
---|
719 | |
---|
720 | RETURN |
---|
721 | |
---|
722 | END SUBROUTINE compute_zwind4D |
---|
723 | |
---|
724 | SUBROUTINE compute_zwind_log4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
725 | ! Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
726 | |
---|
727 | IMPLICIT NONE |
---|
728 | |
---|
729 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
730 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
731 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
732 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
733 | REAL(r_k), INTENT(in) :: zextrap |
---|
734 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
735 | |
---|
736 | ! Local |
---|
737 | INTEGER :: i, j, it |
---|
738 | |
---|
739 | !!!!!!! Variables |
---|
740 | ! tpot: potential air temperature [K] |
---|
741 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
742 | ! z: height above surface [m] |
---|
743 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
744 | ! zmla3D: boundary layer height from surface [m] |
---|
745 | |
---|
746 | fname = 'compute_zwind_log4D' |
---|
747 | |
---|
748 | DO i=1, d1 |
---|
749 | DO j=1, d2 |
---|
750 | DO it=1, d4 |
---|
751 | CALL var_zwind_log(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
752 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
753 | END DO |
---|
754 | END DO |
---|
755 | END DO |
---|
756 | |
---|
757 | RETURN |
---|
758 | |
---|
759 | END SUBROUTINE compute_zwind_log4D |
---|
760 | |
---|
761 | SUBROUTINE compute_zwindMO3D(d1, d2, d3, ust, znt, rmol, uas, vas, sina, cosa, newz, uznew, vznew) |
---|
762 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
763 | ! NOTE: only usefull for newz < 80. m |
---|
764 | |
---|
765 | IMPLICIT NONE |
---|
766 | |
---|
767 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
768 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: ust, znt, rmol |
---|
769 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: uas, vas |
---|
770 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
771 | REAL(r_k), INTENT(in) :: newz |
---|
772 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: uznew, vznew |
---|
773 | |
---|
774 | ! Local |
---|
775 | INTEGER :: i, j, it |
---|
776 | |
---|
777 | !!!!!!! Variables |
---|
778 | ! ust: u* in similarity theory [ms-1] |
---|
779 | ! znt: thermal time-varying roughness length [m] |
---|
780 | ! rmol: Inverse of the Obukhov length [m-1] |
---|
781 | ! uas: x-component 10-m wind speed [ms-1] |
---|
782 | ! vas: y-component 10-m wind speed [ms-1] |
---|
783 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
784 | |
---|
785 | fname = 'compute_zwindMO3D' |
---|
786 | |
---|
787 | DO i=1, d1 |
---|
788 | DO j=1, d2 |
---|
789 | DO it=1, d3 |
---|
790 | CALL var_zwind_MOtheor(ust(i,j,it), znt(i,j,it), rmol(i,j,it), uas(i,j,it), vas(i,j,it), & |
---|
791 | sina(i,j), cosa(i,j), newz, uznew(i,j,it), vznew(i,j,it)) |
---|
792 | END DO |
---|
793 | END DO |
---|
794 | END DO |
---|
795 | |
---|
796 | RETURN |
---|
797 | |
---|
798 | END SUBROUTINE compute_zwindMO3D |
---|
799 | |
---|
800 | SUBROUTINE compute_potevap_orPM3D(d1, d2, d3, rho1, ust, uas, vas, tas, ps, qv1, potevap) |
---|
801 | ! Subroutine to compute potential evapotranspiration Penman-Monteith formulation implemented in |
---|
802 | ! ORCHIDEE in src_sechiba/enerbil.f90 |
---|
803 | |
---|
804 | IMPLICIT NONE |
---|
805 | |
---|
806 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
807 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: rho1, ust, uas, vas, tas, ps, qv1 |
---|
808 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: potevap |
---|
809 | |
---|
810 | ! Local |
---|
811 | INTEGER :: i, j, it |
---|
812 | |
---|
813 | !!!!!!! Variables |
---|
814 | ! rho1: atsmophere density at the first layer [kgm-3] |
---|
815 | ! ust: u* in similarity theory [ms-1] |
---|
816 | ! uas: x-component 10-m wind speed [ms-1] |
---|
817 | ! vas: y-component 10-m wind speed [ms-1] |
---|
818 | ! tas: 2-m atmosphere temperature [K] |
---|
819 | ! ps: surface pressure [Pa] |
---|
820 | ! qv1: 1st layer atmospheric mixing ratio [kgkg-1] |
---|
821 | ! potevap: potential evapo transpiration [kgm-2s-1] |
---|
822 | |
---|
823 | fname = 'compute_potevap_orPM3D' |
---|
824 | |
---|
825 | DO i=1, d1 |
---|
826 | DO j=1, d2 |
---|
827 | DO it=1, d3 |
---|
828 | CALL var_potevap_orPM(rho1(i,j,it), ust(i,j,it), uas(i,j,it), vas(i,j,it), tas(i,j,it), & |
---|
829 | ps(i,j,it), qv1(i,j,it), potevap(i,j,it)) |
---|
830 | END DO |
---|
831 | END DO |
---|
832 | END DO |
---|
833 | |
---|
834 | RETURN |
---|
835 | |
---|
836 | END SUBROUTINE compute_potevap_orPM3D |
---|
837 | |
---|
838 | SUBROUTINE compute_fog_K84(d1, d2, d3, qc, qi, fog, vis) |
---|
839 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
840 | ! And visibility following Kunkel, B. A., (1984): Parameterization of droplet terminal velocity and |
---|
841 | ! extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 34â41. |
---|
842 | |
---|
843 | IMPLICIT NONE |
---|
844 | |
---|
845 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
846 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qc, qi |
---|
847 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
848 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
849 | |
---|
850 | ! Local |
---|
851 | INTEGER :: i, j, it |
---|
852 | |
---|
853 | !!!!!!! Variables |
---|
854 | ! qc: cloud mixing ratio [kgkg-1] |
---|
855 | ! qi, ice mixing ratio [kgkg-1] |
---|
856 | ! fog: presence of fog (1: yes, 0: no) |
---|
857 | ! vis: visibility within fog [km] |
---|
858 | |
---|
859 | fname = 'compute_fog_K84' |
---|
860 | |
---|
861 | DO i=1, d1 |
---|
862 | DO j=1, d2 |
---|
863 | DO it=1, d3 |
---|
864 | CALL var_fog_K84(qc(i,j,it), qi(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
865 | END DO |
---|
866 | END DO |
---|
867 | END DO |
---|
868 | |
---|
869 | RETURN |
---|
870 | |
---|
871 | END SUBROUTINE compute_fog_K84 |
---|
872 | |
---|
873 | SUBROUTINE compute_fog_RUC(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
874 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
875 | ! And visibility following RUC method Smirnova, T. G., S. G. Benjamin, and J. M. Brown, 2000: Case |
---|
876 | ! study verification of RUC/MAPS fog and visibility forecasts. Preprints, 9 th Conference on |
---|
877 | ! Aviation, Range, and Aerospace Meteorlogy, AMS, Orlando, FL, Sep. 2000. Paper#2.3, 6 pp. |
---|
878 | |
---|
879 | IMPLICIT NONE |
---|
880 | |
---|
881 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
882 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
883 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
884 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
885 | |
---|
886 | ! Local |
---|
887 | INTEGER :: i, j, it |
---|
888 | |
---|
889 | !!!!!!! Variables |
---|
890 | ! qv: water vapor mixing ratio [kgkg-1] |
---|
891 | ! ta: temperature [K] |
---|
892 | ! pres: pressure [Pa] |
---|
893 | ! fog: presence of fog (1: yes, 0: no) |
---|
894 | ! vis: visibility within fog [km] |
---|
895 | |
---|
896 | fname = 'compute_fog_RUC' |
---|
897 | |
---|
898 | DO i=1, d1 |
---|
899 | DO j=1, d2 |
---|
900 | DO it=1, d3 |
---|
901 | CALL var_fog_RUC(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
902 | END DO |
---|
903 | END DO |
---|
904 | END DO |
---|
905 | |
---|
906 | RETURN |
---|
907 | |
---|
908 | END SUBROUTINE compute_fog_RUC |
---|
909 | |
---|
910 | SUBROUTINE compute_fog_FRAML50(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
911 | ! Subroutine to compute fog (vis < 1 km) and visibility following |
---|
912 | ! Gultepe, I. and J.A. Milbrandt, 2010: Probabilistic Parameterizations of Visibility Using |
---|
913 | ! Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteor. |
---|
914 | ! Climatol., 49, 36-46, https://doi.org/10.1175/2009JAMC1927.1 |
---|
915 | ! Interest is focused on a 'general' fog/visibilty approach, thus the fit at 50 % of probability is |
---|
916 | ! chosen |
---|
917 | ! Effects from precipitation are not considered |
---|
918 | |
---|
919 | IMPLICIT NONE |
---|
920 | |
---|
921 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
922 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
923 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
924 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
925 | |
---|
926 | ! Local |
---|
927 | INTEGER :: i, j, it |
---|
928 | |
---|
929 | !!!!!!! Variables |
---|
930 | ! qv: mixing ratio in [kgkg-1] |
---|
931 | ! ta: temperature [K] |
---|
932 | ! pres: pressure field [Pa] |
---|
933 | ! fog: presence of fog (1: yes, 0: no) |
---|
934 | ! vis: visibility within fog [km] |
---|
935 | |
---|
936 | fname = 'compute_fog_FRAML50' |
---|
937 | |
---|
938 | DO i=1, d1 |
---|
939 | DO j=1, d2 |
---|
940 | DO it=1, d3 |
---|
941 | CALL var_fog_FRAML50(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
942 | END DO |
---|
943 | END DO |
---|
944 | END DO |
---|
945 | |
---|
946 | RETURN |
---|
947 | |
---|
948 | END SUBROUTINE compute_fog_FRAML50 |
---|
949 | |
---|
950 | END MODULE module_ForDiagnostics |
---|