[770] | 1 | !! Fortran version of different diagnostics |
---|
| 2 | ! L. Fita. LMD May 2016 |
---|
[772] | 3 | ! gfortran module_generic.o module_ForDiagnosticsVars.o -c module_ForDiagnostics.F90 |
---|
| 4 | ! |
---|
| 5 | ! f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 |
---|
| 6 | |
---|
[770] | 7 | MODULE module_ForDiagnostics |
---|
| 8 | |
---|
[1608] | 9 | USE module_definitions |
---|
[770] | 10 | USE module_generic |
---|
[2332] | 11 | USE module_scientific |
---|
[772] | 12 | USE module_ForDiagnosticsVars |
---|
[770] | 13 | |
---|
[772] | 14 | CONTAINS |
---|
[770] | 15 | |
---|
[772] | 16 | !!!!!!! Calculations |
---|
[1769] | 17 | ! compute_cape_afwa4D: Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute |
---|
| 18 | ! CAPE, CIN, ZLFC, PLFC, LI |
---|
[2274] | 19 | ! compute_cellbnds: Subroutine to compute cellboundaries using wind-staggered lon, lats as |
---|
| 20 | ! intersection of their related parallels and meridians |
---|
[2277] | 21 | ! compute_cellbndsreg: Subroutine to compute cellboundaries using lon, lat from a reglar lon/lat |
---|
| 22 | ! projection as intersection of their related parallels and meridians |
---|
[1758] | 23 | ! compute_cllmh4D3: Computation of low, medium and high cloudiness from a 4D CLDFRA and pressure being |
---|
| 24 | ! 3rd dimension the z-dim |
---|
| 25 | ! compute_cllmh3D3: Computation of low, medium and high cloudiness from a 3D CLDFRA and pressure being |
---|
| 26 | ! 3rd dimension the z-dim |
---|
[772] | 27 | ! compute_cllmh: Computation of low, medium and high cloudiness |
---|
| 28 | ! compute_clt4D3: Computation of total cloudiness from a 4D CLDFRA being 3rd dimension the z-dim |
---|
| 29 | ! compute_clt3D3: Computation of total cloudiness from a 3D CLDFRA being 3rd dimension the z-dim |
---|
| 30 | ! compute_clt: Computation of total cloudiness |
---|
[1908] | 31 | ! compute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
| 32 | ! compute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
[1909] | 33 | ! compute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
[2209] | 34 | ! compute_massvertint1D: Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
[1795] | 35 | ! compute_psl_ecmwf: Compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
[2209] | 36 | ! compute_range_faces: Subroutine to compute faces [uphill, valleys, downhill] of a mountain range along a given face |
---|
[2387] | 37 | ! compute_tws_RK[1/2/3/4]: Subroutine to compute Wet Bulb temperature of 1/2/3/4D series of values |
---|
[1769] | 38 | ! compute_vertint1D: Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
| 39 | ! compute_zint4D: Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
[1773] | 40 | ! compute_zmla_generic4D: Subroutine to compute pbl-height following a generic method |
---|
[1776] | 41 | ! compute_zwind4D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1784] | 42 | ! compute_zwind_log4D: Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
[1783] | 43 | ! compute_zwindMCO3D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodolog |
---|
[1773] | 44 | |
---|
[772] | 45 | !!! |
---|
| 46 | ! Calculations |
---|
| 47 | !!! |
---|
[770] | 48 | |
---|
[772] | 49 | SUBROUTINE compute_cllmh4D2(cldfra4D, pres4D, cllmh4D2, d1, d2, d3, d4) |
---|
| 50 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA and pressure |
---|
| 51 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> cllmh(3,d1,d3,d4) 1: low, 2: medium, 3: high |
---|
| 52 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 53 | |
---|
[772] | 54 | IMPLICIT NONE |
---|
| 55 | |
---|
[1141] | 56 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[772] | 57 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D, pres4D |
---|
| 58 | REAL(r_k), DIMENSION(3,d1,d3,d4), INTENT(out) :: cllmh4D2 |
---|
| 59 | |
---|
| 60 | ! Local |
---|
| 61 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 62 | |
---|
[770] | 63 | !!!!!!! Variables |
---|
[772] | 64 | ! cldfra4D: 4D cloud fraction values [1] |
---|
| 65 | ! pres4D: 4D pressure values [Pa] |
---|
| 66 | ! Ndim: number of dimensions of the input data |
---|
| 67 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
| 68 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 69 | ! cltlmh4D2: low, medium, high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
[770] | 70 | |
---|
[772] | 71 | fname = 'compute_cllmh4D2' |
---|
| 72 | zdim = 2 |
---|
| 73 | Ndim = 4 |
---|
[770] | 74 | |
---|
[772] | 75 | DO i=1, d1 |
---|
| 76 | DO j=1, d3 |
---|
| 77 | DO k=1, d4 |
---|
| 78 | cllmh4D2(:,i,j,k) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
| 79 | END DO |
---|
| 80 | END DO |
---|
| 81 | END DO |
---|
| 82 | |
---|
| 83 | RETURN |
---|
[770] | 84 | |
---|
[772] | 85 | END SUBROUTINE compute_cllmh4D2 |
---|
[770] | 86 | |
---|
[772] | 87 | SUBROUTINE compute_cllmh3D1(cldfra3D, pres3D, cllmh3D1, d1, d2, d3) |
---|
| 88 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA and pressure |
---|
| 89 | ! where zdim is the 1st dimension (thus, cldfra3D(d1,d2,d3) --> cllmh(3,d2,d3) 1: low, 2: medium, 3: high |
---|
| 90 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 91 | |
---|
[772] | 92 | IMPLICIT NONE |
---|
[770] | 93 | |
---|
[1141] | 94 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[772] | 95 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D, pres3D |
---|
| 96 | REAL(r_k), DIMENSION(3,d2,d3), INTENT(out) :: cllmh3D1 |
---|
| 97 | |
---|
| 98 | ! Local |
---|
| 99 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 100 | |
---|
| 101 | !!!!!!! Variables |
---|
| 102 | ! cldfra3D: 3D cloud fraction values [1] |
---|
| 103 | ! pres3D: 3D pressure values [Pa] |
---|
| 104 | ! Ndim: number of dimensions of the input data |
---|
| 105 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
| 106 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 107 | ! cltlmh3D1: low, medium, high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 108 | |
---|
| 109 | fname = 'compute_cllmh3D1' |
---|
| 110 | zdim = 1 |
---|
| 111 | Ndim = 3 |
---|
| 112 | |
---|
| 113 | DO i=1, d1 |
---|
| 114 | DO j=1, d2 |
---|
| 115 | cllmh3D1(:,i,j) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
| 116 | END DO |
---|
| 117 | END DO |
---|
| 118 | |
---|
| 119 | RETURN |
---|
| 120 | |
---|
| 121 | END SUBROUTINE compute_cllmh3D1 |
---|
| 122 | |
---|
| 123 | SUBROUTINE compute_cllmh(cldfra1D, cldfra2D, cldfra3D, cldfra4D, pres1D, pres2D, pres3D, pres4D, & |
---|
| 124 | Ndim, zdim, cllmh1D, cllmh2D1, cllmh2D2, cllmh3D1, cllmh3D2, cllmh3D3, cllmh4D1, cllmh4D2, & |
---|
| 125 | cllmh4D3, cllmh4D4, d1, d2, d3, d4) |
---|
| 126 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ |
---|
| 127 | |
---|
[770] | 128 | IMPLICIT NONE |
---|
| 129 | |
---|
[1141] | 130 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
[772] | 131 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D, pres1D |
---|
| 132 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D, pres2D |
---|
| 133 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D, pres3D |
---|
| 134 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
| 135 | INTENT(in) :: cldfra4D, pres4D |
---|
| 136 | REAL(r_k), DIMENSION(3), OPTIONAL, INTENT(out) :: cllmh1D |
---|
| 137 | REAL(r_k), DIMENSION(d1,3), OPTIONAL, INTENT(out) :: cllmh2D1 |
---|
| 138 | REAL(r_k), DIMENSION(d2,3), OPTIONAL, INTENT(out) :: cllmh2D2 |
---|
| 139 | REAL(r_k), DIMENSION(d2,d3,3), OPTIONAL, INTENT(out) :: cllmh3D1 |
---|
| 140 | REAL(r_k), DIMENSION(d1,d3,3), OPTIONAL, INTENT(out) :: cllmh3D2 |
---|
| 141 | REAL(r_k), DIMENSION(d1,d2,3), OPTIONAL, INTENT(out) :: cllmh3D3 |
---|
| 142 | REAL(r_k), DIMENSION(d2,d3,d4,3), OPTIONAL, & |
---|
| 143 | INTENT(out) :: cllmh4D1 |
---|
| 144 | REAL(r_k), DIMENSION(d1,d3,d4,3), OPTIONAL, & |
---|
| 145 | INTENT(out) :: cllmh4D2 |
---|
| 146 | REAL(r_k), DIMENSION(d1,d2,d4,3), OPTIONAL, & |
---|
| 147 | INTENT(out) :: cllmh4D3 |
---|
| 148 | REAL(r_k), DIMENSION(d1,d2,d3,3), OPTIONAL, & |
---|
| 149 | INTENT(out) :: cllmh4D4 |
---|
[770] | 150 | |
---|
| 151 | ! Local |
---|
[772] | 152 | INTEGER :: i,j,k |
---|
[770] | 153 | |
---|
| 154 | !!!!!!! Variables |
---|
[772] | 155 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
| 156 | ! pres[1-4]D: pressure values [Pa] |
---|
| 157 | ! Ndim: number of dimensions of the input data |
---|
| 158 | ! d[1-4]: dimensions of 'cldfra' |
---|
| 159 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 160 | ! cllmh1D: low, medium and high cloudiness for the 1D cldfra |
---|
| 161 | ! cllmh2D1: low, medium and high cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
| 162 | ! cllmh2D2: low, medium and high cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
| 163 | ! cllmh3D1: low, medium and high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 164 | ! cllmh3D2: low, medium and high cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
| 165 | ! cllmh3D3: low, medium and high cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
| 166 | ! cllmh4D1: low, medium and high cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
| 167 | ! cllmh4D2: low, medium and high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
| 168 | ! cllmh4D3: low, medium and high cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
| 169 | ! cllmh4D4: low, medium and high cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
[770] | 170 | |
---|
[772] | 171 | fname = 'compute_cllmh' |
---|
[770] | 172 | |
---|
[772] | 173 | SELECT CASE (Ndim) |
---|
| 174 | CASE (1) |
---|
| 175 | cllmh1D = var_cllmh(cldfra1D, pres1D, d1) |
---|
| 176 | CASE (2) |
---|
| 177 | IF (zdim == 1) THEN |
---|
| 178 | DO i=1, d2 |
---|
| 179 | cllmh2D1(i,:) = var_cllmh(cldfra2D(:,i), pres2D(:,i), d1) |
---|
| 180 | END DO |
---|
| 181 | ELSE IF (zdim == 2) THEN |
---|
| 182 | DO i=1, d1 |
---|
| 183 | cllmh2D2(i,:) = var_cllmh(cldfra2D(:,i), pres2D(i,:), d2) |
---|
| 184 | END DO |
---|
| 185 | ELSE |
---|
| 186 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 187 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 188 | PRINT *,' accepted values: 1,2' |
---|
| 189 | STOP |
---|
| 190 | END IF |
---|
| 191 | CASE (3) |
---|
| 192 | IF (zdim == 1) THEN |
---|
| 193 | DO i=1, d2 |
---|
| 194 | DO j=1, d3 |
---|
| 195 | cllmh3D1(i,j,:) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
| 196 | END DO |
---|
| 197 | END DO |
---|
| 198 | ELSE IF (zdim == 2) THEN |
---|
| 199 | DO i=1, d1 |
---|
| 200 | DO j=1, d3 |
---|
| 201 | cllmh3D2(i,j,:) = var_cllmh(cldfra3D(i,:,j), pres3D(i,:,j), d2) |
---|
| 202 | END DO |
---|
| 203 | END DO |
---|
| 204 | ELSE IF (zdim == 3) THEN |
---|
| 205 | DO i=1, d1 |
---|
| 206 | DO j=1, d2 |
---|
| 207 | cllmh3D3(i,j,:) = var_cllmh(cldfra3D(i,j,:), pres3D(i,j,:), d3) |
---|
| 208 | END DO |
---|
| 209 | END DO |
---|
| 210 | ELSE |
---|
| 211 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 212 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 213 | PRINT *,' accepted values: 1,2,3' |
---|
| 214 | STOP |
---|
| 215 | END IF |
---|
| 216 | CASE (4) |
---|
| 217 | IF (zdim == 1) THEN |
---|
| 218 | DO i=1, d2 |
---|
| 219 | DO j=1, d3 |
---|
| 220 | DO k=1, d4 |
---|
| 221 | cllmh4D1(i,j,k,:) = var_cllmh(cldfra4D(:,i,j,k), pres4D(:,i,j,k), d1) |
---|
| 222 | END DO |
---|
| 223 | END DO |
---|
| 224 | END DO |
---|
| 225 | ELSE IF (zdim == 2) THEN |
---|
| 226 | DO i=1, d1 |
---|
| 227 | DO j=1, d3 |
---|
| 228 | DO k=1, d4 |
---|
| 229 | cllmh4D2(i,j,k,:) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
| 230 | END DO |
---|
| 231 | END DO |
---|
| 232 | END DO |
---|
| 233 | ELSE IF (zdim == 3) THEN |
---|
| 234 | DO i=1, d2 |
---|
| 235 | DO j=1, d3 |
---|
| 236 | DO k=1, d4 |
---|
| 237 | cllmh4D3(i,j,k,:) = var_cllmh(cldfra4D(i,j,:,k), pres4D(i,j,:,k), d3) |
---|
| 238 | END DO |
---|
| 239 | END DO |
---|
| 240 | END DO |
---|
| 241 | ELSE IF (zdim == 4) THEN |
---|
| 242 | DO i=1, d1 |
---|
| 243 | DO j=1, d2 |
---|
| 244 | DO k=1, d3 |
---|
| 245 | cllmh4D4(i,j,k,:) = var_cllmh(cldfra4D(i,j,k,:), pres4D(i,j,k,:), d4) |
---|
| 246 | END DO |
---|
| 247 | END DO |
---|
| 248 | END DO |
---|
| 249 | ELSE |
---|
| 250 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 251 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 252 | PRINT *,' accepted values: 1,2,3,4' |
---|
| 253 | STOP |
---|
| 254 | END IF |
---|
| 255 | CASE DEFAULT |
---|
| 256 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 257 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
| 258 | STOP |
---|
| 259 | END SELECT |
---|
[770] | 260 | |
---|
| 261 | RETURN |
---|
| 262 | |
---|
[772] | 263 | END SUBROUTINE compute_cllmh |
---|
[770] | 264 | |
---|
[772] | 265 | SUBROUTINE compute_clt4D2(cldfra4D, clt4D2, d1, d2, d3, d4) |
---|
| 266 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA |
---|
| 267 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> clt(d1,d3,d4) |
---|
| 268 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 269 | |
---|
| 270 | IMPLICIT NONE |
---|
| 271 | |
---|
[1141] | 272 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[772] | 273 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D |
---|
| 274 | REAL(r_k), DIMENSION(d1,d3,d4), INTENT(out) :: clt4D2 |
---|
| 275 | |
---|
[770] | 276 | ! Local |
---|
[772] | 277 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 278 | |
---|
[770] | 279 | !!!!!!! Variables |
---|
[772] | 280 | ! cldfra4D: 4D cloud fraction values [1] |
---|
| 281 | ! Ndim: number of dimensions of the input data |
---|
| 282 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
| 283 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 284 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
[770] | 285 | |
---|
[772] | 286 | fname = 'compute_clt4D2' |
---|
| 287 | zdim = 2 |
---|
| 288 | Ndim = 4 |
---|
[770] | 289 | |
---|
[772] | 290 | DO i=1, d1 |
---|
| 291 | DO j=1, d3 |
---|
| 292 | DO k=1, d4 |
---|
| 293 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
| 294 | END DO |
---|
| 295 | END DO |
---|
[770] | 296 | END DO |
---|
[772] | 297 | |
---|
| 298 | RETURN |
---|
[770] | 299 | |
---|
[772] | 300 | END SUBROUTINE compute_clt4D2 |
---|
[770] | 301 | |
---|
[772] | 302 | SUBROUTINE compute_clt3D1(cldfra3D, clt3D1, d1, d2, d3) |
---|
| 303 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA |
---|
| 304 | ! where zdim is the 1st dimension (thus, cldfra4D(d1,d2,d3) --> clt(d2,d3) |
---|
| 305 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 306 | |
---|
[772] | 307 | IMPLICIT NONE |
---|
[770] | 308 | |
---|
[1141] | 309 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[772] | 310 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D |
---|
| 311 | REAL(r_k), DIMENSION(d2,d3), INTENT(out) :: clt3D1 |
---|
[770] | 312 | |
---|
[772] | 313 | ! Local |
---|
| 314 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 315 | |
---|
| 316 | !!!!!!! Variables |
---|
| 317 | ! cldfra3D: 3D cloud fraction values [1] |
---|
| 318 | ! Ndim: number of dimensions of the input data |
---|
| 319 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
| 320 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 321 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 322 | |
---|
| 323 | fname = 'compute_clt3D1' |
---|
| 324 | zdim = 1 |
---|
| 325 | Ndim = 3 |
---|
| 326 | |
---|
| 327 | DO i=1, d2 |
---|
| 328 | DO j=1, d3 |
---|
| 329 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
| 330 | END DO |
---|
| 331 | END DO |
---|
| 332 | |
---|
| 333 | RETURN |
---|
| 334 | |
---|
| 335 | END SUBROUTINE compute_clt3D1 |
---|
| 336 | |
---|
| 337 | SUBROUTINE compute_clt(cldfra1D, cldfra2D, cldfra3D, cldfra4D, Ndim, zdim, clt1D, clt2D1, clt2D2, & |
---|
| 338 | clt3D1, clt3D2, clt3D3, clt4D1, clt4D2, clt4D3, clt4D4, d1, d2, d3, d4) |
---|
| 339 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ |
---|
| 340 | |
---|
[770] | 341 | IMPLICIT NONE |
---|
| 342 | |
---|
[1141] | 343 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
[770] | 344 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D |
---|
| 345 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D |
---|
| 346 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D |
---|
| 347 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
| 348 | INTENT(in) :: cldfra4D |
---|
| 349 | REAL(r_k), OPTIONAL, INTENT(out) :: clt1D |
---|
| 350 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(out) :: clt2D1 |
---|
| 351 | REAL(r_k), DIMENSION(d2), OPTIONAL, INTENT(out) :: clt2D2 |
---|
| 352 | REAL(r_k), DIMENSION(d2,d3), OPTIONAL, INTENT(out) :: clt3D1 |
---|
| 353 | REAL(r_k), DIMENSION(d1,d3), OPTIONAL, INTENT(out) :: clt3D2 |
---|
| 354 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(out) :: clt3D3 |
---|
| 355 | REAL(r_k), DIMENSION(d2,d3,d4), OPTIONAL,INTENT(out) :: clt4D1 |
---|
| 356 | REAL(r_k), DIMENSION(d1,d3,d4), OPTIONAL,INTENT(out) :: clt4D2 |
---|
| 357 | REAL(r_k), DIMENSION(d1,d2,d4), OPTIONAL,INTENT(out) :: clt4D3 |
---|
| 358 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL,INTENT(out) :: clt4D4 |
---|
| 359 | |
---|
| 360 | ! Local |
---|
| 361 | INTEGER :: i,j,k |
---|
| 362 | |
---|
| 363 | !!!!!!! Variables |
---|
| 364 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
| 365 | ! Ndim: number of dimensions of the input data |
---|
| 366 | ! d[1-4]: dimensions of 'cldfra' |
---|
| 367 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 368 | ! clt1D: total cloudiness for the 1D cldfra |
---|
| 369 | ! clt2D1: total cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
| 370 | ! clt2D2: total cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
| 371 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 372 | ! clt3D2: total cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
| 373 | ! clt3D3: total cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
| 374 | ! clt4D1: total cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
| 375 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
| 376 | ! clt4D3: total cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
| 377 | ! clt4D4: total cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
| 378 | |
---|
| 379 | fname = 'compute_clt' |
---|
| 380 | |
---|
| 381 | SELECT CASE (Ndim) |
---|
| 382 | CASE (1) |
---|
| 383 | clt1D = var_clt(cldfra1D, d1) |
---|
| 384 | CASE (2) |
---|
| 385 | IF (zdim == 1) THEN |
---|
| 386 | DO i=1, d2 |
---|
| 387 | clt2D1(i) = var_clt(cldfra2D(:,i), d1) |
---|
| 388 | END DO |
---|
| 389 | ELSE IF (zdim == 2) THEN |
---|
| 390 | DO i=1, d1 |
---|
| 391 | clt2D2(i) = var_clt(cldfra2D(:,i), d2) |
---|
| 392 | END DO |
---|
| 393 | ELSE |
---|
| 394 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 395 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 396 | PRINT *,' accepted values: 1,2' |
---|
| 397 | STOP |
---|
| 398 | END IF |
---|
| 399 | CASE (3) |
---|
| 400 | IF (zdim == 1) THEN |
---|
| 401 | DO i=1, d2 |
---|
| 402 | DO j=1, d3 |
---|
| 403 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
| 404 | END DO |
---|
| 405 | END DO |
---|
| 406 | ELSE IF (zdim == 2) THEN |
---|
| 407 | DO i=1, d1 |
---|
| 408 | DO j=1, d3 |
---|
| 409 | clt3D2(i,j) = var_clt(cldfra3D(i,:,j), d2) |
---|
| 410 | END DO |
---|
| 411 | END DO |
---|
| 412 | ELSE IF (zdim == 3) THEN |
---|
| 413 | DO i=1, d1 |
---|
| 414 | DO j=1, d2 |
---|
| 415 | clt3D3(i,j) = var_clt(cldfra3D(i,j,:), d3) |
---|
| 416 | END DO |
---|
| 417 | END DO |
---|
| 418 | ELSE |
---|
| 419 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 420 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 421 | PRINT *,' accepted values: 1,2,3' |
---|
| 422 | STOP |
---|
| 423 | END IF |
---|
| 424 | CASE (4) |
---|
| 425 | IF (zdim == 1) THEN |
---|
| 426 | DO i=1, d2 |
---|
| 427 | DO j=1, d3 |
---|
| 428 | DO k=1, d4 |
---|
| 429 | clt4D1(i,j,k) = var_clt(cldfra4D(:,i,j,k), d1) |
---|
| 430 | END DO |
---|
| 431 | END DO |
---|
| 432 | END DO |
---|
| 433 | ELSE IF (zdim == 2) THEN |
---|
| 434 | DO i=1, d1 |
---|
| 435 | DO j=1, d3 |
---|
| 436 | DO k=1, d4 |
---|
| 437 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
| 438 | END DO |
---|
| 439 | END DO |
---|
| 440 | END DO |
---|
| 441 | ELSE IF (zdim == 3) THEN |
---|
| 442 | DO i=1, d2 |
---|
| 443 | DO j=1, d3 |
---|
| 444 | DO k=1, d4 |
---|
| 445 | clt4D3(i,j,k) = var_clt(cldfra4D(i,j,:,k), d3) |
---|
| 446 | END DO |
---|
| 447 | END DO |
---|
| 448 | END DO |
---|
| 449 | ELSE IF (zdim == 4) THEN |
---|
| 450 | DO i=1, d1 |
---|
| 451 | DO j=1, d2 |
---|
| 452 | DO k=1, d3 |
---|
| 453 | clt4D4(i,j,k) = var_clt(cldfra4D(i,j,k,:), d4) |
---|
| 454 | END DO |
---|
| 455 | END DO |
---|
| 456 | END DO |
---|
| 457 | ELSE |
---|
| 458 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 459 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 460 | PRINT *,' accepted values: 1,2,3,4' |
---|
| 461 | STOP |
---|
| 462 | END IF |
---|
| 463 | CASE DEFAULT |
---|
| 464 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 465 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
| 466 | STOP |
---|
| 467 | END SELECT |
---|
| 468 | |
---|
| 469 | RETURN |
---|
| 470 | |
---|
| 471 | END SUBROUTINE compute_clt |
---|
| 472 | |
---|
[1762] | 473 | SUBROUTINE compute_massvertint1D(var, mutot, dz, deta, integral) |
---|
| 474 | ! Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
| 475 | |
---|
| 476 | IMPLICIT NONE |
---|
| 477 | |
---|
| 478 | INTEGER, INTENT(in) :: dz |
---|
| 479 | REAL(r_k), INTENT(in) :: mutot |
---|
| 480 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta |
---|
| 481 | REAL(r_k), INTENT(out) :: integral |
---|
| 482 | |
---|
| 483 | ! Local |
---|
| 484 | INTEGER :: k |
---|
| 485 | |
---|
| 486 | !!!!!!! Variables |
---|
| 487 | ! var: vertical variable to integrate (assuming kgkg-1) |
---|
| 488 | ! mutot: total dry-air mass in column |
---|
| 489 | ! dz: vertical dimension |
---|
| 490 | ! deta: eta-levels difference between full eta-layers |
---|
| 491 | |
---|
| 492 | fname = 'compute_massvertint1D' |
---|
| 493 | |
---|
| 494 | ! integral=0. |
---|
| 495 | ! DO k=1,dz |
---|
| 496 | ! integral = integral + var(k)*deta(k) |
---|
| 497 | ! END DO |
---|
| 498 | integral = SUM(var*deta) |
---|
| 499 | |
---|
| 500 | integral=integral*mutot/g |
---|
| 501 | |
---|
| 502 | RETURN |
---|
| 503 | |
---|
| 504 | END SUBROUTINE compute_massvertint1D |
---|
| 505 | |
---|
| 506 | SUBROUTINE compute_zint4D(var4D, dlev, zweight, d1, d2, d3, d4, int3D) |
---|
| 507 | ! Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
| 508 | |
---|
| 509 | IMPLICIT NONE |
---|
| 510 | |
---|
| 511 | INTEGER, INTENT(in) :: d1,d2,d3,d4 |
---|
| 512 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: var4D, dlev, zweight |
---|
| 513 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: int3D |
---|
| 514 | |
---|
| 515 | ! Local |
---|
| 516 | INTEGER :: i,j,l |
---|
| 517 | |
---|
| 518 | !!!!!!! Variables |
---|
| 519 | ! var4D: vertical variable to integrate |
---|
| 520 | ! dlev: height of layers |
---|
| 521 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
| 522 | |
---|
| 523 | fname = 'compute_zint4D' |
---|
| 524 | |
---|
| 525 | DO i=1,d1 |
---|
| 526 | DO j=1,d2 |
---|
| 527 | DO l=1,d4 |
---|
| 528 | CALL compute_vertint1D(var4D(i,j,:,l),d3, dlev(i,j,:,l), zweight(i,j,:,l), & |
---|
| 529 | int3D(i,j,l)) |
---|
| 530 | END DO |
---|
| 531 | END DO |
---|
| 532 | END DO |
---|
| 533 | |
---|
| 534 | RETURN |
---|
| 535 | |
---|
| 536 | END SUBROUTINE compute_zint4D |
---|
| 537 | |
---|
| 538 | SUBROUTINE compute_vertint1D(var, dz, deta, zweight, integral) |
---|
| 539 | ! Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
| 540 | |
---|
| 541 | IMPLICIT NONE |
---|
| 542 | |
---|
| 543 | INTEGER, INTENT(in) :: dz |
---|
| 544 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta, zweight |
---|
| 545 | REAL(r_k), INTENT(out) :: integral |
---|
| 546 | |
---|
| 547 | ! Local |
---|
| 548 | INTEGER :: k |
---|
| 549 | |
---|
| 550 | !!!!!!! Variables |
---|
| 551 | ! var: vertical variable to integrate |
---|
| 552 | ! dz: vertical dimension |
---|
| 553 | ! deta: eta-levels difference between layers |
---|
| 554 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
| 555 | |
---|
| 556 | fname = 'compute_vertint1D' |
---|
| 557 | |
---|
| 558 | ! integral=0. |
---|
| 559 | ! DO k=1,dz |
---|
| 560 | ! integral = integral + var(k)*deta(k) |
---|
| 561 | ! END DO |
---|
| 562 | integral = SUM(var*deta*zweight) |
---|
| 563 | |
---|
| 564 | RETURN |
---|
| 565 | |
---|
| 566 | END SUBROUTINE compute_vertint1D |
---|
| 567 | |
---|
[1759] | 568 | SUBROUTINE compute_cape_afwa4D(ta, hur, press, zg, hgt, cape, cin, zlfc, plfc, li, parcelmethod, & |
---|
| 569 | d1, d2, d3, d4) |
---|
| 570 | ! Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute CAPE, CIN, ZLFC, PLFC, LI |
---|
| 571 | |
---|
| 572 | IMPLICIT NONE |
---|
| 573 | |
---|
| 574 | INTEGER, INTENT(in) :: d1, d2, d3, d4, parcelmethod |
---|
| 575 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ta, hur, press, zg |
---|
| 576 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 577 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: cape, cin, zlfc, plfc, li |
---|
| 578 | |
---|
| 579 | ! Local |
---|
| 580 | INTEGER :: i, j, it |
---|
| 581 | INTEGER :: ofunc |
---|
| 582 | |
---|
| 583 | !!!!!!! Variables |
---|
| 584 | ! ta: air temperature [K] |
---|
| 585 | ! hur: relative humidity [%] |
---|
| 586 | ! press: air pressure [Pa] |
---|
| 587 | ! zg: geopotential height [gpm] |
---|
| 588 | ! hgt: topographical height [m] |
---|
| 589 | ! cape: Convective available potential energy [Jkg-1] |
---|
| 590 | ! cin: Convective inhibition [Jkg-1] |
---|
| 591 | ! zlfc: height at the Level of free convection [m] |
---|
| 592 | ! plfc: pressure at the Level of free convection [Pa] |
---|
| 593 | ! li: lifted index [1] |
---|
| 594 | ! parcelmethod: |
---|
| 595 | ! Most Unstable = 1 (default) |
---|
| 596 | ! Mean layer = 2 |
---|
| 597 | ! Surface based = 3 |
---|
| 598 | |
---|
| 599 | fname = 'compute_cape_afwa4D' |
---|
| 600 | |
---|
| 601 | DO i=1, d1 |
---|
| 602 | DO j=1, d2 |
---|
| 603 | DO it=1, d4 |
---|
| 604 | ofunc = var_cape_afwa1D(d3, ta(i,j,:,it), hur(i,j,:,it), press(i,j,:,it), zg(i,j,:,it), & |
---|
| 605 | 1, cape(i,j,it), cin(i,j,it), zlfc(i,j,it), plfc(i,j,it), li(i,j,it), parcelmethod) |
---|
[1833] | 606 | IF (zlfc(i,j,it) /= -1.) zlfc(i,j,it) = zlfc(i,j,it) - hgt(i,j) |
---|
[1759] | 607 | END DO |
---|
| 608 | END DO |
---|
| 609 | END DO |
---|
| 610 | |
---|
| 611 | RETURN |
---|
| 612 | |
---|
| 613 | END SUBROUTINE compute_cape_afwa4D |
---|
| 614 | |
---|
[1795] | 615 | SUBROUTINE compute_psl_ecmwf(ps, hgt, T, press, unpress, psl, d1, d2, d4) |
---|
| 616 | ! Subroutine to compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
| 617 | |
---|
| 618 | IMPLICIT NONE |
---|
| 619 | |
---|
| 620 | INTEGER, INTENT(in) :: d1, d2, d4 |
---|
| 621 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: ps, T, press, unpress |
---|
| 622 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 623 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: psl |
---|
| 624 | |
---|
| 625 | ! Local |
---|
| 626 | INTEGER :: i, j, it |
---|
| 627 | |
---|
| 628 | !!!!!!! Variables |
---|
| 629 | ! ps: surface pressure [Pa] |
---|
| 630 | ! hgt: terrain height [m] |
---|
| 631 | ! T: temperature at first half-mass level [K] |
---|
| 632 | ! press: pressure at first full levels [Pa] |
---|
| 633 | ! unpress: pressure at first mass (half) levels [Pa] |
---|
| 634 | ! psl: sea-level pressure [Pa] |
---|
| 635 | |
---|
| 636 | fname = 'compute_psl_ecmwf' |
---|
| 637 | |
---|
| 638 | DO i=1, d1 |
---|
| 639 | DO j=1, d2 |
---|
| 640 | DO it=1, d4 |
---|
| 641 | CALL var_psl_ecmwf(ps(i,j,it), hgt(i,j), T(i,j,it), unpress(i,j,it), press(i,j,it), & |
---|
| 642 | psl(i,j,it)) |
---|
| 643 | END DO |
---|
| 644 | END DO |
---|
| 645 | END DO |
---|
| 646 | |
---|
| 647 | RETURN |
---|
| 648 | |
---|
| 649 | END SUBROUTINE compute_psl_ecmwf |
---|
| 650 | |
---|
[1773] | 651 | SUBROUTINE compute_zmla_generic4D(tpot, qratio, z, hgt, zmla3D, d1, d2, d3, d4) |
---|
| 652 | ! Subroutine to compute pbl-height following a generic method |
---|
| 653 | ! from Nielsen-Gammon et al., 2008 J. Appl. Meteor. Clim. |
---|
| 654 | ! applied also in Garcia-Diez et al., 2013, QJRMS |
---|
| 655 | ! where |
---|
| 656 | ! "The technique identifies the ML height as a threshold increase of potential temperature from |
---|
| 657 | ! its minimum value within the boundary layer." |
---|
| 658 | ! here applied similarly to Garcia-Diez et al. where |
---|
| 659 | ! zmla = "...first level where potential temperature exceeds the minimum potential temperature |
---|
| 660 | ! reached in the mixed layer by more than 1.5 K" |
---|
| 661 | |
---|
| 662 | IMPLICIT NONE |
---|
| 663 | |
---|
| 664 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 665 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: tpot, qratio, z |
---|
| 666 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 667 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: zmla3D |
---|
| 668 | |
---|
| 669 | ! Local |
---|
| 670 | INTEGER :: i, j, it |
---|
| 671 | |
---|
| 672 | !!!!!!! Variables |
---|
| 673 | ! tpot: potential air temperature [K] |
---|
| 674 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
| 675 | ! z: height above sea level [m] |
---|
| 676 | ! hgt: terrain height [m] |
---|
| 677 | ! zmla3D: boundary layer height from surface [m] |
---|
| 678 | |
---|
| 679 | fname = 'compute_zmla_generic4D' |
---|
| 680 | |
---|
| 681 | DO i=1, d1 |
---|
| 682 | DO j=1, d2 |
---|
| 683 | DO it=1, d4 |
---|
| 684 | CALL var_zmla_generic(d3, qratio(i,j,:,it), tpot(i,j,:,it), z(i,j,:,it), hgt(i,j), & |
---|
| 685 | zmla3D(i,j,it)) |
---|
| 686 | END DO |
---|
| 687 | END DO |
---|
| 688 | END DO |
---|
| 689 | |
---|
| 690 | RETURN |
---|
| 691 | |
---|
| 692 | END SUBROUTINE compute_zmla_generic4D |
---|
| 693 | |
---|
[1777] | 694 | SUBROUTINE compute_zwind4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
[1776] | 695 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1773] | 696 | |
---|
[1776] | 697 | IMPLICIT NONE |
---|
| 698 | |
---|
| 699 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[1777] | 700 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
[1776] | 701 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
[1777] | 702 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
[1776] | 703 | REAL(r_k), INTENT(in) :: zextrap |
---|
| 704 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
| 705 | |
---|
| 706 | ! Local |
---|
| 707 | INTEGER :: i, j, it |
---|
| 708 | |
---|
| 709 | !!!!!!! Variables |
---|
| 710 | ! tpot: potential air temperature [K] |
---|
| 711 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
[1777] | 712 | ! z: height above surface [m] |
---|
[1776] | 713 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 714 | ! zmla3D: boundary layer height from surface [m] |
---|
| 715 | |
---|
| 716 | fname = 'compute_zwind4D' |
---|
| 717 | |
---|
| 718 | DO i=1, d1 |
---|
| 719 | DO j=1, d2 |
---|
| 720 | DO it=1, d4 |
---|
[1777] | 721 | CALL var_zwind(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
| 722 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
[1776] | 723 | END DO |
---|
| 724 | END DO |
---|
| 725 | END DO |
---|
| 726 | |
---|
| 727 | RETURN |
---|
| 728 | |
---|
| 729 | END SUBROUTINE compute_zwind4D |
---|
| 730 | |
---|
[1784] | 731 | SUBROUTINE compute_zwind_log4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
| 732 | ! Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
| 733 | |
---|
| 734 | IMPLICIT NONE |
---|
| 735 | |
---|
| 736 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 737 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
| 738 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
| 739 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
| 740 | REAL(r_k), INTENT(in) :: zextrap |
---|
| 741 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
| 742 | |
---|
| 743 | ! Local |
---|
| 744 | INTEGER :: i, j, it |
---|
| 745 | |
---|
| 746 | !!!!!!! Variables |
---|
| 747 | ! tpot: potential air temperature [K] |
---|
| 748 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
| 749 | ! z: height above surface [m] |
---|
| 750 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 751 | ! zmla3D: boundary layer height from surface [m] |
---|
| 752 | |
---|
| 753 | fname = 'compute_zwind_log4D' |
---|
| 754 | |
---|
| 755 | DO i=1, d1 |
---|
| 756 | DO j=1, d2 |
---|
| 757 | DO it=1, d4 |
---|
| 758 | CALL var_zwind_log(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
| 759 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
| 760 | END DO |
---|
| 761 | END DO |
---|
| 762 | END DO |
---|
| 763 | |
---|
| 764 | RETURN |
---|
| 765 | |
---|
| 766 | END SUBROUTINE compute_zwind_log4D |
---|
| 767 | |
---|
[1783] | 768 | SUBROUTINE compute_zwindMO3D(d1, d2, d3, ust, znt, rmol, uas, vas, sina, cosa, newz, uznew, vznew) |
---|
| 769 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1784] | 770 | ! NOTE: only usefull for newz < 80. m |
---|
[1783] | 771 | |
---|
| 772 | IMPLICIT NONE |
---|
| 773 | |
---|
| 774 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 775 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: ust, znt, rmol |
---|
| 776 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: uas, vas |
---|
| 777 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
| 778 | REAL(r_k), INTENT(in) :: newz |
---|
| 779 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: uznew, vznew |
---|
| 780 | |
---|
| 781 | ! Local |
---|
| 782 | INTEGER :: i, j, it |
---|
| 783 | |
---|
| 784 | !!!!!!! Variables |
---|
| 785 | ! ust: u* in similarity theory [ms-1] |
---|
| 786 | ! znt: thermal time-varying roughness length [m] |
---|
| 787 | ! rmol: Inverse of the Obukhov length [m-1] |
---|
| 788 | ! uas: x-component 10-m wind speed [ms-1] |
---|
| 789 | ! vas: y-component 10-m wind speed [ms-1] |
---|
| 790 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 791 | |
---|
| 792 | fname = 'compute_zwindMO3D' |
---|
| 793 | |
---|
| 794 | DO i=1, d1 |
---|
| 795 | DO j=1, d2 |
---|
| 796 | DO it=1, d3 |
---|
| 797 | CALL var_zwind_MOtheor(ust(i,j,it), znt(i,j,it), rmol(i,j,it), uas(i,j,it), vas(i,j,it), & |
---|
| 798 | sina(i,j), cosa(i,j), newz, uznew(i,j,it), vznew(i,j,it)) |
---|
| 799 | END DO |
---|
| 800 | END DO |
---|
| 801 | END DO |
---|
| 802 | |
---|
| 803 | RETURN |
---|
| 804 | |
---|
| 805 | END SUBROUTINE compute_zwindMO3D |
---|
| 806 | |
---|
[1804] | 807 | SUBROUTINE compute_potevap_orPM3D(d1, d2, d3, rho1, ust, uas, vas, tas, ps, qv1, potevap) |
---|
| 808 | ! Subroutine to compute potential evapotranspiration Penman-Monteith formulation implemented in |
---|
[1833] | 809 | ! ORCHIDEE in src_sechiba/enerbil.f90 |
---|
[1804] | 810 | |
---|
| 811 | IMPLICIT NONE |
---|
| 812 | |
---|
| 813 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 814 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: rho1, ust, uas, vas, tas, ps, qv1 |
---|
| 815 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: potevap |
---|
| 816 | |
---|
| 817 | ! Local |
---|
| 818 | INTEGER :: i, j, it |
---|
| 819 | |
---|
| 820 | !!!!!!! Variables |
---|
| 821 | ! rho1: atsmophere density at the first layer [kgm-3] |
---|
| 822 | ! ust: u* in similarity theory [ms-1] |
---|
| 823 | ! uas: x-component 10-m wind speed [ms-1] |
---|
| 824 | ! vas: y-component 10-m wind speed [ms-1] |
---|
| 825 | ! tas: 2-m atmosphere temperature [K] |
---|
| 826 | ! ps: surface pressure [Pa] |
---|
| 827 | ! qv1: 1st layer atmospheric mixing ratio [kgkg-1] |
---|
| 828 | ! potevap: potential evapo transpiration [kgm-2s-1] |
---|
| 829 | |
---|
| 830 | fname = 'compute_potevap_orPM3D' |
---|
| 831 | |
---|
| 832 | DO i=1, d1 |
---|
| 833 | DO j=1, d2 |
---|
| 834 | DO it=1, d3 |
---|
| 835 | CALL var_potevap_orPM(rho1(i,j,it), ust(i,j,it), uas(i,j,it), vas(i,j,it), tas(i,j,it), & |
---|
| 836 | ps(i,j,it), qv1(i,j,it), potevap(i,j,it)) |
---|
| 837 | END DO |
---|
| 838 | END DO |
---|
| 839 | END DO |
---|
| 840 | |
---|
| 841 | RETURN |
---|
| 842 | |
---|
| 843 | END SUBROUTINE compute_potevap_orPM3D |
---|
| 844 | |
---|
[1908] | 845 | SUBROUTINE compute_fog_K84(d1, d2, d3, qc, qi, fog, vis) |
---|
| 846 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
| 847 | ! And visibility following Kunkel, B. A., (1984): Parameterization of droplet terminal velocity and |
---|
[2387] | 848 | ! extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 34-41. |
---|
[1908] | 849 | |
---|
| 850 | IMPLICIT NONE |
---|
| 851 | |
---|
| 852 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 853 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qc, qi |
---|
| 854 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 855 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 856 | |
---|
| 857 | ! Local |
---|
| 858 | INTEGER :: i, j, it |
---|
| 859 | |
---|
| 860 | !!!!!!! Variables |
---|
| 861 | ! qc: cloud mixing ratio [kgkg-1] |
---|
| 862 | ! qi, ice mixing ratio [kgkg-1] |
---|
| 863 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 864 | ! vis: visibility within fog [km] |
---|
| 865 | |
---|
| 866 | fname = 'compute_fog_K84' |
---|
| 867 | |
---|
| 868 | DO i=1, d1 |
---|
| 869 | DO j=1, d2 |
---|
| 870 | DO it=1, d3 |
---|
| 871 | CALL var_fog_K84(qc(i,j,it), qi(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
| 872 | END DO |
---|
| 873 | END DO |
---|
| 874 | END DO |
---|
| 875 | |
---|
| 876 | RETURN |
---|
| 877 | |
---|
| 878 | END SUBROUTINE compute_fog_K84 |
---|
| 879 | |
---|
[1909] | 880 | SUBROUTINE compute_fog_RUC(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
[1908] | 881 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
| 882 | ! And visibility following RUC method Smirnova, T. G., S. G. Benjamin, and J. M. Brown, 2000: Case |
---|
| 883 | ! study verification of RUC/MAPS fog and visibility forecasts. Preprints, 9 th Conference on |
---|
| 884 | ! Aviation, Range, and Aerospace Meteorlogy, AMS, Orlando, FL, Sep. 2000. Paper#2.3, 6 pp. |
---|
| 885 | |
---|
| 886 | IMPLICIT NONE |
---|
| 887 | |
---|
| 888 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[1909] | 889 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
[1908] | 890 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 891 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 892 | |
---|
| 893 | ! Local |
---|
| 894 | INTEGER :: i, j, it |
---|
| 895 | |
---|
| 896 | !!!!!!! Variables |
---|
[1909] | 897 | ! qv: water vapor mixing ratio [kgkg-1] |
---|
| 898 | ! ta: temperature [K] |
---|
| 899 | ! pres: pressure [Pa] |
---|
[1908] | 900 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 901 | ! vis: visibility within fog [km] |
---|
| 902 | |
---|
[1909] | 903 | fname = 'compute_fog_RUC' |
---|
[1908] | 904 | |
---|
| 905 | DO i=1, d1 |
---|
| 906 | DO j=1, d2 |
---|
| 907 | DO it=1, d3 |
---|
[1909] | 908 | CALL var_fog_RUC(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
[1908] | 909 | END DO |
---|
| 910 | END DO |
---|
| 911 | END DO |
---|
| 912 | |
---|
| 913 | RETURN |
---|
| 914 | |
---|
| 915 | END SUBROUTINE compute_fog_RUC |
---|
| 916 | |
---|
[1909] | 917 | SUBROUTINE compute_fog_FRAML50(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
| 918 | ! Subroutine to compute fog (vis < 1 km) and visibility following |
---|
| 919 | ! Gultepe, I. and J.A. Milbrandt, 2010: Probabilistic Parameterizations of Visibility Using |
---|
| 920 | ! Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteor. |
---|
| 921 | ! Climatol., 49, 36-46, https://doi.org/10.1175/2009JAMC1927.1 |
---|
| 922 | ! Interest is focused on a 'general' fog/visibilty approach, thus the fit at 50 % of probability is |
---|
| 923 | ! chosen |
---|
| 924 | ! Effects from precipitation are not considered |
---|
| 925 | |
---|
| 926 | IMPLICIT NONE |
---|
| 927 | |
---|
| 928 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 929 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
| 930 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 931 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 932 | |
---|
| 933 | ! Local |
---|
| 934 | INTEGER :: i, j, it |
---|
| 935 | |
---|
| 936 | !!!!!!! Variables |
---|
| 937 | ! qv: mixing ratio in [kgkg-1] |
---|
| 938 | ! ta: temperature [K] |
---|
| 939 | ! pres: pressure field [Pa] |
---|
| 940 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 941 | ! vis: visibility within fog [km] |
---|
| 942 | |
---|
| 943 | fname = 'compute_fog_FRAML50' |
---|
| 944 | |
---|
| 945 | DO i=1, d1 |
---|
| 946 | DO j=1, d2 |
---|
| 947 | DO it=1, d3 |
---|
| 948 | CALL var_fog_FRAML50(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
| 949 | END DO |
---|
| 950 | END DO |
---|
| 951 | END DO |
---|
| 952 | |
---|
| 953 | RETURN |
---|
| 954 | |
---|
| 955 | END SUBROUTINE compute_fog_FRAML50 |
---|
| 956 | |
---|
[2260] | 957 | SUBROUTINE compute_range_faces(d1, d2, lon, lat, hgt, xdist, ydist, dist, face, dsfilt, dsnewrange, & |
---|
| 958 | hvalrng, hgtmax, pthgtmax, derivhgt, peaks, valleys, origfaces, filtfaces, ranges, rangeshgtmax, & |
---|
[2223] | 959 | ptrangeshgtmax) |
---|
[2208] | 960 | ! Subroutine to compute faces [uphill, valleys, downhill] of a mountain range along a given face |
---|
| 961 | |
---|
| 962 | IMPLICIT NONE |
---|
| 963 | |
---|
[2215] | 964 | INTEGER, INTENT(in) :: d1, d2 |
---|
| 965 | REAL(r_k), INTENT(in) :: dsfilt, dsnewrange, hvalrng |
---|
[2260] | 966 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: lon, lat, hgt, xdist, ydist, dist |
---|
[2208] | 967 | CHARACTER(len=*) :: face |
---|
[2214] | 968 | REAL(r_k), DIMENSION(d1,d2), INTENT(out) :: derivhgt, hgtmax, rangeshgtmax |
---|
[2213] | 969 | INTEGER, DIMENSION(d1,d2), INTENT(out) :: pthgtmax, origfaces, filtfaces, peaks, & |
---|
[2223] | 970 | valleys, ranges, ptrangeshgtmax |
---|
[2208] | 971 | ! Local |
---|
| 972 | INTEGER :: i, j |
---|
[2214] | 973 | INTEGER :: pthgtmax1, Npeaks, Nvalleys, Nranges |
---|
[2213] | 974 | REAL(r_k) :: hgtmax1 |
---|
[2214] | 975 | INTEGER, DIMENSION(d1) :: ipeaks1, ivalleys1, irangeshgtmax1 |
---|
| 976 | INTEGER, DIMENSION(d2) :: ipeaks2, ivalleys2, irangeshgtmax2 |
---|
| 977 | REAL(r_k), DIMENSION(d1) :: rangeshgtmax1 |
---|
| 978 | REAL(r_k), DIMENSION(d2) :: rangeshgtmax2 |
---|
| 979 | INTEGER, DIMENSION(2,d1) :: ranges1 |
---|
| 980 | INTEGER, DIMENSION(2,d2) :: ranges2 |
---|
[2330] | 981 | INTEGER, DIMENSION(d1,d2) :: iranges |
---|
[2332] | 982 | LOGICAL, DIMENSION(d1,d2) :: Lranges |
---|
[2208] | 983 | |
---|
| 984 | !!!!!!! Variables |
---|
| 985 | ! lon: longitude [degrees east] |
---|
| 986 | ! lat: latitude [degrees north] |
---|
| 987 | ! hgt: topograpical height [m] |
---|
[2212] | 988 | ! face: which face (axis along which produce slices) to use to compute the faces: WE, SN |
---|
[2215] | 989 | ! dsfilt: distance to filter orography smaller scale of it [m] |
---|
| 990 | ! dsnewrange: distance to start a new mountain range [m] |
---|
| 991 | ! hvalrng: maximum height of a valley to mark change of range [m] |
---|
[2213] | 992 | ! hgtmax: maximum height of the face [m] |
---|
| 993 | ! pthgtmax: grid point of the maximum height [1] |
---|
[2212] | 994 | ! derivhgt: topograpic derivative along axis [m deg-1] |
---|
| 995 | ! peaks: peak point |
---|
| 996 | ! valleys: valley point |
---|
| 997 | ! origfaces: original faces (-1, downhill; 0: valley; 1: uphill) |
---|
| 998 | ! filtfaces: filtered faces (-1, downhill; 0: valley; 1: uphill) |
---|
[2223] | 999 | ! ranges: number of range |
---|
[2214] | 1000 | ! rangeshgtmax: maximum height for each individual range [m] |
---|
| 1001 | ! ptrangeshgtmax: grid point maximum height for each individual range [1] |
---|
[2208] | 1002 | |
---|
| 1003 | fname = 'compute_range_faces' |
---|
| 1004 | |
---|
[2212] | 1005 | peaks = 0 |
---|
| 1006 | valleys = 0 |
---|
[2213] | 1007 | pthgtmax = 0 |
---|
[2215] | 1008 | rangeshgtmax = fillVal64 |
---|
[2208] | 1009 | IF (TRIM(face) == 'WE') THEN |
---|
| 1010 | DO j=1, d2 |
---|
[2217] | 1011 | !PRINT *,'Lluis:', j-1, '***' |
---|
[2260] | 1012 | CALL var_range_faces(d1, lon(:,j), lat(:,j), hgt(:,j), xdist(:,j), dsfilt, & |
---|
| 1013 | dsnewrange, hvalrng, hgtmax1, pthgtmax1, derivhgt(:,j), Npeaks, ipeaks1, & |
---|
| 1014 | Nvalleys, ivalleys1, origfaces(:,j), filtfaces(:,j), Nranges, ranges1, & |
---|
| 1015 | rangeshgtmax1, irangeshgtmax1) |
---|
[2213] | 1016 | hgtmax(:,j) = hgtmax1 |
---|
| 1017 | pthgtmax(pthgtmax1,j) = 1 |
---|
[2212] | 1018 | DO i=1, Npeaks |
---|
| 1019 | peaks(ipeaks1(i),j) = 1 |
---|
| 1020 | END DO |
---|
| 1021 | DO i=1, Nvalleys |
---|
| 1022 | valleys(ivalleys1(i),j) = 1 |
---|
| 1023 | END DO |
---|
[2214] | 1024 | DO i=1, Nranges |
---|
[2330] | 1025 | iranges(ranges1(1,i):ranges1(2,i),j) = i |
---|
[2214] | 1026 | rangeshgtmax(ranges1(1,i):ranges1(2,i),j) = rangeshgtmax1(i) |
---|
| 1027 | ptrangeshgtmax(irangeshgtmax1(i),j) = 1 |
---|
| 1028 | END DO |
---|
[2208] | 1029 | END DO |
---|
| 1030 | ELSE IF (TRIM(face) == 'SN') THEN |
---|
| 1031 | DO i=1, d1 |
---|
[2260] | 1032 | CALL var_range_faces(d2, lon(i,:), lat(i,:), hgt(i,:), ydist(i,:), dsfilt, & |
---|
| 1033 | dsnewrange, hvalrng, hgtmax1, pthgtmax1, derivhgt(i,:), Npeaks, ipeaks2, & |
---|
| 1034 | Nvalleys, ivalleys2, origfaces(i,:), filtfaces(i,:), Nranges, ranges2, & |
---|
| 1035 | rangeshgtmax2, irangeshgtmax2) |
---|
[2213] | 1036 | hgtmax(i,:) = hgtmax1 |
---|
| 1037 | pthgtmax(i,pthgtmax1) = 1 |
---|
[2212] | 1038 | DO j=1, Npeaks |
---|
| 1039 | peaks(i,ipeaks2(j)) = 1 |
---|
| 1040 | END DO |
---|
| 1041 | DO j=1, Nvalleys |
---|
| 1042 | valleys(i,ivalleys2(j)) = 1 |
---|
| 1043 | END DO |
---|
[2214] | 1044 | DO j=1, Nranges |
---|
[2330] | 1045 | iranges(i,ranges2(1,j):ranges2(2,j)) = j |
---|
[2214] | 1046 | rangeshgtmax(i,ranges2(1,j):ranges2(2,j)) = rangeshgtmax2(j) |
---|
| 1047 | ptrangeshgtmax(i,irangeshgtmax2(j)) = 1 |
---|
| 1048 | END DO |
---|
[2208] | 1049 | END DO |
---|
| 1050 | ELSE |
---|
| 1051 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 1052 | PRINT *,' ' // TRIM(fname) // ": wrong face: '" // TRIM(face) // "' !!" |
---|
| 1053 | PRINT *,' accepted ones: WE, SN' |
---|
| 1054 | STOP |
---|
| 1055 | END IF |
---|
| 1056 | |
---|
[2330] | 1057 | ! Homogenizing indices of the ranges |
---|
[2341] | 1058 | CALL continguos_homogene_zones(d1, d2, iranges, Nranges, ranges) |
---|
[2345] | 1059 | WHERE (ranges == -1) |
---|
| 1060 | ranges = fillValI |
---|
| 1061 | END WHERE |
---|
[2330] | 1062 | |
---|
[2208] | 1063 | RETURN |
---|
| 1064 | |
---|
| 1065 | END SUBROUTINE compute_range_faces |
---|
| 1066 | |
---|
[2274] | 1067 | SUBROUTINE compute_cellbnds(dx, dy, sdx, sdy, ulon, ulat, vlon, vlat, xbnds, ybnds) |
---|
| 1068 | ! Subroutine to compute cellboundaries using wind-staggered lon, lats as intersection of their related |
---|
| 1069 | ! parallels and meridians |
---|
| 1070 | |
---|
| 1071 | IMPLICIT NONE |
---|
| 1072 | |
---|
| 1073 | INTEGER, INTENT(in) :: dx, dy, sdx, sdy |
---|
| 1074 | REAL(r_k), DIMENSION(sdx, dy), INTENT(in) :: ulon, ulat |
---|
| 1075 | REAL(r_k), DIMENSION(dx, sdy), INTENT(in) :: vlon, vlat |
---|
| 1076 | REAL(r_k), DIMENSION(dx, dy, 4), INTENT(out) :: xbnds, ybnds |
---|
| 1077 | |
---|
| 1078 | ! Local |
---|
| 1079 | INTEGER :: i,j,iv |
---|
| 1080 | INTEGER :: ix,ex,iy,ey |
---|
[2285] | 1081 | REAL(r_k) :: tmpval1, tmpval2 |
---|
[2274] | 1082 | CHARACTER(len=2), DIMENSION(4) :: Svertex |
---|
| 1083 | INTEGER, DIMENSION(4,2,2,2) :: indices |
---|
| 1084 | REAL(r_k), DIMENSION(2) :: ptintsct |
---|
| 1085 | REAL(r_k), DIMENSION(2,2) :: merid, paral |
---|
| 1086 | LOGICAL :: intsct |
---|
| 1087 | |
---|
| 1088 | !!!!!!! Variables |
---|
| 1089 | ! dx, dy: un-staggered dimensions |
---|
| 1090 | ! sdx, sdy: staggered dimensions |
---|
| 1091 | ! ulon, ulat: x-wind staggered longitudes and latitudes |
---|
| 1092 | ! vlon, vlat: y-wind staggered longitudes and latitudes |
---|
| 1093 | ! xbnds, ybnds: x and y cell boundaries |
---|
| 1094 | |
---|
| 1095 | fname = 'compute_cellbnds' |
---|
| 1096 | |
---|
| 1097 | ! Indices to use indices[SW/NW/NE/SE, m/p, x/y, i/e] |
---|
| 1098 | Svertex = (/ 'SW', 'NW', 'NE', 'SE' /) |
---|
| 1099 | |
---|
| 1100 | ! SW |
---|
| 1101 | indices(1,1,1,1) = 0 |
---|
| 1102 | indices(1,1,1,2) = 0 |
---|
| 1103 | indices(1,1,2,1) = -1 |
---|
| 1104 | indices(1,1,2,2) = 0 |
---|
| 1105 | indices(1,2,1,1) = -1 |
---|
| 1106 | indices(1,2,1,2) = 0 |
---|
| 1107 | indices(1,2,2,1) = -1 |
---|
| 1108 | indices(1,2,2,2) = -1 |
---|
| 1109 | ! NW |
---|
| 1110 | indices(2,1,1,1) = 0 |
---|
| 1111 | indices(2,1,1,2) = 0 |
---|
| 1112 | indices(2,1,2,1) = 0 |
---|
| 1113 | indices(2,1,2,2) = 1 |
---|
| 1114 | indices(2,2,1,1) = -1 |
---|
| 1115 | indices(2,2,1,2) = 0 |
---|
| 1116 | indices(2,2,2,1) = 1 |
---|
| 1117 | indices(2,2,2,2) = 1 |
---|
| 1118 | ! NE |
---|
| 1119 | indices(3,1,1,1) = 1 |
---|
| 1120 | indices(3,1,1,2) = 1 |
---|
| 1121 | indices(3,1,2,1) = 0 |
---|
| 1122 | indices(3,1,2,2) = 1 |
---|
| 1123 | indices(3,2,1,1) = 0 |
---|
| 1124 | indices(3,2,1,2) = 1 |
---|
| 1125 | indices(3,2,2,1) = 1 |
---|
| 1126 | indices(3,2,2,2) = 1 |
---|
| 1127 | ! SE |
---|
[2285] | 1128 | indices(4,1,1,1) = 1 |
---|
[2274] | 1129 | indices(4,1,1,2) = 1 |
---|
| 1130 | indices(4,1,2,1) = -1 |
---|
| 1131 | indices(4,1,2,2) = 0 |
---|
| 1132 | indices(4,2,1,1) = 0 |
---|
| 1133 | indices(4,2,1,2) = 1 |
---|
| 1134 | indices(4,2,2,1) = -1 |
---|
| 1135 | indices(4,2,2,2) = -1 |
---|
| 1136 | |
---|
[2285] | 1137 | DO i=2,dx-1 |
---|
[2274] | 1138 | DO j=1,dy |
---|
| 1139 | DO iv=1,4 |
---|
| 1140 | |
---|
| 1141 | ix = MAX(i+indices(iv,1,1,1),1) |
---|
| 1142 | !ex = MIN(i+indices(iv,1,1,2),dx) |
---|
[2285] | 1143 | ex = MAX(i+indices(iv,1,1,2),1) |
---|
[2274] | 1144 | iy = MAX(j+indices(iv,1,2,1),1) |
---|
| 1145 | ey = MIN(j+indices(iv,1,2,2),dy) |
---|
| 1146 | |
---|
| 1147 | merid(1,1) = ulon(ix,iy) |
---|
| 1148 | merid(1,2) = ulat(ix,iy) |
---|
| 1149 | merid(2,1) = ulon(ex,ey) |
---|
| 1150 | merid(2,2) = ulat(ex,ey) |
---|
| 1151 | |
---|
| 1152 | ix = MAX(i+indices(iv,2,1,1),1) |
---|
| 1153 | ex = MIN(i+indices(iv,2,1,2),dx) |
---|
| 1154 | iy = MAX(j+indices(iv,2,2,1),1) |
---|
| 1155 | !ey = MIN(i+indices(iv,2,2,2),dy) |
---|
[2285] | 1156 | ey = MAX(j+indices(iv,2,2,2),1) |
---|
[2274] | 1157 | paral(1,1) = vlon(ix,iy) |
---|
| 1158 | paral(1,2) = vlat(ix,iy) |
---|
| 1159 | paral(2,1) = vlon(ex,ey) |
---|
| 1160 | paral(2,2) = vlat(ex,ey) |
---|
| 1161 | |
---|
| 1162 | CALL intersection_2Dlines(merid, paral, intsct, ptintsct) |
---|
| 1163 | IF (.NOT.intsct) THEN |
---|
[2285] | 1164 | msg = 'not intersection found for ' // Svertex(iv) // ' vertex' |
---|
[2274] | 1165 | CALL ErrMsg(msg, fname, -1) |
---|
| 1166 | END IF |
---|
| 1167 | xbnds(i,j,iv) = ptintsct(1) |
---|
| 1168 | ybnds(i,j,iv) = ptintsct(2) |
---|
[2285] | 1169 | |
---|
[2274] | 1170 | END DO |
---|
| 1171 | END DO |
---|
| 1172 | END DO |
---|
| 1173 | |
---|
[2285] | 1174 | ! Dealing with the boundary values |
---|
| 1175 | i = 1 |
---|
| 1176 | DO j=1,dy |
---|
| 1177 | DO iv=1,4 |
---|
| 1178 | |
---|
| 1179 | ix = MAX(i+indices(iv,1,1,1),1) |
---|
| 1180 | !ex = MIN(i+indices(iv,1,1,2),dx) |
---|
| 1181 | ex = MAX(i+indices(iv,1,1,2),1) |
---|
| 1182 | iy = MAX(j+indices(iv,1,2,1),1) |
---|
| 1183 | ey = MIN(j+indices(iv,1,2,2),dy) |
---|
| 1184 | merid(1,1) = ulon(ix,iy) |
---|
| 1185 | merid(1,2) = ulat(ix,iy) |
---|
| 1186 | merid(2,1) = ulon(ex,ey) |
---|
| 1187 | merid(2,2) = ulat(ex,ey) |
---|
| 1188 | |
---|
| 1189 | ix = MAX(i+indices(iv,2,1,1),1) |
---|
| 1190 | ex = MIN(i+indices(iv,2,1,2),dx) |
---|
| 1191 | iy = MAX(j+indices(iv,2,2,1),1) |
---|
| 1192 | !ey = MIN(i+indices(iv,2,2,2),dy) |
---|
| 1193 | ey = MAX(j+indices(iv,2,2,2),1) |
---|
| 1194 | IF (iv == 1 .OR. iv == 2) THEN |
---|
| 1195 | ! Projecting values using dx from next grid point |
---|
| 1196 | tmpval1 = vlon(2,iy) |
---|
| 1197 | paral(2,1) = vlon(ex,ey) |
---|
| 1198 | tmpval2 = tmpval1 - paral(2,1) |
---|
| 1199 | paral(1,1) = paral(2,1) - tmpval2 |
---|
| 1200 | tmpval1 = vlat(2,iy) |
---|
| 1201 | paral(2,2) = vlat(ex,ey) |
---|
| 1202 | tmpval2 = tmpval1 - paral(2,2) |
---|
| 1203 | paral(1,2) = paral(2,2) - tmpval2 |
---|
| 1204 | ELSE |
---|
| 1205 | paral(1,1) = vlon(ix,iy) |
---|
| 1206 | paral(1,2) = vlat(ix,iy) |
---|
| 1207 | paral(2,1) = vlon(ex,ey) |
---|
| 1208 | paral(2,2) = vlat(ex,ey) |
---|
| 1209 | END IF |
---|
| 1210 | |
---|
| 1211 | CALL intersection_2Dlines(merid, paral, intsct, ptintsct) |
---|
| 1212 | IF (.NOT.intsct) THEN |
---|
| 1213 | msg = 'not intersection found for ' // Svertex(iv) // ' vertex' |
---|
| 1214 | CALL ErrMsg(msg, fname, -1) |
---|
| 1215 | END IF |
---|
| 1216 | xbnds(i,j,iv) = ptintsct(1) |
---|
| 1217 | ybnds(i,j,iv) = ptintsct(2) |
---|
| 1218 | |
---|
| 1219 | END DO |
---|
| 1220 | END DO |
---|
| 1221 | |
---|
| 1222 | i = dx |
---|
| 1223 | DO j=1,dy |
---|
| 1224 | DO iv=1,4 |
---|
| 1225 | |
---|
| 1226 | ix = MAX(i+indices(iv,1,1,1),1) |
---|
| 1227 | !ex = MIN(i+indices(iv,1,1,2),dx) |
---|
| 1228 | ex = MAX(i+indices(iv,1,1,2),1) |
---|
| 1229 | iy = MAX(j+indices(iv,1,2,1),1) |
---|
| 1230 | ey = MIN(j+indices(iv,1,2,2),dy) |
---|
| 1231 | merid(1,1) = ulon(ix,iy) |
---|
| 1232 | merid(1,2) = ulat(ix,iy) |
---|
| 1233 | merid(2,1) = ulon(ex,ey) |
---|
| 1234 | merid(2,2) = ulat(ex,ey) |
---|
| 1235 | |
---|
| 1236 | ix = MAX(i+indices(iv,2,1,1),1) |
---|
| 1237 | ex = MIN(i+indices(iv,2,1,2),dx) |
---|
| 1238 | iy = MAX(j+indices(iv,2,2,1),1) |
---|
| 1239 | !ey = MIN(i+indices(iv,2,2,2),dy) |
---|
| 1240 | ey = MAX(j+indices(iv,2,2,2),1) |
---|
| 1241 | IF (iv == 3 .OR. iv == 4) THEN |
---|
| 1242 | ! Projecting values using dx from previous grid point |
---|
| 1243 | tmpval1 = vlon(dx-1,iy) |
---|
| 1244 | paral(2,1) = vlon(ex,ey) |
---|
| 1245 | tmpval2 = tmpval1 - paral(2,1) |
---|
| 1246 | paral(1,1) = paral(2,1) - tmpval2 |
---|
| 1247 | tmpval1 = vlat(dx-1,iy) |
---|
| 1248 | paral(2,2) = vlat(ex,ey) |
---|
| 1249 | tmpval2 = tmpval1 - paral(2,2) |
---|
| 1250 | paral(1,2) = paral(2,2) - tmpval2 |
---|
| 1251 | ELSE |
---|
| 1252 | paral(1,1) = vlon(ix,iy) |
---|
| 1253 | paral(1,2) = vlat(ix,iy) |
---|
| 1254 | paral(2,1) = vlon(ex,ey) |
---|
| 1255 | paral(2,2) = vlat(ex,ey) |
---|
| 1256 | END IF |
---|
| 1257 | |
---|
| 1258 | CALL intersection_2Dlines(merid, paral, intsct, ptintsct) |
---|
| 1259 | IF (.NOT.intsct) THEN |
---|
| 1260 | msg = 'not intersection found for ' // Svertex(iv) // ' vertex' |
---|
| 1261 | CALL ErrMsg(msg, fname, -1) |
---|
| 1262 | END IF |
---|
| 1263 | xbnds(i,j,iv) = ptintsct(1) |
---|
| 1264 | ybnds(i,j,iv) = ptintsct(2) |
---|
| 1265 | |
---|
| 1266 | END DO |
---|
| 1267 | END DO |
---|
| 1268 | |
---|
[2277] | 1269 | END SUBROUTINE compute_cellbnds |
---|
| 1270 | |
---|
| 1271 | SUBROUTINE compute_cellbndsreg(dx, dy, lon, lat, xbnds, ybnds) |
---|
| 1272 | ! Subroutine to compute cellboundaries using lon, lat from a reglar lon/lat projection as intersection |
---|
| 1273 | ! of their related parallels and meridians |
---|
| 1274 | |
---|
| 1275 | IMPLICIT NONE |
---|
| 1276 | |
---|
| 1277 | INTEGER, INTENT(in) :: dx, dy |
---|
| 1278 | REAL(r_k), DIMENSION(dx, dy), INTENT(in) :: lon, lat |
---|
| 1279 | REAL(r_k), DIMENSION(dx, dy, 4), INTENT(out) :: xbnds, ybnds |
---|
| 1280 | |
---|
| 1281 | ! Local |
---|
| 1282 | INTEGER :: i,j,iv |
---|
| 1283 | INTEGER :: ix,ex,iy,ey |
---|
| 1284 | CHARACTER(len=2), DIMENSION(4) :: Svertex |
---|
[2278] | 1285 | INTEGER, DIMENSION(4,2,2) :: indices |
---|
[2277] | 1286 | |
---|
| 1287 | !!!!!!! Variables |
---|
| 1288 | ! dx, dy: un-staggered dimensions |
---|
| 1289 | ! lon, lat: longitudes and latitudes |
---|
| 1290 | ! xbnds, ybnds: x and y cell boundaries |
---|
| 1291 | |
---|
| 1292 | fname = 'compute_cellbndsreg' |
---|
| 1293 | |
---|
| 1294 | ! Indices to use indices[SW/NW/NE/SE, m/p, x/y, i/e] |
---|
| 1295 | Svertex = (/ 'SW', 'NW', 'NE', 'SE' /) |
---|
| 1296 | |
---|
| 1297 | ! SW |
---|
[2278] | 1298 | indices(1,1,1) = -1 |
---|
| 1299 | indices(1,1,2) = 0 |
---|
| 1300 | indices(1,2,1) = -1 |
---|
| 1301 | indices(1,2,2) = 0 |
---|
[2277] | 1302 | ! NW |
---|
[2278] | 1303 | indices(2,1,1) = -1 |
---|
| 1304 | indices(2,1,2) = 0 |
---|
| 1305 | indices(2,2,1) = 0 |
---|
| 1306 | indices(2,2,2) = 1 |
---|
[2277] | 1307 | ! NE |
---|
[2278] | 1308 | indices(3,1,1) = 0 |
---|
| 1309 | indices(3,1,2) = 1 |
---|
| 1310 | indices(3,2,1) = 0 |
---|
| 1311 | indices(3,2,2) = 1 |
---|
[2277] | 1312 | ! SE |
---|
[2278] | 1313 | indices(4,1,1) = 0 |
---|
| 1314 | indices(4,1,2) = 1 |
---|
| 1315 | indices(4,2,1) = -1 |
---|
| 1316 | indices(4,2,2) = 0 |
---|
[2277] | 1317 | |
---|
| 1318 | DO i=1,dx |
---|
| 1319 | DO j=1,dy |
---|
| 1320 | DO iv=1,4 |
---|
| 1321 | |
---|
[2278] | 1322 | ix = MAX(i+indices(iv,1,1),1) |
---|
| 1323 | ix = MIN(ix,dx) |
---|
| 1324 | ex = MAX(i+indices(iv,1,2),1) |
---|
| 1325 | ex = MIN(ex,dx) |
---|
| 1326 | iy = MAX(j+indices(iv,2,1),1) |
---|
| 1327 | iy = MIN(iy,dy) |
---|
| 1328 | ey = MAX(j+indices(iv,2,2),1) |
---|
| 1329 | ey = MIN(ey,dy) |
---|
[2277] | 1330 | |
---|
[2278] | 1331 | xbnds(i,j,iv) = 0.5*(lon(ix,iy) + lon(ex,ey)) |
---|
| 1332 | ybnds(i,j,iv) = 0.5*(lat(ix,iy) + lat(ex,ey)) |
---|
[2277] | 1333 | |
---|
| 1334 | END DO |
---|
| 1335 | END DO |
---|
| 1336 | END DO |
---|
| 1337 | |
---|
[2274] | 1338 | END SUBROUTINE |
---|
| 1339 | |
---|
[2260] | 1340 | SUBROUTINE compute_Koeppen_Geiger_climates(dx, dy, dt, pr, tas, climatesI, climatesS, climlegend) |
---|
| 1341 | ! Subroutine to compute the Koeppen-Geiger climates after: |
---|
| 1342 | ! Kottek et al., Meteorologische Zeitschrift, Vol. 15, No. 3, 259-263 |
---|
| 1343 | |
---|
| 1344 | IMPLICIT NONE |
---|
| 1345 | |
---|
| 1346 | INTEGER, INTENT(in) :: dx, dy, dt |
---|
| 1347 | REAL(r_k), DIMENSION(dx, dy, dt), INTENT(in) :: pr, tas |
---|
| 1348 | INTEGER, DIMENSION(dy, dt), INTENT(out) :: climatesI |
---|
| 1349 | CHARACTER(LEN=3), DIMENSION(dy, dt), INTENT(out) :: climatesS |
---|
| 1350 | CHARACTER(LEN=1000), INTENT(out) :: climlegend |
---|
| 1351 | |
---|
| 1352 | ! Local |
---|
| 1353 | INTEGER :: i,j |
---|
| 1354 | |
---|
| 1355 | |
---|
| 1356 | |
---|
| 1357 | |
---|
| 1358 | END SUBROUTINE compute_Koeppen_Geiger_climates |
---|
| 1359 | |
---|
[2387] | 1360 | SUBROUTINE compute_tws_RK1(d1, tas, hurs, tws) |
---|
| 1361 | ! Subroutine to compute Wet Bulb temperature of 1D series of values using equation after: |
---|
| 1362 | ! Stull, R. (2011), J. Appl. Meteor. Climatol. 50(11):2267-2269. doi: 10.1175/JAMC-D-11-0143.1 |
---|
| 1363 | |
---|
| 1364 | IMPLICIT NONE |
---|
| 1365 | |
---|
| 1366 | INTEGER, INTENT(in) :: d1 |
---|
| 1367 | REAL(r_k), DIMENSION(d1), INTENT(in) :: tas, hurs |
---|
| 1368 | REAL(r_k), DIMENSION(d1), INTENT(out) :: tws |
---|
| 1369 | |
---|
| 1370 | ! Local |
---|
| 1371 | INTEGER :: it |
---|
| 1372 | |
---|
| 1373 | !!!!!!! Variables |
---|
| 1374 | ! tas: 2-m air temperature [K] |
---|
| 1375 | ! hurs: 2-m relative humidity [1] |
---|
| 1376 | |
---|
| 1377 | fname = 'compute_tws_RK1' |
---|
| 1378 | |
---|
| 1379 | DO it=1, d1 |
---|
| 1380 | tws(it) = var_tws_S11(tas(it), hurs(it)) |
---|
| 1381 | END DO |
---|
| 1382 | |
---|
| 1383 | RETURN |
---|
| 1384 | |
---|
| 1385 | END SUBROUTINE compute_tws_RK1 |
---|
| 1386 | |
---|
| 1387 | SUBROUTINE compute_tws_RK2(d1, d2, tas, hurs, tws) |
---|
| 1388 | ! Subroutine to compute Wet Bulb temperature of 2D series of values using equation after: |
---|
| 1389 | ! Stull, R. (2011), J. Appl. Meteor. Climatol. 50(11):2267-2269. doi: 10.1175/JAMC-D-11-0143.1 |
---|
| 1390 | |
---|
| 1391 | IMPLICIT NONE |
---|
| 1392 | |
---|
| 1393 | INTEGER, INTENT(in) :: d1, d2 |
---|
| 1394 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: tas, hurs |
---|
| 1395 | REAL(r_k), DIMENSION(d1,d2), INTENT(out) :: tws |
---|
| 1396 | |
---|
| 1397 | ! Local |
---|
| 1398 | INTEGER :: i, j |
---|
| 1399 | |
---|
| 1400 | !!!!!!! Variables |
---|
| 1401 | ! tas: 2-m air temperature [K] |
---|
| 1402 | ! hurs: 2-m relative humidity [1] |
---|
| 1403 | |
---|
| 1404 | fname = 'compute_tws_RK2' |
---|
| 1405 | |
---|
| 1406 | DO i=1, d1 |
---|
| 1407 | DO j=1, d2 |
---|
| 1408 | tws(i,j) = var_tws_S11(tas(i,j), hurs(i,j)) |
---|
| 1409 | END DO |
---|
| 1410 | END DO |
---|
| 1411 | |
---|
| 1412 | RETURN |
---|
| 1413 | |
---|
| 1414 | END SUBROUTINE compute_tws_RK2 |
---|
| 1415 | |
---|
| 1416 | SUBROUTINE compute_tws_RK3(d1, d2, d3, tas, hurs, tws) |
---|
| 1417 | ! Subroutine to compute Wet Bulb temperature of 3D series of values using equation after: |
---|
| 1418 | ! Stull, R. (2011), J. Appl. Meteor. Climatol. 50(11):2267-2269. doi: 10.1175/JAMC-D-11-0143.1 |
---|
| 1419 | |
---|
| 1420 | IMPLICIT NONE |
---|
| 1421 | |
---|
| 1422 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 1423 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: tas, hurs |
---|
| 1424 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: tws |
---|
| 1425 | |
---|
| 1426 | ! Local |
---|
| 1427 | INTEGER :: i, j, k |
---|
| 1428 | |
---|
| 1429 | !!!!!!! Variables |
---|
| 1430 | ! tas: 2-m air temperature [K] |
---|
| 1431 | ! hurs: 2-m relative humidity [1] |
---|
| 1432 | |
---|
| 1433 | fname = 'compute_tws_RK3' |
---|
| 1434 | |
---|
| 1435 | DO i=1, d1 |
---|
| 1436 | DO j=1, d2 |
---|
| 1437 | DO k=1, d3 |
---|
| 1438 | tws(i,j,k) = var_tws_S11(tas(i,j,k), hurs(i,j,k)) |
---|
| 1439 | END DO |
---|
| 1440 | END DO |
---|
| 1441 | END DO |
---|
| 1442 | |
---|
| 1443 | RETURN |
---|
| 1444 | |
---|
| 1445 | END SUBROUTINE compute_tws_RK3 |
---|
| 1446 | |
---|
| 1447 | SUBROUTINE compute_tws_RK4(d1, d2, d3, d4, tas, hurs, tws) |
---|
| 1448 | ! Subroutine to compute Wet Bulb temperature of 4D series of values using equation after: |
---|
| 1449 | ! Stull, R. (2011), J. Appl. Meteor. Climatol. 50(11):2267-2269. doi: 10.1175/JAMC-D-11-0143.1 |
---|
| 1450 | |
---|
| 1451 | IMPLICIT NONE |
---|
| 1452 | |
---|
| 1453 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 1454 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: tas, hurs |
---|
| 1455 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(out) :: tws |
---|
| 1456 | |
---|
| 1457 | ! Local |
---|
| 1458 | INTEGER :: i,j,k,l |
---|
| 1459 | |
---|
| 1460 | !!!!!!! Variables |
---|
| 1461 | ! tas: 2-m air temperature [K] |
---|
| 1462 | ! hurs: 2-m relative humidity [1] |
---|
| 1463 | |
---|
| 1464 | fname = 'compute_tws_RK4' |
---|
| 1465 | |
---|
| 1466 | DO i=1, d1 |
---|
| 1467 | DO j=1, d2 |
---|
| 1468 | DO k=1, d3 |
---|
| 1469 | DO l=1, d4 |
---|
| 1470 | tws(i,j,k,l) = var_tws_S11(tas(i,j,k,l), hurs(i,j,k,l)) |
---|
| 1471 | END DO |
---|
| 1472 | END DO |
---|
| 1473 | END DO |
---|
| 1474 | END DO |
---|
| 1475 | |
---|
| 1476 | RETURN |
---|
| 1477 | |
---|
| 1478 | END SUBROUTINE compute_tws_RK4 |
---|
| 1479 | |
---|
[770] | 1480 | END MODULE module_ForDiagnostics |
---|