[770] | 1 | !! Fortran version of different diagnostics |
---|
| 2 | ! L. Fita. LMD May 2016 |
---|
[772] | 3 | ! gfortran module_generic.o module_ForDiagnosticsVars.o -c module_ForDiagnostics.F90 |
---|
| 4 | ! |
---|
| 5 | ! f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 |
---|
| 6 | |
---|
[770] | 7 | MODULE module_ForDiagnostics |
---|
| 8 | |
---|
[1608] | 9 | USE module_definitions |
---|
[770] | 10 | USE module_generic |
---|
[772] | 11 | USE module_ForDiagnosticsVars |
---|
[770] | 12 | |
---|
[772] | 13 | CONTAINS |
---|
[770] | 14 | |
---|
[772] | 15 | !!!!!!! Calculations |
---|
[1769] | 16 | ! compute_cape_afwa4D: Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute |
---|
| 17 | ! CAPE, CIN, ZLFC, PLFC, LI |
---|
[1758] | 18 | ! compute_cllmh4D3: Computation of low, medium and high cloudiness from a 4D CLDFRA and pressure being |
---|
| 19 | ! 3rd dimension the z-dim |
---|
| 20 | ! compute_cllmh3D3: Computation of low, medium and high cloudiness from a 3D CLDFRA and pressure being |
---|
| 21 | ! 3rd dimension the z-dim |
---|
[772] | 22 | ! compute_cllmh: Computation of low, medium and high cloudiness |
---|
| 23 | ! compute_clt4D3: Computation of total cloudiness from a 4D CLDFRA being 3rd dimension the z-dim |
---|
| 24 | ! compute_clt3D3: Computation of total cloudiness from a 3D CLDFRA being 3rd dimension the z-dim |
---|
| 25 | ! compute_clt: Computation of total cloudiness |
---|
[1908] | 26 | ! compute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
| 27 | ! compute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
[1909] | 28 | ! compute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
[1795] | 29 | ! compute_psl_ecmwf: Compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
[1769] | 30 | ! compute_massvertint1D: Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
| 31 | ! compute_vertint1D: Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
| 32 | ! compute_zint4D: Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
[1773] | 33 | ! compute_zmla_generic4D: Subroutine to compute pbl-height following a generic method |
---|
[1776] | 34 | ! compute_zwind4D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1784] | 35 | ! compute_zwind_log4D: Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
[1783] | 36 | ! compute_zwindMCO3D: Subroutine to compute extrapolate the wind at a given height following the 'power law' methodolog |
---|
[1773] | 37 | |
---|
[772] | 38 | !!! |
---|
| 39 | ! Calculations |
---|
| 40 | !!! |
---|
[770] | 41 | |
---|
[772] | 42 | SUBROUTINE compute_cllmh4D2(cldfra4D, pres4D, cllmh4D2, d1, d2, d3, d4) |
---|
| 43 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA and pressure |
---|
| 44 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> cllmh(3,d1,d3,d4) 1: low, 2: medium, 3: high |
---|
| 45 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 46 | |
---|
[772] | 47 | IMPLICIT NONE |
---|
| 48 | |
---|
[1141] | 49 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[772] | 50 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D, pres4D |
---|
| 51 | REAL(r_k), DIMENSION(3,d1,d3,d4), INTENT(out) :: cllmh4D2 |
---|
| 52 | |
---|
| 53 | ! Local |
---|
| 54 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 55 | |
---|
[770] | 56 | !!!!!!! Variables |
---|
[772] | 57 | ! cldfra4D: 4D cloud fraction values [1] |
---|
| 58 | ! pres4D: 4D pressure values [Pa] |
---|
| 59 | ! Ndim: number of dimensions of the input data |
---|
| 60 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
| 61 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 62 | ! cltlmh4D2: low, medium, high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
[770] | 63 | |
---|
[772] | 64 | fname = 'compute_cllmh4D2' |
---|
| 65 | zdim = 2 |
---|
| 66 | Ndim = 4 |
---|
[770] | 67 | |
---|
[772] | 68 | DO i=1, d1 |
---|
| 69 | DO j=1, d3 |
---|
| 70 | DO k=1, d4 |
---|
| 71 | cllmh4D2(:,i,j,k) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
| 72 | END DO |
---|
| 73 | END DO |
---|
| 74 | END DO |
---|
| 75 | |
---|
| 76 | RETURN |
---|
[770] | 77 | |
---|
[772] | 78 | END SUBROUTINE compute_cllmh4D2 |
---|
[770] | 79 | |
---|
[772] | 80 | SUBROUTINE compute_cllmh3D1(cldfra3D, pres3D, cllmh3D1, d1, d2, d3) |
---|
| 81 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA and pressure |
---|
| 82 | ! where zdim is the 1st dimension (thus, cldfra3D(d1,d2,d3) --> cllmh(3,d2,d3) 1: low, 2: medium, 3: high |
---|
| 83 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 84 | |
---|
[772] | 85 | IMPLICIT NONE |
---|
[770] | 86 | |
---|
[1141] | 87 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[772] | 88 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D, pres3D |
---|
| 89 | REAL(r_k), DIMENSION(3,d2,d3), INTENT(out) :: cllmh3D1 |
---|
| 90 | |
---|
| 91 | ! Local |
---|
| 92 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 93 | |
---|
| 94 | !!!!!!! Variables |
---|
| 95 | ! cldfra3D: 3D cloud fraction values [1] |
---|
| 96 | ! pres3D: 3D pressure values [Pa] |
---|
| 97 | ! Ndim: number of dimensions of the input data |
---|
| 98 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
| 99 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 100 | ! cltlmh3D1: low, medium, high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 101 | |
---|
| 102 | fname = 'compute_cllmh3D1' |
---|
| 103 | zdim = 1 |
---|
| 104 | Ndim = 3 |
---|
| 105 | |
---|
| 106 | DO i=1, d1 |
---|
| 107 | DO j=1, d2 |
---|
| 108 | cllmh3D1(:,i,j) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
| 109 | END DO |
---|
| 110 | END DO |
---|
| 111 | |
---|
| 112 | RETURN |
---|
| 113 | |
---|
| 114 | END SUBROUTINE compute_cllmh3D1 |
---|
| 115 | |
---|
| 116 | SUBROUTINE compute_cllmh(cldfra1D, cldfra2D, cldfra3D, cldfra4D, pres1D, pres2D, pres3D, pres4D, & |
---|
| 117 | Ndim, zdim, cllmh1D, cllmh2D1, cllmh2D2, cllmh3D1, cllmh3D2, cllmh3D3, cllmh4D1, cllmh4D2, & |
---|
| 118 | cllmh4D3, cllmh4D4, d1, d2, d3, d4) |
---|
| 119 | ! Subroutine to compute the low, medium and high cloudiness following 'newmicro.F90' from LMDZ |
---|
| 120 | |
---|
[770] | 121 | IMPLICIT NONE |
---|
| 122 | |
---|
[1141] | 123 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
[772] | 124 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D, pres1D |
---|
| 125 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D, pres2D |
---|
| 126 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D, pres3D |
---|
| 127 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
| 128 | INTENT(in) :: cldfra4D, pres4D |
---|
| 129 | REAL(r_k), DIMENSION(3), OPTIONAL, INTENT(out) :: cllmh1D |
---|
| 130 | REAL(r_k), DIMENSION(d1,3), OPTIONAL, INTENT(out) :: cllmh2D1 |
---|
| 131 | REAL(r_k), DIMENSION(d2,3), OPTIONAL, INTENT(out) :: cllmh2D2 |
---|
| 132 | REAL(r_k), DIMENSION(d2,d3,3), OPTIONAL, INTENT(out) :: cllmh3D1 |
---|
| 133 | REAL(r_k), DIMENSION(d1,d3,3), OPTIONAL, INTENT(out) :: cllmh3D2 |
---|
| 134 | REAL(r_k), DIMENSION(d1,d2,3), OPTIONAL, INTENT(out) :: cllmh3D3 |
---|
| 135 | REAL(r_k), DIMENSION(d2,d3,d4,3), OPTIONAL, & |
---|
| 136 | INTENT(out) :: cllmh4D1 |
---|
| 137 | REAL(r_k), DIMENSION(d1,d3,d4,3), OPTIONAL, & |
---|
| 138 | INTENT(out) :: cllmh4D2 |
---|
| 139 | REAL(r_k), DIMENSION(d1,d2,d4,3), OPTIONAL, & |
---|
| 140 | INTENT(out) :: cllmh4D3 |
---|
| 141 | REAL(r_k), DIMENSION(d1,d2,d3,3), OPTIONAL, & |
---|
| 142 | INTENT(out) :: cllmh4D4 |
---|
[770] | 143 | |
---|
| 144 | ! Local |
---|
[772] | 145 | INTEGER :: i,j,k |
---|
[770] | 146 | |
---|
| 147 | !!!!!!! Variables |
---|
[772] | 148 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
| 149 | ! pres[1-4]D: pressure values [Pa] |
---|
| 150 | ! Ndim: number of dimensions of the input data |
---|
| 151 | ! d[1-4]: dimensions of 'cldfra' |
---|
| 152 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 153 | ! cllmh1D: low, medium and high cloudiness for the 1D cldfra |
---|
| 154 | ! cllmh2D1: low, medium and high cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
| 155 | ! cllmh2D2: low, medium and high cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
| 156 | ! cllmh3D1: low, medium and high cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 157 | ! cllmh3D2: low, medium and high cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
| 158 | ! cllmh3D3: low, medium and high cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
| 159 | ! cllmh4D1: low, medium and high cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
| 160 | ! cllmh4D2: low, medium and high cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
| 161 | ! cllmh4D3: low, medium and high cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
| 162 | ! cllmh4D4: low, medium and high cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
[770] | 163 | |
---|
[772] | 164 | fname = 'compute_cllmh' |
---|
[770] | 165 | |
---|
[772] | 166 | SELECT CASE (Ndim) |
---|
| 167 | CASE (1) |
---|
| 168 | cllmh1D = var_cllmh(cldfra1D, pres1D, d1) |
---|
| 169 | CASE (2) |
---|
| 170 | IF (zdim == 1) THEN |
---|
| 171 | DO i=1, d2 |
---|
| 172 | cllmh2D1(i,:) = var_cllmh(cldfra2D(:,i), pres2D(:,i), d1) |
---|
| 173 | END DO |
---|
| 174 | ELSE IF (zdim == 2) THEN |
---|
| 175 | DO i=1, d1 |
---|
| 176 | cllmh2D2(i,:) = var_cllmh(cldfra2D(:,i), pres2D(i,:), d2) |
---|
| 177 | END DO |
---|
| 178 | ELSE |
---|
| 179 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 180 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 181 | PRINT *,' accepted values: 1,2' |
---|
| 182 | STOP |
---|
| 183 | END IF |
---|
| 184 | CASE (3) |
---|
| 185 | IF (zdim == 1) THEN |
---|
| 186 | DO i=1, d2 |
---|
| 187 | DO j=1, d3 |
---|
| 188 | cllmh3D1(i,j,:) = var_cllmh(cldfra3D(:,i,j), pres3D(:,i,j), d1) |
---|
| 189 | END DO |
---|
| 190 | END DO |
---|
| 191 | ELSE IF (zdim == 2) THEN |
---|
| 192 | DO i=1, d1 |
---|
| 193 | DO j=1, d3 |
---|
| 194 | cllmh3D2(i,j,:) = var_cllmh(cldfra3D(i,:,j), pres3D(i,:,j), d2) |
---|
| 195 | END DO |
---|
| 196 | END DO |
---|
| 197 | ELSE IF (zdim == 3) THEN |
---|
| 198 | DO i=1, d1 |
---|
| 199 | DO j=1, d2 |
---|
| 200 | cllmh3D3(i,j,:) = var_cllmh(cldfra3D(i,j,:), pres3D(i,j,:), d3) |
---|
| 201 | END DO |
---|
| 202 | END DO |
---|
| 203 | ELSE |
---|
| 204 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 205 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 206 | PRINT *,' accepted values: 1,2,3' |
---|
| 207 | STOP |
---|
| 208 | END IF |
---|
| 209 | CASE (4) |
---|
| 210 | IF (zdim == 1) THEN |
---|
| 211 | DO i=1, d2 |
---|
| 212 | DO j=1, d3 |
---|
| 213 | DO k=1, d4 |
---|
| 214 | cllmh4D1(i,j,k,:) = var_cllmh(cldfra4D(:,i,j,k), pres4D(:,i,j,k), d1) |
---|
| 215 | END DO |
---|
| 216 | END DO |
---|
| 217 | END DO |
---|
| 218 | ELSE IF (zdim == 2) THEN |
---|
| 219 | DO i=1, d1 |
---|
| 220 | DO j=1, d3 |
---|
| 221 | DO k=1, d4 |
---|
| 222 | cllmh4D2(i,j,k,:) = var_cllmh(cldfra4D(i,:,j,k), pres4D(i,:,j,k), d2) |
---|
| 223 | END DO |
---|
| 224 | END DO |
---|
| 225 | END DO |
---|
| 226 | ELSE IF (zdim == 3) THEN |
---|
| 227 | DO i=1, d2 |
---|
| 228 | DO j=1, d3 |
---|
| 229 | DO k=1, d4 |
---|
| 230 | cllmh4D3(i,j,k,:) = var_cllmh(cldfra4D(i,j,:,k), pres4D(i,j,:,k), d3) |
---|
| 231 | END DO |
---|
| 232 | END DO |
---|
| 233 | END DO |
---|
| 234 | ELSE IF (zdim == 4) THEN |
---|
| 235 | DO i=1, d1 |
---|
| 236 | DO j=1, d2 |
---|
| 237 | DO k=1, d3 |
---|
| 238 | cllmh4D4(i,j,k,:) = var_cllmh(cldfra4D(i,j,k,:), pres4D(i,j,k,:), d4) |
---|
| 239 | END DO |
---|
| 240 | END DO |
---|
| 241 | END DO |
---|
| 242 | ELSE |
---|
| 243 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 244 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 245 | PRINT *,' accepted values: 1,2,3,4' |
---|
| 246 | STOP |
---|
| 247 | END IF |
---|
| 248 | CASE DEFAULT |
---|
| 249 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 250 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
| 251 | STOP |
---|
| 252 | END SELECT |
---|
[770] | 253 | |
---|
| 254 | RETURN |
---|
| 255 | |
---|
[772] | 256 | END SUBROUTINE compute_cllmh |
---|
[770] | 257 | |
---|
[772] | 258 | SUBROUTINE compute_clt4D2(cldfra4D, clt4D2, d1, d2, d3, d4) |
---|
| 259 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 4D CLDFRA |
---|
| 260 | ! where zdim is the 2nd dimension (thus, cldfra4D(d1,d2,d3,d4) --> clt(d1,d3,d4) |
---|
| 261 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 262 | |
---|
| 263 | IMPLICIT NONE |
---|
| 264 | |
---|
[1141] | 265 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[772] | 266 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: cldfra4D |
---|
| 267 | REAL(r_k), DIMENSION(d1,d3,d4), INTENT(out) :: clt4D2 |
---|
| 268 | |
---|
[770] | 269 | ! Local |
---|
[772] | 270 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 271 | |
---|
[770] | 272 | !!!!!!! Variables |
---|
[772] | 273 | ! cldfra4D: 4D cloud fraction values [1] |
---|
| 274 | ! Ndim: number of dimensions of the input data |
---|
| 275 | ! d[1-4]: dimensions of 'cldfra4D' |
---|
| 276 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 277 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
[770] | 278 | |
---|
[772] | 279 | fname = 'compute_clt4D2' |
---|
| 280 | zdim = 2 |
---|
| 281 | Ndim = 4 |
---|
[770] | 282 | |
---|
[772] | 283 | DO i=1, d1 |
---|
| 284 | DO j=1, d3 |
---|
| 285 | DO k=1, d4 |
---|
| 286 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
| 287 | END DO |
---|
| 288 | END DO |
---|
[770] | 289 | END DO |
---|
[772] | 290 | |
---|
| 291 | RETURN |
---|
[770] | 292 | |
---|
[772] | 293 | END SUBROUTINE compute_clt4D2 |
---|
[770] | 294 | |
---|
[772] | 295 | SUBROUTINE compute_clt3D1(cldfra3D, clt3D1, d1, d2, d3) |
---|
| 296 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ from a 3D CLDFRA |
---|
| 297 | ! where zdim is the 1st dimension (thus, cldfra4D(d1,d2,d3) --> clt(d2,d3) |
---|
| 298 | ! It should be properly done via an 'INTERFACE', but... |
---|
[770] | 299 | |
---|
[772] | 300 | IMPLICIT NONE |
---|
[770] | 301 | |
---|
[1141] | 302 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[772] | 303 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: cldfra3D |
---|
| 304 | REAL(r_k), DIMENSION(d2,d3), INTENT(out) :: clt3D1 |
---|
[770] | 305 | |
---|
[772] | 306 | ! Local |
---|
| 307 | INTEGER :: i,j,k, zdim, Ndim |
---|
| 308 | |
---|
| 309 | !!!!!!! Variables |
---|
| 310 | ! cldfra3D: 3D cloud fraction values [1] |
---|
| 311 | ! Ndim: number of dimensions of the input data |
---|
| 312 | ! d[1-3]: dimensions of 'cldfra3D' |
---|
| 313 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 314 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 315 | |
---|
| 316 | fname = 'compute_clt3D1' |
---|
| 317 | zdim = 1 |
---|
| 318 | Ndim = 3 |
---|
| 319 | |
---|
| 320 | DO i=1, d2 |
---|
| 321 | DO j=1, d3 |
---|
| 322 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
| 323 | END DO |
---|
| 324 | END DO |
---|
| 325 | |
---|
| 326 | RETURN |
---|
| 327 | |
---|
| 328 | END SUBROUTINE compute_clt3D1 |
---|
| 329 | |
---|
| 330 | SUBROUTINE compute_clt(cldfra1D, cldfra2D, cldfra3D, cldfra4D, Ndim, zdim, clt1D, clt2D1, clt2D2, & |
---|
| 331 | clt3D1, clt3D2, clt3D3, clt4D1, clt4D2, clt4D3, clt4D4, d1, d2, d3, d4) |
---|
| 332 | ! Subroutine to compute the total cloudiness following 'newmicro.F90' from LMDZ |
---|
| 333 | |
---|
[770] | 334 | IMPLICIT NONE |
---|
| 335 | |
---|
[1141] | 336 | INTEGER, INTENT(in) :: Ndim, d1, d2, d3, d4, zdim |
---|
[770] | 337 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(in) :: cldfra1D |
---|
| 338 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(in) :: cldfra2D |
---|
| 339 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL, INTENT(in) :: cldfra3D |
---|
| 340 | REAL(r_k), DIMENSION(d1,d2,d3,d4), OPTIONAL, & |
---|
| 341 | INTENT(in) :: cldfra4D |
---|
| 342 | REAL(r_k), OPTIONAL, INTENT(out) :: clt1D |
---|
| 343 | REAL(r_k), DIMENSION(d1), OPTIONAL, INTENT(out) :: clt2D1 |
---|
| 344 | REAL(r_k), DIMENSION(d2), OPTIONAL, INTENT(out) :: clt2D2 |
---|
| 345 | REAL(r_k), DIMENSION(d2,d3), OPTIONAL, INTENT(out) :: clt3D1 |
---|
| 346 | REAL(r_k), DIMENSION(d1,d3), OPTIONAL, INTENT(out) :: clt3D2 |
---|
| 347 | REAL(r_k), DIMENSION(d1,d2), OPTIONAL, INTENT(out) :: clt3D3 |
---|
| 348 | REAL(r_k), DIMENSION(d2,d3,d4), OPTIONAL,INTENT(out) :: clt4D1 |
---|
| 349 | REAL(r_k), DIMENSION(d1,d3,d4), OPTIONAL,INTENT(out) :: clt4D2 |
---|
| 350 | REAL(r_k), DIMENSION(d1,d2,d4), OPTIONAL,INTENT(out) :: clt4D3 |
---|
| 351 | REAL(r_k), DIMENSION(d1,d2,d3), OPTIONAL,INTENT(out) :: clt4D4 |
---|
| 352 | |
---|
| 353 | ! Local |
---|
| 354 | INTEGER :: i,j,k |
---|
| 355 | |
---|
| 356 | !!!!!!! Variables |
---|
| 357 | ! cldfra[1-4]D: cloud fraction values [1] |
---|
| 358 | ! Ndim: number of dimensions of the input data |
---|
| 359 | ! d[1-4]: dimensions of 'cldfra' |
---|
| 360 | ! zdim: number of the vertical-dimension within the matrix |
---|
| 361 | ! clt1D: total cloudiness for the 1D cldfra |
---|
| 362 | ! clt2D1: total cloudiness for the 2D cldfra and d1 being 'zdim' |
---|
| 363 | ! clt2D2: total cloudiness for the 2D cldfra and d2 being 'zdim' |
---|
| 364 | ! clt3D1: total cloudiness for the 3D cldfra and d1 being 'zdim' |
---|
| 365 | ! clt3D2: total cloudiness for the 3D cldfra and d2 being 'zdim' |
---|
| 366 | ! clt3D3: total cloudiness for the 3D cldfra and d3 being 'zdim' |
---|
| 367 | ! clt4D1: total cloudiness for the 4D cldfra and d1 being 'zdim' |
---|
| 368 | ! clt4D2: total cloudiness for the 4D cldfra and d2 being 'zdim' |
---|
| 369 | ! clt4D3: total cloudiness for the 4D cldfra and d3 being 'zdim' |
---|
| 370 | ! clt4D4: total cloudiness for the 4D cldfra and d4 being 'zdim' |
---|
| 371 | |
---|
| 372 | fname = 'compute_clt' |
---|
| 373 | |
---|
| 374 | SELECT CASE (Ndim) |
---|
| 375 | CASE (1) |
---|
| 376 | clt1D = var_clt(cldfra1D, d1) |
---|
| 377 | CASE (2) |
---|
| 378 | IF (zdim == 1) THEN |
---|
| 379 | DO i=1, d2 |
---|
| 380 | clt2D1(i) = var_clt(cldfra2D(:,i), d1) |
---|
| 381 | END DO |
---|
| 382 | ELSE IF (zdim == 2) THEN |
---|
| 383 | DO i=1, d1 |
---|
| 384 | clt2D2(i) = var_clt(cldfra2D(:,i), d2) |
---|
| 385 | END DO |
---|
| 386 | ELSE |
---|
| 387 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 388 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 389 | PRINT *,' accepted values: 1,2' |
---|
| 390 | STOP |
---|
| 391 | END IF |
---|
| 392 | CASE (3) |
---|
| 393 | IF (zdim == 1) THEN |
---|
| 394 | DO i=1, d2 |
---|
| 395 | DO j=1, d3 |
---|
| 396 | clt3D1(i,j) = var_clt(cldfra3D(:,i,j), d1) |
---|
| 397 | END DO |
---|
| 398 | END DO |
---|
| 399 | ELSE IF (zdim == 2) THEN |
---|
| 400 | DO i=1, d1 |
---|
| 401 | DO j=1, d3 |
---|
| 402 | clt3D2(i,j) = var_clt(cldfra3D(i,:,j), d2) |
---|
| 403 | END DO |
---|
| 404 | END DO |
---|
| 405 | ELSE IF (zdim == 3) THEN |
---|
| 406 | DO i=1, d1 |
---|
| 407 | DO j=1, d2 |
---|
| 408 | clt3D3(i,j) = var_clt(cldfra3D(i,j,:), d3) |
---|
| 409 | END DO |
---|
| 410 | END DO |
---|
| 411 | ELSE |
---|
| 412 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 413 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 414 | PRINT *,' accepted values: 1,2,3' |
---|
| 415 | STOP |
---|
| 416 | END IF |
---|
| 417 | CASE (4) |
---|
| 418 | IF (zdim == 1) THEN |
---|
| 419 | DO i=1, d2 |
---|
| 420 | DO j=1, d3 |
---|
| 421 | DO k=1, d4 |
---|
| 422 | clt4D1(i,j,k) = var_clt(cldfra4D(:,i,j,k), d1) |
---|
| 423 | END DO |
---|
| 424 | END DO |
---|
| 425 | END DO |
---|
| 426 | ELSE IF (zdim == 2) THEN |
---|
| 427 | DO i=1, d1 |
---|
| 428 | DO j=1, d3 |
---|
| 429 | DO k=1, d4 |
---|
| 430 | clt4D2(i,j,k) = var_clt(cldfra4D(i,:,j,k), d2) |
---|
| 431 | END DO |
---|
| 432 | END DO |
---|
| 433 | END DO |
---|
| 434 | ELSE IF (zdim == 3) THEN |
---|
| 435 | DO i=1, d2 |
---|
| 436 | DO j=1, d3 |
---|
| 437 | DO k=1, d4 |
---|
| 438 | clt4D3(i,j,k) = var_clt(cldfra4D(i,j,:,k), d3) |
---|
| 439 | END DO |
---|
| 440 | END DO |
---|
| 441 | END DO |
---|
| 442 | ELSE IF (zdim == 4) THEN |
---|
| 443 | DO i=1, d1 |
---|
| 444 | DO j=1, d2 |
---|
| 445 | DO k=1, d3 |
---|
| 446 | clt4D4(i,j,k) = var_clt(cldfra4D(i,j,k,:), d4) |
---|
| 447 | END DO |
---|
| 448 | END DO |
---|
| 449 | END DO |
---|
| 450 | ELSE |
---|
| 451 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 452 | PRINT *,' ' // TRIM(fname) // ': wrong zdim:', zdim,' for Ndim=', Ndim, ' !!' |
---|
| 453 | PRINT *,' accepted values: 1,2,3,4' |
---|
| 454 | STOP |
---|
| 455 | END IF |
---|
| 456 | CASE DEFAULT |
---|
| 457 | PRINT *,TRIM(ErrWarnMsg('err')) |
---|
| 458 | PRINT *,' ' // TRIM(fname) // ': Ndim:', Ndim,' not ready !!' |
---|
| 459 | STOP |
---|
| 460 | END SELECT |
---|
| 461 | |
---|
| 462 | RETURN |
---|
| 463 | |
---|
| 464 | END SUBROUTINE compute_clt |
---|
| 465 | |
---|
[1762] | 466 | SUBROUTINE compute_massvertint1D(var, mutot, dz, deta, integral) |
---|
| 467 | ! Subroutine to vertically integrate a 1D variable in eta vertical coordinates |
---|
| 468 | |
---|
| 469 | IMPLICIT NONE |
---|
| 470 | |
---|
| 471 | INTEGER, INTENT(in) :: dz |
---|
| 472 | REAL(r_k), INTENT(in) :: mutot |
---|
| 473 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta |
---|
| 474 | REAL(r_k), INTENT(out) :: integral |
---|
| 475 | |
---|
| 476 | ! Local |
---|
| 477 | INTEGER :: k |
---|
| 478 | |
---|
| 479 | !!!!!!! Variables |
---|
| 480 | ! var: vertical variable to integrate (assuming kgkg-1) |
---|
| 481 | ! mutot: total dry-air mass in column |
---|
| 482 | ! dz: vertical dimension |
---|
| 483 | ! deta: eta-levels difference between full eta-layers |
---|
| 484 | |
---|
| 485 | fname = 'compute_massvertint1D' |
---|
| 486 | |
---|
| 487 | ! integral=0. |
---|
| 488 | ! DO k=1,dz |
---|
| 489 | ! integral = integral + var(k)*deta(k) |
---|
| 490 | ! END DO |
---|
| 491 | integral = SUM(var*deta) |
---|
| 492 | |
---|
| 493 | integral=integral*mutot/g |
---|
| 494 | |
---|
| 495 | RETURN |
---|
| 496 | |
---|
| 497 | END SUBROUTINE compute_massvertint1D |
---|
| 498 | |
---|
| 499 | SUBROUTINE compute_zint4D(var4D, dlev, zweight, d1, d2, d3, d4, int3D) |
---|
| 500 | ! Subroutine to vertically integrate a 4D variable in any vertical coordinates |
---|
| 501 | |
---|
| 502 | IMPLICIT NONE |
---|
| 503 | |
---|
| 504 | INTEGER, INTENT(in) :: d1,d2,d3,d4 |
---|
| 505 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: var4D, dlev, zweight |
---|
| 506 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: int3D |
---|
| 507 | |
---|
| 508 | ! Local |
---|
| 509 | INTEGER :: i,j,l |
---|
| 510 | |
---|
| 511 | !!!!!!! Variables |
---|
| 512 | ! var4D: vertical variable to integrate |
---|
| 513 | ! dlev: height of layers |
---|
| 514 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
| 515 | |
---|
| 516 | fname = 'compute_zint4D' |
---|
| 517 | |
---|
| 518 | DO i=1,d1 |
---|
| 519 | DO j=1,d2 |
---|
| 520 | DO l=1,d4 |
---|
| 521 | CALL compute_vertint1D(var4D(i,j,:,l),d3, dlev(i,j,:,l), zweight(i,j,:,l), & |
---|
| 522 | int3D(i,j,l)) |
---|
| 523 | END DO |
---|
| 524 | END DO |
---|
| 525 | END DO |
---|
| 526 | |
---|
| 527 | RETURN |
---|
| 528 | |
---|
| 529 | END SUBROUTINE compute_zint4D |
---|
| 530 | |
---|
| 531 | SUBROUTINE compute_vertint1D(var, dz, deta, zweight, integral) |
---|
| 532 | ! Subroutine to vertically integrate a 1D variable in any vertical coordinates |
---|
| 533 | |
---|
| 534 | IMPLICIT NONE |
---|
| 535 | |
---|
| 536 | INTEGER, INTENT(in) :: dz |
---|
| 537 | REAL(r_k), DIMENSION(dz), INTENT(in) :: var, deta, zweight |
---|
| 538 | REAL(r_k), INTENT(out) :: integral |
---|
| 539 | |
---|
| 540 | ! Local |
---|
| 541 | INTEGER :: k |
---|
| 542 | |
---|
| 543 | !!!!!!! Variables |
---|
| 544 | ! var: vertical variable to integrate |
---|
| 545 | ! dz: vertical dimension |
---|
| 546 | ! deta: eta-levels difference between layers |
---|
| 547 | ! zweight: weight for each level to be applied (=1. for no effect) |
---|
| 548 | |
---|
| 549 | fname = 'compute_vertint1D' |
---|
| 550 | |
---|
| 551 | ! integral=0. |
---|
| 552 | ! DO k=1,dz |
---|
| 553 | ! integral = integral + var(k)*deta(k) |
---|
| 554 | ! END DO |
---|
| 555 | integral = SUM(var*deta*zweight) |
---|
| 556 | |
---|
| 557 | RETURN |
---|
| 558 | |
---|
| 559 | END SUBROUTINE compute_vertint1D |
---|
| 560 | |
---|
[1759] | 561 | SUBROUTINE compute_cape_afwa4D(ta, hur, press, zg, hgt, cape, cin, zlfc, plfc, li, parcelmethod, & |
---|
| 562 | d1, d2, d3, d4) |
---|
| 563 | ! Subroutine to use WRF phys/module_diag_afwa.F `buyoancy' subroutine to compute CAPE, CIN, ZLFC, PLFC, LI |
---|
| 564 | |
---|
| 565 | IMPLICIT NONE |
---|
| 566 | |
---|
| 567 | INTEGER, INTENT(in) :: d1, d2, d3, d4, parcelmethod |
---|
| 568 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ta, hur, press, zg |
---|
| 569 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 570 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: cape, cin, zlfc, plfc, li |
---|
| 571 | |
---|
| 572 | ! Local |
---|
| 573 | INTEGER :: i, j, it |
---|
| 574 | INTEGER :: ofunc |
---|
| 575 | |
---|
| 576 | !!!!!!! Variables |
---|
| 577 | ! ta: air temperature [K] |
---|
| 578 | ! hur: relative humidity [%] |
---|
| 579 | ! press: air pressure [Pa] |
---|
| 580 | ! zg: geopotential height [gpm] |
---|
| 581 | ! hgt: topographical height [m] |
---|
| 582 | ! cape: Convective available potential energy [Jkg-1] |
---|
| 583 | ! cin: Convective inhibition [Jkg-1] |
---|
| 584 | ! zlfc: height at the Level of free convection [m] |
---|
| 585 | ! plfc: pressure at the Level of free convection [Pa] |
---|
| 586 | ! li: lifted index [1] |
---|
| 587 | ! parcelmethod: |
---|
| 588 | ! Most Unstable = 1 (default) |
---|
| 589 | ! Mean layer = 2 |
---|
| 590 | ! Surface based = 3 |
---|
| 591 | |
---|
| 592 | fname = 'compute_cape_afwa4D' |
---|
| 593 | |
---|
| 594 | DO i=1, d1 |
---|
| 595 | DO j=1, d2 |
---|
| 596 | DO it=1, d4 |
---|
| 597 | ofunc = var_cape_afwa1D(d3, ta(i,j,:,it), hur(i,j,:,it), press(i,j,:,it), zg(i,j,:,it), & |
---|
| 598 | 1, cape(i,j,it), cin(i,j,it), zlfc(i,j,it), plfc(i,j,it), li(i,j,it), parcelmethod) |
---|
[1833] | 599 | IF (zlfc(i,j,it) /= -1.) zlfc(i,j,it) = zlfc(i,j,it) - hgt(i,j) |
---|
[1759] | 600 | END DO |
---|
| 601 | END DO |
---|
| 602 | END DO |
---|
| 603 | |
---|
| 604 | RETURN |
---|
| 605 | |
---|
| 606 | END SUBROUTINE compute_cape_afwa4D |
---|
| 607 | |
---|
[1795] | 608 | SUBROUTINE compute_psl_ecmwf(ps, hgt, T, press, unpress, psl, d1, d2, d4) |
---|
| 609 | ! Subroutine to compute sea level pressure using ECMWF method following Mats Hamrud and Philippe Courtier [Pa] |
---|
| 610 | |
---|
| 611 | IMPLICIT NONE |
---|
| 612 | |
---|
| 613 | INTEGER, INTENT(in) :: d1, d2, d4 |
---|
| 614 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: ps, T, press, unpress |
---|
| 615 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 616 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: psl |
---|
| 617 | |
---|
| 618 | ! Local |
---|
| 619 | INTEGER :: i, j, it |
---|
| 620 | |
---|
| 621 | !!!!!!! Variables |
---|
| 622 | ! ps: surface pressure [Pa] |
---|
| 623 | ! hgt: terrain height [m] |
---|
| 624 | ! T: temperature at first half-mass level [K] |
---|
| 625 | ! press: pressure at first full levels [Pa] |
---|
| 626 | ! unpress: pressure at first mass (half) levels [Pa] |
---|
| 627 | ! psl: sea-level pressure [Pa] |
---|
| 628 | |
---|
| 629 | fname = 'compute_psl_ecmwf' |
---|
| 630 | |
---|
| 631 | DO i=1, d1 |
---|
| 632 | DO j=1, d2 |
---|
| 633 | DO it=1, d4 |
---|
| 634 | CALL var_psl_ecmwf(ps(i,j,it), hgt(i,j), T(i,j,it), unpress(i,j,it), press(i,j,it), & |
---|
| 635 | psl(i,j,it)) |
---|
| 636 | END DO |
---|
| 637 | END DO |
---|
| 638 | END DO |
---|
| 639 | |
---|
| 640 | RETURN |
---|
| 641 | |
---|
| 642 | END SUBROUTINE compute_psl_ecmwf |
---|
| 643 | |
---|
[1773] | 644 | SUBROUTINE compute_zmla_generic4D(tpot, qratio, z, hgt, zmla3D, d1, d2, d3, d4) |
---|
| 645 | ! Subroutine to compute pbl-height following a generic method |
---|
| 646 | ! from Nielsen-Gammon et al., 2008 J. Appl. Meteor. Clim. |
---|
| 647 | ! applied also in Garcia-Diez et al., 2013, QJRMS |
---|
| 648 | ! where |
---|
| 649 | ! "The technique identifies the ML height as a threshold increase of potential temperature from |
---|
| 650 | ! its minimum value within the boundary layer." |
---|
| 651 | ! here applied similarly to Garcia-Diez et al. where |
---|
| 652 | ! zmla = "...first level where potential temperature exceeds the minimum potential temperature |
---|
| 653 | ! reached in the mixed layer by more than 1.5 K" |
---|
| 654 | |
---|
| 655 | IMPLICIT NONE |
---|
| 656 | |
---|
| 657 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 658 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: tpot, qratio, z |
---|
| 659 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: hgt |
---|
| 660 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: zmla3D |
---|
| 661 | |
---|
| 662 | ! Local |
---|
| 663 | INTEGER :: i, j, it |
---|
| 664 | |
---|
| 665 | !!!!!!! Variables |
---|
| 666 | ! tpot: potential air temperature [K] |
---|
| 667 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
| 668 | ! z: height above sea level [m] |
---|
| 669 | ! hgt: terrain height [m] |
---|
| 670 | ! zmla3D: boundary layer height from surface [m] |
---|
| 671 | |
---|
| 672 | fname = 'compute_zmla_generic4D' |
---|
| 673 | |
---|
| 674 | DO i=1, d1 |
---|
| 675 | DO j=1, d2 |
---|
| 676 | DO it=1, d4 |
---|
| 677 | CALL var_zmla_generic(d3, qratio(i,j,:,it), tpot(i,j,:,it), z(i,j,:,it), hgt(i,j), & |
---|
| 678 | zmla3D(i,j,it)) |
---|
| 679 | END DO |
---|
| 680 | END DO |
---|
| 681 | END DO |
---|
| 682 | |
---|
| 683 | RETURN |
---|
| 684 | |
---|
| 685 | END SUBROUTINE compute_zmla_generic4D |
---|
| 686 | |
---|
[1777] | 687 | SUBROUTINE compute_zwind4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
[1776] | 688 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1773] | 689 | |
---|
[1776] | 690 | IMPLICIT NONE |
---|
| 691 | |
---|
| 692 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
[1777] | 693 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
[1776] | 694 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
[1777] | 695 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
[1776] | 696 | REAL(r_k), INTENT(in) :: zextrap |
---|
| 697 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
| 698 | |
---|
| 699 | ! Local |
---|
| 700 | INTEGER :: i, j, it |
---|
| 701 | |
---|
| 702 | !!!!!!! Variables |
---|
| 703 | ! tpot: potential air temperature [K] |
---|
| 704 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
[1777] | 705 | ! z: height above surface [m] |
---|
[1776] | 706 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 707 | ! zmla3D: boundary layer height from surface [m] |
---|
| 708 | |
---|
| 709 | fname = 'compute_zwind4D' |
---|
| 710 | |
---|
| 711 | DO i=1, d1 |
---|
| 712 | DO j=1, d2 |
---|
| 713 | DO it=1, d4 |
---|
[1777] | 714 | CALL var_zwind(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
| 715 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
[1776] | 716 | END DO |
---|
| 717 | END DO |
---|
| 718 | END DO |
---|
| 719 | |
---|
| 720 | RETURN |
---|
| 721 | |
---|
| 722 | END SUBROUTINE compute_zwind4D |
---|
| 723 | |
---|
[1784] | 724 | SUBROUTINE compute_zwind_log4D(ua, va, z, uas, vas, sina, cosa, zextrap, uaz, vaz, d1, d2, d3, d4) |
---|
| 725 | ! Subroutine to compute extrapolate the wind at a given height following the 'logarithmic law' methodology |
---|
| 726 | |
---|
| 727 | IMPLICIT NONE |
---|
| 728 | |
---|
| 729 | INTEGER, INTENT(in) :: d1, d2, d3, d4 |
---|
| 730 | REAL(r_k), DIMENSION(d1,d2,d3,d4), INTENT(in) :: ua, va, z |
---|
| 731 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(in) :: uas, vas |
---|
| 732 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
| 733 | REAL(r_k), INTENT(in) :: zextrap |
---|
| 734 | REAL(r_k), DIMENSION(d1,d2,d4), INTENT(out) :: uaz, vaz |
---|
| 735 | |
---|
| 736 | ! Local |
---|
| 737 | INTEGER :: i, j, it |
---|
| 738 | |
---|
| 739 | !!!!!!! Variables |
---|
| 740 | ! tpot: potential air temperature [K] |
---|
| 741 | ! qratio: water vapour mixing ratio [kgkg-1] |
---|
| 742 | ! z: height above surface [m] |
---|
| 743 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 744 | ! zmla3D: boundary layer height from surface [m] |
---|
| 745 | |
---|
| 746 | fname = 'compute_zwind_log4D' |
---|
| 747 | |
---|
| 748 | DO i=1, d1 |
---|
| 749 | DO j=1, d2 |
---|
| 750 | DO it=1, d4 |
---|
| 751 | CALL var_zwind_log(d3, ua(i,j,:,it), va(i,j,:,it), z(i,j,:,it), uas(i,j,it), vas(i,j,it), & |
---|
| 752 | sina(i,j), cosa(i,j), zextrap, uaz(i,j,it), vaz(i,j,it)) |
---|
| 753 | END DO |
---|
| 754 | END DO |
---|
| 755 | END DO |
---|
| 756 | |
---|
| 757 | RETURN |
---|
| 758 | |
---|
| 759 | END SUBROUTINE compute_zwind_log4D |
---|
| 760 | |
---|
[1783] | 761 | SUBROUTINE compute_zwindMO3D(d1, d2, d3, ust, znt, rmol, uas, vas, sina, cosa, newz, uznew, vznew) |
---|
| 762 | ! Subroutine to compute extrapolate the wind at a given height following the 'power law' methodology |
---|
[1784] | 763 | ! NOTE: only usefull for newz < 80. m |
---|
[1783] | 764 | |
---|
| 765 | IMPLICIT NONE |
---|
| 766 | |
---|
| 767 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 768 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: ust, znt, rmol |
---|
| 769 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: uas, vas |
---|
| 770 | REAL(r_k), DIMENSION(d1,d2), INTENT(in) :: sina, cosa |
---|
| 771 | REAL(r_k), INTENT(in) :: newz |
---|
| 772 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: uznew, vznew |
---|
| 773 | |
---|
| 774 | ! Local |
---|
| 775 | INTEGER :: i, j, it |
---|
| 776 | |
---|
| 777 | !!!!!!! Variables |
---|
| 778 | ! ust: u* in similarity theory [ms-1] |
---|
| 779 | ! znt: thermal time-varying roughness length [m] |
---|
| 780 | ! rmol: Inverse of the Obukhov length [m-1] |
---|
| 781 | ! uas: x-component 10-m wind speed [ms-1] |
---|
| 782 | ! vas: y-component 10-m wind speed [ms-1] |
---|
| 783 | ! sina, cosa: local sine and cosine of map rotation [1.] |
---|
| 784 | |
---|
| 785 | fname = 'compute_zwindMO3D' |
---|
| 786 | |
---|
| 787 | DO i=1, d1 |
---|
| 788 | DO j=1, d2 |
---|
| 789 | DO it=1, d3 |
---|
| 790 | CALL var_zwind_MOtheor(ust(i,j,it), znt(i,j,it), rmol(i,j,it), uas(i,j,it), vas(i,j,it), & |
---|
| 791 | sina(i,j), cosa(i,j), newz, uznew(i,j,it), vznew(i,j,it)) |
---|
| 792 | END DO |
---|
| 793 | END DO |
---|
| 794 | END DO |
---|
| 795 | |
---|
| 796 | RETURN |
---|
| 797 | |
---|
| 798 | END SUBROUTINE compute_zwindMO3D |
---|
| 799 | |
---|
[1804] | 800 | SUBROUTINE compute_potevap_orPM3D(d1, d2, d3, rho1, ust, uas, vas, tas, ps, qv1, potevap) |
---|
| 801 | ! Subroutine to compute potential evapotranspiration Penman-Monteith formulation implemented in |
---|
[1833] | 802 | ! ORCHIDEE in src_sechiba/enerbil.f90 |
---|
[1804] | 803 | |
---|
| 804 | IMPLICIT NONE |
---|
| 805 | |
---|
| 806 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 807 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: rho1, ust, uas, vas, tas, ps, qv1 |
---|
| 808 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: potevap |
---|
| 809 | |
---|
| 810 | ! Local |
---|
| 811 | INTEGER :: i, j, it |
---|
| 812 | |
---|
| 813 | !!!!!!! Variables |
---|
| 814 | ! rho1: atsmophere density at the first layer [kgm-3] |
---|
| 815 | ! ust: u* in similarity theory [ms-1] |
---|
| 816 | ! uas: x-component 10-m wind speed [ms-1] |
---|
| 817 | ! vas: y-component 10-m wind speed [ms-1] |
---|
| 818 | ! tas: 2-m atmosphere temperature [K] |
---|
| 819 | ! ps: surface pressure [Pa] |
---|
| 820 | ! qv1: 1st layer atmospheric mixing ratio [kgkg-1] |
---|
| 821 | ! potevap: potential evapo transpiration [kgm-2s-1] |
---|
| 822 | |
---|
| 823 | fname = 'compute_potevap_orPM3D' |
---|
| 824 | |
---|
| 825 | DO i=1, d1 |
---|
| 826 | DO j=1, d2 |
---|
| 827 | DO it=1, d3 |
---|
| 828 | CALL var_potevap_orPM(rho1(i,j,it), ust(i,j,it), uas(i,j,it), vas(i,j,it), tas(i,j,it), & |
---|
| 829 | ps(i,j,it), qv1(i,j,it), potevap(i,j,it)) |
---|
| 830 | END DO |
---|
| 831 | END DO |
---|
| 832 | END DO |
---|
| 833 | |
---|
| 834 | RETURN |
---|
| 835 | |
---|
| 836 | END SUBROUTINE compute_potevap_orPM3D |
---|
| 837 | |
---|
[1908] | 838 | SUBROUTINE compute_fog_K84(d1, d2, d3, qc, qi, fog, vis) |
---|
| 839 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
| 840 | ! And visibility following Kunkel, B. A., (1984): Parameterization of droplet terminal velocity and |
---|
| 841 | ! extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 34â41. |
---|
| 842 | |
---|
| 843 | IMPLICIT NONE |
---|
| 844 | |
---|
| 845 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 846 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qc, qi |
---|
| 847 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 848 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 849 | |
---|
| 850 | ! Local |
---|
| 851 | INTEGER :: i, j, it |
---|
| 852 | |
---|
| 853 | !!!!!!! Variables |
---|
| 854 | ! qc: cloud mixing ratio [kgkg-1] |
---|
| 855 | ! qi, ice mixing ratio [kgkg-1] |
---|
| 856 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 857 | ! vis: visibility within fog [km] |
---|
| 858 | |
---|
| 859 | fname = 'compute_fog_K84' |
---|
| 860 | |
---|
| 861 | DO i=1, d1 |
---|
| 862 | DO j=1, d2 |
---|
| 863 | DO it=1, d3 |
---|
| 864 | CALL var_fog_K84(qc(i,j,it), qi(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
| 865 | END DO |
---|
| 866 | END DO |
---|
| 867 | END DO |
---|
| 868 | |
---|
| 869 | RETURN |
---|
| 870 | |
---|
| 871 | END SUBROUTINE compute_fog_K84 |
---|
| 872 | |
---|
[1909] | 873 | SUBROUTINE compute_fog_RUC(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
[1908] | 874 | ! Subroutine to compute fog: qcloud + qice /= 0. |
---|
| 875 | ! And visibility following RUC method Smirnova, T. G., S. G. Benjamin, and J. M. Brown, 2000: Case |
---|
| 876 | ! study verification of RUC/MAPS fog and visibility forecasts. Preprints, 9 th Conference on |
---|
| 877 | ! Aviation, Range, and Aerospace Meteorlogy, AMS, Orlando, FL, Sep. 2000. Paper#2.3, 6 pp. |
---|
| 878 | |
---|
| 879 | IMPLICIT NONE |
---|
| 880 | |
---|
| 881 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
[1909] | 882 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
[1908] | 883 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 884 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 885 | |
---|
| 886 | ! Local |
---|
| 887 | INTEGER :: i, j, it |
---|
| 888 | |
---|
| 889 | !!!!!!! Variables |
---|
[1909] | 890 | ! qv: water vapor mixing ratio [kgkg-1] |
---|
| 891 | ! ta: temperature [K] |
---|
| 892 | ! pres: pressure [Pa] |
---|
[1908] | 893 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 894 | ! vis: visibility within fog [km] |
---|
| 895 | |
---|
[1909] | 896 | fname = 'compute_fog_RUC' |
---|
[1908] | 897 | |
---|
| 898 | DO i=1, d1 |
---|
| 899 | DO j=1, d2 |
---|
| 900 | DO it=1, d3 |
---|
[1909] | 901 | CALL var_fog_RUC(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
[1908] | 902 | END DO |
---|
| 903 | END DO |
---|
| 904 | END DO |
---|
| 905 | |
---|
| 906 | RETURN |
---|
| 907 | |
---|
| 908 | END SUBROUTINE compute_fog_RUC |
---|
| 909 | |
---|
[1909] | 910 | SUBROUTINE compute_fog_FRAML50(d1, d2, d3, qv, ta, pres, fog, vis) |
---|
| 911 | ! Subroutine to compute fog (vis < 1 km) and visibility following |
---|
| 912 | ! Gultepe, I. and J.A. Milbrandt, 2010: Probabilistic Parameterizations of Visibility Using |
---|
| 913 | ! Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteor. |
---|
| 914 | ! Climatol., 49, 36-46, https://doi.org/10.1175/2009JAMC1927.1 |
---|
| 915 | ! Interest is focused on a 'general' fog/visibilty approach, thus the fit at 50 % of probability is |
---|
| 916 | ! chosen |
---|
| 917 | ! Effects from precipitation are not considered |
---|
| 918 | |
---|
| 919 | IMPLICIT NONE |
---|
| 920 | |
---|
| 921 | INTEGER, INTENT(in) :: d1, d2, d3 |
---|
| 922 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(in) :: qv, ta, pres |
---|
| 923 | INTEGER, DIMENSION(d1,d2,d3), INTENT(out) :: fog |
---|
| 924 | REAL(r_k), DIMENSION(d1,d2,d3), INTENT(out) :: vis |
---|
| 925 | |
---|
| 926 | ! Local |
---|
| 927 | INTEGER :: i, j, it |
---|
| 928 | |
---|
| 929 | !!!!!!! Variables |
---|
| 930 | ! qv: mixing ratio in [kgkg-1] |
---|
| 931 | ! ta: temperature [K] |
---|
| 932 | ! pres: pressure field [Pa] |
---|
| 933 | ! fog: presence of fog (1: yes, 0: no) |
---|
| 934 | ! vis: visibility within fog [km] |
---|
| 935 | |
---|
| 936 | fname = 'compute_fog_FRAML50' |
---|
| 937 | |
---|
| 938 | DO i=1, d1 |
---|
| 939 | DO j=1, d2 |
---|
| 940 | DO it=1, d3 |
---|
| 941 | CALL var_fog_FRAML50(qv(i,j,it), ta(i,j,it), pres(i,j,it), fog(i,j,it), vis(i,j,it)) |
---|
| 942 | END DO |
---|
| 943 | END DO |
---|
| 944 | END DO |
---|
| 945 | |
---|
| 946 | RETURN |
---|
| 947 | |
---|
| 948 | END SUBROUTINE compute_fog_FRAML50 |
---|
| 949 | |
---|
[770] | 950 | END MODULE module_ForDiagnostics |
---|