1 | # Python tools to manage netCDF files. |
---|
2 | # L. Fita, CIMA. Mrch 2019 |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | ## Script for geometry calculations and operations as well as definition of different |
---|
10 | ### standard objects and shapes |
---|
11 | |
---|
12 | import numpy as np |
---|
13 | import matplotlib as mpl |
---|
14 | from mpl_toolkits.mplot3d import Axes3D |
---|
15 | import matplotlib.pyplot as plt |
---|
16 | import os |
---|
17 | import generic_tools as gen |
---|
18 | import numpy.ma as ma |
---|
19 | import module_ForSci as sci |
---|
20 | |
---|
21 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
22 | infmsg = 'INFORMATION -- information -- INFORMATION -- information' |
---|
23 | |
---|
24 | ####### Contents: |
---|
25 | # cut_between_[x/y]polygon: Function to cut a polygon between 2 given value of the [x/y]-axis |
---|
26 | # cut_[x/y]polygon: Function to cut a polygon from a given value of the [x/y]-axis |
---|
27 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
28 | # dist_points: Function to provide the distance between two points |
---|
29 | # join_circ_sec: Function to join aa series of points by circular segments |
---|
30 | # join_circ_sec_rand: Function to join aa series of points by circular segments with |
---|
31 | # random perturbations |
---|
32 | # max_coords_poly: Function to provide the extremes of the coordinates of a polygon |
---|
33 | # mirror_polygon: Function to reflex a polygon for a given axis |
---|
34 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
35 | # cartesian coordinates over an sphere |
---|
36 | # read_join_poly: Function to read an ASCII file with the combination of polygons |
---|
37 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
38 | # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon |
---|
39 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
40 | # certain angle in the plain |
---|
41 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
42 | # coordinates by a certain angle in the plain |
---|
43 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
44 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
45 | # val_between: Function to provide if a given value is between two consecutive ones |
---|
46 | # write_join_poly: Function to write an ASCII file with the combination of polygons |
---|
47 | |
---|
48 | ## Shapes/objects |
---|
49 | # buoy1: Function to draw a buoy as superposition of prism and section of ball |
---|
50 | # band_lighthouse: Function to plot a lighthouse with spiral bands |
---|
51 | # circ_sec: Function union of point A and B by a section of a circle |
---|
52 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
53 | # green_buoy1: Function to draw a green mark buoy using buoy1 |
---|
54 | # isolateddanger_buoy1: Function to draw an isolated danger buoy using buoy1 |
---|
55 | # p_angle_triangle: Function to draw a triangle by an initial point and two |
---|
56 | # consecutive angles and the first length of face. The third angle and 2 and 3rd |
---|
57 | # face will be computed accordingly the provided values |
---|
58 | # p_doubleArrow: Function to provide an arrow with double lines |
---|
59 | # p_circle: Function to get a polygon of a circle |
---|
60 | # p_cross_width: Function to draw a cross with arms with a given width and an angle |
---|
61 | # p_prism: Function to get a polygon prism |
---|
62 | # p_reg_polygon: Function to provide a regular polygon of Nv vertices |
---|
63 | # p_reg_star: Function to provide a regular star of Nv vertices |
---|
64 | # p_sinusiode: Function to get coordinates of a sinusoidal curve |
---|
65 | # p_square: Function to get a polygon square |
---|
66 | # p_spiral: Function to provide a polygon of an Archimedean spiral |
---|
67 | # p_triangle: Function to provide the polygon of a triangle from its 3 vertices |
---|
68 | # prefchannelport[A/B]_buoy1: Function to draw a preferred channel port system |
---|
69 | # [A/B] buoy using buoy1 |
---|
70 | # prefchannelstarboard[A/B]_buoy1: Function to draw a preferred channel starboard |
---|
71 | # system [A/B] buoy using buoy1 |
---|
72 | # red_buoy1: Function to draw a red mark buoy using buoy1 |
---|
73 | # safewater_buoy1: Function to draw a safe water mark buoy using buoy1 |
---|
74 | # special_buoy1: Function to draw an special mark buoy using buoy1 |
---|
75 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
76 | # z_boat: Function to define an schematic boat from the z-plane |
---|
77 | # zsailing_boat: Function to define an schematic sailing boat from the z-plane with sails |
---|
78 | # zisland1: Function to draw an island from z-axis as the union of a series of points by |
---|
79 | # circular segments |
---|
80 | |
---|
81 | ## Plotting |
---|
82 | # paint_filled: Function to draw an object filling given sections |
---|
83 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
84 | # also drawn |
---|
85 | # [north/east/south/west_buoy1: Function to draw a [North/East/South/West] danger buoy using buoy1 |
---|
86 | |
---|
87 | def deg_deci(angle): |
---|
88 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
89 | angle: list of [deg, minute, sec] to pass |
---|
90 | >>> deg_deci([41., 58., 34.]) |
---|
91 | 0.732621346072 |
---|
92 | """ |
---|
93 | fname = 'deg_deci' |
---|
94 | |
---|
95 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
96 | |
---|
97 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
98 | else: deg = deg*np.pi/180. |
---|
99 | |
---|
100 | return deg |
---|
101 | |
---|
102 | def position_sphere(radii, alpha, beta): |
---|
103 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
104 | coordinates over an sphere |
---|
105 | radii: radii of the sphere |
---|
106 | alpha: longitude of the point |
---|
107 | beta: latitude of the point |
---|
108 | >>> position_sphere(10., 30., 45.) |
---|
109 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
110 | """ |
---|
111 | fname = 'position_sphere' |
---|
112 | |
---|
113 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
114 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
115 | zpt = radii*np.sin(beta) |
---|
116 | |
---|
117 | return xpt, ypt, zpt |
---|
118 | |
---|
119 | def spheric_line(radii,lon,lat): |
---|
120 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
121 | over an 3D space |
---|
122 | radii: radius of the sphere |
---|
123 | lon: array of angles along longitudes |
---|
124 | lat: array of angles along latitudes |
---|
125 | """ |
---|
126 | fname = 'spheric_line' |
---|
127 | |
---|
128 | Lint = lon.shape[0] |
---|
129 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
130 | |
---|
131 | for iv in range(Lint): |
---|
132 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
133 | |
---|
134 | return coords |
---|
135 | |
---|
136 | def rotate_2D(vector, angle): |
---|
137 | """ Function to rotate a vector by a certain angle in the plain |
---|
138 | vector= vector to rotate [y, x] |
---|
139 | angle= angle to rotate [rad] |
---|
140 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
141 | [ 0.70710678 -0.70710678] |
---|
142 | """ |
---|
143 | fname = 'rotate_2D' |
---|
144 | |
---|
145 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
146 | |
---|
147 | rotmat[0,0] = np.cos(angle) |
---|
148 | rotmat[0,1] = -np.sin(angle) |
---|
149 | rotmat[1,0] = np.sin(angle) |
---|
150 | rotmat[1,1] = np.cos(angle) |
---|
151 | |
---|
152 | rotvector = np.zeros((2), dtype=np.float) |
---|
153 | |
---|
154 | vecv = np.zeros((2), dtype=np.float) |
---|
155 | |
---|
156 | # Unifying vector |
---|
157 | modvec = vector[0]**2+vector[1]**2 |
---|
158 | if modvec != 0: |
---|
159 | vecv[0] = vector[1]/modvec |
---|
160 | vecv[1] = vector[0]/modvec |
---|
161 | |
---|
162 | rotvec = np.matmul(rotmat, vecv) |
---|
163 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
164 | |
---|
165 | rotvector[0] = rotvec[1]*modvec |
---|
166 | rotvector[1] = rotvec[0]*modvec |
---|
167 | |
---|
168 | return rotvector |
---|
169 | |
---|
170 | def rotate_polygon_2D(vectors, angle): |
---|
171 | """ Function to rotate 2D plain the vertices of a polygon |
---|
172 | line= matrix of vectors to rotate |
---|
173 | angle= angle to rotate [rad] |
---|
174 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
175 | >>> square[0,:] = [-0.5,-0.5] |
---|
176 | >>> square[1,:] = [0.5,-0.5] |
---|
177 | >>> square[2,:] = [0.5,0.5] |
---|
178 | >>> square[3,:] = [-0.5,0.5] |
---|
179 | >>> rotate_polygon_2D(square, np.pi/4.) |
---|
180 | [[-0.70710678 0. ] |
---|
181 | [ 0. -0.70710678] |
---|
182 | [ 0.70710678 0. ] |
---|
183 | [ 0. 0.70710678]] |
---|
184 | """ |
---|
185 | fname = 'rotate_polygon_2D' |
---|
186 | |
---|
187 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
188 | |
---|
189 | Nvecs = vectors.shape[0] |
---|
190 | for iv in range(Nvecs): |
---|
191 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
192 | |
---|
193 | return rotvecs |
---|
194 | |
---|
195 | def rotate_line2D(line, angle): |
---|
196 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
197 | angle in the plain |
---|
198 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
199 | angle= angle to rotate [rad] |
---|
200 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
201 | [[ 0. 0. ] |
---|
202 | [0.70710678 -0.70710678]] |
---|
203 | """ |
---|
204 | fname = 'rotate_2D' |
---|
205 | |
---|
206 | rotline = np.zeros((2,2), dtype=np.float) |
---|
207 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
208 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
209 | |
---|
210 | return rotline |
---|
211 | |
---|
212 | def rotate_lines2D(lines, angle): |
---|
213 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
214 | by a certain angle in the plain |
---|
215 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
216 | angle= angle to rotate [rad] |
---|
217 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
218 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
219 | >>> square[0,1,:] = [0.5,-0.5] |
---|
220 | >>> square[1,0,:] = [0.5,-0.5] |
---|
221 | >>> square[1,1,:] = [0.5,0.5] |
---|
222 | >>> square[2,0,:] = [0.5,0.5] |
---|
223 | >>> square[2,1,:] = [-0.5,0.5] |
---|
224 | >>> square[3,0,:] = [-0.5,0.5] |
---|
225 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
226 | >>> rotate_lines2D(square, np.pi/4.) |
---|
227 | [[[-0.70710678 0. ] |
---|
228 | [ 0. -0.70710678]] |
---|
229 | |
---|
230 | [[ 0. -0.70710678] |
---|
231 | [ 0.70710678 0. ]] |
---|
232 | |
---|
233 | [[ 0.70710678 0. ] |
---|
234 | [ 0. 0.70710678]] |
---|
235 | |
---|
236 | [[ 0. 0.70710678] |
---|
237 | [-0.70710678 0. ]]] |
---|
238 | """ |
---|
239 | fname = 'rotate_lines2D' |
---|
240 | |
---|
241 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
242 | |
---|
243 | Nlines = lines.shape[0] |
---|
244 | for il in range(Nlines): |
---|
245 | line = np.zeros((2,2), dtype=np.float) |
---|
246 | line[0,:] = lines[il,0,:] |
---|
247 | line[1,:] = lines[il,1,:] |
---|
248 | |
---|
249 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
250 | |
---|
251 | return rotlines |
---|
252 | |
---|
253 | def dist_points(ptA, ptB): |
---|
254 | """ Function to provide the distance between two points |
---|
255 | ptA: coordinates of the point A [yA, xA] |
---|
256 | ptB: coordinates of the point B [yB, xB] |
---|
257 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
258 | 2.82842712475 |
---|
259 | """ |
---|
260 | fname = 'dist_points' |
---|
261 | |
---|
262 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
263 | |
---|
264 | return dist |
---|
265 | |
---|
266 | def max_coords_poly(polygon): |
---|
267 | """ Function to provide the extremes of the coordinates of a polygon |
---|
268 | polygon: coordinates [Nvertexs, 2] of a polygon |
---|
269 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
270 | >>> square[0,:] = [-0.5,-0.5] |
---|
271 | >>> square[1,:] = [0.5,-0.5] |
---|
272 | >>> square[2,:] = [0.5,0.5] |
---|
273 | >>> square[3,:] = [-0.5,0.5] |
---|
274 | >>> max_coords_poly(square) |
---|
275 | [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 |
---|
276 | """ |
---|
277 | fname = 'max_coords_poly' |
---|
278 | |
---|
279 | # x-coordinate min/max |
---|
280 | nx = np.min(polygon[:,1]) |
---|
281 | xx = np.max(polygon[:,1]) |
---|
282 | |
---|
283 | # y-coordinate min/max |
---|
284 | ny = np.min(polygon[:,0]) |
---|
285 | xy = np.max(polygon[:,0]) |
---|
286 | |
---|
287 | # x/y-coordinate maximum of absolute values |
---|
288 | axx = np.max(np.abs(polygon[:,1])) |
---|
289 | ayx = np.max(np.abs(polygon[:,0])) |
---|
290 | |
---|
291 | # absolute maximum |
---|
292 | xyx = np.max([axx, ayx]) |
---|
293 | |
---|
294 | return [nx, xx], [ny, xy], [ayx, axx], xyx |
---|
295 | |
---|
296 | def mirror_polygon(polygon,axis): |
---|
297 | """ Function to reflex a polygon for a given axis |
---|
298 | polygon: polygon to mirror |
---|
299 | axis: axis at which mirror is located ('x' or 'y') |
---|
300 | """ |
---|
301 | fname = 'mirror_polygon' |
---|
302 | |
---|
303 | reflex = np.zeros(polygon.shape, dtype=np.float) |
---|
304 | |
---|
305 | N = polygon.shape[0] |
---|
306 | if axis == 'x': |
---|
307 | for iv in range(N): |
---|
308 | reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] |
---|
309 | elif axis == 'y': |
---|
310 | for iv in range(N): |
---|
311 | reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] |
---|
312 | |
---|
313 | return reflex |
---|
314 | |
---|
315 | def join_circ_sec(points, radfrac=3., N=200): |
---|
316 | """ Function to join aa series of points by circular segments |
---|
317 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
318 | segments of radii as the radfrac factor of the distance between |
---|
319 | consecutive points) |
---|
320 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
321 | draw the circular segment (3., default) |
---|
322 | N: number of points (200, default) |
---|
323 | """ |
---|
324 | fname = 'join_circ_sec' |
---|
325 | |
---|
326 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
327 | |
---|
328 | # main points |
---|
329 | lpoints = list(points) |
---|
330 | Npts = len(lpoints) |
---|
331 | Np = int(N/(Npts+1)) |
---|
332 | for ip in range(Npts-1): |
---|
333 | p1 = lpoints[ip] |
---|
334 | p2 = lpoints[ip+1] |
---|
335 | dps = dist_points(p1, p2) |
---|
336 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np) |
---|
337 | |
---|
338 | Np2 = N - (Npts-1)*Np |
---|
339 | p1 = lpoints[Npts-1] |
---|
340 | p2 = lpoints[0] |
---|
341 | dps = dist_points(p1, p2) |
---|
342 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2) |
---|
343 | |
---|
344 | return jcirc_sec |
---|
345 | |
---|
346 | def join_circ_sec_rand(points, radfrac=3., Lrand=0.1, arc='short', pos='left', N=200): |
---|
347 | """ Function to join aa series of points by circular segments with random |
---|
348 | perturbations |
---|
349 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
350 | segments of radii as the radfrac factor of the distance between |
---|
351 | consecutive points) |
---|
352 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
353 | draw the circular segment (3., default) |
---|
354 | Lrand: maximum length of the random perturbation to be added perpendicularly to |
---|
355 | the direction of the union line between points (0.1, default) |
---|
356 | arc: type of arc ('short', default) |
---|
357 | pos: position of arc ('left', default) |
---|
358 | N: number of points (200, default) |
---|
359 | """ |
---|
360 | import random |
---|
361 | fname = 'join_circ_sec_rand' |
---|
362 | |
---|
363 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
364 | |
---|
365 | # main points |
---|
366 | lpoints = list(points) |
---|
367 | Npts = len(lpoints) |
---|
368 | Np = int(N/(Npts+1)) |
---|
369 | for ip in range(Npts-1): |
---|
370 | p1 = lpoints[ip] |
---|
371 | p2 = lpoints[ip+1] |
---|
372 | dps = dist_points(p1, p2) |
---|
373 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
374 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, arc, pos, Np) |
---|
375 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
376 | for iip in range(Np*ip,Np*(ip+1)): |
---|
377 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
378 | |
---|
379 | Np2 = N - (Npts-1)*Np |
---|
380 | p1 = lpoints[Npts-1] |
---|
381 | p2 = lpoints[0] |
---|
382 | dps = dist_points(p1, p2) |
---|
383 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
384 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., arc, pos, Np2) |
---|
385 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
386 | for iip in range(Np*(Npts-1),N): |
---|
387 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
388 | |
---|
389 | return jcirc_sec |
---|
390 | |
---|
391 | def write_join_poly(polys, flname='join_polygons.dat'): |
---|
392 | """ Function to write an ASCII file with the combination of polygons |
---|
393 | polys: dictionary with the names of the different polygons |
---|
394 | flname: name of the ASCII file |
---|
395 | """ |
---|
396 | fname = 'write_join_poly' |
---|
397 | |
---|
398 | of = open(flname, 'w') |
---|
399 | |
---|
400 | for polyn in polys.keys(): |
---|
401 | vertices = polys[polyn] |
---|
402 | Npts = vertices.shape[0] |
---|
403 | for ip in range(Npts): |
---|
404 | of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') |
---|
405 | |
---|
406 | of.close() |
---|
407 | |
---|
408 | return |
---|
409 | |
---|
410 | def read_join_poly(flname='join_polygons.dat'): |
---|
411 | """ Function to read an ASCII file with the combination of polygons |
---|
412 | flname: name of the ASCII file |
---|
413 | """ |
---|
414 | fname = 'read_join_poly' |
---|
415 | |
---|
416 | of = open(flname, 'r') |
---|
417 | |
---|
418 | polys = {} |
---|
419 | polyn = '' |
---|
420 | poly = [] |
---|
421 | for line in of: |
---|
422 | if len(line) > 1: |
---|
423 | linevals = line.replace('\n','').split(' ') |
---|
424 | if polyn != linevals[0]: |
---|
425 | if len(poly) > 1: |
---|
426 | polys[polyn] = np.array(poly) |
---|
427 | polyn = linevals[0] |
---|
428 | poly = [] |
---|
429 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
430 | else: |
---|
431 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
432 | |
---|
433 | of.close() |
---|
434 | polys[polyn] = np.array(poly) |
---|
435 | |
---|
436 | return polys |
---|
437 | |
---|
438 | def val_between(valA, valB, val): |
---|
439 | """ Function to provide if a given value is between two consecutive ones |
---|
440 | valA: first value |
---|
441 | valB: second value |
---|
442 | val: value to determine if it is between |
---|
443 | >>> val_between(0.5,1.5,0.8) |
---|
444 | True |
---|
445 | >>> val_between(0.5,1.5.,-0.8) |
---|
446 | False |
---|
447 | >>> val_between(0.5,1.5,0.5) |
---|
448 | True |
---|
449 | """ |
---|
450 | fname = 'val_between' |
---|
451 | |
---|
452 | btw = False |
---|
453 | if (valA <= val and valB > val) or (valA < val and valB >= val): btw =True |
---|
454 | |
---|
455 | return btw |
---|
456 | |
---|
457 | def cut_ypolygon(polygon, yval, keep='below', Nadd=20): |
---|
458 | """ Function to cut a polygon from a given value of the y-axis |
---|
459 | polygon: polygon to cut |
---|
460 | yval: value to use to cut the polygon |
---|
461 | keep: part to keep from the height ('below', default) |
---|
462 | 'below': below the height |
---|
463 | 'above': above the height |
---|
464 | Nadd: additional points to add to draw the line (20, default) |
---|
465 | """ |
---|
466 | fname = 'cut_ypolygon' |
---|
467 | |
---|
468 | N = polygon.shape[0] |
---|
469 | availkeeps = ['below', 'above'] |
---|
470 | |
---|
471 | if not gen.searchInlist(availkeeps, keep): |
---|
472 | print errormsg |
---|
473 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
474 | print ' available ones:', availkeeps |
---|
475 | quit(-1) |
---|
476 | |
---|
477 | ipt = None |
---|
478 | ept = None |
---|
479 | |
---|
480 | # There might be more than 1 cut... |
---|
481 | Ncuts = 0 |
---|
482 | icut = [] |
---|
483 | ecut = [] |
---|
484 | ipt = [] |
---|
485 | ept = [] |
---|
486 | |
---|
487 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
488 | type(gen.mamat.mask[1]): |
---|
489 | # Assuming clockwise polygons |
---|
490 | for ip in range(N-1): |
---|
491 | if not polygon.mask[ip,0]: |
---|
492 | eep = ip + 1 |
---|
493 | if eep == N: eep = 0 |
---|
494 | |
---|
495 | if val_between(polygon[ip,0], polygon[eep,0], yval): |
---|
496 | icut.append(ip) |
---|
497 | dx = polygon[eep,1] - polygon[ip,1] |
---|
498 | dy = polygon[eep,0] - polygon[ip,0] |
---|
499 | dd = yval - polygon[ip,0] |
---|
500 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
501 | |
---|
502 | if val_between(polygon[ip,0], polygon[eep,0], yval): |
---|
503 | ecut.append(ip) |
---|
504 | dx = polygon[eep,1] - polygon[ip,1] |
---|
505 | dy = polygon[eep,0] - polygon[ip,0] |
---|
506 | dd = yval - polygon[ip,0] |
---|
507 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
508 | Ncuts = Ncuts + 1 |
---|
509 | else: |
---|
510 | # Assuming clockwise polygons |
---|
511 | for ip in range(N-1): |
---|
512 | eep = ip + 1 |
---|
513 | if eep == N: eep = 0 |
---|
514 | |
---|
515 | if val_between(polygon[ip,0], polygon[eep,0], yval): |
---|
516 | icut.append(ip) |
---|
517 | dx = polygon[eep,1] - polygon[ip,1] |
---|
518 | dy = polygon[eep,0] - polygon[ip,0] |
---|
519 | dd = yval - polygon[ip,0] |
---|
520 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
521 | |
---|
522 | if val_between(polygon[ip,0], polygon[eep,0], yval): |
---|
523 | ecut.append(ip) |
---|
524 | dx = polygon[eep,1] - polygon[ip,1] |
---|
525 | dy = polygon[eep,0] - polygon[ip,0] |
---|
526 | dd = yval - polygon[ip,0] |
---|
527 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
528 | Ncuts = Ncuts + 1 |
---|
529 | |
---|
530 | if ipt is None or ept is None or Ncuts == 0: |
---|
531 | print errormsg |
---|
532 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
533 | else: |
---|
534 | print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
535 | print ' yval=', yval, 'cut, ip; ipt ep; ept ________' |
---|
536 | for ic in range(Ncuts): |
---|
537 | print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
538 | |
---|
539 | Nadds = [] |
---|
540 | if Ncuts > 1: |
---|
541 | Naddc = Nadd/(Ncuts-1) |
---|
542 | for ic in range(Ncuts-1): |
---|
543 | Nadds.append(Naddc) |
---|
544 | |
---|
545 | Nadds.append(N-Naddc*(Ncuts-1)) |
---|
546 | else: |
---|
547 | Nadds.append(Nadd) |
---|
548 | |
---|
549 | iip = 0 |
---|
550 | iipc = 0 |
---|
551 | for ic in range(Ncuts): |
---|
552 | if keep == 'below': |
---|
553 | Npts = icut[ic] + (N-ecut[ic]) + Nadds[ic] |
---|
554 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
555 | cutpolygon[iipc:iipc+icut[ic]+1,:] = polygon[iip:iip+icut[ic]+1,:] |
---|
556 | iip = iip+icut[ic]+1 |
---|
557 | iipc = iipc+icut[ic]+1 |
---|
558 | else: |
---|
559 | Npts = ecut[ec] - icut[ic] + Nadds[ic]-1 |
---|
560 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
561 | cutpolygon[iipc,:] = ipt[ic] |
---|
562 | cutpolygon[iipc+1:ecut[ic]-icut[ic],:] = polygon[icut[ic]+1:ecut[ic],:] |
---|
563 | iip = ecut[ic]-icut[ic]-1 |
---|
564 | iipc = iipc + ecut[ic]-icut[ic]-1 |
---|
565 | |
---|
566 | # cutting line |
---|
567 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
568 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-2) |
---|
569 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-2) |
---|
570 | cutline[0,:] = ipt[ic] |
---|
571 | for ip in range(1,Nadds[ic]-1): |
---|
572 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
573 | cutline[Nadds[ic]-1,:] = ept[ic] |
---|
574 | if keep == 'below': |
---|
575 | cutpolygon[iip:iip+Nadds[ic],:] = cutline |
---|
576 | cutpolygon[iip+Nadds[ic]:Npts,:] = polygon[ecut[ic]+1:N,:] |
---|
577 | else: |
---|
578 | cutpolygon[iip:iip+Nadds[ic],:] = cutline[::-1,:] |
---|
579 | |
---|
580 | rmpolygon = [] |
---|
581 | Npts = cutpolygon.shape[0] |
---|
582 | if keep == 'below': |
---|
583 | for ip in range(Npts): |
---|
584 | if cutpolygon[ip,0] > yval: |
---|
585 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
586 | else: |
---|
587 | rmpolygon.append(cutpolygon[ip,:]) |
---|
588 | else: |
---|
589 | for ip in range(Npts): |
---|
590 | if cutpolygon[ip,0] < yval: |
---|
591 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
592 | else: |
---|
593 | rmpolygon.append(cutpolygon[ip,:]) |
---|
594 | Npts = len(rmpolygon) |
---|
595 | cutpolygon = np.array(rmpolygon) |
---|
596 | |
---|
597 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
598 | |
---|
599 | return Npts, cutpolygon |
---|
600 | |
---|
601 | def cut_xpolygon(polygon, xval, keep='left', Nadd=20): |
---|
602 | """ Function to cut a polygon from a given value of the x-axis |
---|
603 | polygon: polygon to cut |
---|
604 | yval: value to use to cut the polygon |
---|
605 | keep: part to keep from the value ('left', default) |
---|
606 | 'left': left of the value |
---|
607 | 'right': right of the value |
---|
608 | Nadd: additional points to add to draw the line (20, default) |
---|
609 | """ |
---|
610 | fname = 'cut_xpolygon' |
---|
611 | |
---|
612 | N = polygon.shape[0] |
---|
613 | availkeeps = ['left', 'right'] |
---|
614 | |
---|
615 | if not gen.searchInlist(availkeeps, keep): |
---|
616 | print errormsg |
---|
617 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
618 | print ' available ones:', availkeeps |
---|
619 | quit(-1) |
---|
620 | |
---|
621 | ipt = None |
---|
622 | ept = None |
---|
623 | |
---|
624 | icut = [] |
---|
625 | ecut = [] |
---|
626 | ipt = [] |
---|
627 | ept = [] |
---|
628 | Ncuts = 0 |
---|
629 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
630 | type(gen.mamat.mask[1]): |
---|
631 | # Assuming clockwise polygons |
---|
632 | for ip in range(N-1): |
---|
633 | if not polygon.mask[ip,1]: |
---|
634 | eep = ip + 1 |
---|
635 | if eep == N: eep = 0 |
---|
636 | |
---|
637 | if val_between(polygon[ip,1], polygon[eep,1], xval): |
---|
638 | icut.append(ip) |
---|
639 | dx = polygon[eep,1] - polygon[ip,1] |
---|
640 | dy = polygon[eep,0] - polygon[ip,0] |
---|
641 | dd = xval - polygon[ip,1] |
---|
642 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
643 | |
---|
644 | if val_between(polygon[ip,1], polygon[eep,1], xval): |
---|
645 | ecut.append(ip) |
---|
646 | dx = polygon[eep,1] - polygon[ip,1] |
---|
647 | dy = polygon[eep,0] - polygon[ip,0] |
---|
648 | dd = xval - polygon[ip,1] |
---|
649 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
650 | Npts = Npts + 1 |
---|
651 | else: |
---|
652 | # Assuming clockwise polygons |
---|
653 | for ip in range(N-1): |
---|
654 | eep = ip + 1 |
---|
655 | if eep == N: eep = 0 |
---|
656 | |
---|
657 | if val_between(polygon[ip,1], polygon[eep,1], xval): |
---|
658 | icut.append(ip) |
---|
659 | dx = polygon[eep,1] - polygon[ip,1] |
---|
660 | dy = polygon[eep,0] - polygon[ip,0] |
---|
661 | dd = xval - polygon[ip,1] |
---|
662 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
663 | |
---|
664 | if val_between(polygon[ip,1], polygon[eep,1], xval): |
---|
665 | ecut.append(ip) |
---|
666 | dx = polygon[eep,1] - polygon[ip,1] |
---|
667 | dy = polygon[eep,0] - polygon[ip,0] |
---|
668 | dd = xval - polygon[ip,1] |
---|
669 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
670 | |
---|
671 | if ipt is None or ept is None or Ncuts == 0: |
---|
672 | print errormsg |
---|
673 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
674 | else: |
---|
675 | print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
676 | print ' yval=', xval, 'cut, ip; ipt ep; ept ________' |
---|
677 | for ic in range(Ncuts): |
---|
678 | print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
679 | |
---|
680 | # Length of joining lines |
---|
681 | Nadds = [] |
---|
682 | if Ncuts > 1: |
---|
683 | Naddc = (Nadd-Ncuts)/(Ncuts-1) |
---|
684 | if Naddc < 3: |
---|
685 | print errormsg |
---|
686 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
687 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
688 | quit(-1) |
---|
689 | for ic in range(Ncuts-1): |
---|
690 | Nadds.append(Naddc) |
---|
691 | |
---|
692 | Nadds.append(N-Naddc*(Ncuts-1)) |
---|
693 | else: |
---|
694 | Nadds.append(Nadd) |
---|
695 | |
---|
696 | # Total points cut polygon |
---|
697 | Ntotpts = 0 |
---|
698 | Ncpts = [] |
---|
699 | for ic in range(Ncuts): |
---|
700 | ip = ipt[ic] |
---|
701 | if ic == 0: |
---|
702 | dpts = icut[ic] + ecut[ic] + Nadds[ic] |
---|
703 | else: |
---|
704 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
705 | |
---|
706 | # Adding end of the polygon in 'left' keeps |
---|
707 | if keep == 'left' and ic == Ncuts - 1: dpts = dpts + N-ecut[ic] |
---|
708 | Ncpts.append(dpts) |
---|
709 | Ntotpts = Ntotpts + dpts |
---|
710 | |
---|
711 | cutpolygon = np.ones((Ntotpts,2), dtype=np.float)*gen.fillValue |
---|
712 | |
---|
713 | iip = 0 |
---|
714 | iipc = 0 |
---|
715 | for ic in range(Ncuts): |
---|
716 | Npts = Ncpts[ic] |
---|
717 | if keep == 'left': |
---|
718 | if ic == 0: |
---|
719 | cutpolygon[0:icut[ic]] = polygon[0:icut[ic],:] |
---|
720 | iip = icut[ic] |
---|
721 | iipc = icut[ic] |
---|
722 | dcpt = Ncpts[ic]-Nadds[ic] |
---|
723 | cutpolygon[iipc+1:iipc+dcpt,:] = polygon[icut[ic]-1:ecut[ic]+1,:] |
---|
724 | iipc = iipc + dcpt |
---|
725 | else: |
---|
726 | cutpolygon[iipc,:] = ipt[ic] |
---|
727 | cutpolygon[iipc+1:iipc+ecut[ic]-icut[ic],:]=polygon[icut[ic]+1:ecut[ic],:] |
---|
728 | iipc = iipc+ecut[ic]-icut[ic]-1 |
---|
729 | |
---|
730 | # cutting line |
---|
731 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
732 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-2) |
---|
733 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-2) |
---|
734 | cutline[0,:] = ipt[ic] |
---|
735 | for ip in range(1,Nadds[ic]-1): |
---|
736 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
737 | cutline[Nadd-1,:] = ept[ic] |
---|
738 | if keep == 'left': |
---|
739 | cutpolygon[iipc:iipc+Nadds[ic],:] = cutline |
---|
740 | # cutpolygon[iip+Nadd:Npts,:] = polygon[ecut+1:N,:] |
---|
741 | else: |
---|
742 | cutpolygon[iipc:iipc+Nadds[ic],:] = cutline[::-1,:] |
---|
743 | |
---|
744 | rmpolygon = [] |
---|
745 | if keep == 'left': |
---|
746 | for ip in range(Npts): |
---|
747 | if cutpolygon[ip,1] > xval: |
---|
748 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
749 | else: |
---|
750 | rmpolygon.append(cutpolygon[ip,:]) |
---|
751 | else: |
---|
752 | for ip in range(Npts): |
---|
753 | if cutpolygon[ip,1] < xval: |
---|
754 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
755 | else: |
---|
756 | rmpolygon.append(cutpolygon[ip,:]) |
---|
757 | Npts = len(rmpolygon) |
---|
758 | cutpolygon = np.array(rmpolygon) |
---|
759 | |
---|
760 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
761 | |
---|
762 | return Npts, cutpolygon |
---|
763 | |
---|
764 | def cut_between_ypolygon(polygon, yval1, yval2, Nadd=20): |
---|
765 | """ Function to cut a polygon between 2 given value of the y-axis |
---|
766 | polygon: polygon to cut |
---|
767 | yval1: first value to use to cut the polygon |
---|
768 | yval2: first value to use to cut the polygon |
---|
769 | Nadd: additional points to add to draw the line (20, default) |
---|
770 | """ |
---|
771 | fname = 'cut_betwen_ypolygon' |
---|
772 | |
---|
773 | N = polygon.shape[0] |
---|
774 | |
---|
775 | ipt = None |
---|
776 | ept = None |
---|
777 | |
---|
778 | dx = np.zeros((2), dtype=np.float) |
---|
779 | dy = np.zeros((2), dtype=np.float) |
---|
780 | icut = np.zeros((2), dtype=int) |
---|
781 | ecut = np.zeros((2), dtype=int) |
---|
782 | ipt = np.zeros((2,2), dtype=np.float) |
---|
783 | ept = np.zeros((2,2), dtype=np.float) |
---|
784 | |
---|
785 | if yval1 > yval2: |
---|
786 | print errormsg |
---|
787 | print ' ' + fname + ': wrong between cut values !!' |
---|
788 | print ' it is expected yval1 < yval2' |
---|
789 | print ' values provided yval1: (', yval1, ')> yval2 (', yval2, ')' |
---|
790 | quit(-1) |
---|
791 | |
---|
792 | yvals = [yval1, yval2] |
---|
793 | |
---|
794 | for ic in range(2): |
---|
795 | yval = yvals[ic] |
---|
796 | if type(polygon) == type(gen.mamat): |
---|
797 | # Assuming clockwise polygons |
---|
798 | for ip in range(N-1): |
---|
799 | if not polygon.mask[ip,0]: |
---|
800 | eep = ip + 1 |
---|
801 | if eep == N: eep = 0 |
---|
802 | |
---|
803 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
804 | icut[ic] = ip |
---|
805 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
806 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
807 | dd = yval - polygon[ip,0] |
---|
808 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
809 | |
---|
810 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
811 | ecut[ic] = ip |
---|
812 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
813 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
814 | dd = yval - polygon[ip,0] |
---|
815 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
816 | else: |
---|
817 | # Assuming clockwise polygons |
---|
818 | for ip in range(N-1): |
---|
819 | eep = ip + 1 |
---|
820 | if eep == N: eep = 0 |
---|
821 | |
---|
822 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
823 | icut[ic] = ip |
---|
824 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
825 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
826 | dd = yval - polygon[ip,0] |
---|
827 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
828 | |
---|
829 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
830 | ecut[ic] = ip |
---|
831 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
832 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
833 | dd = yval - polygon[ip,0] |
---|
834 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
835 | |
---|
836 | if ipt is None or ept is None: |
---|
837 | print errormsg |
---|
838 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
839 | |
---|
840 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
841 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
842 | cutpolygon[0,:] = ipt[0,:] |
---|
843 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
844 | iip = icut[1]-icut[0] |
---|
845 | |
---|
846 | # cutting lines |
---|
847 | Nadd2 = int(Nadd/2) |
---|
848 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
849 | |
---|
850 | for ic in range(2): |
---|
851 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
852 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
853 | cutlines[ic,0,:] = ipt[ic,:] |
---|
854 | for ip in range(1,Nadd2-1): |
---|
855 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
856 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
857 | |
---|
858 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
859 | iip = iip + Nadd2 |
---|
860 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
861 | iip = iip + ecut[0]-ecut[1] |
---|
862 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
863 | |
---|
864 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
865 | |
---|
866 | return Npts, cutpolygon |
---|
867 | |
---|
868 | def cut_between_xpolygon(polygon, xval1, xval2, Nadd=20): |
---|
869 | """ Function to cut a polygon between 2 given value of the x-axis |
---|
870 | polygon: polygon to cut |
---|
871 | xval1: first value to use to cut the polygon |
---|
872 | xval2: first value to use to cut the polygon |
---|
873 | Nadd: additional points to add to draw the line (20, default) |
---|
874 | """ |
---|
875 | fname = 'cut_betwen_xpolygon' |
---|
876 | |
---|
877 | N = polygon.shape[0] |
---|
878 | |
---|
879 | ipt = None |
---|
880 | ept = None |
---|
881 | |
---|
882 | dx = np.zeros((2), dtype=np.float) |
---|
883 | dy = np.zeros((2), dtype=np.float) |
---|
884 | icut = np.zeros((2), dtype=int) |
---|
885 | ecut = np.zeros((2), dtype=int) |
---|
886 | ipt = np.zeros((2,2), dtype=np.float) |
---|
887 | ept = np.zeros((2,2), dtype=np.float) |
---|
888 | |
---|
889 | if xval1 > xval2: |
---|
890 | print errormsg |
---|
891 | print ' ' + fname + ': wrong between cut values !!' |
---|
892 | print ' it is expected xval1 < xval2' |
---|
893 | print ' values provided xval1: (', xval1, ')> xval2 (', xval2, ')' |
---|
894 | quit(-1) |
---|
895 | |
---|
896 | xvals = [xval1, xval2] |
---|
897 | |
---|
898 | for ic in range(2): |
---|
899 | xval = xvals[ic] |
---|
900 | if type(polygon) == type(gen.mamat): |
---|
901 | # Assuming clockwise polygons |
---|
902 | for ip in range(N-1): |
---|
903 | if not polygon.mask[ip,0]: |
---|
904 | eep = ip + 1 |
---|
905 | if eep == N: eep = 0 |
---|
906 | |
---|
907 | if (polygon[ip,1] <= xval and polygon[eep,1] > xval) or \ |
---|
908 | (polygon[ip,1] < xval and polygon[eep,1] >= xval): |
---|
909 | icut[ic] = ip |
---|
910 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
911 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
912 | dd = xval - polygon[ip,1] |
---|
913 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
914 | |
---|
915 | if (polygon[ip,1] >= yval and polygon[eep,1] < xval) or \ |
---|
916 | (polygon[ip,1] > yval and polygon[eep,1] <= xval): |
---|
917 | ecut[ic] = ip |
---|
918 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
919 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
920 | dd = xval - polygon[ip,1] |
---|
921 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
922 | else: |
---|
923 | # Assuming clockwise polygons |
---|
924 | for ip in range(N-1): |
---|
925 | eep = ip + 1 |
---|
926 | if eep == N: eep = 0 |
---|
927 | |
---|
928 | if (polygon[ip,1] <= xval and polygon[eep,1] > xval) or \ |
---|
929 | (polygon[ip,1] < xval and polygon[eep,1] >= xval): |
---|
930 | icut[ic] = ip |
---|
931 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
932 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
933 | dd = xval - polygon[ip,1] |
---|
934 | print 'Lluis ip', ip, 'poly:', polygon[ip,:], 'xval:', xval, 'ip+1', polygon[eep,:] |
---|
935 | print ' dx:', dx, 'dy:', dy, 'dd', dd |
---|
936 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
937 | |
---|
938 | if (polygon[ip,1] >= xval and polygon[eep,1] < xval) or \ |
---|
939 | (polygon[ip,1] > xval and polygon[eep,1] <= xval): |
---|
940 | ecut[ic] = ip |
---|
941 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
942 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
943 | dd = xval - polygon[ip,1] |
---|
944 | if dx[ic] == 0.: |
---|
945 | ept[ic,:] = [polygon[eep,0], xval] |
---|
946 | else: |
---|
947 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
948 | |
---|
949 | if ipt is None or ept is None: |
---|
950 | print errormsg |
---|
951 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
952 | |
---|
953 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
954 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
955 | cutpolygon[0,:] = ipt[0,:] |
---|
956 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
957 | iip = icut[1]-icut[0] |
---|
958 | |
---|
959 | # cutting lines |
---|
960 | Nadd2 = int(Nadd/2) |
---|
961 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
962 | |
---|
963 | for ic in range(2): |
---|
964 | print ic, 'Lluis ipt:', ipt[ic,:], 'ept:', ept[ic,:] |
---|
965 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
966 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
967 | print ' dx:', dx, 'dy', dy |
---|
968 | cutlines[ic,0,:] = ipt[ic,:] |
---|
969 | for ip in range(1,Nadd2-1): |
---|
970 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
971 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
972 | |
---|
973 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
974 | iip = iip + Nadd2 |
---|
975 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
976 | iip = iip + ecut[0]-ecut[1] |
---|
977 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
978 | |
---|
979 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
980 | |
---|
981 | return Npts, cutpolygon |
---|
982 | |
---|
983 | ####### ###### ##### #### ### ## # |
---|
984 | # Shapes/objects |
---|
985 | |
---|
986 | def surface_sphere(radii,Npts): |
---|
987 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
988 | radii: radii of the sphere |
---|
989 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
990 | """ |
---|
991 | fname = 'surface_sphere' |
---|
992 | |
---|
993 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
994 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
995 | for ia in range(Npts): |
---|
996 | alpha = ia*2*np.pi/(Npts-1) |
---|
997 | for ib in range(Npts/2): |
---|
998 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
999 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
1000 | for ib in range(Npts/2): |
---|
1001 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
1002 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
1003 | |
---|
1004 | return sphereup, spheredown |
---|
1005 | |
---|
1006 | def ellipse_polar(c, a, b, Nang=100): |
---|
1007 | """ Function to determine an ellipse from its center and polar coordinates |
---|
1008 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
1009 | c= coordinates of the center |
---|
1010 | a= distance major axis |
---|
1011 | b= distance minor axis |
---|
1012 | Nang= number of angles to use |
---|
1013 | """ |
---|
1014 | fname = 'ellipse_polar' |
---|
1015 | |
---|
1016 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
1017 | |
---|
1018 | dtheta = 2*np.pi/(Nang-1) |
---|
1019 | |
---|
1020 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
1021 | for ia in range(Nang): |
---|
1022 | theta = dtheta*ia |
---|
1023 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
1024 | x = rad*np.cos(theta) |
---|
1025 | y = rad*np.sin(theta) |
---|
1026 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
1027 | |
---|
1028 | return ellipse |
---|
1029 | |
---|
1030 | def hyperbola_polar(a, b, Nang=100): |
---|
1031 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
1032 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
1033 | x^2/a^2 - y^2/b^2 = 1 |
---|
1034 | a= x-parameter |
---|
1035 | y= y-parameter |
---|
1036 | Nang= number of angles to use |
---|
1037 | DOES NOT WORK!!!! |
---|
1038 | """ |
---|
1039 | fname = 'hyperbola_polar' |
---|
1040 | |
---|
1041 | dtheta = 2.*np.pi/(Nang-1) |
---|
1042 | |
---|
1043 | # Positive branch |
---|
1044 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
1045 | for ia in range(Nang): |
---|
1046 | theta = dtheta*ia |
---|
1047 | x = a*np.cosh(theta) |
---|
1048 | y = b*np.sinh(theta) |
---|
1049 | hyperbola_p[ia,:] = [y,x] |
---|
1050 | |
---|
1051 | # Negative branch |
---|
1052 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
1053 | for ia in range(Nang): |
---|
1054 | theta = dtheta*ia |
---|
1055 | x = -a*np.cosh(theta) |
---|
1056 | y = b*np.sinh(theta) |
---|
1057 | hyperbola_n[ia,:] = [y,x] |
---|
1058 | |
---|
1059 | return hyperbola_p, hyperbola_n |
---|
1060 | |
---|
1061 | def circ_sec(ptA, ptB, radii, arc='short', pos='left', Nang=100): |
---|
1062 | """ Function union of point A and B by a section of a circle |
---|
1063 | ptA= coordinates od the point A [yA, xA] |
---|
1064 | ptB= coordinates od the point B [yB, xB] |
---|
1065 | radii= radi of the circle to use to unite the points |
---|
1066 | arc= which arc to be used ('short', default) |
---|
1067 | 'short': shortest angle between points |
---|
1068 | 'long': largest angle between points |
---|
1069 | pos= orientation of the arc following clockwise union of points ('left', default) |
---|
1070 | 'left': to the left of union |
---|
1071 | 'right': to the right of union |
---|
1072 | Nang= amount of angles to use |
---|
1073 | """ |
---|
1074 | fname = 'circ_sec' |
---|
1075 | availarc = ['short', 'long'] |
---|
1076 | availpos = ['left', 'right'] |
---|
1077 | |
---|
1078 | distAB = dist_points(ptA,ptB) |
---|
1079 | |
---|
1080 | if distAB > radii: |
---|
1081 | print errormsg |
---|
1082 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
1083 | "between points !!" |
---|
1084 | print ' distance between points:', distAB |
---|
1085 | quit(-1) |
---|
1086 | |
---|
1087 | # Coordinate increments |
---|
1088 | dAB = np.abs(ptA-ptB) |
---|
1089 | |
---|
1090 | # angle of the circular section joining points |
---|
1091 | alpha = 2.*np.arcsin((distAB/2.)/radii) |
---|
1092 | |
---|
1093 | # center along coincident bisection of the union |
---|
1094 | xcc = -radii |
---|
1095 | ycc = 0. |
---|
1096 | |
---|
1097 | # Getting the arc of the circle at the x-axis |
---|
1098 | if arc == 'short': |
---|
1099 | dalpha = alpha/(Nang-1) |
---|
1100 | elif arc == 'long': |
---|
1101 | dalpha = (2.*np.pi - alpha)/(Nang-1) |
---|
1102 | else: |
---|
1103 | print errormsg |
---|
1104 | print ' ' + fname + ": arc '" + arc + "' not ready !!" |
---|
1105 | print ' available ones:', availarc |
---|
1106 | quit(-1) |
---|
1107 | if pos == 'left': sign=-1. |
---|
1108 | elif pos == 'right': sign=1. |
---|
1109 | else: |
---|
1110 | print errormsg |
---|
1111 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1112 | print ' available ones:', availpos |
---|
1113 | quit(-1) |
---|
1114 | |
---|
1115 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
1116 | for ia in range(Nang): |
---|
1117 | alpha = sign*dalpha*ia |
---|
1118 | x = radii*np.cos(alpha) |
---|
1119 | y = radii*np.sin(alpha) |
---|
1120 | |
---|
1121 | circ_sec[ia,:] = [y+ycc,x+xcc] |
---|
1122 | |
---|
1123 | # Angle of the points |
---|
1124 | theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
1125 | |
---|
1126 | # rotating angle of the circ |
---|
1127 | if pos == 'left': |
---|
1128 | rotangle = theta + np.pi/2. - alpha/2. |
---|
1129 | elif pos == 'right': |
---|
1130 | rotangle = theta + 3.*np.pi/2. - alpha/2. |
---|
1131 | else: |
---|
1132 | print errormsg |
---|
1133 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1134 | print ' available ones:', availpos |
---|
1135 | quit(-1) |
---|
1136 | |
---|
1137 | #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi |
---|
1138 | |
---|
1139 | # rotating the arc along the x-axis |
---|
1140 | rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) |
---|
1141 | |
---|
1142 | # Moving arc to the ptA |
---|
1143 | circ_sec = rotcirc_sec + ptA |
---|
1144 | |
---|
1145 | return circ_sec |
---|
1146 | |
---|
1147 | def p_square(face, N=5): |
---|
1148 | """ Function to get a polygon square |
---|
1149 | face: length of the face of the square |
---|
1150 | N: number of points of the polygon |
---|
1151 | """ |
---|
1152 | fname = 'p_square' |
---|
1153 | |
---|
1154 | square = np.zeros((N,2), dtype=np.float) |
---|
1155 | |
---|
1156 | f2 = face/2. |
---|
1157 | N4 = N/4 |
---|
1158 | df = face/(N4) |
---|
1159 | # SW-NW |
---|
1160 | for ip in range(N4): |
---|
1161 | square[ip,:] = [-f2+ip*df,-f2] |
---|
1162 | # NW-NE |
---|
1163 | for ip in range(N4): |
---|
1164 | square[ip+N4,:] = [f2,-f2+ip*df] |
---|
1165 | # NE-SE |
---|
1166 | for ip in range(N4): |
---|
1167 | square[ip+2*N4,:] = [f2-ip*df,f2] |
---|
1168 | N42 = N-3*N4-1 |
---|
1169 | df = face/(N42) |
---|
1170 | # SE-SW |
---|
1171 | for ip in range(N42): |
---|
1172 | square[ip+3*N4,:] = [-f2,f2-ip*df] |
---|
1173 | square[N-1,:] = [-f2,-f2] |
---|
1174 | |
---|
1175 | return square |
---|
1176 | |
---|
1177 | |
---|
1178 | def p_prism(base, height, N=5): |
---|
1179 | """ Function to get a polygon prism |
---|
1180 | base: length of the base of the prism |
---|
1181 | height: length of the height of the prism |
---|
1182 | N: number of points of the polygon |
---|
1183 | """ |
---|
1184 | fname = 'p_prism' |
---|
1185 | |
---|
1186 | prism = np.zeros((N,2), dtype=np.float) |
---|
1187 | |
---|
1188 | b2 = base/2. |
---|
1189 | h2 = height/2. |
---|
1190 | N4 = N/4 |
---|
1191 | dh = height/(N4) |
---|
1192 | db = base/(N4) |
---|
1193 | |
---|
1194 | # SW-NW |
---|
1195 | for ip in range(N4): |
---|
1196 | prism[ip,:] = [-h2+ip*dh,-b2] |
---|
1197 | # NW-NE |
---|
1198 | for ip in range(N4): |
---|
1199 | prism[ip+N4,:] = [h2,-b2+ip*db] |
---|
1200 | # NE-SE |
---|
1201 | for ip in range(N4): |
---|
1202 | prism[ip+2*N4,:] = [h2-ip*dh,b2] |
---|
1203 | N42 = N-3*N4-1 |
---|
1204 | db = base/(N42) |
---|
1205 | # SE-SW |
---|
1206 | for ip in range(N42): |
---|
1207 | prism[ip+3*N4,:] = [-h2,b2-ip*db] |
---|
1208 | prism[N-1,:] = [-h2,-b2] |
---|
1209 | |
---|
1210 | return prism |
---|
1211 | |
---|
1212 | def p_circle(radii, N=50): |
---|
1213 | """ Function to get a polygon of a circle |
---|
1214 | radii: length of the radii of the circle |
---|
1215 | N: number of points of the polygon |
---|
1216 | """ |
---|
1217 | fname = 'p_circle' |
---|
1218 | |
---|
1219 | circle = np.zeros((N,2), dtype=np.float) |
---|
1220 | |
---|
1221 | dangle = 2.*np.pi/(N-1) |
---|
1222 | |
---|
1223 | for ia in range(N): |
---|
1224 | circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1225 | |
---|
1226 | circle[N-1,:] = [0., radii] |
---|
1227 | |
---|
1228 | return circle |
---|
1229 | |
---|
1230 | def p_triangle(p1, p2, p3, N=4): |
---|
1231 | """ Function to provide the polygon of a triangle from its 3 vertices |
---|
1232 | p1: vertex 1 [y,x] |
---|
1233 | p2: vertex 2 [y,x] |
---|
1234 | p3: vertex 3 [y,x] |
---|
1235 | N: number of vertices of the triangle |
---|
1236 | """ |
---|
1237 | fname = 'p_triangle' |
---|
1238 | |
---|
1239 | triangle = np.zeros((N,2), dtype=np.float) |
---|
1240 | |
---|
1241 | N3 = N / 3 |
---|
1242 | # 1-2 |
---|
1243 | dx = (p2[1]-p1[1])/N3 |
---|
1244 | dy = (p2[0]-p1[0])/N3 |
---|
1245 | for ip in range(N3): |
---|
1246 | triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] |
---|
1247 | # 2-3 |
---|
1248 | dx = (p3[1]-p2[1])/N3 |
---|
1249 | dy = (p3[0]-p2[0])/N3 |
---|
1250 | for ip in range(N3): |
---|
1251 | triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] |
---|
1252 | # 3-1 |
---|
1253 | N32 = N - 2*N/3 |
---|
1254 | dx = (p1[1]-p3[1])/N32 |
---|
1255 | dy = (p1[0]-p3[0])/N32 |
---|
1256 | for ip in range(N32): |
---|
1257 | triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] |
---|
1258 | |
---|
1259 | triangle[N-1,:] = p1 |
---|
1260 | |
---|
1261 | return triangle |
---|
1262 | |
---|
1263 | def p_spiral(loops, eradii, N=1000): |
---|
1264 | """ Function to provide a polygon of an Archimedean spiral |
---|
1265 | FROM: https://en.wikipedia.org/wiki/Spiral |
---|
1266 | loops: number of loops of the spiral |
---|
1267 | eradii: length of the radii of the final spiral |
---|
1268 | N: number of points of the polygon |
---|
1269 | """ |
---|
1270 | fname = 'p_spiral' |
---|
1271 | |
---|
1272 | spiral = np.zeros((N,2), dtype=np.float) |
---|
1273 | |
---|
1274 | dangle = 2.*np.pi*loops/(N-1) |
---|
1275 | dr = eradii*1./(N-1) |
---|
1276 | |
---|
1277 | for ia in range(N): |
---|
1278 | radii = dr*ia |
---|
1279 | spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1280 | |
---|
1281 | return spiral |
---|
1282 | |
---|
1283 | def p_reg_polygon(Nv, lf, N=50): |
---|
1284 | """ Function to provide a regular polygon of Nv vertices |
---|
1285 | Nv: number of vertices |
---|
1286 | lf: length of the face |
---|
1287 | N: number of points |
---|
1288 | """ |
---|
1289 | fname = 'p_reg_polygon' |
---|
1290 | |
---|
1291 | reg_polygon = np.zeros((N,2), dtype=np.float) |
---|
1292 | |
---|
1293 | # Number of points per vertex |
---|
1294 | Np = N/Nv |
---|
1295 | # Angle incremental between vertices |
---|
1296 | da = 2.*np.pi/Nv |
---|
1297 | # Radii of the circle according to lf |
---|
1298 | radii = lf*Nv/(2*np.pi) |
---|
1299 | |
---|
1300 | iip = 0 |
---|
1301 | for iv in range(Nv-1): |
---|
1302 | # Characteristics between vertices iv and iv+1 |
---|
1303 | av1 = da*iv |
---|
1304 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1305 | av2 = da*(iv+1) |
---|
1306 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1307 | dx = (v2[1]-v1[1])/Np |
---|
1308 | dy = (v2[0]-v1[0])/Np |
---|
1309 | for ip in range(Np): |
---|
1310 | reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1311 | |
---|
1312 | # Characteristics between vertices Nv and 1 |
---|
1313 | |
---|
1314 | # Number of points per vertex |
---|
1315 | Np2 = N - Np*(Nv-1) |
---|
1316 | |
---|
1317 | av1 = da*Nv |
---|
1318 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1319 | av2 = 0. |
---|
1320 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1321 | dx = (v2[1]-v1[1])/Np2 |
---|
1322 | dy = (v2[0]-v1[0])/Np2 |
---|
1323 | for ip in range(Np2): |
---|
1324 | reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1325 | |
---|
1326 | return reg_polygon |
---|
1327 | |
---|
1328 | def p_reg_star(Nv, lf, freq, vs=0, N=50): |
---|
1329 | """ Function to provide a regular star of Nv vertices |
---|
1330 | Nv: number of vertices |
---|
1331 | lf: length of the face of the regular polygon |
---|
1332 | freq: frequency of union of vertices ('0', for just centered to zero arms) |
---|
1333 | vs: vertex from which start (0 being first [0,lf]) |
---|
1334 | N: number of points |
---|
1335 | """ |
---|
1336 | fname = 'p_reg_star' |
---|
1337 | |
---|
1338 | reg_star = np.zeros((N,2), dtype=np.float) |
---|
1339 | |
---|
1340 | # Number of arms of the star |
---|
1341 | if freq != 0 and np.mod(Nv,freq) == 0: |
---|
1342 | Na = Nv/freq + 1 |
---|
1343 | else: |
---|
1344 | Na = Nv |
---|
1345 | |
---|
1346 | # Number of points per arm |
---|
1347 | Np = N/Na |
---|
1348 | # Angle incremental between vertices |
---|
1349 | da = 2.*np.pi/Nv |
---|
1350 | # Radii of the circle according to lf |
---|
1351 | radii = lf*Nv/(2*np.pi) |
---|
1352 | |
---|
1353 | iip = 0 |
---|
1354 | av1 = vs*da |
---|
1355 | for iv in range(Na-1): |
---|
1356 | # Characteristics between vertices iv and iv+1 |
---|
1357 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1358 | if freq != 0: |
---|
1359 | av2 = av1 + da*freq |
---|
1360 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1361 | else: |
---|
1362 | v2 = [0., 0.] |
---|
1363 | av2 = av1 + da |
---|
1364 | dx = (v2[1]-v1[1])/(Np-1) |
---|
1365 | dy = (v2[0]-v1[0])/(Np-1) |
---|
1366 | for ip in range(Np): |
---|
1367 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1368 | if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi |
---|
1369 | else: av1 = av2 + 0. |
---|
1370 | |
---|
1371 | iv = Na-1 |
---|
1372 | # Characteristics between vertices Na and 1 |
---|
1373 | Np2 = N-Np*iv |
---|
1374 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1375 | if freq != 0: |
---|
1376 | av2 = vs*da |
---|
1377 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1378 | else: |
---|
1379 | v2 = [0., 0.] |
---|
1380 | dx = (v2[1]-v1[1])/(Np2-1) |
---|
1381 | dy = (v2[0]-v1[0])/(Np2-1) |
---|
1382 | for ip in range(Np2): |
---|
1383 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1384 | |
---|
1385 | return reg_star |
---|
1386 | |
---|
1387 | def p_sinusiode(length=10., amp=5., lamb=3., ival=0., func='sin', N=100): |
---|
1388 | """ Function to get coordinates of a sinusoidal curve |
---|
1389 | length: length of the line (default 10.) |
---|
1390 | amp: amplitude of the peaks (default 5.) |
---|
1391 | lamb: wave longitude (defalult 3.) |
---|
1392 | ival: initial angle (default 0. in degree) |
---|
1393 | func: function to use: (default sinus) |
---|
1394 | 'sin': sinus |
---|
1395 | 'cos': cosinus |
---|
1396 | N: number of points (default 100) |
---|
1397 | """ |
---|
1398 | fname = 'p_sinusiode' |
---|
1399 | availfunc = ['sin', 'cos'] |
---|
1400 | |
---|
1401 | dx = length/(N-1) |
---|
1402 | ia = ival*np.pi/180. |
---|
1403 | da = 2*np.pi*dx/lamb |
---|
1404 | |
---|
1405 | sinusoide = np.zeros((N,2), dtype=np.float) |
---|
1406 | if func == 'sin': |
---|
1407 | for ix in range(N): |
---|
1408 | sinusoide[ix,:] = [amp*np.sin(ia+da*ix),dx*ix] |
---|
1409 | elif func == 'cos': |
---|
1410 | for ix in range(N): |
---|
1411 | sinusoide[ix,:] = [amp*np.cos(ia+da*ix),dx*ix] |
---|
1412 | else: |
---|
1413 | print errormsg |
---|
1414 | print ' ' + fname + ": function '" + func + "' not ready !!" |
---|
1415 | print ' available ones:', availfunc |
---|
1416 | quit(-1) |
---|
1417 | |
---|
1418 | sinusoidesecs = ['sinusoide'] |
---|
1419 | sinusoidedic = {'sinusoide': [sinusoide, '-', '#000000', 1.]} |
---|
1420 | |
---|
1421 | return sinusoide, sinusoidesecs, sinusoidedic |
---|
1422 | |
---|
1423 | def p_doubleArrow(length=5., angle=45., width=1., alength=0.10, N=50): |
---|
1424 | """ Function to provide an arrow with double lines |
---|
1425 | length: length of the arrow (5. default) |
---|
1426 | angle: angle of the head of the arrow (45., default) |
---|
1427 | width: separation between the two lines (2., default) |
---|
1428 | alength: length of the head (as percentage in excess of width, 0.1 default) |
---|
1429 | N: number of points (50, default) |
---|
1430 | """ |
---|
1431 | function = 'p_doubleArrow' |
---|
1432 | |
---|
1433 | doubleArrow = np.zeros((50,2), dtype=np.float) |
---|
1434 | N4 = int((N-3)/4) |
---|
1435 | |
---|
1436 | doublearrowdic = {} |
---|
1437 | ddy = width*np.tan(angle*np.pi/180.)/2. |
---|
1438 | # Arms |
---|
1439 | dx = (length-ddy)/(N4-1) |
---|
1440 | for ix in range(N4): |
---|
1441 | doubleArrow[ix,:] = [dx*ix,-width/2.] |
---|
1442 | doublearrowdic['leftarm'] = [doubleArrow[0:N4,:], '-', '#000000', 2.] |
---|
1443 | doubleArrow[N4,:] = [gen.fillValueF,gen.fillValueF] |
---|
1444 | for ix in range(N4): |
---|
1445 | doubleArrow[N4+1+ix,:] = [dx*ix,width/2.] |
---|
1446 | doublearrowdic['rightarm'] = [doubleArrow[N4+1:2*N4+1,:], '-', '#000000', 2.] |
---|
1447 | doubleArrow[2*N4+1,:] = [gen.fillValueF,gen.fillValueF] |
---|
1448 | |
---|
1449 | # Head |
---|
1450 | N42 = int((N-2 - 2*N4)/2) |
---|
1451 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N42-1) |
---|
1452 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N42-1) |
---|
1453 | for ix in range(N42): |
---|
1454 | doubleArrow[2*N4+2+ix,:] = [length-dy*ix,-dx*ix] |
---|
1455 | doublearrowdic['lefthead'] = [doubleArrow[2*N4:2*N4+N42,:], '-', '#000000', 2.] |
---|
1456 | doubleArrow[2*N4+2+N42,:] = [gen.fillValueF,gen.fillValueF] |
---|
1457 | |
---|
1458 | N43 = N-3 - 2*N4 - N42 + 1 |
---|
1459 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N43-1) |
---|
1460 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N43-1) |
---|
1461 | for ix in range(N43): |
---|
1462 | doubleArrow[2*N4+N42+2+ix,:] = [length-dy*ix,dx*ix] |
---|
1463 | doublearrowdic['rightthead'] = [doubleArrow[2*N4+N42+2:51,:], '-', '#000000', 2.] |
---|
1464 | |
---|
1465 | doubleArrow = ma.masked_equal(doubleArrow, gen.fillValueF) |
---|
1466 | doublearrowsecs = ['leftarm', 'rightarm', 'lefthead', 'righthead'] |
---|
1467 | |
---|
1468 | return doubleArrow, doublearrowsecs, doublearrowdic |
---|
1469 | |
---|
1470 | def p_angle_triangle(pi=np.array([0.,0.]), angle1=60., length1=1., angle2=60., N=100): |
---|
1471 | """ Function to draw a triangle by an initial point and two consecutive angles |
---|
1472 | and the first length of face. The third angle and 2 and 3rd face will be |
---|
1473 | computed accordingly the provided values: |
---|
1474 | length1 / sin(angle1) = length2 / sin(angle2) = length3 / sin(angle3) |
---|
1475 | angle1 + angle2 + angle3 = 180. |
---|
1476 | pi: initial point ([0., 0.], default) |
---|
1477 | angle1: first angle from pi clockwise (60., default) |
---|
1478 | length1: length of face from pi by angle1 (1., default) |
---|
1479 | angle2: second angle from second point (60., default) |
---|
1480 | length2: length of face from p2 by angle2 (1., default) |
---|
1481 | N: number of points (100, default) |
---|
1482 | """ |
---|
1483 | fname = 'p_angle_triangle' |
---|
1484 | |
---|
1485 | angle3 = 180. - angle1 - angle2 |
---|
1486 | length2 = np.sin(angle2*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
1487 | length3 = np.sin(angle3*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
1488 | |
---|
1489 | triangle = np.zeros((N,2), dtype=np.float) |
---|
1490 | |
---|
1491 | N3 = int(N/3) |
---|
1492 | # first face |
---|
1493 | ix = pi[1] |
---|
1494 | iy = pi[0] |
---|
1495 | dx = length1*np.cos(angle1*np.pi/180.)/(N3-1) |
---|
1496 | dy = length1*np.sin(angle1*np.pi/180.)/(N3-1) |
---|
1497 | for ip in range(N3): |
---|
1498 | triangle[ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1499 | |
---|
1500 | # second face |
---|
1501 | ia = -90. - (90.-angle1) |
---|
1502 | ix = triangle[N3-1,1] |
---|
1503 | iy = triangle[N3-1,0] |
---|
1504 | dx = length2*np.cos((ia+angle2)*np.pi/180.)/(N3-1) |
---|
1505 | dy = length2*np.sin((ia+angle2)*np.pi/180.)/(N3-1) |
---|
1506 | for ip in range(N3): |
---|
1507 | triangle[N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1508 | |
---|
1509 | # third face |
---|
1510 | N32 = N - 2*N3 |
---|
1511 | ia = -180. - (90.-angle2) |
---|
1512 | ix = triangle[2*N3-1,1] |
---|
1513 | iy = triangle[2*N3-1,0] |
---|
1514 | angle3 = np.arctan2(pi[0]-iy, pi[1]-ix) |
---|
1515 | dx = (pi[1]-ix)/(N32-1) |
---|
1516 | dy = (pi[0]-iy)/(N32-1) |
---|
1517 | for ip in range(N32): |
---|
1518 | triangle[2*N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1519 | |
---|
1520 | return triangle |
---|
1521 | |
---|
1522 | def p_cross_width(larm=5., width=1., Narms=4, N=200): |
---|
1523 | """ Function to draw a cross with arms with a given width and an angle |
---|
1524 | larm: legnth of the arms (5., default) |
---|
1525 | width: width of the arms (1., default) |
---|
1526 | Narms: Number of arms (4, default) |
---|
1527 | N: number of points to us (200, default) |
---|
1528 | """ |
---|
1529 | fname = 'p_cross_width' |
---|
1530 | |
---|
1531 | Narm = int((N-Narms)/Narms) |
---|
1532 | |
---|
1533 | larm2 = larm/2. |
---|
1534 | width2 = width/2. |
---|
1535 | |
---|
1536 | cross = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1537 | da = np.pi/Narms |
---|
1538 | |
---|
1539 | N1 = int(Narm*3./8.) |
---|
1540 | N2 = int((Narm - 2*N1)/2.) |
---|
1541 | N21 = Narm - 2*N1 - N2 |
---|
1542 | |
---|
1543 | if N2 < 3: |
---|
1544 | print errormsg |
---|
1545 | print ' ' + fname + ": too few points for ", Narms, " arms !!" |
---|
1546 | print " increase number 'N' at least up to '", 25*Narms |
---|
1547 | quit(-1) |
---|
1548 | |
---|
1549 | crosssecs = [] |
---|
1550 | crossdic = {} |
---|
1551 | Npot = int(np.log10(Narms))+1 |
---|
1552 | |
---|
1553 | iip = 0 |
---|
1554 | for iarm in range(Narms-1): |
---|
1555 | |
---|
1556 | a = da*iarm |
---|
1557 | iip0 = iip |
---|
1558 | |
---|
1559 | # bottom coordinate |
---|
1560 | bx = larm*np.cos(a+np.pi) |
---|
1561 | by = larm*np.sin(a+np.pi) |
---|
1562 | |
---|
1563 | # upper coordinate |
---|
1564 | ux = larm*np.cos(a) |
---|
1565 | uy = larm*np.sin(a) |
---|
1566 | |
---|
1567 | rela = a+np.pi*3./2. |
---|
1568 | # SW-NW |
---|
1569 | ix = bx + width2*np.cos(rela) |
---|
1570 | iy = by + width2*np.sin(rela) |
---|
1571 | ex = ux + width2*np.cos(rela) |
---|
1572 | ey = uy + width2*np.sin(rela) |
---|
1573 | dx = (ex-ix)/(N1-1) |
---|
1574 | dy = (ey-iy)/(N1-1) |
---|
1575 | for ip in range(N1): |
---|
1576 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1577 | iip = iip + N1 |
---|
1578 | |
---|
1579 | # NW-NE |
---|
1580 | ix = ex + 0. |
---|
1581 | iy = ey + 0. |
---|
1582 | ex = ux - width2*np.cos(rela) |
---|
1583 | ey = uy - width2*np.sin(rela) |
---|
1584 | dx = (ex-ix)/(N2-1) |
---|
1585 | dy = (ey-iy)/(N2-1) |
---|
1586 | for ip in range(N2): |
---|
1587 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1588 | iip = iip + N2 |
---|
1589 | |
---|
1590 | # NW-SW |
---|
1591 | ix = ex + 0. |
---|
1592 | iy = ey + 0. |
---|
1593 | ex = bx - width2*np.cos(rela) |
---|
1594 | ey = by - width2*np.sin(rela) |
---|
1595 | dx = (ex-ix)/(N1-1) |
---|
1596 | dy = (ey-iy)/(N1-1) |
---|
1597 | for ip in range(N1): |
---|
1598 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1599 | iip = iip + N1 |
---|
1600 | |
---|
1601 | # SW-SE |
---|
1602 | ix = ex + 0. |
---|
1603 | iy = ey + 0. |
---|
1604 | ex = bx + width2*np.cos(rela) |
---|
1605 | ey = by + width2*np.sin(rela) |
---|
1606 | dx = (ex-ix)/(N21-1) |
---|
1607 | dy = (ey-iy)/(N21-1) |
---|
1608 | for ip in range(N21): |
---|
1609 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1610 | iip = iip + N21 + 1 |
---|
1611 | |
---|
1612 | iarmS = str(iarm).zfill(Npot) |
---|
1613 | crosssecs.append(iarmS) |
---|
1614 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
1615 | |
---|
1616 | iip0 = iip |
---|
1617 | |
---|
1618 | Narm = N - Narm*(Narms-1) - Narms |
---|
1619 | |
---|
1620 | N1 = int(Narm*3./8.) |
---|
1621 | N2 = int((Narm - 2*N1)/2.) |
---|
1622 | N21 = Narm - 2*N1 - N2 |
---|
1623 | |
---|
1624 | iarm = Narms-1 |
---|
1625 | a = da*iarm |
---|
1626 | |
---|
1627 | # bottom coordinate |
---|
1628 | bx = larm*np.cos(a+np.pi) |
---|
1629 | by = larm*np.sin(a+np.pi) |
---|
1630 | |
---|
1631 | # upper coordinate |
---|
1632 | ux = larm*np.cos(a) |
---|
1633 | uy = larm*np.sin(a) |
---|
1634 | |
---|
1635 | rela = a+np.pi*3./2. |
---|
1636 | # SW-NW |
---|
1637 | ix = bx + width2*np.cos(rela) |
---|
1638 | iy = by + width2*np.sin(rela) |
---|
1639 | ex = ux + width2*np.cos(rela) |
---|
1640 | ey = uy + width2*np.sin(rela) |
---|
1641 | dx = (ex-ix)/(N1-1) |
---|
1642 | dy = (ey-iy)/(N1-1) |
---|
1643 | for ip in range(N1): |
---|
1644 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1645 | iip = iip + N1 |
---|
1646 | |
---|
1647 | # NW-NE |
---|
1648 | ix = ex + 0. |
---|
1649 | iy = ey + 0. |
---|
1650 | ex = ux - width2*np.cos(rela) |
---|
1651 | ey = uy - width2*np.sin(rela) |
---|
1652 | dx = (ex-ix)/(N2-1) |
---|
1653 | dy = (ey-iy)/(N2-1) |
---|
1654 | for ip in range(N2): |
---|
1655 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1656 | iip = iip + N2 |
---|
1657 | |
---|
1658 | # NW-SW |
---|
1659 | ix = ex + 0. |
---|
1660 | iy = ey + 0. |
---|
1661 | ex = bx - width2*np.cos(rela) |
---|
1662 | ey = by - width2*np.sin(rela) |
---|
1663 | dx = (ex-ix)/(N1-1) |
---|
1664 | dy = (ey-iy)/(N1-1) |
---|
1665 | for ip in range(N1): |
---|
1666 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1667 | iip = iip + N1 |
---|
1668 | |
---|
1669 | # SW-SE |
---|
1670 | ix = ex + 0. |
---|
1671 | iy = ey + 0. |
---|
1672 | ex = bx + width2*np.cos(rela) |
---|
1673 | ey = by + width2*np.sin(rela) |
---|
1674 | dx = (ex-ix)/(N21-1) |
---|
1675 | dy = (ey-iy)/(N21-1) |
---|
1676 | for ip in range(N21): |
---|
1677 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1678 | iip = iip + N21 |
---|
1679 | |
---|
1680 | iarmS = str(iarm).zfill(Npot) |
---|
1681 | crosssecs.append(iarmS) |
---|
1682 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
1683 | |
---|
1684 | cross = ma.masked_equal(cross, gen.fillValueF) |
---|
1685 | |
---|
1686 | return cross, crosssecs, crossdic |
---|
1687 | |
---|
1688 | # Combined objects |
---|
1689 | ## |
---|
1690 | |
---|
1691 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
1692 | def zboat(length=10., beam=1., lbeam=0.4, sternbp=0.5): |
---|
1693 | """ Function to define an schematic boat from the z-plane |
---|
1694 | length: length of the boat (without stern, default 10) |
---|
1695 | beam: beam of the boat (default 1) |
---|
1696 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
1697 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
1698 | """ |
---|
1699 | fname = 'zboat' |
---|
1700 | |
---|
1701 | bow = np.array([length, 0.]) |
---|
1702 | maxportside = np.array([length*lbeam, -beam]) |
---|
1703 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
1704 | portside = np.array([0., -beam*sternbp]) |
---|
1705 | starboardside = np.array([0., beam*sternbp]) |
---|
1706 | |
---|
1707 | # forward section |
---|
1708 | fportside = circ_sec(maxportside, bow, length*2) |
---|
1709 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
1710 | # aft section |
---|
1711 | aportside = circ_sec(portside, maxportside, length*2) |
---|
1712 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
1713 | # stern |
---|
1714 | stern = circ_sec(starboardside, portside, length*2) |
---|
1715 | |
---|
1716 | dpts = stern.shape[0] |
---|
1717 | boat = np.zeros((dpts*5,2), dtype=np.float) |
---|
1718 | |
---|
1719 | boat[0:dpts,:] = aportside |
---|
1720 | boat[dpts:2*dpts,:] = fportside |
---|
1721 | boat[2*dpts:3*dpts,:] = fstarboardside |
---|
1722 | boat[3*dpts:4*dpts,:] = astarboardside |
---|
1723 | boat[4*dpts:5*dpts,:] = stern |
---|
1724 | |
---|
1725 | fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' + \ |
---|
1726 | str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat' |
---|
1727 | if not os.path.isfile(fname): |
---|
1728 | print infmsg |
---|
1729 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1730 | of = open(fname, 'w') |
---|
1731 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1732 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
1733 | ' %\n') |
---|
1734 | for ip in range(dpts*5): |
---|
1735 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
1736 | |
---|
1737 | of.close() |
---|
1738 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1739 | |
---|
1740 | |
---|
1741 | # Center line extending [fcl] percentage from length on aft and stern |
---|
1742 | fcl = 0.15 |
---|
1743 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
1744 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
1745 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
1746 | |
---|
1747 | # correct order of sections |
---|
1748 | boatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
1749 | 'stern', 'centerline'] |
---|
1750 | |
---|
1751 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
1752 | dicboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
1753 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
1754 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
1755 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
1756 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
1757 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
1758 | |
---|
1759 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
1760 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) +'.dat' |
---|
1761 | if not os.path.isfile(fname): |
---|
1762 | print infmsg |
---|
1763 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1764 | of = open(fname, 'w') |
---|
1765 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1766 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' +str(sternbp)+'\n') |
---|
1767 | for ip in range(dpts*5): |
---|
1768 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
1769 | |
---|
1770 | of.close() |
---|
1771 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1772 | |
---|
1773 | return boat, boatsecs, dicboat |
---|
1774 | |
---|
1775 | def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5, lmast=0.6, wmast=0.1, \ |
---|
1776 | hsd=5., msd=5., lheads=0.38, lmains=0.55): |
---|
1777 | """ Function to define an schematic sailing boat from the z-plane with sails |
---|
1778 | length: length of the boat (without stern, default 10) |
---|
1779 | beam: beam of the boat (default 1) |
---|
1780 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
1781 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
1782 | lmast: position of the mast (as percentage of length, default 0.6) |
---|
1783 | wmast: width of the mast (default 0.1) |
---|
1784 | hsd: head sail direction respect to center line (default 5., -999.99 for upwind) |
---|
1785 | msd: main sail direction respect to center line (default 5., -999.99 for upwind) |
---|
1786 | lheads: length of head sail (as percentage of legnth, defaul 0.38) |
---|
1787 | lmains: length of main sail (as percentage of legnth, defaul 0.55) |
---|
1788 | """ |
---|
1789 | fname = 'zsailing_boat' |
---|
1790 | |
---|
1791 | bow = np.array([length, 0.]) |
---|
1792 | maxportside = np.array([length*lbeam, -beam]) |
---|
1793 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
1794 | portside = np.array([0., -beam*sternbp]) |
---|
1795 | starboardside = np.array([0., beam*sternbp]) |
---|
1796 | |
---|
1797 | aportside = circ_sec(portside, maxportside, length*2) |
---|
1798 | fportside = circ_sec(maxportside, bow, length*2) |
---|
1799 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
1800 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
1801 | stern = circ_sec(starboardside, portside, length*2) |
---|
1802 | dpts = fportside.shape[0] |
---|
1803 | |
---|
1804 | # correct order of sections |
---|
1805 | sailingboatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
1806 | 'stern', 'mast', 'hsail', 'msail', 'centerline'] |
---|
1807 | |
---|
1808 | # forward section |
---|
1809 | |
---|
1810 | # aft section |
---|
1811 | # stern |
---|
1812 | # mast |
---|
1813 | mast = p_circle(wmast,N=dpts) |
---|
1814 | mast = mast + [length*lmast, 0.] |
---|
1815 | # head sails |
---|
1816 | lsail = lheads*length |
---|
1817 | if hsd != -999.99: |
---|
1818 | sailsa = np.pi/2. - np.pi*hsd/180. |
---|
1819 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
1820 | endsail[0] = length - endsail[0] |
---|
1821 | if bow[1] > endsail[1]: |
---|
1822 | hsail = circ_sec(endsail, bow, lsail*2.15) |
---|
1823 | else: |
---|
1824 | hsail = circ_sec(bow, endsail, lsail*2.15) |
---|
1825 | else: |
---|
1826 | hsail0 = p_sinusiode(length=lsail, amp=0.2, lamb=0.75, N=dpts) |
---|
1827 | hsail = np.zeros((dpts,2), dtype=np.float) |
---|
1828 | hsail[:,0] = hsail0[:,1] |
---|
1829 | hsail[:,1] = hsail0[:,0] |
---|
1830 | hsail = bow - hsail |
---|
1831 | |
---|
1832 | # main sails |
---|
1833 | lsail = lmains*length |
---|
1834 | if msd != -999.99: |
---|
1835 | sailsa = np.pi/2. - np.pi*msd/180. |
---|
1836 | begsail = np.array([length*lmast, 0.]) |
---|
1837 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
1838 | endsail[0] = length*lmast - endsail[0] |
---|
1839 | if endsail[1] > begsail[1]: |
---|
1840 | msail = circ_sec(begsail, endsail, lsail*2.15) |
---|
1841 | else: |
---|
1842 | msail = circ_sec(endsail, begsail, lsail*2.15) |
---|
1843 | else: |
---|
1844 | msail0 = p_sinusiode(length=lsail, amp=0.25, lamb=1., N=dpts) |
---|
1845 | msail = np.zeros((dpts,2), dtype=np.float) |
---|
1846 | msail[:,0] = msail0[:,1] |
---|
1847 | msail[:,1] = msail0[:,0] |
---|
1848 | msail = [length*lmast,0] - msail |
---|
1849 | |
---|
1850 | sailingboat = np.zeros((dpts*8+4,2), dtype=np.float) |
---|
1851 | |
---|
1852 | sailingboat[0:dpts,:] = aportside |
---|
1853 | sailingboat[dpts:2*dpts,:] = fportside |
---|
1854 | sailingboat[2*dpts:3*dpts,:] = fstarboardside |
---|
1855 | sailingboat[3*dpts:4*dpts,:] = astarboardside |
---|
1856 | sailingboat[4*dpts:5*dpts,:] = stern |
---|
1857 | sailingboat[5*dpts,:] = [gen.fillValueF, gen.fillValueF] |
---|
1858 | sailingboat[5*dpts+1:6*dpts+1,:] = mast |
---|
1859 | sailingboat[6*dpts+1,:] = [gen.fillValueF, gen.fillValueF] |
---|
1860 | sailingboat[6*dpts+2:7*dpts+2,:] = hsail |
---|
1861 | sailingboat[7*dpts+2,:] = [gen.fillValueF, gen.fillValueF] |
---|
1862 | sailingboat[7*dpts+3:8*dpts+3,:] = msail |
---|
1863 | sailingboat[8*dpts+3,:] = [gen.fillValueF, gen.fillValueF] |
---|
1864 | |
---|
1865 | sailingboat = ma.masked_equal(sailingboat, gen.fillValueF) |
---|
1866 | |
---|
1867 | # Center line extending [fcl] percentage from length on aft and stern |
---|
1868 | fcl = 0.15 |
---|
1869 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
1870 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
1871 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
1872 | |
---|
1873 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
1874 | dicsailingboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
1875 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
1876 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
1877 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
1878 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
1879 | 'mast': [mast, '-', '#8A5900', 2.], 'hsail': [hsail, '-', '#AAAAAA', 1.], \ |
---|
1880 | 'msail': [msail, '-', '#AAAAAA', 1.], \ |
---|
1881 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
1882 | |
---|
1883 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
1884 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + \ |
---|
1885 | '_lm' + str(int(lmast*100.)) + '_wm' + str(int(wmast)) + \ |
---|
1886 | '_hsd' + str(int(hsd)) + '_hs' + str(int(lheads*100.)) + \ |
---|
1887 | '_ms' + str(int(lheads*100.)) + '_msd' + str(int(msd)) +'.dat' |
---|
1888 | if not os.path.isfile(fname): |
---|
1889 | print infmsg |
---|
1890 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1891 | of = open(fname, 'w') |
---|
1892 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1893 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
1894 | ' % mast position: '+ str(lmast) + ' % mast width: ' + str(wmast) + ' ' + \ |
---|
1895 | ' head sail direction:' + str(hsd) + ' head sail length: ' + str(lheads) + \ |
---|
1896 | ' %' + ' main sail length' + str(lmains) + ' main sail direction:' + \ |
---|
1897 | str(msd) +'\n') |
---|
1898 | for ip in range(dpts*5): |
---|
1899 | of.write(str(sailingboat[ip,0]) + ' ' + str(sailingboat[ip,1]) + '\n') |
---|
1900 | |
---|
1901 | of.close() |
---|
1902 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1903 | |
---|
1904 | return sailingboat, sailingboatsecs, dicsailingboat |
---|
1905 | |
---|
1906 | def zisland1(mainpts= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9],\ |
---|
1907 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float), radfrac=3., N=200): |
---|
1908 | """ Function to draw an island from z-axis as the union of a series of points by |
---|
1909 | circular segments |
---|
1910 | mainpts: main points of the island (clockwise ordered, to be joined by |
---|
1911 | circular segments of radii as the radfrac factor of the distance between |
---|
1912 | consecutive points) |
---|
1913 | * default= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9], |
---|
1914 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float) |
---|
1915 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
1916 | draw the circular segment (3., default) |
---|
1917 | N: number of points (200, default) |
---|
1918 | """ |
---|
1919 | fname = 'zisland1' |
---|
1920 | |
---|
1921 | island1 = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1922 | |
---|
1923 | # Coastline |
---|
1924 | island1 = join_circ_sec_rand(mainpts, arc='short', pos='left') |
---|
1925 | |
---|
1926 | islandsecs = ['coastline'] |
---|
1927 | islanddic = {'coastline': [island1, '-', '#161616', 2.]} |
---|
1928 | |
---|
1929 | island1 = ma.masked_equal(island1, gen.fillValueF) |
---|
1930 | |
---|
1931 | return island1, islandsecs, islanddic |
---|
1932 | |
---|
1933 | def buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=300): |
---|
1934 | """ Function to draw a buoy as superposition of prism and section of ball |
---|
1935 | height: height of the prism (5., default) |
---|
1936 | width: width of the prism (10., default) |
---|
1937 | bradii: radii of the ball (1.75, default) |
---|
1938 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
1939 | N: total number of points of the buoy (300, default) |
---|
1940 | """ |
---|
1941 | fname = 'buoy1' |
---|
1942 | |
---|
1943 | buoy = np.zeros((N,2), dtype=np.float) |
---|
1944 | |
---|
1945 | N3 = int(N/3/5) |
---|
1946 | NNp = 0 |
---|
1947 | iip = 0 |
---|
1948 | # left lateral |
---|
1949 | ix = -width/2. |
---|
1950 | Np = N3 |
---|
1951 | iy = 0. |
---|
1952 | dx = 0. |
---|
1953 | dy = height/(Np) |
---|
1954 | for ip in range(Np): |
---|
1955 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1956 | NNp = NNp + Np |
---|
1957 | iip = NNp |
---|
1958 | |
---|
1959 | # left upper |
---|
1960 | ix = -width/2. |
---|
1961 | iy = height |
---|
1962 | dx = (width/2.-bradii*bfrac)/(Np) |
---|
1963 | dy = 0. |
---|
1964 | for ip in range(Np): |
---|
1965 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1966 | NNp = NNp + Np |
---|
1967 | iip = NNp |
---|
1968 | |
---|
1969 | # ball |
---|
1970 | p1 = np.array([height, -bradii*bfrac]) |
---|
1971 | p2 = np.array([height, bradii*bfrac]) |
---|
1972 | Np = int(2*N/3) |
---|
1973 | buoy[iip:iip+Np,:] = circ_sec(p1, p2, 2.*bradii, 'long', 'left', Np) |
---|
1974 | NNp = NNp + Np |
---|
1975 | iip = NNp |
---|
1976 | |
---|
1977 | # right upper |
---|
1978 | ix = bradii*bfrac |
---|
1979 | iy = height |
---|
1980 | Np = N3 |
---|
1981 | dx = (width/2.-bradii*bfrac)/(Np) |
---|
1982 | dy = 0. |
---|
1983 | for ip in range(Np): |
---|
1984 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1985 | NNp = NNp + Np |
---|
1986 | iip = NNp |
---|
1987 | |
---|
1988 | # right lateral |
---|
1989 | ix = width/2. |
---|
1990 | iy = height |
---|
1991 | dx = 0. |
---|
1992 | dy = -height/(Np) |
---|
1993 | for ip in range(Np): |
---|
1994 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1995 | NNp = NNp + Np |
---|
1996 | iip = NNp |
---|
1997 | |
---|
1998 | # Base |
---|
1999 | ix = width/2. |
---|
2000 | iy = 0. |
---|
2001 | Np = N - int(2*N/3) - 4*N3 - 1 |
---|
2002 | dx = -width/(Np) |
---|
2003 | dy = 0. |
---|
2004 | for ip in range(Np): |
---|
2005 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2006 | NNp = NNp + Np |
---|
2007 | iip = NNp |
---|
2008 | |
---|
2009 | buoy[N-1,:] = buoy[0,:] |
---|
2010 | |
---|
2011 | buoysecs = ['base'] |
---|
2012 | buoydic = {'base': [buoy, '-', 'k', 1.5]} |
---|
2013 | |
---|
2014 | return buoy, buoysecs, buoydic |
---|
2015 | |
---|
2016 | def band_lighthouse(height=10., width=2., hlight=3., bands=3, N=300): |
---|
2017 | """ Function to plot a lighthouse with spiral bands |
---|
2018 | height: height of the tower (10., default) |
---|
2019 | width: width of the tower (2., default) |
---|
2020 | hlight: height of the light (3., default) |
---|
2021 | bands: number of spiral bands (3, default) |
---|
2022 | N: number of points (300, default) |
---|
2023 | """ |
---|
2024 | fname = 'band_lighthouse' |
---|
2025 | |
---|
2026 | lighthouse = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2027 | lighthousesecs = [] |
---|
2028 | lighthousedic = {} |
---|
2029 | |
---|
2030 | # base Tower |
---|
2031 | Nsec = int(0.30*N/7) |
---|
2032 | p1=np.array([0., width/2.]) |
---|
2033 | p2=np.array([0., -width/2.]) |
---|
2034 | iip = 0 |
---|
2035 | lighthouse[0:Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2036 | iip = iip + Nsec |
---|
2037 | |
---|
2038 | # left side |
---|
2039 | ix=-width/2. |
---|
2040 | iy=0. |
---|
2041 | dx = 0. |
---|
2042 | dy = height/(Nsec-1) |
---|
2043 | for ip in range(Nsec): |
---|
2044 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2045 | iip = iip + Nsec |
---|
2046 | |
---|
2047 | # Top Tower |
---|
2048 | p1=np.array([height, width/2.]) |
---|
2049 | p2=np.array([height, -width/2.]) |
---|
2050 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2051 | iip = iip + Nsec |
---|
2052 | |
---|
2053 | # right side |
---|
2054 | ix=width/2. |
---|
2055 | iy=height |
---|
2056 | dx = 0. |
---|
2057 | dy = -height/(Nsec-1) |
---|
2058 | for ip in range(Nsec): |
---|
2059 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2060 | iip = iip + Nsec + 1 |
---|
2061 | |
---|
2062 | Ntower = iip-1 |
---|
2063 | lighthousesecs.append('tower') |
---|
2064 | lighthousedic['tower'] = [lighthouse[0:iip-1], '-', 'k', 1.5] |
---|
2065 | |
---|
2066 | # Left light |
---|
2067 | p1 = np.array([height, -width*0.8/2.]) |
---|
2068 | p2 = np.array([height+hlight, -width*0.8/2.]) |
---|
2069 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
2070 | iip = iip + Nsec |
---|
2071 | |
---|
2072 | # Top Light |
---|
2073 | p1=np.array([height+hlight, width*0.8/2.]) |
---|
2074 | p2=np.array([height+hlight, -width*0.8/2.]) |
---|
2075 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2076 | iip = iip + Nsec + 1 |
---|
2077 | |
---|
2078 | # Right light |
---|
2079 | p1 = np.array([height+hlight, width*0.8/2.]) |
---|
2080 | p2 = np.array([height, width*0.8/2.]) |
---|
2081 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
2082 | iip = iip + Nsec |
---|
2083 | |
---|
2084 | # Base Light |
---|
2085 | p1=np.array([height, width*0.8/2.]) |
---|
2086 | p2=np.array([height, -width*0.8/2.]) |
---|
2087 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2088 | iip = iip + Nsec + 1 |
---|
2089 | lighthousesecs.append('light') |
---|
2090 | lighthousedic['light'] = [lighthouse[Ntower+1:iip-1], '-', '#EEEE00', 1.5] |
---|
2091 | |
---|
2092 | # Spiral bands |
---|
2093 | hb = height/(2.*bands) |
---|
2094 | Nsec2 = (N - Nsec*8 - 3)/bands |
---|
2095 | for ib in range(bands-1): |
---|
2096 | iband = iip |
---|
2097 | Nsec = Nsec2/4 |
---|
2098 | bandS = 'band' + str(ib).zfill(2) |
---|
2099 | # hband |
---|
2100 | ix = -width/2. |
---|
2101 | iy = hb*ib*2 |
---|
2102 | dx = 0. |
---|
2103 | dy = hb/(Nsec-1) |
---|
2104 | for ip in range(Nsec): |
---|
2105 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2106 | iip = iip + Nsec |
---|
2107 | # uband |
---|
2108 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
2109 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
2110 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
2111 | iip = iip + Nsec |
---|
2112 | # dband |
---|
2113 | ix = width/2. |
---|
2114 | iy = hb*(ib*2+2) |
---|
2115 | dx = 0. |
---|
2116 | dy = -hb/(Nsec-1) |
---|
2117 | for ip in range(Nsec): |
---|
2118 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2119 | iip = iip + Nsec |
---|
2120 | # dband |
---|
2121 | p1 = np.array([hb*(ib*2+1), width/2.]) |
---|
2122 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
2123 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2124 | iip = iip + Nsec + 1 |
---|
2125 | lighthousesecs.append(bandS) |
---|
2126 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
2127 | |
---|
2128 | ib = bands-1 |
---|
2129 | Nsec3 = (N - iip - 1) |
---|
2130 | Nsec = int(Nsec3/4) |
---|
2131 | bandS = 'band' + str(ib).zfill(2) |
---|
2132 | # hband |
---|
2133 | iband = iip |
---|
2134 | ix = -width/2. |
---|
2135 | iy = hb*ib*2 |
---|
2136 | dx = 0. |
---|
2137 | dy = hb/(Nsec-1) |
---|
2138 | for ip in range(Nsec): |
---|
2139 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2140 | iip = iip + Nsec |
---|
2141 | # uband |
---|
2142 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
2143 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
2144 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
2145 | iip = iip + Nsec |
---|
2146 | # dband |
---|
2147 | ix = width/2. |
---|
2148 | iy = hb*(2+ib*2) |
---|
2149 | dx = 0. |
---|
2150 | dy = -hb/(Nsec-1) |
---|
2151 | for ip in range(Nsec): |
---|
2152 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2153 | iip = iip + Nsec |
---|
2154 | # dband |
---|
2155 | Nsec = N - iip |
---|
2156 | p1 = np.array([hb*(1+ib*2), width/2.]) |
---|
2157 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
2158 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
2159 | lighthousesecs.append(bandS) |
---|
2160 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
2161 | |
---|
2162 | lighthouse = ma.masked_equal(lighthouse, gen.fillValueF) |
---|
2163 | |
---|
2164 | return lighthouse, lighthousesecs, lighthousedic |
---|
2165 | |
---|
2166 | def north_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
2167 | """ Function to draw a North danger buoy using buoy1 |
---|
2168 | height: height of the prism (5., default) |
---|
2169 | width: width of the prism (10., default) |
---|
2170 | bradii: radii of the ball (1.75, default) |
---|
2171 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2172 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2173 | (0.7, default) |
---|
2174 | N: total number of points of the buoy (300, default) |
---|
2175 | """ |
---|
2176 | fname = 'north_buoy1' |
---|
2177 | |
---|
2178 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2179 | |
---|
2180 | # buoy |
---|
2181 | N2 = int(N/2) |
---|
2182 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2183 | bfrac=0.8, N=N2) |
---|
2184 | buoy[0:N2,:] = buoy1v |
---|
2185 | |
---|
2186 | # signs |
---|
2187 | N3 = N - N2 - 2 |
---|
2188 | |
---|
2189 | bottsigns = 2.*bradii+height |
---|
2190 | lsign = height*hsigns |
---|
2191 | # up |
---|
2192 | N32 = int(N3/2) |
---|
2193 | triu = p_angle_triangle(N=N32) |
---|
2194 | trib = triu*lsign + [0.,-lsign/2.] |
---|
2195 | |
---|
2196 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
2197 | |
---|
2198 | # up |
---|
2199 | N323 = N - N32 - N2 - 2 |
---|
2200 | trid = p_angle_triangle(N=N323) |
---|
2201 | trib = trid*lsign + [0.,-lsign/2.] |
---|
2202 | buoy[N2+N32+2:N,:] = trib + [bottsigns+1.1*lsign,0.] |
---|
2203 | |
---|
2204 | # painting it |
---|
2205 | Height = np.max(buoy1v[:,0]) |
---|
2206 | |
---|
2207 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='below') |
---|
2208 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
2209 | |
---|
2210 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2211 | |
---|
2212 | buoysecs = ['buoy', 'sign1', 'sign2', 'halfk', 'halfy'] |
---|
2213 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2214 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2215 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', 'k', 1.], \ |
---|
2216 | 'half2': [halfdown, '-', '#FFFF00', 1.]} |
---|
2217 | |
---|
2218 | return buoy, buoysecs, buoydic |
---|
2219 | |
---|
2220 | def east_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
2221 | """ Function to draw a East danger buoy using buoy1 |
---|
2222 | height: height of the prism (5., default) |
---|
2223 | width: width of the prism (10., default) |
---|
2224 | bradii: radii of the ball (1.75, default) |
---|
2225 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2226 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2227 | (0.7, default) |
---|
2228 | N: total number of points of the buoy (300, default) |
---|
2229 | """ |
---|
2230 | fname = 'east_buoy1' |
---|
2231 | |
---|
2232 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2233 | |
---|
2234 | # buoy |
---|
2235 | N2 = int(N/2) |
---|
2236 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
2237 | buoy[0:N2,:] = buoy1v |
---|
2238 | |
---|
2239 | # signs |
---|
2240 | N3 = N - N2 - 2 |
---|
2241 | |
---|
2242 | bottsigns = 2.*bradii+height |
---|
2243 | lsign = height*hsigns |
---|
2244 | # up |
---|
2245 | N32 = int(N3/2) |
---|
2246 | triu = p_angle_triangle(N=N32) |
---|
2247 | trib = triu*lsign + [0.,-lsign/2.] |
---|
2248 | |
---|
2249 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
2250 | |
---|
2251 | # down |
---|
2252 | N323 = N - N32 - N2 - 2 |
---|
2253 | |
---|
2254 | trid = p_angle_triangle(N=N323) |
---|
2255 | trid = mirror_polygon(trid, 'x') |
---|
2256 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
2257 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
2258 | |
---|
2259 | # painting it |
---|
2260 | Height = np.max(buoy1v[:,0]) |
---|
2261 | |
---|
2262 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2263 | Ncut, halfbtw = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2264 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2265 | |
---|
2266 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2267 | |
---|
2268 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
2269 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2270 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2271 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], \ |
---|
2272 | 'third1': [halfup, '-', 'k', 1.], 'third2': [halfbtw, '-', '#FFFF00', 1.], \ |
---|
2273 | 'third3': [halfdown, '-', 'k', 1.]} |
---|
2274 | |
---|
2275 | return buoy, buoysecs, buoydic |
---|
2276 | |
---|
2277 | def south_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
2278 | """ Function to draw a South danger buoy using buoy1 |
---|
2279 | height: height of the prism (5., default) |
---|
2280 | width: width of the prism (10., default) |
---|
2281 | bradii: radii of the ball (1.75, default) |
---|
2282 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2283 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2284 | (0.7, default) |
---|
2285 | N: total number of points of the buoy (300, default) |
---|
2286 | """ |
---|
2287 | fname = 'south_buoy1' |
---|
2288 | |
---|
2289 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2290 | |
---|
2291 | # buoy |
---|
2292 | N2 = int(N/2) |
---|
2293 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
2294 | buoy[0:N2,:] = buoy1v |
---|
2295 | |
---|
2296 | # signs |
---|
2297 | N3 = N - N2 - 2 |
---|
2298 | |
---|
2299 | bottsigns = 2.*bradii+height |
---|
2300 | lsign = height*hsigns |
---|
2301 | # up |
---|
2302 | N32 = int(N3/2) |
---|
2303 | trid = p_angle_triangle(N=N32) |
---|
2304 | trid = mirror_polygon(trid, 'x') |
---|
2305 | trib = trid*lsign + [0.,-lsign/2.] |
---|
2306 | |
---|
2307 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.9*lsign,0.] |
---|
2308 | |
---|
2309 | # down |
---|
2310 | N323 = N - N32 - N2 - 2 |
---|
2311 | trid = p_angle_triangle(N=N323) |
---|
2312 | trid = mirror_polygon(trid, 'x') |
---|
2313 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
2314 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
2315 | |
---|
2316 | # painting it |
---|
2317 | Height = np.max(buoy1v[:,0]) |
---|
2318 | |
---|
2319 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='below') |
---|
2320 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
2321 | |
---|
2322 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2323 | |
---|
2324 | buoysecs = ['buoy', 'sign1', 'sign2', 'half1', 'half2'] |
---|
2325 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2326 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2327 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', '#FFFF00', 1.], \ |
---|
2328 | 'half2': [halfdown, '-', 'k', 1.]} |
---|
2329 | |
---|
2330 | return buoy, buoysecs, buoydic |
---|
2331 | |
---|
2332 | def west_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
2333 | """ Function to draw a West danger buoy using buoy1 |
---|
2334 | height: height of the prism (5., default) |
---|
2335 | width: width of the prism (10., default) |
---|
2336 | bradii: radii of the ball (1.75, default) |
---|
2337 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2338 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2339 | (0.7, default) |
---|
2340 | N: total number of points of the buoy (300, default) |
---|
2341 | """ |
---|
2342 | fname = 'east_buoy1' |
---|
2343 | |
---|
2344 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2345 | |
---|
2346 | # buoy |
---|
2347 | N2 = int(N/2) |
---|
2348 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
2349 | buoy[0:N2,:] = buoy1v |
---|
2350 | |
---|
2351 | # signs |
---|
2352 | N3 = N - N2 - 2 |
---|
2353 | |
---|
2354 | bottsigns = 2.*bradii+height |
---|
2355 | lsign = height*hsigns |
---|
2356 | |
---|
2357 | # down |
---|
2358 | N32 = int(N3/2) |
---|
2359 | trid = p_angle_triangle(N=N32) |
---|
2360 | trid = mirror_polygon(trid, 'x') |
---|
2361 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
2362 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+1.9*lsign,0.] |
---|
2363 | |
---|
2364 | # up |
---|
2365 | N323 = N - N32 - N2 - 2 |
---|
2366 | triu = p_angle_triangle(N=N323) |
---|
2367 | trib = triu*lsign + [0.,-lsign/2.] |
---|
2368 | |
---|
2369 | buoy[N2+N323+2:N,:] = trib + [bottsigns+1.*lsign,0.] |
---|
2370 | |
---|
2371 | # painting it |
---|
2372 | Height = np.max(buoy1v[:,0]) |
---|
2373 | |
---|
2374 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2375 | Ncut, halfbtw1 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2376 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2377 | |
---|
2378 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2379 | |
---|
2380 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
2381 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2382 | 'third1': [halfdown, '-', '#FFFF00', 1.], 'third2': [halfbtw1, '-', 'k', 1.], \ |
---|
2383 | 'third3': [halfup, '-', '#FFFF00', 1.], \ |
---|
2384 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2385 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5]} |
---|
2386 | |
---|
2387 | return buoy, buoysecs, buoydic |
---|
2388 | |
---|
2389 | def safewater_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
2390 | """ Function to draw a safe water mark buoy using buoy1 |
---|
2391 | height: height of the prism (5., default) |
---|
2392 | width: width of the prism (10., default) |
---|
2393 | bradii: radii of the ball (1.75, default) |
---|
2394 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2395 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2396 | (0.3, default) |
---|
2397 | N: total number of points of the buoy (300, default) |
---|
2398 | """ |
---|
2399 | fname = 'safewater_buoy1' |
---|
2400 | |
---|
2401 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2402 | |
---|
2403 | # buoy |
---|
2404 | N2 = int(N/2) |
---|
2405 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2406 | bfrac=0.8, N=N2) |
---|
2407 | buoy[0:N2,:] = buoy1v |
---|
2408 | |
---|
2409 | # signs |
---|
2410 | N3 = N - N2 - 1 |
---|
2411 | lsign = height*hsigns |
---|
2412 | |
---|
2413 | Height = np.max(buoy1v[:,0]) |
---|
2414 | sign = p_circle(lsign, N3) |
---|
2415 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
2416 | |
---|
2417 | # painting it |
---|
2418 | ix = -width/2. |
---|
2419 | Ncut, quarter1 = cut_xpolygon(buoy1v, xval=ix+width/4., keep='left') |
---|
2420 | Ncut, quarter2 = cut_between_xpolygon(buoy1v, xval1=ix+width/4., xval2=ix+width/2.) |
---|
2421 | Ncut, quarter3 = cut_between_xpolygon(buoy1v, xval1=ix+width/2., xval2=ix+3.*width/4.) |
---|
2422 | Ncut, quarter4 = cut_xpolygon(buoy1v, xval=ix+3.*width/4., keep='right') |
---|
2423 | |
---|
2424 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2425 | |
---|
2426 | buoysecs = ['buoy', 'sign', 'quarter1', 'quarter2', 'quarter3', 'quarter4'] |
---|
2427 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2428 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'quarter1': [quarter1,'-','r',1.], \ |
---|
2429 | 'quarter2': [quarter2,'-','#FFFFFF',1.], 'quarter3': [quarter3,'-','r',1.], \ |
---|
2430 | 'quarter4': [quarter4,'-','#FFFFFF',1.]} |
---|
2431 | |
---|
2432 | return buoy, buoysecs, buoydic |
---|
2433 | |
---|
2434 | def red_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
2435 | """ Function to draw a red mark buoy using buoy1 |
---|
2436 | height: height of the prism (5., default) |
---|
2437 | width: width of the prism (10., default) |
---|
2438 | bradii: radii of the ball (1.75, default) |
---|
2439 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2440 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2441 | (0.3, default) |
---|
2442 | N: total number of points of the buoy (300, default) |
---|
2443 | """ |
---|
2444 | fname = 'red_buoy1' |
---|
2445 | |
---|
2446 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2447 | |
---|
2448 | # buoy |
---|
2449 | N2 = int(N/2) |
---|
2450 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2451 | bfrac=0.8, N=N2) |
---|
2452 | buoy[0:N2,:] = buoy1v |
---|
2453 | |
---|
2454 | # signs |
---|
2455 | N3 = N - N2 - 1 |
---|
2456 | lsign = height*hsigns*2. |
---|
2457 | |
---|
2458 | Height = np.max(buoy1v[:,0]) |
---|
2459 | triu = p_angle_triangle(N=N3) |
---|
2460 | sign = triu*lsign |
---|
2461 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
2462 | |
---|
2463 | # painting it |
---|
2464 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2465 | |
---|
2466 | buoysecs = ['buoy', 'sign'] |
---|
2467 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
2468 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5]} |
---|
2469 | |
---|
2470 | return buoy, buoysecs, buoydic |
---|
2471 | |
---|
2472 | def green_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
2473 | """ Function to draw a green mark buoy using buoy1 |
---|
2474 | height: height of the prism (5., default) |
---|
2475 | width: width of the prism (10., default) |
---|
2476 | bradii: radii of the ball (1.75, default) |
---|
2477 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2478 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2479 | (0.3, default) |
---|
2480 | N: total number of points of the buoy (300, default) |
---|
2481 | """ |
---|
2482 | fname = 'green_buoy1' |
---|
2483 | |
---|
2484 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2485 | |
---|
2486 | # buoy |
---|
2487 | N2 = int(N/2) |
---|
2488 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2489 | bfrac=0.8, N=N2) |
---|
2490 | buoy[0:N2,:] = buoy1v |
---|
2491 | |
---|
2492 | # signs |
---|
2493 | N3 = N - N2 - 1 |
---|
2494 | lsign = height*hsigns*2. |
---|
2495 | |
---|
2496 | Height = np.max(buoy1v[:,0]) |
---|
2497 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
2498 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
2499 | |
---|
2500 | # painting it |
---|
2501 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2502 | |
---|
2503 | buoysecs = ['buoy', 'sign'] |
---|
2504 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
2505 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5]} |
---|
2506 | |
---|
2507 | return buoy, buoysecs, buoydic |
---|
2508 | |
---|
2509 | def prefchannelportA_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, \ |
---|
2510 | N=300): |
---|
2511 | """ Function to draw a preferred channel port system A buoy using buoy1 |
---|
2512 | height: height of the prism (5., default) |
---|
2513 | width: width of the prism (10., default) |
---|
2514 | bradii: radii of the ball (1.75, default) |
---|
2515 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2516 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2517 | (0.3, default) |
---|
2518 | N: total number of points of the buoy (300, default) |
---|
2519 | """ |
---|
2520 | fname = 'prefchannelportA_buoy1' |
---|
2521 | |
---|
2522 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2523 | |
---|
2524 | # buoy |
---|
2525 | N2 = int(N/2) |
---|
2526 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2527 | bfrac=0.8, N=N2) |
---|
2528 | buoy[0:N2,:] = buoy1v |
---|
2529 | |
---|
2530 | # signs |
---|
2531 | N3 = N - N2 - 1 |
---|
2532 | lsign = height*hsigns*2. |
---|
2533 | |
---|
2534 | Height = np.max(buoy1v[:,0]) |
---|
2535 | triu = p_angle_triangle(N=N3) |
---|
2536 | sign = triu*lsign |
---|
2537 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
2538 | |
---|
2539 | # painting it |
---|
2540 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2541 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2542 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2543 | |
---|
2544 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2545 | |
---|
2546 | buoysecs = ['buoy', 'sign', 'third1', 'third2', 'third3'] |
---|
2547 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
2548 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5], 'third1': [third1,'-','g',1.5], \ |
---|
2549 | 'third2': [third2,'-','r',1.5], 'third3': [third3,'-','g',1.5]} |
---|
2550 | |
---|
2551 | return buoy, buoysecs, buoydic |
---|
2552 | |
---|
2553 | def prefchannelportB_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, \ |
---|
2554 | N=300): |
---|
2555 | """ Function to draw a preferred channel port system B buoy using buoy1 |
---|
2556 | height: height of the prism (5., default) |
---|
2557 | width: width of the prism (10., default) |
---|
2558 | bradii: radii of the ball (1.75, default) |
---|
2559 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2560 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2561 | (0.3, default) |
---|
2562 | N: total number of points of the buoy (300, default) |
---|
2563 | """ |
---|
2564 | fname = 'prefchannelportB_buoy1' |
---|
2565 | |
---|
2566 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2567 | |
---|
2568 | # buoy |
---|
2569 | N2 = int(N/2) |
---|
2570 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2571 | bfrac=0.8, N=N2) |
---|
2572 | buoy[0:N2,:] = buoy1v |
---|
2573 | |
---|
2574 | # signs |
---|
2575 | N3 = N - N2 - 1 |
---|
2576 | lsign = height*hsigns*2. |
---|
2577 | |
---|
2578 | Height = np.max(buoy1v[:,0]) |
---|
2579 | triu = p_angle_triangle(N=N3) |
---|
2580 | sign = triu*lsign |
---|
2581 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
2582 | |
---|
2583 | # painting it |
---|
2584 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2585 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2586 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2587 | |
---|
2588 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2589 | |
---|
2590 | buoysecs = ['buoy', 'sign', 'third1', 'third2', 'third3'] |
---|
2591 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
2592 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'third1': [third1,'-','r',1.5], \ |
---|
2593 | 'third2': [third2,'-','g',1.5], 'third3': [third3,'-','r',1.5]} |
---|
2594 | |
---|
2595 | return buoy, buoysecs, buoydic |
---|
2596 | |
---|
2597 | def prefchannelstarboardA_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, \ |
---|
2598 | hsigns=0.3, N=300): |
---|
2599 | """ Function to draw a preferred channel starboard system A buoy using buoy1 |
---|
2600 | height: height of the prism (5., default) |
---|
2601 | width: width of the prism (10., default) |
---|
2602 | bradii: radii of the ball (1.75, default) |
---|
2603 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2604 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2605 | (0.3, default) |
---|
2606 | N: total number of points of the buoy (300, default) |
---|
2607 | """ |
---|
2608 | fname = 'prefchannelstarboardA_buoy1' |
---|
2609 | |
---|
2610 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2611 | |
---|
2612 | # buoy |
---|
2613 | N2 = int(N/2) |
---|
2614 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2615 | bfrac=0.8, N=N2) |
---|
2616 | buoy[0:N2,:] = buoy1v |
---|
2617 | |
---|
2618 | # signs |
---|
2619 | N3 = N - N2 - 1 |
---|
2620 | lsign = height*hsigns*2. |
---|
2621 | |
---|
2622 | Height = np.max(buoy1v[:,0]) |
---|
2623 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
2624 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
2625 | |
---|
2626 | # painting it |
---|
2627 | # painting it |
---|
2628 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2629 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2630 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2631 | |
---|
2632 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2633 | |
---|
2634 | buoysecs = ['buoy', 'sign'] |
---|
2635 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
2636 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'third1': [third1,'-','r',1.5], \ |
---|
2637 | 'third2': [third2,'-','g',1.5], 'third3': [third3,'-','r',1.5]} |
---|
2638 | |
---|
2639 | return buoy, buoysecs, buoydic |
---|
2640 | |
---|
2641 | def prefchannelstarboardB_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, \ |
---|
2642 | hsigns=0.3, N=300): |
---|
2643 | """ Function to draw a preferred channel starboard system B buoy using buoy1 |
---|
2644 | height: height of the prism (5., default) |
---|
2645 | width: width of the prism (10., default) |
---|
2646 | bradii: radii of the ball (1.75, default) |
---|
2647 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2648 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2649 | (0.3, default) |
---|
2650 | N: total number of points of the buoy (300, default) |
---|
2651 | """ |
---|
2652 | fname = 'prefchannelstarboardB_buoy1' |
---|
2653 | |
---|
2654 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2655 | |
---|
2656 | # buoy |
---|
2657 | N2 = int(N/2) |
---|
2658 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2659 | bfrac=0.8, N=N2) |
---|
2660 | buoy[0:N2,:] = buoy1v |
---|
2661 | |
---|
2662 | # signs |
---|
2663 | N3 = N - N2 - 1 |
---|
2664 | lsign = height*hsigns*2. |
---|
2665 | |
---|
2666 | Height = np.max(buoy1v[:,0]) |
---|
2667 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
2668 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
2669 | |
---|
2670 | # painting it |
---|
2671 | # painting it |
---|
2672 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2673 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2674 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2675 | |
---|
2676 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2677 | |
---|
2678 | buoysecs = ['buoy', 'sign'] |
---|
2679 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
2680 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5], 'third1': [third1,'-','g',1.5], \ |
---|
2681 | 'third2': [third2,'-','r',1.5], 'third3': [third3,'-','g',1.5]} |
---|
2682 | |
---|
2683 | return buoy, buoysecs, buoydic |
---|
2684 | |
---|
2685 | def isolateddanger_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, \ |
---|
2686 | N=300): |
---|
2687 | """ Function to draw an isolated danger buoy using buoy1 |
---|
2688 | height: height of the prism (5., default) |
---|
2689 | width: width of the prism (10., default) |
---|
2690 | bradii: radii of the ball (1.75, default) |
---|
2691 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2692 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2693 | (0.5, default) |
---|
2694 | N: total number of points of the buoy (300, default) |
---|
2695 | """ |
---|
2696 | fname = 'isolateddanger_buoy1' |
---|
2697 | |
---|
2698 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2699 | |
---|
2700 | # buoy |
---|
2701 | N2 = int(N/2) |
---|
2702 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2703 | bfrac=0.8, N=N2) |
---|
2704 | buoy[0:N2,:] = buoy1v |
---|
2705 | |
---|
2706 | # signs |
---|
2707 | N3 = N - N2 - 2 |
---|
2708 | |
---|
2709 | bottsigns = 2.*bradii+height |
---|
2710 | lsign = height*hsigns |
---|
2711 | # up |
---|
2712 | N32 = int(N3/2) |
---|
2713 | circle = p_circle(lsign/2., N=N32) |
---|
2714 | trib = circle + [0.,0.] |
---|
2715 | |
---|
2716 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+3.2*lsign,0.] |
---|
2717 | |
---|
2718 | # up |
---|
2719 | N323 = N - N32 - N2 - 2 |
---|
2720 | trid = p_circle(lsign/2., N=N32) |
---|
2721 | trib = circle + [0.,0.] |
---|
2722 | buoy[N2+N32+2:N,:] = trib + [bottsigns+2.*lsign,0.] |
---|
2723 | |
---|
2724 | # painting it |
---|
2725 | Height = np.max(buoy1v[:,0]) |
---|
2726 | |
---|
2727 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
2728 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2729 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2730 | |
---|
2731 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2732 | |
---|
2733 | buoysecs = ['buoy', 'sign1', 'sign2', 'halfk', 'halfy'] |
---|
2734 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2735 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2736 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'third1': [third1, '-', 'k', 1.], \ |
---|
2737 | 'third2': [third2, '-', 'r', 1.], 'third3': [third3, '-', 'k', 1.]} |
---|
2738 | |
---|
2739 | return buoy, buoysecs, buoydic |
---|
2740 | |
---|
2741 | def special_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, N=300): |
---|
2742 | """ Function to draw an special mark buoy using buoy1 |
---|
2743 | height: height of the prism (5., default) |
---|
2744 | width: width of the prism (10., default) |
---|
2745 | bradii: radii of the ball (1.75, default) |
---|
2746 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2747 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2748 | (0.5, default) |
---|
2749 | N: total number of points of the buoy (300, default) |
---|
2750 | """ |
---|
2751 | fname = 'special_buoy1' |
---|
2752 | |
---|
2753 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2754 | |
---|
2755 | # buoy |
---|
2756 | N2 = int(N/2) |
---|
2757 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2758 | bfrac=0.8, N=N2) |
---|
2759 | buoy[0:N2,:] = buoy1v |
---|
2760 | |
---|
2761 | Height = np.max(buoy1v[:,0]) |
---|
2762 | |
---|
2763 | # sign |
---|
2764 | N3 = N - N2 - 1 |
---|
2765 | |
---|
2766 | bottsigns = 2.*bradii+height |
---|
2767 | lsign = height*hsigns |
---|
2768 | # up |
---|
2769 | cross, crosssecs, crossdic = p_cross_width(lsign, width=0.3*lsign, Narms=2, N=N3) |
---|
2770 | cross = rotate_polygon_2D(cross, 40.05) |
---|
2771 | buoy[N2+1:N,:] = cross + [Height+1.1*lsign,0.] |
---|
2772 | |
---|
2773 | # painting it |
---|
2774 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2775 | |
---|
2776 | buoysecs = ['buoy', 'sign'] |
---|
2777 | buoydic = {'buoy': [buoy[0:N2,:],'-','#FFFF00',1.5], \ |
---|
2778 | 'sign': [buoy[N2+1:N,:],'-','#FFFF00',1.5]} |
---|
2779 | |
---|
2780 | return buoy, buoysecs, buoydic |
---|
2781 | |
---|
2782 | def emergency_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, N=300): |
---|
2783 | """ Function to draw an eergency mark buoy using buoy1 |
---|
2784 | height: height of the prism (5., default) |
---|
2785 | width: width of the prism (10., default) |
---|
2786 | bradii: radii of the ball (1.75, default) |
---|
2787 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2788 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2789 | (0.5, default) |
---|
2790 | N: total number of points of the buoy (300, default) |
---|
2791 | """ |
---|
2792 | fname = 'emergency_buoy1' |
---|
2793 | |
---|
2794 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2795 | |
---|
2796 | # buoy |
---|
2797 | N2 = int(N/2) |
---|
2798 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2799 | bfrac=0.8, N=N2) |
---|
2800 | buoy[0:N2,:] = buoy1v |
---|
2801 | |
---|
2802 | Height = np.max(buoy1v[:,0]) |
---|
2803 | |
---|
2804 | # sign |
---|
2805 | N3 = N - N2 - 1 |
---|
2806 | |
---|
2807 | bottsigns = 2.*bradii+height |
---|
2808 | lsign = height*hsigns |
---|
2809 | # up |
---|
2810 | cross, crosssecs, crossdic = p_cross_width(lsign, width=0.3*lsign, Narms=2, N=N3) |
---|
2811 | buoy[N2+1:N,:] = cross + [Height+1.1*lsign,0.] |
---|
2812 | |
---|
2813 | # painting it |
---|
2814 | ix = -width/2. |
---|
2815 | Ncut, fifth1 = cut_xpolygon(buoy1v, xval=ix+width/5., keep='left') |
---|
2816 | Ncut, fifth2 = cut_between_xpolygon(buoy1v,xval1=ix+width/5.,xval2=ix+width*2./5.) |
---|
2817 | Ncut, fifth3 = cut_between_xpolygon(buoy1v,xval1=ix+width*2./5.,xval2=ix+width*3./5.) |
---|
2818 | Ncut, fifth4 = cut_between_xpolygon(buoy1v,xval1=ix+width*3./5.,xval2=ix+width*4./5.) |
---|
2819 | Ncut, fifth5 = cut_xpolygon(buoy1v, xval=ix+width*4./5., keep='right') |
---|
2820 | |
---|
2821 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2822 | |
---|
2823 | buoysecs = ['buoy', 'sign', 'fifth1', 'fifth2', 'fifth3', 'fifth4', 'fifth5'] |
---|
2824 | buoydic = {'buoy': [buoy[0:N2,:],'-','#FFFF00',1.5], \ |
---|
2825 | 'sign': [buoy[N2+1:N,:],'-','#FFFF00',1.5],'fifth1':[fifth1,'-','#FFFF00',1.5],\ |
---|
2826 | 'fifth2': [fifth2,'-','#FFFF00',1.5],'fifth3': [fifth3,'-','#0000FF',1.5], \ |
---|
2827 | 'fifth4': [fifth4,'-','#FFFF00',1.5],'fifth5': [fifth5,'-','#0000FF',1.5]} |
---|
2828 | |
---|
2829 | return buoy, buoysecs, buoydic |
---|
2830 | |
---|
2831 | ####### ####### ##### #### ### ## # |
---|
2832 | # Plotting |
---|
2833 | |
---|
2834 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
2835 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
2836 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
2837 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
2838 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
2839 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
2840 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
2841 | """ Function to plot an sphere and determine which standard lines will be also |
---|
2842 | drawn |
---|
2843 | iazm: azimut of the camera form the sphere |
---|
2844 | iele: elevation of the camera form the sphere |
---|
2845 | dist: distance of the camera form the sphere |
---|
2846 | Npts: Resolution for the sphere |
---|
2847 | radii: radius of the sphere |
---|
2848 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
2849 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
2850 | drwxline: whether x-axis line should be drawn |
---|
2851 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
2852 | drwyline: whether y-axis line should be drawn |
---|
2853 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
2854 | drwzline: whether z-axis line should be drawn |
---|
2855 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
2856 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
2857 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
2858 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
2859 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
2860 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
2861 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
2862 | """ |
---|
2863 | fname = 'plot_sphere' |
---|
2864 | |
---|
2865 | iazmrad = iazm*np.pi/180. |
---|
2866 | ielerad = iele*np.pi/180. |
---|
2867 | |
---|
2868 | # 3D surface Sphere |
---|
2869 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
2870 | |
---|
2871 | # greenwhich |
---|
2872 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
2873 | ia=np.pi-ielerad |
---|
2874 | else: |
---|
2875 | ia=0.-ielerad |
---|
2876 | ea=ia+np.pi |
---|
2877 | da = (ea-ia)/(Npts-1) |
---|
2878 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2879 | alpha = np.zeros((Npts), dtype=np.float) |
---|
2880 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
2881 | ia=ea+0. |
---|
2882 | ea=ia+np.pi |
---|
2883 | da = (ea-ia)/(Npts-1) |
---|
2884 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2885 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
2886 | |
---|
2887 | # Equator |
---|
2888 | ia=np.pi-iazmrad/2. |
---|
2889 | ea=ia+np.pi |
---|
2890 | da = (ea-ia)/(Npts-1) |
---|
2891 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2892 | beta = np.zeros((Npts), dtype=np.float) |
---|
2893 | equatorc = spheric_line(radii,alpha,beta) |
---|
2894 | ia=ea+0. |
---|
2895 | ea=ia+np.pi |
---|
2896 | da = (ea-ia)/(Npts-1) |
---|
2897 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2898 | equatord = spheric_line(radii,alpha,beta) |
---|
2899 | |
---|
2900 | # 90 line |
---|
2901 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
2902 | ia=3.*np.pi/2. + ielerad |
---|
2903 | else: |
---|
2904 | ia=np.pi/2. - ielerad |
---|
2905 | if ielerad < 0.: |
---|
2906 | ia = ia + np.pi |
---|
2907 | ea=ia+np.pi |
---|
2908 | da = (ea-ia)/(Npts-1) |
---|
2909 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2910 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
2911 | xclinec = spheric_line(radii,alpha,beta) |
---|
2912 | ia=ea+0. |
---|
2913 | ea=ia+np.pi |
---|
2914 | da = (ea-ia)/(Npts-1) |
---|
2915 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2916 | xclined = spheric_line(radii,alpha,beta) |
---|
2917 | |
---|
2918 | # x line |
---|
2919 | xline = np.zeros((2,3), dtype=np.float) |
---|
2920 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
2921 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
2922 | |
---|
2923 | # y line |
---|
2924 | yline = np.zeros((2,3), dtype=np.float) |
---|
2925 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
2926 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
2927 | |
---|
2928 | # z line |
---|
2929 | zline = np.zeros((2,3), dtype=np.float) |
---|
2930 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
2931 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
2932 | |
---|
2933 | fig = plt.figure() |
---|
2934 | ax = fig.gca(projection='3d') |
---|
2935 | |
---|
2936 | # Sphere surface |
---|
2937 | if drwsfc[0]: |
---|
2938 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
2939 | color=colsfc[0]) |
---|
2940 | if drwsfc[1]: |
---|
2941 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
2942 | color=colsfc[1]) |
---|
2943 | |
---|
2944 | # greenwhich |
---|
2945 | linev = linegw[0] |
---|
2946 | if drwgreeenwhich[0]: |
---|
2947 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
2948 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
2949 | linev = linegw[1] |
---|
2950 | if drwgreeenwhich[1]: |
---|
2951 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
2952 | color=linev[1], linewidth=linev[2]) |
---|
2953 | |
---|
2954 | # Equator |
---|
2955 | linev = lineeq[0] |
---|
2956 | if drwequator[0]: |
---|
2957 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
2958 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
2959 | linev = lineeq[1] |
---|
2960 | if drwequator[1]: |
---|
2961 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
2962 | color=linev[1], linewidth=linev[2]) |
---|
2963 | |
---|
2964 | # 90line |
---|
2965 | linev = linexc[0] |
---|
2966 | if drwxcline[0]: |
---|
2967 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
2968 | linewidth=linev[2], label='90-line') |
---|
2969 | linev = linexc[1] |
---|
2970 | if drwxcline[1]: |
---|
2971 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
2972 | linewidth=linev[2]) |
---|
2973 | |
---|
2974 | # x line |
---|
2975 | linev = linex |
---|
2976 | if drwxline: |
---|
2977 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
2978 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
2979 | |
---|
2980 | # y line |
---|
2981 | linev = liney |
---|
2982 | if drwyline: |
---|
2983 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
2984 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
2985 | |
---|
2986 | # z line |
---|
2987 | linev = linez |
---|
2988 | if drwzline: |
---|
2989 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
2990 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
2991 | |
---|
2992 | plt.legend() |
---|
2993 | |
---|
2994 | return fig, ax |
---|
2995 | |
---|
2996 | def paint_filled(objdic, fillsecs): |
---|
2997 | """ Function to draw an object filling given sections |
---|
2998 | objdic: dictionary of the object |
---|
2999 | filesecs: list of sections to be filled |
---|
3000 | """ |
---|
3001 | fname = 'paint_filled' |
---|
3002 | |
---|
3003 | Nsecs = len(fillsecs) |
---|
3004 | |
---|
3005 | for secn in fillsecs: |
---|
3006 | secvals=objdic[secn] |
---|
3007 | pvals = secvals[0] |
---|
3008 | plt.fill(pvals[:,1], pvals[:,0], color=secvals[2]) |
---|
3009 | |
---|
3010 | return |
---|
3011 | |
---|