1 | # Python tools to manage netCDF files. |
---|
2 | # L. Fita, CIMA. Mrch 2019 |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | ## Script for geometry calculations and operations as well as definition of different |
---|
10 | ### standard objects and shapes |
---|
11 | |
---|
12 | import numpy as np |
---|
13 | import matplotlib as mpl |
---|
14 | from mpl_toolkits.mplot3d import Axes3D |
---|
15 | import matplotlib.pyplot as plt |
---|
16 | import os |
---|
17 | import generic_tools as gen |
---|
18 | import numpy.ma as ma |
---|
19 | import module_ForSci as sci |
---|
20 | |
---|
21 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
22 | infmsg = 'INFORMATION -- information -- INFORMATION -- information' |
---|
23 | |
---|
24 | ####### Contents: |
---|
25 | # cut_between_[x/y]polygon: Function to cut a polygon between 2 given value of the [x/y]-axis |
---|
26 | # cut_[x/y]polygon: Function to cut a polygon from a given value of the [x/y]-axis |
---|
27 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
28 | # dist_points: Function to provide the distance between two points |
---|
29 | # join_circ_sec: Function to join aa series of points by circular segments |
---|
30 | # join_circ_sec_rand: Function to join aa series of points by circular segments with |
---|
31 | # random perturbations |
---|
32 | # max_coords_poly: Function to provide the extremes of the coordinates of a polygon |
---|
33 | # mirror_polygon: Function to reflex a polygon for a given axis |
---|
34 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
35 | # cartesian coordinates over an sphere |
---|
36 | # read_join_poly: Function to read an ASCII file with the combination of polygons |
---|
37 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
38 | # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon |
---|
39 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
40 | # certain angle in the plain |
---|
41 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
42 | # coordinates by a certain angle in the plain |
---|
43 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
44 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
45 | # write_join_poly: Function to write an ASCII file with the combination of polygons |
---|
46 | |
---|
47 | ## Shapes/objects |
---|
48 | # buoy1: Function to draw a buoy as superposition of prism and section of ball |
---|
49 | # circ_sec: Function union of point A and B by a section of a circle |
---|
50 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
51 | # p_angle_triangle: Function to draw a triangle by an initial point and two |
---|
52 | # consecutive angles and the first length of face. The third angle and 2 and 3rd |
---|
53 | # face will be computed accordingly the provided values |
---|
54 | # p_doubleArrow: Function to provide an arrow with double lines |
---|
55 | # p_circle: Function to get a polygon of a circle |
---|
56 | # p_reg_polygon: Function to provide a regular polygon of Nv vertices |
---|
57 | # p_reg_star: Function to provide a regular star of Nv vertices |
---|
58 | # p_sinusiode: Function to get coordinates of a sinusoidal curve |
---|
59 | # p_square: Function to get a polygon square |
---|
60 | # p_spiral: Function to provide a polygon of an Archimedean spiral |
---|
61 | # p_triangle: Function to provide the polygon of a triangle from its 3 vertices |
---|
62 | # band_lighthouse: Function to plot a lighthouse with spiral bands |
---|
63 | # red_buoy1: Function to draw a red mark buoy using buoy1 |
---|
64 | # safewater_buoy1: Function to draw a safe water mark buoy using buoy1 |
---|
65 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
66 | # z_boat: Function to define an schematic boat from the z-plane |
---|
67 | # zsailing_boat: Function to define an schematic sailing boat from the z-plane with sails |
---|
68 | # zisland1: Function to draw an island from z-axis as the union of a series of points by |
---|
69 | # circular segments |
---|
70 | |
---|
71 | ## Plotting |
---|
72 | # paint_filled: Function to draw an object filling given sections |
---|
73 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
74 | # also drawn |
---|
75 | # [north/east/south/west_buoy1: Function to draw a [North/East/South/West] danger buoy using buoy1 |
---|
76 | |
---|
77 | def deg_deci(angle): |
---|
78 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
79 | angle: list of [deg, minute, sec] to pass |
---|
80 | >>> deg_deci([41., 58., 34.]) |
---|
81 | 0.732621346072 |
---|
82 | """ |
---|
83 | fname = 'deg_deci' |
---|
84 | |
---|
85 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
86 | |
---|
87 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
88 | else: deg = deg*np.pi/180. |
---|
89 | |
---|
90 | return deg |
---|
91 | |
---|
92 | def position_sphere(radii, alpha, beta): |
---|
93 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
94 | coordinates over an sphere |
---|
95 | radii: radii of the sphere |
---|
96 | alpha: longitude of the point |
---|
97 | beta: latitude of the point |
---|
98 | >>> position_sphere(10., 30., 45.) |
---|
99 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
100 | """ |
---|
101 | fname = 'position_sphere' |
---|
102 | |
---|
103 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
104 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
105 | zpt = radii*np.sin(beta) |
---|
106 | |
---|
107 | return xpt, ypt, zpt |
---|
108 | |
---|
109 | def spheric_line(radii,lon,lat): |
---|
110 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
111 | over an 3D space |
---|
112 | radii: radius of the sphere |
---|
113 | lon: array of angles along longitudes |
---|
114 | lat: array of angles along latitudes |
---|
115 | """ |
---|
116 | fname = 'spheric_line' |
---|
117 | |
---|
118 | Lint = lon.shape[0] |
---|
119 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
120 | |
---|
121 | for iv in range(Lint): |
---|
122 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
123 | |
---|
124 | return coords |
---|
125 | |
---|
126 | def rotate_2D(vector, angle): |
---|
127 | """ Function to rotate a vector by a certain angle in the plain |
---|
128 | vector= vector to rotate [y, x] |
---|
129 | angle= angle to rotate [rad] |
---|
130 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
131 | [ 0.70710678 -0.70710678] |
---|
132 | """ |
---|
133 | fname = 'rotate_2D' |
---|
134 | |
---|
135 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
136 | |
---|
137 | rotmat[0,0] = np.cos(angle) |
---|
138 | rotmat[0,1] = -np.sin(angle) |
---|
139 | rotmat[1,0] = np.sin(angle) |
---|
140 | rotmat[1,1] = np.cos(angle) |
---|
141 | |
---|
142 | rotvector = np.zeros((2), dtype=np.float) |
---|
143 | |
---|
144 | vecv = np.zeros((2), dtype=np.float) |
---|
145 | |
---|
146 | # Unifying vector |
---|
147 | modvec = vector[0]**2+vector[1]**2 |
---|
148 | if modvec != 0: |
---|
149 | vecv[0] = vector[1]/modvec |
---|
150 | vecv[1] = vector[0]/modvec |
---|
151 | |
---|
152 | rotvec = np.matmul(rotmat, vecv) |
---|
153 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
154 | |
---|
155 | rotvector[0] = rotvec[1]*modvec |
---|
156 | rotvector[1] = rotvec[0]*modvec |
---|
157 | |
---|
158 | return rotvector |
---|
159 | |
---|
160 | def rotate_polygon_2D(vectors, angle): |
---|
161 | """ Function to rotate 2D plain the vertices of a polygon |
---|
162 | line= matrix of vectors to rotate |
---|
163 | angle= angle to rotate [rad] |
---|
164 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
165 | >>> square[0,:] = [-0.5,-0.5] |
---|
166 | >>> square[1,:] = [0.5,-0.5] |
---|
167 | >>> square[2,:] = [0.5,0.5] |
---|
168 | >>> square[3,:] = [-0.5,0.5] |
---|
169 | >>> rotate_polygon_2D(square, np.pi/4.) |
---|
170 | [[-0.70710678 0. ] |
---|
171 | [ 0. -0.70710678] |
---|
172 | [ 0.70710678 0. ] |
---|
173 | [ 0. 0.70710678]] |
---|
174 | """ |
---|
175 | fname = 'rotate_polygon_2D' |
---|
176 | |
---|
177 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
178 | |
---|
179 | Nvecs = vectors.shape[0] |
---|
180 | for iv in range(Nvecs): |
---|
181 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
182 | |
---|
183 | return rotvecs |
---|
184 | |
---|
185 | def rotate_line2D(line, angle): |
---|
186 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
187 | angle in the plain |
---|
188 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
189 | angle= angle to rotate [rad] |
---|
190 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
191 | [[ 0. 0. ] |
---|
192 | [0.70710678 -0.70710678]] |
---|
193 | """ |
---|
194 | fname = 'rotate_2D' |
---|
195 | |
---|
196 | rotline = np.zeros((2,2), dtype=np.float) |
---|
197 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
198 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
199 | |
---|
200 | return rotline |
---|
201 | |
---|
202 | def rotate_lines2D(lines, angle): |
---|
203 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
204 | by a certain angle in the plain |
---|
205 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
206 | angle= angle to rotate [rad] |
---|
207 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
208 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
209 | >>> square[0,1,:] = [0.5,-0.5] |
---|
210 | >>> square[1,0,:] = [0.5,-0.5] |
---|
211 | >>> square[1,1,:] = [0.5,0.5] |
---|
212 | >>> square[2,0,:] = [0.5,0.5] |
---|
213 | >>> square[2,1,:] = [-0.5,0.5] |
---|
214 | >>> square[3,0,:] = [-0.5,0.5] |
---|
215 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
216 | >>> rotate_lines2D(square, np.pi/4.) |
---|
217 | [[[-0.70710678 0. ] |
---|
218 | [ 0. -0.70710678]] |
---|
219 | |
---|
220 | [[ 0. -0.70710678] |
---|
221 | [ 0.70710678 0. ]] |
---|
222 | |
---|
223 | [[ 0.70710678 0. ] |
---|
224 | [ 0. 0.70710678]] |
---|
225 | |
---|
226 | [[ 0. 0.70710678] |
---|
227 | [-0.70710678 0. ]]] |
---|
228 | """ |
---|
229 | fname = 'rotate_lines2D' |
---|
230 | |
---|
231 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
232 | |
---|
233 | Nlines = lines.shape[0] |
---|
234 | for il in range(Nlines): |
---|
235 | line = np.zeros((2,2), dtype=np.float) |
---|
236 | line[0,:] = lines[il,0,:] |
---|
237 | line[1,:] = lines[il,1,:] |
---|
238 | |
---|
239 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
240 | |
---|
241 | return rotlines |
---|
242 | |
---|
243 | def dist_points(ptA, ptB): |
---|
244 | """ Function to provide the distance between two points |
---|
245 | ptA: coordinates of the point A [yA, xA] |
---|
246 | ptB: coordinates of the point B [yB, xB] |
---|
247 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
248 | 2.82842712475 |
---|
249 | """ |
---|
250 | fname = 'dist_points' |
---|
251 | |
---|
252 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
253 | |
---|
254 | return dist |
---|
255 | |
---|
256 | def max_coords_poly(polygon): |
---|
257 | """ Function to provide the extremes of the coordinates of a polygon |
---|
258 | polygon: coordinates [Nvertexs, 2] of a polygon |
---|
259 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
260 | >>> square[0,:] = [-0.5,-0.5] |
---|
261 | >>> square[1,:] = [0.5,-0.5] |
---|
262 | >>> square[2,:] = [0.5,0.5] |
---|
263 | >>> square[3,:] = [-0.5,0.5] |
---|
264 | >>> max_coords_poly(square) |
---|
265 | [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 |
---|
266 | """ |
---|
267 | fname = 'max_coords_poly' |
---|
268 | |
---|
269 | # x-coordinate min/max |
---|
270 | nx = np.min(polygon[:,1]) |
---|
271 | xx = np.max(polygon[:,1]) |
---|
272 | |
---|
273 | # y-coordinate min/max |
---|
274 | ny = np.min(polygon[:,0]) |
---|
275 | xy = np.max(polygon[:,0]) |
---|
276 | |
---|
277 | # x/y-coordinate maximum of absolute values |
---|
278 | axx = np.max(np.abs(polygon[:,1])) |
---|
279 | ayx = np.max(np.abs(polygon[:,0])) |
---|
280 | |
---|
281 | # absolute maximum |
---|
282 | xyx = np.max([axx, ayx]) |
---|
283 | |
---|
284 | return [nx, xx], [ny, xy], [ayx, axx], xyx |
---|
285 | |
---|
286 | def mirror_polygon(polygon,axis): |
---|
287 | """ Function to reflex a polygon for a given axis |
---|
288 | polygon: polygon to mirror |
---|
289 | axis: axis at which mirror is located ('x' or 'y') |
---|
290 | """ |
---|
291 | fname = 'mirror_polygon' |
---|
292 | |
---|
293 | reflex = np.zeros(polygon.shape, dtype=np.float) |
---|
294 | |
---|
295 | N = polygon.shape[0] |
---|
296 | if axis == 'x': |
---|
297 | for iv in range(N): |
---|
298 | reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] |
---|
299 | elif axis == 'y': |
---|
300 | for iv in range(N): |
---|
301 | reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] |
---|
302 | |
---|
303 | return reflex |
---|
304 | |
---|
305 | def join_circ_sec(points, radfrac=3., N=200): |
---|
306 | """ Function to join aa series of points by circular segments |
---|
307 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
308 | segments of radii as the radfrac factor of the distance between |
---|
309 | consecutive points) |
---|
310 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
311 | draw the circular segment (3., default) |
---|
312 | N: number of points (200, default) |
---|
313 | """ |
---|
314 | fname = 'join_circ_sec' |
---|
315 | |
---|
316 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
317 | |
---|
318 | # main points |
---|
319 | lpoints = list(points) |
---|
320 | Npts = len(lpoints) |
---|
321 | Np = int(N/(Npts+1)) |
---|
322 | for ip in range(Npts-1): |
---|
323 | p1 = lpoints[ip] |
---|
324 | p2 = lpoints[ip+1] |
---|
325 | dps = dist_points(p1, p2) |
---|
326 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np) |
---|
327 | |
---|
328 | Np2 = N - (Npts-1)*Np |
---|
329 | p1 = lpoints[Npts-1] |
---|
330 | p2 = lpoints[0] |
---|
331 | dps = dist_points(p1, p2) |
---|
332 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2) |
---|
333 | |
---|
334 | return jcirc_sec |
---|
335 | |
---|
336 | def join_circ_sec_rand(points, radfrac=3., Lrand=0.1, arc='short', pos='left', N=200): |
---|
337 | """ Function to join aa series of points by circular segments with random |
---|
338 | perturbations |
---|
339 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
340 | segments of radii as the radfrac factor of the distance between |
---|
341 | consecutive points) |
---|
342 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
343 | draw the circular segment (3., default) |
---|
344 | Lrand: maximum length of the random perturbation to be added perpendicularly to |
---|
345 | the direction of the union line between points (0.1, default) |
---|
346 | arc: type of arc ('short', default) |
---|
347 | pos: position of arc ('left', default) |
---|
348 | N: number of points (200, default) |
---|
349 | """ |
---|
350 | import random |
---|
351 | fname = 'join_circ_sec_rand' |
---|
352 | |
---|
353 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
354 | |
---|
355 | # main points |
---|
356 | lpoints = list(points) |
---|
357 | Npts = len(lpoints) |
---|
358 | Np = int(N/(Npts+1)) |
---|
359 | for ip in range(Npts-1): |
---|
360 | p1 = lpoints[ip] |
---|
361 | p2 = lpoints[ip+1] |
---|
362 | dps = dist_points(p1, p2) |
---|
363 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
364 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, arc, pos, Np) |
---|
365 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
366 | for iip in range(Np*ip,Np*(ip+1)): |
---|
367 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
368 | |
---|
369 | Np2 = N - (Npts-1)*Np |
---|
370 | p1 = lpoints[Npts-1] |
---|
371 | p2 = lpoints[0] |
---|
372 | dps = dist_points(p1, p2) |
---|
373 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
374 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., arc, pos, Np2) |
---|
375 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
376 | for iip in range(Np*(Npts-1),N): |
---|
377 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
378 | |
---|
379 | return jcirc_sec |
---|
380 | |
---|
381 | def write_join_poly(polys, flname='join_polygons.dat'): |
---|
382 | """ Function to write an ASCII file with the combination of polygons |
---|
383 | polys: dictionary with the names of the different polygons |
---|
384 | flname: name of the ASCII file |
---|
385 | """ |
---|
386 | fname = 'write_join_poly' |
---|
387 | |
---|
388 | of = open(flname, 'w') |
---|
389 | |
---|
390 | for polyn in polys.keys(): |
---|
391 | vertices = polys[polyn] |
---|
392 | Npts = vertices.shape[0] |
---|
393 | for ip in range(Npts): |
---|
394 | of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') |
---|
395 | |
---|
396 | of.close() |
---|
397 | |
---|
398 | return |
---|
399 | |
---|
400 | def read_join_poly(flname='join_polygons.dat'): |
---|
401 | """ Function to read an ASCII file with the combination of polygons |
---|
402 | flname: name of the ASCII file |
---|
403 | """ |
---|
404 | fname = 'read_join_poly' |
---|
405 | |
---|
406 | of = open(flname, 'r') |
---|
407 | |
---|
408 | polys = {} |
---|
409 | polyn = '' |
---|
410 | poly = [] |
---|
411 | for line in of: |
---|
412 | if len(line) > 1: |
---|
413 | linevals = line.replace('\n','').split(' ') |
---|
414 | if polyn != linevals[0]: |
---|
415 | if len(poly) > 1: |
---|
416 | polys[polyn] = np.array(poly) |
---|
417 | polyn = linevals[0] |
---|
418 | poly = [] |
---|
419 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
420 | else: |
---|
421 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
422 | |
---|
423 | of.close() |
---|
424 | polys[polyn] = np.array(poly) |
---|
425 | |
---|
426 | return polys |
---|
427 | |
---|
428 | def cut_ypolygon(polygon, yval, keep='bottom', Nadd=20): |
---|
429 | """ Function to cut a polygon from a given value of the y-axis |
---|
430 | polygon: polygon to cut |
---|
431 | yval: value to use to cut the polygon |
---|
432 | keep: part to keep from the height ('bottom', default) |
---|
433 | 'bottom': below the height |
---|
434 | 'above': above the height |
---|
435 | Nadd: additional points to add to draw the line (20, default) |
---|
436 | """ |
---|
437 | fname = 'cut_ypolygon' |
---|
438 | |
---|
439 | N = polygon.shape[0] |
---|
440 | availkeeps = ['bottom', 'above'] |
---|
441 | |
---|
442 | if not gen.searchInlist(availkeeps, keep): |
---|
443 | print errormsg |
---|
444 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
445 | print ' available ones:', availkeeps |
---|
446 | quit(-1) |
---|
447 | |
---|
448 | ipt = None |
---|
449 | ept = None |
---|
450 | |
---|
451 | if type(polygon) == type(gen.mamat): |
---|
452 | # Assuming clockwise polygons |
---|
453 | for ip in range(N-1): |
---|
454 | if not polygon.mask[ip,0]: |
---|
455 | eep = ip + 1 |
---|
456 | if eep == N: eep = 0 |
---|
457 | |
---|
458 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
459 | icut = ip |
---|
460 | dx = polygon[eep,1] - polygon[ip,1] |
---|
461 | dy = polygon[eep,0] - polygon[ip,0] |
---|
462 | dd = yval - polygon[ip,0] |
---|
463 | ipt = [yval, polygon[ip,1]+dx*dd/dy] |
---|
464 | |
---|
465 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
466 | ecut = ip |
---|
467 | dx = polygon[eep,1] - polygon[ip,1] |
---|
468 | dy = polygon[eep,0] - polygon[ip,0] |
---|
469 | dd = yval - polygon[ip,0] |
---|
470 | ept = [yval, polygon[ip,1]+dx*dd/dy] |
---|
471 | else: |
---|
472 | # Assuming clockwise polygons |
---|
473 | for ip in range(N-1): |
---|
474 | eep = ip + 1 |
---|
475 | if eep == N: eep = 0 |
---|
476 | |
---|
477 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
478 | icut = ip |
---|
479 | dx = polygon[eep,1] - polygon[ip,1] |
---|
480 | dy = polygon[eep,0] - polygon[ip,0] |
---|
481 | dd = yval - polygon[ip,0] |
---|
482 | ipt = [yval, polygon[ip,1]+dx*dd/dy] |
---|
483 | |
---|
484 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
485 | ecut = ip |
---|
486 | dx = polygon[eep,1] - polygon[ip,1] |
---|
487 | dy = polygon[eep,0] - polygon[ip,0] |
---|
488 | dd = yval - polygon[ip,0] |
---|
489 | ept = [yval, polygon[ip,1]+dx*dd/dy] |
---|
490 | |
---|
491 | if ipt is None or ept is None: |
---|
492 | print errormsg |
---|
493 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
494 | |
---|
495 | if keep == 'bottom': |
---|
496 | Npts = icut + (N-ecut) + Nadd |
---|
497 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
498 | if type(polygon) == type(gen.mamat): |
---|
499 | cutpolygon[0:icut+1,:] = polygon[0:icut+1,:] |
---|
500 | else: |
---|
501 | cutpolygon[0:icut+1,:] = polygon[0:icut+1,:] |
---|
502 | iip = icut+1 |
---|
503 | else: |
---|
504 | Npts = ecut - icut + Nadd-1 |
---|
505 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
506 | cutpolygon[0,:] = ipt |
---|
507 | cutpolygon[1:ecut-icut,:] = polygon[icut+1:ecut,:] |
---|
508 | iip = ecut-icut-1 |
---|
509 | |
---|
510 | # cutting line |
---|
511 | cutline = np.zeros((Nadd,2), dtype=np.float) |
---|
512 | dx = (ept[1] - ipt[1])/(Nadd-2) |
---|
513 | dy = (ept[0] - ipt[0])/(Nadd-2) |
---|
514 | cutline[0,:] = ipt |
---|
515 | for ip in range(1,Nadd-1): |
---|
516 | cutline[ip,:] = ipt + np.array([dy*ip,dx*ip]) |
---|
517 | cutline[Nadd-1,:] = ept |
---|
518 | if keep == 'bottom': |
---|
519 | cutpolygon[iip:iip+Nadd,:] = cutline |
---|
520 | if type(polygon) == type(gen.mamat): |
---|
521 | cutpolygon[iip+Nadd:Npts,:] = polygon[ecut+1:N,:] |
---|
522 | else: |
---|
523 | cutpolygon[iip+Nadd:Npts,:] = polygon[ecut+1:N,:] |
---|
524 | else: |
---|
525 | cutpolygon[iip:iip+Nadd,:] = cutline[::-1,:] |
---|
526 | |
---|
527 | rmpolygon = [] |
---|
528 | if keep == 'bottom': |
---|
529 | for ip in range(Npts): |
---|
530 | if cutpolygon[ip,0] > yval: |
---|
531 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
532 | else: |
---|
533 | rmpolygon.append(cutpolygon[ip,:]) |
---|
534 | else: |
---|
535 | for ip in range(Npts): |
---|
536 | if cutpolygon[ip,0] < yval: |
---|
537 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
538 | else: |
---|
539 | rmpolygon.append(cutpolygon[ip,:]) |
---|
540 | Npts = len(rmpolygon) |
---|
541 | cutpolygon = np.array(rmpolygon) |
---|
542 | |
---|
543 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
544 | |
---|
545 | return Npts, cutpolygon |
---|
546 | |
---|
547 | def cut_xpolygon(polygon, xval, keep='left', Nadd=20): |
---|
548 | """ Function to cut a polygon from a given value of the x-axis |
---|
549 | polygon: polygon to cut |
---|
550 | yval: value to use to cut the polygon |
---|
551 | keep: part to keep from the value ('left', default) |
---|
552 | 'left': left of the value |
---|
553 | 'right': right of the value |
---|
554 | Nadd: additional points to add to draw the line (20, default) |
---|
555 | """ |
---|
556 | fname = 'cut_xpolygon' |
---|
557 | |
---|
558 | N = polygon.shape[0] |
---|
559 | availkeeps = ['left', 'right'] |
---|
560 | |
---|
561 | if not gen.searchInlist(availkeeps, keep): |
---|
562 | print errormsg |
---|
563 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
564 | print ' available ones:', availkeeps |
---|
565 | quit(-1) |
---|
566 | |
---|
567 | ipt = None |
---|
568 | ept = None |
---|
569 | |
---|
570 | if type(polygon) == type(gen.mamat): |
---|
571 | # Assuming clockwise polygons |
---|
572 | for ip in range(N-1): |
---|
573 | if not polygon.mask[ip,0]: |
---|
574 | eep = ip + 1 |
---|
575 | if eep == N: eep = 0 |
---|
576 | |
---|
577 | if polygon[ip,1] <= xval and polygon[eep,1] >= xval: |
---|
578 | icut = ip |
---|
579 | dx = polygon[eep,1] - polygon[ip,1] |
---|
580 | dy = polygon[eep,0] - polygon[ip,0] |
---|
581 | dd = xval - polygon[ip,1] |
---|
582 | ipt = [polygon[ip,0]+dy*dd/dx, xval] |
---|
583 | |
---|
584 | if polygon[ip,1] >= xval and polygon[eep,1] <= xval: |
---|
585 | ecut = ip |
---|
586 | dx = polygon[eep,1] - polygon[ip,1] |
---|
587 | dy = polygon[eep,0] - polygon[ip,0] |
---|
588 | dd = xval - polygon[ip,1] |
---|
589 | ept = [polygon[ip,0]+dy*dd/dx, xval] |
---|
590 | else: |
---|
591 | # Assuming clockwise polygons |
---|
592 | for ip in range(N-1): |
---|
593 | eep = ip + 1 |
---|
594 | if eep == N: eep = 0 |
---|
595 | |
---|
596 | if polygon[ip,1] <= xval and polygon[eep,1] >= xval: |
---|
597 | icut = ip |
---|
598 | dx = polygon[eep,1] - polygon[ip,1] |
---|
599 | dy = polygon[eep,0] - polygon[ip,0] |
---|
600 | dd = xval - polygon[ip,1] |
---|
601 | ipt = [polygon[ip,0]+dy*dd/dx, xval] |
---|
602 | |
---|
603 | if polygon[ip,1] >= xval and polygon[eep,1] <= xval: |
---|
604 | ecut = ip |
---|
605 | dx = polygon[eep,1] - polygon[ip,1] |
---|
606 | dy = polygon[eep,0] - polygon[ip,0] |
---|
607 | dd = xval - polygon[ip,1] |
---|
608 | ept = [polygon[ip,0]+dy*dd/dx, xval] |
---|
609 | |
---|
610 | if ipt is None or ept is None: |
---|
611 | print errormsg |
---|
612 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
613 | |
---|
614 | if keep == 'left': |
---|
615 | Npts = icut + (N-ecut) + Nadd + 1 |
---|
616 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
617 | cutpolygon[0,:] = ept |
---|
618 | cutpolygon[1:N-ecut,:] = polygon[ecut+1:N,:] |
---|
619 | iip = N-ecut |
---|
620 | cutpolygon[iip:iip+icut+1,:] = polygon[0:icut+1,:] |
---|
621 | iip = iip + icut+1 |
---|
622 | else: |
---|
623 | Npts = ecut - icut + Nadd-1 |
---|
624 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
625 | cutpolygon[0,:] = ipt |
---|
626 | cutpolygon[1:ecut-icut,:] = polygon[icut+1:ecut,:] |
---|
627 | iip = ecut-icut-1 |
---|
628 | |
---|
629 | # cutting line |
---|
630 | cutline = np.zeros((Nadd,2), dtype=np.float) |
---|
631 | dx = (ept[1] - ipt[1])/(Nadd-2) |
---|
632 | dy = (ept[0] - ipt[0])/(Nadd-2) |
---|
633 | cutline[0,:] = ipt |
---|
634 | for ip in range(1,Nadd-1): |
---|
635 | cutline[ip,:] = ipt + np.array([dy*ip,dx*ip]) |
---|
636 | cutline[Nadd-1,:] = ept |
---|
637 | if keep == 'left': |
---|
638 | cutpolygon[iip:iip+Nadd,:] = cutline |
---|
639 | # cutpolygon[iip+Nadd:Npts,:] = polygon[ecut+1:N,:] |
---|
640 | else: |
---|
641 | cutpolygon[iip:iip+Nadd,:] = cutline[::-1,:] |
---|
642 | |
---|
643 | rmpolygon = [] |
---|
644 | if keep == 'left': |
---|
645 | for ip in range(Npts): |
---|
646 | if cutpolygon[ip,1] > xval: |
---|
647 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
648 | else: |
---|
649 | rmpolygon.append(cutpolygon[ip,:]) |
---|
650 | else: |
---|
651 | for ip in range(Npts): |
---|
652 | if cutpolygon[ip,1] < xval: |
---|
653 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
654 | else: |
---|
655 | rmpolygon.append(cutpolygon[ip,:]) |
---|
656 | Npts = len(rmpolygon) |
---|
657 | cutpolygon = np.array(rmpolygon) |
---|
658 | |
---|
659 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
660 | |
---|
661 | return Npts, cutpolygon |
---|
662 | |
---|
663 | def cut_between_ypolygon(polygon, yval1, yval2, Nadd=20): |
---|
664 | """ Function to cut a polygon between 2 given value of the y-axis |
---|
665 | polygon: polygon to cut |
---|
666 | yval1: first value to use to cut the polygon |
---|
667 | yval2: first value to use to cut the polygon |
---|
668 | Nadd: additional points to add to draw the line (20, default) |
---|
669 | """ |
---|
670 | fname = 'cut_betwen_ypolygon' |
---|
671 | |
---|
672 | N = polygon.shape[0] |
---|
673 | |
---|
674 | ipt = None |
---|
675 | ept = None |
---|
676 | |
---|
677 | dx = np.zeros((2), dtype=np.float) |
---|
678 | dy = np.zeros((2), dtype=np.float) |
---|
679 | icut = np.zeros((2), dtype=int) |
---|
680 | ecut = np.zeros((2), dtype=int) |
---|
681 | ipt = np.zeros((2,2), dtype=np.float) |
---|
682 | ept = np.zeros((2,2), dtype=np.float) |
---|
683 | |
---|
684 | if yval1 > yval2: |
---|
685 | print errormsg |
---|
686 | print ' ' + fname + ': wrong between cut values !!' |
---|
687 | print ' it is expected yval1 < yval2' |
---|
688 | print ' values provided yval1: (', yval1, ')> yval2 (', yval2, ')' |
---|
689 | quit(-1) |
---|
690 | |
---|
691 | yvals = [yval1, yval2] |
---|
692 | |
---|
693 | for ic in range(2): |
---|
694 | yval = yvals[ic] |
---|
695 | if type(polygon) == type(gen.mamat): |
---|
696 | # Assuming clockwise polygons |
---|
697 | for ip in range(N-1): |
---|
698 | if not polygon.mask[ip,0]: |
---|
699 | eep = ip + 1 |
---|
700 | if eep == N: eep = 0 |
---|
701 | |
---|
702 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
703 | icut[ic] = ip |
---|
704 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
705 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
706 | dd = yval - polygon[ip,0] |
---|
707 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
708 | |
---|
709 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
710 | ecut[ic] = ip |
---|
711 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
712 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
713 | dd = yval - polygon[ip,0] |
---|
714 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
715 | else: |
---|
716 | # Assuming clockwise polygons |
---|
717 | for ip in range(N-1): |
---|
718 | eep = ip + 1 |
---|
719 | if eep == N: eep = 0 |
---|
720 | |
---|
721 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
722 | icut[ic] = ip |
---|
723 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
724 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
725 | dd = yval - polygon[ip,0] |
---|
726 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
727 | |
---|
728 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
729 | ecut[ic] = ip |
---|
730 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
731 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
732 | dd = yval - polygon[ip,0] |
---|
733 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
734 | |
---|
735 | if ipt is None or ept is None: |
---|
736 | print errormsg |
---|
737 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
738 | |
---|
739 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
740 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
741 | cutpolygon[0,:] = ipt[0,:] |
---|
742 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
743 | iip = icut[1]-icut[0] |
---|
744 | |
---|
745 | # cutting lines |
---|
746 | Nadd2 = int(Nadd/2) |
---|
747 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
748 | |
---|
749 | for ic in range(2): |
---|
750 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
751 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
752 | cutlines[ic,0,:] = ipt[ic,:] |
---|
753 | for ip in range(1,Nadd2-1): |
---|
754 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
755 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
756 | |
---|
757 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
758 | iip = iip + Nadd2 |
---|
759 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
760 | iip = iip + ecut[0]-ecut[1] |
---|
761 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
762 | |
---|
763 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
764 | |
---|
765 | return Npts, cutpolygon |
---|
766 | |
---|
767 | def cut_between_xpolygon(polygon, xval1, xval2, Nadd=20): |
---|
768 | """ Function to cut a polygon between 2 given value of the x-axis |
---|
769 | polygon: polygon to cut |
---|
770 | xval1: first value to use to cut the polygon |
---|
771 | xval2: first value to use to cut the polygon |
---|
772 | Nadd: additional points to add to draw the line (20, default) |
---|
773 | """ |
---|
774 | fname = 'cut_betwen_xpolygon' |
---|
775 | |
---|
776 | N = polygon.shape[0] |
---|
777 | |
---|
778 | ipt = None |
---|
779 | ept = None |
---|
780 | |
---|
781 | dx = np.zeros((2), dtype=np.float) |
---|
782 | dy = np.zeros((2), dtype=np.float) |
---|
783 | icut = np.zeros((2), dtype=int) |
---|
784 | ecut = np.zeros((2), dtype=int) |
---|
785 | ipt = np.zeros((2,2), dtype=np.float) |
---|
786 | ept = np.zeros((2,2), dtype=np.float) |
---|
787 | |
---|
788 | if xval1 > xval2: |
---|
789 | print errormsg |
---|
790 | print ' ' + fname + ': wrong between cut values !!' |
---|
791 | print ' it is expected xval1 < xval2' |
---|
792 | print ' values provided xval1: (', xval1, ')> xval2 (', xval2, ')' |
---|
793 | quit(-1) |
---|
794 | |
---|
795 | xvals = [xval1, xval2] |
---|
796 | |
---|
797 | for ic in range(2): |
---|
798 | xval = xvals[ic] |
---|
799 | if type(polygon) == type(gen.mamat): |
---|
800 | # Assuming clockwise polygons |
---|
801 | for ip in range(N-1): |
---|
802 | if not polygon.mask[ip,0]: |
---|
803 | eep = ip + 1 |
---|
804 | if eep == N: eep = 0 |
---|
805 | |
---|
806 | if polygon[ip,1] <= xval and polygon[eep,1] >= xval: |
---|
807 | icut[ic] = ip |
---|
808 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
809 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
810 | dd = xval - polygon[ip,1] |
---|
811 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
812 | |
---|
813 | if polygon[ip,1] >= yval and polygon[eep,1] <= xval: |
---|
814 | ecut[ic] = ip |
---|
815 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
816 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
817 | dd = xval - polygon[ip,1] |
---|
818 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
819 | else: |
---|
820 | # Assuming clockwise polygons |
---|
821 | for ip in range(N-1): |
---|
822 | eep = ip + 1 |
---|
823 | if eep == N: eep = 0 |
---|
824 | |
---|
825 | if polygon[ip,1] <= xval and polygon[eep,1] >= xval: |
---|
826 | icut[ic] = ip |
---|
827 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
828 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
829 | dd = xval - polygon[ip,1] |
---|
830 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
831 | |
---|
832 | if polygon[ip,1] >= xval and polygon[eep,1] <= xval: |
---|
833 | ecut[ic] = ip |
---|
834 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
835 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
836 | dd = xval - polygon[ip,1] |
---|
837 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
838 | |
---|
839 | if ipt is None or ept is None: |
---|
840 | print errormsg |
---|
841 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
842 | |
---|
843 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
844 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
845 | cutpolygon[0,:] = ipt[0,:] |
---|
846 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
847 | iip = icut[1]-icut[0] |
---|
848 | |
---|
849 | # cutting lines |
---|
850 | Nadd2 = int(Nadd/2) |
---|
851 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
852 | |
---|
853 | for ic in range(2): |
---|
854 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
855 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
856 | cutlines[ic,0,:] = ipt[ic,:] |
---|
857 | for ip in range(1,Nadd2-1): |
---|
858 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
859 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
860 | |
---|
861 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
862 | iip = iip + Nadd2 |
---|
863 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
864 | iip = iip + ecut[0]-ecut[1] |
---|
865 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
866 | |
---|
867 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
868 | |
---|
869 | return Npts, cutpolygon |
---|
870 | |
---|
871 | ####### ###### ##### #### ### ## # |
---|
872 | # Shapes/objects |
---|
873 | |
---|
874 | def surface_sphere(radii,Npts): |
---|
875 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
876 | radii: radii of the sphere |
---|
877 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
878 | """ |
---|
879 | fname = 'surface_sphere' |
---|
880 | |
---|
881 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
882 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
883 | for ia in range(Npts): |
---|
884 | alpha = ia*2*np.pi/(Npts-1) |
---|
885 | for ib in range(Npts/2): |
---|
886 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
887 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
888 | for ib in range(Npts/2): |
---|
889 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
890 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
891 | |
---|
892 | return sphereup, spheredown |
---|
893 | |
---|
894 | def ellipse_polar(c, a, b, Nang=100): |
---|
895 | """ Function to determine an ellipse from its center and polar coordinates |
---|
896 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
897 | c= coordinates of the center |
---|
898 | a= distance major axis |
---|
899 | b= distance minor axis |
---|
900 | Nang= number of angles to use |
---|
901 | """ |
---|
902 | fname = 'ellipse_polar' |
---|
903 | |
---|
904 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
905 | |
---|
906 | dtheta = 2*np.pi/(Nang-1) |
---|
907 | |
---|
908 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
909 | for ia in range(Nang): |
---|
910 | theta = dtheta*ia |
---|
911 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
912 | x = rad*np.cos(theta) |
---|
913 | y = rad*np.sin(theta) |
---|
914 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
915 | |
---|
916 | return ellipse |
---|
917 | |
---|
918 | def hyperbola_polar(a, b, Nang=100): |
---|
919 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
920 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
921 | x^2/a^2 - y^2/b^2 = 1 |
---|
922 | a= x-parameter |
---|
923 | y= y-parameter |
---|
924 | Nang= number of angles to use |
---|
925 | DOES NOT WORK!!!! |
---|
926 | """ |
---|
927 | fname = 'hyperbola_polar' |
---|
928 | |
---|
929 | dtheta = 2.*np.pi/(Nang-1) |
---|
930 | |
---|
931 | # Positive branch |
---|
932 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
933 | for ia in range(Nang): |
---|
934 | theta = dtheta*ia |
---|
935 | x = a*np.cosh(theta) |
---|
936 | y = b*np.sinh(theta) |
---|
937 | hyperbola_p[ia,:] = [y,x] |
---|
938 | |
---|
939 | # Negative branch |
---|
940 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
941 | for ia in range(Nang): |
---|
942 | theta = dtheta*ia |
---|
943 | x = -a*np.cosh(theta) |
---|
944 | y = b*np.sinh(theta) |
---|
945 | hyperbola_n[ia,:] = [y,x] |
---|
946 | |
---|
947 | return hyperbola_p, hyperbola_n |
---|
948 | |
---|
949 | def circ_sec(ptA, ptB, radii, arc='short', pos='left', Nang=100): |
---|
950 | """ Function union of point A and B by a section of a circle |
---|
951 | ptA= coordinates od the point A [yA, xA] |
---|
952 | ptB= coordinates od the point B [yB, xB] |
---|
953 | radii= radi of the circle to use to unite the points |
---|
954 | arc= which arc to be used ('short', default) |
---|
955 | 'short': shortest angle between points |
---|
956 | 'long': largest angle between points |
---|
957 | pos= orientation of the arc following clockwise union of points ('left', default) |
---|
958 | 'left': to the left of union |
---|
959 | 'right': to the right of union |
---|
960 | Nang= amount of angles to use |
---|
961 | """ |
---|
962 | fname = 'circ_sec' |
---|
963 | availarc = ['short', 'long'] |
---|
964 | availpos = ['left', 'right'] |
---|
965 | |
---|
966 | distAB = dist_points(ptA,ptB) |
---|
967 | |
---|
968 | if distAB > radii: |
---|
969 | print errormsg |
---|
970 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
971 | "between points !!" |
---|
972 | print ' distance between points:', distAB |
---|
973 | quit(-1) |
---|
974 | |
---|
975 | # Coordinate increments |
---|
976 | dAB = np.abs(ptA-ptB) |
---|
977 | |
---|
978 | # angle of the circular section joining points |
---|
979 | alpha = 2.*np.arcsin((distAB/2.)/radii) |
---|
980 | |
---|
981 | # center along coincident bisection of the union |
---|
982 | xcc = -radii |
---|
983 | ycc = 0. |
---|
984 | |
---|
985 | # Getting the arc of the circle at the x-axis |
---|
986 | if arc == 'short': |
---|
987 | dalpha = alpha/(Nang-1) |
---|
988 | elif arc == 'long': |
---|
989 | dalpha = (2.*np.pi - alpha)/(Nang-1) |
---|
990 | else: |
---|
991 | print errormsg |
---|
992 | print ' ' + fname + ": arc '" + arc + "' not ready !!" |
---|
993 | print ' available ones:', availarc |
---|
994 | quit(-1) |
---|
995 | if pos == 'left': sign=-1. |
---|
996 | elif pos == 'right': sign=1. |
---|
997 | else: |
---|
998 | print errormsg |
---|
999 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1000 | print ' available ones:', availpos |
---|
1001 | quit(-1) |
---|
1002 | |
---|
1003 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
1004 | for ia in range(Nang): |
---|
1005 | alpha = sign*dalpha*ia |
---|
1006 | x = radii*np.cos(alpha) |
---|
1007 | y = radii*np.sin(alpha) |
---|
1008 | |
---|
1009 | circ_sec[ia,:] = [y+ycc,x+xcc] |
---|
1010 | |
---|
1011 | # Angle of the points |
---|
1012 | theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
1013 | |
---|
1014 | # rotating angle of the circ |
---|
1015 | if pos == 'left': |
---|
1016 | rotangle = theta + np.pi/2. - alpha/2. |
---|
1017 | elif pos == 'right': |
---|
1018 | rotangle = theta + 3.*np.pi/2. - alpha/2. |
---|
1019 | else: |
---|
1020 | print errormsg |
---|
1021 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1022 | print ' available ones:', availpos |
---|
1023 | quit(-1) |
---|
1024 | |
---|
1025 | #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi |
---|
1026 | |
---|
1027 | # rotating the arc along the x-axis |
---|
1028 | rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) |
---|
1029 | |
---|
1030 | # Moving arc to the ptA |
---|
1031 | circ_sec = rotcirc_sec + ptA |
---|
1032 | |
---|
1033 | return circ_sec |
---|
1034 | |
---|
1035 | def p_square(face, N=5): |
---|
1036 | """ Function to get a polygon square |
---|
1037 | face: length of the face of the square |
---|
1038 | N: number of points of the polygon |
---|
1039 | """ |
---|
1040 | fname = 'p_square' |
---|
1041 | |
---|
1042 | square = np.zeros((N,2), dtype=np.float) |
---|
1043 | |
---|
1044 | f2 = face/2. |
---|
1045 | N4 = N/4 |
---|
1046 | df = face/(N4) |
---|
1047 | # SW-NW |
---|
1048 | for ip in range(N4): |
---|
1049 | square[ip,:] = [-f2+ip*df,-f2] |
---|
1050 | # NW-NE |
---|
1051 | for ip in range(N4): |
---|
1052 | square[ip+N4,:] = [f2,-f2+ip*df] |
---|
1053 | # NE-SE |
---|
1054 | for ip in range(N4): |
---|
1055 | square[ip+2*N4,:] = [f2-ip*df,f2] |
---|
1056 | N42 = N-3*N4-1 |
---|
1057 | df = face/(N42) |
---|
1058 | # SE-SW |
---|
1059 | for ip in range(N42): |
---|
1060 | square[ip+3*N4,:] = [-f2,f2-ip*df] |
---|
1061 | square[N-1,:] = [-f2,-f2] |
---|
1062 | |
---|
1063 | return square |
---|
1064 | |
---|
1065 | def p_circle(radii, N=50): |
---|
1066 | """ Function to get a polygon of a circle |
---|
1067 | radii: length of the radii of the circle |
---|
1068 | N: number of points of the polygon |
---|
1069 | """ |
---|
1070 | fname = 'p_circle' |
---|
1071 | |
---|
1072 | circle = np.zeros((N,2), dtype=np.float) |
---|
1073 | |
---|
1074 | dangle = 2.*np.pi/(N-1) |
---|
1075 | |
---|
1076 | for ia in range(N): |
---|
1077 | circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1078 | |
---|
1079 | circle[N-1,:] = [0., radii] |
---|
1080 | |
---|
1081 | return circle |
---|
1082 | |
---|
1083 | def p_triangle(p1, p2, p3, N=4): |
---|
1084 | """ Function to provide the polygon of a triangle from its 3 vertices |
---|
1085 | p1: vertex 1 [y,x] |
---|
1086 | p2: vertex 2 [y,x] |
---|
1087 | p3: vertex 3 [y,x] |
---|
1088 | N: number of vertices of the triangle |
---|
1089 | """ |
---|
1090 | fname = 'p_triangle' |
---|
1091 | |
---|
1092 | triangle = np.zeros((N,2), dtype=np.float) |
---|
1093 | |
---|
1094 | N3 = N / 3 |
---|
1095 | # 1-2 |
---|
1096 | dx = (p2[1]-p1[1])/N3 |
---|
1097 | dy = (p2[0]-p1[0])/N3 |
---|
1098 | for ip in range(N3): |
---|
1099 | triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] |
---|
1100 | # 2-3 |
---|
1101 | dx = (p3[1]-p2[1])/N3 |
---|
1102 | dy = (p3[0]-p2[0])/N3 |
---|
1103 | for ip in range(N3): |
---|
1104 | triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] |
---|
1105 | # 3-1 |
---|
1106 | N32 = N - 2*N/3 |
---|
1107 | dx = (p1[1]-p3[1])/N32 |
---|
1108 | dy = (p1[0]-p3[0])/N32 |
---|
1109 | for ip in range(N32): |
---|
1110 | triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] |
---|
1111 | |
---|
1112 | triangle[N-1,:] = p1 |
---|
1113 | |
---|
1114 | return triangle |
---|
1115 | |
---|
1116 | def p_spiral(loops, eradii, N=1000): |
---|
1117 | """ Function to provide a polygon of an Archimedean spiral |
---|
1118 | FROM: https://en.wikipedia.org/wiki/Spiral |
---|
1119 | loops: number of loops of the spiral |
---|
1120 | eradii: length of the radii of the final spiral |
---|
1121 | N: number of points of the polygon |
---|
1122 | """ |
---|
1123 | fname = 'p_spiral' |
---|
1124 | |
---|
1125 | spiral = np.zeros((N,2), dtype=np.float) |
---|
1126 | |
---|
1127 | dangle = 2.*np.pi*loops/(N-1) |
---|
1128 | dr = eradii*1./(N-1) |
---|
1129 | |
---|
1130 | for ia in range(N): |
---|
1131 | radii = dr*ia |
---|
1132 | spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1133 | |
---|
1134 | return spiral |
---|
1135 | |
---|
1136 | def p_reg_polygon(Nv, lf, N=50): |
---|
1137 | """ Function to provide a regular polygon of Nv vertices |
---|
1138 | Nv: number of vertices |
---|
1139 | lf: length of the face |
---|
1140 | N: number of points |
---|
1141 | """ |
---|
1142 | fname = 'p_reg_polygon' |
---|
1143 | |
---|
1144 | reg_polygon = np.zeros((N,2), dtype=np.float) |
---|
1145 | |
---|
1146 | # Number of points per vertex |
---|
1147 | Np = N/Nv |
---|
1148 | # Angle incremental between vertices |
---|
1149 | da = 2.*np.pi/Nv |
---|
1150 | # Radii of the circle according to lf |
---|
1151 | radii = lf*Nv/(2*np.pi) |
---|
1152 | |
---|
1153 | iip = 0 |
---|
1154 | for iv in range(Nv-1): |
---|
1155 | # Characteristics between vertices iv and iv+1 |
---|
1156 | av1 = da*iv |
---|
1157 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1158 | av2 = da*(iv+1) |
---|
1159 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1160 | dx = (v2[1]-v1[1])/Np |
---|
1161 | dy = (v2[0]-v1[0])/Np |
---|
1162 | for ip in range(Np): |
---|
1163 | reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1164 | |
---|
1165 | # Characteristics between vertices Nv and 1 |
---|
1166 | |
---|
1167 | # Number of points per vertex |
---|
1168 | Np2 = N - Np*(Nv-1) |
---|
1169 | |
---|
1170 | av1 = da*Nv |
---|
1171 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1172 | av2 = 0. |
---|
1173 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1174 | dx = (v2[1]-v1[1])/Np2 |
---|
1175 | dy = (v2[0]-v1[0])/Np2 |
---|
1176 | for ip in range(Np2): |
---|
1177 | reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1178 | |
---|
1179 | return reg_polygon |
---|
1180 | |
---|
1181 | def p_reg_star(Nv, lf, freq, vs=0, N=50): |
---|
1182 | """ Function to provide a regular star of Nv vertices |
---|
1183 | Nv: number of vertices |
---|
1184 | lf: length of the face of the regular polygon |
---|
1185 | freq: frequency of union of vertices ('0', for just centered to zero arms) |
---|
1186 | vs: vertex from which start (0 being first [0,lf]) |
---|
1187 | N: number of points |
---|
1188 | """ |
---|
1189 | fname = 'p_reg_star' |
---|
1190 | |
---|
1191 | reg_star = np.zeros((N,2), dtype=np.float) |
---|
1192 | |
---|
1193 | # Number of arms of the star |
---|
1194 | if freq != 0 and np.mod(Nv,freq) == 0: |
---|
1195 | Na = Nv/freq + 1 |
---|
1196 | else: |
---|
1197 | Na = Nv |
---|
1198 | |
---|
1199 | # Number of points per arm |
---|
1200 | Np = N/Na |
---|
1201 | # Angle incremental between vertices |
---|
1202 | da = 2.*np.pi/Nv |
---|
1203 | # Radii of the circle according to lf |
---|
1204 | radii = lf*Nv/(2*np.pi) |
---|
1205 | |
---|
1206 | iip = 0 |
---|
1207 | av1 = vs*da |
---|
1208 | for iv in range(Na-1): |
---|
1209 | # Characteristics between vertices iv and iv+1 |
---|
1210 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1211 | if freq != 0: |
---|
1212 | av2 = av1 + da*freq |
---|
1213 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1214 | else: |
---|
1215 | v2 = [0., 0.] |
---|
1216 | av2 = av1 + da |
---|
1217 | dx = (v2[1]-v1[1])/(Np-1) |
---|
1218 | dy = (v2[0]-v1[0])/(Np-1) |
---|
1219 | for ip in range(Np): |
---|
1220 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1221 | if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi |
---|
1222 | else: av1 = av2 + 0. |
---|
1223 | |
---|
1224 | iv = Na-1 |
---|
1225 | # Characteristics between vertices Na and 1 |
---|
1226 | Np2 = N-Np*iv |
---|
1227 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1228 | if freq != 0: |
---|
1229 | av2 = vs*da |
---|
1230 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1231 | else: |
---|
1232 | v2 = [0., 0.] |
---|
1233 | dx = (v2[1]-v1[1])/(Np2-1) |
---|
1234 | dy = (v2[0]-v1[0])/(Np2-1) |
---|
1235 | for ip in range(Np2): |
---|
1236 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1237 | |
---|
1238 | return reg_star |
---|
1239 | |
---|
1240 | def p_sinusiode(length=10., amp=5., lamb=3., ival=0., func='sin', N=100): |
---|
1241 | """ Function to get coordinates of a sinusoidal curve |
---|
1242 | length: length of the line (default 10.) |
---|
1243 | amp: amplitude of the peaks (default 5.) |
---|
1244 | lamb: wave longitude (defalult 3.) |
---|
1245 | ival: initial angle (default 0. in degree) |
---|
1246 | func: function to use: (default sinus) |
---|
1247 | 'sin': sinus |
---|
1248 | 'cos': cosinus |
---|
1249 | N: number of points (default 100) |
---|
1250 | """ |
---|
1251 | fname = 'p_sinusiode' |
---|
1252 | availfunc = ['sin', 'cos'] |
---|
1253 | |
---|
1254 | dx = length/(N-1) |
---|
1255 | ia = ival*np.pi/180. |
---|
1256 | da = 2*np.pi*dx/lamb |
---|
1257 | |
---|
1258 | sinusoide = np.zeros((N,2), dtype=np.float) |
---|
1259 | if func == 'sin': |
---|
1260 | for ix in range(N): |
---|
1261 | sinusoide[ix,:] = [amp*np.sin(ia+da*ix),dx*ix] |
---|
1262 | elif func == 'cos': |
---|
1263 | for ix in range(N): |
---|
1264 | sinusoide[ix,:] = [amp*np.cos(ia+da*ix),dx*ix] |
---|
1265 | else: |
---|
1266 | print errormsg |
---|
1267 | print ' ' + fname + ": function '" + func + "' not ready !!" |
---|
1268 | print ' available ones:', availfunc |
---|
1269 | quit(-1) |
---|
1270 | |
---|
1271 | sinusoidesecs = ['sinusoide'] |
---|
1272 | sinusoidedic = {'sinusoide': [sinusoide, '-', '#000000', 1.]} |
---|
1273 | |
---|
1274 | return sinusoide, sinusoidesecs, sinusoidedic |
---|
1275 | |
---|
1276 | def p_doubleArrow(length=5., angle=45., width=1., alength=0.10, N=50): |
---|
1277 | """ Function to provide an arrow with double lines |
---|
1278 | length: length of the arrow (5. default) |
---|
1279 | angle: angle of the head of the arrow (45., default) |
---|
1280 | width: separation between the two lines (2., default) |
---|
1281 | alength: length of the head (as percentage in excess of width, 0.1 default) |
---|
1282 | N: number of points (50, default) |
---|
1283 | """ |
---|
1284 | function = 'p_doubleArrow' |
---|
1285 | |
---|
1286 | doubleArrow = np.zeros((50,2), dtype=np.float) |
---|
1287 | N4 = int((N-3)/4) |
---|
1288 | |
---|
1289 | doublearrowdic = {} |
---|
1290 | ddy = width*np.tan(angle*np.pi/180.)/2. |
---|
1291 | # Arms |
---|
1292 | dx = (length-ddy)/(N4-1) |
---|
1293 | for ix in range(N4): |
---|
1294 | doubleArrow[ix,:] = [dx*ix,-width/2.] |
---|
1295 | doublearrowdic['leftarm'] = [doubleArrow[0:N4,:], '-', '#000000', 2.] |
---|
1296 | doubleArrow[N4,:] = [gen.fillValueF,gen.fillValueF] |
---|
1297 | for ix in range(N4): |
---|
1298 | doubleArrow[N4+1+ix,:] = [dx*ix,width/2.] |
---|
1299 | doublearrowdic['rightarm'] = [doubleArrow[N4+1:2*N4+1,:], '-', '#000000', 2.] |
---|
1300 | doubleArrow[2*N4+1,:] = [gen.fillValueF,gen.fillValueF] |
---|
1301 | |
---|
1302 | # Head |
---|
1303 | N42 = int((N-2 - 2*N4)/2) |
---|
1304 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N42-1) |
---|
1305 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N42-1) |
---|
1306 | for ix in range(N42): |
---|
1307 | doubleArrow[2*N4+2+ix,:] = [length-dy*ix,-dx*ix] |
---|
1308 | doublearrowdic['lefthead'] = [doubleArrow[2*N4:2*N4+N42,:], '-', '#000000', 2.] |
---|
1309 | doubleArrow[2*N4+2+N42,:] = [gen.fillValueF,gen.fillValueF] |
---|
1310 | |
---|
1311 | N43 = N-3 - 2*N4 - N42 + 1 |
---|
1312 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N43-1) |
---|
1313 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N43-1) |
---|
1314 | for ix in range(N43): |
---|
1315 | doubleArrow[2*N4+N42+2+ix,:] = [length-dy*ix,dx*ix] |
---|
1316 | doublearrowdic['rightthead'] = [doubleArrow[2*N4+N42+2:51,:], '-', '#000000', 2.] |
---|
1317 | |
---|
1318 | doubleArrow = ma.masked_equal(doubleArrow, gen.fillValueF) |
---|
1319 | doublearrowsecs = ['leftarm', 'rightarm', 'lefthead', 'righthead'] |
---|
1320 | |
---|
1321 | return doubleArrow, doublearrowsecs, doublearrowdic |
---|
1322 | |
---|
1323 | def p_angle_triangle(pi=np.array([0.,0.]), angle1=60., length1=1., angle2=60., N=100): |
---|
1324 | """ Function to draw a triangle by an initial point and two consecutive angles |
---|
1325 | and the first length of face. The third angle and 2 and 3rd face will be |
---|
1326 | computed accordingly the provided values: |
---|
1327 | length1 / sin(angle1) = length2 / sin(angle2) = length3 / sin(angle3) |
---|
1328 | angle1 + angle2 + angle3 = 180. |
---|
1329 | pi: initial point ([0., 0.], default) |
---|
1330 | angle1: first angle from pi clockwise (60., default) |
---|
1331 | length1: length of face from pi by angle1 (1., default) |
---|
1332 | angle2: second angle from second point (60., default) |
---|
1333 | length2: length of face from p2 by angle2 (1., default) |
---|
1334 | N: number of points (100, default) |
---|
1335 | """ |
---|
1336 | fname = 'p_angle_triangle' |
---|
1337 | |
---|
1338 | angle3 = 180. - angle1 - angle2 |
---|
1339 | length2 = np.sin(angle2*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
1340 | length3 = np.sin(angle3*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
1341 | |
---|
1342 | triangle = np.zeros((N,2), dtype=np.float) |
---|
1343 | |
---|
1344 | N3 = int(N/3) |
---|
1345 | # first face |
---|
1346 | ix = pi[1] |
---|
1347 | iy = pi[0] |
---|
1348 | dx = length1*np.cos(angle1*np.pi/180.)/(N3-1) |
---|
1349 | dy = length1*np.sin(angle1*np.pi/180.)/(N3-1) |
---|
1350 | for ip in range(N3): |
---|
1351 | triangle[ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1352 | |
---|
1353 | # second face |
---|
1354 | ia = -90. - (90.-angle1) |
---|
1355 | ix = triangle[N3-1,1] |
---|
1356 | iy = triangle[N3-1,0] |
---|
1357 | dx = length2*np.cos((ia+angle2)*np.pi/180.)/(N3-1) |
---|
1358 | dy = length2*np.sin((ia+angle2)*np.pi/180.)/(N3-1) |
---|
1359 | for ip in range(N3): |
---|
1360 | triangle[N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1361 | |
---|
1362 | # third face |
---|
1363 | N32 = N - 2*N3 |
---|
1364 | ia = -180. - (90.-angle2) |
---|
1365 | ix = triangle[2*N3-1,1] |
---|
1366 | iy = triangle[2*N3-1,0] |
---|
1367 | angle3 = np.arctan2(pi[0]-iy, pi[1]-ix) |
---|
1368 | dx = (pi[1]-ix)/(N32-1) |
---|
1369 | dy = (pi[0]-iy)/(N32-1) |
---|
1370 | for ip in range(N32): |
---|
1371 | triangle[2*N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1372 | |
---|
1373 | return triangle |
---|
1374 | |
---|
1375 | # Combined objects |
---|
1376 | ## |
---|
1377 | |
---|
1378 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
1379 | def zboat(length=10., beam=1., lbeam=0.4, sternbp=0.5): |
---|
1380 | """ Function to define an schematic boat from the z-plane |
---|
1381 | length: length of the boat (without stern, default 10) |
---|
1382 | beam: beam of the boat (default 1) |
---|
1383 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
1384 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
1385 | """ |
---|
1386 | fname = 'zboat' |
---|
1387 | |
---|
1388 | bow = np.array([length, 0.]) |
---|
1389 | maxportside = np.array([length*lbeam, -beam]) |
---|
1390 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
1391 | portside = np.array([0., -beam*sternbp]) |
---|
1392 | starboardside = np.array([0., beam*sternbp]) |
---|
1393 | |
---|
1394 | # forward section |
---|
1395 | fportside = circ_sec(maxportside, bow, length*2) |
---|
1396 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
1397 | # aft section |
---|
1398 | aportside = circ_sec(portside, maxportside, length*2) |
---|
1399 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
1400 | # stern |
---|
1401 | stern = circ_sec(starboardside, portside, length*2) |
---|
1402 | |
---|
1403 | dpts = stern.shape[0] |
---|
1404 | boat = np.zeros((dpts*5,2), dtype=np.float) |
---|
1405 | |
---|
1406 | boat[0:dpts,:] = aportside |
---|
1407 | boat[dpts:2*dpts,:] = fportside |
---|
1408 | boat[2*dpts:3*dpts,:] = fstarboardside |
---|
1409 | boat[3*dpts:4*dpts,:] = astarboardside |
---|
1410 | boat[4*dpts:5*dpts,:] = stern |
---|
1411 | |
---|
1412 | fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' + \ |
---|
1413 | str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat' |
---|
1414 | if not os.path.isfile(fname): |
---|
1415 | print infmsg |
---|
1416 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1417 | of = open(fname, 'w') |
---|
1418 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1419 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
1420 | ' %\n') |
---|
1421 | for ip in range(dpts*5): |
---|
1422 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
1423 | |
---|
1424 | of.close() |
---|
1425 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1426 | |
---|
1427 | |
---|
1428 | # Center line extending [fcl] percentage from length on aft and stern |
---|
1429 | fcl = 0.15 |
---|
1430 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
1431 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
1432 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
1433 | |
---|
1434 | # correct order of sections |
---|
1435 | boatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
1436 | 'stern', 'centerline'] |
---|
1437 | |
---|
1438 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
1439 | dicboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
1440 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
1441 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
1442 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
1443 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
1444 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
1445 | |
---|
1446 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
1447 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) +'.dat' |
---|
1448 | if not os.path.isfile(fname): |
---|
1449 | print infmsg |
---|
1450 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1451 | of = open(fname, 'w') |
---|
1452 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1453 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' +str(sternbp)+'\n') |
---|
1454 | for ip in range(dpts*5): |
---|
1455 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
1456 | |
---|
1457 | of.close() |
---|
1458 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1459 | |
---|
1460 | return boat, boatsecs, dicboat |
---|
1461 | |
---|
1462 | def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5, lmast=0.6, wmast=0.1, \ |
---|
1463 | hsd=5., msd=5., lheads=0.38, lmains=0.55): |
---|
1464 | """ Function to define an schematic sailing boat from the z-plane with sails |
---|
1465 | length: length of the boat (without stern, default 10) |
---|
1466 | beam: beam of the boat (default 1) |
---|
1467 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
1468 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
1469 | lmast: position of the mast (as percentage of length, default 0.6) |
---|
1470 | wmast: width of the mast (default 0.1) |
---|
1471 | hsd: head sail direction respect to center line (default 5., -999.99 for upwind) |
---|
1472 | msd: main sail direction respect to center line (default 5., -999.99 for upwind) |
---|
1473 | lheads: length of head sail (as percentage of legnth, defaul 0.38) |
---|
1474 | lmains: length of main sail (as percentage of legnth, defaul 0.55) |
---|
1475 | """ |
---|
1476 | fname = 'zsailing_boat' |
---|
1477 | |
---|
1478 | bow = np.array([length, 0.]) |
---|
1479 | maxportside = np.array([length*lbeam, -beam]) |
---|
1480 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
1481 | portside = np.array([0., -beam*sternbp]) |
---|
1482 | starboardside = np.array([0., beam*sternbp]) |
---|
1483 | |
---|
1484 | aportside = circ_sec(portside, maxportside, length*2) |
---|
1485 | fportside = circ_sec(maxportside, bow, length*2) |
---|
1486 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
1487 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
1488 | stern = circ_sec(starboardside, portside, length*2) |
---|
1489 | dpts = fportside.shape[0] |
---|
1490 | |
---|
1491 | # correct order of sections |
---|
1492 | sailingboatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
1493 | 'stern', 'mast', 'hsail', 'msail', 'centerline'] |
---|
1494 | |
---|
1495 | # forward section |
---|
1496 | |
---|
1497 | # aft section |
---|
1498 | # stern |
---|
1499 | # mast |
---|
1500 | mast = p_circle(wmast,N=dpts) |
---|
1501 | mast = mast + [length*lmast, 0.] |
---|
1502 | # head sails |
---|
1503 | lsail = lheads*length |
---|
1504 | if hsd != -999.99: |
---|
1505 | sailsa = np.pi/2. - np.pi*hsd/180. |
---|
1506 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
1507 | endsail[0] = length - endsail[0] |
---|
1508 | if bow[1] > endsail[1]: |
---|
1509 | hsail = circ_sec(endsail, bow, lsail*2.15) |
---|
1510 | else: |
---|
1511 | hsail = circ_sec(bow, endsail, lsail*2.15) |
---|
1512 | else: |
---|
1513 | hsail0 = p_sinusiode(length=lsail, amp=0.2, lamb=0.75, N=dpts) |
---|
1514 | hsail = np.zeros((dpts,2), dtype=np.float) |
---|
1515 | hsail[:,0] = hsail0[:,1] |
---|
1516 | hsail[:,1] = hsail0[:,0] |
---|
1517 | hsail = bow - hsail |
---|
1518 | |
---|
1519 | # main sails |
---|
1520 | lsail = lmains*length |
---|
1521 | if msd != -999.99: |
---|
1522 | sailsa = np.pi/2. - np.pi*msd/180. |
---|
1523 | begsail = np.array([length*lmast, 0.]) |
---|
1524 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
1525 | endsail[0] = length*lmast - endsail[0] |
---|
1526 | if endsail[1] > begsail[1]: |
---|
1527 | msail = circ_sec(begsail, endsail, lsail*2.15) |
---|
1528 | else: |
---|
1529 | msail = circ_sec(endsail, begsail, lsail*2.15) |
---|
1530 | else: |
---|
1531 | msail0 = p_sinusiode(length=lsail, amp=0.25, lamb=1., N=dpts) |
---|
1532 | msail = np.zeros((dpts,2), dtype=np.float) |
---|
1533 | msail[:,0] = msail0[:,1] |
---|
1534 | msail[:,1] = msail0[:,0] |
---|
1535 | msail = [length*lmast,0] - msail |
---|
1536 | |
---|
1537 | sailingboat = np.zeros((dpts*8+4,2), dtype=np.float) |
---|
1538 | |
---|
1539 | sailingboat[0:dpts,:] = aportside |
---|
1540 | sailingboat[dpts:2*dpts,:] = fportside |
---|
1541 | sailingboat[2*dpts:3*dpts,:] = fstarboardside |
---|
1542 | sailingboat[3*dpts:4*dpts,:] = astarboardside |
---|
1543 | sailingboat[4*dpts:5*dpts,:] = stern |
---|
1544 | sailingboat[5*dpts,:] = [gen.fillValueF, gen.fillValueF] |
---|
1545 | sailingboat[5*dpts+1:6*dpts+1,:] = mast |
---|
1546 | sailingboat[6*dpts+1,:] = [gen.fillValueF, gen.fillValueF] |
---|
1547 | sailingboat[6*dpts+2:7*dpts+2,:] = hsail |
---|
1548 | sailingboat[7*dpts+2,:] = [gen.fillValueF, gen.fillValueF] |
---|
1549 | sailingboat[7*dpts+3:8*dpts+3,:] = msail |
---|
1550 | sailingboat[8*dpts+3,:] = [gen.fillValueF, gen.fillValueF] |
---|
1551 | |
---|
1552 | sailingboat = ma.masked_equal(sailingboat, gen.fillValueF) |
---|
1553 | |
---|
1554 | # Center line extending [fcl] percentage from length on aft and stern |
---|
1555 | fcl = 0.15 |
---|
1556 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
1557 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
1558 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
1559 | |
---|
1560 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
1561 | dicsailingboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
1562 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
1563 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
1564 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
1565 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
1566 | 'mast': [mast, '-', '#8A5900', 2.], 'hsail': [hsail, '-', '#AAAAAA', 1.], \ |
---|
1567 | 'msail': [msail, '-', '#AAAAAA', 1.], \ |
---|
1568 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
1569 | |
---|
1570 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
1571 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + \ |
---|
1572 | '_lm' + str(int(lmast*100.)) + '_wm' + str(int(wmast)) + \ |
---|
1573 | '_hsd' + str(int(hsd)) + '_hs' + str(int(lheads*100.)) + \ |
---|
1574 | '_ms' + str(int(lheads*100.)) + '_msd' + str(int(msd)) +'.dat' |
---|
1575 | if not os.path.isfile(fname): |
---|
1576 | print infmsg |
---|
1577 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
1578 | of = open(fname, 'w') |
---|
1579 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
1580 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
1581 | ' % mast position: '+ str(lmast) + ' % mast width: ' + str(wmast) + ' ' + \ |
---|
1582 | ' head sail direction:' + str(hsd) + ' head sail length: ' + str(lheads) + \ |
---|
1583 | ' %' + ' main sail length' + str(lmains) + ' main sail direction:' + \ |
---|
1584 | str(msd) +'\n') |
---|
1585 | for ip in range(dpts*5): |
---|
1586 | of.write(str(sailingboat[ip,0]) + ' ' + str(sailingboat[ip,1]) + '\n') |
---|
1587 | |
---|
1588 | of.close() |
---|
1589 | print fname + ": Successfull written '" + fname + "' !!" |
---|
1590 | |
---|
1591 | return sailingboat, sailingboatsecs, dicsailingboat |
---|
1592 | |
---|
1593 | def zisland1(mainpts= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9],\ |
---|
1594 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float), radfrac=3., N=200): |
---|
1595 | """ Function to draw an island from z-axis as the union of a series of points by |
---|
1596 | circular segments |
---|
1597 | mainpts: main points of the island (clockwise ordered, to be joined by |
---|
1598 | circular segments of radii as the radfrac factor of the distance between |
---|
1599 | consecutive points) |
---|
1600 | * default= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9], |
---|
1601 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float) |
---|
1602 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
1603 | draw the circular segment (3., default) |
---|
1604 | N: number of points (200, default) |
---|
1605 | """ |
---|
1606 | fname = 'zisland1' |
---|
1607 | |
---|
1608 | island1 = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1609 | |
---|
1610 | # Coastline |
---|
1611 | island1 = join_circ_sec_rand(mainpts, arc='short', pos='left') |
---|
1612 | |
---|
1613 | islandsecs = ['coastline'] |
---|
1614 | islanddic = {'coastline': [island1, '-', '#161616', 2.]} |
---|
1615 | |
---|
1616 | island1 = ma.masked_equal(island1, gen.fillValueF) |
---|
1617 | |
---|
1618 | return island1, islandsecs, islanddic |
---|
1619 | |
---|
1620 | def buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=300): |
---|
1621 | """ Function to draw a buoy as superposition of prism and section of ball |
---|
1622 | height: height of the prism (5., default) |
---|
1623 | width: width of the prism (10., default) |
---|
1624 | bradii: radii of the ball (1.75, default) |
---|
1625 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
1626 | N: total number of points of the buoy (300, default) |
---|
1627 | """ |
---|
1628 | fname = 'buoy1' |
---|
1629 | |
---|
1630 | buoy = np.zeros((N,2), dtype=np.float) |
---|
1631 | |
---|
1632 | N3 = int(N/3/5) |
---|
1633 | NNp = 0 |
---|
1634 | iip = 0 |
---|
1635 | # left lateral |
---|
1636 | ix = -width/2. |
---|
1637 | Np = N3 |
---|
1638 | iy = 0. |
---|
1639 | dx = 0. |
---|
1640 | dy = height/(Np-1) |
---|
1641 | for ip in range(Np): |
---|
1642 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1643 | NNp = NNp + Np |
---|
1644 | iip = NNp |
---|
1645 | |
---|
1646 | # left upper |
---|
1647 | ix = -width/2. |
---|
1648 | iy = height |
---|
1649 | dx = (width/2.-bradii*bfrac)/(Np-1) |
---|
1650 | dy = 0. |
---|
1651 | for ip in range(Np): |
---|
1652 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1653 | NNp = NNp + Np |
---|
1654 | iip = NNp |
---|
1655 | |
---|
1656 | # ball |
---|
1657 | p1 = np.array([height, -bradii*bfrac]) |
---|
1658 | p2 = np.array([height, bradii*bfrac]) |
---|
1659 | Np = int(2*N/3) |
---|
1660 | buoy[iip:iip+Np,:] = circ_sec(p1, p2, 2.*bradii, 'long', 'left', Np) |
---|
1661 | NNp = NNp + Np |
---|
1662 | iip = NNp |
---|
1663 | |
---|
1664 | # right upper |
---|
1665 | ix = bradii*bfrac |
---|
1666 | iy = height |
---|
1667 | Np = N3 |
---|
1668 | dx = (width/2.-bradii*bfrac)/(Np-1) |
---|
1669 | dy = 0. |
---|
1670 | for ip in range(Np): |
---|
1671 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1672 | NNp = NNp + Np |
---|
1673 | iip = NNp |
---|
1674 | |
---|
1675 | # right lateral |
---|
1676 | ix = width/2. |
---|
1677 | iy = height |
---|
1678 | dx = 0. |
---|
1679 | dy = -height/(Np-1) |
---|
1680 | for ip in range(Np): |
---|
1681 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1682 | NNp = NNp + Np |
---|
1683 | iip = NNp |
---|
1684 | |
---|
1685 | # Base |
---|
1686 | ix = width/2. |
---|
1687 | iy = 0. |
---|
1688 | Np = N - int(2*N/3) - 4*N3 |
---|
1689 | dx = -width/(Np-1) |
---|
1690 | dy = 0. |
---|
1691 | for ip in range(Np): |
---|
1692 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
1693 | NNp = NNp + Np |
---|
1694 | iip = NNp |
---|
1695 | |
---|
1696 | buoysecs = ['base'] |
---|
1697 | buoydic = {'base': [buoy, '-', 'k', 1.5]} |
---|
1698 | |
---|
1699 | return buoy, buoysecs, buoydic |
---|
1700 | |
---|
1701 | def band_lighthouse(height=10., width=2., hlight=3., bands=3, N=300): |
---|
1702 | """ Function to plot a lighthouse with spiral bands |
---|
1703 | height: height of the tower (10., default) |
---|
1704 | width: width of the tower (2., default) |
---|
1705 | hlight: height of the light (3., default) |
---|
1706 | bands: number of spiral bands (3, default) |
---|
1707 | N: number of points (300, default) |
---|
1708 | """ |
---|
1709 | fname = 'band_lighthouse' |
---|
1710 | |
---|
1711 | lighthouse = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1712 | lighthousesecs = [] |
---|
1713 | lighthousedic = {} |
---|
1714 | |
---|
1715 | # base Tower |
---|
1716 | Nsec = int(0.30*N/7) |
---|
1717 | p1=np.array([0., width/2.]) |
---|
1718 | p2=np.array([0., -width/2.]) |
---|
1719 | iip = 0 |
---|
1720 | lighthouse[0:Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1721 | iip = iip + Nsec |
---|
1722 | |
---|
1723 | # left side |
---|
1724 | ix=-width/2. |
---|
1725 | iy=0. |
---|
1726 | dx = 0. |
---|
1727 | dy = height/(Nsec-1) |
---|
1728 | for ip in range(Nsec): |
---|
1729 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1730 | iip = iip + Nsec |
---|
1731 | |
---|
1732 | # Top Tower |
---|
1733 | p1=np.array([height, width/2.]) |
---|
1734 | p2=np.array([height, -width/2.]) |
---|
1735 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1736 | iip = iip + Nsec |
---|
1737 | |
---|
1738 | # right side |
---|
1739 | ix=width/2. |
---|
1740 | iy=height |
---|
1741 | dx = 0. |
---|
1742 | dy = -height/(Nsec-1) |
---|
1743 | for ip in range(Nsec): |
---|
1744 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1745 | iip = iip + Nsec + 1 |
---|
1746 | |
---|
1747 | Ntower = iip-1 |
---|
1748 | lighthousesecs.append('tower') |
---|
1749 | lighthousedic['tower'] = [lighthouse[0:iip-1], '-', 'k', 1.5] |
---|
1750 | |
---|
1751 | # Left light |
---|
1752 | p1 = np.array([height, -width*0.8/2.]) |
---|
1753 | p2 = np.array([height+hlight, -width*0.8/2.]) |
---|
1754 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
1755 | iip = iip + Nsec |
---|
1756 | |
---|
1757 | # Top Light |
---|
1758 | p1=np.array([height+hlight, width*0.8/2.]) |
---|
1759 | p2=np.array([height+hlight, -width*0.8/2.]) |
---|
1760 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1761 | iip = iip + Nsec + 1 |
---|
1762 | |
---|
1763 | # Right light |
---|
1764 | p1 = np.array([height+hlight, width*0.8/2.]) |
---|
1765 | p2 = np.array([height, width*0.8/2.]) |
---|
1766 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
1767 | iip = iip + Nsec |
---|
1768 | |
---|
1769 | # Base Light |
---|
1770 | p1=np.array([height, width*0.8/2.]) |
---|
1771 | p2=np.array([height, -width*0.8/2.]) |
---|
1772 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1773 | iip = iip + Nsec + 1 |
---|
1774 | lighthousesecs.append('light') |
---|
1775 | lighthousedic['light'] = [lighthouse[Ntower+1:iip-1], '-', '#EEEE00', 1.5] |
---|
1776 | |
---|
1777 | # Spiral bands |
---|
1778 | hb = height/(2.*bands) |
---|
1779 | Nsec2 = (N - Nsec*8 - 3)/bands |
---|
1780 | for ib in range(bands-1): |
---|
1781 | iband = iip |
---|
1782 | Nsec = Nsec2/4 |
---|
1783 | bandS = 'band' + str(ib).zfill(2) |
---|
1784 | # hband |
---|
1785 | ix = -width/2. |
---|
1786 | iy = hb*ib*2 |
---|
1787 | dx = 0. |
---|
1788 | dy = hb/(Nsec-1) |
---|
1789 | for ip in range(Nsec): |
---|
1790 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1791 | iip = iip + Nsec |
---|
1792 | # uband |
---|
1793 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
1794 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
1795 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
1796 | iip = iip + Nsec |
---|
1797 | # dband |
---|
1798 | ix = width/2. |
---|
1799 | iy = hb*(ib*2+2) |
---|
1800 | dx = 0. |
---|
1801 | dy = -hb/(Nsec-1) |
---|
1802 | for ip in range(Nsec): |
---|
1803 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1804 | iip = iip + Nsec |
---|
1805 | # dband |
---|
1806 | p1 = np.array([hb*(ib*2+1), width/2.]) |
---|
1807 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
1808 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1809 | iip = iip + Nsec + 1 |
---|
1810 | lighthousesecs.append(bandS) |
---|
1811 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
1812 | |
---|
1813 | ib = bands-1 |
---|
1814 | Nsec3 = (N - iip - 1) |
---|
1815 | Nsec = int(Nsec3/4) |
---|
1816 | bandS = 'band' + str(ib).zfill(2) |
---|
1817 | # hband |
---|
1818 | iband = iip |
---|
1819 | ix = -width/2. |
---|
1820 | iy = hb*ib*2 |
---|
1821 | dx = 0. |
---|
1822 | dy = hb/(Nsec-1) |
---|
1823 | for ip in range(Nsec): |
---|
1824 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1825 | iip = iip + Nsec |
---|
1826 | # uband |
---|
1827 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
1828 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
1829 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
1830 | iip = iip + Nsec |
---|
1831 | # dband |
---|
1832 | ix = width/2. |
---|
1833 | iy = hb*(2+ib*2) |
---|
1834 | dx = 0. |
---|
1835 | dy = -hb/(Nsec-1) |
---|
1836 | for ip in range(Nsec): |
---|
1837 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
1838 | iip = iip + Nsec |
---|
1839 | # dband |
---|
1840 | Nsec = N - iip |
---|
1841 | p1 = np.array([hb*(1+ib*2), width/2.]) |
---|
1842 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
1843 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
1844 | lighthousesecs.append(bandS) |
---|
1845 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
1846 | |
---|
1847 | lighthouse = ma.masked_equal(lighthouse, gen.fillValueF) |
---|
1848 | |
---|
1849 | return lighthouse, lighthousesecs, lighthousedic |
---|
1850 | |
---|
1851 | def north_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
1852 | """ Function to draw a North danger buoy using buoy1 |
---|
1853 | height: height of the prism (5., default) |
---|
1854 | width: width of the prism (10., default) |
---|
1855 | bradii: radii of the ball (1.75, default) |
---|
1856 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
1857 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
1858 | (0.7, default) |
---|
1859 | N: total number of points of the buoy (300, default) |
---|
1860 | """ |
---|
1861 | fname = 'north_buoy1' |
---|
1862 | |
---|
1863 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1864 | |
---|
1865 | # buoy |
---|
1866 | N2 = int(N/2) |
---|
1867 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
1868 | bfrac=0.8, N=N2) |
---|
1869 | buoy[0:N2,:] = buoy1v |
---|
1870 | |
---|
1871 | # signs |
---|
1872 | N3 = N - N2 - 2 |
---|
1873 | |
---|
1874 | bottsigns = 2.*bradii+height |
---|
1875 | lsign = height*hsigns |
---|
1876 | # up |
---|
1877 | N32 = int(N3/2) |
---|
1878 | triu = p_angle_triangle(N=N32) |
---|
1879 | trib = triu*lsign + [0.,-lsign/2.] |
---|
1880 | |
---|
1881 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
1882 | |
---|
1883 | # up |
---|
1884 | N323 = N - N32 - N2 - 2 |
---|
1885 | trid = p_angle_triangle(N=N323) |
---|
1886 | trib = trid*lsign + [0.,-lsign/2.] |
---|
1887 | buoy[N2+N32+2:N,:] = trib + [bottsigns+1.1*lsign,0.] |
---|
1888 | |
---|
1889 | # painting it |
---|
1890 | Height = np.max(buoy1v[:,0]) |
---|
1891 | |
---|
1892 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='bottom') |
---|
1893 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
1894 | |
---|
1895 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
1896 | |
---|
1897 | buoysecs = ['buoy', 'sign1', 'sign2', 'halfk', 'halfy'] |
---|
1898 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
1899 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
1900 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', 'k', 1.], \ |
---|
1901 | 'half2': [halfdown, '-', '#FFFF00', 1.]} |
---|
1902 | |
---|
1903 | return buoy, buoysecs, buoydic |
---|
1904 | |
---|
1905 | def east_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
1906 | """ Function to draw a East danger buoy using buoy1 |
---|
1907 | height: height of the prism (5., default) |
---|
1908 | width: width of the prism (10., default) |
---|
1909 | bradii: radii of the ball (1.75, default) |
---|
1910 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
1911 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
1912 | (0.7, default) |
---|
1913 | N: total number of points of the buoy (300, default) |
---|
1914 | """ |
---|
1915 | fname = 'east_buoy1' |
---|
1916 | |
---|
1917 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1918 | |
---|
1919 | # buoy |
---|
1920 | N2 = int(N/2) |
---|
1921 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
1922 | buoy[0:N2,:] = buoy1v |
---|
1923 | |
---|
1924 | # signs |
---|
1925 | N3 = N - N2 - 2 |
---|
1926 | |
---|
1927 | bottsigns = 2.*bradii+height |
---|
1928 | lsign = height*hsigns |
---|
1929 | # up |
---|
1930 | N32 = int(N3/2) |
---|
1931 | triu = p_angle_triangle(N=N32) |
---|
1932 | trib = triu*lsign + [0.,-lsign/2.] |
---|
1933 | |
---|
1934 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
1935 | |
---|
1936 | # down |
---|
1937 | N323 = N - N32 - N2 - 2 |
---|
1938 | |
---|
1939 | trid = p_angle_triangle(N=N323) |
---|
1940 | trid = mirror_polygon(trid, 'x') |
---|
1941 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
1942 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
1943 | |
---|
1944 | # painting it |
---|
1945 | Height = np.max(buoy1v[:,0]) |
---|
1946 | |
---|
1947 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='bottom') |
---|
1948 | Ncut, halfbtw = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
1949 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
1950 | |
---|
1951 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
1952 | |
---|
1953 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
1954 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
1955 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
1956 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], \ |
---|
1957 | 'third1': [halfup, '-', 'k', 1.], 'third2': [halfbtw, '-', '#FFFF00', 1.], \ |
---|
1958 | 'third3': [halfdown, '-', 'k', 1.]} |
---|
1959 | |
---|
1960 | return buoy, buoysecs, buoydic |
---|
1961 | |
---|
1962 | def south_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
1963 | """ Function to draw a South danger buoy using buoy1 |
---|
1964 | height: height of the prism (5., default) |
---|
1965 | width: width of the prism (10., default) |
---|
1966 | bradii: radii of the ball (1.75, default) |
---|
1967 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
1968 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
1969 | (0.7, default) |
---|
1970 | N: total number of points of the buoy (300, default) |
---|
1971 | """ |
---|
1972 | fname = 'south_buoy1' |
---|
1973 | |
---|
1974 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
1975 | |
---|
1976 | # buoy |
---|
1977 | N2 = int(N/2) |
---|
1978 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
1979 | buoy[0:N2,:] = buoy1v |
---|
1980 | |
---|
1981 | # signs |
---|
1982 | N3 = N - N2 - 2 |
---|
1983 | |
---|
1984 | bottsigns = 2.*bradii+height |
---|
1985 | lsign = height*hsigns |
---|
1986 | # up |
---|
1987 | N32 = int(N3/2) |
---|
1988 | trid = p_angle_triangle(N=N32) |
---|
1989 | trid = mirror_polygon(trid, 'x') |
---|
1990 | trib = trid*lsign + [0.,-lsign/2.] |
---|
1991 | |
---|
1992 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.9*lsign,0.] |
---|
1993 | |
---|
1994 | # down |
---|
1995 | N323 = N - N32 - N2 - 2 |
---|
1996 | trid = p_angle_triangle(N=N323) |
---|
1997 | trid = mirror_polygon(trid, 'x') |
---|
1998 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
1999 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
2000 | |
---|
2001 | # painting it |
---|
2002 | Height = np.max(buoy1v[:,0]) |
---|
2003 | |
---|
2004 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='bottom') |
---|
2005 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
2006 | |
---|
2007 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2008 | |
---|
2009 | buoysecs = ['buoy', 'sign1', 'sign2', 'half1', 'half2'] |
---|
2010 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2011 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2012 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', '#FFFF00', 1.], \ |
---|
2013 | 'half2': [halfdown, '-', 'k', 1.]} |
---|
2014 | |
---|
2015 | return buoy, buoysecs, buoydic |
---|
2016 | |
---|
2017 | def west_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
2018 | """ Function to draw a West danger buoy using buoy1 |
---|
2019 | height: height of the prism (5., default) |
---|
2020 | width: width of the prism (10., default) |
---|
2021 | bradii: radii of the ball (1.75, default) |
---|
2022 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2023 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2024 | (0.7, default) |
---|
2025 | N: total number of points of the buoy (300, default) |
---|
2026 | """ |
---|
2027 | fname = 'east_buoy1' |
---|
2028 | |
---|
2029 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2030 | |
---|
2031 | # buoy |
---|
2032 | N2 = int(N/2) |
---|
2033 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
2034 | buoy[0:N2,:] = buoy1v |
---|
2035 | |
---|
2036 | # signs |
---|
2037 | N3 = N - N2 - 2 |
---|
2038 | |
---|
2039 | bottsigns = 2.*bradii+height |
---|
2040 | lsign = height*hsigns |
---|
2041 | |
---|
2042 | # down |
---|
2043 | N32 = int(N3/2) |
---|
2044 | trid = p_angle_triangle(N=N32) |
---|
2045 | trid = mirror_polygon(trid, 'x') |
---|
2046 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
2047 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+1.9*lsign,0.] |
---|
2048 | |
---|
2049 | # up |
---|
2050 | N323 = N - N32 - N2 - 2 |
---|
2051 | triu = p_angle_triangle(N=N323) |
---|
2052 | trib = triu*lsign + [0.,-lsign/2.] |
---|
2053 | |
---|
2054 | buoy[N2+N323+2:N,:] = trib + [bottsigns+1.*lsign,0.] |
---|
2055 | |
---|
2056 | # painting it |
---|
2057 | Height = np.max(buoy1v[:,0]) |
---|
2058 | |
---|
2059 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='bottom') |
---|
2060 | Ncut, halfbtw1 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
2061 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
2062 | |
---|
2063 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2064 | |
---|
2065 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
2066 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2067 | 'third1': [halfdown, '-', '#FFFF00', 1.], 'third2': [halfbtw1, '-', 'k', 1.], \ |
---|
2068 | 'third3': [halfup, '-', '#FFFF00', 1.], \ |
---|
2069 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
2070 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5]} |
---|
2071 | |
---|
2072 | return buoy, buoysecs, buoydic |
---|
2073 | |
---|
2074 | def safewater_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
2075 | """ Function to draw a safe water mark buoy using buoy1 |
---|
2076 | height: height of the prism (5., default) |
---|
2077 | width: width of the prism (10., default) |
---|
2078 | bradii: radii of the ball (1.75, default) |
---|
2079 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2080 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2081 | (0.3, default) |
---|
2082 | N: total number of points of the buoy (300, default) |
---|
2083 | """ |
---|
2084 | fname = 'safewater_buoy1' |
---|
2085 | |
---|
2086 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2087 | |
---|
2088 | # buoy |
---|
2089 | N2 = int(N/2) |
---|
2090 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2091 | bfrac=0.8, N=N2) |
---|
2092 | buoy[0:N2,:] = buoy1v |
---|
2093 | |
---|
2094 | # signs |
---|
2095 | N3 = N - N2 - 1 |
---|
2096 | lsign = height*hsigns |
---|
2097 | |
---|
2098 | Height = np.max(buoy1v[:,0]) |
---|
2099 | sign = p_circle(lsign, N3) |
---|
2100 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
2101 | |
---|
2102 | # painting it |
---|
2103 | ix = -width/2. |
---|
2104 | Ncut, quarter1 = cut_xpolygon(buoy1v, xval=ix+width/4., keep='left') |
---|
2105 | Ncut, quarter2 = cut_between_xpolygon(buoy1v, xval1=ix+width/4., xval2=ix+width/2.) |
---|
2106 | Ncut, quarter3 = cut_between_xpolygon(buoy1v, xval1=ix+width/2., xval2=ix+3.*width/4.) |
---|
2107 | Ncut, quarter4 = cut_xpolygon(buoy1v, xval=ix+3.*width/4., keep='right') |
---|
2108 | |
---|
2109 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2110 | |
---|
2111 | buoysecs = ['buoy', 'sign', 'quarter1', 'quarter2', 'quarter3', 'quarter4'] |
---|
2112 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
2113 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'quarter1': [quarter1,'-','r',1.], \ |
---|
2114 | 'quarter2': [quarter2,'-','#FFFFFF',1.], 'quarter3': [quarter3,'-','r',1.], \ |
---|
2115 | 'quarter4': [quarter4,'-','#FFFFFF',1.]} |
---|
2116 | |
---|
2117 | return buoy, buoysecs, buoydic |
---|
2118 | |
---|
2119 | def red_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
2120 | """ Function to draw a red mark buoy using buoy1 |
---|
2121 | height: height of the prism (5., default) |
---|
2122 | width: width of the prism (10., default) |
---|
2123 | bradii: radii of the ball (1.75, default) |
---|
2124 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
2125 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
2126 | (0.3, default) |
---|
2127 | N: total number of points of the buoy (300, default) |
---|
2128 | """ |
---|
2129 | fname = 'red_buoy1' |
---|
2130 | |
---|
2131 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2132 | |
---|
2133 | # buoy |
---|
2134 | N2 = int(N/2) |
---|
2135 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
2136 | bfrac=0.8, N=N2) |
---|
2137 | buoy[0:N2,:] = buoy1v |
---|
2138 | |
---|
2139 | # signs |
---|
2140 | N3 = N - N2 - 1 |
---|
2141 | lsign = height*hsigns*2. |
---|
2142 | |
---|
2143 | Height = np.max(buoy1v[:,0]) |
---|
2144 | triu = p_angle_triangle(N=N3) |
---|
2145 | sign = triu*lsign |
---|
2146 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
2147 | |
---|
2148 | # painting it |
---|
2149 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
2150 | |
---|
2151 | buoysecs = ['buoy', 'sign', 'quarter1', 'quarter2', 'quarter3', 'quarter4'] |
---|
2152 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
2153 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5]} |
---|
2154 | |
---|
2155 | return buoy, buoysecs, buoydic |
---|
2156 | |
---|
2157 | ####### ####### ##### #### ### ## # |
---|
2158 | # Plotting |
---|
2159 | |
---|
2160 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
2161 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
2162 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
2163 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
2164 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
2165 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
2166 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
2167 | """ Function to plot an sphere and determine which standard lines will be also |
---|
2168 | drawn |
---|
2169 | iazm: azimut of the camera form the sphere |
---|
2170 | iele: elevation of the camera form the sphere |
---|
2171 | dist: distance of the camera form the sphere |
---|
2172 | Npts: Resolution for the sphere |
---|
2173 | radii: radius of the sphere |
---|
2174 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
2175 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
2176 | drwxline: whether x-axis line should be drawn |
---|
2177 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
2178 | drwyline: whether y-axis line should be drawn |
---|
2179 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
2180 | drwzline: whether z-axis line should be drawn |
---|
2181 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
2182 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
2183 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
2184 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
2185 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
2186 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
2187 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
2188 | """ |
---|
2189 | fname = 'plot_sphere' |
---|
2190 | |
---|
2191 | iazmrad = iazm*np.pi/180. |
---|
2192 | ielerad = iele*np.pi/180. |
---|
2193 | |
---|
2194 | # 3D surface Sphere |
---|
2195 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
2196 | |
---|
2197 | # greenwhich |
---|
2198 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
2199 | ia=np.pi-ielerad |
---|
2200 | else: |
---|
2201 | ia=0.-ielerad |
---|
2202 | ea=ia+np.pi |
---|
2203 | da = (ea-ia)/(Npts-1) |
---|
2204 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2205 | alpha = np.zeros((Npts), dtype=np.float) |
---|
2206 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
2207 | ia=ea+0. |
---|
2208 | ea=ia+np.pi |
---|
2209 | da = (ea-ia)/(Npts-1) |
---|
2210 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2211 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
2212 | |
---|
2213 | # Equator |
---|
2214 | ia=np.pi-iazmrad/2. |
---|
2215 | ea=ia+np.pi |
---|
2216 | da = (ea-ia)/(Npts-1) |
---|
2217 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2218 | beta = np.zeros((Npts), dtype=np.float) |
---|
2219 | equatorc = spheric_line(radii,alpha,beta) |
---|
2220 | ia=ea+0. |
---|
2221 | ea=ia+np.pi |
---|
2222 | da = (ea-ia)/(Npts-1) |
---|
2223 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2224 | equatord = spheric_line(radii,alpha,beta) |
---|
2225 | |
---|
2226 | # 90 line |
---|
2227 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
2228 | ia=3.*np.pi/2. + ielerad |
---|
2229 | else: |
---|
2230 | ia=np.pi/2. - ielerad |
---|
2231 | if ielerad < 0.: |
---|
2232 | ia = ia + np.pi |
---|
2233 | ea=ia+np.pi |
---|
2234 | da = (ea-ia)/(Npts-1) |
---|
2235 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2236 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
2237 | xclinec = spheric_line(radii,alpha,beta) |
---|
2238 | ia=ea+0. |
---|
2239 | ea=ia+np.pi |
---|
2240 | da = (ea-ia)/(Npts-1) |
---|
2241 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2242 | xclined = spheric_line(radii,alpha,beta) |
---|
2243 | |
---|
2244 | # x line |
---|
2245 | xline = np.zeros((2,3), dtype=np.float) |
---|
2246 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
2247 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
2248 | |
---|
2249 | # y line |
---|
2250 | yline = np.zeros((2,3), dtype=np.float) |
---|
2251 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
2252 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
2253 | |
---|
2254 | # z line |
---|
2255 | zline = np.zeros((2,3), dtype=np.float) |
---|
2256 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
2257 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
2258 | |
---|
2259 | fig = plt.figure() |
---|
2260 | ax = fig.gca(projection='3d') |
---|
2261 | |
---|
2262 | # Sphere surface |
---|
2263 | if drwsfc[0]: |
---|
2264 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
2265 | color=colsfc[0]) |
---|
2266 | if drwsfc[1]: |
---|
2267 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
2268 | color=colsfc[1]) |
---|
2269 | |
---|
2270 | # greenwhich |
---|
2271 | linev = linegw[0] |
---|
2272 | if drwgreeenwhich[0]: |
---|
2273 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
2274 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
2275 | linev = linegw[1] |
---|
2276 | if drwgreeenwhich[1]: |
---|
2277 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
2278 | color=linev[1], linewidth=linev[2]) |
---|
2279 | |
---|
2280 | # Equator |
---|
2281 | linev = lineeq[0] |
---|
2282 | if drwequator[0]: |
---|
2283 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
2284 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
2285 | linev = lineeq[1] |
---|
2286 | if drwequator[1]: |
---|
2287 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
2288 | color=linev[1], linewidth=linev[2]) |
---|
2289 | |
---|
2290 | # 90line |
---|
2291 | linev = linexc[0] |
---|
2292 | if drwxcline[0]: |
---|
2293 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
2294 | linewidth=linev[2], label='90-line') |
---|
2295 | linev = linexc[1] |
---|
2296 | if drwxcline[1]: |
---|
2297 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
2298 | linewidth=linev[2]) |
---|
2299 | |
---|
2300 | # x line |
---|
2301 | linev = linex |
---|
2302 | if drwxline: |
---|
2303 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
2304 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
2305 | |
---|
2306 | # y line |
---|
2307 | linev = liney |
---|
2308 | if drwyline: |
---|
2309 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
2310 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
2311 | |
---|
2312 | # z line |
---|
2313 | linev = linez |
---|
2314 | if drwzline: |
---|
2315 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
2316 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
2317 | |
---|
2318 | plt.legend() |
---|
2319 | |
---|
2320 | return fig, ax |
---|
2321 | |
---|
2322 | def paint_filled(objdic, fillsecs): |
---|
2323 | """ Function to draw an object filling given sections |
---|
2324 | objdic: dictionary of the object |
---|
2325 | filesecs: list of sections to be filled |
---|
2326 | """ |
---|
2327 | fname = 'paint_filled' |
---|
2328 | |
---|
2329 | Nsecs = len(fillsecs) |
---|
2330 | |
---|
2331 | for secn in fillsecs: |
---|
2332 | secvals=objdic[secn] |
---|
2333 | pvals = secvals[0] |
---|
2334 | plt.fill(pvals[:,1], pvals[:,0], color=secvals[2]) |
---|
2335 | |
---|
2336 | return |
---|
2337 | |
---|