source: lmdz_wrf/trunk/tools/geometry_tools.py @ 2508

Last change on this file since 2508 was 2508, checked in by lfita, 6 years ago

Adding:

  • `buoy1': Function to draw a buoy as superposition of prism and section of ball
  • 'arc' into `circ_sec' in order to determine which arc should be taken, the 'short' or the 'long' ('short', default)
File size: 43.1 KB
Line 
1# Python tools to manage netCDF files.
2# L. Fita, CIMA. Mrch 2019
3# More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot
4#
5# pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY.
6# This work is licendes under a Creative Commons
7#   Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0)
8#
9## Script for geometry calculations and operations as well as definition of different
10###    standard objects and shapes
11
12import numpy as np
13import matplotlib as mpl
14from mpl_toolkits.mplot3d import Axes3D
15import matplotlib.pyplot as plt
16import os
17import generic_tools as gen
18
19errormsg = 'ERROR -- error -- ERROR -- error'
20infmsg = 'INFORMATION -- information -- INFORMATION -- information'
21
22####### Contents:
23# deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad]
24# dist_points: Function to provide the distance between two points
25# join_circ_sec: Function to join aa series of points by circular segments
26# join_circ_sec_rand: Function to join aa series of points by circular segments with
27#   random perturbations
28# max_coords_poly: Function to provide the extremes of the coordinates of a polygon
29# mirror_polygon: Function to reflex a polygon for a given axis
30# position_sphere: Function to tranform fom a point in lon, lat deg coordinates to
31#   cartesian coordinates over an sphere
32# read_join_poly: Function to read an ASCII file with the combination of polygons
33# rotate_2D: Function to rotate a vector by a certain angle in the plain
34# rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon
35# rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a
36#   certain angle in the plain
37# rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y
38#   coordinates by a certain angle in the plain
39# spheric_line: Function to transform a series of locations in lon, lat coordinates
40#   to x,y,z over an 3D spaceFunction to provide coordinates of a line  on a 3D space
41# write_join_poly: Function to write an ASCII file with the combination of polygons
42
43## Shapes/objects
44# buoy1: Function to draw a buoy as superposition of prism and section of ball
45# circ_sec: Function union of point A and B by a section of a circle
46# ellipse_polar: Function to determine an ellipse from its center and polar coordinates
47# p_doubleArrow: Function to provide an arrow with double lines
48# p_circle: Function to get a polygon of a circle
49# p_reg_polygon: Function to provide a regular polygon of Nv vertices
50# p_reg_star: Function to provide a regular star of Nv vertices
51# p_sinusiode: Function to get coordinates of a sinusoidal curve
52# p_square: Function to get a polygon square
53# p_spiral: Function to provide a polygon of an Archimedean spiral
54# p_triangle: Function to provide the polygon of a triangle from its 3 vertices
55# surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates
56# z_boat: Function to define an schematic boat from the z-plane
57# zsailing_boat: Function to define an schematic sailing boat from the z-plane with sails
58# zisland1: Function to draw an island from z-axis as the union of a series of points by
59#   circular segments
60## Plotting
61# plot_sphere: Function to plot an sphere and determine which standard lines will be
62#   also drawn
63
64def deg_deci(angle):
65    """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad]
66      angle: list of [deg, minute, sec] to pass
67    >>> deg_deci([41., 58., 34.])
68    0.732621346072
69    """
70    fname = 'deg_deci'
71
72    deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600.
73
74    if angle[0] < 0.: deg = -deg*np.pi/180.
75    else: deg = deg*np.pi/180.
76
77    return deg
78
79def position_sphere(radii, alpha, beta):
80    """ Function to tranform fom a point in lon, lat deg coordinates to cartesian 
81          coordinates over an sphere
82      radii: radii of the sphere
83      alpha: longitude of the point
84      beta: latitude of the point
85    >>> position_sphere(10., 30., 45.)
86    (0.81031678432964027, -5.1903473778327376, 8.5090352453411846
87    """
88    fname = 'position_sphere'
89
90    xpt = radii*np.cos(beta)*np.cos(alpha)
91    ypt = radii*np.cos(beta)*np.sin(alpha)
92    zpt = radii*np.sin(beta)
93
94    return xpt, ypt, zpt
95
96def spheric_line(radii,lon,lat):
97    """ Function to transform a series of locations in lon, lat coordinates to x,y,z
98          over an 3D space
99      radii: radius of the sphere
100      lon: array of angles along longitudes
101      lat: array of angles along latitudes
102    """
103    fname = 'spheric_line'
104
105    Lint = lon.shape[0]
106    coords = np.zeros((Lint,3), dtype=np.float)
107
108    for iv in range(Lint):
109        coords[iv,:] = position_sphere(radii, lon[iv], lat[iv])
110
111    return coords
112
113def rotate_2D(vector, angle):
114    """ Function to rotate a vector by a certain angle in the plain
115      vector= vector to rotate [y, x]
116      angle= angle to rotate [rad]
117    >>> rotate_2D(np.array([1.,0.]), np.pi/4.)
118    [ 0.70710678 -0.70710678]
119    """
120    fname = 'rotate_2D'
121
122    rotmat = np.zeros((2,2), dtype=np.float)
123
124    rotmat[0,0] = np.cos(angle)
125    rotmat[0,1] = -np.sin(angle)
126    rotmat[1,0] = np.sin(angle)
127    rotmat[1,1] = np.cos(angle)
128
129    rotvector = np.zeros((2), dtype=np.float)
130
131    vecv = np.zeros((2), dtype=np.float)
132
133    # Unifying vector
134    modvec = vector[0]**2+vector[1]**2
135    if modvec != 0: 
136        vecv[0] = vector[1]/modvec
137        vecv[1] = vector[0]/modvec
138
139        rotvec = np.matmul(rotmat, vecv)
140        rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec)
141
142        rotvector[0] = rotvec[1]*modvec
143        rotvector[1] = rotvec[0]*modvec
144
145    return rotvector
146
147def rotate_polygon_2D(vectors, angle):
148    """ Function to rotate 2D plain the vertices of a polygon
149      line= matrix of vectors to rotate
150      angle= angle to rotate [rad]
151    >>> square = np.zeros((4,2), dtype=np.float)
152    >>> square[0,:] = [-0.5,-0.5]
153    >>> square[1,:] = [0.5,-0.5]
154    >>> square[2,:] = [0.5,0.5]
155    >>> square[3,:] = [-0.5,0.5]
156    >>> rotate_polygon_2D(square, np.pi/4.)
157    [[-0.70710678  0.        ]
158     [ 0.         -0.70710678]
159     [ 0.70710678  0.        ]
160     [ 0.          0.70710678]]
161    """
162    fname = 'rotate_polygon_2D'
163
164    rotvecs = np.zeros(vectors.shape, dtype=np.float)
165
166    Nvecs = vectors.shape[0]
167    for iv in range(Nvecs):
168        rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle)
169
170    return rotvecs
171
172def rotate_line2D(line, angle):
173    """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain
174          angle in the plain
175      line= line to rotate as couple of points [[y0,x0], [y1,x1]]
176      angle= angle to rotate [rad]
177    >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.)
178    [[ 0.          0.        ]
179     [0.70710678  -0.70710678]]
180    """
181    fname = 'rotate_2D'
182
183    rotline = np.zeros((2,2), dtype=np.float)
184    rotline[0,:] = rotate_2D(line[0,:], angle)
185    rotline[1,:] = rotate_2D(line[1,:], angle)
186
187    return rotline
188
189def rotate_lines2D(lines, angle):
190    """ Function to rotate multiple lines given by mulitple pars of x,y coordinates 
191          by a certain angle in the plain
192      line= matrix of N couples of points [N, [y0,x0], [y1,x1]]
193      angle= angle to rotate [rad]
194    >>> square = np.zeros((4,2,2), dtype=np.float)
195    >>> square[0,0,:] = [-0.5,-0.5]
196    >>> square[0,1,:] = [0.5,-0.5]
197    >>> square[1,0,:] = [0.5,-0.5]
198    >>> square[1,1,:] = [0.5,0.5]
199    >>> square[2,0,:] = [0.5,0.5]
200    >>> square[2,1,:] = [-0.5,0.5]
201    >>> square[3,0,:] = [-0.5,0.5]
202    >>> square[3,1,:] = [-0.5,-0.5]
203    >>> rotate_lines2D(square, np.pi/4.)
204    [[[-0.70710678  0.        ]
205      [ 0.         -0.70710678]]
206
207     [[ 0.         -0.70710678]
208      [ 0.70710678  0.        ]]
209
210     [[ 0.70710678  0.        ]
211      [ 0.          0.70710678]]
212
213     [[ 0.          0.70710678]
214      [-0.70710678  0.        ]]]
215    """
216    fname = 'rotate_lines2D'
217
218    rotlines = np.zeros(lines.shape, dtype=np.float)
219
220    Nlines = lines.shape[0]
221    for il in range(Nlines):
222        line = np.zeros((2,2), dtype=np.float)
223        line[0,:] = lines[il,0,:]
224        line[1,:] = lines[il,1,:]
225
226        rotlines[il,:,:] = rotate_line2D(line, angle)
227
228    return rotlines
229
230def dist_points(ptA, ptB):
231    """ Function to provide the distance between two points
232      ptA: coordinates of the point A [yA, xA]
233      ptB: coordinates of the point B [yB, xB]
234    >>> dist_points([1.,1.], [-1.,-1.])
235    2.82842712475
236    """
237    fname = 'dist_points'
238
239    dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2)
240
241    return dist
242
243def max_coords_poly(polygon):
244    """ Function to provide the extremes of the coordinates of a polygon
245      polygon: coordinates [Nvertexs, 2] of a polygon
246    >>> square = np.zeros((4,2), dtype=np.float)
247    >>> square[0,:] = [-0.5,-0.5]
248    >>> square[1,:] = [0.5,-0.5]
249    >>> square[2,:] = [0.5,0.5]
250    >>> square[3,:] = [-0.5,0.5]
251    >>> max_coords_poly(square)
252    [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5
253    """
254    fname = 'max_coords_poly'
255
256    # x-coordinate min/max
257    nx = np.min(polygon[:,1])
258    xx = np.max(polygon[:,1])
259
260    # y-coordinate min/max
261    ny = np.min(polygon[:,0])
262    xy = np.max(polygon[:,0])
263
264    # x/y-coordinate maximum of absolute values
265    axx = np.max(np.abs(polygon[:,1]))
266    ayx = np.max(np.abs(polygon[:,0]))
267
268    # absolute maximum
269    xyx = np.max([axx, ayx])
270
271    return [nx, xx], [ny, xy], [ayx, axx], xyx
272
273def mirror_polygon(polygon,axis):
274    """ Function to reflex a polygon for a given axis
275      polygon: polygon to mirror
276      axis: axis at which mirror is located ('x' or 'y')
277    """
278    fname = 'mirror_polygon'
279
280    reflex = np.zeros(polygon.shape, dtype=np.float)
281
282    N = polygon.shape[0]
283    if axis == 'x':
284        for iv in range(N):
285            reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]]
286    elif axis == 'y':
287        for iv in range(N):
288            reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]]
289
290    return reflex
291
292def join_circ_sec(points, radfrac=3., N=200):
293    """ Function to join aa series of points by circular segments
294      points: main points of the island (clockwise ordered, to be joined by circular
295        segments of radii as the radfrac factor of the distance between
296        consecutive points)
297      radfrac: multiplicative factor of the distance between consecutive points to
298        draw the circular segment (3., default)
299      N: number of points (200, default)
300    """
301    fname = 'join_circ_sec'
302
303    jcirc_sec = np.ones((N,2), dtype=np.float)
304
305    # main points
306    lpoints = list(points)
307    Npts = len(lpoints)
308    Np = int(N/(Npts+1))
309    for ip in range(Npts-1):
310        p1 = lpoints[ip]
311        p2 = lpoints[ip+1]
312        dps = dist_points(p1, p2)
313        jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np)
314
315    Np2 = N - (Npts-1)*Np
316    p1 = lpoints[Npts-1]
317    p2 = lpoints[0]
318    dps = dist_points(p1, p2)
319    jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2)
320
321    return jcirc_sec
322
323def join_circ_sec_rand(points, radfrac=3., Lrand=0.1, N=200):
324    """ Function to join aa series of points by circular segments with random
325        perturbations
326      points: main points of the island (clockwise ordered, to be joined by circular
327        segments of radii as the radfrac factor of the distance between
328        consecutive points)
329      radfrac: multiplicative factor of the distance between consecutive points to
330        draw the circular segment (3., default)
331      Lrand: maximum length of the random perturbation to be added perpendicularly to
332        the direction of the union line between points (0.1, default)
333      N: number of points (200, default)
334    """
335    import random
336    fname = 'join_circ_sec_rand'
337
338    jcirc_sec = np.ones((N,2), dtype=np.float)
339
340    # main points
341    lpoints = list(points)
342    Npts = len(lpoints)
343    Np = int(N/(Npts+1))
344    for ip in range(Npts-1):
345        p1 = lpoints[ip]
346        p2 = lpoints[ip+1]
347        dps = dist_points(p1, p2)
348        angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2.
349        jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np)
350        drand = Lrand*np.array([np.sin(angle), np.cos(angle)])
351        for iip in range(Np*ip,Np*(ip+1)):
352            jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.)
353
354    Np2 = N - (Npts-1)*Np
355    p1 = lpoints[Npts-1]
356    p2 = lpoints[0]
357    dps = dist_points(p1, p2)
358    angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2.
359    jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2)
360    drand = Lrand*np.array([np.sin(angle), np.cos(angle)])
361    for iip in range(Np*(Npts-1),N):
362        jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.)
363
364    return jcirc_sec
365
366def write_join_poly(polys, flname='join_polygons.dat'):
367    """ Function to write an ASCII file with the combination of polygons
368      polys: dictionary with the names of the different polygons
369      flname: name of the ASCII file
370    """
371    fname = 'write_join_poly'
372
373    of = open(flname, 'w')
374
375    for polyn in polys.keys():
376        vertices = polys[polyn]
377        Npts = vertices.shape[0]
378        for ip in range(Npts):
379            of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n')
380
381    of.close()
382
383    return
384
385def read_join_poly(flname='join_polygons.dat'):
386    """ Function to read an ASCII file with the combination of polygons
387      flname: name of the ASCII file
388    """
389    fname = 'read_join_poly'
390
391    of = open(flname, 'r')
392
393    polys = {}
394    polyn = ''
395    poly = []
396    for line in of:
397        if len(line) > 1: 
398            linevals = line.replace('\n','').split(' ')
399            if polyn != linevals[0]:
400                if len(poly) > 1:
401                    polys[polyn] = np.array(poly)
402                polyn = linevals[0]
403                poly = []
404                poly.append([np.float(linevals[2]), np.float(linevals[1])])
405            else:
406                poly.append([np.float(linevals[2]), np.float(linevals[1])])
407
408    of.close()
409    polys[polyn] = np.array(poly)
410
411    return polys
412
413####### ###### ##### #### ### ## #
414# Shapes/objects
415
416def surface_sphere(radii,Npts):
417    """ Function to provide an sphere as matrix of x,y,z coordinates
418      radii: radii of the sphere
419      Npts: number of points to discretisize longitues (half for latitudes)
420    """
421    fname = 'surface_sphere'
422
423    sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float)
424    spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float)
425    for ia in range(Npts):
426        alpha = ia*2*np.pi/(Npts-1)
427        for ib in range(Npts/2):
428            beta = ib*np.pi/(2.*(Npts/2-1))
429            sphereup[:,ib,ia] = position_sphere(radii, alpha, beta)
430        for ib in range(Npts/2):
431            beta = -ib*np.pi/(2.*(Npts/2-1))
432            spheredown[:,ib,ia] = position_sphere(radii, alpha, beta)
433
434    return sphereup, spheredown
435
436def ellipse_polar(c, a, b, Nang=100):
437    """ Function to determine an ellipse from its center and polar coordinates
438        FROM: https://en.wikipedia.org/wiki/Ellipse
439      c= coordinates of the center
440      a= distance major axis
441      b= distance minor axis
442      Nang= number of angles to use
443    """
444    fname = 'ellipse_polar'
445
446    if np.mod(Nang,2) == 0: Nang=Nang+1
447 
448    dtheta = 2*np.pi/(Nang-1)
449
450    ellipse = np.zeros((Nang,2), dtype=np.float)
451    for ia in range(Nang):
452        theta = dtheta*ia
453        rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 )
454        x = rad*np.cos(theta)
455        y = rad*np.sin(theta)
456        ellipse[ia,:] = [y+c[0],x+c[1]]
457
458    return ellipse
459
460def hyperbola_polar(a, b, Nang=100):
461    """ Fcuntion to determine an hyperbola in polar coordinates
462        FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates
463          x^2/a^2 - y^2/b^2 = 1
464      a= x-parameter
465      y= y-parameter
466      Nang= number of angles to use
467      DOES NOT WORK!!!!
468    """
469    fname = 'hyperbola_polar'
470
471    dtheta = 2.*np.pi/(Nang-1)
472
473    # Positive branch
474    hyperbola_p = np.zeros((Nang,2), dtype=np.float)
475    for ia in range(Nang):
476        theta = dtheta*ia
477        x = a*np.cosh(theta)
478        y = b*np.sinh(theta)
479        hyperbola_p[ia,:] = [y,x]
480
481    # Negative branch
482    hyperbola_n = np.zeros((Nang,2), dtype=np.float)
483    for ia in range(Nang):
484        theta = dtheta*ia
485        x = -a*np.cosh(theta)
486        y = b*np.sinh(theta)
487        hyperbola_n[ia,:] = [y,x]
488
489    return hyperbola_p, hyperbola_n
490
491def circ_sec(ptA, ptB, radii, arc='short', Nang=100):
492    """ Function union of point A and B by a section of a circle
493      ptA= coordinates od the point A [yA, xA]
494      ptB= coordinates od the point B [yB, xB]
495      radii= radi of the circle to use to unite the points
496      arc= which arc to be used ('short', default)
497        'short': shortest angle between points
498        'long': largest angle between points
499      Nang= amount of angles to use
500    """
501    fname = 'circ_sec'
502
503    distAB = dist_points(ptA,ptB)
504
505    if distAB > radii:
506        print errormsg
507        print '  ' + fname + ': radii=', radii, " too small for the distance " +     \
508          "between points !!"
509        print '    distance between points:', distAB
510        quit(-1)
511
512    # Coordinate increments
513    dAB = np.abs(ptA-ptB)
514
515    # angle of the circular section joining points
516    alpha = 2.*np.arcsin((distAB/2.)/radii)
517
518    # center along coincident bisection of the union
519    xcc = -radii
520    ycc = 0.
521
522    # Getting the arc of the circle at the x-axis
523    if arc == 'short':
524        dalpha = alpha/(Nang-1)
525    else:
526        dalpha = (2.*np.pi - alpha)/(Nang-1)
527    circ_sec = np.zeros((Nang,2), dtype=np.float)
528    for ia in range(Nang):
529        alpha = dalpha*ia
530        x = radii*np.cos(alpha)
531        y = radii*np.sin(alpha)
532
533        circ_sec[ia,:] = [y+ycc,x+xcc]
534   
535    # Angle of the points
536    theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1])
537
538    # rotating angle of the circ
539    rotangle = theta + 3.*np.pi/2. - alpha/2.
540
541    #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi
542 
543    # rotating the arc along the x-axis
544    rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle)
545
546    # Moving arc to the ptA
547    circ_sec = rotcirc_sec + ptA
548
549    return circ_sec
550
551def p_square(face, N=5):
552    """ Function to get a polygon square
553      face: length of the face of the square
554      N: number of points of the polygon
555    """
556    fname = 'p_square'
557
558    square = np.zeros((N,2), dtype=np.float)
559
560    f2 = face/2.
561    N4 = N/4
562    df = face/(N4)
563    # SW-NW
564    for ip in range(N4):
565        square[ip,:] = [-f2+ip*df,-f2]
566    # NW-NE
567    for ip in range(N4):
568        square[ip+N4,:] = [f2,-f2+ip*df]
569    # NE-SE
570    for ip in range(N4):
571        square[ip+2*N4,:] = [f2-ip*df,f2]
572    N42 = N-3*N4-1
573    df = face/(N42)
574    # SE-SW
575    for ip in range(N42):
576        square[ip+3*N4,:] = [-f2,f2-ip*df]
577    square[N-1,:] = [-f2,-f2]
578
579    return square
580
581def p_circle(radii, N=50):
582    """ Function to get a polygon of a circle
583      radii: length of the radii of the circle
584      N: number of points of the polygon
585    """
586    fname = 'p_circle'
587
588    circle = np.zeros((N,2), dtype=np.float)
589
590    dangle = 2.*np.pi/(N-1)
591
592    for ia in range(N):
593        circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)]
594
595    circle[N-1,:] = [0., radii]
596
597    return circle
598
599def p_triangle(p1, p2, p3, N=4):
600    """ Function to provide the polygon of a triangle from its 3 vertices
601      p1: vertex 1 [y,x]
602      p2: vertex 2 [y,x]
603      p3: vertex 3 [y,x]
604      N: number of vertices of the triangle
605    """
606    fname = 'p_triangle'
607
608    triangle = np.zeros((N,2), dtype=np.float)
609
610    N3 = N / 3
611    # 1-2
612    dx = (p2[1]-p1[1])/N3
613    dy = (p2[0]-p1[0])/N3
614    for ip in range(N3):
615        triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx]
616    # 2-3
617    dx = (p3[1]-p2[1])/N3
618    dy = (p3[0]-p2[0])/N3
619    for ip in range(N3):
620        triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx]
621    # 3-1
622    N32 = N - 2*N/3
623    dx = (p1[1]-p3[1])/N32
624    dy = (p1[0]-p3[0])/N32
625    for ip in range(N32):
626        triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx]
627
628    triangle[N-1,:] = p1
629
630    return triangle
631
632def p_spiral(loops, eradii, N=1000):
633    """ Function to provide a polygon of an Archimedean spiral
634        FROM: https://en.wikipedia.org/wiki/Spiral
635      loops: number of loops of the spiral
636      eradii: length of the radii of the final spiral
637      N: number of points of the polygon
638    """
639    fname = 'p_spiral'
640
641    spiral = np.zeros((N,2), dtype=np.float)
642
643    dangle = 2.*np.pi*loops/(N-1)
644    dr = eradii*1./(N-1)
645
646    for ia in range(N):
647        radii = dr*ia
648        spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)]
649
650    return spiral
651
652def p_reg_polygon(Nv, lf, N=50):
653    """ Function to provide a regular polygon of Nv vertices
654      Nv: number of vertices
655      lf: length of the face
656      N: number of points
657    """
658    fname = 'p_reg_polygon'
659
660    reg_polygon = np.zeros((N,2), dtype=np.float)
661
662    # Number of points per vertex
663    Np = N/Nv
664    # Angle incremental between vertices
665    da = 2.*np.pi/Nv
666    # Radii of the circle according to lf
667    radii = lf*Nv/(2*np.pi)
668
669    iip = 0
670    for iv in range(Nv-1):
671        # Characteristics between vertices iv and iv+1
672        av1 = da*iv
673        v1 = [radii*np.sin(av1), radii*np.cos(av1)]
674        av2 = da*(iv+1)
675        v2 = [radii*np.sin(av2), radii*np.cos(av2)]
676        dx = (v2[1]-v1[1])/Np
677        dy = (v2[0]-v1[0])/Np
678        for ip in range(Np):
679            reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip]
680
681    # Characteristics between vertices Nv and 1
682
683    # Number of points per vertex
684    Np2 = N - Np*(Nv-1)
685
686    av1 = da*Nv
687    v1 = [radii*np.sin(av1), radii*np.cos(av1)]
688    av2 = 0.
689    v2 = [radii*np.sin(av2), radii*np.cos(av2)]
690    dx = (v2[1]-v1[1])/Np2
691    dy = (v2[0]-v1[0])/Np2
692    for ip in range(Np2):
693        reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip]
694
695    return reg_polygon
696
697def p_reg_star(Nv, lf, freq, vs=0, N=50):
698    """ Function to provide a regular star of Nv vertices
699      Nv: number of vertices
700      lf: length of the face of the regular polygon
701      freq: frequency of union of vertices ('0', for just centered to zero arms)
702      vs: vertex from which start (0 being first [0,lf])
703      N: number of points
704    """
705    fname = 'p_reg_star'
706
707    reg_star = np.zeros((N,2), dtype=np.float)
708
709    # Number of arms of the star
710    if freq != 0 and np.mod(Nv,freq) == 0: 
711        Na = Nv/freq + 1
712    else:
713        Na = Nv
714
715    # Number of points per arm
716    Np = N/Na
717    # Angle incremental between vertices
718    da = 2.*np.pi/Nv
719    # Radii of the circle according to lf
720    radii = lf*Nv/(2*np.pi)
721
722    iip = 0
723    av1 = vs*da
724    for iv in range(Na-1):
725        # Characteristics between vertices iv and iv+1
726        v1 = [radii*np.sin(av1), radii*np.cos(av1)]
727        if freq != 0:
728            av2 = av1 + da*freq
729            v2 = [radii*np.sin(av2), radii*np.cos(av2)]
730        else:
731            v2 = [0., 0.]
732            av2 = av1 + da
733        dx = (v2[1]-v1[1])/(Np-1)
734        dy = (v2[0]-v1[0])/(Np-1)
735        for ip in range(Np):
736            reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip]
737        if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi
738        else: av1 = av2 + 0.
739
740    iv = Na-1
741    # Characteristics between vertices Na and 1
742    Np2 = N-Np*iv
743    v1 = [radii*np.sin(av1), radii*np.cos(av1)]
744    if freq != 0:
745        av2 = vs*da
746        v2 = [radii*np.sin(av2), radii*np.cos(av2)]
747    else:
748        v2 = [0., 0.]
749    dx = (v2[1]-v1[1])/(Np2-1)
750    dy = (v2[0]-v1[0])/(Np2-1)
751    for ip in range(Np2):
752        reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip]
753
754    return reg_star
755
756def p_sinusiode(length=10., amp=5., lamb=3., ival=0., func='sin', N=100):
757    """ Function to get coordinates of a sinusoidal curve
758      length: length of the line (default 10.)
759      amp: amplitude of the peaks (default 5.)
760      lamb: wave longitude (defalult 3.)
761      ival: initial angle (default 0. in degree)
762      func: function to use: (default sinus)
763        'sin': sinus
764        'cos': cosinus
765      N: number of points (default 100)
766    """
767    fname = 'p_sinusiode'
768    availfunc = ['sin', 'cos']
769
770    dx = length/(N-1)
771    ia = ival*np.pi/180.
772    da = 2*np.pi*dx/lamb
773
774    sinusoide = np.zeros((N,2), dtype=np.float)
775    if func == 'sin':
776        for ix in range(N):
777            sinusoide[ix,:] = [amp*np.sin(ia+da*ix),dx*ix]
778    elif func == 'cos':
779        for ix in range(N):
780            sinusoide[ix,:] = [amp*np.cos(ia+da*ix),dx*ix]
781    else:
782        print errormsg
783        print '  ' + fname + ": function '" + func + "' not ready !!"
784        print '    available ones:', availfunc
785        quit(-1)
786
787    sinusoidesecs = ['sinusoide']
788    sinusoidedic = {'sinusoide': [sinusoide, '-', '#000000', 1.]}
789
790    return sinusoide, sinusoidesecs, sinusoidedic
791
792def p_doubleArrow(length=5., angle=45., width=1., alength=0.10, N=50):
793    """ Function to provide an arrow with double lines
794      length: length of the arrow (5. default)
795      angle: angle of the head of the arrow (45., default)
796      width: separation between the two lines (2., default)
797      alength: length of the head (as percentage in excess of width, 0.1 default)
798      N: number of points (50, default)
799    """
800    import numpy.ma as ma
801    function = 'p_doubleArrow'
802
803    doubleArrow = np.zeros((50,2), dtype=np.float)
804    N4 = int((N-3)/4)
805
806    doublearrowdic = {}
807
808    # Arms
809    dx = length/(N4-1)
810    for ix in range(N4-1):
811        doubleArrow[ix,:] = [dx*ix,-width/2.]
812    doublearrowdic['leftarm'] = [doubleArrow[0:N4-1,:], '-', '#000000', 2.]
813    doubleArrow[N4-1,:] = [gen.fillValueF,gen.fillValueF]
814    for ix in range(N4-1):
815        doubleArrow[N4+ix,:] = [dx*ix,width/2.]
816    doublearrowdic['rightarm'] = [doubleArrow[N4:2*N4-1,:], '-', '#000000', 2.]
817    doubleArrow[2*N4-1,:] = [gen.fillValueF,gen.fillValueF]
818
819    # Head
820    N42 = int((N-2 - 2*N4)/2)
821    dx = width*(1.+alength)/(N42-1)
822    for ix in range(N42):
823        doubleArrow[2*N4+ix,:] = [length-dx*ix,-dx*ix]
824    doublearrowdic['lefthead'] = [doubleArrow[2*N4:2*N4+N42,:], '-', '#000000', 2.]
825    doubleArrow[2*N4+N42,:] = [gen.fillValueF,gen.fillValueF]
826
827    N43 = N-2 - 2*N4 - N42 + 1
828    dx = width*(1.+alength)/(N43-1)
829    for ix in range(N43):
830        doubleArrow[2*N4+N42+1+ix,:] = [length-dx*ix,dx*ix]
831    doublearrowdic['rightthead'] = [doubleArrow[2*N4+N42:51,:], '-', '#000000', 2.]
832
833    doubleArrow = ma.masked_equal(doubleArrow, gen.fillValueF)
834    doublearrowsecs = ['leftarm', 'rightarm', 'lefthead', 'righthead']
835
836    return doubleArrow, doublearrowsecs, doublearrowdic
837
838# Combined objects
839##
840
841# FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html
842def zboat(length=10., beam=1., lbeam=0.4, sternbp=0.5):
843    """ Function to define an schematic boat from the z-plane
844      length: length of the boat (without stern, default 10)
845      beam: beam of the boat (default 1)
846      lbeam: length at beam (as percentage of length, default 0.4)
847      sternbp: beam at stern (as percentage of beam, default 0.5)
848    """
849    fname = 'zboat'
850
851    bow = np.array([length, 0.])
852    maxportside = np.array([length*lbeam, -beam])
853    maxstarboardside = np.array([length*lbeam, beam])
854    portside = np.array([0., -beam*sternbp])
855    starboardside = np.array([0., beam*sternbp])
856
857    # forward section
858    fportside = circ_sec(bow,maxportside, length*2)
859    fstarboardside = circ_sec(maxstarboardside, bow, length*2)
860    # aft section
861    aportside = circ_sec(maxportside, portside, length*2)
862    astarboardside = circ_sec(starboardside, maxstarboardside, length*2)
863    # stern
864    stern = circ_sec(portside, starboardside, length*2)
865
866    dpts = stern.shape[0]
867    boat = np.zeros((dpts*5,2), dtype=np.float)
868
869    boat[0:dpts,:] = fportside
870    boat[dpts:2*dpts,:] = aportside
871    boat[2*dpts:3*dpts,:] = stern
872    boat[3*dpts:4*dpts,:] = astarboardside
873    boat[4*dpts:5*dpts,:] = fstarboardside
874
875    fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' +  \
876      str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat'
877    if not os.path.isfile(fname):
878        print infmsg
879        print '  ' + fname + ": writting boat coordinates file '" + fname + "' !!"
880        of = open(fname, 'w')
881        of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \
882          'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+   \
883          ' %\n')
884        for ip in range(dpts*5):
885            of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n')
886       
887        of.close()
888        print fname + ": Successfull written '" + fname + "' !!"
889 
890    return boat
891
892def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5, lmast=0.6, wmast=0.1, \
893  hsd=5., msd=5., lheads=0.38, lmains=0.55):
894    """ Function to define an schematic sailing boat from the z-plane with sails
895      length: length of the boat (without stern, default 10)
896      beam: beam of the boat (default 1)
897      lbeam: length at beam (as percentage of length, default 0.4)
898      sternbp: beam at stern (as percentage of beam, default 0.5)
899      lmast: position of the mast (as percentage of length, default 0.6)
900      wmast: width of the mast (default 0.1)
901      hsd: head sail direction respect to center line (default 5., -999.99 for upwind)
902      msd: main sail direction respect to center line (default 5., -999.99 for upwind)
903      lheads: length of head sail (as percentage of legnth, defaul 0.38)
904      lmains: length of main sail (as percentage of legnth, defaul 0.55)
905    """
906    import numpy.ma as ma
907    fname = 'zsailing_boat'
908
909    bow = np.array([length, 0.])
910    maxportside = np.array([length*lbeam, -beam])
911    maxstarboardside = np.array([length*lbeam, beam])
912    portside = np.array([0., -beam*sternbp])
913    starboardside = np.array([0., beam*sternbp])
914
915    # forward section
916    fportside = circ_sec(bow,maxportside, length*2)
917    fstarboardside = circ_sec(maxstarboardside, bow, length*2)
918    dpts = fportside.shape[0]
919
920    # aft section
921    aportside = circ_sec(maxportside, portside, length*2)
922    astarboardside = circ_sec(starboardside, maxstarboardside, length*2)
923    # stern
924    stern = circ_sec(portside, starboardside, length*2)
925    # mast
926    mast = p_circle(wmast,N=dpts)
927    mast = mast + [length*lmast, 0.]
928    # head sails
929    lsail = lheads*length
930    if hsd != -999.99:
931        sailsa = np.pi/2. - np.pi*hsd/180.
932        endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)])
933        endsail[0] = length - endsail[0]
934        if bow[1] < endsail[1]:
935            hsail = circ_sec(endsail, bow, lsail*2.15)
936        else:
937            hsail = circ_sec(bow, endsail, lsail*2.15)
938    else:
939        hsail0 = p_sinusiode(length=lsail, amp=0.2, lamb=0.75, N=dpts)
940        hsail = np.zeros((dpts,2), dtype=np.float)
941        hsail[:,0] = hsail0[:,1]
942        hsail[:,1] = hsail0[:,0]
943        hsail = bow - hsail
944
945    # main sails
946    lsail = lmains*length
947    if msd != -999.99:
948        sailsa = np.pi/2. - np.pi*msd/180.
949        begsail = np.array([length*lmast, 0.])
950        endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)])
951        endsail[0] = length*lmast - endsail[0]
952        if endsail[1] < begsail[1]:
953            msail = circ_sec(begsail, endsail, lsail*2.15)
954        else:
955            msail = circ_sec(endsail, begsail, lsail*2.15)
956    else:
957        msail0 = p_sinusiode(length=lsail, amp=0.25, lamb=1., N=dpts)
958        msail = np.zeros((dpts,2), dtype=np.float)
959        msail[:,0] = msail0[:,1]
960        msail[:,1] = msail0[:,0]
961        msail = [length*lmast,0] - msail
962
963    sailingboat = np.zeros((dpts*8+4,2), dtype=np.float)
964
965    sailingboat[0:dpts,:] = fportside
966    sailingboat[dpts:2*dpts,:] = aportside
967    sailingboat[2*dpts:3*dpts,:] = stern
968    sailingboat[3*dpts:4*dpts,:] = astarboardside
969    sailingboat[4*dpts:5*dpts,:] = fstarboardside
970    sailingboat[5*dpts,:] = [gen.fillValueF, gen.fillValueF]
971    sailingboat[5*dpts+1:6*dpts+1,:] = mast
972    sailingboat[6*dpts+1,:] = [gen.fillValueF, gen.fillValueF]
973    sailingboat[6*dpts+2:7*dpts+2,:] = hsail
974    sailingboat[7*dpts+2,:] = [gen.fillValueF, gen.fillValueF]
975    sailingboat[7*dpts+3:8*dpts+3,:] = msail
976    sailingboat[8*dpts+3,:] = [gen.fillValueF, gen.fillValueF]
977
978    sailingboat = ma.masked_equal(sailingboat, gen.fillValueF)
979
980    # Center line extending [fcl] percentage from length on aft and stern
981    fcl = 0.15
982    centerline = np.zeros((dpts,2), dtype=np.float)
983    dl = length*(1.+fcl*2.)/(dpts-1)
984    centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl)
985
986    # correct order of sections
987    sailingboatsecs = ['fportside', 'aportside', 'stern', 'astarboardside',          \
988      'fstarboardside', 'mast', 'hsail', 'msail', 'centerline']
989    # dictionary with sections [polygon_vertices, line_type, line_color, line_width]
990    dicsailingboat = {'fportside': [fportside, '-', '#8A5900', 2.],                  \
991      'aportside': [aportside, '-', '#8A5900', 2.],                                  \
992      'stern': [stern, '-', '#8A5900', 2.],                                          \
993      'astarboardside': [astarboardside, '-', '#8A5900', 2.],                        \
994      'fstarboardside': [fstarboardside, '-', '#8A5900', 2.],                        \
995      'mast': [mast, '-', '#8A5900', 2.], 'hsail': [hsail, '-', '#AAAAAA', 1.],      \
996      'msail': [msail, '-', '#AAAAAA', 1.],                                          \
997      'centerline': [centerline, '-.', '#AA6464', 1.5]}
998   
999    fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) +      \
1000      '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) +                \
1001      '_lm' + str(int(lmast*100.)) + '_wm' + str(int(wmast)) +                       \
1002      '_hsd' + str(int(hsd)) + '_hs' + str(int(lheads*100.)) +                       \
1003      '_ms' + str(int(lheads*100.)) + '_msd' + str(int(msd)) +'.dat'
1004    if not os.path.isfile(fname):
1005        print infmsg
1006        print '  ' + fname + ": writting boat coordinates file '" + fname + "' !!"
1007        of = open(fname, 'w')
1008        of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \
1009          'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+   \
1010          ' % mast position: '+ str(lmast) + ' % mast width: ' + str(wmast) + ' ' +  \
1011          ' head sail direction:' + str(hsd) + ' head sail length: ' + str(lheads) + \
1012          ' %' + ' main sail length' + str(lmains) + ' main sail direction:' +       \
1013          str(msd) +'\n')
1014        for ip in range(dpts*5):
1015            of.write(str(sailingboat[ip,0]) + ' ' + str(sailingboat[ip,1]) + '\n')
1016       
1017        of.close()
1018        print fname + ": Successfull written '" + fname + "' !!"
1019 
1020    return sailingboat, sailingboatsecs, dicsailingboat
1021
1022def zisland1(mainpts= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9],\
1023  [2.8, -0.1], [0.1,-0.6]], dtype=np.float), radfrac=3., N=200):
1024    """ Function to draw an island from z-axis as the union of a series of points by
1025        circular segments
1026      mainpts: main points of the island (clockwise ordered, to be joined by
1027        circular segments of radii as the radfrac factor of the distance between
1028        consecutive points)
1029          * default= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9],
1030            [2.8, -0.1], [0.1,-0.6]], dtype=np.float)
1031      radfrac: multiplicative factor of the distance between consecutive points to
1032        draw the circular segment (3., default)
1033      N: number of points (200, default)
1034    """
1035    import numpy.ma as ma
1036    fname = 'zisland1'
1037
1038    island1 = np.ones((N,2), dtype=np.float)*gen.fillValueF
1039
1040    # Coastline
1041    island1 = join_circ_sec_rand(mainpts)
1042
1043    islandsecs = ['coastline']
1044    islanddic = {'coastline': [island1, '-', '#161616', 2.]}
1045
1046    island1 = ma.masked_equal(island1, gen.fillValueF)
1047
1048    return island1, islandsecs, islanddic
1049
1050def buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=200):
1051    """ Function to draw a buoy as superposition of prism and section of ball
1052      height: height of the prism (5., default)
1053      width: width of the prism (10., default)
1054      bradii: radii of the ball (1.75, default)
1055      bfrac: fraction of the ball above the prism (0.8, default)
1056      N: total number of points of the buoy (200, default)
1057
1058    """
1059    fname = 'buoy1'
1060
1061    buoy = np.zeros((N,2), dtype=np.float)
1062
1063    NNp = 0
1064    iip = 0
1065    # Base
1066    ix = -width/2.
1067    iy = 0.
1068    Np = 4
1069    dx = width/(Np-1)
1070    dy = 0.
1071    for ip in range(Np):
1072        buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip]
1073    NNp = NNp + Np
1074    iip = NNp
1075
1076    # right lateral
1077    ix = width/2.
1078    iy = 0.
1079    Np = 2
1080    dx = 0.
1081    dy = height/(Np-1)
1082    for ip in range(Np):
1083        buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip]
1084    NNp = NNp + Np
1085    iip = NNp
1086
1087    # right upper
1088    ix = width/2.
1089    iy = height
1090    Np = 4
1091    dx = -(width/2.-bradii*bfrac)/(Np-1)
1092    dy = 0.
1093    for ip in range(Np):
1094        buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip]
1095    NNp = NNp + Np
1096    iip = NNp
1097
1098    # ball
1099    p1 = np.array([height, -bradii*bfrac])
1100    p2 = np.array([height, bradii*bfrac])
1101    Np = N - 2*(NNp)
1102    buoy[iip:iip+Np,:] = circ_sec(p2, p1, 2.*bradii, 'long', Np)
1103    NNp = NNp + Np
1104    iip = NNp
1105
1106    # left upper
1107    ix = -bradii*bfrac
1108    iy = height
1109    Np = 4
1110    dx = -(width/2.-bradii*bfrac)/(Np-1)
1111    dy = 0.
1112    for ip in range(Np):
1113        buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip]
1114    NNp = NNp + Np
1115    iip = NNp
1116
1117    # left lateral
1118    ix = -width/2.
1119    iy = height
1120    Np = 2
1121    dx = 0.
1122    dy = -height/(Np-1)
1123    for ip in range(Np):
1124        buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip]
1125    NNp = NNp + Np
1126    iip = NNp
1127
1128    buoysecs = ['base']
1129    buoydic = {'base': [buoy, '-', 'k', 1.5]}
1130
1131    return buoy, buoysecs, buoydic
1132
1133####### ####### ##### #### ### ## #
1134# Plotting
1135
1136def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10,                   \
1137  drwsfc=[True,True], colsfc=['#AAAAAA','#646464'],                                  \
1138  drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.],          \
1139  drwzline = True, linez=['-.','g',2.], drwxcline=[True,True],                       \
1140  linexc=[['-','#646400',1.],['--','#646400',1.]],                                   \
1141  drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]],           \
1142  drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]):
1143    """ Function to plot an sphere and determine which standard lines will be also
1144        drawn
1145      iazm: azimut of the camera form the sphere
1146      iele: elevation of the camera form the sphere
1147      dist: distance of the camera form the sphere
1148      Npts: Resolution for the sphere
1149      radii: radius of the sphere
1150      drwsfc: whether 'up' and 'down' portions of the sphere should be drawn
1151      colsfc: colors of the surface of the sphere portions ['up', 'down']
1152      drwxline: whether x-axis line should be drawn
1153      linex: properties of the x-axis line ['type', 'color', 'wdith']
1154      drwyline: whether y-axis line should be drawn
1155      liney: properties of the y-axis line ['type', 'color', 'wdith']
1156      drwzline: whether z-axis line should be drawn
1157      linez: properties of the z-axis line ['type', 'color', 'wdith']
1158      drwequator: whether 'front' and 'back' portions of the Equator should be drawn
1159      lineeq: properties of the lines 'front' and 'back' of the Equator
1160      drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn
1161      linegw: properties of the lines 'front' and 'back' Greenwhich
1162      drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn
1163      linexc: properties of the lines 'front' and 'back' for the 90 line
1164    """
1165    fname = 'plot_sphere'
1166
1167    iazmrad = iazm*np.pi/180.
1168    ielerad = iele*np.pi/180.
1169
1170    # 3D surface Sphere
1171    sfcsphereu, sfcsphered = surface_sphere(radii,Npts)
1172   
1173    # greenwhich
1174    if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.:
1175        ia=np.pi-ielerad
1176    else:
1177        ia=0.-ielerad
1178    ea=ia+np.pi
1179    da = (ea-ia)/(Npts-1)
1180    beta = np.arange(ia,ea+da,da)[0:Npts]
1181    alpha = np.zeros((Npts), dtype=np.float)
1182    greenwhichc = spheric_line(radii,alpha,beta)
1183    ia=ea+0.
1184    ea=ia+np.pi
1185    da = (ea-ia)/(Npts-1)
1186    beta = np.arange(ia,ea+da,da)[0:Npts]
1187    greenwhichd = spheric_line(radii,alpha,beta)
1188
1189    # Equator
1190    ia=np.pi-iazmrad/2.
1191    ea=ia+np.pi
1192    da = (ea-ia)/(Npts-1)
1193    alpha = np.arange(ia,ea+da,da)[0:Npts]
1194    beta = np.zeros((Npts), dtype=np.float)
1195    equatorc = spheric_line(radii,alpha,beta)
1196    ia=ea+0.
1197    ea=ia+np.pi
1198    da = (ea-ia)/(Npts-1)
1199    alpha = np.arange(ia,ea+da,da)[0:Npts]
1200    equatord = spheric_line(radii,alpha,beta)
1201
1202    # 90 line
1203    if iazmrad > np.pi and iazmrad < 2.*np.pi:
1204        ia=3.*np.pi/2. + ielerad
1205    else:
1206        ia=np.pi/2. - ielerad
1207    if ielerad < 0.:
1208        ia = ia + np.pi
1209    ea=ia+np.pi
1210    da = (ea-ia)/(Npts-1)
1211    beta = np.arange(ia,ea+da,da)[0:Npts]
1212    alpha = np.ones((Npts), dtype=np.float)*np.pi/2.
1213    xclinec = spheric_line(radii,alpha,beta)
1214    ia=ea+0.
1215    ea=ia+np.pi
1216    da = (ea-ia)/(Npts-1)
1217    beta = np.arange(ia,ea+da,da)[0:Npts]
1218    xclined = spheric_line(radii,alpha,beta)
1219
1220    # x line
1221    xline = np.zeros((2,3), dtype=np.float)
1222    xline[0,:] = position_sphere(radii, 0., 0.)
1223    xline[1,:] = position_sphere(radii, np.pi, 0.)
1224
1225    # y line
1226    yline = np.zeros((2,3), dtype=np.float)
1227    yline[0,:] = position_sphere(radii, np.pi/2., 0.)
1228    yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.)
1229
1230    # z line
1231    zline = np.zeros((2,3), dtype=np.float)
1232    zline[0,:] = position_sphere(radii, 0., np.pi/2.)
1233    zline[1,:] = position_sphere(radii, 0., -np.pi/2.)
1234
1235    fig = plt.figure()
1236    ax = fig.gca(projection='3d')
1237
1238    # Sphere surface
1239    if drwsfc[0]:
1240        ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:],     \
1241          color=colsfc[0])
1242    if drwsfc[1]:
1243        ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:],     \
1244          color=colsfc[1])
1245
1246    # greenwhich
1247    linev = linegw[0]
1248    if drwgreeenwhich[0]:
1249        ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0],      \
1250          color=linev[1], linewidth=linev[2],  label='Greenwich')
1251    linev = linegw[1]
1252    if drwgreeenwhich[1]:
1253        ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0],      \
1254          color=linev[1], linewidth=linev[2])
1255
1256    # Equator
1257    linev = lineeq[0]
1258    if drwequator[0]:
1259        ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0],               \
1260          color=linev[1], linewidth=linev[2], label='Equator')
1261    linev = lineeq[1]
1262    if drwequator[1]:
1263        ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0],               \
1264          color=linev[1], linewidth=linev[2])
1265
1266    # 90line
1267    linev = linexc[0]
1268    if drwxcline[0]:
1269        ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1],  \
1270          linewidth=linev[2], label='90-line')
1271    linev = linexc[1]
1272    if drwxcline[1]:
1273        ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1],  \
1274          linewidth=linev[2])
1275
1276    # x line
1277    linev = linex
1278    if drwxline:
1279        ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]],                    \
1280          [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2],  label='xline')
1281
1282    # y line
1283    linev = liney
1284    if drwyline:
1285        ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]],                    \
1286          [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2],  label='yline')
1287
1288    # z line
1289    linev = linez
1290    if drwzline:
1291        ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]],                    \
1292          [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2],  label='zline')
1293
1294    plt.legend()
1295
1296    return fig, ax
Note: See TracBrowser for help on using the repository browser.