# Python tools to manage netCDF files. # L. Fita, CIMA. Mrch 2019 # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot # # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. # This work is licendes under a Creative Commons # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) # ## Script for geometry calculations and operations as well as definition of different ### standard objects and shapes import numpy as np import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import os errormsg = 'ERROR -- error -- ERROR -- error' infmsg = 'INFORMATION -- information -- INFORMATION -- information' ####### Contents: # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] # dist_points: Function to provide the distance between two points # max_coords_poly: Function to provide the extremes of the coordinates of a polygon # mirror_polygon: Function to reflex a polygon for a given axis # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to # cartesian coordinates over an sphere # read_join_poly: Function to read an ASCII file with the combination of polygons # rotate_2D: Function to rotate a vector by a certain angle in the plain # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a # certain angle in the plain # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y # coordinates by a certain angle in the plain # spheric_line: Function to transform a series of locations in lon, lat coordinates # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space # write_join_poly: Function to write an ASCII file with the combination of polygons ## Shapes/objects # circ_sec: Function union of point A and B by a section of a circle # ellipse_polar: Function to determine an ellipse from its center and polar coordinates # p_circle: Function to get a polygon of a circle # p_square: Function to get a polygon square # p_spiral: Function to provide a polygon of an Archimedean spiral # p_triangle: Function to provide the polygon of a triangle from its 3 vertices # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates ## Plotting # plot_sphere: Function to plot an sphere and determine which standard lines will be # also drawn def deg_deci(angle): """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] angle: list of [deg, minute, sec] to pass >>> deg_deci([41., 58., 34.]) 0.732621346072 """ fname = 'deg_deci' deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. if angle[0] < 0.: deg = -deg*np.pi/180. else: deg = deg*np.pi/180. return deg def position_sphere(radii, alpha, beta): """ Function to tranform fom a point in lon, lat deg coordinates to cartesian coordinates over an sphere radii: radii of the sphere alpha: longitude of the point beta: latitude of the point >>> position_sphere(10., 30., 45.) (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 """ fname = 'position_sphere' xpt = radii*np.cos(beta)*np.cos(alpha) ypt = radii*np.cos(beta)*np.sin(alpha) zpt = radii*np.sin(beta) return xpt, ypt, zpt def spheric_line(radii,lon,lat): """ Function to transform a series of locations in lon, lat coordinates to x,y,z over an 3D space radii: radius of the sphere lon: array of angles along longitudes lat: array of angles along latitudes """ fname = 'spheric_line' Lint = lon.shape[0] coords = np.zeros((Lint,3), dtype=np.float) for iv in range(Lint): coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) return coords def rotate_2D(vector, angle): """ Function to rotate a vector by a certain angle in the plain vector= vector to rotate [y, x] angle= angle to rotate [rad] >>> rotate_2D(np.array([1.,0.]), np.pi/4.) [ 0.70710678 -0.70710678] """ fname = 'rotate_2D' rotmat = np.zeros((2,2), dtype=np.float) rotmat[0,0] = np.cos(angle) rotmat[0,1] = -np.sin(angle) rotmat[1,0] = np.sin(angle) rotmat[1,1] = np.cos(angle) rotvector = np.zeros((2), dtype=np.float) vecv = np.zeros((2), dtype=np.float) # Unifying vector modvec = vector[0]**2+vector[1]**2 if modvec != 0: vecv[0] = vector[1]/modvec vecv[1] = vector[0]/modvec rotvec = np.matmul(rotmat, vecv) rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) rotvector[0] = rotvec[1]*modvec rotvector[1] = rotvec[0]*modvec return rotvector def rotate_polygon_2D(vectors, angle): """ Function to rotate 2D plain the vertices of a polygon line= matrix of vectors to rotate angle= angle to rotate [rad] >>> square = np.zeros((4,2), dtype=np.float) >>> square[0,:] = [-0.5,-0.5] >>> square[1,:] = [0.5,-0.5] >>> square[2,:] = [0.5,0.5] >>> square[3,:] = [-0.5,0.5] >>> rotate_polygon_2D(square, np.pi/4.) [[-0.70710678 0. ] [ 0. -0.70710678] [ 0.70710678 0. ] [ 0. 0.70710678]] """ fname = 'rotate_polygon_2D' rotvecs = np.zeros(vectors.shape, dtype=np.float) Nvecs = vectors.shape[0] for iv in range(Nvecs): rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) return rotvecs def rotate_line2D(line, angle): """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain angle in the plain line= line to rotate as couple of points [[y0,x0], [y1,x1]] angle= angle to rotate [rad] >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) [[ 0. 0. ] [0.70710678 -0.70710678]] """ fname = 'rotate_2D' rotline = np.zeros((2,2), dtype=np.float) rotline[0,:] = rotate_2D(line[0,:], angle) rotline[1,:] = rotate_2D(line[1,:], angle) return rotline def rotate_lines2D(lines, angle): """ Function to rotate multiple lines given by mulitple pars of x,y coordinates by a certain angle in the plain line= matrix of N couples of points [N, [y0,x0], [y1,x1]] angle= angle to rotate [rad] >>> square = np.zeros((4,2,2), dtype=np.float) >>> square[0,0,:] = [-0.5,-0.5] >>> square[0,1,:] = [0.5,-0.5] >>> square[1,0,:] = [0.5,-0.5] >>> square[1,1,:] = [0.5,0.5] >>> square[2,0,:] = [0.5,0.5] >>> square[2,1,:] = [-0.5,0.5] >>> square[3,0,:] = [-0.5,0.5] >>> square[3,1,:] = [-0.5,-0.5] >>> rotate_lines2D(square, np.pi/4.) [[[-0.70710678 0. ] [ 0. -0.70710678]] [[ 0. -0.70710678] [ 0.70710678 0. ]] [[ 0.70710678 0. ] [ 0. 0.70710678]] [[ 0. 0.70710678] [-0.70710678 0. ]]] """ fname = 'rotate_lines2D' rotlines = np.zeros(lines.shape, dtype=np.float) Nlines = lines.shape[0] for il in range(Nlines): line = np.zeros((2,2), dtype=np.float) line[0,:] = lines[il,0,:] line[1,:] = lines[il,1,:] rotlines[il,:,:] = rotate_line2D(line, angle) return rotlines def dist_points(ptA, ptB): """ Function to provide the distance between two points ptA: coordinates of the point A [yA, xA] ptB: coordinates of the point B [yB, xB] >>> dist_points([1.,1.], [-1.,-1.]) 2.82842712475 """ fname = 'dist_points' dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) return dist def max_coords_poly(polygon): """ Function to provide the extremes of the coordinates of a polygon polygon: coordinates [Nvertexs, 2] of a polygon >>> square = np.zeros((4,2), dtype=np.float) >>> square[0,:] = [-0.5,-0.5] >>> square[1,:] = [0.5,-0.5] >>> square[2,:] = [0.5,0.5] >>> square[3,:] = [-0.5,0.5] >>> max_coords_poly(square) [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 """ fname = 'max_coords_poly' # x-coordinate min/max nx = np.min(polygon[:,1]) xx = np.max(polygon[:,1]) # y-coordinate min/max ny = np.min(polygon[:,0]) xy = np.max(polygon[:,0]) # x/y-coordinate maximum of absolute values axx = np.max(np.abs(polygon[:,1])) ayx = np.max(np.abs(polygon[:,0])) # absolute maximum xyx = np.max([axx, ayx]) return [nx, xx], [ny, xy], [ayx, axx], xyx def mirror_polygon(polygon,axis): """ Function to reflex a polygon for a given axis polygon: polygon to mirror axis: axis at which mirror is located ('x' or 'y') """ fname = 'mirror_polygon' reflex = np.zeros(polygon.shape, dtype=np.float) N = polygon.shape[0] if axis == 'x': for iv in range(N): reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] elif axis == 'y': for iv in range(N): reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] return reflex ####### ###### ##### #### ### ## # # Shapes/objects def surface_sphere(radii,Npts): """ Function to provide an sphere as matrix of x,y,z coordinates radii: radii of the sphere Npts: number of points to discretisize longitues (half for latitudes) """ fname = 'surface_sphere' sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) for ia in range(Npts): alpha = ia*2*np.pi/(Npts-1) for ib in range(Npts/2): beta = ib*np.pi/(2.*(Npts/2-1)) sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) for ib in range(Npts/2): beta = -ib*np.pi/(2.*(Npts/2-1)) spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) return sphereup, spheredown def ellipse_polar(c, a, b, Nang=100): """ Function to determine an ellipse from its center and polar coordinates FROM: https://en.wikipedia.org/wiki/Ellipse c= coordinates of the center a= distance major axis b= distance minor axis Nang= number of angles to use """ fname = 'ellipse_polar' if np.mod(Nang,2) == 0: Nang=Nang+1 dtheta = 2*np.pi/(Nang-1) ellipse = np.zeros((Nang,2), dtype=np.float) for ia in range(Nang): theta = dtheta*ia rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) x = rad*np.cos(theta) y = rad*np.sin(theta) ellipse[ia,:] = [y+c[0],x+c[1]] return ellipse def hyperbola_polar(a, b, Nang=100): """ Fcuntion to determine an hyperbola in polar coordinates FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates x^2/a^2 - y^2/b^2 = 1 a= x-parameter y= y-parameter Nang= number of angles to use DOES NOT WORK!!!! """ fname = 'hyperbola_polar' dtheta = 2.*np.pi/(Nang-1) # Positive branch hyperbola_p = np.zeros((Nang,2), dtype=np.float) for ia in range(Nang): theta = dtheta*ia x = a*np.cosh(theta) y = b*np.sinh(theta) hyperbola_p[ia,:] = [y,x] # Negative branch hyperbola_n = np.zeros((Nang,2), dtype=np.float) for ia in range(Nang): theta = dtheta*ia x = -a*np.cosh(theta) y = b*np.sinh(theta) hyperbola_n[ia,:] = [y,x] return hyperbola_p, hyperbola_n def circ_sec(ptA, ptB, radii, Nang=100): """ Function union of point A and B by a section of a circle ptA= coordinates od the point A [yA, xA] ptB= coordinates od the point B [yB, xB] radii= radi of the circle to use to unite the points Nang= amount of angles to use """ fname = 'circ_sec' distAB = dist_points(ptA,ptB) if distAB > radii: print errormsg print ' ' + fname + ': radii=', radii, " too small for the distance " + \ "between points !!" print ' distance between points:', distAB quit(-1) # Coordinate increments dAB = np.abs(ptA-ptB) # angle of the circular section joining points alpha = 2.*np.arcsin((distAB/2.)/radii) # center along coincident bisection of the union xcc = -radii ycc = 0. # Getting the arc of the circle at the x-axis dalpha = alpha/(Nang-1) circ_sec = np.zeros((Nang,2), dtype=np.float) for ia in range(Nang): alpha = dalpha*ia x = radii*np.cos(alpha) y = radii*np.sin(alpha) circ_sec[ia,:] = [y+ycc,x+xcc] # Angle of the points theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) # rotating angle of the circ rotangle = theta + 3.*np.pi/2. - alpha/2. #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi # rotating the arc along the x-axis rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) # Moving arc to the ptA circ_sec = rotcirc_sec + ptA return circ_sec def p_square(face, N=5): """ Function to get a polygon square face: length of the face of the square N: number of points of the polygon """ fname = 'p_square' square = np.zeros((N,2), dtype=np.float) f2 = face/2. N4 = N/4 df = face/(N4) # SW-NW for ip in range(N4): square[ip,:] = [-f2+ip*df,-f2] # NW-NE for ip in range(N4): square[ip+N4,:] = [f2,-f2+ip*df] # NE-SE for ip in range(N4): square[ip+2*N4,:] = [f2-ip*df,f2] N42 = N-3*N4-1 df = face/(N42) # SE-SW for ip in range(N42): square[ip+3*N4,:] = [-f2,f2-ip*df] square[N-1,:] = [-f2,-f2] return square def p_circle(radii, N=50): """ Function to get a polygon of a circle radii: length of the radii of the circle N: number of points of the polygon """ fname = 'p_circle' circle = np.zeros((N,2), dtype=np.float) dangle = 2.*np.pi/(N-1) for ia in range(N): circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] circle[N-1,:] = [0., radii] return circle def p_triangle(p1, p2, p3, N=4): """ Function to provide the polygon of a triangle from its 3 vertices p1: vertex 1 [y,x] p2: vertex 2 [y,x] p3: vertex 3 [y,x] N: number of vertices of the triangle """ fname = 'p_triangle' triangle = np.zeros((N,2), dtype=np.float) N3 = N / 3 # 1-2 dx = (p2[1]-p1[1])/N3 dy = (p2[0]-p1[0])/N3 for ip in range(N3): triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] # 2-3 dx = (p3[1]-p2[1])/N3 dy = (p3[0]-p2[0])/N3 for ip in range(N3): triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] # 3-1 N32 = N - 2*N/3 dx = (p1[1]-p3[1])/N32 dy = (p1[0]-p3[0])/N32 for ip in range(N32): triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] triangle[N-1,:] = p1 return triangle def p_spiral(loops, eradii, N=1000): """ Function to provide a polygon of an Archimedean spiral FROM: https://en.wikipedia.org/wiki/Spiral loops: number of loops of the spiral eradii: length of the radii of the final spiral N: number of points of the polygon """ fname = 'p_spiral' spiral = np.zeros((N,2), dtype=np.float) dangle = 2.*np.pi*loops/(N-1) dr = eradii*1./(N-1) for ia in range(N): radii = dr*ia spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] return spiral # Combined objects ## # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5): """ Function to define an schematic boat from the z-plane length: length of the boat (without stern, default 10) beam: beam of the boat (default 1) lbeam: length at beam (as percentage of length, default 0.4) sternbp: beam at stern (as percentage of beam, default 0.5) """ fname = 'zsailing_boat' bow = np.array([length, 0.]) maxportside = np.array([length*lbeam, -beam]) maxstarboardside = np.array([length*lbeam, beam]) portside = np.array([0., -beam*sternbp]) starboardside = np.array([0., beam*sternbp]) # forward section fportsaid = circ_sec(bow,maxportside, length*2) fstarboardsaid = circ_sec(maxstarboardside, bow, length*2) # aft section aportsaid = circ_sec(maxportside, portside, length*2) astarboardsaid = circ_sec(starboardside, maxstarboardside, length*2) # stern stern = circ_sec(portside, starboardside, length*2) dpts = stern.shape[0] boat = np.zeros((dpts*5,2), dtype=np.float) boat[0:dpts,:] = fportsaid boat[dpts:2*dpts,:] = aportsaid boat[2*dpts:3*dpts,:] = stern boat[3*dpts:4*dpts,:] = astarboardsaid boat[4*dpts:5*dpts,:] = fstarboardsaid fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' + \ str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat' if not os.path.isfile(fname): print infmsg print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" of = open(fname, 'w') of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ ' %\n') for ip in range(dpts*5): of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') of.close() print fname + ": Successfull written '" + fname + "' !!" return boat def write_join_poly(polys, flname='join_polygons.dat'): """ Function to write an ASCII file with the combination of polygons polys: dictionary with the names of the different polygons flname: name of the ASCII file """ fname = 'write_join_poly' of = open(flname, 'w') for polyn in polys.keys(): vertices = polys[polyn] Npts = vertices.shape[0] for ip in range(Npts): of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') of.close() return def read_join_poly(flname='join_polygons.dat'): """ Function to read an ASCII file with the combination of polygons flname: name of the ASCII file """ fname = 'read_join_poly' of = open(flname, 'r') polys = {} polyn = '' poly = [] for line in of: if len(line) > 1: linevals = line.replace('\n','').split(' ') if polyn != linevals[0]: if len(poly) > 1: polys[polyn] = np.array(poly) polyn = linevals[0] poly = [] poly.append([np.float(linevals[2]), np.float(linevals[1])]) else: poly.append([np.float(linevals[2]), np.float(linevals[1])]) of.close() polys[polyn] = np.array(poly) return polys ####### ####### ##### #### ### ## # # Plotting def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ linexc=[['-','#646400',1.],['--','#646400',1.]], \ drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): """ Function to plot an sphere and determine which standard lines will be also drawn iazm: azimut of the camera form the sphere iele: elevation of the camera form the sphere dist: distance of the camera form the sphere Npts: Resolution for the sphere radii: radius of the sphere drwsfc: whether 'up' and 'down' portions of the sphere should be drawn colsfc: colors of the surface of the sphere portions ['up', 'down'] drwxline: whether x-axis line should be drawn linex: properties of the x-axis line ['type', 'color', 'wdith'] drwyline: whether y-axis line should be drawn liney: properties of the y-axis line ['type', 'color', 'wdith'] drwzline: whether z-axis line should be drawn linez: properties of the z-axis line ['type', 'color', 'wdith'] drwequator: whether 'front' and 'back' portions of the Equator should be drawn lineeq: properties of the lines 'front' and 'back' of the Equator drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn linegw: properties of the lines 'front' and 'back' Greenwhich drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn linexc: properties of the lines 'front' and 'back' for the 90 line """ fname = 'plot_sphere' iazmrad = iazm*np.pi/180. ielerad = iele*np.pi/180. # 3D surface Sphere sfcsphereu, sfcsphered = surface_sphere(radii,Npts) # greenwhich if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: ia=np.pi-ielerad else: ia=0.-ielerad ea=ia+np.pi da = (ea-ia)/(Npts-1) beta = np.arange(ia,ea+da,da)[0:Npts] alpha = np.zeros((Npts), dtype=np.float) greenwhichc = spheric_line(radii,alpha,beta) ia=ea+0. ea=ia+np.pi da = (ea-ia)/(Npts-1) beta = np.arange(ia,ea+da,da)[0:Npts] greenwhichd = spheric_line(radii,alpha,beta) # Equator ia=np.pi-iazmrad/2. ea=ia+np.pi da = (ea-ia)/(Npts-1) alpha = np.arange(ia,ea+da,da)[0:Npts] beta = np.zeros((Npts), dtype=np.float) equatorc = spheric_line(radii,alpha,beta) ia=ea+0. ea=ia+np.pi da = (ea-ia)/(Npts-1) alpha = np.arange(ia,ea+da,da)[0:Npts] equatord = spheric_line(radii,alpha,beta) # 90 line if iazmrad > np.pi and iazmrad < 2.*np.pi: ia=3.*np.pi/2. + ielerad else: ia=np.pi/2. - ielerad if ielerad < 0.: ia = ia + np.pi ea=ia+np.pi da = (ea-ia)/(Npts-1) beta = np.arange(ia,ea+da,da)[0:Npts] alpha = np.ones((Npts), dtype=np.float)*np.pi/2. xclinec = spheric_line(radii,alpha,beta) ia=ea+0. ea=ia+np.pi da = (ea-ia)/(Npts-1) beta = np.arange(ia,ea+da,da)[0:Npts] xclined = spheric_line(radii,alpha,beta) # x line xline = np.zeros((2,3), dtype=np.float) xline[0,:] = position_sphere(radii, 0., 0.) xline[1,:] = position_sphere(radii, np.pi, 0.) # y line yline = np.zeros((2,3), dtype=np.float) yline[0,:] = position_sphere(radii, np.pi/2., 0.) yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) # z line zline = np.zeros((2,3), dtype=np.float) zline[0,:] = position_sphere(radii, 0., np.pi/2.) zline[1,:] = position_sphere(radii, 0., -np.pi/2.) fig = plt.figure() ax = fig.gca(projection='3d') # Sphere surface if drwsfc[0]: ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ color=colsfc[0]) if drwsfc[1]: ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ color=colsfc[1]) # greenwhich linev = linegw[0] if drwgreeenwhich[0]: ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ color=linev[1], linewidth=linev[2], label='Greenwich') linev = linegw[1] if drwgreeenwhich[1]: ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ color=linev[1], linewidth=linev[2]) # Equator linev = lineeq[0] if drwequator[0]: ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ color=linev[1], linewidth=linev[2], label='Equator') linev = lineeq[1] if drwequator[1]: ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ color=linev[1], linewidth=linev[2]) # 90line linev = linexc[0] if drwxcline[0]: ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ linewidth=linev[2], label='90-line') linev = linexc[1] if drwxcline[1]: ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ linewidth=linev[2]) # x line linev = linex if drwxline: ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') # y line linev = liney if drwyline: ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') # z line linev = linez if drwzline: ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') plt.legend() return fig, ax