1 | # Python tools to manage netCDF files. |
---|
2 | # L. Fita, CIMA. March 2019 |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | ## Script for geometry calculations and operations as well as definition of different |
---|
10 | ### standard objects and shapes |
---|
11 | |
---|
12 | import numpy as np |
---|
13 | import matplotlib as mpl |
---|
14 | from mpl_toolkits.mplot3d import Axes3D |
---|
15 | import matplotlib.pyplot as plt |
---|
16 | import os |
---|
17 | import generic_tools as gen |
---|
18 | import numpy.ma as ma |
---|
19 | import module_ForSci as fsci |
---|
20 | |
---|
21 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
22 | infmsg = 'INFORMATION -- information -- INFORMATION -- information' |
---|
23 | |
---|
24 | ####### Contents: |
---|
25 | # add_secpolygon_list: Function to add a range of points of a polygon into a list |
---|
26 | # angle_vectors2D: Angle between two vectors with sign |
---|
27 | # cut_between_[x/y]polygon: Function to cut a polygon between 2 given value of the [x/y]-axis |
---|
28 | # cut_[x/y]polygon: Function to cut a polygon from a given value of the [x/y]-axis |
---|
29 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
30 | # dist_points: Function to provide the distance between two points |
---|
31 | # join_circ_sec: Function to join aa series of points by circular segments |
---|
32 | # join_circ_sec_rand: Function to join aa series of points by circular segments with |
---|
33 | # random perturbations |
---|
34 | # max_coords_poly: Function to provide the extremes of the coordinates of a polygon |
---|
35 | # mirror_polygon: Function to reflex a polygon for a given axis |
---|
36 | # mod_vec: Function to compute the module of a vector |
---|
37 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
38 | # cartesian coordinates over an sphere |
---|
39 | # read_join_poly: Function to read an ASCII file with the combination of polygons |
---|
40 | # rm_consecpt_polygon: Function to remove consecutive same point of a polygon |
---|
41 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
42 | # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon |
---|
43 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
44 | # certain angle in the plain |
---|
45 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
46 | # coordinates by a certain angle in the plain |
---|
47 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
48 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
49 | # val_consec_between: Function to provide if a given value is between two consecutive ones |
---|
50 | # write_join_poly: Function to write an ASCII file with the combination of polygons |
---|
51 | |
---|
52 | ## Shapes/objects |
---|
53 | # circ_sec: Function union of point A and B by a section of a circle |
---|
54 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
55 | # p_angle_triangle: Function to draw a triangle by an initial point and two |
---|
56 | # consecutive angles and the first length of face. The third angle and 2 and 3rd |
---|
57 | # face will be computed accordingly the provided values |
---|
58 | # p_doubleArrow: Function to provide an arrow with double lines |
---|
59 | # p_circle: Function to get a polygon of a circle |
---|
60 | # p_cross_width: Function to draw a cross with arms with a given width and an angle |
---|
61 | # p_prism: Function to get a polygon prism |
---|
62 | # p_reg_polygon: Function to provide a regular polygon of Nv vertices |
---|
63 | # p_reg_star: Function to provide a regular star of Nv vertices |
---|
64 | # p_sinusiode: Function to get coordinates of a sinusoidal curve |
---|
65 | # p_square: Function to get a polygon square |
---|
66 | # p_spiral: Function to provide a polygon of an Archimedean spiral |
---|
67 | # p_triangle: Function to provide the polygon of a triangle from its 3 vertices |
---|
68 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
69 | |
---|
70 | ## Plotting |
---|
71 | # paint_filled: Function to draw an object filling given sections |
---|
72 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
73 | # also drawn |
---|
74 | |
---|
75 | def deg_deci(angle): |
---|
76 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
77 | angle: list of [deg, minute, sec] to pass |
---|
78 | >>> deg_deci([41., 58., 34.]) |
---|
79 | 0.732621346072 |
---|
80 | """ |
---|
81 | fname = 'deg_deci' |
---|
82 | |
---|
83 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
84 | |
---|
85 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
86 | else: deg = deg*np.pi/180. |
---|
87 | |
---|
88 | return deg |
---|
89 | |
---|
90 | def position_sphere(radii, alpha, beta): |
---|
91 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
92 | coordinates over an sphere |
---|
93 | radii: radii of the sphere |
---|
94 | alpha: longitude of the point |
---|
95 | beta: latitude of the point |
---|
96 | >>> position_sphere(10., 30., 45.) |
---|
97 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
98 | """ |
---|
99 | fname = 'position_sphere' |
---|
100 | |
---|
101 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
102 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
103 | zpt = radii*np.sin(beta) |
---|
104 | |
---|
105 | return xpt, ypt, zpt |
---|
106 | |
---|
107 | def spheric_line(radii,lon,lat): |
---|
108 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
109 | over an 3D space |
---|
110 | radii: radius of the sphere |
---|
111 | lon: array of angles along longitudes |
---|
112 | lat: array of angles along latitudes |
---|
113 | """ |
---|
114 | fname = 'spheric_line' |
---|
115 | |
---|
116 | Lint = lon.shape[0] |
---|
117 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
118 | |
---|
119 | for iv in range(Lint): |
---|
120 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
121 | |
---|
122 | return coords |
---|
123 | |
---|
124 | def rotate_2D(vector, angle): |
---|
125 | """ Function to rotate a vector by a certain angle in the plain |
---|
126 | vector= vector to rotate [y, x] |
---|
127 | angle= angle to rotate [rad] |
---|
128 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
129 | [ 0.70710678 -0.70710678] |
---|
130 | """ |
---|
131 | fname = 'rotate_2D' |
---|
132 | |
---|
133 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
134 | |
---|
135 | rotmat[0,0] = np.cos(angle) |
---|
136 | rotmat[0,1] = -np.sin(angle) |
---|
137 | rotmat[1,0] = np.sin(angle) |
---|
138 | rotmat[1,1] = np.cos(angle) |
---|
139 | |
---|
140 | rotvector = np.zeros((2), dtype=np.float) |
---|
141 | |
---|
142 | vecv = np.zeros((2), dtype=np.float) |
---|
143 | |
---|
144 | # Unifying vector |
---|
145 | modvec = vector[0]**2+vector[1]**2 |
---|
146 | if modvec != 0 and vector[0] != gen.fillValue: |
---|
147 | vecv[0] = vector[1]/modvec |
---|
148 | vecv[1] = vector[0]/modvec |
---|
149 | |
---|
150 | rotvec = np.matmul(rotmat, vecv) |
---|
151 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
152 | |
---|
153 | rotvector[0] = rotvec[1]*modvec |
---|
154 | rotvector[1] = rotvec[0]*modvec |
---|
155 | else: |
---|
156 | rotvector = vector + 0. |
---|
157 | |
---|
158 | return rotvector |
---|
159 | |
---|
160 | def rotate_polygon_2D(vectors, angle): |
---|
161 | """ Function to rotate 2D plain the vertices of a polygon |
---|
162 | line= matrix of vectors to rotate |
---|
163 | angle= angle to rotate [rad] |
---|
164 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
165 | >>> square[0,:] = [-0.5,-0.5] |
---|
166 | >>> square[1,:] = [0.5,-0.5] |
---|
167 | >>> square[2,:] = [0.5,0.5] |
---|
168 | >>> square[3,:] = [-0.5,0.5] |
---|
169 | >>> rotate_polygon_2D(square, np.pi/4.) |
---|
170 | [[-0.70710678 0. ] |
---|
171 | [ 0. -0.70710678] |
---|
172 | [ 0.70710678 0. ] |
---|
173 | [ 0. 0.70710678]] |
---|
174 | """ |
---|
175 | fname = 'rotate_polygon_2D' |
---|
176 | |
---|
177 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
178 | |
---|
179 | Nvecs = vectors.shape[0] |
---|
180 | for iv in range(Nvecs): |
---|
181 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
182 | |
---|
183 | return rotvecs |
---|
184 | |
---|
185 | def rotate_line2D(line, angle): |
---|
186 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
187 | angle in the plain |
---|
188 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
189 | angle= angle to rotate [rad] |
---|
190 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
191 | [[ 0. 0. ] |
---|
192 | [0.70710678 -0.70710678]] |
---|
193 | """ |
---|
194 | fname = 'rotate_2D' |
---|
195 | |
---|
196 | rotline = np.zeros((2,2), dtype=np.float) |
---|
197 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
198 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
199 | |
---|
200 | return rotline |
---|
201 | |
---|
202 | def rotate_lines2D(lines, angle): |
---|
203 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
204 | by a certain angle in the plain |
---|
205 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
206 | angle= angle to rotate [rad] |
---|
207 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
208 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
209 | >>> square[0,1,:] = [0.5,-0.5] |
---|
210 | >>> square[1,0,:] = [0.5,-0.5] |
---|
211 | >>> square[1,1,:] = [0.5,0.5] |
---|
212 | >>> square[2,0,:] = [0.5,0.5] |
---|
213 | >>> square[2,1,:] = [-0.5,0.5] |
---|
214 | >>> square[3,0,:] = [-0.5,0.5] |
---|
215 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
216 | >>> rotate_lines2D(square, np.pi/4.) |
---|
217 | [[[-0.70710678 0. ] |
---|
218 | [ 0. -0.70710678]] |
---|
219 | |
---|
220 | [[ 0. -0.70710678] |
---|
221 | [ 0.70710678 0. ]] |
---|
222 | |
---|
223 | [[ 0.70710678 0. ] |
---|
224 | [ 0. 0.70710678]] |
---|
225 | |
---|
226 | [[ 0. 0.70710678] |
---|
227 | [-0.70710678 0. ]]] |
---|
228 | """ |
---|
229 | fname = 'rotate_lines2D' |
---|
230 | |
---|
231 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
232 | |
---|
233 | Nlines = lines.shape[0] |
---|
234 | for il in range(Nlines): |
---|
235 | line = np.zeros((2,2), dtype=np.float) |
---|
236 | line[0,:] = lines[il,0,:] |
---|
237 | line[1,:] = lines[il,1,:] |
---|
238 | |
---|
239 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
240 | |
---|
241 | return rotlines |
---|
242 | |
---|
243 | def dist_points(ptA, ptB): |
---|
244 | """ Function to provide the distance between two points |
---|
245 | ptA: coordinates of the point A [yA, xA] |
---|
246 | ptB: coordinates of the point B [yB, xB] |
---|
247 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
248 | 2.82842712475 |
---|
249 | """ |
---|
250 | fname = 'dist_points' |
---|
251 | |
---|
252 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
253 | |
---|
254 | return dist |
---|
255 | |
---|
256 | def mod_vec(vec): |
---|
257 | """ Function to compute the module of a vector |
---|
258 | vec: vector [y, x] |
---|
259 | >>> mod_vec([1., 1.]) |
---|
260 | 1.41421356237 |
---|
261 | """ |
---|
262 | fname = 'mod_vec' |
---|
263 | |
---|
264 | v = np.array(vec, dtype=np.float) |
---|
265 | vv = v*v |
---|
266 | mod = np.sqrt(np.sum(vv[:])) |
---|
267 | |
---|
268 | return mod |
---|
269 | |
---|
270 | def angle_vectors2D(veca, vecb): |
---|
271 | """ Angle between two vectors with sign |
---|
272 | FROM: https://stackoverflow.com/questions/5188561/signed-angle-between-two-3d-vectors-with-same-origin-within-the-same-plane |
---|
273 | veca: angle A [ya, xa] |
---|
274 | vecb: angle B [yb, xb] |
---|
275 | NOTE: angle from A to B |
---|
276 | >>> angle_vectors2D([1.,0.], [0.,1.]) |
---|
277 | 1.57079632679 |
---|
278 | >>> angle_vectors2D([0.,1.], [1.,0.]) |
---|
279 | -1.57079632679 |
---|
280 | """ |
---|
281 | fname = 'angle_vectors2D' |
---|
282 | |
---|
283 | v1 = np.array(veca, dtype=np.float) |
---|
284 | v2 = np.array(vecb, dtype=np.float) |
---|
285 | |
---|
286 | moda = mod_vec(v1) |
---|
287 | modb = mod_vec(v2) |
---|
288 | modab = mod_vec(v1*v2) |
---|
289 | |
---|
290 | vc = np.cross(v1,v2) |
---|
291 | theta = np.arcsin(vc/(moda*modb)) |
---|
292 | |
---|
293 | # Without sign |
---|
294 | #alpha = np.arccos(modab/(moda*modb)) |
---|
295 | |
---|
296 | return theta |
---|
297 | |
---|
298 | def max_coords_poly(polygon): |
---|
299 | """ Function to provide the extremes of the coordinates of a polygon |
---|
300 | polygon: coordinates [Nvertexs, 2] of a polygon |
---|
301 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
302 | >>> square[0,:] = [-0.5,-0.5] |
---|
303 | >>> square[1,:] = [0.5,-0.5] |
---|
304 | >>> square[2,:] = [0.5,0.5] |
---|
305 | >>> square[3,:] = [-0.5,0.5] |
---|
306 | >>> max_coords_poly(square) |
---|
307 | [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 |
---|
308 | """ |
---|
309 | fname = 'max_coords_poly' |
---|
310 | |
---|
311 | # x-coordinate min/max |
---|
312 | nx = np.min(polygon[:,1]) |
---|
313 | xx = np.max(polygon[:,1]) |
---|
314 | |
---|
315 | # y-coordinate min/max |
---|
316 | ny = np.min(polygon[:,0]) |
---|
317 | xy = np.max(polygon[:,0]) |
---|
318 | |
---|
319 | # x/y-coordinate maximum of absolute values |
---|
320 | axx = np.max(np.abs(polygon[:,1])) |
---|
321 | ayx = np.max(np.abs(polygon[:,0])) |
---|
322 | |
---|
323 | # absolute maximum |
---|
324 | xyx = np.max([axx, ayx]) |
---|
325 | |
---|
326 | return [nx, xx], [ny, xy], [ayx, axx], xyx |
---|
327 | |
---|
328 | def mirror_polygon(polygon,axis): |
---|
329 | """ Function to reflex a polygon for a given axis |
---|
330 | polygon: polygon to mirror |
---|
331 | axis: axis at which mirror is located ('x' or 'y') |
---|
332 | """ |
---|
333 | fname = 'mirror_polygon' |
---|
334 | |
---|
335 | reflex = np.zeros(polygon.shape, dtype=np.float) |
---|
336 | |
---|
337 | N = polygon.shape[0] |
---|
338 | if axis == 'x': |
---|
339 | for iv in range(N): |
---|
340 | reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] |
---|
341 | elif axis == 'y': |
---|
342 | for iv in range(N): |
---|
343 | reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] |
---|
344 | |
---|
345 | return reflex |
---|
346 | |
---|
347 | def join_circ_sec(points, radfrac=3., N=200): |
---|
348 | """ Function to join aa series of points by circular segments |
---|
349 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
350 | segments of radii as the radfrac factor of the distance between |
---|
351 | consecutive points) |
---|
352 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
353 | draw the circular segment (3., default) |
---|
354 | N: number of points (200, default) |
---|
355 | """ |
---|
356 | fname = 'join_circ_sec' |
---|
357 | |
---|
358 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
359 | |
---|
360 | # main points |
---|
361 | lpoints = list(points) |
---|
362 | Npts = len(lpoints) |
---|
363 | Np = int(N/(Npts+1)) |
---|
364 | for ip in range(Npts-1): |
---|
365 | p1 = lpoints[ip] |
---|
366 | p2 = lpoints[ip+1] |
---|
367 | dps = dist_points(p1, p2) |
---|
368 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np) |
---|
369 | |
---|
370 | Np2 = N - (Npts-1)*Np |
---|
371 | p1 = lpoints[Npts-1] |
---|
372 | p2 = lpoints[0] |
---|
373 | dps = dist_points(p1, p2) |
---|
374 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2) |
---|
375 | |
---|
376 | return jcirc_sec |
---|
377 | |
---|
378 | def join_circ_sec_rand(points, radfrac=3., Lrand=0.1, arc='short', pos='left', N=200): |
---|
379 | """ Function to join aa series of points by circular segments with random |
---|
380 | perturbations |
---|
381 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
382 | segments of radii as the radfrac factor of the distance between |
---|
383 | consecutive points) |
---|
384 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
385 | draw the circular segment (3., default) |
---|
386 | Lrand: maximum length of the random perturbation to be added perpendicularly to |
---|
387 | the direction of the union line between points (0.1, default) |
---|
388 | arc: type of arc ('short', default) |
---|
389 | pos: position of arc ('left', default) |
---|
390 | N: number of points (200, default) |
---|
391 | """ |
---|
392 | import random |
---|
393 | fname = 'join_circ_sec_rand' |
---|
394 | |
---|
395 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
396 | |
---|
397 | # main points |
---|
398 | lpoints = list(points) |
---|
399 | Npts = len(lpoints) |
---|
400 | Np = int(N/(Npts+1)) |
---|
401 | for ip in range(Npts-1): |
---|
402 | p1 = lpoints[ip] |
---|
403 | p2 = lpoints[ip+1] |
---|
404 | dps = dist_points(p1, p2) |
---|
405 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
406 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, arc, pos, Np) |
---|
407 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
408 | for iip in range(Np*ip,Np*(ip+1)): |
---|
409 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
410 | |
---|
411 | Np2 = N - (Npts-1)*Np |
---|
412 | p1 = lpoints[Npts-1] |
---|
413 | p2 = lpoints[0] |
---|
414 | dps = dist_points(p1, p2) |
---|
415 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
416 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., arc, pos, Np2) |
---|
417 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
418 | for iip in range(Np*(Npts-1),N): |
---|
419 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
420 | |
---|
421 | return jcirc_sec |
---|
422 | |
---|
423 | def write_join_poly(polys, flname='join_polygons.dat'): |
---|
424 | """ Function to write an ASCII file with the combination of polygons |
---|
425 | polys: dictionary with the names of the different polygons |
---|
426 | flname: name of the ASCII file |
---|
427 | """ |
---|
428 | fname = 'write_join_poly' |
---|
429 | |
---|
430 | of = open(flname, 'w') |
---|
431 | |
---|
432 | for polyn in polys.keys(): |
---|
433 | vertices = polys[polyn] |
---|
434 | Npts = vertices.shape[0] |
---|
435 | for ip in range(Npts): |
---|
436 | of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') |
---|
437 | |
---|
438 | of.close() |
---|
439 | |
---|
440 | return |
---|
441 | |
---|
442 | def read_join_poly(flname='join_polygons.dat'): |
---|
443 | """ Function to read an ASCII file with the combination of polygons |
---|
444 | flname: name of the ASCII file |
---|
445 | """ |
---|
446 | fname = 'read_join_poly' |
---|
447 | |
---|
448 | of = open(flname, 'r') |
---|
449 | |
---|
450 | polys = {} |
---|
451 | polyn = '' |
---|
452 | poly = [] |
---|
453 | for line in of: |
---|
454 | if len(line) > 1: |
---|
455 | linevals = line.replace('\n','').split(' ') |
---|
456 | if polyn != linevals[0]: |
---|
457 | if len(poly) > 1: |
---|
458 | polys[polyn] = np.array(poly) |
---|
459 | polyn = linevals[0] |
---|
460 | poly = [] |
---|
461 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
462 | else: |
---|
463 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
464 | |
---|
465 | of.close() |
---|
466 | polys[polyn] = np.array(poly) |
---|
467 | |
---|
468 | return polys |
---|
469 | |
---|
470 | def val_consec_between(valA, valB, val): |
---|
471 | """ Function to provide if a given value is between two consecutive ones |
---|
472 | valA: first value |
---|
473 | valB: second value |
---|
474 | val: value to determine if it is between |
---|
475 | >>> val_consec_between(0.5,1.5,0.8) |
---|
476 | True |
---|
477 | >>> val_consec_between(0.5,1.5.,-0.8) |
---|
478 | False |
---|
479 | >>> val_consec_between(0.5,1.5,0.5) |
---|
480 | True |
---|
481 | >>> val_consec_between(-1.58, -1.4, -1.5) |
---|
482 | True |
---|
483 | >>> val_consec_between(-1.48747753212, -1.57383530044, -1.5) |
---|
484 | False |
---|
485 | """ |
---|
486 | fname = 'val_consec_between' |
---|
487 | |
---|
488 | btw = False |
---|
489 | diffA = valA - val |
---|
490 | diffB = valB - val |
---|
491 | absdA = np.abs(diffA) |
---|
492 | absdB = np.abs(diffB) |
---|
493 | #if (diffA/absdA)* (diffB/absdB) < 0.: btw = True |
---|
494 | # if valA < 0. and valB < 0. and val < 0.: |
---|
495 | # if (valA >= val and valB < val) or (valA > val and valB <= val): btw =True |
---|
496 | # else: |
---|
497 | # if (valA <= val and valB > val) or (valA < val and valB >= val): btw =True |
---|
498 | if (valA <= val and valB > val) or (valA < val and valB >= val): btw =True |
---|
499 | |
---|
500 | return btw |
---|
501 | |
---|
502 | def add_secpolygon_list(listv, iip, eep, polygon): |
---|
503 | """ Function to add a range of points of a polygon into a list |
---|
504 | listv: list into which add values of the polygon |
---|
505 | iip: initial value of the range |
---|
506 | eep: ending value of the range |
---|
507 | polygon: array with the points of the polygon |
---|
508 | """ |
---|
509 | fname = 'add_secpolygon_list' |
---|
510 | |
---|
511 | if eep > iip: |
---|
512 | for ip in range(iip,eep): listv.append(polygon[ip,:]) |
---|
513 | else: |
---|
514 | for ip in range(iip,eep,-1): listv.append(polygon[ip,:]) |
---|
515 | |
---|
516 | return |
---|
517 | |
---|
518 | def rm_consecpt_polygon(polygon): |
---|
519 | """ Function to remove consecutive same point of a polygon |
---|
520 | poly: polygon |
---|
521 | >>> poly = np.ones((5,2), dtype=np.float) |
---|
522 | >>> poly[2,:] = [2., 1.] |
---|
523 | rm_consecpt_polygon(poly) |
---|
524 | [[ 1. 1.] |
---|
525 | [ 2. 1.] |
---|
526 | [ 1. 1.]] |
---|
527 | """ |
---|
528 | fname = 'rm_consecpt_polygon' |
---|
529 | |
---|
530 | newpolygon = [] |
---|
531 | prevpt = polygon[0,:] |
---|
532 | newpolygon.append(prevpt) |
---|
533 | for ip in range(1,polygon.shape[0]): |
---|
534 | if polygon[ip,0] != prevpt[0] or polygon[ip,1] != prevpt[1]: |
---|
535 | prevpt = polygon[ip,:] |
---|
536 | newpolygon.append(prevpt) |
---|
537 | |
---|
538 | newpolygon = np.array(newpolygon) |
---|
539 | |
---|
540 | return newpolygon |
---|
541 | |
---|
542 | def cut_ypolygon(polygon, yval, keep='below', Nadd=20): |
---|
543 | """ Function to cut a polygon from a given value of the y-axis |
---|
544 | polygon: polygon to cut |
---|
545 | yval: value to use to cut the polygon |
---|
546 | keep: part to keep from the height ('below', default) |
---|
547 | 'below': below the height |
---|
548 | 'above': above the height |
---|
549 | Nadd: additional points to add to draw the line (20, default) |
---|
550 | """ |
---|
551 | fname = 'cut_ypolygon' |
---|
552 | |
---|
553 | N = polygon.shape[0] |
---|
554 | availkeeps = ['below', 'above'] |
---|
555 | |
---|
556 | if not gen.searchInlist(availkeeps, keep): |
---|
557 | print errormsg |
---|
558 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
559 | print ' available ones:', availkeeps |
---|
560 | quit(-1) |
---|
561 | |
---|
562 | ipt = None |
---|
563 | ept = None |
---|
564 | |
---|
565 | # There might be more than 1 cut... |
---|
566 | Ncuts = 0 |
---|
567 | icut = [] |
---|
568 | ecut = [] |
---|
569 | ipt = [] |
---|
570 | ept = [] |
---|
571 | |
---|
572 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
573 | type(gen.mamat.mask[1]): |
---|
574 | # Assuming clockwise polygons |
---|
575 | for ip in range(N-1): |
---|
576 | if not polygon.mask[ip,0]: |
---|
577 | eep = ip + 1 |
---|
578 | if eep == N: eep = 0 |
---|
579 | |
---|
580 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
581 | icut.append(ip) |
---|
582 | dx = polygon[eep,1] - polygon[ip,1] |
---|
583 | dy = polygon[eep,0] - polygon[ip,0] |
---|
584 | dd = yval - polygon[ip,0] |
---|
585 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
586 | |
---|
587 | if val_consec_between(polygon[eep,0], polygon[ip,0], yval): |
---|
588 | ecut.append(ip) |
---|
589 | dx = polygon[eep,1] - polygon[ip,1] |
---|
590 | dy = polygon[eep,0] - polygon[ip,0] |
---|
591 | dd = yval - polygon[ip,0] |
---|
592 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
593 | Ncuts = Ncuts + 1 |
---|
594 | else: |
---|
595 | # Assuming clockwise polygons |
---|
596 | for ip in range(N-1): |
---|
597 | eep = ip + 1 |
---|
598 | if eep == N: eep = 0 |
---|
599 | |
---|
600 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
601 | icut.append(ip) |
---|
602 | dx = polygon[eep,1] - polygon[ip,1] |
---|
603 | dy = polygon[eep,0] - polygon[ip,0] |
---|
604 | dd = yval - polygon[ip,0] |
---|
605 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
606 | |
---|
607 | if val_consec_between(polygon[eep,0], polygon[ip,0], yval): |
---|
608 | ecut.append(ip) |
---|
609 | dx = polygon[eep,1] - polygon[ip,1] |
---|
610 | dy = polygon[eep,0] - polygon[ip,0] |
---|
611 | dd = yval - polygon[ip,0] |
---|
612 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
613 | Ncuts = Ncuts + 1 |
---|
614 | |
---|
615 | # Looking for repeated |
---|
616 | newicut = icut + [] |
---|
617 | newecut = ecut + [] |
---|
618 | newipt = ipt + [] |
---|
619 | newept = ept + [] |
---|
620 | newNcuts = Ncuts |
---|
621 | for ic in range(newNcuts-1): |
---|
622 | for ic2 in range(ic+1,newNcuts): |
---|
623 | if newipt[ic] == newipt[ic2]: |
---|
624 | Ncuts = Ncuts-1 |
---|
625 | icut.pop(ic2) |
---|
626 | ecut.pop(ic2) |
---|
627 | ipt.pop(ic2) |
---|
628 | ept.pop(ic2) |
---|
629 | newNcuts = Ncuts + 0 |
---|
630 | |
---|
631 | if ipt is None or ept is None or Ncuts == 0: |
---|
632 | print errormsg |
---|
633 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
634 | else: |
---|
635 | print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
636 | if Ncuts > 1 and keep == 'below': |
---|
637 | # Re-shifting cuts by closest distance. |
---|
638 | xis = [] |
---|
639 | xes = [] |
---|
640 | for ic in range(Ncuts): |
---|
641 | xp = ipt[ic] |
---|
642 | xis.append(xp[1]) |
---|
643 | xp = ept[ic] |
---|
644 | xes.append(xp[1]) |
---|
645 | xs = xis + xes |
---|
646 | xs.sort() |
---|
647 | newicut = icut + [] |
---|
648 | newecut = ecut + [] |
---|
649 | newipt = ipt + [] |
---|
650 | newept = ept + [] |
---|
651 | icut = [] |
---|
652 | ecut = [] |
---|
653 | ipt = [] |
---|
654 | ept = [] |
---|
655 | for xv in xs: |
---|
656 | ic = xis.count(xv) |
---|
657 | if ic != 0: |
---|
658 | icc = xis.index(xv) |
---|
659 | if len(icut) > len(ecut): |
---|
660 | ecut.append(newicut[icc]) |
---|
661 | ept.append(newipt[icc]) |
---|
662 | else: |
---|
663 | icut.append(newicut[icc]) |
---|
664 | ipt.append(newipt[icc]) |
---|
665 | else: |
---|
666 | icc = xes.index(xv) |
---|
667 | if len(icut) > len(ecut): |
---|
668 | ecut.append(newecut[icc]) |
---|
669 | ept.append(newept[icc]) |
---|
670 | else: |
---|
671 | icut.append(newecut[icc]) |
---|
672 | ipt.append(newept[icc]) |
---|
673 | |
---|
674 | # # Re-shifting cuts. 1st icut --> last ecut; 1st ecut as 1st icut; |
---|
675 | # # 2nd icut --> last-1 ecut, .... |
---|
676 | # newicut = icut + [] |
---|
677 | # newecut = ecut + [] |
---|
678 | # newipt = ipt + [] |
---|
679 | # newept = ept + [] |
---|
680 | # for ic in range(Ncuts-1): |
---|
681 | # ecut[ic] = newecut[Ncuts-ic-1] |
---|
682 | # ept[ic] = newept[Ncuts-ic-1] |
---|
683 | # icut[ic+1] = newecut[ic] |
---|
684 | # ipt[ic+1] = newept[ic] |
---|
685 | |
---|
686 | # ecut[Ncuts-1] = newicut[Ncuts-1] |
---|
687 | # ept[Ncuts-1] = newipt[Ncuts-1] |
---|
688 | |
---|
689 | ## print ' yval=', yval, 'cut, ip; ipt ep; ept ________' |
---|
690 | ## for ic in range(Ncuts): |
---|
691 | ## print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
692 | |
---|
693 | # Length of joining lines |
---|
694 | Nadds = [] |
---|
695 | if Ncuts > 1: |
---|
696 | Naddc = (Nadd-Ncuts)/(Ncuts) |
---|
697 | if Naddc < 3: |
---|
698 | print errormsg |
---|
699 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
700 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
701 | quit(-1) |
---|
702 | for ic in range(Ncuts-1): |
---|
703 | Nadds.append(Naddc) |
---|
704 | |
---|
705 | Nadds.append(Nadd-Naddc*(Ncuts-1)) |
---|
706 | else: |
---|
707 | Nadds.append(Nadd) |
---|
708 | |
---|
709 | # Total points cut polygon |
---|
710 | Ntotpts = 0 |
---|
711 | Ncpts = [] |
---|
712 | for ic in range(Ncuts): |
---|
713 | if keep == 'below': |
---|
714 | if ic == 0: |
---|
715 | dpts = icut[ic] + Nadds[ic] + (N - ecut[ic]) |
---|
716 | else: |
---|
717 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
718 | |
---|
719 | # Adding end of the polygon in 'left' keeps |
---|
720 | if ic == Ncuts - 1: dpts = dpts + N-ecut[ic] |
---|
721 | else: |
---|
722 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
723 | |
---|
724 | Ntotpts = Ntotpts + dpts |
---|
725 | Ncpts.append(ecut[ic] - icut[ic]) |
---|
726 | |
---|
727 | cutpolygon = np.ones((Ntotpts+Ncuts,2), dtype=np.float)*gen.fillValue |
---|
728 | |
---|
729 | iipc = 0 |
---|
730 | for ic in range(Ncuts): |
---|
731 | dcpt = Ncpts[ic] |
---|
732 | if keep == 'below': |
---|
733 | if ic == 0: |
---|
734 | cutpolygon[0:icut[ic],:] = polygon[0:icut[ic],:] |
---|
735 | iipc = icut[ic] |
---|
736 | else: |
---|
737 | cutpolygon[iipc:iipc+dcpt-1,:] = polygon[icut[ic]+1:ecut[ic],:] |
---|
738 | iipc = iipc + dcpt -1 |
---|
739 | else: |
---|
740 | cutpolygon[iipc,:] = ipt[ic] |
---|
741 | cutpolygon[iipc:iipc+dcpt-1,:]=polygon[icut[ic]+1:ecut[ic],:] |
---|
742 | iipc = iipc+dcpt-1 |
---|
743 | |
---|
744 | # cutting line |
---|
745 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
746 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
747 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
748 | cutline[0,:] = ipt[ic] |
---|
749 | for ip in range(1,Nadds[ic]-1): |
---|
750 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
751 | cutline[Nadds[ic]-1,:] = ept[ic] |
---|
752 | if keep == 'below': |
---|
753 | if ic == 0: cutpolygon[iipc:iipc+Nadds[ic],:] = cutline |
---|
754 | else: cutpolygon[iipc:iipc+Nadds[ic],:] = cutline[::-1,:] |
---|
755 | iipc = iipc+Nadds[ic] |
---|
756 | if ic == 0: |
---|
757 | cutpolygon[iipc:iipc+N-ecut[ic]-1,:] = polygon[ecut[ic]+1:N,:] |
---|
758 | iipc = iipc + N-ecut[ic]-1 |
---|
759 | cutpolygon[iipc,:] = polygon[0,:] |
---|
760 | iipc = iipc + 1 |
---|
761 | else: |
---|
762 | cutpolygon[iipc:iipc+Nadds[ic],:] = cutline[::-1,:] |
---|
763 | iipc = iipc+Nadds[ic] |
---|
764 | iipc = iipc + 1 |
---|
765 | |
---|
766 | rmpolygon = [] |
---|
767 | Npts = cutpolygon.shape[0] |
---|
768 | if keep == 'below': |
---|
769 | for ip in range(Npts): |
---|
770 | if cutpolygon[ip,0] > yval: |
---|
771 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
772 | else: |
---|
773 | rmpolygon.append(cutpolygon[ip,:]) |
---|
774 | else: |
---|
775 | for ip in range(Npts): |
---|
776 | if cutpolygon[ip,0] < yval: |
---|
777 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
778 | else: |
---|
779 | rmpolygon.append(cutpolygon[ip,:]) |
---|
780 | Npts = len(rmpolygon) |
---|
781 | cutpolygon = np.array(rmpolygon) |
---|
782 | cutpolygon = rm_consecpt_polygon(cutpolygon) |
---|
783 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
784 | |
---|
785 | return Npts, cutpolygon |
---|
786 | |
---|
787 | def cut_xpolygon(polygon, xval, keep='left', Nadd=20): |
---|
788 | """ Function to cut a polygon from a given value of the x-axis |
---|
789 | polygon: polygon to cut |
---|
790 | yval: value to use to cut the polygon |
---|
791 | keep: part to keep from the value ('left', default) |
---|
792 | 'left': left of the value |
---|
793 | 'right': right of the value |
---|
794 | Nadd: additional points to add to draw the line (20, default) |
---|
795 | """ |
---|
796 | fname = 'cut_xpolygon' |
---|
797 | |
---|
798 | N = polygon.shape[0] |
---|
799 | availkeeps = ['left', 'right'] |
---|
800 | |
---|
801 | if not gen.searchInlist(availkeeps, keep): |
---|
802 | print errormsg |
---|
803 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
804 | print ' available ones:', availkeeps |
---|
805 | quit(-1) |
---|
806 | |
---|
807 | ipt = None |
---|
808 | ept = None |
---|
809 | |
---|
810 | # There might be more than 1 cut ... |
---|
811 | icut = [] |
---|
812 | ecut = [] |
---|
813 | ipt = [] |
---|
814 | ept = [] |
---|
815 | Ncuts = 0 |
---|
816 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
817 | type(gen.mamat.mask[1]): |
---|
818 | # Assuming clockwise polygons |
---|
819 | for ip in range(N-1): |
---|
820 | if not polygon.mask[ip,1]: |
---|
821 | eep = ip + 1 |
---|
822 | if eep == N: eep = 0 |
---|
823 | |
---|
824 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
825 | icut.append(ip) |
---|
826 | dx = polygon[eep,1] - polygon[ip,1] |
---|
827 | dy = polygon[eep,0] - polygon[ip,0] |
---|
828 | dd = xval - polygon[ip,1] |
---|
829 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
830 | |
---|
831 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
832 | ecut.append(ip) |
---|
833 | dx = polygon[eep,1] - polygon[ip,1] |
---|
834 | dy = polygon[eep,0] - polygon[ip,0] |
---|
835 | dd = xval - polygon[ip,1] |
---|
836 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
837 | Ncuts = Ncuts + 1 |
---|
838 | else: |
---|
839 | # Assuming clockwise polygons |
---|
840 | for ip in range(N-1): |
---|
841 | eep = ip + 1 |
---|
842 | if eep == N: eep = 0 |
---|
843 | |
---|
844 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
845 | icut.append(ip) |
---|
846 | dx = polygon[eep,1] - polygon[ip,1] |
---|
847 | dy = polygon[eep,0] - polygon[ip,0] |
---|
848 | dd = xval - polygon[ip,1] |
---|
849 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
850 | |
---|
851 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
852 | ecut.append(ip) |
---|
853 | dx = polygon[eep,1] - polygon[ip,1] |
---|
854 | dy = polygon[eep,0] - polygon[ip,0] |
---|
855 | dd = xval - polygon[ip,1] |
---|
856 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
857 | Ncuts = Ncuts + 1 |
---|
858 | |
---|
859 | # Looking for repeated |
---|
860 | newicut = icut + [] |
---|
861 | newecut = ecut + [] |
---|
862 | newipt = ipt + [] |
---|
863 | newept = ept + [] |
---|
864 | newNcuts = Ncuts |
---|
865 | for ic in range(newNcuts-1): |
---|
866 | for ic2 in range(ic+1,newNcuts): |
---|
867 | if newipt[ic] == newipt[ic2]: |
---|
868 | Ncuts = Ncuts-1 |
---|
869 | icut.pop(ic2) |
---|
870 | ecut.pop(ic2) |
---|
871 | ipt.pop(ic2) |
---|
872 | ept.pop(ic2) |
---|
873 | newNcuts = Ncuts + 0 |
---|
874 | |
---|
875 | if ipt is None or ept is None or Ncuts == 0: |
---|
876 | print errormsg |
---|
877 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
878 | else: |
---|
879 | ##print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
880 | if Ncuts >= 1 and keep == 'left': |
---|
881 | # Re-shifting cuts by closest heigth. |
---|
882 | yis = [] |
---|
883 | yes = [] |
---|
884 | for ic in range(Ncuts): |
---|
885 | yp = ipt[ic] |
---|
886 | yis.append(yp[0]) |
---|
887 | yp = ept[ic] |
---|
888 | yes.append(yp[0]) |
---|
889 | ys = yis + yes |
---|
890 | ys.sort() |
---|
891 | newicut = icut + [] |
---|
892 | newecut = ecut + [] |
---|
893 | newipt = ipt + [] |
---|
894 | newept = ept + [] |
---|
895 | icut = [] |
---|
896 | ecut = [] |
---|
897 | ipt = [] |
---|
898 | ept = [] |
---|
899 | for yv in ys: |
---|
900 | ic = yis.count(yv) |
---|
901 | if ic != 0: |
---|
902 | icc = yis.index(yv) |
---|
903 | if len(icut) > len(ecut): |
---|
904 | ecut.append(newicut[icc]) |
---|
905 | ept.append(newipt[icc]) |
---|
906 | else: |
---|
907 | icut.append(newicut[icc]) |
---|
908 | ipt.append(newipt[icc]) |
---|
909 | else: |
---|
910 | icc = yes.index(yv) |
---|
911 | if len(icut) > len(ecut): |
---|
912 | ecut.append(newecut[icc]) |
---|
913 | ept.append(newept[icc]) |
---|
914 | else: |
---|
915 | icut.append(newecut[icc]) |
---|
916 | ipt.append(newept[icc]) |
---|
917 | #print ' xval=', xval, 'cut, ip; ipt ep; ept ________' |
---|
918 | #for ic in range(Ncuts): |
---|
919 | # print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
920 | |
---|
921 | # Length of joining lines |
---|
922 | Nadds = [] |
---|
923 | if Ncuts > 1: |
---|
924 | Naddc = (Nadd-Ncuts)/(Ncuts) |
---|
925 | if Naddc < 3: |
---|
926 | print errormsg |
---|
927 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
928 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
929 | quit(-1) |
---|
930 | for ic in range(Ncuts-1): |
---|
931 | Nadds.append(Naddc) |
---|
932 | |
---|
933 | Nadds.append(Nadd-Naddc*(Ncuts-1)) |
---|
934 | else: |
---|
935 | Nadds.append(Nadd) |
---|
936 | |
---|
937 | # Total points cut polygon |
---|
938 | Ntotpts = 0 |
---|
939 | Ncpts = [] |
---|
940 | for ic in range(Ncuts): |
---|
941 | if keep == 'left': |
---|
942 | if ic == 0: |
---|
943 | dpts = icut[ic] + Nadds[ic] + (N - ecut[ic]) |
---|
944 | else: |
---|
945 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
946 | |
---|
947 | # Adding end of the polygon in 'left' keeps |
---|
948 | if ic == Ncuts - 1: dpts = dpts + N-ecut[ic] |
---|
949 | else: |
---|
950 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
951 | |
---|
952 | Ntotpts = Ntotpts + dpts |
---|
953 | Ncpts.append(ecut[ic] - icut[ic]) |
---|
954 | |
---|
955 | cutpolygon = [] |
---|
956 | iipc = 0 |
---|
957 | for ic in range(Ncuts): |
---|
958 | dcpt = Ncpts[ic] |
---|
959 | cutpolygon.append(ipt[ic]) |
---|
960 | if keep == 'left': |
---|
961 | if ic == 0: |
---|
962 | add_secpolygon_list(cutpolygon,icut[ic]+1,N,polygon) |
---|
963 | add_secpolygon_list(cutpolygon,0,ecut[ic],polygon) |
---|
964 | iipc = icut[ic] |
---|
965 | else: |
---|
966 | add_secpolygon_list(cutpolygon,icut[ic]+1,ecut[ic],polygon) |
---|
967 | else: |
---|
968 | add_secpolygon_list(cutpolygon,icut[ic]+1,ecut[ic],polygon) |
---|
969 | iipc = iipc+dcpt-1 |
---|
970 | # cutting line |
---|
971 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
972 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
973 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
974 | cutline[0,:] = ipt[ic] |
---|
975 | for ip in range(1,Nadds[ic]-1): |
---|
976 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
977 | cutline[Nadds[ic]-1,:] = ept[ic] |
---|
978 | if keep == 'left': |
---|
979 | for ip in range(Nadds[ic]-1,-1,-1): cutpolygon.append(cutline[ip,:]) |
---|
980 | iipc = iipc+Nadds[ic] |
---|
981 | if ic == 0: |
---|
982 | add_secpolygon_list(cutpolygon,ecut[ic],N,polygon) |
---|
983 | cutpolygon.append(polygon[0,:]) |
---|
984 | iipc = iipc + 1 |
---|
985 | else: |
---|
986 | for ip in range(Nadds[ic]-1,-1,-1): cutpolygon.append(cutline[ip,:]) |
---|
987 | iipc = iipc+Nadds[ic] |
---|
988 | cutpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
989 | iipc = iipc + 1 |
---|
990 | |
---|
991 | cutpolygon = np.array(cutpolygon) |
---|
992 | rmpolygon = [] |
---|
993 | Npts = cutpolygon.shape[0] |
---|
994 | if keep == 'left': |
---|
995 | for ip in range(Npts): |
---|
996 | if cutpolygon[ip,1] > xval: |
---|
997 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
998 | else: |
---|
999 | rmpolygon.append(cutpolygon[ip,:]) |
---|
1000 | else: |
---|
1001 | for ip in range(Npts): |
---|
1002 | if cutpolygon[ip,1] < xval: |
---|
1003 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
1004 | else: |
---|
1005 | rmpolygon.append(cutpolygon[ip,:]) |
---|
1006 | |
---|
1007 | rmpolygon = np.array(rmpolygon) |
---|
1008 | cutpolygon = rm_consecpt_polygon(rmpolygon) |
---|
1009 | Npts = cutpolygon.shape[0] |
---|
1010 | |
---|
1011 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
1012 | |
---|
1013 | return Npts, cutpolygon |
---|
1014 | |
---|
1015 | def cut_between_ypolygon(polygon, yval1, yval2, Nadd=20): |
---|
1016 | """ Function to cut a polygon between 2 given value of the y-axis |
---|
1017 | polygon: polygon to cut |
---|
1018 | yval1: first value to use to cut the polygon |
---|
1019 | yval2: first value to use to cut the polygon |
---|
1020 | Nadd: additional points to add to draw the line (20, default) |
---|
1021 | """ |
---|
1022 | fname = 'cut_betwen_ypolygon' |
---|
1023 | |
---|
1024 | N = polygon.shape[0] |
---|
1025 | |
---|
1026 | if yval1 > yval2: |
---|
1027 | print errormsg |
---|
1028 | print ' ' + fname + ': wrong between cut values !!' |
---|
1029 | print ' it is expected yval1 < yval2' |
---|
1030 | print ' values provided yval1: (', yval1, ')> yval2 (', yval2, ')' |
---|
1031 | quit(-1) |
---|
1032 | |
---|
1033 | yvals = [yval1, yval2] |
---|
1034 | |
---|
1035 | ipt = None |
---|
1036 | ept = None |
---|
1037 | |
---|
1038 | cuts = {} |
---|
1039 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
1040 | type(gen.mamat.mask[1]): |
---|
1041 | for ic in range(2): |
---|
1042 | yval = yvals[ic] |
---|
1043 | # There might be more than 1 cut ... |
---|
1044 | icut = [] |
---|
1045 | ecut = [] |
---|
1046 | ipt = [] |
---|
1047 | ept = [] |
---|
1048 | Ncuts = 0 |
---|
1049 | # Assuming clockwise polygons |
---|
1050 | for ip in range(N-1): |
---|
1051 | if not polygon.mask[ip,0]: |
---|
1052 | eep = ip + 1 |
---|
1053 | if eep == N: eep = 0 |
---|
1054 | |
---|
1055 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
1056 | icut.append(ip) |
---|
1057 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1058 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1059 | dd = yval - polygon[ip,0] |
---|
1060 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
1061 | |
---|
1062 | if val_consec_between(polygon[eep,0], polygon[ip,0], yval): |
---|
1063 | ecut.append(ip) |
---|
1064 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1065 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1066 | dd = yval - polygon[ip,0] |
---|
1067 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
1068 | Ncuts = Ncuts + 1 |
---|
1069 | |
---|
1070 | # Looking for repeated |
---|
1071 | newicut = icut + [] |
---|
1072 | newecut = ecut + [] |
---|
1073 | newipt = ipt + [] |
---|
1074 | newept = ept + [] |
---|
1075 | newNcuts = Ncuts |
---|
1076 | for icp in range(newNcuts-1): |
---|
1077 | for ic2 in range(icp+1,newNcuts): |
---|
1078 | if newipt[icp] == newipt[ic2]: |
---|
1079 | Ncuts = Ncuts-1 |
---|
1080 | icut.pop(ic2) |
---|
1081 | ecut.pop(ic2) |
---|
1082 | ipt.pop(ic2) |
---|
1083 | ept.pop(ic2) |
---|
1084 | newNcuts = Ncuts + 0 |
---|
1085 | |
---|
1086 | cuts[ic] = [icut, ecut, ipt, ept, Ncuts] |
---|
1087 | else: |
---|
1088 | for ic in range(2): |
---|
1089 | yval = yvals[ic] |
---|
1090 | # There might be more than 1 cut ... |
---|
1091 | icut = [] |
---|
1092 | ecut = [] |
---|
1093 | ipt = [] |
---|
1094 | ept = [] |
---|
1095 | Ncuts = 0 |
---|
1096 | # Assuming clockwise polygons |
---|
1097 | for ip in range(N-1): |
---|
1098 | eep = ip + 1 |
---|
1099 | if eep == N: eep = 0 |
---|
1100 | |
---|
1101 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
1102 | icut.append(ip) |
---|
1103 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1104 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1105 | dd = yval - polygon[ip,0] |
---|
1106 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
1107 | |
---|
1108 | if val_consec_between(polygon[eep,0], polygon[ip,0], yval): |
---|
1109 | ecut.append(ip) |
---|
1110 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1111 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1112 | dd = yval - polygon[ip,0] |
---|
1113 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
1114 | Ncuts = Ncuts + 1 |
---|
1115 | # Looking for repeated |
---|
1116 | newicut = icut + [] |
---|
1117 | newecut = ecut + [] |
---|
1118 | newipt = ipt + [] |
---|
1119 | newept = ept + [] |
---|
1120 | newNcuts = Ncuts |
---|
1121 | for icp in range(newNcuts-1): |
---|
1122 | for ic2 in range(icp+1,newNcuts): |
---|
1123 | if newipt[icp] == newipt[ic2]: |
---|
1124 | Ncuts = Ncuts-1 |
---|
1125 | icut.pop(ic2) |
---|
1126 | ecut.pop(ic2) |
---|
1127 | ipt.pop(ic2) |
---|
1128 | ept.pop(ic2) |
---|
1129 | newNcuts = Ncuts + 0 |
---|
1130 | |
---|
1131 | cuts[ic] = [icut, ecut, ipt, ept, Ncuts] |
---|
1132 | |
---|
1133 | Naddlines = {} |
---|
1134 | for icc in range(2): |
---|
1135 | cutv = cuts[icc] |
---|
1136 | Ncuts = cutv[4] |
---|
1137 | # Length of joining lines |
---|
1138 | Nadds = [] |
---|
1139 | if Ncuts > 1: |
---|
1140 | Naddc = (Nadd-Ncuts)/(Ncuts) |
---|
1141 | if Naddc < 3: |
---|
1142 | print errormsg |
---|
1143 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
1144 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
1145 | quit(-1) |
---|
1146 | for ic in range(Ncuts-1): |
---|
1147 | Nadds.append(Naddc) |
---|
1148 | |
---|
1149 | Nadds.append(Nadd-Naddc*(Ncuts-1)) |
---|
1150 | else: |
---|
1151 | Nadds.append(Nadd) |
---|
1152 | |
---|
1153 | # Total points cut polygon |
---|
1154 | Ntotpts = 0 |
---|
1155 | Ncpts = [] |
---|
1156 | for ic in range(Ncuts): |
---|
1157 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
1158 | |
---|
1159 | Ntotpts = Ntotpts + dpts |
---|
1160 | Ncpts.append(ecut[ic] - icut[ic]) |
---|
1161 | |
---|
1162 | Naddlines[icc] = [Nadds, Ntotpts, Ncpts] |
---|
1163 | |
---|
1164 | cutv1 = cuts[0] |
---|
1165 | addv1 = Naddlines[0] |
---|
1166 | Nadds1 = addv1[0] |
---|
1167 | Ncuts1 = cutv1[4] |
---|
1168 | |
---|
1169 | cutv2 = cuts[1] |
---|
1170 | addv2 = Naddlines[1] |
---|
1171 | Nadds2 = addv2[0] |
---|
1172 | Ncuts2 = cutv2[4] |
---|
1173 | |
---|
1174 | if Ncuts1 != Ncuts2: |
---|
1175 | print errormsg |
---|
1176 | print ' ' + fname + ": different number of cuts !!" |
---|
1177 | print ' yval1:', yval1, 'Ncuts=', Ncuts1 |
---|
1178 | print ' yval2:', yval2, 'Ncuts=', Ncuts2 |
---|
1179 | print ' I am not prepare to deal with it' |
---|
1180 | quit(-1) |
---|
1181 | #else: |
---|
1182 | # print ' ' + fname + ' _______' |
---|
1183 | # print ' yval1:', yval1, 'Ncuts=', Ncuts1 |
---|
1184 | # print ' yval2:', yval2, 'Ncuts=', Ncuts2 |
---|
1185 | |
---|
1186 | icut1 = cutv1[0] |
---|
1187 | ecut1 = cutv1[1] |
---|
1188 | ipt1 = cutv1[2] |
---|
1189 | ept1 = cutv1[3] |
---|
1190 | icut2 = cutv2[0] |
---|
1191 | ecut2 = cutv2[1] |
---|
1192 | ipt2 = cutv2[2] |
---|
1193 | ept2 = cutv2[3] |
---|
1194 | |
---|
1195 | # Looking for pairs of cuts. Grouping for smallest x distance between initial |
---|
1196 | # points of each cut |
---|
1197 | cutpolygons = [] |
---|
1198 | for iic1 in range(Ncuts1): |
---|
1199 | iip = 0 |
---|
1200 | cutpolygon = [] |
---|
1201 | ic1 = icut1[iic1] |
---|
1202 | ec1 = ecut1[iic1] |
---|
1203 | ip1 = ipt1[iic1] |
---|
1204 | ep1 = ept1[iic1] |
---|
1205 | |
---|
1206 | ipx2s = [] |
---|
1207 | for ip in range(Ncuts2): |
---|
1208 | ip2 = ipt2[ip] |
---|
1209 | ipx2s.append(ip2[1]) |
---|
1210 | dxps = ipx2s - ip1[1] |
---|
1211 | dxps = np.where(dxps < 0., gen.fillValueF, dxps) |
---|
1212 | ndxps = np.min(dxps) |
---|
1213 | iic12 = gen.index_vec(dxps,ndxps) |
---|
1214 | |
---|
1215 | ic2 = icut2[iic12] |
---|
1216 | ec2 = ecut2[iic12] |
---|
1217 | ip2 = ipt2[iic12] |
---|
1218 | ep2 = ept2[iic12] |
---|
1219 | |
---|
1220 | #print 'Lluis iic1', iic1, 'ic1', ic1, 'ec1', ec1, 'ipt1', ip1, 'ept1', ep1, 'Nadds1', Nadds1 |
---|
1221 | #print ' iic12', iic12, 'ic2', ic2, 'ec2', ec2, 'ipt2', ip2, 'ept2', ep2, 'Nadds2', Nadds2 |
---|
1222 | |
---|
1223 | cutpolygon.append(ip1) |
---|
1224 | for ip in range(ic1+1,ic2-1): |
---|
1225 | cutpolygon.append(polygon[ip,:]) |
---|
1226 | iip = ic2-ic1 |
---|
1227 | # cutting line 1 |
---|
1228 | Nadd2 = Nadds1[iic1] |
---|
1229 | cutlines = np.zeros((Nadd2,2), dtype=np.float) |
---|
1230 | dx = (ep2[1] - ip2[1])/(Nadd2-2) |
---|
1231 | dy = (ep2[0] - ip2[0])/(Nadd2-2) |
---|
1232 | cutlines[0,:] = ip2 |
---|
1233 | for ip in range(1,Nadd2-1): |
---|
1234 | cutlines[ip,:] = ip2 + np.array([dy*ip,dx*ip]) |
---|
1235 | cutlines[Nadd2-1,:] = ep2 |
---|
1236 | for ip in range(Nadd2): cutpolygon.append(cutlines[ip,:]) |
---|
1237 | iip = iip + Nadd2 |
---|
1238 | |
---|
1239 | for ip in range(ec2,ec1): |
---|
1240 | cutpolygon.append(polygon[ip,:]) |
---|
1241 | iip = iip + ec1-ec2 |
---|
1242 | # cutting line 2 |
---|
1243 | Nadd2 = Nadds2[iic12] |
---|
1244 | cutlines = np.zeros((Nadd2,2), dtype=np.float) |
---|
1245 | dx = (ep1[1] - ip1[1])/(Nadd2-2) |
---|
1246 | dy = (ep1[0] - ip1[0])/(Nadd2-2) |
---|
1247 | cutlines[0,:] = ip1 |
---|
1248 | for ip in range(1,Nadd2-1): |
---|
1249 | cutlines[ip,:] = ip1 + np.array([dy*ip,dx*ip]) |
---|
1250 | cutlines[Nadd2-1,:] = ep1 |
---|
1251 | for ip in range(Nadd2-1,0,-1): |
---|
1252 | cutpolygon.append(cutlines[ip,:]) |
---|
1253 | |
---|
1254 | cutpolygon.append(ip1) |
---|
1255 | |
---|
1256 | cutpolygon.append([gen.fillValueF,gen.fillValueF]) |
---|
1257 | if len(cutpolygons) == 0: cutpolygons = cutpolygon |
---|
1258 | else: cutpolygons = cutpolygons + cutpolygon |
---|
1259 | |
---|
1260 | cutpolygons = np.array(cutpolygons) |
---|
1261 | cutpolygons = rm_consecpt_polygon(cutpolygons) |
---|
1262 | cutpolygons = ma.masked_equal(cutpolygons, gen.fillValueF) |
---|
1263 | |
---|
1264 | Npts = cutpolygons.shape[0] |
---|
1265 | |
---|
1266 | return Npts, cutpolygons |
---|
1267 | |
---|
1268 | def cut_between_xpolygon(polygon, xval1, xval2, Nadd=20): |
---|
1269 | """ Function to cut a polygon between 2 given value of the x-axis |
---|
1270 | polygon: polygon to cut |
---|
1271 | xval1: first value to use to cut the polygon |
---|
1272 | xval2: first value to use to cut the polygon |
---|
1273 | Nadd: additional points to add to draw the line (20, default) |
---|
1274 | """ |
---|
1275 | fname = 'cut_betwen_xpolygon' |
---|
1276 | |
---|
1277 | N = polygon.shape[0] |
---|
1278 | |
---|
1279 | if xval1 > xval2: |
---|
1280 | print errormsg |
---|
1281 | print ' ' + fname + ': wrong between cut values !!' |
---|
1282 | print ' it is expected xval1 < xval2' |
---|
1283 | print ' values provided xval1: (', xval1, ')> xval2 (', xval2, ')' |
---|
1284 | quit(-1) |
---|
1285 | |
---|
1286 | xvals = [xval1, xval2] |
---|
1287 | |
---|
1288 | ipt = None |
---|
1289 | ept = None |
---|
1290 | |
---|
1291 | cuts = {} |
---|
1292 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
1293 | type(gen.mamat.mask[1]): |
---|
1294 | for ic in range(2): |
---|
1295 | xval = xvals[ic] |
---|
1296 | # There might be more than 1 cut ... |
---|
1297 | icut = [] |
---|
1298 | ecut = [] |
---|
1299 | ipt = [] |
---|
1300 | ept = [] |
---|
1301 | Ncuts = 0 |
---|
1302 | # Assuming clockwise polygons |
---|
1303 | for ip in range(N-1): |
---|
1304 | if not polygon.mask[ip,0]: |
---|
1305 | eep = ip + 1 |
---|
1306 | if eep == N: eep = 0 |
---|
1307 | |
---|
1308 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
1309 | icut.append(ip) |
---|
1310 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1311 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1312 | dd = xval - polygon[ip,1] |
---|
1313 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
1314 | |
---|
1315 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
1316 | ecut.append(ip) |
---|
1317 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1318 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1319 | dd = xval - polygon[ip,1] |
---|
1320 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
1321 | Ncuts = Ncuts + 1 |
---|
1322 | |
---|
1323 | # Looking for repeated |
---|
1324 | newicut = icut + [] |
---|
1325 | newecut = ecut + [] |
---|
1326 | newipt = ipt + [] |
---|
1327 | newept = ept + [] |
---|
1328 | newNcuts = Ncuts |
---|
1329 | for icp in range(newNcuts-1): |
---|
1330 | for ic2 in range(icp+1,newNcuts): |
---|
1331 | if newipt[icp] == newipt[ic2]: |
---|
1332 | Ncuts = Ncuts-1 |
---|
1333 | icut.pop(ic2) |
---|
1334 | ecut.pop(ic2) |
---|
1335 | ipt.pop(ic2) |
---|
1336 | ept.pop(ic2) |
---|
1337 | newNcuts = Ncuts + 0 |
---|
1338 | |
---|
1339 | cuts[ic] = [icut, ecut, ipt, ept, Ncuts] |
---|
1340 | else: |
---|
1341 | for ic in range(2): |
---|
1342 | xval = xvals[ic] |
---|
1343 | # There might be more than 1 cut ... |
---|
1344 | icut = [] |
---|
1345 | ecut = [] |
---|
1346 | ipt = [] |
---|
1347 | ept = [] |
---|
1348 | Ncuts = 0 |
---|
1349 | # Assuming clockwise polygons |
---|
1350 | for ip in range(N-1): |
---|
1351 | eep = ip + 1 |
---|
1352 | if eep == N: eep = 0 |
---|
1353 | |
---|
1354 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
1355 | icut.append(ip) |
---|
1356 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1357 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1358 | dd = xval - polygon[ip,1] |
---|
1359 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
1360 | |
---|
1361 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
1362 | ecut.append(ip) |
---|
1363 | dx = polygon[eep,1] - polygon[ip,1] |
---|
1364 | dy = polygon[eep,0] - polygon[ip,0] |
---|
1365 | dd = xval - polygon[ip,1] |
---|
1366 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
1367 | Ncuts = Ncuts + 1 |
---|
1368 | # Looking for repeated |
---|
1369 | newicut = icut + [] |
---|
1370 | newecut = ecut + [] |
---|
1371 | newipt = ipt + [] |
---|
1372 | newept = ept + [] |
---|
1373 | newNcuts = Ncuts |
---|
1374 | for icp in range(newNcuts-1): |
---|
1375 | for ic2 in range(icp+1,newNcuts): |
---|
1376 | if newipt[icp] == newipt[ic2]: |
---|
1377 | Ncuts = Ncuts-1 |
---|
1378 | icut.pop(ic2) |
---|
1379 | ecut.pop(ic2) |
---|
1380 | ipt.pop(ic2) |
---|
1381 | ept.pop(ic2) |
---|
1382 | newNcuts = Ncuts + 0 |
---|
1383 | |
---|
1384 | cuts[ic] = [icut, ecut, ipt, ept, Ncuts] |
---|
1385 | |
---|
1386 | for iic in range(1): |
---|
1387 | cutvs = cuts[iic] |
---|
1388 | icut = cutvs[0] |
---|
1389 | ecut = cutvs[1] |
---|
1390 | ipt = cutvs[2] |
---|
1391 | ept = cutvs[3] |
---|
1392 | Ncuts = cutvs[4] |
---|
1393 | if Ncuts > 0: |
---|
1394 | # Re-shifting cuts by closest heigth. |
---|
1395 | yis = [] |
---|
1396 | yes = [] |
---|
1397 | for ic in range(Ncuts): |
---|
1398 | yp = ipt[ic] |
---|
1399 | yis.append(yp[0]) |
---|
1400 | yp = ept[ic] |
---|
1401 | yes.append(yp[0]) |
---|
1402 | ys = yis + yes |
---|
1403 | ys.sort() |
---|
1404 | newicut = icut + [] |
---|
1405 | newecut = ecut + [] |
---|
1406 | newipt = ipt + [] |
---|
1407 | newept = ept + [] |
---|
1408 | icut = [] |
---|
1409 | ecut = [] |
---|
1410 | ipt = [] |
---|
1411 | ept = [] |
---|
1412 | for yv in ys: |
---|
1413 | ic = yis.count(yv) |
---|
1414 | if ic != 0: |
---|
1415 | icc = yis.index(yv) |
---|
1416 | if len(icut) > len(ecut): |
---|
1417 | ecut.append(newicut[icc]) |
---|
1418 | ept.append(newipt[icc]) |
---|
1419 | else: |
---|
1420 | icut.append(newicut[icc]) |
---|
1421 | ipt.append(newipt[icc]) |
---|
1422 | else: |
---|
1423 | icc = yes.index(yv) |
---|
1424 | if len(icut) > len(ecut): |
---|
1425 | ecut.append(newecut[icc]) |
---|
1426 | ept.append(newept[icc]) |
---|
1427 | else: |
---|
1428 | icut.append(newecut[icc]) |
---|
1429 | ipt.append(newept[icc]) |
---|
1430 | |
---|
1431 | cuts[iic] = [icut, ecut, ipt, ept, Ncuts] |
---|
1432 | |
---|
1433 | Naddlines = {} |
---|
1434 | for icc in range(2): |
---|
1435 | cutv = cuts[icc] |
---|
1436 | Ncuts = cutv[4] |
---|
1437 | if Ncuts == 0: |
---|
1438 | print errormsg |
---|
1439 | print ' ' + fname + ": no cuts for xval=", xvals[icc], '!!' |
---|
1440 | quit(-1) |
---|
1441 | #print ' icc:', icc, 'ic ec ipt ept _______' |
---|
1442 | #for ic in range(Ncuts): |
---|
1443 | # print ic, ':', cutv[0][ic], cutv[1][ic], cutv[2][ic], cutv[3][ic] |
---|
1444 | |
---|
1445 | # Length of joining lines |
---|
1446 | Nadds = [] |
---|
1447 | if Ncuts > 1: |
---|
1448 | Naddc = (Nadd-Ncuts)/(Ncuts) |
---|
1449 | if Naddc < 3: |
---|
1450 | print errormsg |
---|
1451 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
1452 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
1453 | quit(-1) |
---|
1454 | for ic in range(Ncuts-1): |
---|
1455 | Nadds.append(Naddc) |
---|
1456 | |
---|
1457 | Nadds.append(Nadd-Naddc*(Ncuts-1)) |
---|
1458 | else: |
---|
1459 | Nadds.append(Nadd) |
---|
1460 | |
---|
1461 | Naddlines[icc] = Nadds |
---|
1462 | |
---|
1463 | # sides |
---|
1464 | sides = {} |
---|
1465 | for iic in range(2): |
---|
1466 | cutvs = cuts[iic] |
---|
1467 | icut = cutvs[0] |
---|
1468 | ecut = cutvs[1] |
---|
1469 | ipt = cutvs[2] |
---|
1470 | ept = cutvs[3] |
---|
1471 | Ncuts = cutvs[4] |
---|
1472 | Nadds = Naddlines[iic] |
---|
1473 | cutpolygon = [] |
---|
1474 | # left side |
---|
1475 | if iic == 0: |
---|
1476 | for ic in range(Ncuts-1): |
---|
1477 | cutpolygon.append(ipt[ic]) |
---|
1478 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
1479 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
1480 | for ip in range(1,Nadds[ic]-1): |
---|
1481 | cutpolygon.append([ipt[ic][0]+dy*ip, ipt[ic][1]+dx*ip]) |
---|
1482 | cutpolygon.append(ept[ic]) |
---|
1483 | for ip in range(ecut[ic]+1,icut[ic+1]): cutpolygon.append(polygon[ip,:]) |
---|
1484 | |
---|
1485 | ic = Ncuts-1 |
---|
1486 | cutpolygon.append(ipt[ic]) |
---|
1487 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
1488 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
1489 | for ip in range(1,Nadds[ic]-1): |
---|
1490 | cutpolygon.append([ipt[ic][0]+dy*ip, ipt[ic][1]+dx*ip]) |
---|
1491 | # right side |
---|
1492 | else: |
---|
1493 | for ic in range(Ncuts-1): |
---|
1494 | cutpolygon.append(ipt[ic]) |
---|
1495 | |
---|
1496 | # line |
---|
1497 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
1498 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
1499 | for ip in range(1,Nadds[ic]-1): |
---|
1500 | cutpolygon.append([ipt[ic][0]+dy*ip, ipt[ic][1]+dx*ip]) |
---|
1501 | cutpolygon.append(ept[ic]) |
---|
1502 | for ip in range(ecut[ic],icut[ic+1]): cutpolygon.append(polygon[ip,:]) |
---|
1503 | |
---|
1504 | ic = Ncuts-1 |
---|
1505 | cutpolygon.append(ipt[ic]) |
---|
1506 | # line |
---|
1507 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
1508 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
1509 | for ip in range(1,Nadds[ic]-1): |
---|
1510 | cutpolygon.append([ipt[ic][0]+dy*ip, ipt[ic][1]+dx*ip]) |
---|
1511 | cutpolygon.append(ept[ic]) |
---|
1512 | sides[iic] = cutpolygon |
---|
1513 | |
---|
1514 | # joining sides by e1[Ncuts1-1] --> i2[0]; e2[Ncuts2-1] --> i1[0] |
---|
1515 | cutv1 = cuts[0] |
---|
1516 | Ncuts1 = cutv1[4] |
---|
1517 | ec1 = cutv1[1][np.max([0,Ncuts1-1])] |
---|
1518 | ic1 = cutv1[0][0] |
---|
1519 | ept1 = cutv1[3][np.max([0,Ncuts1-1])] |
---|
1520 | ipt1 = cutv1[2][0] |
---|
1521 | |
---|
1522 | cutv2 = cuts[1] |
---|
1523 | Ncuts2 = cutv2[4] |
---|
1524 | ec2 = cutv2[1][np.max([0,Ncuts2-1])] |
---|
1525 | ic2 = cutv2[0][0] |
---|
1526 | ept2 = cutv2[3][np.max([0,Ncuts2-1])] |
---|
1527 | ipt2 = cutv2[2][0] |
---|
1528 | |
---|
1529 | finalcutpolygon = sides[0] |
---|
1530 | for ip in range(ec1+1,ic2): finalcutpolygon.append(polygon[ip,:]) |
---|
1531 | finalcutpolygon = finalcutpolygon + sides[1] |
---|
1532 | for ip in range(ec2+1,ic1): finalcutpolygon.append(polygon[ip,:]) |
---|
1533 | finalcutpolygon.append(ipt1) |
---|
1534 | |
---|
1535 | finalcutpolygon = np.array(finalcutpolygon) |
---|
1536 | |
---|
1537 | finalcutpolygon = rm_consecpt_polygon(finalcutpolygon) |
---|
1538 | finalcutpolygon = ma.masked_equal(finalcutpolygon, gen.fillValueF) |
---|
1539 | |
---|
1540 | Npts = finalcutpolygon.shape[0] |
---|
1541 | |
---|
1542 | return Npts, finalcutpolygon |
---|
1543 | |
---|
1544 | def pile_polygons(polyns, polygons): |
---|
1545 | """ Function to pile polygons one over the following one |
---|
1546 | polyns: ordered list of polygons. First over all. last below all |
---|
1547 | polygons: dictionary with the polygons |
---|
1548 | >>> pns = ['sqra', 'sqrb'] |
---|
1549 | >>> polya = np.array([[-0.5, -0.75], [0.5, -0.75], [0.5, 0.75], [-0.5, 0.75]]) |
---|
1550 | >>> polyb = np.array([[-0.75, -0.5], [0.75, -0.5], [0.75, 0.5], [-0.75, 0.5]]) |
---|
1551 | >>> plgs = {'sqra': polya, 'sqrb': polyb} |
---|
1552 | >>> pile_polygons(pns, plgs) |
---|
1553 | # sqrb : |
---|
1554 | [[-0.75 -0.5] |
---|
1555 | [-0.5 -0.5] |
---|
1556 | [-- --] |
---|
1557 | [0.5 -0.5] |
---|
1558 | [0.75 -0.5] |
---|
1559 | [0.75 0.5] |
---|
1560 | [0.5 0.5] |
---|
1561 | [-- --] |
---|
1562 | [-0.5 0.5] |
---|
1563 | [-0.75 0.5] |
---|
1564 | [-0.75 -0.5]] |
---|
1565 | # sqra : |
---|
1566 | [[-0.5 -0.75] |
---|
1567 | [ 0.5 -0.75] |
---|
1568 | [ 0.5 0.75] |
---|
1569 | [-0.5 0.75] |
---|
1570 | [-0.5 -0.75]] |
---|
1571 | """ |
---|
1572 | fname = 'pile_polygons' |
---|
1573 | pilepolygons = dict(polygons) |
---|
1574 | Npolys = len(polyns) |
---|
1575 | |
---|
1576 | for ipolyp in range(Npolys-2,-1,-1): |
---|
1577 | polyn = polyns[ipolyp] |
---|
1578 | poly = pilepolygons[polyn] |
---|
1579 | Npts = poly.shape[0] |
---|
1580 | for ipolyi in range(ipolyp+1,Npolys,1): |
---|
1581 | ipolyn = polyns[ipolyi] |
---|
1582 | #print ' Lluis ' + polyn + ' above ' + ipolyn |
---|
1583 | ipoly = pilepolygons[ipolyn] |
---|
1584 | iNpts = ipoly.shape[0] |
---|
1585 | newipoly = [] |
---|
1586 | |
---|
1587 | Nint, inti, intp, pts = fsci.module_scientific.crossingpoints_polys( \ |
---|
1588 | nvertexa=iNpts, nvertexb=Npts, nvertexab=iNpts*Npts, polya=ipoly, \ |
---|
1589 | polyb=poly) |
---|
1590 | # We're in C-mode ! |
---|
1591 | inti = inti-1 |
---|
1592 | intp = intp-1 |
---|
1593 | |
---|
1594 | # Re-constructing below polygon looking for respective crossings |
---|
1595 | linti = list(inti) |
---|
1596 | for ip in range(iNpts): |
---|
1597 | iip1 = ip+1 |
---|
1598 | if ip == iNpts-1: iip1 = 0 |
---|
1599 | #print ip, ipoly[ip,:], ':', ipoly[iip1,:] |
---|
1600 | Nc = linti.count(ip) |
---|
1601 | ldists = [] |
---|
1602 | ddists = {} |
---|
1603 | if Nc > 0: |
---|
1604 | iic = gen.multi_index_vec(inti,ip) |
---|
1605 | mindist = 1000000. |
---|
1606 | # Sorting from distance respect the vertex ip |
---|
1607 | for ic in range(Nc): |
---|
1608 | ddists[iic[ic]] = dist_points(ipoly[ip,:], pts[iic[ic],:]) |
---|
1609 | ldists.append(ddists[iic[ic]]) |
---|
1610 | #print ' ', ic, ';', iic[ic], '=', pts[iic[ic],:], ddists[iic[ic]] |
---|
1611 | ldists.sort() |
---|
1612 | #print ' ldists', ldists |
---|
1613 | newipoly.append(ipoly[ip,:]) |
---|
1614 | for ic in range(Nc): |
---|
1615 | iic = gen.dictionary_key(ddists,ldists[ic]) |
---|
1616 | newipoly.append(pts[iic,:]) |
---|
1617 | #print ' ', ic, '|', iic, ';', pts[iic,:] |
---|
1618 | if ic < Nc-1: newipoly.append([gen.fillValueF, gen.fillValueF]) |
---|
1619 | newipoly.append(ipoly[iip1,:]) |
---|
1620 | |
---|
1621 | else: |
---|
1622 | newipoly.append(ipoly[ip,:]) |
---|
1623 | |
---|
1624 | newipoly = np.array(newipoly) |
---|
1625 | pilepolygons[polyns[Npolys-1]] = rm_consecpt_polygon(newipoly) |
---|
1626 | |
---|
1627 | for polyn in polyns: |
---|
1628 | poly = pilepolygons[polyn] |
---|
1629 | poly = ma.masked_equal(poly, gen.fillValueF) |
---|
1630 | pilepolygons[polyn] = poly |
---|
1631 | |
---|
1632 | return pilepolygons |
---|
1633 | |
---|
1634 | ####### ###### ##### #### ### ## # |
---|
1635 | # Shapes/objects |
---|
1636 | |
---|
1637 | def surface_sphere(radii,Npts): |
---|
1638 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
1639 | radii: radii of the sphere |
---|
1640 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
1641 | """ |
---|
1642 | fname = 'surface_sphere' |
---|
1643 | |
---|
1644 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
1645 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
1646 | for ia in range(Npts): |
---|
1647 | alpha = ia*2*np.pi/(Npts-1) |
---|
1648 | for ib in range(Npts/2): |
---|
1649 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
1650 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
1651 | for ib in range(Npts/2): |
---|
1652 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
1653 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
1654 | |
---|
1655 | return sphereup, spheredown |
---|
1656 | |
---|
1657 | def ellipse_polar(c, a, b, Nang=100): |
---|
1658 | """ Function to determine an ellipse from its center and polar coordinates |
---|
1659 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
1660 | c= coordinates of the center |
---|
1661 | a= distance major axis |
---|
1662 | b= distance minor axis |
---|
1663 | Nang= number of angles to use |
---|
1664 | """ |
---|
1665 | fname = 'ellipse_polar' |
---|
1666 | |
---|
1667 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
1668 | |
---|
1669 | dtheta = 2*np.pi/(Nang-1) |
---|
1670 | |
---|
1671 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
1672 | for ia in range(Nang): |
---|
1673 | theta = dtheta*ia |
---|
1674 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
1675 | x = rad*np.cos(theta) |
---|
1676 | y = rad*np.sin(theta) |
---|
1677 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
1678 | |
---|
1679 | return ellipse |
---|
1680 | |
---|
1681 | def hyperbola_polar(a, b, Nang=100): |
---|
1682 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
1683 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
1684 | x^2/a^2 - y^2/b^2 = 1 |
---|
1685 | a= x-parameter |
---|
1686 | y= y-parameter |
---|
1687 | Nang= number of angles to use |
---|
1688 | DOES NOT WORK!!!! |
---|
1689 | """ |
---|
1690 | fname = 'hyperbola_polar' |
---|
1691 | |
---|
1692 | dtheta = 2.*np.pi/(Nang-1) |
---|
1693 | |
---|
1694 | # Positive branch |
---|
1695 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
1696 | for ia in range(Nang): |
---|
1697 | theta = dtheta*ia |
---|
1698 | x = a*np.cosh(theta) |
---|
1699 | y = b*np.sinh(theta) |
---|
1700 | hyperbola_p[ia,:] = [y,x] |
---|
1701 | |
---|
1702 | # Negative branch |
---|
1703 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
1704 | for ia in range(Nang): |
---|
1705 | theta = dtheta*ia |
---|
1706 | x = -a*np.cosh(theta) |
---|
1707 | y = b*np.sinh(theta) |
---|
1708 | hyperbola_n[ia,:] = [y,x] |
---|
1709 | |
---|
1710 | return hyperbola_p, hyperbola_n |
---|
1711 | |
---|
1712 | def circ_sec(ptA, ptB, radii, arc='short', pos='left', Nang=100): |
---|
1713 | """ Function union of point A and B by a section of a circle |
---|
1714 | ptA= coordinates od the point A [yA, xA] |
---|
1715 | ptB= coordinates od the point B [yB, xB] |
---|
1716 | radii= radi of the circle to use to unite the points |
---|
1717 | arc= which arc to be used ('short', default) |
---|
1718 | 'short': shortest angle between points |
---|
1719 | 'long': largest angle between points |
---|
1720 | pos= orientation of the arc following clockwise union of points ('left', default) |
---|
1721 | 'left': to the left of union |
---|
1722 | 'right': to the right of union |
---|
1723 | Nang= amount of angles to use |
---|
1724 | """ |
---|
1725 | fname = 'circ_sec' |
---|
1726 | availarc = ['short', 'long'] |
---|
1727 | availpos = ['left', 'right'] |
---|
1728 | |
---|
1729 | distAB = dist_points(ptA,ptB) |
---|
1730 | |
---|
1731 | if distAB > radii: |
---|
1732 | print errormsg |
---|
1733 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
1734 | "between points !!" |
---|
1735 | print ' distance between points:', distAB |
---|
1736 | quit(-1) |
---|
1737 | |
---|
1738 | # Coordinate increments |
---|
1739 | dAB = np.abs(ptA-ptB) |
---|
1740 | |
---|
1741 | # angle of the circular section joining points |
---|
1742 | alpha = 2.*np.arcsin((distAB/2.)/radii) |
---|
1743 | |
---|
1744 | # center along coincident bisection of the union |
---|
1745 | xcc = -radii |
---|
1746 | ycc = 0. |
---|
1747 | |
---|
1748 | # Getting the arc of the circle at the x-axis |
---|
1749 | if arc == 'short': |
---|
1750 | dalpha = alpha/(Nang-1) |
---|
1751 | elif arc == 'long': |
---|
1752 | dalpha = (2.*np.pi - alpha)/(Nang-1) |
---|
1753 | else: |
---|
1754 | print errormsg |
---|
1755 | print ' ' + fname + ": arc '" + arc + "' not ready !!" |
---|
1756 | print ' available ones:', availarc |
---|
1757 | quit(-1) |
---|
1758 | if pos == 'left': sign=-1. |
---|
1759 | elif pos == 'right': sign=1. |
---|
1760 | else: |
---|
1761 | print errormsg |
---|
1762 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1763 | print ' available ones:', availpos |
---|
1764 | quit(-1) |
---|
1765 | |
---|
1766 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
1767 | for ia in range(Nang): |
---|
1768 | alpha = sign*dalpha*ia |
---|
1769 | x = radii*np.cos(alpha) |
---|
1770 | y = radii*np.sin(alpha) |
---|
1771 | |
---|
1772 | circ_sec[ia,:] = [y+ycc,x+xcc] |
---|
1773 | |
---|
1774 | # Angle of the points |
---|
1775 | theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
1776 | |
---|
1777 | # rotating angle of the circ |
---|
1778 | if pos == 'left': |
---|
1779 | rotangle = theta + np.pi/2. - alpha/2. |
---|
1780 | elif pos == 'right': |
---|
1781 | rotangle = theta + 3.*np.pi/2. - alpha/2. |
---|
1782 | else: |
---|
1783 | print errormsg |
---|
1784 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
1785 | print ' available ones:', availpos |
---|
1786 | quit(-1) |
---|
1787 | |
---|
1788 | #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi |
---|
1789 | |
---|
1790 | # rotating the arc along the x-axis |
---|
1791 | rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) |
---|
1792 | |
---|
1793 | # Moving arc to the ptA |
---|
1794 | circ_sec = rotcirc_sec + ptA |
---|
1795 | |
---|
1796 | return circ_sec |
---|
1797 | |
---|
1798 | def p_square(face, N=5): |
---|
1799 | """ Function to get a polygon square |
---|
1800 | face: length of the face of the square |
---|
1801 | N: number of points of the polygon |
---|
1802 | """ |
---|
1803 | fname = 'p_square' |
---|
1804 | |
---|
1805 | square = np.zeros((N,2), dtype=np.float) |
---|
1806 | |
---|
1807 | f2 = face/2. |
---|
1808 | N4 = N/4 |
---|
1809 | df = face/(N4) |
---|
1810 | # SW-NW |
---|
1811 | for ip in range(N4): |
---|
1812 | square[ip,:] = [-f2+ip*df,-f2] |
---|
1813 | # NW-NE |
---|
1814 | for ip in range(N4): |
---|
1815 | square[ip+N4,:] = [f2,-f2+ip*df] |
---|
1816 | # NE-SE |
---|
1817 | for ip in range(N4): |
---|
1818 | square[ip+2*N4,:] = [f2-ip*df,f2] |
---|
1819 | N42 = N-3*N4-1 |
---|
1820 | df = face/(N42) |
---|
1821 | # SE-SW |
---|
1822 | for ip in range(N42): |
---|
1823 | square[ip+3*N4,:] = [-f2,f2-ip*df] |
---|
1824 | square[N-1,:] = [-f2,-f2] |
---|
1825 | |
---|
1826 | return square |
---|
1827 | |
---|
1828 | |
---|
1829 | def p_prism(base, height, N=5): |
---|
1830 | """ Function to get a polygon prism |
---|
1831 | base: length of the base of the prism |
---|
1832 | height: length of the height of the prism |
---|
1833 | N: number of points of the polygon |
---|
1834 | """ |
---|
1835 | fname = 'p_prism' |
---|
1836 | |
---|
1837 | prism = np.zeros((N,2), dtype=np.float) |
---|
1838 | |
---|
1839 | b2 = base/2. |
---|
1840 | h2 = height/2. |
---|
1841 | N4 = N/4 |
---|
1842 | dh = height/(N4) |
---|
1843 | db = base/(N4) |
---|
1844 | |
---|
1845 | # SW-NW |
---|
1846 | for ip in range(N4): |
---|
1847 | prism[ip,:] = [-h2+ip*dh,-b2] |
---|
1848 | # NW-NE |
---|
1849 | for ip in range(N4): |
---|
1850 | prism[ip+N4,:] = [h2,-b2+ip*db] |
---|
1851 | # NE-SE |
---|
1852 | for ip in range(N4): |
---|
1853 | prism[ip+2*N4,:] = [h2-ip*dh,b2] |
---|
1854 | N42 = N-3*N4-1 |
---|
1855 | db = base/(N42) |
---|
1856 | # SE-SW |
---|
1857 | for ip in range(N42): |
---|
1858 | prism[ip+3*N4,:] = [-h2,b2-ip*db] |
---|
1859 | prism[N-1,:] = [-h2,-b2] |
---|
1860 | |
---|
1861 | return prism |
---|
1862 | |
---|
1863 | def p_circle(radii, N=50): |
---|
1864 | """ Function to get a polygon of a circle |
---|
1865 | radii: length of the radii of the circle |
---|
1866 | N: number of points of the polygon |
---|
1867 | """ |
---|
1868 | fname = 'p_circle' |
---|
1869 | |
---|
1870 | circle = np.zeros((N,2), dtype=np.float) |
---|
1871 | |
---|
1872 | dangle = 2.*np.pi/(N-1) |
---|
1873 | |
---|
1874 | for ia in range(N): |
---|
1875 | circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1876 | |
---|
1877 | circle[N-1,:] = [0., radii] |
---|
1878 | |
---|
1879 | return circle |
---|
1880 | |
---|
1881 | def p_triangle(p1, p2, p3, N=4): |
---|
1882 | """ Function to provide the polygon of a triangle from its 3 vertices |
---|
1883 | p1: vertex 1 [y,x] |
---|
1884 | p2: vertex 2 [y,x] |
---|
1885 | p3: vertex 3 [y,x] |
---|
1886 | N: number of vertices of the triangle |
---|
1887 | """ |
---|
1888 | fname = 'p_triangle' |
---|
1889 | |
---|
1890 | triangle = np.zeros((N,2), dtype=np.float) |
---|
1891 | |
---|
1892 | N3 = N / 3 |
---|
1893 | # 1-2 |
---|
1894 | dx = (p2[1]-p1[1])/N3 |
---|
1895 | dy = (p2[0]-p1[0])/N3 |
---|
1896 | for ip in range(N3): |
---|
1897 | triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] |
---|
1898 | # 2-3 |
---|
1899 | dx = (p3[1]-p2[1])/N3 |
---|
1900 | dy = (p3[0]-p2[0])/N3 |
---|
1901 | for ip in range(N3): |
---|
1902 | triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] |
---|
1903 | # 3-1 |
---|
1904 | N32 = N - 2*N/3 |
---|
1905 | dx = (p1[1]-p3[1])/N32 |
---|
1906 | dy = (p1[0]-p3[0])/N32 |
---|
1907 | for ip in range(N32): |
---|
1908 | triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] |
---|
1909 | |
---|
1910 | triangle[N-1,:] = p1 |
---|
1911 | |
---|
1912 | return triangle |
---|
1913 | |
---|
1914 | def p_spiral(loops, eradii, N=1000): |
---|
1915 | """ Function to provide a polygon of an Archimedean spiral |
---|
1916 | FROM: https://en.wikipedia.org/wiki/Spiral |
---|
1917 | loops: number of loops of the spiral |
---|
1918 | eradii: length of the radii of the final spiral |
---|
1919 | N: number of points of the polygon |
---|
1920 | """ |
---|
1921 | fname = 'p_spiral' |
---|
1922 | |
---|
1923 | spiral = np.zeros((N,2), dtype=np.float) |
---|
1924 | |
---|
1925 | dangle = 2.*np.pi*loops/(N-1) |
---|
1926 | dr = eradii*1./(N-1) |
---|
1927 | |
---|
1928 | for ia in range(N): |
---|
1929 | radii = dr*ia |
---|
1930 | spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
1931 | |
---|
1932 | return spiral |
---|
1933 | |
---|
1934 | def p_reg_polygon(Nv, lf, N=50): |
---|
1935 | """ Function to provide a regular polygon of Nv vertices |
---|
1936 | Nv: number of vertices |
---|
1937 | lf: length of the face |
---|
1938 | N: number of points |
---|
1939 | """ |
---|
1940 | fname = 'p_reg_polygon' |
---|
1941 | |
---|
1942 | reg_polygon = np.zeros((N,2), dtype=np.float) |
---|
1943 | |
---|
1944 | # Number of points per vertex |
---|
1945 | Np = N/Nv |
---|
1946 | # Angle incremental between vertices |
---|
1947 | da = 2.*np.pi/Nv |
---|
1948 | # Radii of the circle according to lf |
---|
1949 | radii = lf*Nv/(2*np.pi) |
---|
1950 | |
---|
1951 | iip = 0 |
---|
1952 | for iv in range(Nv-1): |
---|
1953 | # Characteristics between vertices iv and iv+1 |
---|
1954 | av1 = da*iv |
---|
1955 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1956 | av2 = da*(iv+1) |
---|
1957 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1958 | dx = (v2[1]-v1[1])/Np |
---|
1959 | dy = (v2[0]-v1[0])/Np |
---|
1960 | for ip in range(Np): |
---|
1961 | reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1962 | |
---|
1963 | # Characteristics between vertices Nv and 1 |
---|
1964 | |
---|
1965 | # Number of points per vertex |
---|
1966 | Np2 = N - Np*(Nv-1) |
---|
1967 | |
---|
1968 | av1 = da*Nv |
---|
1969 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
1970 | av2 = 0. |
---|
1971 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
1972 | dx = (v2[1]-v1[1])/Np2 |
---|
1973 | dy = (v2[0]-v1[0])/Np2 |
---|
1974 | for ip in range(Np2): |
---|
1975 | reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
1976 | |
---|
1977 | return reg_polygon |
---|
1978 | |
---|
1979 | def p_reg_star(Nv, lf, freq, vs=0, N=50): |
---|
1980 | """ Function to provide a regular star of Nv vertices |
---|
1981 | Nv: number of vertices |
---|
1982 | lf: length of the face of the regular polygon |
---|
1983 | freq: frequency of union of vertices ('0', for just centered to zero arms) |
---|
1984 | vs: vertex from which start (0 being first [0,lf]) |
---|
1985 | N: number of points |
---|
1986 | """ |
---|
1987 | fname = 'p_reg_star' |
---|
1988 | |
---|
1989 | reg_star = np.zeros((N,2), dtype=np.float) |
---|
1990 | |
---|
1991 | # Number of arms of the star |
---|
1992 | if freq != 0 and np.mod(Nv,freq) == 0: |
---|
1993 | Na = Nv/freq + 1 |
---|
1994 | else: |
---|
1995 | Na = Nv |
---|
1996 | |
---|
1997 | # Number of points per arm |
---|
1998 | Np = N/Na |
---|
1999 | # Angle incremental between vertices |
---|
2000 | da = 2.*np.pi/Nv |
---|
2001 | # Radii of the circle according to lf |
---|
2002 | radii = lf*Nv/(2*np.pi) |
---|
2003 | |
---|
2004 | iip = 0 |
---|
2005 | av1 = vs*da |
---|
2006 | for iv in range(Na-1): |
---|
2007 | # Characteristics between vertices iv and iv+1 |
---|
2008 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
2009 | if freq != 0: |
---|
2010 | av2 = av1 + da*freq |
---|
2011 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
2012 | else: |
---|
2013 | v2 = [0., 0.] |
---|
2014 | av2 = av1 + da |
---|
2015 | dx = (v2[1]-v1[1])/(Np-1) |
---|
2016 | dy = (v2[0]-v1[0])/(Np-1) |
---|
2017 | for ip in range(Np): |
---|
2018 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
2019 | if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi |
---|
2020 | else: av1 = av2 + 0. |
---|
2021 | |
---|
2022 | iv = Na-1 |
---|
2023 | # Characteristics between vertices Na and 1 |
---|
2024 | Np2 = N-Np*iv |
---|
2025 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
2026 | if freq != 0: |
---|
2027 | av2 = vs*da |
---|
2028 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
2029 | else: |
---|
2030 | v2 = [0., 0.] |
---|
2031 | dx = (v2[1]-v1[1])/(Np2-1) |
---|
2032 | dy = (v2[0]-v1[0])/(Np2-1) |
---|
2033 | for ip in range(Np2): |
---|
2034 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
2035 | |
---|
2036 | return reg_star |
---|
2037 | |
---|
2038 | def p_sinusiode(length=10., amp=5., lamb=3., ival=0., func='sin', N=100): |
---|
2039 | """ Function to get coordinates of a sinusoidal curve |
---|
2040 | length: length of the line (default 10.) |
---|
2041 | amp: amplitude of the peaks (default 5.) |
---|
2042 | lamb: wave longitude (defalult 3.) |
---|
2043 | ival: initial angle (default 0. in degree) |
---|
2044 | func: function to use: (default sinus) |
---|
2045 | 'sin': sinus |
---|
2046 | 'cos': cosinus |
---|
2047 | N: number of points (default 100) |
---|
2048 | """ |
---|
2049 | fname = 'p_sinusiode' |
---|
2050 | availfunc = ['sin', 'cos'] |
---|
2051 | |
---|
2052 | dx = length/(N-1) |
---|
2053 | ia = ival*np.pi/180. |
---|
2054 | da = 2*np.pi*dx/lamb |
---|
2055 | |
---|
2056 | sinusoide = np.zeros((N,2), dtype=np.float) |
---|
2057 | if func == 'sin': |
---|
2058 | for ix in range(N): |
---|
2059 | sinusoide[ix,:] = [amp*np.sin(ia+da*ix),dx*ix] |
---|
2060 | elif func == 'cos': |
---|
2061 | for ix in range(N): |
---|
2062 | sinusoide[ix,:] = [amp*np.cos(ia+da*ix),dx*ix] |
---|
2063 | else: |
---|
2064 | print errormsg |
---|
2065 | print ' ' + fname + ": function '" + func + "' not ready !!" |
---|
2066 | print ' available ones:', availfunc |
---|
2067 | quit(-1) |
---|
2068 | |
---|
2069 | sinusoidesecs = ['sinusoide'] |
---|
2070 | sinusoidedic = {'sinusoide': [sinusoide, '-', '#000000', 1.]} |
---|
2071 | |
---|
2072 | return sinusoide, sinusoidesecs, sinusoidedic |
---|
2073 | |
---|
2074 | def p_doubleArrow(length=5., angle=45., width=1., alength=0.10, N=50): |
---|
2075 | """ Function to provide an arrow with double lines |
---|
2076 | length: length of the arrow (5. default) |
---|
2077 | angle: angle of the head of the arrow (45., default) |
---|
2078 | width: separation between the two lines (2., default) |
---|
2079 | alength: length of the head (as percentage in excess of width, 0.1 default) |
---|
2080 | N: number of points (50, default) |
---|
2081 | """ |
---|
2082 | function = 'p_doubleArrow' |
---|
2083 | |
---|
2084 | doubleArrow = np.zeros((50,2), dtype=np.float) |
---|
2085 | N4 = int((N-3)/4) |
---|
2086 | |
---|
2087 | doublearrowdic = {} |
---|
2088 | ddy = width*np.tan(angle*np.pi/180.)/2. |
---|
2089 | # Arms |
---|
2090 | dx = (length-ddy)/(N4-1) |
---|
2091 | for ix in range(N4): |
---|
2092 | doubleArrow[ix,:] = [dx*ix,-width/2.] |
---|
2093 | doublearrowdic['leftarm'] = [doubleArrow[0:N4,:], '-', '#000000', 2.] |
---|
2094 | doubleArrow[N4,:] = [gen.fillValueF,gen.fillValueF] |
---|
2095 | for ix in range(N4): |
---|
2096 | doubleArrow[N4+1+ix,:] = [dx*ix,width/2.] |
---|
2097 | doublearrowdic['rightarm'] = [doubleArrow[N4+1:2*N4+1,:], '-', '#000000', 2.] |
---|
2098 | doubleArrow[2*N4+1,:] = [gen.fillValueF,gen.fillValueF] |
---|
2099 | |
---|
2100 | # Head |
---|
2101 | N42 = int((N-2 - 2*N4)/2) |
---|
2102 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N42-1) |
---|
2103 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N42-1) |
---|
2104 | for ix in range(N42): |
---|
2105 | doubleArrow[2*N4+2+ix,:] = [length-dy*ix,-dx*ix] |
---|
2106 | doublearrowdic['lefthead'] = [doubleArrow[2*N4:2*N4+N42,:], '-', '#000000', 2.] |
---|
2107 | doubleArrow[2*N4+2+N42,:] = [gen.fillValueF,gen.fillValueF] |
---|
2108 | |
---|
2109 | N43 = N-3 - 2*N4 - N42 + 1 |
---|
2110 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N43-1) |
---|
2111 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N43-1) |
---|
2112 | for ix in range(N43): |
---|
2113 | doubleArrow[2*N4+N42+2+ix,:] = [length-dy*ix,dx*ix] |
---|
2114 | doublearrowdic['rightthead'] = [doubleArrow[2*N4+N42+2:51,:], '-', '#000000', 2.] |
---|
2115 | |
---|
2116 | doubleArrow = ma.masked_equal(doubleArrow, gen.fillValueF) |
---|
2117 | doublearrowsecs = ['leftarm', 'rightarm', 'lefthead', 'righthead'] |
---|
2118 | |
---|
2119 | return doubleArrow, doublearrowsecs, doublearrowdic |
---|
2120 | |
---|
2121 | def p_angle_triangle(pi=np.array([0.,0.]), angle1=60., length1=1., angle2=60., N=100): |
---|
2122 | """ Function to draw a triangle by an initial point and two consecutive angles |
---|
2123 | and the first length of face. The third angle and 2 and 3rd face will be |
---|
2124 | computed accordingly the provided values: |
---|
2125 | length1 / sin(angle1) = length2 / sin(angle2) = length3 / sin(angle3) |
---|
2126 | angle1 + angle2 + angle3 = 180. |
---|
2127 | pi: initial point ([0., 0.], default) |
---|
2128 | angle1: first angle from pi clockwise (60., default) |
---|
2129 | length1: length of face from pi by angle1 (1., default) |
---|
2130 | angle2: second angle from second point (60., default) |
---|
2131 | length2: length of face from p2 by angle2 (1., default) |
---|
2132 | N: number of points (100, default) |
---|
2133 | """ |
---|
2134 | fname = 'p_angle_triangle' |
---|
2135 | |
---|
2136 | angle3 = 180. - angle1 - angle2 |
---|
2137 | length2 = np.sin(angle2*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
2138 | length3 = np.sin(angle3*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
2139 | |
---|
2140 | triangle = np.zeros((N,2), dtype=np.float) |
---|
2141 | |
---|
2142 | N3 = int(N/3) |
---|
2143 | # first face |
---|
2144 | ix = pi[1] |
---|
2145 | iy = pi[0] |
---|
2146 | dx = length1*np.cos(angle1*np.pi/180.)/(N3-1) |
---|
2147 | dy = length1*np.sin(angle1*np.pi/180.)/(N3-1) |
---|
2148 | for ip in range(N3): |
---|
2149 | triangle[ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2150 | |
---|
2151 | # second face |
---|
2152 | ia = -90. - (90.-angle1) |
---|
2153 | ix = triangle[N3-1,1] |
---|
2154 | iy = triangle[N3-1,0] |
---|
2155 | dx = length2*np.cos((ia+angle2)*np.pi/180.)/(N3-1) |
---|
2156 | dy = length2*np.sin((ia+angle2)*np.pi/180.)/(N3-1) |
---|
2157 | for ip in range(N3): |
---|
2158 | triangle[N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2159 | |
---|
2160 | # third face |
---|
2161 | N32 = N - 2*N3 |
---|
2162 | ia = -180. - (90.-angle2) |
---|
2163 | ix = triangle[2*N3-1,1] |
---|
2164 | iy = triangle[2*N3-1,0] |
---|
2165 | angle3 = np.arctan2(pi[0]-iy, pi[1]-ix) |
---|
2166 | dx = (pi[1]-ix)/(N32-1) |
---|
2167 | dy = (pi[0]-iy)/(N32-1) |
---|
2168 | for ip in range(N32): |
---|
2169 | triangle[2*N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
2170 | |
---|
2171 | return triangle |
---|
2172 | |
---|
2173 | def p_cross_width(larm=5., width=1., Narms=4, N=200): |
---|
2174 | """ Function to draw a cross with arms with a given width and an angle |
---|
2175 | larm: legnth of the arms (5., default) |
---|
2176 | width: width of the arms (1., default) |
---|
2177 | Narms: Number of arms (4, default) |
---|
2178 | N: number of points to us (200, default) |
---|
2179 | """ |
---|
2180 | fname = 'p_cross_width' |
---|
2181 | |
---|
2182 | Narm = int((N-Narms)/Narms) |
---|
2183 | |
---|
2184 | larm2 = larm/2. |
---|
2185 | width2 = width/2. |
---|
2186 | |
---|
2187 | cross = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
2188 | da = np.pi/Narms |
---|
2189 | |
---|
2190 | N1 = int(Narm*3./8.) |
---|
2191 | N2 = int((Narm - 2*N1)/2.) |
---|
2192 | N21 = Narm - 2*N1 - N2 |
---|
2193 | |
---|
2194 | if N2 < 3: |
---|
2195 | print errormsg |
---|
2196 | print ' ' + fname + ": too few points for ", Narms, " arms !!" |
---|
2197 | print " increase number 'N' at least up to '", 25*Narms |
---|
2198 | quit(-1) |
---|
2199 | |
---|
2200 | crosssecs = [] |
---|
2201 | crossdic = {} |
---|
2202 | Npot = int(np.log10(Narms))+1 |
---|
2203 | |
---|
2204 | iip = 0 |
---|
2205 | for iarm in range(Narms-1): |
---|
2206 | |
---|
2207 | a = da*iarm |
---|
2208 | iip0 = iip |
---|
2209 | |
---|
2210 | # bottom coordinate |
---|
2211 | bx = larm*np.cos(a+np.pi) |
---|
2212 | by = larm*np.sin(a+np.pi) |
---|
2213 | |
---|
2214 | # upper coordinate |
---|
2215 | ux = larm*np.cos(a) |
---|
2216 | uy = larm*np.sin(a) |
---|
2217 | |
---|
2218 | rela = a+np.pi*3./2. |
---|
2219 | # SW-NW |
---|
2220 | ix = bx + width2*np.cos(rela) |
---|
2221 | iy = by + width2*np.sin(rela) |
---|
2222 | ex = ux + width2*np.cos(rela) |
---|
2223 | ey = uy + width2*np.sin(rela) |
---|
2224 | dx = (ex-ix)/(N1-1) |
---|
2225 | dy = (ey-iy)/(N1-1) |
---|
2226 | for ip in range(N1): |
---|
2227 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2228 | iip = iip + N1 |
---|
2229 | |
---|
2230 | # NW-NE |
---|
2231 | ix = ex + 0. |
---|
2232 | iy = ey + 0. |
---|
2233 | ex = ux - width2*np.cos(rela) |
---|
2234 | ey = uy - width2*np.sin(rela) |
---|
2235 | dx = (ex-ix)/(N2-1) |
---|
2236 | dy = (ey-iy)/(N2-1) |
---|
2237 | for ip in range(N2): |
---|
2238 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2239 | iip = iip + N2 |
---|
2240 | |
---|
2241 | # NW-SW |
---|
2242 | ix = ex + 0. |
---|
2243 | iy = ey + 0. |
---|
2244 | ex = bx - width2*np.cos(rela) |
---|
2245 | ey = by - width2*np.sin(rela) |
---|
2246 | dx = (ex-ix)/(N1-1) |
---|
2247 | dy = (ey-iy)/(N1-1) |
---|
2248 | for ip in range(N1): |
---|
2249 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2250 | iip = iip + N1 |
---|
2251 | |
---|
2252 | # SW-SE |
---|
2253 | ix = ex + 0. |
---|
2254 | iy = ey + 0. |
---|
2255 | ex = bx + width2*np.cos(rela) |
---|
2256 | ey = by + width2*np.sin(rela) |
---|
2257 | dx = (ex-ix)/(N21-1) |
---|
2258 | dy = (ey-iy)/(N21-1) |
---|
2259 | for ip in range(N21): |
---|
2260 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2261 | iip = iip + N21 + 1 |
---|
2262 | |
---|
2263 | iarmS = str(iarm).zfill(Npot) |
---|
2264 | crosssecs.append(iarmS) |
---|
2265 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
2266 | |
---|
2267 | iip0 = iip |
---|
2268 | |
---|
2269 | Narm = N - Narm*(Narms-1) - Narms |
---|
2270 | |
---|
2271 | N1 = int(Narm*3./8.) |
---|
2272 | N2 = int((Narm - 2*N1)/2.) |
---|
2273 | N21 = Narm - 2*N1 - N2 |
---|
2274 | |
---|
2275 | iarm = Narms-1 |
---|
2276 | a = da*iarm |
---|
2277 | |
---|
2278 | # bottom coordinate |
---|
2279 | bx = larm*np.cos(a+np.pi) |
---|
2280 | by = larm*np.sin(a+np.pi) |
---|
2281 | |
---|
2282 | # upper coordinate |
---|
2283 | ux = larm*np.cos(a) |
---|
2284 | uy = larm*np.sin(a) |
---|
2285 | |
---|
2286 | rela = a+np.pi*3./2. |
---|
2287 | # SW-NW |
---|
2288 | ix = bx + width2*np.cos(rela) |
---|
2289 | iy = by + width2*np.sin(rela) |
---|
2290 | ex = ux + width2*np.cos(rela) |
---|
2291 | ey = uy + width2*np.sin(rela) |
---|
2292 | dx = (ex-ix)/(N1-1) |
---|
2293 | dy = (ey-iy)/(N1-1) |
---|
2294 | for ip in range(N1): |
---|
2295 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2296 | iip = iip + N1 |
---|
2297 | |
---|
2298 | # NW-NE |
---|
2299 | ix = ex + 0. |
---|
2300 | iy = ey + 0. |
---|
2301 | ex = ux - width2*np.cos(rela) |
---|
2302 | ey = uy - width2*np.sin(rela) |
---|
2303 | dx = (ex-ix)/(N2-1) |
---|
2304 | dy = (ey-iy)/(N2-1) |
---|
2305 | for ip in range(N2): |
---|
2306 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2307 | iip = iip + N2 |
---|
2308 | |
---|
2309 | # NW-SW |
---|
2310 | ix = ex + 0. |
---|
2311 | iy = ey + 0. |
---|
2312 | ex = bx - width2*np.cos(rela) |
---|
2313 | ey = by - width2*np.sin(rela) |
---|
2314 | dx = (ex-ix)/(N1-1) |
---|
2315 | dy = (ey-iy)/(N1-1) |
---|
2316 | for ip in range(N1): |
---|
2317 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2318 | iip = iip + N1 |
---|
2319 | |
---|
2320 | # SW-SE |
---|
2321 | ix = ex + 0. |
---|
2322 | iy = ey + 0. |
---|
2323 | ex = bx + width2*np.cos(rela) |
---|
2324 | ey = by + width2*np.sin(rela) |
---|
2325 | dx = (ex-ix)/(N21-1) |
---|
2326 | dy = (ey-iy)/(N21-1) |
---|
2327 | for ip in range(N21): |
---|
2328 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
2329 | iip = iip + N21 |
---|
2330 | |
---|
2331 | iarmS = str(iarm).zfill(Npot) |
---|
2332 | crosssecs.append(iarmS) |
---|
2333 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
2334 | |
---|
2335 | cross = ma.masked_equal(cross, gen.fillValueF) |
---|
2336 | |
---|
2337 | return cross, crosssecs, crossdic |
---|
2338 | |
---|
2339 | ####### ####### ##### #### ### ## # |
---|
2340 | # Plotting |
---|
2341 | |
---|
2342 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
2343 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
2344 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
2345 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
2346 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
2347 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
2348 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
2349 | """ Function to plot an sphere and determine which standard lines will be also |
---|
2350 | drawn |
---|
2351 | iazm: azimut of the camera form the sphere |
---|
2352 | iele: elevation of the camera form the sphere |
---|
2353 | dist: distance of the camera form the sphere |
---|
2354 | Npts: Resolution for the sphere |
---|
2355 | radii: radius of the sphere |
---|
2356 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
2357 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
2358 | drwxline: whether x-axis line should be drawn |
---|
2359 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
2360 | drwyline: whether y-axis line should be drawn |
---|
2361 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
2362 | drwzline: whether z-axis line should be drawn |
---|
2363 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
2364 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
2365 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
2366 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
2367 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
2368 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
2369 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
2370 | """ |
---|
2371 | fname = 'plot_sphere' |
---|
2372 | |
---|
2373 | iazmrad = iazm*np.pi/180. |
---|
2374 | ielerad = iele*np.pi/180. |
---|
2375 | |
---|
2376 | # 3D surface Sphere |
---|
2377 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
2378 | |
---|
2379 | # greenwhich |
---|
2380 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
2381 | ia=np.pi-ielerad |
---|
2382 | else: |
---|
2383 | ia=0.-ielerad |
---|
2384 | ea=ia+np.pi |
---|
2385 | da = (ea-ia)/(Npts-1) |
---|
2386 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2387 | alpha = np.zeros((Npts), dtype=np.float) |
---|
2388 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
2389 | ia=ea+0. |
---|
2390 | ea=ia+np.pi |
---|
2391 | da = (ea-ia)/(Npts-1) |
---|
2392 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2393 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
2394 | |
---|
2395 | # Equator |
---|
2396 | ia=np.pi-iazmrad/2. |
---|
2397 | ea=ia+np.pi |
---|
2398 | da = (ea-ia)/(Npts-1) |
---|
2399 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2400 | beta = np.zeros((Npts), dtype=np.float) |
---|
2401 | equatorc = spheric_line(radii,alpha,beta) |
---|
2402 | ia=ea+0. |
---|
2403 | ea=ia+np.pi |
---|
2404 | da = (ea-ia)/(Npts-1) |
---|
2405 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
2406 | equatord = spheric_line(radii,alpha,beta) |
---|
2407 | |
---|
2408 | # 90 line |
---|
2409 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
2410 | ia=3.*np.pi/2. + ielerad |
---|
2411 | else: |
---|
2412 | ia=np.pi/2. - ielerad |
---|
2413 | if ielerad < 0.: |
---|
2414 | ia = ia + np.pi |
---|
2415 | ea=ia+np.pi |
---|
2416 | da = (ea-ia)/(Npts-1) |
---|
2417 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2418 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
2419 | xclinec = spheric_line(radii,alpha,beta) |
---|
2420 | ia=ea+0. |
---|
2421 | ea=ia+np.pi |
---|
2422 | da = (ea-ia)/(Npts-1) |
---|
2423 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
2424 | xclined = spheric_line(radii,alpha,beta) |
---|
2425 | |
---|
2426 | # x line |
---|
2427 | xline = np.zeros((2,3), dtype=np.float) |
---|
2428 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
2429 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
2430 | |
---|
2431 | # y line |
---|
2432 | yline = np.zeros((2,3), dtype=np.float) |
---|
2433 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
2434 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
2435 | |
---|
2436 | # z line |
---|
2437 | zline = np.zeros((2,3), dtype=np.float) |
---|
2438 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
2439 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
2440 | |
---|
2441 | fig = plt.figure() |
---|
2442 | ax = fig.gca(projection='3d') |
---|
2443 | |
---|
2444 | # Sphere surface |
---|
2445 | if drwsfc[0]: |
---|
2446 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
2447 | color=colsfc[0]) |
---|
2448 | if drwsfc[1]: |
---|
2449 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
2450 | color=colsfc[1]) |
---|
2451 | |
---|
2452 | # greenwhich |
---|
2453 | linev = linegw[0] |
---|
2454 | if drwgreeenwhich[0]: |
---|
2455 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
2456 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
2457 | linev = linegw[1] |
---|
2458 | if drwgreeenwhich[1]: |
---|
2459 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
2460 | color=linev[1], linewidth=linev[2]) |
---|
2461 | |
---|
2462 | # Equator |
---|
2463 | linev = lineeq[0] |
---|
2464 | if drwequator[0]: |
---|
2465 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
2466 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
2467 | linev = lineeq[1] |
---|
2468 | if drwequator[1]: |
---|
2469 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
2470 | color=linev[1], linewidth=linev[2]) |
---|
2471 | |
---|
2472 | # 90line |
---|
2473 | linev = linexc[0] |
---|
2474 | if drwxcline[0]: |
---|
2475 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
2476 | linewidth=linev[2], label='90-line') |
---|
2477 | linev = linexc[1] |
---|
2478 | if drwxcline[1]: |
---|
2479 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
2480 | linewidth=linev[2]) |
---|
2481 | |
---|
2482 | # x line |
---|
2483 | linev = linex |
---|
2484 | if drwxline: |
---|
2485 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
2486 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], \ |
---|
2487 | label='xline') |
---|
2488 | |
---|
2489 | # y line |
---|
2490 | linev = liney |
---|
2491 | if drwyline: |
---|
2492 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
2493 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], \ |
---|
2494 | label='yline') |
---|
2495 | |
---|
2496 | # z line |
---|
2497 | linev = linez |
---|
2498 | if drwzline: |
---|
2499 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
2500 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], \ |
---|
2501 | label='zline') |
---|
2502 | |
---|
2503 | plt.legend() |
---|
2504 | |
---|
2505 | return fig, ax |
---|
2506 | |
---|
2507 | def paint_filled(objdic, fillsecs): |
---|
2508 | """ Function to draw an object filling given sections |
---|
2509 | objdic: dictionary of the object |
---|
2510 | filesecs: list of sections to be filled |
---|
2511 | """ |
---|
2512 | fname = 'paint_filled' |
---|
2513 | |
---|
2514 | Nsecs = len(fillsecs) |
---|
2515 | |
---|
2516 | for secn in fillsecs: |
---|
2517 | secvals=objdic[secn] |
---|
2518 | pvals = secvals[0] |
---|
2519 | fillsecs = [] |
---|
2520 | Nvals = pvals.shape[0] |
---|
2521 | # re-sectionning to plot without masked values |
---|
2522 | for ip in range(Nvals-1): |
---|
2523 | if type(pvals[ip][0]) == type(gen.mamat[1]): fillsecs.append(ip) |
---|
2524 | Nsecs = len(fillsecs) |
---|
2525 | iisc = 0 |
---|
2526 | for isc in range(Nsecs): |
---|
2527 | plt.fill(pvals[iisc:fillsecs[isc],1], pvals[iisc:fillsecs[isc],0], \ |
---|
2528 | color=secvals[2]) |
---|
2529 | iisc = fillsecs[isc]+1 |
---|
2530 | plt.fill(pvals[iisc:Nvals-1,1], pvals[iisc:Nvals-1,0], color=secvals[2]) |
---|
2531 | |
---|
2532 | return |
---|
2533 | |
---|