[2411] | 1 | # Python tools to manage netCDF files. |
---|
| 2 | # L. Fita, CIMA. Mrch 2019 |
---|
| 3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
| 4 | # |
---|
| 5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
| 6 | # This work is licendes under a Creative Commons |
---|
| 7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
| 8 | # |
---|
| 9 | ## Script for geometry calculations and operations as well as definition of different |
---|
| 10 | ### standard objects and shapes |
---|
| 11 | |
---|
| 12 | import numpy as np |
---|
| 13 | import matplotlib as mpl |
---|
| 14 | from mpl_toolkits.mplot3d import Axes3D |
---|
| 15 | import matplotlib.pyplot as plt |
---|
[2438] | 16 | import os |
---|
[2455] | 17 | import generic_tools as gen |
---|
[2544] | 18 | import numpy.ma as ma |
---|
[2545] | 19 | import module_ForSci as sci |
---|
[2411] | 20 | |
---|
[2413] | 21 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
[2438] | 22 | infmsg = 'INFORMATION -- information -- INFORMATION -- information' |
---|
[2413] | 23 | |
---|
[2411] | 24 | ####### Contents: |
---|
[2564] | 25 | # cut_between_[x/y]polygon: Function to cut a polygon between 2 given value of the [x/y]-axis |
---|
[2547] | 26 | # cut_[x/y]polygon: Function to cut a polygon from a given value of the [x/y]-axis |
---|
[2411] | 27 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
[2413] | 28 | # dist_points: Function to provide the distance between two points |
---|
[2506] | 29 | # join_circ_sec: Function to join aa series of points by circular segments |
---|
[2507] | 30 | # join_circ_sec_rand: Function to join aa series of points by circular segments with |
---|
| 31 | # random perturbations |
---|
[2435] | 32 | # max_coords_poly: Function to provide the extremes of the coordinates of a polygon |
---|
[2452] | 33 | # mirror_polygon: Function to reflex a polygon for a given axis |
---|
[2411] | 34 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
| 35 | # cartesian coordinates over an sphere |
---|
[2449] | 36 | # read_join_poly: Function to read an ASCII file with the combination of polygons |
---|
[2412] | 37 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
[2452] | 38 | # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon |
---|
[2412] | 39 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
| 40 | # certain angle in the plain |
---|
| 41 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
| 42 | # coordinates by a certain angle in the plain |
---|
[2411] | 43 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
| 44 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
[2586] | 45 | # val_consec_between: Function to provide if a given value is between two consecutive ones |
---|
[2449] | 46 | # write_join_poly: Function to write an ASCII file with the combination of polygons |
---|
[2411] | 47 | |
---|
[2412] | 48 | ## Shapes/objects |
---|
[2508] | 49 | # buoy1: Function to draw a buoy as superposition of prism and section of ball |
---|
[2569] | 50 | # band_lighthouse: Function to plot a lighthouse with spiral bands |
---|
[2450] | 51 | # circ_sec: Function union of point A and B by a section of a circle |
---|
[2495] | 52 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
[2569] | 53 | # green_buoy1: Function to draw a green mark buoy using buoy1 |
---|
[2570] | 54 | # isolateddanger_buoy1: Function to draw an isolated danger buoy using buoy1 |
---|
[2533] | 55 | # p_angle_triangle: Function to draw a triangle by an initial point and two |
---|
| 56 | # consecutive angles and the first length of face. The third angle and 2 and 3rd |
---|
| 57 | # face will be computed accordingly the provided values |
---|
[2494] | 58 | # p_doubleArrow: Function to provide an arrow with double lines |
---|
[2450] | 59 | # p_circle: Function to get a polygon of a circle |
---|
[2572] | 60 | # p_cross_width: Function to draw a cross with arms with a given width and an angle |
---|
[2567] | 61 | # p_prism: Function to get a polygon prism |
---|
[2454] | 62 | # p_reg_polygon: Function to provide a regular polygon of Nv vertices |
---|
| 63 | # p_reg_star: Function to provide a regular star of Nv vertices |
---|
[2492] | 64 | # p_sinusiode: Function to get coordinates of a sinusoidal curve |
---|
[2450] | 65 | # p_square: Function to get a polygon square |
---|
[2451] | 66 | # p_spiral: Function to provide a polygon of an Archimedean spiral |
---|
| 67 | # p_triangle: Function to provide the polygon of a triangle from its 3 vertices |
---|
[2569] | 68 | # prefchannelport[A/B]_buoy1: Function to draw a preferred channel port system |
---|
| 69 | # [A/B] buoy using buoy1 |
---|
| 70 | # prefchannelstarboard[A/B]_buoy1: Function to draw a preferred channel starboard |
---|
| 71 | # system [A/B] buoy using buoy1 |
---|
[2566] | 72 | # red_buoy1: Function to draw a red mark buoy using buoy1 |
---|
[2565] | 73 | # safewater_buoy1: Function to draw a safe water mark buoy using buoy1 |
---|
[2576] | 74 | # special_buoy1: Function to draw an special mark buoy using buoy1 |
---|
[2413] | 75 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
[2456] | 76 | # z_boat: Function to define an schematic boat from the z-plane |
---|
[2455] | 77 | # zsailing_boat: Function to define an schematic sailing boat from the z-plane with sails |
---|
[2496] | 78 | # zisland1: Function to draw an island from z-axis as the union of a series of points by |
---|
| 79 | # circular segments |
---|
[2531] | 80 | |
---|
[2411] | 81 | ## Plotting |
---|
[2531] | 82 | # paint_filled: Function to draw an object filling given sections |
---|
[2411] | 83 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
| 84 | # also drawn |
---|
[2544] | 85 | # [north/east/south/west_buoy1: Function to draw a [North/East/South/West] danger buoy using buoy1 |
---|
[2411] | 86 | |
---|
| 87 | def deg_deci(angle): |
---|
| 88 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
| 89 | angle: list of [deg, minute, sec] to pass |
---|
| 90 | >>> deg_deci([41., 58., 34.]) |
---|
| 91 | 0.732621346072 |
---|
| 92 | """ |
---|
| 93 | fname = 'deg_deci' |
---|
| 94 | |
---|
| 95 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
| 96 | |
---|
| 97 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
| 98 | else: deg = deg*np.pi/180. |
---|
| 99 | |
---|
| 100 | return deg |
---|
| 101 | |
---|
| 102 | def position_sphere(radii, alpha, beta): |
---|
| 103 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
| 104 | coordinates over an sphere |
---|
| 105 | radii: radii of the sphere |
---|
| 106 | alpha: longitude of the point |
---|
| 107 | beta: latitude of the point |
---|
| 108 | >>> position_sphere(10., 30., 45.) |
---|
| 109 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
| 110 | """ |
---|
| 111 | fname = 'position_sphere' |
---|
| 112 | |
---|
| 113 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
| 114 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
| 115 | zpt = radii*np.sin(beta) |
---|
| 116 | |
---|
| 117 | return xpt, ypt, zpt |
---|
| 118 | |
---|
| 119 | def spheric_line(radii,lon,lat): |
---|
| 120 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
| 121 | over an 3D space |
---|
| 122 | radii: radius of the sphere |
---|
| 123 | lon: array of angles along longitudes |
---|
| 124 | lat: array of angles along latitudes |
---|
| 125 | """ |
---|
| 126 | fname = 'spheric_line' |
---|
| 127 | |
---|
| 128 | Lint = lon.shape[0] |
---|
| 129 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
| 130 | |
---|
| 131 | for iv in range(Lint): |
---|
| 132 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
| 133 | |
---|
| 134 | return coords |
---|
| 135 | |
---|
[2412] | 136 | def rotate_2D(vector, angle): |
---|
| 137 | """ Function to rotate a vector by a certain angle in the plain |
---|
| 138 | vector= vector to rotate [y, x] |
---|
| 139 | angle= angle to rotate [rad] |
---|
| 140 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
| 141 | [ 0.70710678 -0.70710678] |
---|
| 142 | """ |
---|
| 143 | fname = 'rotate_2D' |
---|
| 144 | |
---|
| 145 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
| 146 | |
---|
| 147 | rotmat[0,0] = np.cos(angle) |
---|
| 148 | rotmat[0,1] = -np.sin(angle) |
---|
| 149 | rotmat[1,0] = np.sin(angle) |
---|
| 150 | rotmat[1,1] = np.cos(angle) |
---|
| 151 | |
---|
| 152 | rotvector = np.zeros((2), dtype=np.float) |
---|
| 153 | |
---|
| 154 | vecv = np.zeros((2), dtype=np.float) |
---|
| 155 | |
---|
| 156 | # Unifying vector |
---|
| 157 | modvec = vector[0]**2+vector[1]**2 |
---|
| 158 | if modvec != 0: |
---|
| 159 | vecv[0] = vector[1]/modvec |
---|
| 160 | vecv[1] = vector[0]/modvec |
---|
| 161 | |
---|
| 162 | rotvec = np.matmul(rotmat, vecv) |
---|
| 163 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
| 164 | |
---|
| 165 | rotvector[0] = rotvec[1]*modvec |
---|
| 166 | rotvector[1] = rotvec[0]*modvec |
---|
| 167 | |
---|
| 168 | return rotvector |
---|
| 169 | |
---|
[2434] | 170 | def rotate_polygon_2D(vectors, angle): |
---|
| 171 | """ Function to rotate 2D plain the vertices of a polygon |
---|
[2412] | 172 | line= matrix of vectors to rotate |
---|
| 173 | angle= angle to rotate [rad] |
---|
| 174 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
| 175 | >>> square[0,:] = [-0.5,-0.5] |
---|
| 176 | >>> square[1,:] = [0.5,-0.5] |
---|
| 177 | >>> square[2,:] = [0.5,0.5] |
---|
| 178 | >>> square[3,:] = [-0.5,0.5] |
---|
[2434] | 179 | >>> rotate_polygon_2D(square, np.pi/4.) |
---|
[2412] | 180 | [[-0.70710678 0. ] |
---|
| 181 | [ 0. -0.70710678] |
---|
| 182 | [ 0.70710678 0. ] |
---|
| 183 | [ 0. 0.70710678]] |
---|
| 184 | """ |
---|
[2434] | 185 | fname = 'rotate_polygon_2D' |
---|
[2412] | 186 | |
---|
| 187 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
| 188 | |
---|
| 189 | Nvecs = vectors.shape[0] |
---|
| 190 | for iv in range(Nvecs): |
---|
| 191 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
| 192 | |
---|
| 193 | return rotvecs |
---|
| 194 | |
---|
| 195 | def rotate_line2D(line, angle): |
---|
| 196 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
| 197 | angle in the plain |
---|
| 198 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
| 199 | angle= angle to rotate [rad] |
---|
| 200 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
| 201 | [[ 0. 0. ] |
---|
| 202 | [0.70710678 -0.70710678]] |
---|
| 203 | """ |
---|
| 204 | fname = 'rotate_2D' |
---|
| 205 | |
---|
| 206 | rotline = np.zeros((2,2), dtype=np.float) |
---|
| 207 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
| 208 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
| 209 | |
---|
| 210 | return rotline |
---|
| 211 | |
---|
| 212 | def rotate_lines2D(lines, angle): |
---|
| 213 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
| 214 | by a certain angle in the plain |
---|
| 215 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
| 216 | angle= angle to rotate [rad] |
---|
| 217 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
| 218 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
| 219 | >>> square[0,1,:] = [0.5,-0.5] |
---|
| 220 | >>> square[1,0,:] = [0.5,-0.5] |
---|
| 221 | >>> square[1,1,:] = [0.5,0.5] |
---|
| 222 | >>> square[2,0,:] = [0.5,0.5] |
---|
| 223 | >>> square[2,1,:] = [-0.5,0.5] |
---|
| 224 | >>> square[3,0,:] = [-0.5,0.5] |
---|
| 225 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
| 226 | >>> rotate_lines2D(square, np.pi/4.) |
---|
| 227 | [[[-0.70710678 0. ] |
---|
| 228 | [ 0. -0.70710678]] |
---|
| 229 | |
---|
| 230 | [[ 0. -0.70710678] |
---|
| 231 | [ 0.70710678 0. ]] |
---|
| 232 | |
---|
| 233 | [[ 0.70710678 0. ] |
---|
| 234 | [ 0. 0.70710678]] |
---|
| 235 | |
---|
| 236 | [[ 0. 0.70710678] |
---|
| 237 | [-0.70710678 0. ]]] |
---|
| 238 | """ |
---|
| 239 | fname = 'rotate_lines2D' |
---|
| 240 | |
---|
| 241 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
| 242 | |
---|
| 243 | Nlines = lines.shape[0] |
---|
| 244 | for il in range(Nlines): |
---|
| 245 | line = np.zeros((2,2), dtype=np.float) |
---|
| 246 | line[0,:] = lines[il,0,:] |
---|
| 247 | line[1,:] = lines[il,1,:] |
---|
| 248 | |
---|
| 249 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
| 250 | |
---|
| 251 | return rotlines |
---|
| 252 | |
---|
[2414] | 253 | def dist_points(ptA, ptB): |
---|
| 254 | """ Function to provide the distance between two points |
---|
| 255 | ptA: coordinates of the point A [yA, xA] |
---|
| 256 | ptB: coordinates of the point B [yB, xB] |
---|
| 257 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
| 258 | 2.82842712475 |
---|
| 259 | """ |
---|
| 260 | fname = 'dist_points' |
---|
| 261 | |
---|
| 262 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
| 263 | |
---|
| 264 | return dist |
---|
| 265 | |
---|
[2435] | 266 | def max_coords_poly(polygon): |
---|
| 267 | """ Function to provide the extremes of the coordinates of a polygon |
---|
| 268 | polygon: coordinates [Nvertexs, 2] of a polygon |
---|
| 269 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
| 270 | >>> square[0,:] = [-0.5,-0.5] |
---|
| 271 | >>> square[1,:] = [0.5,-0.5] |
---|
| 272 | >>> square[2,:] = [0.5,0.5] |
---|
| 273 | >>> square[3,:] = [-0.5,0.5] |
---|
| 274 | >>> max_coords_poly(square) |
---|
[2437] | 275 | [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 |
---|
[2435] | 276 | """ |
---|
| 277 | fname = 'max_coords_poly' |
---|
| 278 | |
---|
[2437] | 279 | # x-coordinate min/max |
---|
[2435] | 280 | nx = np.min(polygon[:,1]) |
---|
| 281 | xx = np.max(polygon[:,1]) |
---|
[2437] | 282 | |
---|
| 283 | # y-coordinate min/max |
---|
[2435] | 284 | ny = np.min(polygon[:,0]) |
---|
| 285 | xy = np.max(polygon[:,0]) |
---|
| 286 | |
---|
[2437] | 287 | # x/y-coordinate maximum of absolute values |
---|
[2435] | 288 | axx = np.max(np.abs(polygon[:,1])) |
---|
| 289 | ayx = np.max(np.abs(polygon[:,0])) |
---|
| 290 | |
---|
[2437] | 291 | # absolute maximum |
---|
| 292 | xyx = np.max([axx, ayx]) |
---|
[2435] | 293 | |
---|
[2437] | 294 | return [nx, xx], [ny, xy], [ayx, axx], xyx |
---|
| 295 | |
---|
[2452] | 296 | def mirror_polygon(polygon,axis): |
---|
| 297 | """ Function to reflex a polygon for a given axis |
---|
| 298 | polygon: polygon to mirror |
---|
| 299 | axis: axis at which mirror is located ('x' or 'y') |
---|
| 300 | """ |
---|
| 301 | fname = 'mirror_polygon' |
---|
| 302 | |
---|
| 303 | reflex = np.zeros(polygon.shape, dtype=np.float) |
---|
| 304 | |
---|
| 305 | N = polygon.shape[0] |
---|
| 306 | if axis == 'x': |
---|
| 307 | for iv in range(N): |
---|
[2453] | 308 | reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] |
---|
[2452] | 309 | elif axis == 'y': |
---|
| 310 | for iv in range(N): |
---|
[2453] | 311 | reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] |
---|
[2452] | 312 | |
---|
| 313 | return reflex |
---|
| 314 | |
---|
[2506] | 315 | def join_circ_sec(points, radfrac=3., N=200): |
---|
| 316 | """ Function to join aa series of points by circular segments |
---|
| 317 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
| 318 | segments of radii as the radfrac factor of the distance between |
---|
| 319 | consecutive points) |
---|
| 320 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
| 321 | draw the circular segment (3., default) |
---|
| 322 | N: number of points (200, default) |
---|
| 323 | """ |
---|
| 324 | fname = 'join_circ_sec' |
---|
| 325 | |
---|
| 326 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
| 327 | |
---|
| 328 | # main points |
---|
| 329 | lpoints = list(points) |
---|
| 330 | Npts = len(lpoints) |
---|
| 331 | Np = int(N/(Npts+1)) |
---|
| 332 | for ip in range(Npts-1): |
---|
[2507] | 333 | p1 = lpoints[ip] |
---|
| 334 | p2 = lpoints[ip+1] |
---|
| 335 | dps = dist_points(p1, p2) |
---|
[2508] | 336 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, 'short', Np) |
---|
[2506] | 337 | |
---|
| 338 | Np2 = N - (Npts-1)*Np |
---|
[2507] | 339 | p1 = lpoints[Npts-1] |
---|
| 340 | p2 = lpoints[0] |
---|
| 341 | dps = dist_points(p1, p2) |
---|
[2508] | 342 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., 'short', Np2) |
---|
[2506] | 343 | |
---|
| 344 | return jcirc_sec |
---|
| 345 | |
---|
[2512] | 346 | def join_circ_sec_rand(points, radfrac=3., Lrand=0.1, arc='short', pos='left', N=200): |
---|
[2507] | 347 | """ Function to join aa series of points by circular segments with random |
---|
| 348 | perturbations |
---|
| 349 | points: main points of the island (clockwise ordered, to be joined by circular |
---|
| 350 | segments of radii as the radfrac factor of the distance between |
---|
| 351 | consecutive points) |
---|
| 352 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
| 353 | draw the circular segment (3., default) |
---|
| 354 | Lrand: maximum length of the random perturbation to be added perpendicularly to |
---|
| 355 | the direction of the union line between points (0.1, default) |
---|
[2512] | 356 | arc: type of arc ('short', default) |
---|
| 357 | pos: position of arc ('left', default) |
---|
[2507] | 358 | N: number of points (200, default) |
---|
| 359 | """ |
---|
| 360 | import random |
---|
| 361 | fname = 'join_circ_sec_rand' |
---|
| 362 | |
---|
| 363 | jcirc_sec = np.ones((N,2), dtype=np.float) |
---|
| 364 | |
---|
| 365 | # main points |
---|
| 366 | lpoints = list(points) |
---|
| 367 | Npts = len(lpoints) |
---|
| 368 | Np = int(N/(Npts+1)) |
---|
| 369 | for ip in range(Npts-1): |
---|
| 370 | p1 = lpoints[ip] |
---|
| 371 | p2 = lpoints[ip+1] |
---|
| 372 | dps = dist_points(p1, p2) |
---|
| 373 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
[2512] | 374 | jcirc_sec[Np*ip:Np*(ip+1),:] = circ_sec(p1, p2, dps*radfrac, arc, pos, Np) |
---|
[2507] | 375 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
| 376 | for iip in range(Np*ip,Np*(ip+1)): |
---|
| 377 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
| 378 | |
---|
| 379 | Np2 = N - (Npts-1)*Np |
---|
| 380 | p1 = lpoints[Npts-1] |
---|
| 381 | p2 = lpoints[0] |
---|
| 382 | dps = dist_points(p1, p2) |
---|
| 383 | angle = np.arctan2(p2[0]-p1[0], p2[1]-p1[1]) + np.pi/2. |
---|
[2512] | 384 | jcirc_sec[(Npts-1)*Np:N,:] = circ_sec(p1, p2, dps*3., arc, pos, Np2) |
---|
[2507] | 385 | drand = Lrand*np.array([np.sin(angle), np.cos(angle)]) |
---|
| 386 | for iip in range(Np*(Npts-1),N): |
---|
| 387 | jcirc_sec[iip,:] = jcirc_sec[iip,:] + drand*random.uniform(-1.,1.) |
---|
| 388 | |
---|
| 389 | return jcirc_sec |
---|
| 390 | |
---|
[2508] | 391 | def write_join_poly(polys, flname='join_polygons.dat'): |
---|
| 392 | """ Function to write an ASCII file with the combination of polygons |
---|
| 393 | polys: dictionary with the names of the different polygons |
---|
| 394 | flname: name of the ASCII file |
---|
| 395 | """ |
---|
| 396 | fname = 'write_join_poly' |
---|
[2507] | 397 | |
---|
[2508] | 398 | of = open(flname, 'w') |
---|
| 399 | |
---|
| 400 | for polyn in polys.keys(): |
---|
| 401 | vertices = polys[polyn] |
---|
| 402 | Npts = vertices.shape[0] |
---|
| 403 | for ip in range(Npts): |
---|
| 404 | of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') |
---|
| 405 | |
---|
| 406 | of.close() |
---|
| 407 | |
---|
| 408 | return |
---|
| 409 | |
---|
| 410 | def read_join_poly(flname='join_polygons.dat'): |
---|
| 411 | """ Function to read an ASCII file with the combination of polygons |
---|
| 412 | flname: name of the ASCII file |
---|
| 413 | """ |
---|
| 414 | fname = 'read_join_poly' |
---|
| 415 | |
---|
| 416 | of = open(flname, 'r') |
---|
| 417 | |
---|
| 418 | polys = {} |
---|
| 419 | polyn = '' |
---|
| 420 | poly = [] |
---|
| 421 | for line in of: |
---|
| 422 | if len(line) > 1: |
---|
| 423 | linevals = line.replace('\n','').split(' ') |
---|
| 424 | if polyn != linevals[0]: |
---|
| 425 | if len(poly) > 1: |
---|
| 426 | polys[polyn] = np.array(poly) |
---|
| 427 | polyn = linevals[0] |
---|
| 428 | poly = [] |
---|
| 429 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
| 430 | else: |
---|
| 431 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
| 432 | |
---|
| 433 | of.close() |
---|
| 434 | polys[polyn] = np.array(poly) |
---|
| 435 | |
---|
| 436 | return polys |
---|
| 437 | |
---|
[2586] | 438 | def val_consec_between(valA, valB, val): |
---|
[2580] | 439 | """ Function to provide if a given value is between two consecutive ones |
---|
| 440 | valA: first value |
---|
| 441 | valB: second value |
---|
| 442 | val: value to determine if it is between |
---|
[2586] | 443 | >>> val_consec_between(0.5,1.5,0.8) |
---|
[2580] | 444 | True |
---|
[2586] | 445 | >>> val_consec_between(0.5,1.5.,-0.8) |
---|
[2580] | 446 | False |
---|
[2586] | 447 | >>> val_consec_between(0.5,1.5,0.5) |
---|
[2580] | 448 | True |
---|
[2586] | 449 | >>> val_consec_between(-1.58, -1.4, -1.5) |
---|
| 450 | True |
---|
| 451 | >>> val_consec_between(-1.48747753212, -1.57383530044, -1.5) |
---|
| 452 | False |
---|
[2580] | 453 | """ |
---|
[2586] | 454 | fname = 'val_consec_between' |
---|
[2580] | 455 | |
---|
| 456 | btw = False |
---|
[2586] | 457 | diffA = valA - val |
---|
| 458 | diffB = valB - val |
---|
| 459 | absdA = np.abs(diffA) |
---|
| 460 | absdB = np.abs(diffB) |
---|
| 461 | #if (diffA/absdA)* (diffB/absdB) < 0.: btw = True |
---|
| 462 | # if valA < 0. and valB < 0. and val < 0.: |
---|
| 463 | # if (valA >= val and valB < val) or (valA > val and valB <= val): btw =True |
---|
| 464 | # else: |
---|
| 465 | # if (valA <= val and valB > val) or (valA < val and valB >= val): btw =True |
---|
[2580] | 466 | if (valA <= val and valB > val) or (valA < val and valB >= val): btw =True |
---|
| 467 | |
---|
| 468 | return btw |
---|
| 469 | |
---|
[2581] | 470 | def cut_ypolygon(polygon, yval, keep='below', Nadd=20): |
---|
[2545] | 471 | """ Function to cut a polygon from a given value of the y-axis |
---|
| 472 | polygon: polygon to cut |
---|
| 473 | yval: value to use to cut the polygon |
---|
[2581] | 474 | keep: part to keep from the height ('below', default) |
---|
| 475 | 'below': below the height |
---|
[2546] | 476 | 'above': above the height |
---|
[2545] | 477 | Nadd: additional points to add to draw the line (20, default) |
---|
| 478 | """ |
---|
| 479 | fname = 'cut_ypolygon' |
---|
| 480 | |
---|
| 481 | N = polygon.shape[0] |
---|
[2581] | 482 | availkeeps = ['below', 'above'] |
---|
[2545] | 483 | |
---|
[2546] | 484 | if not gen.searchInlist(availkeeps, keep): |
---|
| 485 | print errormsg |
---|
| 486 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
| 487 | print ' available ones:', availkeeps |
---|
| 488 | quit(-1) |
---|
| 489 | |
---|
[2545] | 490 | ipt = None |
---|
| 491 | ept = None |
---|
| 492 | |
---|
[2579] | 493 | # There might be more than 1 cut... |
---|
| 494 | Ncuts = 0 |
---|
| 495 | icut = [] |
---|
| 496 | ecut = [] |
---|
| 497 | ipt = [] |
---|
| 498 | ept = [] |
---|
| 499 | |
---|
[2580] | 500 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
| 501 | type(gen.mamat.mask[1]): |
---|
[2545] | 502 | # Assuming clockwise polygons |
---|
[2547] | 503 | for ip in range(N-1): |
---|
[2545] | 504 | if not polygon.mask[ip,0]: |
---|
| 505 | eep = ip + 1 |
---|
| 506 | if eep == N: eep = 0 |
---|
| 507 | |
---|
[2586] | 508 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
[2579] | 509 | icut.append(ip) |
---|
[2545] | 510 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 511 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 512 | dd = yval - polygon[ip,0] |
---|
[2579] | 513 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
[2545] | 514 | |
---|
[2586] | 515 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
[2579] | 516 | ecut.append(ip) |
---|
[2545] | 517 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 518 | dy = polygon[eep,0] - polygon[ip,0] |
---|
[2547] | 519 | dd = yval - polygon[ip,0] |
---|
[2579] | 520 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
[2580] | 521 | Ncuts = Ncuts + 1 |
---|
[2545] | 522 | else: |
---|
| 523 | # Assuming clockwise polygons |
---|
[2547] | 524 | for ip in range(N-1): |
---|
[2545] | 525 | eep = ip + 1 |
---|
| 526 | if eep == N: eep = 0 |
---|
| 527 | |
---|
[2586] | 528 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
[2579] | 529 | icut.append(ip) |
---|
[2545] | 530 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 531 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 532 | dd = yval - polygon[ip,0] |
---|
[2579] | 533 | ipt.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
[2545] | 534 | |
---|
[2586] | 535 | if val_consec_between(polygon[ip,0], polygon[eep,0], yval): |
---|
[2579] | 536 | ecut.append(ip) |
---|
[2545] | 537 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 538 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 539 | dd = yval - polygon[ip,0] |
---|
[2579] | 540 | ept.append([yval, polygon[ip,1]+dx*dd/dy]) |
---|
[2580] | 541 | Ncuts = Ncuts + 1 |
---|
[2545] | 542 | |
---|
[2580] | 543 | if ipt is None or ept is None or Ncuts == 0: |
---|
[2545] | 544 | print errormsg |
---|
| 545 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
[2580] | 546 | else: |
---|
| 547 | print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
| 548 | print ' yval=', yval, 'cut, ip; ipt ep; ept ________' |
---|
| 549 | for ic in range(Ncuts): |
---|
[2581] | 550 | print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
[2547] | 551 | |
---|
[2579] | 552 | Nadds = [] |
---|
[2580] | 553 | if Ncuts > 1: |
---|
| 554 | Naddc = Nadd/(Ncuts-1) |
---|
| 555 | for ic in range(Ncuts-1): |
---|
| 556 | Nadds.append(Naddc) |
---|
[2579] | 557 | |
---|
[2580] | 558 | Nadds.append(N-Naddc*(Ncuts-1)) |
---|
| 559 | else: |
---|
| 560 | Nadds.append(Nadd) |
---|
[2579] | 561 | |
---|
| 562 | iip = 0 |
---|
| 563 | iipc = 0 |
---|
| 564 | for ic in range(Ncuts): |
---|
[2581] | 565 | if keep == 'below': |
---|
[2579] | 566 | Npts = icut[ic] + (N-ecut[ic]) + Nadds[ic] |
---|
| 567 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
[2582] | 568 | cutpolygon[iipc:iipc+icut[ic]+1,:] = polygon[iip:iip+icut[ic]+1,:] |
---|
| 569 | iip = iip+icut[ic]+1 |
---|
| 570 | iipc = iipc+icut[ic]+1 |
---|
[2547] | 571 | else: |
---|
[2579] | 572 | Npts = ecut[ec] - icut[ic] + Nadds[ic]-1 |
---|
| 573 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
| 574 | cutpolygon[iipc,:] = ipt[ic] |
---|
| 575 | cutpolygon[iipc+1:ecut[ic]-icut[ic],:] = polygon[icut[ic]+1:ecut[ic],:] |
---|
| 576 | iip = ecut[ic]-icut[ic]-1 |
---|
[2582] | 577 | iipc = iipc + ecut[ic]-icut[ic]-1 |
---|
[2547] | 578 | |
---|
[2579] | 579 | # cutting line |
---|
| 580 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
| 581 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-2) |
---|
| 582 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-2) |
---|
| 583 | cutline[0,:] = ipt[ic] |
---|
| 584 | for ip in range(1,Nadds[ic]-1): |
---|
| 585 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
| 586 | cutline[Nadds[ic]-1,:] = ept[ic] |
---|
[2581] | 587 | if keep == 'below': |
---|
[2579] | 588 | cutpolygon[iip:iip+Nadds[ic],:] = cutline |
---|
| 589 | cutpolygon[iip+Nadds[ic]:Npts,:] = polygon[ecut[ic]+1:N,:] |
---|
[2547] | 590 | else: |
---|
[2579] | 591 | cutpolygon[iip:iip+Nadds[ic],:] = cutline[::-1,:] |
---|
[2547] | 592 | |
---|
| 593 | rmpolygon = [] |
---|
[2580] | 594 | Npts = cutpolygon.shape[0] |
---|
[2581] | 595 | if keep == 'below': |
---|
[2548] | 596 | for ip in range(Npts): |
---|
| 597 | if cutpolygon[ip,0] > yval: |
---|
[2547] | 598 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
| 599 | else: |
---|
[2548] | 600 | rmpolygon.append(cutpolygon[ip,:]) |
---|
[2547] | 601 | else: |
---|
[2548] | 602 | for ip in range(Npts): |
---|
| 603 | if cutpolygon[ip,0] < yval: |
---|
[2547] | 604 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
| 605 | else: |
---|
[2548] | 606 | rmpolygon.append(cutpolygon[ip,:]) |
---|
[2547] | 607 | Npts = len(rmpolygon) |
---|
| 608 | cutpolygon = np.array(rmpolygon) |
---|
| 609 | |
---|
| 610 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
| 611 | |
---|
| 612 | return Npts, cutpolygon |
---|
| 613 | |
---|
[2560] | 614 | def cut_xpolygon(polygon, xval, keep='left', Nadd=20): |
---|
| 615 | """ Function to cut a polygon from a given value of the x-axis |
---|
| 616 | polygon: polygon to cut |
---|
| 617 | yval: value to use to cut the polygon |
---|
| 618 | keep: part to keep from the value ('left', default) |
---|
| 619 | 'left': left of the value |
---|
| 620 | 'right': right of the value |
---|
| 621 | Nadd: additional points to add to draw the line (20, default) |
---|
| 622 | """ |
---|
| 623 | fname = 'cut_xpolygon' |
---|
| 624 | |
---|
| 625 | N = polygon.shape[0] |
---|
| 626 | availkeeps = ['left', 'right'] |
---|
| 627 | |
---|
| 628 | if not gen.searchInlist(availkeeps, keep): |
---|
| 629 | print errormsg |
---|
| 630 | print ' ' + fname + ": wring keep '" + keep + "' value !!" |
---|
| 631 | print ' available ones:', availkeeps |
---|
| 632 | quit(-1) |
---|
| 633 | |
---|
| 634 | ipt = None |
---|
| 635 | ept = None |
---|
| 636 | |
---|
[2583] | 637 | icut = [] |
---|
| 638 | ecut = [] |
---|
| 639 | ipt = [] |
---|
| 640 | ept = [] |
---|
| 641 | Ncuts = 0 |
---|
[2579] | 642 | if type(polygon) == type(gen.mamat) and type(polygon.mask) != \ |
---|
| 643 | type(gen.mamat.mask[1]): |
---|
[2560] | 644 | # Assuming clockwise polygons |
---|
| 645 | for ip in range(N-1): |
---|
[2579] | 646 | if not polygon.mask[ip,1]: |
---|
[2560] | 647 | eep = ip + 1 |
---|
| 648 | if eep == N: eep = 0 |
---|
| 649 | |
---|
[2586] | 650 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
[2583] | 651 | icut.append(ip) |
---|
[2560] | 652 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 653 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 654 | dd = xval - polygon[ip,1] |
---|
[2583] | 655 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
[2560] | 656 | |
---|
[2586] | 657 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
[2583] | 658 | ecut.append(ip) |
---|
[2560] | 659 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 660 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 661 | dd = xval - polygon[ip,1] |
---|
[2583] | 662 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
[2585] | 663 | Ncuts = Ncuts + 1 |
---|
[2560] | 664 | else: |
---|
| 665 | # Assuming clockwise polygons |
---|
| 666 | for ip in range(N-1): |
---|
| 667 | eep = ip + 1 |
---|
| 668 | if eep == N: eep = 0 |
---|
| 669 | |
---|
[2586] | 670 | if val_consec_between(polygon[ip,1], polygon[eep,1], xval): |
---|
[2583] | 671 | icut.append(ip) |
---|
[2560] | 672 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 673 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 674 | dd = xval - polygon[ip,1] |
---|
[2583] | 675 | ipt.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
[2560] | 676 | |
---|
[2586] | 677 | if val_consec_between(polygon[eep,1], polygon[ip,1], xval): |
---|
[2583] | 678 | ecut.append(ip) |
---|
[2560] | 679 | dx = polygon[eep,1] - polygon[ip,1] |
---|
| 680 | dy = polygon[eep,0] - polygon[ip,0] |
---|
| 681 | dd = xval - polygon[ip,1] |
---|
[2583] | 682 | ept.append([polygon[ip,0]+dy*dd/dx, xval]) |
---|
[2585] | 683 | Ncuts = Ncuts + 1 |
---|
[2560] | 684 | |
---|
[2583] | 685 | if ipt is None or ept is None or Ncuts == 0: |
---|
[2560] | 686 | print errormsg |
---|
[2579] | 687 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
[2560] | 688 | else: |
---|
[2592] | 689 | ##print ' ' + fname + ': found ', Ncuts, ' Ncuts' |
---|
| 690 | if Ncuts > 1 and keep == 'left': |
---|
| 691 | # Re-shifting cuts. 1st icut --> last ecut; 1st ecut as 1st icut; |
---|
| 692 | # 2nd icut --> last-1 ecut, .... |
---|
| 693 | newicut = icut + [] |
---|
| 694 | newecut = ecut + [] |
---|
| 695 | newipt = ipt + [] |
---|
| 696 | newept = ept + [] |
---|
| 697 | for ic in range(Ncuts-1): |
---|
| 698 | ecut[ic] = newecut[Ncuts-ic-1] |
---|
| 699 | ept[ic] = newept[Ncuts-ic-1] |
---|
| 700 | icut[ic+1] = newecut[ic] |
---|
| 701 | ipt[ic+1] = newept[ic] |
---|
[2560] | 702 | |
---|
[2592] | 703 | ecut[Ncuts-1] = newicut[Ncuts-1] |
---|
| 704 | ept[Ncuts-1] = newipt[Ncuts-1] |
---|
| 705 | |
---|
| 706 | ##print ' xval=', xval, 'cut, ip; ipt ep; ept ________' |
---|
| 707 | ##for ic in range(Ncuts): |
---|
| 708 | ## print ' ', ic, icut[ic], ';', ipt[ic], ecut[ic], ';', ept[ic] |
---|
| 709 | |
---|
[2583] | 710 | # Length of joining lines |
---|
| 711 | Nadds = [] |
---|
| 712 | if Ncuts > 1: |
---|
[2592] | 713 | Naddc = (Nadd-Ncuts)/(Ncuts) |
---|
[2583] | 714 | if Naddc < 3: |
---|
| 715 | print errormsg |
---|
| 716 | print ' ' + fname + ': too few points for jioning lines !!' |
---|
| 717 | print ' increase Nadd at least to:', Ncuts*3+Ncuts |
---|
| 718 | quit(-1) |
---|
| 719 | for ic in range(Ncuts-1): |
---|
| 720 | Nadds.append(Naddc) |
---|
| 721 | |
---|
[2592] | 722 | Nadds.append(Nadd-Naddc*(Ncuts-1)) |
---|
[2560] | 723 | else: |
---|
[2583] | 724 | Nadds.append(Nadd) |
---|
[2560] | 725 | |
---|
[2583] | 726 | # Total points cut polygon |
---|
| 727 | Ntotpts = 0 |
---|
| 728 | Ncpts = [] |
---|
| 729 | for ic in range(Ncuts): |
---|
[2592] | 730 | if keep == 'left': |
---|
| 731 | if ic == 0: |
---|
| 732 | dpts = icut[ic] + Nadds[ic] + (N - ecut[ic]) |
---|
| 733 | else: |
---|
| 734 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
| 735 | |
---|
| 736 | # Adding end of the polygon in 'left' keeps |
---|
| 737 | if ic == Ncuts - 1: dpts = dpts + N-ecut[ic] |
---|
[2583] | 738 | else: |
---|
| 739 | dpts = ecut[ic] - icut[ic] + Nadds[ic] - 1 |
---|
| 740 | |
---|
| 741 | Ntotpts = Ntotpts + dpts |
---|
[2592] | 742 | Ncpts.append(ecut[ic] - icut[ic]) |
---|
[2583] | 743 | |
---|
[2592] | 744 | cutpolygon = np.ones((Ntotpts+Ncuts,2), dtype=np.float)*gen.fillValue |
---|
[2583] | 745 | |
---|
| 746 | iipc = 0 |
---|
| 747 | for ic in range(Ncuts): |
---|
[2592] | 748 | dcpt = Ncpts[ic] |
---|
[2583] | 749 | if keep == 'left': |
---|
| 750 | if ic == 0: |
---|
[2586] | 751 | cutpolygon[0:icut[ic],:] = polygon[0:icut[ic],:] |
---|
[2583] | 752 | iipc = icut[ic] |
---|
[2586] | 753 | else: |
---|
[2592] | 754 | cutpolygon[iipc:iipc+dcpt-1,:] = polygon[icut[ic]+1:ecut[ic],:] |
---|
| 755 | iipc = iipc + dcpt -1 |
---|
[2583] | 756 | else: |
---|
| 757 | cutpolygon[iipc,:] = ipt[ic] |
---|
[2592] | 758 | cutpolygon[iipc:iipc+dcpt-1,:]=polygon[icut[ic]+1:ecut[ic],:] |
---|
| 759 | iipc = iipc+dcpt-1 |
---|
[2583] | 760 | |
---|
| 761 | # cutting line |
---|
| 762 | cutline = np.zeros((Nadds[ic],2), dtype=np.float) |
---|
[2592] | 763 | dx = (ept[ic][1] - ipt[ic][1])/(Nadds[ic]-1) |
---|
| 764 | dy = (ept[ic][0] - ipt[ic][0])/(Nadds[ic]-1) |
---|
[2583] | 765 | cutline[0,:] = ipt[ic] |
---|
| 766 | for ip in range(1,Nadds[ic]-1): |
---|
| 767 | cutline[ip,:] = ipt[ic] + np.array([dy*ip,dx*ip]) |
---|
[2592] | 768 | cutline[Nadds[ic]-1,:] = ept[ic] |
---|
[2583] | 769 | if keep == 'left': |
---|
[2592] | 770 | if ic == 0: cutpolygon[iipc:iipc+Nadds[ic],:] = cutline |
---|
| 771 | else: cutpolygon[iipc:iipc+Nadds[ic],:] = cutline[::-1] |
---|
| 772 | iipc = iipc+Nadds[ic] |
---|
| 773 | if ic == 0: |
---|
| 774 | cutpolygon[iipc:iipc+N-ecut[ic]-1,:] = polygon[ecut[ic]+1:N,:] |
---|
| 775 | iipc = iipc + N-ecut[ic]-1 |
---|
| 776 | cutpolygon[iipc,:] = polygon[0,:] |
---|
| 777 | iipc = iipc + 1 |
---|
[2583] | 778 | else: |
---|
| 779 | cutpolygon[iipc:iipc+Nadds[ic],:] = cutline[::-1,:] |
---|
[2592] | 780 | iipc = iipc+Nadds[ic] |
---|
| 781 | iipc = iipc + 1 |
---|
[2583] | 782 | |
---|
[2560] | 783 | rmpolygon = [] |
---|
[2584] | 784 | Npts = cutpolygon.shape[0] |
---|
[2560] | 785 | if keep == 'left': |
---|
| 786 | for ip in range(Npts): |
---|
| 787 | if cutpolygon[ip,1] > xval: |
---|
| 788 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
| 789 | else: |
---|
| 790 | rmpolygon.append(cutpolygon[ip,:]) |
---|
| 791 | else: |
---|
| 792 | for ip in range(Npts): |
---|
| 793 | if cutpolygon[ip,1] < xval: |
---|
| 794 | rmpolygon.append([gen.fillValueF, gen.fillValueF]) |
---|
| 795 | else: |
---|
| 796 | rmpolygon.append(cutpolygon[ip,:]) |
---|
| 797 | Npts = len(rmpolygon) |
---|
| 798 | cutpolygon = np.array(rmpolygon) |
---|
| 799 | |
---|
| 800 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
| 801 | |
---|
| 802 | return Npts, cutpolygon |
---|
| 803 | |
---|
[2556] | 804 | def cut_between_ypolygon(polygon, yval1, yval2, Nadd=20): |
---|
| 805 | """ Function to cut a polygon between 2 given value of the y-axis |
---|
[2547] | 806 | polygon: polygon to cut |
---|
[2556] | 807 | yval1: first value to use to cut the polygon |
---|
| 808 | yval2: first value to use to cut the polygon |
---|
[2547] | 809 | Nadd: additional points to add to draw the line (20, default) |
---|
| 810 | """ |
---|
[2556] | 811 | fname = 'cut_betwen_ypolygon' |
---|
[2547] | 812 | |
---|
| 813 | N = polygon.shape[0] |
---|
| 814 | |
---|
[2556] | 815 | ipt = None |
---|
| 816 | ept = None |
---|
| 817 | |
---|
| 818 | dx = np.zeros((2), dtype=np.float) |
---|
| 819 | dy = np.zeros((2), dtype=np.float) |
---|
| 820 | icut = np.zeros((2), dtype=int) |
---|
| 821 | ecut = np.zeros((2), dtype=int) |
---|
| 822 | ipt = np.zeros((2,2), dtype=np.float) |
---|
| 823 | ept = np.zeros((2,2), dtype=np.float) |
---|
| 824 | |
---|
| 825 | if yval1 > yval2: |
---|
[2547] | 826 | print errormsg |
---|
[2556] | 827 | print ' ' + fname + ': wrong between cut values !!' |
---|
| 828 | print ' it is expected yval1 < yval2' |
---|
| 829 | print ' values provided yval1: (', yval1, ')> yval2 (', yval2, ')' |
---|
[2547] | 830 | quit(-1) |
---|
| 831 | |
---|
[2556] | 832 | yvals = [yval1, yval2] |
---|
[2547] | 833 | |
---|
[2556] | 834 | for ic in range(2): |
---|
| 835 | yval = yvals[ic] |
---|
| 836 | if type(polygon) == type(gen.mamat): |
---|
| 837 | # Assuming clockwise polygons |
---|
| 838 | for ip in range(N-1): |
---|
| 839 | if not polygon.mask[ip,0]: |
---|
| 840 | eep = ip + 1 |
---|
| 841 | if eep == N: eep = 0 |
---|
| 842 | |
---|
| 843 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
| 844 | icut[ic] = ip |
---|
| 845 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 846 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 847 | dd = yval - polygon[ip,0] |
---|
| 848 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
| 849 | |
---|
| 850 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
| 851 | ecut[ic] = ip |
---|
| 852 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 853 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 854 | dd = yval - polygon[ip,0] |
---|
| 855 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
| 856 | else: |
---|
| 857 | # Assuming clockwise polygons |
---|
| 858 | for ip in range(N-1): |
---|
[2547] | 859 | eep = ip + 1 |
---|
| 860 | if eep == N: eep = 0 |
---|
| 861 | |
---|
[2556] | 862 | if polygon[ip,0] <= yval and polygon[eep,0] >= yval: |
---|
| 863 | icut[ic] = ip |
---|
| 864 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 865 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 866 | dd = yval - polygon[ip,0] |
---|
| 867 | ipt[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
[2547] | 868 | |
---|
[2556] | 869 | if polygon[ip,0] >= yval and polygon[eep,0] <= yval: |
---|
| 870 | ecut[ic] = ip |
---|
| 871 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 872 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 873 | dd = yval - polygon[ip,0] |
---|
| 874 | ept[ic,:] = [yval, polygon[ip,1]+dx[ic]*dd/dy[ic]] |
---|
[2547] | 875 | |
---|
[2556] | 876 | if ipt is None or ept is None: |
---|
| 877 | print errormsg |
---|
| 878 | print ' ' + fname + ': no cutting for polygon at y=', yval, '!!' |
---|
[2547] | 879 | |
---|
[2556] | 880 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
| 881 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
| 882 | cutpolygon[0,:] = ipt[0,:] |
---|
| 883 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
| 884 | iip = icut[1]-icut[0] |
---|
[2546] | 885 | |
---|
[2556] | 886 | # cutting lines |
---|
| 887 | Nadd2 = int(Nadd/2) |
---|
| 888 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
[2545] | 889 | |
---|
[2556] | 890 | for ic in range(2): |
---|
| 891 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
| 892 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
| 893 | cutlines[ic,0,:] = ipt[ic,:] |
---|
| 894 | for ip in range(1,Nadd2-1): |
---|
| 895 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
| 896 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
[2545] | 897 | |
---|
[2556] | 898 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
| 899 | iip = iip + Nadd2 |
---|
| 900 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
| 901 | iip = iip + ecut[0]-ecut[1] |
---|
| 902 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
[2546] | 903 | |
---|
[2545] | 904 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
| 905 | |
---|
| 906 | return Npts, cutpolygon |
---|
| 907 | |
---|
[2564] | 908 | def cut_between_xpolygon(polygon, xval1, xval2, Nadd=20): |
---|
| 909 | """ Function to cut a polygon between 2 given value of the x-axis |
---|
| 910 | polygon: polygon to cut |
---|
| 911 | xval1: first value to use to cut the polygon |
---|
| 912 | xval2: first value to use to cut the polygon |
---|
| 913 | Nadd: additional points to add to draw the line (20, default) |
---|
| 914 | """ |
---|
| 915 | fname = 'cut_betwen_xpolygon' |
---|
| 916 | |
---|
| 917 | N = polygon.shape[0] |
---|
| 918 | |
---|
| 919 | ipt = None |
---|
| 920 | ept = None |
---|
| 921 | |
---|
| 922 | dx = np.zeros((2), dtype=np.float) |
---|
| 923 | dy = np.zeros((2), dtype=np.float) |
---|
| 924 | icut = np.zeros((2), dtype=int) |
---|
| 925 | ecut = np.zeros((2), dtype=int) |
---|
| 926 | ipt = np.zeros((2,2), dtype=np.float) |
---|
| 927 | ept = np.zeros((2,2), dtype=np.float) |
---|
| 928 | |
---|
| 929 | if xval1 > xval2: |
---|
| 930 | print errormsg |
---|
| 931 | print ' ' + fname + ': wrong between cut values !!' |
---|
| 932 | print ' it is expected xval1 < xval2' |
---|
| 933 | print ' values provided xval1: (', xval1, ')> xval2 (', xval2, ')' |
---|
| 934 | quit(-1) |
---|
| 935 | |
---|
| 936 | xvals = [xval1, xval2] |
---|
| 937 | |
---|
| 938 | for ic in range(2): |
---|
| 939 | xval = xvals[ic] |
---|
| 940 | if type(polygon) == type(gen.mamat): |
---|
| 941 | # Assuming clockwise polygons |
---|
| 942 | for ip in range(N-1): |
---|
| 943 | if not polygon.mask[ip,0]: |
---|
| 944 | eep = ip + 1 |
---|
| 945 | if eep == N: eep = 0 |
---|
| 946 | |
---|
[2578] | 947 | if (polygon[ip,1] <= xval and polygon[eep,1] > xval) or \ |
---|
| 948 | (polygon[ip,1] < xval and polygon[eep,1] >= xval): |
---|
[2564] | 949 | icut[ic] = ip |
---|
| 950 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 951 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 952 | dd = xval - polygon[ip,1] |
---|
| 953 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
| 954 | |
---|
[2578] | 955 | if (polygon[ip,1] >= yval and polygon[eep,1] < xval) or \ |
---|
| 956 | (polygon[ip,1] > yval and polygon[eep,1] <= xval): |
---|
[2564] | 957 | ecut[ic] = ip |
---|
| 958 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 959 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 960 | dd = xval - polygon[ip,1] |
---|
| 961 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
| 962 | else: |
---|
| 963 | # Assuming clockwise polygons |
---|
| 964 | for ip in range(N-1): |
---|
| 965 | eep = ip + 1 |
---|
| 966 | if eep == N: eep = 0 |
---|
| 967 | |
---|
[2578] | 968 | if (polygon[ip,1] <= xval and polygon[eep,1] > xval) or \ |
---|
| 969 | (polygon[ip,1] < xval and polygon[eep,1] >= xval): |
---|
[2564] | 970 | icut[ic] = ip |
---|
| 971 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 972 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 973 | dd = xval - polygon[ip,1] |
---|
[2577] | 974 | print 'Lluis ip', ip, 'poly:', polygon[ip,:], 'xval:', xval, 'ip+1', polygon[eep,:] |
---|
| 975 | print ' dx:', dx, 'dy:', dy, 'dd', dd |
---|
[2564] | 976 | ipt[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
| 977 | |
---|
[2578] | 978 | if (polygon[ip,1] >= xval and polygon[eep,1] < xval) or \ |
---|
| 979 | (polygon[ip,1] > xval and polygon[eep,1] <= xval): |
---|
[2564] | 980 | ecut[ic] = ip |
---|
| 981 | dx[ic] = polygon[eep,1] - polygon[ip,1] |
---|
| 982 | dy[ic] = polygon[eep,0] - polygon[ip,0] |
---|
| 983 | dd = xval - polygon[ip,1] |
---|
[2578] | 984 | if dx[ic] == 0.: |
---|
| 985 | ept[ic,:] = [polygon[eep,0], xval] |
---|
| 986 | else: |
---|
| 987 | ept[ic,:] = [polygon[ip,0]+dy[ic]*dd/dx[ic], xval] |
---|
[2564] | 988 | |
---|
| 989 | if ipt is None or ept is None: |
---|
| 990 | print errormsg |
---|
| 991 | print ' ' + fname + ': no cutting for polygon at x=', xval, '!!' |
---|
| 992 | |
---|
| 993 | Npts = icut[1] - icut[0] + Nadd + ecut[0] - ecut[1] |
---|
| 994 | cutpolygon = np.zeros((Npts,2), dtype=np.float) |
---|
| 995 | cutpolygon[0,:] = ipt[0,:] |
---|
| 996 | cutpolygon[1:icut[1]-icut[0]+1,:] = polygon[icut[0]+1:icut[1]+1,:] |
---|
| 997 | iip = icut[1]-icut[0] |
---|
| 998 | |
---|
| 999 | # cutting lines |
---|
| 1000 | Nadd2 = int(Nadd/2) |
---|
| 1001 | cutlines = np.zeros((2,Nadd2,2), dtype=np.float) |
---|
| 1002 | |
---|
| 1003 | for ic in range(2): |
---|
[2577] | 1004 | print ic, 'Lluis ipt:', ipt[ic,:], 'ept:', ept[ic,:] |
---|
[2564] | 1005 | dx = (ept[ic,1] - ipt[ic,1])/(Nadd2-2) |
---|
| 1006 | dy = (ept[ic,0] - ipt[ic,0])/(Nadd2-2) |
---|
[2577] | 1007 | print ' dx:', dx, 'dy', dy |
---|
[2564] | 1008 | cutlines[ic,0,:] = ipt[ic,:] |
---|
| 1009 | for ip in range(1,Nadd2-1): |
---|
| 1010 | cutlines[ic,ip,:] = ipt[ic,:] + np.array([dy*ip,dx*ip]) |
---|
| 1011 | cutlines[ic,Nadd2-1,:] = ept[ic,:] |
---|
| 1012 | |
---|
| 1013 | cutpolygon[iip:iip+Nadd2,:] = cutlines[1,:,:] |
---|
| 1014 | iip = iip + Nadd2 |
---|
| 1015 | cutpolygon[iip:iip+(ecut[0]-ecut[1]),:] = polygon[ecut[1]+1:ecut[0]+1,:] |
---|
| 1016 | iip = iip + ecut[0]-ecut[1] |
---|
| 1017 | cutpolygon[iip:iip+Nadd2,:] = cutlines[0,::-1,:] |
---|
| 1018 | |
---|
| 1019 | cutpolygon = ma.masked_equal(cutpolygon, gen.fillValueF) |
---|
| 1020 | |
---|
| 1021 | return Npts, cutpolygon |
---|
| 1022 | |
---|
[2412] | 1023 | ####### ###### ##### #### ### ## # |
---|
| 1024 | # Shapes/objects |
---|
| 1025 | |
---|
[2413] | 1026 | def surface_sphere(radii,Npts): |
---|
| 1027 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
| 1028 | radii: radii of the sphere |
---|
| 1029 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
| 1030 | """ |
---|
| 1031 | fname = 'surface_sphere' |
---|
| 1032 | |
---|
| 1033 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 1034 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 1035 | for ia in range(Npts): |
---|
| 1036 | alpha = ia*2*np.pi/(Npts-1) |
---|
| 1037 | for ib in range(Npts/2): |
---|
| 1038 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
| 1039 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 1040 | for ib in range(Npts/2): |
---|
| 1041 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
| 1042 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 1043 | |
---|
| 1044 | return sphereup, spheredown |
---|
| 1045 | |
---|
[2412] | 1046 | def ellipse_polar(c, a, b, Nang=100): |
---|
| 1047 | """ Function to determine an ellipse from its center and polar coordinates |
---|
| 1048 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
| 1049 | c= coordinates of the center |
---|
| 1050 | a= distance major axis |
---|
| 1051 | b= distance minor axis |
---|
| 1052 | Nang= number of angles to use |
---|
| 1053 | """ |
---|
| 1054 | fname = 'ellipse_polar' |
---|
| 1055 | |
---|
| 1056 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
| 1057 | |
---|
| 1058 | dtheta = 2*np.pi/(Nang-1) |
---|
| 1059 | |
---|
| 1060 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
| 1061 | for ia in range(Nang): |
---|
| 1062 | theta = dtheta*ia |
---|
| 1063 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
| 1064 | x = rad*np.cos(theta) |
---|
| 1065 | y = rad*np.sin(theta) |
---|
| 1066 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
| 1067 | |
---|
| 1068 | return ellipse |
---|
| 1069 | |
---|
[2413] | 1070 | def hyperbola_polar(a, b, Nang=100): |
---|
| 1071 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
| 1072 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
| 1073 | x^2/a^2 - y^2/b^2 = 1 |
---|
| 1074 | a= x-parameter |
---|
| 1075 | y= y-parameter |
---|
| 1076 | Nang= number of angles to use |
---|
| 1077 | DOES NOT WORK!!!! |
---|
| 1078 | """ |
---|
| 1079 | fname = 'hyperbola_polar' |
---|
[2412] | 1080 | |
---|
[2413] | 1081 | dtheta = 2.*np.pi/(Nang-1) |
---|
| 1082 | |
---|
| 1083 | # Positive branch |
---|
| 1084 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
| 1085 | for ia in range(Nang): |
---|
| 1086 | theta = dtheta*ia |
---|
| 1087 | x = a*np.cosh(theta) |
---|
| 1088 | y = b*np.sinh(theta) |
---|
| 1089 | hyperbola_p[ia,:] = [y,x] |
---|
| 1090 | |
---|
| 1091 | # Negative branch |
---|
| 1092 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
| 1093 | for ia in range(Nang): |
---|
| 1094 | theta = dtheta*ia |
---|
| 1095 | x = -a*np.cosh(theta) |
---|
| 1096 | y = b*np.sinh(theta) |
---|
| 1097 | hyperbola_n[ia,:] = [y,x] |
---|
| 1098 | |
---|
| 1099 | return hyperbola_p, hyperbola_n |
---|
| 1100 | |
---|
[2512] | 1101 | def circ_sec(ptA, ptB, radii, arc='short', pos='left', Nang=100): |
---|
[2413] | 1102 | """ Function union of point A and B by a section of a circle |
---|
| 1103 | ptA= coordinates od the point A [yA, xA] |
---|
| 1104 | ptB= coordinates od the point B [yB, xB] |
---|
| 1105 | radii= radi of the circle to use to unite the points |
---|
[2508] | 1106 | arc= which arc to be used ('short', default) |
---|
| 1107 | 'short': shortest angle between points |
---|
| 1108 | 'long': largest angle between points |
---|
[2512] | 1109 | pos= orientation of the arc following clockwise union of points ('left', default) |
---|
| 1110 | 'left': to the left of union |
---|
| 1111 | 'right': to the right of union |
---|
[2413] | 1112 | Nang= amount of angles to use |
---|
| 1113 | """ |
---|
| 1114 | fname = 'circ_sec' |
---|
[2512] | 1115 | availarc = ['short', 'long'] |
---|
| 1116 | availpos = ['left', 'right'] |
---|
[2413] | 1117 | |
---|
| 1118 | distAB = dist_points(ptA,ptB) |
---|
| 1119 | |
---|
| 1120 | if distAB > radii: |
---|
| 1121 | print errormsg |
---|
| 1122 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
| 1123 | "between points !!" |
---|
| 1124 | print ' distance between points:', distAB |
---|
| 1125 | quit(-1) |
---|
| 1126 | |
---|
[2414] | 1127 | # Coordinate increments |
---|
| 1128 | dAB = np.abs(ptA-ptB) |
---|
[2413] | 1129 | |
---|
[2414] | 1130 | # angle of the circular section joining points |
---|
[2434] | 1131 | alpha = 2.*np.arcsin((distAB/2.)/radii) |
---|
[2414] | 1132 | |
---|
| 1133 | # center along coincident bisection of the union |
---|
| 1134 | xcc = -radii |
---|
| 1135 | ycc = 0. |
---|
| 1136 | |
---|
[2434] | 1137 | # Getting the arc of the circle at the x-axis |
---|
[2508] | 1138 | if arc == 'short': |
---|
| 1139 | dalpha = alpha/(Nang-1) |
---|
[2512] | 1140 | elif arc == 'long': |
---|
| 1141 | dalpha = (2.*np.pi - alpha)/(Nang-1) |
---|
[2508] | 1142 | else: |
---|
[2512] | 1143 | print errormsg |
---|
| 1144 | print ' ' + fname + ": arc '" + arc + "' not ready !!" |
---|
| 1145 | print ' available ones:', availarc |
---|
| 1146 | quit(-1) |
---|
| 1147 | if pos == 'left': sign=-1. |
---|
| 1148 | elif pos == 'right': sign=1. |
---|
| 1149 | else: |
---|
| 1150 | print errormsg |
---|
| 1151 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
| 1152 | print ' available ones:', availpos |
---|
| 1153 | quit(-1) |
---|
| 1154 | |
---|
[2434] | 1155 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
| 1156 | for ia in range(Nang): |
---|
[2512] | 1157 | alpha = sign*dalpha*ia |
---|
[2434] | 1158 | x = radii*np.cos(alpha) |
---|
| 1159 | y = radii*np.sin(alpha) |
---|
| 1160 | |
---|
| 1161 | circ_sec[ia,:] = [y+ycc,x+xcc] |
---|
[2512] | 1162 | |
---|
[2414] | 1163 | # Angle of the points |
---|
[2434] | 1164 | theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
[2414] | 1165 | |
---|
[2434] | 1166 | # rotating angle of the circ |
---|
[2512] | 1167 | if pos == 'left': |
---|
| 1168 | rotangle = theta + np.pi/2. - alpha/2. |
---|
| 1169 | elif pos == 'right': |
---|
| 1170 | rotangle = theta + 3.*np.pi/2. - alpha/2. |
---|
| 1171 | else: |
---|
| 1172 | print errormsg |
---|
| 1173 | print ' ' + fname + ": position '" + pos + "' not ready !!" |
---|
| 1174 | print ' available ones:', availpos |
---|
| 1175 | quit(-1) |
---|
[2414] | 1176 | |
---|
[2434] | 1177 | #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi |
---|
| 1178 | |
---|
| 1179 | # rotating the arc along the x-axis |
---|
| 1180 | rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) |
---|
[2414] | 1181 | |
---|
[2434] | 1182 | # Moving arc to the ptA |
---|
| 1183 | circ_sec = rotcirc_sec + ptA |
---|
[2413] | 1184 | |
---|
| 1185 | return circ_sec |
---|
| 1186 | |
---|
[2449] | 1187 | def p_square(face, N=5): |
---|
| 1188 | """ Function to get a polygon square |
---|
| 1189 | face: length of the face of the square |
---|
| 1190 | N: number of points of the polygon |
---|
| 1191 | """ |
---|
| 1192 | fname = 'p_square' |
---|
| 1193 | |
---|
| 1194 | square = np.zeros((N,2), dtype=np.float) |
---|
| 1195 | |
---|
| 1196 | f2 = face/2. |
---|
| 1197 | N4 = N/4 |
---|
| 1198 | df = face/(N4) |
---|
| 1199 | # SW-NW |
---|
| 1200 | for ip in range(N4): |
---|
| 1201 | square[ip,:] = [-f2+ip*df,-f2] |
---|
| 1202 | # NW-NE |
---|
| 1203 | for ip in range(N4): |
---|
| 1204 | square[ip+N4,:] = [f2,-f2+ip*df] |
---|
| 1205 | # NE-SE |
---|
| 1206 | for ip in range(N4): |
---|
| 1207 | square[ip+2*N4,:] = [f2-ip*df,f2] |
---|
| 1208 | N42 = N-3*N4-1 |
---|
| 1209 | df = face/(N42) |
---|
| 1210 | # SE-SW |
---|
| 1211 | for ip in range(N42): |
---|
| 1212 | square[ip+3*N4,:] = [-f2,f2-ip*df] |
---|
| 1213 | square[N-1,:] = [-f2,-f2] |
---|
| 1214 | |
---|
| 1215 | return square |
---|
| 1216 | |
---|
[2567] | 1217 | |
---|
| 1218 | def p_prism(base, height, N=5): |
---|
| 1219 | """ Function to get a polygon prism |
---|
| 1220 | base: length of the base of the prism |
---|
| 1221 | height: length of the height of the prism |
---|
| 1222 | N: number of points of the polygon |
---|
| 1223 | """ |
---|
| 1224 | fname = 'p_prism' |
---|
| 1225 | |
---|
| 1226 | prism = np.zeros((N,2), dtype=np.float) |
---|
| 1227 | |
---|
| 1228 | b2 = base/2. |
---|
| 1229 | h2 = height/2. |
---|
| 1230 | N4 = N/4 |
---|
| 1231 | dh = height/(N4) |
---|
| 1232 | db = base/(N4) |
---|
| 1233 | |
---|
| 1234 | # SW-NW |
---|
| 1235 | for ip in range(N4): |
---|
| 1236 | prism[ip,:] = [-h2+ip*dh,-b2] |
---|
| 1237 | # NW-NE |
---|
| 1238 | for ip in range(N4): |
---|
| 1239 | prism[ip+N4,:] = [h2,-b2+ip*db] |
---|
| 1240 | # NE-SE |
---|
| 1241 | for ip in range(N4): |
---|
| 1242 | prism[ip+2*N4,:] = [h2-ip*dh,b2] |
---|
| 1243 | N42 = N-3*N4-1 |
---|
| 1244 | db = base/(N42) |
---|
| 1245 | # SE-SW |
---|
| 1246 | for ip in range(N42): |
---|
| 1247 | prism[ip+3*N4,:] = [-h2,b2-ip*db] |
---|
| 1248 | prism[N-1,:] = [-h2,-b2] |
---|
| 1249 | |
---|
| 1250 | return prism |
---|
| 1251 | |
---|
[2449] | 1252 | def p_circle(radii, N=50): |
---|
| 1253 | """ Function to get a polygon of a circle |
---|
| 1254 | radii: length of the radii of the circle |
---|
| 1255 | N: number of points of the polygon |
---|
| 1256 | """ |
---|
| 1257 | fname = 'p_circle' |
---|
| 1258 | |
---|
| 1259 | circle = np.zeros((N,2), dtype=np.float) |
---|
| 1260 | |
---|
| 1261 | dangle = 2.*np.pi/(N-1) |
---|
| 1262 | |
---|
| 1263 | for ia in range(N): |
---|
| 1264 | circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
| 1265 | |
---|
| 1266 | circle[N-1,:] = [0., radii] |
---|
| 1267 | |
---|
| 1268 | return circle |
---|
| 1269 | |
---|
[2451] | 1270 | def p_triangle(p1, p2, p3, N=4): |
---|
| 1271 | """ Function to provide the polygon of a triangle from its 3 vertices |
---|
| 1272 | p1: vertex 1 [y,x] |
---|
| 1273 | p2: vertex 2 [y,x] |
---|
| 1274 | p3: vertex 3 [y,x] |
---|
| 1275 | N: number of vertices of the triangle |
---|
| 1276 | """ |
---|
| 1277 | fname = 'p_triangle' |
---|
| 1278 | |
---|
| 1279 | triangle = np.zeros((N,2), dtype=np.float) |
---|
| 1280 | |
---|
| 1281 | N3 = N / 3 |
---|
| 1282 | # 1-2 |
---|
| 1283 | dx = (p2[1]-p1[1])/N3 |
---|
| 1284 | dy = (p2[0]-p1[0])/N3 |
---|
| 1285 | for ip in range(N3): |
---|
| 1286 | triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] |
---|
| 1287 | # 2-3 |
---|
| 1288 | dx = (p3[1]-p2[1])/N3 |
---|
| 1289 | dy = (p3[0]-p2[0])/N3 |
---|
| 1290 | for ip in range(N3): |
---|
| 1291 | triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] |
---|
| 1292 | # 3-1 |
---|
| 1293 | N32 = N - 2*N/3 |
---|
| 1294 | dx = (p1[1]-p3[1])/N32 |
---|
| 1295 | dy = (p1[0]-p3[0])/N32 |
---|
| 1296 | for ip in range(N32): |
---|
| 1297 | triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] |
---|
| 1298 | |
---|
| 1299 | triangle[N-1,:] = p1 |
---|
| 1300 | |
---|
| 1301 | return triangle |
---|
| 1302 | |
---|
| 1303 | def p_spiral(loops, eradii, N=1000): |
---|
| 1304 | """ Function to provide a polygon of an Archimedean spiral |
---|
| 1305 | FROM: https://en.wikipedia.org/wiki/Spiral |
---|
| 1306 | loops: number of loops of the spiral |
---|
| 1307 | eradii: length of the radii of the final spiral |
---|
| 1308 | N: number of points of the polygon |
---|
| 1309 | """ |
---|
| 1310 | fname = 'p_spiral' |
---|
| 1311 | |
---|
| 1312 | spiral = np.zeros((N,2), dtype=np.float) |
---|
| 1313 | |
---|
| 1314 | dangle = 2.*np.pi*loops/(N-1) |
---|
[2452] | 1315 | dr = eradii*1./(N-1) |
---|
[2451] | 1316 | |
---|
| 1317 | for ia in range(N): |
---|
| 1318 | radii = dr*ia |
---|
| 1319 | spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
| 1320 | |
---|
| 1321 | return spiral |
---|
| 1322 | |
---|
[2454] | 1323 | def p_reg_polygon(Nv, lf, N=50): |
---|
| 1324 | """ Function to provide a regular polygon of Nv vertices |
---|
| 1325 | Nv: number of vertices |
---|
| 1326 | lf: length of the face |
---|
| 1327 | N: number of points |
---|
| 1328 | """ |
---|
| 1329 | fname = 'p_reg_polygon' |
---|
| 1330 | |
---|
| 1331 | reg_polygon = np.zeros((N,2), dtype=np.float) |
---|
| 1332 | |
---|
| 1333 | # Number of points per vertex |
---|
| 1334 | Np = N/Nv |
---|
| 1335 | # Angle incremental between vertices |
---|
| 1336 | da = 2.*np.pi/Nv |
---|
| 1337 | # Radii of the circle according to lf |
---|
| 1338 | radii = lf*Nv/(2*np.pi) |
---|
| 1339 | |
---|
| 1340 | iip = 0 |
---|
| 1341 | for iv in range(Nv-1): |
---|
| 1342 | # Characteristics between vertices iv and iv+1 |
---|
| 1343 | av1 = da*iv |
---|
| 1344 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 1345 | av2 = da*(iv+1) |
---|
| 1346 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 1347 | dx = (v2[1]-v1[1])/Np |
---|
| 1348 | dy = (v2[0]-v1[0])/Np |
---|
| 1349 | for ip in range(Np): |
---|
| 1350 | reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 1351 | |
---|
| 1352 | # Characteristics between vertices Nv and 1 |
---|
| 1353 | |
---|
| 1354 | # Number of points per vertex |
---|
| 1355 | Np2 = N - Np*(Nv-1) |
---|
| 1356 | |
---|
| 1357 | av1 = da*Nv |
---|
| 1358 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 1359 | av2 = 0. |
---|
| 1360 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 1361 | dx = (v2[1]-v1[1])/Np2 |
---|
| 1362 | dy = (v2[0]-v1[0])/Np2 |
---|
| 1363 | for ip in range(Np2): |
---|
| 1364 | reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 1365 | |
---|
| 1366 | return reg_polygon |
---|
| 1367 | |
---|
| 1368 | def p_reg_star(Nv, lf, freq, vs=0, N=50): |
---|
| 1369 | """ Function to provide a regular star of Nv vertices |
---|
| 1370 | Nv: number of vertices |
---|
| 1371 | lf: length of the face of the regular polygon |
---|
| 1372 | freq: frequency of union of vertices ('0', for just centered to zero arms) |
---|
| 1373 | vs: vertex from which start (0 being first [0,lf]) |
---|
| 1374 | N: number of points |
---|
| 1375 | """ |
---|
| 1376 | fname = 'p_reg_star' |
---|
| 1377 | |
---|
| 1378 | reg_star = np.zeros((N,2), dtype=np.float) |
---|
| 1379 | |
---|
| 1380 | # Number of arms of the star |
---|
| 1381 | if freq != 0 and np.mod(Nv,freq) == 0: |
---|
| 1382 | Na = Nv/freq + 1 |
---|
| 1383 | else: |
---|
| 1384 | Na = Nv |
---|
| 1385 | |
---|
| 1386 | # Number of points per arm |
---|
| 1387 | Np = N/Na |
---|
| 1388 | # Angle incremental between vertices |
---|
| 1389 | da = 2.*np.pi/Nv |
---|
| 1390 | # Radii of the circle according to lf |
---|
| 1391 | radii = lf*Nv/(2*np.pi) |
---|
| 1392 | |
---|
| 1393 | iip = 0 |
---|
| 1394 | av1 = vs*da |
---|
| 1395 | for iv in range(Na-1): |
---|
| 1396 | # Characteristics between vertices iv and iv+1 |
---|
| 1397 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 1398 | if freq != 0: |
---|
| 1399 | av2 = av1 + da*freq |
---|
| 1400 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 1401 | else: |
---|
| 1402 | v2 = [0., 0.] |
---|
| 1403 | av2 = av1 + da |
---|
| 1404 | dx = (v2[1]-v1[1])/(Np-1) |
---|
| 1405 | dy = (v2[0]-v1[0])/(Np-1) |
---|
| 1406 | for ip in range(Np): |
---|
| 1407 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 1408 | if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi |
---|
| 1409 | else: av1 = av2 + 0. |
---|
| 1410 | |
---|
| 1411 | iv = Na-1 |
---|
| 1412 | # Characteristics between vertices Na and 1 |
---|
| 1413 | Np2 = N-Np*iv |
---|
| 1414 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 1415 | if freq != 0: |
---|
| 1416 | av2 = vs*da |
---|
| 1417 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 1418 | else: |
---|
| 1419 | v2 = [0., 0.] |
---|
| 1420 | dx = (v2[1]-v1[1])/(Np2-1) |
---|
| 1421 | dy = (v2[0]-v1[0])/(Np2-1) |
---|
| 1422 | for ip in range(Np2): |
---|
| 1423 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 1424 | |
---|
| 1425 | return reg_star |
---|
| 1426 | |
---|
[2492] | 1427 | def p_sinusiode(length=10., amp=5., lamb=3., ival=0., func='sin', N=100): |
---|
| 1428 | """ Function to get coordinates of a sinusoidal curve |
---|
| 1429 | length: length of the line (default 10.) |
---|
| 1430 | amp: amplitude of the peaks (default 5.) |
---|
| 1431 | lamb: wave longitude (defalult 3.) |
---|
| 1432 | ival: initial angle (default 0. in degree) |
---|
| 1433 | func: function to use: (default sinus) |
---|
| 1434 | 'sin': sinus |
---|
| 1435 | 'cos': cosinus |
---|
| 1436 | N: number of points (default 100) |
---|
| 1437 | """ |
---|
| 1438 | fname = 'p_sinusiode' |
---|
| 1439 | availfunc = ['sin', 'cos'] |
---|
| 1440 | |
---|
| 1441 | dx = length/(N-1) |
---|
| 1442 | ia = ival*np.pi/180. |
---|
[2493] | 1443 | da = 2*np.pi*dx/lamb |
---|
[2492] | 1444 | |
---|
| 1445 | sinusoide = np.zeros((N,2), dtype=np.float) |
---|
| 1446 | if func == 'sin': |
---|
| 1447 | for ix in range(N): |
---|
| 1448 | sinusoide[ix,:] = [amp*np.sin(ia+da*ix),dx*ix] |
---|
| 1449 | elif func == 'cos': |
---|
| 1450 | for ix in range(N): |
---|
| 1451 | sinusoide[ix,:] = [amp*np.cos(ia+da*ix),dx*ix] |
---|
| 1452 | else: |
---|
| 1453 | print errormsg |
---|
| 1454 | print ' ' + fname + ": function '" + func + "' not ready !!" |
---|
| 1455 | print ' available ones:', availfunc |
---|
| 1456 | quit(-1) |
---|
| 1457 | |
---|
[2494] | 1458 | sinusoidesecs = ['sinusoide'] |
---|
| 1459 | sinusoidedic = {'sinusoide': [sinusoide, '-', '#000000', 1.]} |
---|
[2492] | 1460 | |
---|
[2494] | 1461 | return sinusoide, sinusoidesecs, sinusoidedic |
---|
[2492] | 1462 | |
---|
[2494] | 1463 | def p_doubleArrow(length=5., angle=45., width=1., alength=0.10, N=50): |
---|
| 1464 | """ Function to provide an arrow with double lines |
---|
| 1465 | length: length of the arrow (5. default) |
---|
| 1466 | angle: angle of the head of the arrow (45., default) |
---|
| 1467 | width: separation between the two lines (2., default) |
---|
| 1468 | alength: length of the head (as percentage in excess of width, 0.1 default) |
---|
| 1469 | N: number of points (50, default) |
---|
| 1470 | """ |
---|
| 1471 | function = 'p_doubleArrow' |
---|
| 1472 | |
---|
| 1473 | doubleArrow = np.zeros((50,2), dtype=np.float) |
---|
| 1474 | N4 = int((N-3)/4) |
---|
| 1475 | |
---|
| 1476 | doublearrowdic = {} |
---|
[2514] | 1477 | ddy = width*np.tan(angle*np.pi/180.)/2. |
---|
[2494] | 1478 | # Arms |
---|
[2514] | 1479 | dx = (length-ddy)/(N4-1) |
---|
| 1480 | for ix in range(N4): |
---|
[2494] | 1481 | doubleArrow[ix,:] = [dx*ix,-width/2.] |
---|
[2514] | 1482 | doublearrowdic['leftarm'] = [doubleArrow[0:N4,:], '-', '#000000', 2.] |
---|
| 1483 | doubleArrow[N4,:] = [gen.fillValueF,gen.fillValueF] |
---|
| 1484 | for ix in range(N4): |
---|
| 1485 | doubleArrow[N4+1+ix,:] = [dx*ix,width/2.] |
---|
| 1486 | doublearrowdic['rightarm'] = [doubleArrow[N4+1:2*N4+1,:], '-', '#000000', 2.] |
---|
| 1487 | doubleArrow[2*N4+1,:] = [gen.fillValueF,gen.fillValueF] |
---|
[2494] | 1488 | |
---|
| 1489 | # Head |
---|
| 1490 | N42 = int((N-2 - 2*N4)/2) |
---|
[2514] | 1491 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N42-1) |
---|
| 1492 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N42-1) |
---|
[2494] | 1493 | for ix in range(N42): |
---|
[2514] | 1494 | doubleArrow[2*N4+2+ix,:] = [length-dy*ix,-dx*ix] |
---|
[2494] | 1495 | doublearrowdic['lefthead'] = [doubleArrow[2*N4:2*N4+N42,:], '-', '#000000', 2.] |
---|
[2514] | 1496 | doubleArrow[2*N4+2+N42,:] = [gen.fillValueF,gen.fillValueF] |
---|
[2494] | 1497 | |
---|
[2514] | 1498 | N43 = N-3 - 2*N4 - N42 + 1 |
---|
| 1499 | dx = width*(1.+alength)*np.cos(angle*np.pi/180.)/(N43-1) |
---|
| 1500 | dy = width*(1.+alength)*np.sin(angle*np.pi/180.)/(N43-1) |
---|
[2494] | 1501 | for ix in range(N43): |
---|
[2514] | 1502 | doubleArrow[2*N4+N42+2+ix,:] = [length-dy*ix,dx*ix] |
---|
| 1503 | doublearrowdic['rightthead'] = [doubleArrow[2*N4+N42+2:51,:], '-', '#000000', 2.] |
---|
[2494] | 1504 | |
---|
| 1505 | doubleArrow = ma.masked_equal(doubleArrow, gen.fillValueF) |
---|
| 1506 | doublearrowsecs = ['leftarm', 'rightarm', 'lefthead', 'righthead'] |
---|
| 1507 | |
---|
| 1508 | return doubleArrow, doublearrowsecs, doublearrowdic |
---|
| 1509 | |
---|
[2533] | 1510 | def p_angle_triangle(pi=np.array([0.,0.]), angle1=60., length1=1., angle2=60., N=100): |
---|
| 1511 | """ Function to draw a triangle by an initial point and two consecutive angles |
---|
| 1512 | and the first length of face. The third angle and 2 and 3rd face will be |
---|
| 1513 | computed accordingly the provided values: |
---|
| 1514 | length1 / sin(angle1) = length2 / sin(angle2) = length3 / sin(angle3) |
---|
| 1515 | angle1 + angle2 + angle3 = 180. |
---|
| 1516 | pi: initial point ([0., 0.], default) |
---|
| 1517 | angle1: first angle from pi clockwise (60., default) |
---|
| 1518 | length1: length of face from pi by angle1 (1., default) |
---|
| 1519 | angle2: second angle from second point (60., default) |
---|
| 1520 | length2: length of face from p2 by angle2 (1., default) |
---|
| 1521 | N: number of points (100, default) |
---|
| 1522 | """ |
---|
[2544] | 1523 | fname = 'p_angle_triangle' |
---|
[2533] | 1524 | |
---|
| 1525 | angle3 = 180. - angle1 - angle2 |
---|
| 1526 | length2 = np.sin(angle2*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
| 1527 | length3 = np.sin(angle3*np.pi/180.)*length1/np.sin(angle1*np.pi/180.) |
---|
| 1528 | |
---|
| 1529 | triangle = np.zeros((N,2), dtype=np.float) |
---|
| 1530 | |
---|
| 1531 | N3 = int(N/3) |
---|
| 1532 | # first face |
---|
| 1533 | ix = pi[1] |
---|
| 1534 | iy = pi[0] |
---|
| 1535 | dx = length1*np.cos(angle1*np.pi/180.)/(N3-1) |
---|
| 1536 | dy = length1*np.sin(angle1*np.pi/180.)/(N3-1) |
---|
| 1537 | for ip in range(N3): |
---|
| 1538 | triangle[ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 1539 | |
---|
| 1540 | # second face |
---|
| 1541 | ia = -90. - (90.-angle1) |
---|
| 1542 | ix = triangle[N3-1,1] |
---|
| 1543 | iy = triangle[N3-1,0] |
---|
| 1544 | dx = length2*np.cos((ia+angle2)*np.pi/180.)/(N3-1) |
---|
| 1545 | dy = length2*np.sin((ia+angle2)*np.pi/180.)/(N3-1) |
---|
| 1546 | for ip in range(N3): |
---|
| 1547 | triangle[N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 1548 | |
---|
| 1549 | # third face |
---|
| 1550 | N32 = N - 2*N3 |
---|
| 1551 | ia = -180. - (90.-angle2) |
---|
| 1552 | ix = triangle[2*N3-1,1] |
---|
| 1553 | iy = triangle[2*N3-1,0] |
---|
| 1554 | angle3 = np.arctan2(pi[0]-iy, pi[1]-ix) |
---|
| 1555 | dx = (pi[1]-ix)/(N32-1) |
---|
| 1556 | dy = (pi[0]-iy)/(N32-1) |
---|
| 1557 | for ip in range(N32): |
---|
| 1558 | triangle[2*N3+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 1559 | |
---|
| 1560 | return triangle |
---|
| 1561 | |
---|
[2572] | 1562 | def p_cross_width(larm=5., width=1., Narms=4, N=200): |
---|
| 1563 | """ Function to draw a cross with arms with a given width and an angle |
---|
| 1564 | larm: legnth of the arms (5., default) |
---|
| 1565 | width: width of the arms (1., default) |
---|
| 1566 | Narms: Number of arms (4, default) |
---|
| 1567 | N: number of points to us (200, default) |
---|
| 1568 | """ |
---|
| 1569 | fname = 'p_cross_width' |
---|
| 1570 | |
---|
| 1571 | Narm = int((N-Narms)/Narms) |
---|
| 1572 | |
---|
| 1573 | larm2 = larm/2. |
---|
| 1574 | width2 = width/2. |
---|
| 1575 | |
---|
| 1576 | cross = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 1577 | da = np.pi/Narms |
---|
| 1578 | |
---|
| 1579 | N1 = int(Narm*3./8.) |
---|
| 1580 | N2 = int((Narm - 2*N1)/2.) |
---|
| 1581 | N21 = Narm - 2*N1 - N2 |
---|
| 1582 | |
---|
| 1583 | if N2 < 3: |
---|
| 1584 | print errormsg |
---|
| 1585 | print ' ' + fname + ": too few points for ", Narms, " arms !!" |
---|
| 1586 | print " increase number 'N' at least up to '", 25*Narms |
---|
| 1587 | quit(-1) |
---|
| 1588 | |
---|
| 1589 | crosssecs = [] |
---|
| 1590 | crossdic = {} |
---|
| 1591 | Npot = int(np.log10(Narms))+1 |
---|
| 1592 | |
---|
| 1593 | iip = 0 |
---|
| 1594 | for iarm in range(Narms-1): |
---|
| 1595 | |
---|
| 1596 | a = da*iarm |
---|
| 1597 | iip0 = iip |
---|
| 1598 | |
---|
| 1599 | # bottom coordinate |
---|
| 1600 | bx = larm*np.cos(a+np.pi) |
---|
| 1601 | by = larm*np.sin(a+np.pi) |
---|
| 1602 | |
---|
| 1603 | # upper coordinate |
---|
| 1604 | ux = larm*np.cos(a) |
---|
| 1605 | uy = larm*np.sin(a) |
---|
| 1606 | |
---|
| 1607 | rela = a+np.pi*3./2. |
---|
| 1608 | # SW-NW |
---|
| 1609 | ix = bx + width2*np.cos(rela) |
---|
| 1610 | iy = by + width2*np.sin(rela) |
---|
| 1611 | ex = ux + width2*np.cos(rela) |
---|
| 1612 | ey = uy + width2*np.sin(rela) |
---|
| 1613 | dx = (ex-ix)/(N1-1) |
---|
| 1614 | dy = (ey-iy)/(N1-1) |
---|
| 1615 | for ip in range(N1): |
---|
| 1616 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1617 | iip = iip + N1 |
---|
| 1618 | |
---|
| 1619 | # NW-NE |
---|
| 1620 | ix = ex + 0. |
---|
| 1621 | iy = ey + 0. |
---|
| 1622 | ex = ux - width2*np.cos(rela) |
---|
| 1623 | ey = uy - width2*np.sin(rela) |
---|
| 1624 | dx = (ex-ix)/(N2-1) |
---|
| 1625 | dy = (ey-iy)/(N2-1) |
---|
| 1626 | for ip in range(N2): |
---|
| 1627 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1628 | iip = iip + N2 |
---|
| 1629 | |
---|
| 1630 | # NW-SW |
---|
| 1631 | ix = ex + 0. |
---|
| 1632 | iy = ey + 0. |
---|
| 1633 | ex = bx - width2*np.cos(rela) |
---|
| 1634 | ey = by - width2*np.sin(rela) |
---|
| 1635 | dx = (ex-ix)/(N1-1) |
---|
| 1636 | dy = (ey-iy)/(N1-1) |
---|
| 1637 | for ip in range(N1): |
---|
| 1638 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1639 | iip = iip + N1 |
---|
| 1640 | |
---|
| 1641 | # SW-SE |
---|
| 1642 | ix = ex + 0. |
---|
| 1643 | iy = ey + 0. |
---|
| 1644 | ex = bx + width2*np.cos(rela) |
---|
| 1645 | ey = by + width2*np.sin(rela) |
---|
| 1646 | dx = (ex-ix)/(N21-1) |
---|
| 1647 | dy = (ey-iy)/(N21-1) |
---|
| 1648 | for ip in range(N21): |
---|
| 1649 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1650 | iip = iip + N21 + 1 |
---|
| 1651 | |
---|
| 1652 | iarmS = str(iarm).zfill(Npot) |
---|
| 1653 | crosssecs.append(iarmS) |
---|
| 1654 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
| 1655 | |
---|
| 1656 | iip0 = iip |
---|
| 1657 | |
---|
| 1658 | Narm = N - Narm*(Narms-1) - Narms |
---|
| 1659 | |
---|
| 1660 | N1 = int(Narm*3./8.) |
---|
| 1661 | N2 = int((Narm - 2*N1)/2.) |
---|
| 1662 | N21 = Narm - 2*N1 - N2 |
---|
| 1663 | |
---|
| 1664 | iarm = Narms-1 |
---|
| 1665 | a = da*iarm |
---|
| 1666 | |
---|
| 1667 | # bottom coordinate |
---|
| 1668 | bx = larm*np.cos(a+np.pi) |
---|
| 1669 | by = larm*np.sin(a+np.pi) |
---|
| 1670 | |
---|
| 1671 | # upper coordinate |
---|
| 1672 | ux = larm*np.cos(a) |
---|
| 1673 | uy = larm*np.sin(a) |
---|
| 1674 | |
---|
| 1675 | rela = a+np.pi*3./2. |
---|
| 1676 | # SW-NW |
---|
| 1677 | ix = bx + width2*np.cos(rela) |
---|
| 1678 | iy = by + width2*np.sin(rela) |
---|
| 1679 | ex = ux + width2*np.cos(rela) |
---|
| 1680 | ey = uy + width2*np.sin(rela) |
---|
| 1681 | dx = (ex-ix)/(N1-1) |
---|
| 1682 | dy = (ey-iy)/(N1-1) |
---|
| 1683 | for ip in range(N1): |
---|
| 1684 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1685 | iip = iip + N1 |
---|
| 1686 | |
---|
| 1687 | # NW-NE |
---|
| 1688 | ix = ex + 0. |
---|
| 1689 | iy = ey + 0. |
---|
| 1690 | ex = ux - width2*np.cos(rela) |
---|
| 1691 | ey = uy - width2*np.sin(rela) |
---|
| 1692 | dx = (ex-ix)/(N2-1) |
---|
| 1693 | dy = (ey-iy)/(N2-1) |
---|
| 1694 | for ip in range(N2): |
---|
| 1695 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1696 | iip = iip + N2 |
---|
| 1697 | |
---|
| 1698 | # NW-SW |
---|
| 1699 | ix = ex + 0. |
---|
| 1700 | iy = ey + 0. |
---|
| 1701 | ex = bx - width2*np.cos(rela) |
---|
| 1702 | ey = by - width2*np.sin(rela) |
---|
| 1703 | dx = (ex-ix)/(N1-1) |
---|
| 1704 | dy = (ey-iy)/(N1-1) |
---|
| 1705 | for ip in range(N1): |
---|
| 1706 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1707 | iip = iip + N1 |
---|
| 1708 | |
---|
| 1709 | # SW-SE |
---|
| 1710 | ix = ex + 0. |
---|
| 1711 | iy = ey + 0. |
---|
| 1712 | ex = bx + width2*np.cos(rela) |
---|
| 1713 | ey = by + width2*np.sin(rela) |
---|
| 1714 | dx = (ex-ix)/(N21-1) |
---|
| 1715 | dy = (ey-iy)/(N21-1) |
---|
| 1716 | for ip in range(N21): |
---|
| 1717 | cross[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1718 | iip = iip + N21 |
---|
| 1719 | |
---|
| 1720 | iarmS = str(iarm).zfill(Npot) |
---|
| 1721 | crosssecs.append(iarmS) |
---|
| 1722 | crossdic[iarmS] = [cross[iip0:iip0+iip-1], '-', 'k', '1.'] |
---|
| 1723 | |
---|
| 1724 | cross = ma.masked_equal(cross, gen.fillValueF) |
---|
| 1725 | |
---|
| 1726 | return cross, crosssecs, crossdic |
---|
| 1727 | |
---|
[2449] | 1728 | # Combined objects |
---|
| 1729 | ## |
---|
| 1730 | |
---|
[2413] | 1731 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
[2455] | 1732 | def zboat(length=10., beam=1., lbeam=0.4, sternbp=0.5): |
---|
[2413] | 1733 | """ Function to define an schematic boat from the z-plane |
---|
[2435] | 1734 | length: length of the boat (without stern, default 10) |
---|
| 1735 | beam: beam of the boat (default 1) |
---|
[2437] | 1736 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
[2435] | 1737 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
[2413] | 1738 | """ |
---|
[2455] | 1739 | fname = 'zboat' |
---|
[2413] | 1740 | |
---|
[2435] | 1741 | bow = np.array([length, 0.]) |
---|
| 1742 | maxportside = np.array([length*lbeam, -beam]) |
---|
| 1743 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
| 1744 | portside = np.array([0., -beam*sternbp]) |
---|
| 1745 | starboardside = np.array([0., beam*sternbp]) |
---|
[2413] | 1746 | |
---|
[2435] | 1747 | # forward section |
---|
[2513] | 1748 | fportside = circ_sec(maxportside, bow, length*2) |
---|
| 1749 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
[2435] | 1750 | # aft section |
---|
[2513] | 1751 | aportside = circ_sec(portside, maxportside, length*2) |
---|
| 1752 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
[2435] | 1753 | # stern |
---|
[2513] | 1754 | stern = circ_sec(starboardside, portside, length*2) |
---|
[2435] | 1755 | |
---|
| 1756 | dpts = stern.shape[0] |
---|
| 1757 | boat = np.zeros((dpts*5,2), dtype=np.float) |
---|
| 1758 | |
---|
[2513] | 1759 | boat[0:dpts,:] = aportside |
---|
| 1760 | boat[dpts:2*dpts,:] = fportside |
---|
| 1761 | boat[2*dpts:3*dpts,:] = fstarboardside |
---|
[2491] | 1762 | boat[3*dpts:4*dpts,:] = astarboardside |
---|
[2513] | 1763 | boat[4*dpts:5*dpts,:] = stern |
---|
[2435] | 1764 | |
---|
[2438] | 1765 | fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' + \ |
---|
| 1766 | str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat' |
---|
| 1767 | if not os.path.isfile(fname): |
---|
| 1768 | print infmsg |
---|
| 1769 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
| 1770 | of = open(fname, 'w') |
---|
| 1771 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
| 1772 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
| 1773 | ' %\n') |
---|
| 1774 | for ip in range(dpts*5): |
---|
| 1775 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
| 1776 | |
---|
| 1777 | of.close() |
---|
| 1778 | print fname + ": Successfull written '" + fname + "' !!" |
---|
[2413] | 1779 | |
---|
[2513] | 1780 | |
---|
| 1781 | # Center line extending [fcl] percentage from length on aft and stern |
---|
| 1782 | fcl = 0.15 |
---|
| 1783 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
| 1784 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
| 1785 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
| 1786 | |
---|
| 1787 | # correct order of sections |
---|
| 1788 | boatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
| 1789 | 'stern', 'centerline'] |
---|
| 1790 | |
---|
| 1791 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
| 1792 | dicboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
| 1793 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
| 1794 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
| 1795 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
| 1796 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
| 1797 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
| 1798 | |
---|
| 1799 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
| 1800 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) +'.dat' |
---|
| 1801 | if not os.path.isfile(fname): |
---|
| 1802 | print infmsg |
---|
| 1803 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
| 1804 | of = open(fname, 'w') |
---|
| 1805 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
| 1806 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' +str(sternbp)+'\n') |
---|
| 1807 | for ip in range(dpts*5): |
---|
| 1808 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
| 1809 | |
---|
| 1810 | of.close() |
---|
| 1811 | print fname + ": Successfull written '" + fname + "' !!" |
---|
| 1812 | |
---|
| 1813 | return boat, boatsecs, dicboat |
---|
| 1814 | |
---|
[2455] | 1815 | def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5, lmast=0.6, wmast=0.1, \ |
---|
[2486] | 1816 | hsd=5., msd=5., lheads=0.38, lmains=0.55): |
---|
[2455] | 1817 | """ Function to define an schematic sailing boat from the z-plane with sails |
---|
| 1818 | length: length of the boat (without stern, default 10) |
---|
| 1819 | beam: beam of the boat (default 1) |
---|
| 1820 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
| 1821 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
| 1822 | lmast: position of the mast (as percentage of length, default 0.6) |
---|
| 1823 | wmast: width of the mast (default 0.1) |
---|
[2493] | 1824 | hsd: head sail direction respect to center line (default 5., -999.99 for upwind) |
---|
| 1825 | msd: main sail direction respect to center line (default 5., -999.99 for upwind) |
---|
[2455] | 1826 | lheads: length of head sail (as percentage of legnth, defaul 0.38) |
---|
| 1827 | lmains: length of main sail (as percentage of legnth, defaul 0.55) |
---|
| 1828 | """ |
---|
| 1829 | fname = 'zsailing_boat' |
---|
| 1830 | |
---|
| 1831 | bow = np.array([length, 0.]) |
---|
| 1832 | maxportside = np.array([length*lbeam, -beam]) |
---|
| 1833 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
| 1834 | portside = np.array([0., -beam*sternbp]) |
---|
| 1835 | starboardside = np.array([0., beam*sternbp]) |
---|
| 1836 | |
---|
[2513] | 1837 | aportside = circ_sec(portside, maxportside, length*2) |
---|
| 1838 | fportside = circ_sec(maxportside, bow, length*2) |
---|
| 1839 | fstarboardside = circ_sec(bow, maxstarboardside, length*2) |
---|
| 1840 | astarboardside = circ_sec(maxstarboardside, starboardside, length*2) |
---|
| 1841 | stern = circ_sec(starboardside, portside, length*2) |
---|
[2491] | 1842 | dpts = fportside.shape[0] |
---|
[2455] | 1843 | |
---|
[2513] | 1844 | # correct order of sections |
---|
| 1845 | sailingboatsecs = ['aportside', 'fportside', 'fstarboardside', 'astarboardside', \ |
---|
| 1846 | 'stern', 'mast', 'hsail', 'msail', 'centerline'] |
---|
| 1847 | |
---|
| 1848 | # forward section |
---|
| 1849 | |
---|
[2455] | 1850 | # aft section |
---|
| 1851 | # stern |
---|
| 1852 | # mast |
---|
| 1853 | mast = p_circle(wmast,N=dpts) |
---|
| 1854 | mast = mast + [length*lmast, 0.] |
---|
| 1855 | # head sails |
---|
| 1856 | lsail = lheads*length |
---|
[2493] | 1857 | if hsd != -999.99: |
---|
| 1858 | sailsa = np.pi/2. - np.pi*hsd/180. |
---|
| 1859 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
| 1860 | endsail[0] = length - endsail[0] |
---|
[2513] | 1861 | if bow[1] > endsail[1]: |
---|
[2493] | 1862 | hsail = circ_sec(endsail, bow, lsail*2.15) |
---|
| 1863 | else: |
---|
| 1864 | hsail = circ_sec(bow, endsail, lsail*2.15) |
---|
[2486] | 1865 | else: |
---|
[2493] | 1866 | hsail0 = p_sinusiode(length=lsail, amp=0.2, lamb=0.75, N=dpts) |
---|
| 1867 | hsail = np.zeros((dpts,2), dtype=np.float) |
---|
| 1868 | hsail[:,0] = hsail0[:,1] |
---|
| 1869 | hsail[:,1] = hsail0[:,0] |
---|
| 1870 | hsail = bow - hsail |
---|
[2485] | 1871 | |
---|
[2455] | 1872 | # main sails |
---|
| 1873 | lsail = lmains*length |
---|
[2493] | 1874 | if msd != -999.99: |
---|
| 1875 | sailsa = np.pi/2. - np.pi*msd/180. |
---|
| 1876 | begsail = np.array([length*lmast, 0.]) |
---|
| 1877 | endsail = np.array([lsail*np.sin(sailsa), lsail*np.cos(sailsa)]) |
---|
| 1878 | endsail[0] = length*lmast - endsail[0] |
---|
[2513] | 1879 | if endsail[1] > begsail[1]: |
---|
[2493] | 1880 | msail = circ_sec(begsail, endsail, lsail*2.15) |
---|
| 1881 | else: |
---|
| 1882 | msail = circ_sec(endsail, begsail, lsail*2.15) |
---|
[2486] | 1883 | else: |
---|
[2493] | 1884 | msail0 = p_sinusiode(length=lsail, amp=0.25, lamb=1., N=dpts) |
---|
| 1885 | msail = np.zeros((dpts,2), dtype=np.float) |
---|
| 1886 | msail[:,0] = msail0[:,1] |
---|
| 1887 | msail[:,1] = msail0[:,0] |
---|
| 1888 | msail = [length*lmast,0] - msail |
---|
[2455] | 1889 | |
---|
[2485] | 1890 | sailingboat = np.zeros((dpts*8+4,2), dtype=np.float) |
---|
[2455] | 1891 | |
---|
[2513] | 1892 | sailingboat[0:dpts,:] = aportside |
---|
| 1893 | sailingboat[dpts:2*dpts,:] = fportside |
---|
| 1894 | sailingboat[2*dpts:3*dpts,:] = fstarboardside |
---|
[2491] | 1895 | sailingboat[3*dpts:4*dpts,:] = astarboardside |
---|
[2513] | 1896 | sailingboat[4*dpts:5*dpts,:] = stern |
---|
[2455] | 1897 | sailingboat[5*dpts,:] = [gen.fillValueF, gen.fillValueF] |
---|
| 1898 | sailingboat[5*dpts+1:6*dpts+1,:] = mast |
---|
| 1899 | sailingboat[6*dpts+1,:] = [gen.fillValueF, gen.fillValueF] |
---|
| 1900 | sailingboat[6*dpts+2:7*dpts+2,:] = hsail |
---|
| 1901 | sailingboat[7*dpts+2,:] = [gen.fillValueF, gen.fillValueF] |
---|
[2485] | 1902 | sailingboat[7*dpts+3:8*dpts+3,:] = msail |
---|
| 1903 | sailingboat[8*dpts+3,:] = [gen.fillValueF, gen.fillValueF] |
---|
[2455] | 1904 | |
---|
| 1905 | sailingboat = ma.masked_equal(sailingboat, gen.fillValueF) |
---|
| 1906 | |
---|
[2491] | 1907 | # Center line extending [fcl] percentage from length on aft and stern |
---|
| 1908 | fcl = 0.15 |
---|
| 1909 | centerline = np.zeros((dpts,2), dtype=np.float) |
---|
| 1910 | dl = length*(1.+fcl*2.)/(dpts-1) |
---|
| 1911 | centerline[:,0] = np.arange(-length*fcl, length*(1. + fcl)+dl, dl) |
---|
| 1912 | |
---|
| 1913 | # dictionary with sections [polygon_vertices, line_type, line_color, line_width] |
---|
| 1914 | dicsailingboat = {'fportside': [fportside, '-', '#8A5900', 2.], \ |
---|
| 1915 | 'aportside': [aportside, '-', '#8A5900', 2.], \ |
---|
| 1916 | 'stern': [stern, '-', '#8A5900', 2.], \ |
---|
| 1917 | 'astarboardside': [astarboardside, '-', '#8A5900', 2.], \ |
---|
| 1918 | 'fstarboardside': [fstarboardside, '-', '#8A5900', 2.], \ |
---|
| 1919 | 'mast': [mast, '-', '#8A5900', 2.], 'hsail': [hsail, '-', '#AAAAAA', 1.], \ |
---|
| 1920 | 'msail': [msail, '-', '#AAAAAA', 1.], \ |
---|
| 1921 | 'centerline': [centerline, '-.', '#AA6464', 1.5]} |
---|
| 1922 | |
---|
[2455] | 1923 | fname = 'sailboat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + \ |
---|
| 1924 | '_lb' + str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + \ |
---|
| 1925 | '_lm' + str(int(lmast*100.)) + '_wm' + str(int(wmast)) + \ |
---|
[2486] | 1926 | '_hsd' + str(int(hsd)) + '_hs' + str(int(lheads*100.)) + \ |
---|
| 1927 | '_ms' + str(int(lheads*100.)) + '_msd' + str(int(msd)) +'.dat' |
---|
[2455] | 1928 | if not os.path.isfile(fname): |
---|
| 1929 | print infmsg |
---|
| 1930 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
| 1931 | of = open(fname, 'w') |
---|
| 1932 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
| 1933 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
| 1934 | ' % mast position: '+ str(lmast) + ' % mast width: ' + str(wmast) + ' ' + \ |
---|
[2486] | 1935 | ' head sail direction:' + str(hsd) + ' head sail length: ' + str(lheads) + \ |
---|
| 1936 | ' %' + ' main sail length' + str(lmains) + ' main sail direction:' + \ |
---|
| 1937 | str(msd) +'\n') |
---|
[2455] | 1938 | for ip in range(dpts*5): |
---|
| 1939 | of.write(str(sailingboat[ip,0]) + ' ' + str(sailingboat[ip,1]) + '\n') |
---|
| 1940 | |
---|
| 1941 | of.close() |
---|
| 1942 | print fname + ": Successfull written '" + fname + "' !!" |
---|
| 1943 | |
---|
[2491] | 1944 | return sailingboat, sailingboatsecs, dicsailingboat |
---|
[2455] | 1945 | |
---|
[2496] | 1946 | def zisland1(mainpts= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9],\ |
---|
| 1947 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float), radfrac=3., N=200): |
---|
| 1948 | """ Function to draw an island from z-axis as the union of a series of points by |
---|
| 1949 | circular segments |
---|
| 1950 | mainpts: main points of the island (clockwise ordered, to be joined by |
---|
| 1951 | circular segments of radii as the radfrac factor of the distance between |
---|
| 1952 | consecutive points) |
---|
| 1953 | * default= np.array([[-0.1,0.], [-1.,1.], [-0.8,1.2], [0.1,0.6], [1., 0.9], |
---|
| 1954 | [2.8, -0.1], [0.1,-0.6]], dtype=np.float) |
---|
| 1955 | radfrac: multiplicative factor of the distance between consecutive points to |
---|
| 1956 | draw the circular segment (3., default) |
---|
| 1957 | N: number of points (200, default) |
---|
| 1958 | """ |
---|
| 1959 | fname = 'zisland1' |
---|
| 1960 | |
---|
| 1961 | island1 = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 1962 | |
---|
| 1963 | # Coastline |
---|
[2512] | 1964 | island1 = join_circ_sec_rand(mainpts, arc='short', pos='left') |
---|
[2496] | 1965 | |
---|
| 1966 | islandsecs = ['coastline'] |
---|
| 1967 | islanddic = {'coastline': [island1, '-', '#161616', 2.]} |
---|
| 1968 | |
---|
| 1969 | island1 = ma.masked_equal(island1, gen.fillValueF) |
---|
| 1970 | |
---|
| 1971 | return island1, islandsecs, islanddic |
---|
| 1972 | |
---|
[2563] | 1973 | def buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=300): |
---|
[2508] | 1974 | """ Function to draw a buoy as superposition of prism and section of ball |
---|
| 1975 | height: height of the prism (5., default) |
---|
| 1976 | width: width of the prism (10., default) |
---|
| 1977 | bradii: radii of the ball (1.75, default) |
---|
| 1978 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
[2563] | 1979 | N: total number of points of the buoy (300, default) |
---|
[2449] | 1980 | """ |
---|
[2508] | 1981 | fname = 'buoy1' |
---|
[2449] | 1982 | |
---|
[2508] | 1983 | buoy = np.zeros((N,2), dtype=np.float) |
---|
[2449] | 1984 | |
---|
[2563] | 1985 | N3 = int(N/3/5) |
---|
[2508] | 1986 | NNp = 0 |
---|
| 1987 | iip = 0 |
---|
[2512] | 1988 | # left lateral |
---|
| 1989 | ix = -width/2. |
---|
[2563] | 1990 | Np = N3 |
---|
[2508] | 1991 | iy = 0. |
---|
| 1992 | dx = 0. |
---|
[2577] | 1993 | dy = height/(Np) |
---|
[2508] | 1994 | for ip in range(Np): |
---|
| 1995 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 1996 | NNp = NNp + Np |
---|
| 1997 | iip = NNp |
---|
[2449] | 1998 | |
---|
[2512] | 1999 | # left upper |
---|
| 2000 | ix = -width/2. |
---|
[2508] | 2001 | iy = height |
---|
[2577] | 2002 | dx = (width/2.-bradii*bfrac)/(Np) |
---|
[2508] | 2003 | dy = 0. |
---|
| 2004 | for ip in range(Np): |
---|
| 2005 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 2006 | NNp = NNp + Np |
---|
| 2007 | iip = NNp |
---|
[2449] | 2008 | |
---|
[2508] | 2009 | # ball |
---|
| 2010 | p1 = np.array([height, -bradii*bfrac]) |
---|
| 2011 | p2 = np.array([height, bradii*bfrac]) |
---|
[2563] | 2012 | Np = int(2*N/3) |
---|
[2512] | 2013 | buoy[iip:iip+Np,:] = circ_sec(p1, p2, 2.*bradii, 'long', 'left', Np) |
---|
[2508] | 2014 | NNp = NNp + Np |
---|
| 2015 | iip = NNp |
---|
[2449] | 2016 | |
---|
[2512] | 2017 | # right upper |
---|
| 2018 | ix = bradii*bfrac |
---|
[2508] | 2019 | iy = height |
---|
[2563] | 2020 | Np = N3 |
---|
[2577] | 2021 | dx = (width/2.-bradii*bfrac)/(Np) |
---|
[2508] | 2022 | dy = 0. |
---|
| 2023 | for ip in range(Np): |
---|
| 2024 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 2025 | NNp = NNp + Np |
---|
| 2026 | iip = NNp |
---|
[2449] | 2027 | |
---|
[2512] | 2028 | # right lateral |
---|
| 2029 | ix = width/2. |
---|
[2508] | 2030 | iy = height |
---|
| 2031 | dx = 0. |
---|
[2577] | 2032 | dy = -height/(Np) |
---|
[2508] | 2033 | for ip in range(Np): |
---|
| 2034 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 2035 | NNp = NNp + Np |
---|
| 2036 | iip = NNp |
---|
[2449] | 2037 | |
---|
[2563] | 2038 | # Base |
---|
| 2039 | ix = width/2. |
---|
| 2040 | iy = 0. |
---|
[2577] | 2041 | Np = N - int(2*N/3) - 4*N3 - 1 |
---|
| 2042 | dx = -width/(Np) |
---|
[2563] | 2043 | dy = 0. |
---|
| 2044 | for ip in range(Np): |
---|
| 2045 | buoy[iip+ip,:] = [iy+dy*ip,ix+dx*ip] |
---|
| 2046 | NNp = NNp + Np |
---|
| 2047 | iip = NNp |
---|
| 2048 | |
---|
[2577] | 2049 | buoy[N-1,:] = buoy[0,:] |
---|
| 2050 | |
---|
[2508] | 2051 | buoysecs = ['base'] |
---|
| 2052 | buoydic = {'base': [buoy, '-', 'k', 1.5]} |
---|
[2449] | 2053 | |
---|
[2508] | 2054 | return buoy, buoysecs, buoydic |
---|
[2449] | 2055 | |
---|
[2527] | 2056 | def band_lighthouse(height=10., width=2., hlight=3., bands=3, N=300): |
---|
| 2057 | """ Function to plot a lighthouse with spiral bands |
---|
| 2058 | height: height of the tower (10., default) |
---|
| 2059 | width: width of the tower (2., default) |
---|
| 2060 | hlight: height of the light (3., default) |
---|
| 2061 | bands: number of spiral bands (3, default) |
---|
| 2062 | N: number of points (300, default) |
---|
| 2063 | """ |
---|
| 2064 | fname = 'band_lighthouse' |
---|
| 2065 | |
---|
| 2066 | lighthouse = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2067 | lighthousesecs = [] |
---|
| 2068 | lighthousedic = {} |
---|
| 2069 | |
---|
| 2070 | # base Tower |
---|
| 2071 | Nsec = int(0.30*N/7) |
---|
| 2072 | p1=np.array([0., width/2.]) |
---|
| 2073 | p2=np.array([0., -width/2.]) |
---|
| 2074 | iip = 0 |
---|
| 2075 | lighthouse[0:Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
| 2076 | iip = iip + Nsec |
---|
| 2077 | |
---|
| 2078 | # left side |
---|
| 2079 | ix=-width/2. |
---|
| 2080 | iy=0. |
---|
| 2081 | dx = 0. |
---|
| 2082 | dy = height/(Nsec-1) |
---|
| 2083 | for ip in range(Nsec): |
---|
| 2084 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2085 | iip = iip + Nsec |
---|
| 2086 | |
---|
| 2087 | # Top Tower |
---|
| 2088 | p1=np.array([height, width/2.]) |
---|
| 2089 | p2=np.array([height, -width/2.]) |
---|
| 2090 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
| 2091 | iip = iip + Nsec |
---|
| 2092 | |
---|
| 2093 | # right side |
---|
| 2094 | ix=width/2. |
---|
| 2095 | iy=height |
---|
| 2096 | dx = 0. |
---|
| 2097 | dy = -height/(Nsec-1) |
---|
| 2098 | for ip in range(Nsec): |
---|
| 2099 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2100 | iip = iip + Nsec + 1 |
---|
| 2101 | |
---|
| 2102 | Ntower = iip-1 |
---|
[2530] | 2103 | lighthousesecs.append('tower') |
---|
[2527] | 2104 | lighthousedic['tower'] = [lighthouse[0:iip-1], '-', 'k', 1.5] |
---|
| 2105 | |
---|
| 2106 | # Left light |
---|
[2530] | 2107 | p1 = np.array([height, -width*0.8/2.]) |
---|
| 2108 | p2 = np.array([height+hlight, -width*0.8/2.]) |
---|
[2527] | 2109 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
| 2110 | iip = iip + Nsec |
---|
| 2111 | |
---|
[2530] | 2112 | # Top Light |
---|
| 2113 | p1=np.array([height+hlight, width*0.8/2.]) |
---|
| 2114 | p2=np.array([height+hlight, -width*0.8/2.]) |
---|
| 2115 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
| 2116 | iip = iip + Nsec + 1 |
---|
| 2117 | |
---|
[2527] | 2118 | # Right light |
---|
[2530] | 2119 | p1 = np.array([height+hlight, width*0.8/2.]) |
---|
| 2120 | p2 = np.array([height, width*0.8/2.]) |
---|
[2527] | 2121 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*hlight, Nang=Nsec) |
---|
| 2122 | iip = iip + Nsec |
---|
| 2123 | |
---|
| 2124 | # Base Light |
---|
[2530] | 2125 | p1=np.array([height, width*0.8/2.]) |
---|
| 2126 | p2=np.array([height, -width*0.8/2.]) |
---|
[2527] | 2127 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
| 2128 | iip = iip + Nsec + 1 |
---|
[2530] | 2129 | lighthousesecs.append('light') |
---|
| 2130 | lighthousedic['light'] = [lighthouse[Ntower+1:iip-1], '-', '#EEEE00', 1.5] |
---|
[2527] | 2131 | |
---|
| 2132 | # Spiral bands |
---|
| 2133 | hb = height/(2.*bands) |
---|
[2530] | 2134 | Nsec2 = (N - Nsec*8 - 3)/bands |
---|
[2527] | 2135 | for ib in range(bands-1): |
---|
| 2136 | iband = iip |
---|
| 2137 | Nsec = Nsec2/4 |
---|
| 2138 | bandS = 'band' + str(ib).zfill(2) |
---|
| 2139 | # hband |
---|
| 2140 | ix = -width/2. |
---|
| 2141 | iy = hb*ib*2 |
---|
| 2142 | dx = 0. |
---|
| 2143 | dy = hb/(Nsec-1) |
---|
| 2144 | for ip in range(Nsec): |
---|
| 2145 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2146 | iip = iip + Nsec |
---|
| 2147 | # uband |
---|
| 2148 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
| 2149 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
| 2150 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
| 2151 | iip = iip + Nsec |
---|
| 2152 | # dband |
---|
| 2153 | ix = width/2. |
---|
| 2154 | iy = hb*(ib*2+2) |
---|
| 2155 | dx = 0. |
---|
| 2156 | dy = -hb/(Nsec-1) |
---|
| 2157 | for ip in range(Nsec): |
---|
| 2158 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2159 | iip = iip + Nsec |
---|
| 2160 | # dband |
---|
| 2161 | p1 = np.array([hb*(ib*2+1), width/2.]) |
---|
| 2162 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
| 2163 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
| 2164 | iip = iip + Nsec + 1 |
---|
[2530] | 2165 | lighthousesecs.append(bandS) |
---|
| 2166 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
[2527] | 2167 | |
---|
| 2168 | ib = bands-1 |
---|
| 2169 | Nsec3 = (N - iip - 1) |
---|
| 2170 | Nsec = int(Nsec3/4) |
---|
| 2171 | bandS = 'band' + str(ib).zfill(2) |
---|
| 2172 | # hband |
---|
| 2173 | iband = iip |
---|
| 2174 | ix = -width/2. |
---|
| 2175 | iy = hb*ib*2 |
---|
| 2176 | dx = 0. |
---|
| 2177 | dy = hb/(Nsec-1) |
---|
| 2178 | for ip in range(Nsec): |
---|
| 2179 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2180 | iip = iip + Nsec |
---|
| 2181 | # uband |
---|
| 2182 | p1 = np.array([hb*(ib*2+1), -width/2.]) |
---|
| 2183 | p2 = np.array([hb*(ib*2+2), width/2.]) |
---|
| 2184 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='right', Nang=Nsec) |
---|
| 2185 | iip = iip + Nsec |
---|
| 2186 | # dband |
---|
| 2187 | ix = width/2. |
---|
| 2188 | iy = hb*(2+ib*2) |
---|
| 2189 | dx = 0. |
---|
| 2190 | dy = -hb/(Nsec-1) |
---|
| 2191 | for ip in range(Nsec): |
---|
| 2192 | lighthouse[iip+ip,:] = [iy+dy*ip, ix+dx*ip] |
---|
| 2193 | iip = iip + Nsec |
---|
| 2194 | # dband |
---|
| 2195 | Nsec = N - iip |
---|
| 2196 | p1 = np.array([hb*(1+ib*2), width/2.]) |
---|
| 2197 | p2 = np.array([hb*ib*2, -width/2.]) |
---|
| 2198 | lighthouse[iip:iip+Nsec,:] = circ_sec(p1, p2, 3*width, pos='left', Nang=Nsec) |
---|
[2530] | 2199 | lighthousesecs.append(bandS) |
---|
| 2200 | lighthousedic[bandS] = [lighthouse[iband:iip-1], '-', '#6408AA', 2.] |
---|
[2527] | 2201 | |
---|
| 2202 | lighthouse = ma.masked_equal(lighthouse, gen.fillValueF) |
---|
| 2203 | |
---|
| 2204 | return lighthouse, lighthousesecs, lighthousedic |
---|
| 2205 | |
---|
[2544] | 2206 | def north_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
[2533] | 2207 | """ Function to draw a North danger buoy using buoy1 |
---|
| 2208 | height: height of the prism (5., default) |
---|
| 2209 | width: width of the prism (10., default) |
---|
| 2210 | bradii: radii of the ball (1.75, default) |
---|
| 2211 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
[2544] | 2212 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2213 | (0.7, default) |
---|
[2533] | 2214 | N: total number of points of the buoy (300, default) |
---|
| 2215 | """ |
---|
| 2216 | fname = 'north_buoy1' |
---|
| 2217 | |
---|
[2544] | 2218 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
[2533] | 2219 | |
---|
| 2220 | # buoy |
---|
| 2221 | N2 = int(N/2) |
---|
[2548] | 2222 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2223 | bfrac=0.8, N=N2) |
---|
[2544] | 2224 | buoy[0:N2,:] = buoy1v |
---|
[2533] | 2225 | |
---|
| 2226 | # signs |
---|
[2544] | 2227 | N3 = N - N2 - 2 |
---|
| 2228 | |
---|
| 2229 | bottsigns = 2.*bradii+height |
---|
| 2230 | lsign = height*hsigns |
---|
| 2231 | # up |
---|
| 2232 | N32 = int(N3/2) |
---|
| 2233 | triu = p_angle_triangle(N=N32) |
---|
| 2234 | trib = triu*lsign + [0.,-lsign/2.] |
---|
[2533] | 2235 | |
---|
[2544] | 2236 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
| 2237 | |
---|
| 2238 | # up |
---|
| 2239 | N323 = N - N32 - N2 - 2 |
---|
| 2240 | trid = p_angle_triangle(N=N323) |
---|
| 2241 | trib = trid*lsign + [0.,-lsign/2.] |
---|
| 2242 | buoy[N2+N32+2:N,:] = trib + [bottsigns+1.1*lsign,0.] |
---|
| 2243 | |
---|
[2548] | 2244 | # painting it |
---|
| 2245 | Height = np.max(buoy1v[:,0]) |
---|
| 2246 | |
---|
[2581] | 2247 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='below') |
---|
[2548] | 2248 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
| 2249 | |
---|
[2544] | 2250 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2251 | |
---|
[2548] | 2252 | buoysecs = ['buoy', 'sign1', 'sign2', 'halfk', 'halfy'] |
---|
[2544] | 2253 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
| 2254 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
[2558] | 2255 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', 'k', 1.], \ |
---|
| 2256 | 'half2': [halfdown, '-', '#FFFF00', 1.]} |
---|
[2544] | 2257 | |
---|
| 2258 | return buoy, buoysecs, buoydic |
---|
| 2259 | |
---|
| 2260 | def east_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
| 2261 | """ Function to draw a East danger buoy using buoy1 |
---|
| 2262 | height: height of the prism (5., default) |
---|
| 2263 | width: width of the prism (10., default) |
---|
| 2264 | bradii: radii of the ball (1.75, default) |
---|
| 2265 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2266 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2267 | (0.7, default) |
---|
| 2268 | N: total number of points of the buoy (300, default) |
---|
| 2269 | """ |
---|
| 2270 | fname = 'east_buoy1' |
---|
| 2271 | |
---|
| 2272 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2273 | |
---|
| 2274 | # buoy |
---|
| 2275 | N2 = int(N/2) |
---|
| 2276 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
| 2277 | buoy[0:N2,:] = buoy1v |
---|
| 2278 | |
---|
| 2279 | # signs |
---|
| 2280 | N3 = N - N2 - 2 |
---|
| 2281 | |
---|
| 2282 | bottsigns = 2.*bradii+height |
---|
[2533] | 2283 | lsign = height*hsigns |
---|
[2544] | 2284 | # up |
---|
| 2285 | N32 = int(N3/2) |
---|
| 2286 | triu = p_angle_triangle(N=N32) |
---|
| 2287 | trib = triu*lsign + [0.,-lsign/2.] |
---|
[2533] | 2288 | |
---|
[2544] | 2289 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.1*lsign,0.] |
---|
[2533] | 2290 | |
---|
[2544] | 2291 | # down |
---|
| 2292 | N323 = N - N32 - N2 - 2 |
---|
[2533] | 2293 | |
---|
[2544] | 2294 | trid = p_angle_triangle(N=N323) |
---|
| 2295 | trid = mirror_polygon(trid, 'x') |
---|
| 2296 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
| 2297 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
[2533] | 2298 | |
---|
[2557] | 2299 | # painting it |
---|
| 2300 | Height = np.max(buoy1v[:,0]) |
---|
| 2301 | |
---|
[2581] | 2302 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2557] | 2303 | Ncut, halfbtw = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2304 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2305 | |
---|
[2544] | 2306 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2307 | |
---|
[2558] | 2308 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
[2544] | 2309 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
| 2310 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
[2557] | 2311 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], \ |
---|
[2558] | 2312 | 'third1': [halfup, '-', 'k', 1.], 'third2': [halfbtw, '-', '#FFFF00', 1.], \ |
---|
| 2313 | 'third3': [halfdown, '-', 'k', 1.]} |
---|
[2544] | 2314 | |
---|
| 2315 | return buoy, buoysecs, buoydic |
---|
| 2316 | |
---|
| 2317 | def south_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
| 2318 | """ Function to draw a South danger buoy using buoy1 |
---|
| 2319 | height: height of the prism (5., default) |
---|
| 2320 | width: width of the prism (10., default) |
---|
| 2321 | bradii: radii of the ball (1.75, default) |
---|
| 2322 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2323 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2324 | (0.7, default) |
---|
| 2325 | N: total number of points of the buoy (300, default) |
---|
| 2326 | """ |
---|
[2559] | 2327 | fname = 'south_buoy1' |
---|
[2544] | 2328 | |
---|
| 2329 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2330 | |
---|
| 2331 | # buoy |
---|
| 2332 | N2 = int(N/2) |
---|
| 2333 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
| 2334 | buoy[0:N2,:] = buoy1v |
---|
| 2335 | |
---|
| 2336 | # signs |
---|
| 2337 | N3 = N - N2 - 2 |
---|
| 2338 | |
---|
| 2339 | bottsigns = 2.*bradii+height |
---|
| 2340 | lsign = height*hsigns |
---|
| 2341 | # up |
---|
| 2342 | N32 = int(N3/2) |
---|
| 2343 | trid = p_angle_triangle(N=N32) |
---|
| 2344 | trid = mirror_polygon(trid, 'x') |
---|
| 2345 | trib = trid*lsign + [0.,-lsign/2.] |
---|
| 2346 | |
---|
| 2347 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+2.9*lsign,0.] |
---|
| 2348 | |
---|
| 2349 | # down |
---|
| 2350 | N323 = N - N32 - N2 - 2 |
---|
| 2351 | trid = p_angle_triangle(N=N323) |
---|
| 2352 | trid = mirror_polygon(trid, 'x') |
---|
| 2353 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
| 2354 | buoy[N2+N32+2:N,:] = trib + [bottsigns+0.9*lsign,0.] |
---|
| 2355 | |
---|
[2558] | 2356 | # painting it |
---|
| 2357 | Height = np.max(buoy1v[:,0]) |
---|
| 2358 | |
---|
[2581] | 2359 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/2., keep='below') |
---|
[2558] | 2360 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height/2., keep='above') |
---|
| 2361 | |
---|
[2544] | 2362 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2363 | |
---|
[2558] | 2364 | buoysecs = ['buoy', 'sign1', 'sign2', 'half1', 'half2'] |
---|
[2544] | 2365 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
| 2366 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
[2558] | 2367 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'half1': [halfup, '-', '#FFFF00', 1.], \ |
---|
| 2368 | 'half2': [halfdown, '-', 'k', 1.]} |
---|
[2544] | 2369 | |
---|
| 2370 | return buoy, buoysecs, buoydic |
---|
| 2371 | |
---|
| 2372 | def west_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.7, N=300): |
---|
| 2373 | """ Function to draw a West danger buoy using buoy1 |
---|
| 2374 | height: height of the prism (5., default) |
---|
| 2375 | width: width of the prism (10., default) |
---|
| 2376 | bradii: radii of the ball (1.75, default) |
---|
| 2377 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2378 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2379 | (0.7, default) |
---|
| 2380 | N: total number of points of the buoy (300, default) |
---|
| 2381 | """ |
---|
| 2382 | fname = 'east_buoy1' |
---|
| 2383 | |
---|
| 2384 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2385 | |
---|
| 2386 | # buoy |
---|
| 2387 | N2 = int(N/2) |
---|
| 2388 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, N=N2) |
---|
| 2389 | buoy[0:N2,:] = buoy1v |
---|
| 2390 | |
---|
| 2391 | # signs |
---|
| 2392 | N3 = N - N2 - 2 |
---|
| 2393 | |
---|
| 2394 | bottsigns = 2.*bradii+height |
---|
| 2395 | lsign = height*hsigns |
---|
| 2396 | |
---|
| 2397 | # down |
---|
| 2398 | N32 = int(N3/2) |
---|
| 2399 | trid = p_angle_triangle(N=N32) |
---|
| 2400 | trid = mirror_polygon(trid, 'x') |
---|
| 2401 | trib = trid*lsign + [lsign,-lsign/2.] |
---|
| 2402 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+1.9*lsign,0.] |
---|
| 2403 | |
---|
| 2404 | # up |
---|
| 2405 | N323 = N - N32 - N2 - 2 |
---|
| 2406 | triu = p_angle_triangle(N=N323) |
---|
| 2407 | trib = triu*lsign + [0.,-lsign/2.] |
---|
| 2408 | |
---|
| 2409 | buoy[N2+N323+2:N,:] = trib + [bottsigns+1.*lsign,0.] |
---|
| 2410 | |
---|
[2558] | 2411 | # painting it |
---|
| 2412 | Height = np.max(buoy1v[:,0]) |
---|
| 2413 | |
---|
[2581] | 2414 | Ncut, halfdown = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2558] | 2415 | Ncut, halfbtw1 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2416 | Ncut, halfup = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2417 | |
---|
[2544] | 2418 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2419 | |
---|
[2558] | 2420 | buoysecs = ['buoy', 'sign1', 'sign2', 'third1', 'third2', 'third3'] |
---|
[2544] | 2421 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
[2558] | 2422 | 'third1': [halfdown, '-', '#FFFF00', 1.], 'third2': [halfbtw1, '-', 'k', 1.], \ |
---|
| 2423 | 'third3': [halfup, '-', '#FFFF00', 1.], \ |
---|
[2544] | 2424 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
[2559] | 2425 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5]} |
---|
[2544] | 2426 | |
---|
| 2427 | return buoy, buoysecs, buoydic |
---|
| 2428 | |
---|
[2565] | 2429 | def safewater_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
| 2430 | """ Function to draw a safe water mark buoy using buoy1 |
---|
| 2431 | height: height of the prism (5., default) |
---|
| 2432 | width: width of the prism (10., default) |
---|
| 2433 | bradii: radii of the ball (1.75, default) |
---|
| 2434 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2435 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2436 | (0.3, default) |
---|
| 2437 | N: total number of points of the buoy (300, default) |
---|
| 2438 | """ |
---|
| 2439 | fname = 'safewater_buoy1' |
---|
| 2440 | |
---|
| 2441 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2442 | |
---|
| 2443 | # buoy |
---|
| 2444 | N2 = int(N/2) |
---|
| 2445 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2446 | bfrac=0.8, N=N2) |
---|
| 2447 | buoy[0:N2,:] = buoy1v |
---|
| 2448 | |
---|
| 2449 | # signs |
---|
| 2450 | N3 = N - N2 - 1 |
---|
| 2451 | lsign = height*hsigns |
---|
| 2452 | |
---|
| 2453 | Height = np.max(buoy1v[:,0]) |
---|
| 2454 | sign = p_circle(lsign, N3) |
---|
| 2455 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
| 2456 | |
---|
| 2457 | # painting it |
---|
| 2458 | ix = -width/2. |
---|
| 2459 | Ncut, quarter1 = cut_xpolygon(buoy1v, xval=ix+width/4., keep='left') |
---|
| 2460 | Ncut, quarter2 = cut_between_xpolygon(buoy1v, xval1=ix+width/4., xval2=ix+width/2.) |
---|
| 2461 | Ncut, quarter3 = cut_between_xpolygon(buoy1v, xval1=ix+width/2., xval2=ix+3.*width/4.) |
---|
| 2462 | Ncut, quarter4 = cut_xpolygon(buoy1v, xval=ix+3.*width/4., keep='right') |
---|
| 2463 | |
---|
| 2464 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2465 | |
---|
| 2466 | buoysecs = ['buoy', 'sign', 'quarter1', 'quarter2', 'quarter3', 'quarter4'] |
---|
| 2467 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
| 2468 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'quarter1': [quarter1,'-','r',1.], \ |
---|
| 2469 | 'quarter2': [quarter2,'-','#FFFFFF',1.], 'quarter3': [quarter3,'-','r',1.], \ |
---|
| 2470 | 'quarter4': [quarter4,'-','#FFFFFF',1.]} |
---|
| 2471 | |
---|
| 2472 | return buoy, buoysecs, buoydic |
---|
| 2473 | |
---|
[2566] | 2474 | def red_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
| 2475 | """ Function to draw a red mark buoy using buoy1 |
---|
| 2476 | height: height of the prism (5., default) |
---|
| 2477 | width: width of the prism (10., default) |
---|
| 2478 | bradii: radii of the ball (1.75, default) |
---|
| 2479 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2480 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2481 | (0.3, default) |
---|
| 2482 | N: total number of points of the buoy (300, default) |
---|
| 2483 | """ |
---|
| 2484 | fname = 'red_buoy1' |
---|
| 2485 | |
---|
| 2486 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2487 | |
---|
| 2488 | # buoy |
---|
| 2489 | N2 = int(N/2) |
---|
| 2490 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2491 | bfrac=0.8, N=N2) |
---|
| 2492 | buoy[0:N2,:] = buoy1v |
---|
| 2493 | |
---|
| 2494 | # signs |
---|
| 2495 | N3 = N - N2 - 1 |
---|
| 2496 | lsign = height*hsigns*2. |
---|
| 2497 | |
---|
| 2498 | Height = np.max(buoy1v[:,0]) |
---|
| 2499 | triu = p_angle_triangle(N=N3) |
---|
| 2500 | sign = triu*lsign |
---|
| 2501 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
| 2502 | |
---|
| 2503 | # painting it |
---|
| 2504 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2505 | |
---|
[2569] | 2506 | buoysecs = ['buoy', 'sign'] |
---|
[2566] | 2507 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
| 2508 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5]} |
---|
| 2509 | |
---|
| 2510 | return buoy, buoysecs, buoydic |
---|
| 2511 | |
---|
[2567] | 2512 | def green_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, N=300): |
---|
| 2513 | """ Function to draw a green mark buoy using buoy1 |
---|
| 2514 | height: height of the prism (5., default) |
---|
| 2515 | width: width of the prism (10., default) |
---|
| 2516 | bradii: radii of the ball (1.75, default) |
---|
| 2517 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2518 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2519 | (0.3, default) |
---|
| 2520 | N: total number of points of the buoy (300, default) |
---|
| 2521 | """ |
---|
| 2522 | fname = 'green_buoy1' |
---|
| 2523 | |
---|
| 2524 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2525 | |
---|
| 2526 | # buoy |
---|
| 2527 | N2 = int(N/2) |
---|
| 2528 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2529 | bfrac=0.8, N=N2) |
---|
| 2530 | buoy[0:N2,:] = buoy1v |
---|
| 2531 | |
---|
| 2532 | # signs |
---|
| 2533 | N3 = N - N2 - 1 |
---|
| 2534 | lsign = height*hsigns*2. |
---|
| 2535 | |
---|
| 2536 | Height = np.max(buoy1v[:,0]) |
---|
[2568] | 2537 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
| 2538 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
[2567] | 2539 | |
---|
| 2540 | # painting it |
---|
| 2541 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2542 | |
---|
[2569] | 2543 | buoysecs = ['buoy', 'sign'] |
---|
[2568] | 2544 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
| 2545 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5]} |
---|
[2567] | 2546 | |
---|
| 2547 | return buoy, buoysecs, buoydic |
---|
| 2548 | |
---|
[2569] | 2549 | def prefchannelportA_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, \ |
---|
| 2550 | N=300): |
---|
| 2551 | """ Function to draw a preferred channel port system A buoy using buoy1 |
---|
| 2552 | height: height of the prism (5., default) |
---|
| 2553 | width: width of the prism (10., default) |
---|
| 2554 | bradii: radii of the ball (1.75, default) |
---|
| 2555 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2556 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2557 | (0.3, default) |
---|
| 2558 | N: total number of points of the buoy (300, default) |
---|
| 2559 | """ |
---|
| 2560 | fname = 'prefchannelportA_buoy1' |
---|
| 2561 | |
---|
| 2562 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2563 | |
---|
| 2564 | # buoy |
---|
| 2565 | N2 = int(N/2) |
---|
| 2566 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2567 | bfrac=0.8, N=N2) |
---|
| 2568 | buoy[0:N2,:] = buoy1v |
---|
| 2569 | |
---|
| 2570 | # signs |
---|
| 2571 | N3 = N - N2 - 1 |
---|
| 2572 | lsign = height*hsigns*2. |
---|
| 2573 | |
---|
| 2574 | Height = np.max(buoy1v[:,0]) |
---|
| 2575 | triu = p_angle_triangle(N=N3) |
---|
| 2576 | sign = triu*lsign |
---|
| 2577 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
| 2578 | |
---|
| 2579 | # painting it |
---|
[2581] | 2580 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2569] | 2581 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2582 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2583 | |
---|
| 2584 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2585 | |
---|
| 2586 | buoysecs = ['buoy', 'sign', 'third1', 'third2', 'third3'] |
---|
| 2587 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
| 2588 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5], 'third1': [third1,'-','g',1.5], \ |
---|
| 2589 | 'third2': [third2,'-','r',1.5], 'third3': [third3,'-','g',1.5]} |
---|
| 2590 | |
---|
| 2591 | return buoy, buoysecs, buoydic |
---|
| 2592 | |
---|
| 2593 | def prefchannelportB_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.3, \ |
---|
| 2594 | N=300): |
---|
| 2595 | """ Function to draw a preferred channel port system B buoy using buoy1 |
---|
| 2596 | height: height of the prism (5., default) |
---|
| 2597 | width: width of the prism (10., default) |
---|
| 2598 | bradii: radii of the ball (1.75, default) |
---|
| 2599 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2600 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2601 | (0.3, default) |
---|
| 2602 | N: total number of points of the buoy (300, default) |
---|
| 2603 | """ |
---|
| 2604 | fname = 'prefchannelportB_buoy1' |
---|
| 2605 | |
---|
| 2606 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2607 | |
---|
| 2608 | # buoy |
---|
| 2609 | N2 = int(N/2) |
---|
| 2610 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2611 | bfrac=0.8, N=N2) |
---|
| 2612 | buoy[0:N2,:] = buoy1v |
---|
| 2613 | |
---|
| 2614 | # signs |
---|
| 2615 | N3 = N - N2 - 1 |
---|
| 2616 | lsign = height*hsigns*2. |
---|
| 2617 | |
---|
| 2618 | Height = np.max(buoy1v[:,0]) |
---|
| 2619 | triu = p_angle_triangle(N=N3) |
---|
| 2620 | sign = triu*lsign |
---|
| 2621 | buoy[N2+1:N2+2+N3,:] = sign + [Height+0.2*lsign,-lsign/2.] |
---|
| 2622 | |
---|
| 2623 | # painting it |
---|
[2581] | 2624 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2569] | 2625 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2626 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2627 | |
---|
| 2628 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2629 | |
---|
| 2630 | buoysecs = ['buoy', 'sign', 'third1', 'third2', 'third3'] |
---|
| 2631 | buoydic = {'buoy': [buoy[0:N2,:],'-','r',1.5], \ |
---|
| 2632 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'third1': [third1,'-','r',1.5], \ |
---|
| 2633 | 'third2': [third2,'-','g',1.5], 'third3': [third3,'-','r',1.5]} |
---|
| 2634 | |
---|
| 2635 | return buoy, buoysecs, buoydic |
---|
| 2636 | |
---|
| 2637 | def prefchannelstarboardA_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, \ |
---|
| 2638 | hsigns=0.3, N=300): |
---|
| 2639 | """ Function to draw a preferred channel starboard system A buoy using buoy1 |
---|
| 2640 | height: height of the prism (5., default) |
---|
| 2641 | width: width of the prism (10., default) |
---|
| 2642 | bradii: radii of the ball (1.75, default) |
---|
| 2643 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2644 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2645 | (0.3, default) |
---|
| 2646 | N: total number of points of the buoy (300, default) |
---|
| 2647 | """ |
---|
| 2648 | fname = 'prefchannelstarboardA_buoy1' |
---|
| 2649 | |
---|
| 2650 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2651 | |
---|
| 2652 | # buoy |
---|
| 2653 | N2 = int(N/2) |
---|
| 2654 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2655 | bfrac=0.8, N=N2) |
---|
| 2656 | buoy[0:N2,:] = buoy1v |
---|
| 2657 | |
---|
| 2658 | # signs |
---|
| 2659 | N3 = N - N2 - 1 |
---|
| 2660 | lsign = height*hsigns*2. |
---|
| 2661 | |
---|
| 2662 | Height = np.max(buoy1v[:,0]) |
---|
| 2663 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
| 2664 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
| 2665 | |
---|
| 2666 | # painting it |
---|
| 2667 | # painting it |
---|
[2581] | 2668 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2569] | 2669 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2670 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2671 | |
---|
| 2672 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2673 | |
---|
| 2674 | buoysecs = ['buoy', 'sign'] |
---|
| 2675 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
| 2676 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','r',1.5], 'third1': [third1,'-','r',1.5], \ |
---|
| 2677 | 'third2': [third2,'-','g',1.5], 'third3': [third3,'-','r',1.5]} |
---|
| 2678 | |
---|
| 2679 | return buoy, buoysecs, buoydic |
---|
| 2680 | |
---|
| 2681 | def prefchannelstarboardB_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, \ |
---|
| 2682 | hsigns=0.3, N=300): |
---|
| 2683 | """ Function to draw a preferred channel starboard system B buoy using buoy1 |
---|
| 2684 | height: height of the prism (5., default) |
---|
| 2685 | width: width of the prism (10., default) |
---|
| 2686 | bradii: radii of the ball (1.75, default) |
---|
| 2687 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2688 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2689 | (0.3, default) |
---|
| 2690 | N: total number of points of the buoy (300, default) |
---|
| 2691 | """ |
---|
| 2692 | fname = 'prefchannelstarboardB_buoy1' |
---|
| 2693 | |
---|
| 2694 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2695 | |
---|
| 2696 | # buoy |
---|
| 2697 | N2 = int(N/2) |
---|
| 2698 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2699 | bfrac=0.8, N=N2) |
---|
| 2700 | buoy[0:N2,:] = buoy1v |
---|
| 2701 | |
---|
| 2702 | # signs |
---|
| 2703 | N3 = N - N2 - 1 |
---|
| 2704 | lsign = height*hsigns*2. |
---|
| 2705 | |
---|
| 2706 | Height = np.max(buoy1v[:,0]) |
---|
| 2707 | sign = p_prism(lsign, lsign*2, N=N3) |
---|
| 2708 | buoy[N2+1:N2+2+N3,:] = sign + [Height+1.2*lsign,0.] |
---|
| 2709 | |
---|
| 2710 | # painting it |
---|
| 2711 | # painting it |
---|
[2581] | 2712 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2569] | 2713 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2714 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2715 | |
---|
| 2716 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2717 | |
---|
| 2718 | buoysecs = ['buoy', 'sign'] |
---|
| 2719 | buoydic = {'buoy': [buoy[0:N2,:],'-','g',1.5], \ |
---|
| 2720 | 'sign': [buoy[N2+1:N2+N3+1,:],'-','g',1.5], 'third1': [third1,'-','g',1.5], \ |
---|
| 2721 | 'third2': [third2,'-','r',1.5], 'third3': [third3,'-','g',1.5]} |
---|
| 2722 | |
---|
| 2723 | return buoy, buoysecs, buoydic |
---|
| 2724 | |
---|
[2570] | 2725 | def isolateddanger_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, \ |
---|
| 2726 | N=300): |
---|
| 2727 | """ Function to draw an isolated danger buoy using buoy1 |
---|
| 2728 | height: height of the prism (5., default) |
---|
| 2729 | width: width of the prism (10., default) |
---|
| 2730 | bradii: radii of the ball (1.75, default) |
---|
| 2731 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2732 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2733 | (0.5, default) |
---|
| 2734 | N: total number of points of the buoy (300, default) |
---|
| 2735 | """ |
---|
| 2736 | fname = 'isolateddanger_buoy1' |
---|
| 2737 | |
---|
| 2738 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2739 | |
---|
| 2740 | # buoy |
---|
| 2741 | N2 = int(N/2) |
---|
| 2742 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2743 | bfrac=0.8, N=N2) |
---|
| 2744 | buoy[0:N2,:] = buoy1v |
---|
| 2745 | |
---|
| 2746 | # signs |
---|
| 2747 | N3 = N - N2 - 2 |
---|
| 2748 | |
---|
| 2749 | bottsigns = 2.*bradii+height |
---|
| 2750 | lsign = height*hsigns |
---|
| 2751 | # up |
---|
| 2752 | N32 = int(N3/2) |
---|
| 2753 | circle = p_circle(lsign/2., N=N32) |
---|
| 2754 | trib = circle + [0.,0.] |
---|
| 2755 | |
---|
| 2756 | buoy[N2+1:N2+1+N32,:] = trib + [bottsigns+3.2*lsign,0.] |
---|
| 2757 | |
---|
| 2758 | # up |
---|
| 2759 | N323 = N - N32 - N2 - 2 |
---|
| 2760 | trid = p_circle(lsign/2., N=N32) |
---|
| 2761 | trib = circle + [0.,0.] |
---|
| 2762 | buoy[N2+N32+2:N,:] = trib + [bottsigns+2.*lsign,0.] |
---|
| 2763 | |
---|
| 2764 | # painting it |
---|
| 2765 | Height = np.max(buoy1v[:,0]) |
---|
| 2766 | |
---|
[2581] | 2767 | Ncut, third1 = cut_ypolygon(buoy1v, yval=Height/3., keep='below') |
---|
[2570] | 2768 | Ncut, third2 = cut_between_ypolygon(buoy1v, yval1=Height/3., yval2=Height*2./3.) |
---|
| 2769 | Ncut, third3 = cut_ypolygon(buoy1v, yval=Height*2./3., keep='above') |
---|
| 2770 | |
---|
| 2771 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2772 | |
---|
| 2773 | buoysecs = ['buoy', 'sign1', 'sign2', 'halfk', 'halfy'] |
---|
| 2774 | buoydic = {'buoy': [buoy[0:N2,:],'-','k',1.5], \ |
---|
| 2775 | 'sign1': [buoy[N2+1:N2+N32+1,:],'-','k',1.5], \ |
---|
| 2776 | 'sign2': [buoy[N2+N32+2:N,:],'-','k',1.5], 'third1': [third1, '-', 'k', 1.], \ |
---|
| 2777 | 'third2': [third2, '-', 'r', 1.], 'third3': [third3, '-', 'k', 1.]} |
---|
| 2778 | |
---|
| 2779 | return buoy, buoysecs, buoydic |
---|
| 2780 | |
---|
[2576] | 2781 | def special_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, N=300): |
---|
| 2782 | """ Function to draw an special mark buoy using buoy1 |
---|
| 2783 | height: height of the prism (5., default) |
---|
| 2784 | width: width of the prism (10., default) |
---|
| 2785 | bradii: radii of the ball (1.75, default) |
---|
| 2786 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2787 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2788 | (0.5, default) |
---|
| 2789 | N: total number of points of the buoy (300, default) |
---|
| 2790 | """ |
---|
| 2791 | fname = 'special_buoy1' |
---|
| 2792 | |
---|
| 2793 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2794 | |
---|
| 2795 | # buoy |
---|
| 2796 | N2 = int(N/2) |
---|
| 2797 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2798 | bfrac=0.8, N=N2) |
---|
| 2799 | buoy[0:N2,:] = buoy1v |
---|
| 2800 | |
---|
| 2801 | Height = np.max(buoy1v[:,0]) |
---|
| 2802 | |
---|
| 2803 | # sign |
---|
| 2804 | N3 = N - N2 - 1 |
---|
| 2805 | |
---|
| 2806 | bottsigns = 2.*bradii+height |
---|
| 2807 | lsign = height*hsigns |
---|
| 2808 | # up |
---|
[2578] | 2809 | cross, crosssecs, crossdic = p_cross_width(lsign, width=0.3*lsign, Narms=2, N=N3) |
---|
[2576] | 2810 | cross = rotate_polygon_2D(cross, 40.05) |
---|
| 2811 | buoy[N2+1:N,:] = cross + [Height+1.1*lsign,0.] |
---|
| 2812 | |
---|
| 2813 | # painting it |
---|
| 2814 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2815 | |
---|
| 2816 | buoysecs = ['buoy', 'sign'] |
---|
| 2817 | buoydic = {'buoy': [buoy[0:N2,:],'-','#FFFF00',1.5], \ |
---|
| 2818 | 'sign': [buoy[N2+1:N,:],'-','#FFFF00',1.5]} |
---|
| 2819 | |
---|
| 2820 | return buoy, buoysecs, buoydic |
---|
| 2821 | |
---|
[2577] | 2822 | def emergency_buoy1(height=5., width=10., bradii=1.75, bfrac=0.8, hsigns=0.5, N=300): |
---|
| 2823 | """ Function to draw an eergency mark buoy using buoy1 |
---|
| 2824 | height: height of the prism (5., default) |
---|
| 2825 | width: width of the prism (10., default) |
---|
| 2826 | bradii: radii of the ball (1.75, default) |
---|
| 2827 | bfrac: fraction of the ball above the prism (0.8, default) |
---|
| 2828 | hisgns: height of the signs [as reg. triangle] as percentage of the height |
---|
| 2829 | (0.5, default) |
---|
| 2830 | N: total number of points of the buoy (300, default) |
---|
| 2831 | """ |
---|
| 2832 | fname = 'emergency_buoy1' |
---|
| 2833 | |
---|
| 2834 | buoy = np.ones((N,2), dtype=np.float)*gen.fillValueF |
---|
| 2835 | |
---|
| 2836 | # buoy |
---|
| 2837 | N2 = int(N/2) |
---|
| 2838 | buoy1v, buoy1vsecs, buoy1vdic = buoy1(height=5., width=10., bradii=1.75, \ |
---|
| 2839 | bfrac=0.8, N=N2) |
---|
| 2840 | buoy[0:N2,:] = buoy1v |
---|
| 2841 | |
---|
| 2842 | Height = np.max(buoy1v[:,0]) |
---|
| 2843 | |
---|
| 2844 | # sign |
---|
| 2845 | N3 = N - N2 - 1 |
---|
| 2846 | |
---|
| 2847 | bottsigns = 2.*bradii+height |
---|
| 2848 | lsign = height*hsigns |
---|
| 2849 | # up |
---|
[2578] | 2850 | cross, crosssecs, crossdic = p_cross_width(lsign, width=0.3*lsign, Narms=2, N=N3) |
---|
[2577] | 2851 | buoy[N2+1:N,:] = cross + [Height+1.1*lsign,0.] |
---|
| 2852 | |
---|
| 2853 | # painting it |
---|
[2578] | 2854 | ix = -width/2. |
---|
| 2855 | Ncut, fifth1 = cut_xpolygon(buoy1v, xval=ix+width/5., keep='left') |
---|
| 2856 | Ncut, fifth2 = cut_between_xpolygon(buoy1v,xval1=ix+width/5.,xval2=ix+width*2./5.) |
---|
| 2857 | Ncut, fifth3 = cut_between_xpolygon(buoy1v,xval1=ix+width*2./5.,xval2=ix+width*3./5.) |
---|
| 2858 | Ncut, fifth4 = cut_between_xpolygon(buoy1v,xval1=ix+width*3./5.,xval2=ix+width*4./5.) |
---|
| 2859 | Ncut, fifth5 = cut_xpolygon(buoy1v, xval=ix+width*4./5., keep='right') |
---|
[2577] | 2860 | |
---|
| 2861 | buoy = ma.masked_equal(buoy, gen.fillValueF) |
---|
| 2862 | |
---|
[2578] | 2863 | buoysecs = ['buoy', 'sign', 'fifth1', 'fifth2', 'fifth3', 'fifth4', 'fifth5'] |
---|
[2577] | 2864 | buoydic = {'buoy': [buoy[0:N2,:],'-','#FFFF00',1.5], \ |
---|
[2578] | 2865 | 'sign': [buoy[N2+1:N,:],'-','#FFFF00',1.5],'fifth1':[fifth1,'-','#FFFF00',1.5],\ |
---|
| 2866 | 'fifth2': [fifth2,'-','#FFFF00',1.5],'fifth3': [fifth3,'-','#0000FF',1.5], \ |
---|
| 2867 | 'fifth4': [fifth4,'-','#FFFF00',1.5],'fifth5': [fifth5,'-','#0000FF',1.5]} |
---|
[2577] | 2868 | |
---|
| 2869 | return buoy, buoysecs, buoydic |
---|
| 2870 | |
---|
[2411] | 2871 | ####### ####### ##### #### ### ## # |
---|
| 2872 | # Plotting |
---|
| 2873 | |
---|
| 2874 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
| 2875 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
| 2876 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
| 2877 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
| 2878 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
| 2879 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
| 2880 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
| 2881 | """ Function to plot an sphere and determine which standard lines will be also |
---|
| 2882 | drawn |
---|
| 2883 | iazm: azimut of the camera form the sphere |
---|
| 2884 | iele: elevation of the camera form the sphere |
---|
| 2885 | dist: distance of the camera form the sphere |
---|
| 2886 | Npts: Resolution for the sphere |
---|
| 2887 | radii: radius of the sphere |
---|
| 2888 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
| 2889 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
| 2890 | drwxline: whether x-axis line should be drawn |
---|
| 2891 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
| 2892 | drwyline: whether y-axis line should be drawn |
---|
| 2893 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
| 2894 | drwzline: whether z-axis line should be drawn |
---|
| 2895 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
| 2896 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
| 2897 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
| 2898 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
| 2899 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
| 2900 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
| 2901 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
| 2902 | """ |
---|
| 2903 | fname = 'plot_sphere' |
---|
| 2904 | |
---|
| 2905 | iazmrad = iazm*np.pi/180. |
---|
| 2906 | ielerad = iele*np.pi/180. |
---|
| 2907 | |
---|
| 2908 | # 3D surface Sphere |
---|
| 2909 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
| 2910 | |
---|
| 2911 | # greenwhich |
---|
| 2912 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
| 2913 | ia=np.pi-ielerad |
---|
| 2914 | else: |
---|
| 2915 | ia=0.-ielerad |
---|
| 2916 | ea=ia+np.pi |
---|
| 2917 | da = (ea-ia)/(Npts-1) |
---|
| 2918 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2919 | alpha = np.zeros((Npts), dtype=np.float) |
---|
| 2920 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
| 2921 | ia=ea+0. |
---|
| 2922 | ea=ia+np.pi |
---|
| 2923 | da = (ea-ia)/(Npts-1) |
---|
| 2924 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2925 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
| 2926 | |
---|
| 2927 | # Equator |
---|
| 2928 | ia=np.pi-iazmrad/2. |
---|
| 2929 | ea=ia+np.pi |
---|
| 2930 | da = (ea-ia)/(Npts-1) |
---|
| 2931 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2932 | beta = np.zeros((Npts), dtype=np.float) |
---|
| 2933 | equatorc = spheric_line(radii,alpha,beta) |
---|
| 2934 | ia=ea+0. |
---|
| 2935 | ea=ia+np.pi |
---|
| 2936 | da = (ea-ia)/(Npts-1) |
---|
| 2937 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2938 | equatord = spheric_line(radii,alpha,beta) |
---|
| 2939 | |
---|
| 2940 | # 90 line |
---|
| 2941 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
| 2942 | ia=3.*np.pi/2. + ielerad |
---|
| 2943 | else: |
---|
| 2944 | ia=np.pi/2. - ielerad |
---|
| 2945 | if ielerad < 0.: |
---|
| 2946 | ia = ia + np.pi |
---|
| 2947 | ea=ia+np.pi |
---|
| 2948 | da = (ea-ia)/(Npts-1) |
---|
| 2949 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2950 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
| 2951 | xclinec = spheric_line(radii,alpha,beta) |
---|
| 2952 | ia=ea+0. |
---|
| 2953 | ea=ia+np.pi |
---|
| 2954 | da = (ea-ia)/(Npts-1) |
---|
| 2955 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 2956 | xclined = spheric_line(radii,alpha,beta) |
---|
| 2957 | |
---|
| 2958 | # x line |
---|
| 2959 | xline = np.zeros((2,3), dtype=np.float) |
---|
| 2960 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
| 2961 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
| 2962 | |
---|
| 2963 | # y line |
---|
| 2964 | yline = np.zeros((2,3), dtype=np.float) |
---|
| 2965 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
| 2966 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
| 2967 | |
---|
| 2968 | # z line |
---|
| 2969 | zline = np.zeros((2,3), dtype=np.float) |
---|
| 2970 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
| 2971 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
| 2972 | |
---|
| 2973 | fig = plt.figure() |
---|
| 2974 | ax = fig.gca(projection='3d') |
---|
| 2975 | |
---|
| 2976 | # Sphere surface |
---|
| 2977 | if drwsfc[0]: |
---|
| 2978 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
| 2979 | color=colsfc[0]) |
---|
| 2980 | if drwsfc[1]: |
---|
| 2981 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
| 2982 | color=colsfc[1]) |
---|
| 2983 | |
---|
| 2984 | # greenwhich |
---|
| 2985 | linev = linegw[0] |
---|
| 2986 | if drwgreeenwhich[0]: |
---|
| 2987 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
| 2988 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
| 2989 | linev = linegw[1] |
---|
| 2990 | if drwgreeenwhich[1]: |
---|
| 2991 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
| 2992 | color=linev[1], linewidth=linev[2]) |
---|
| 2993 | |
---|
| 2994 | # Equator |
---|
| 2995 | linev = lineeq[0] |
---|
| 2996 | if drwequator[0]: |
---|
| 2997 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
| 2998 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
| 2999 | linev = lineeq[1] |
---|
| 3000 | if drwequator[1]: |
---|
| 3001 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
| 3002 | color=linev[1], linewidth=linev[2]) |
---|
| 3003 | |
---|
| 3004 | # 90line |
---|
| 3005 | linev = linexc[0] |
---|
| 3006 | if drwxcline[0]: |
---|
| 3007 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
| 3008 | linewidth=linev[2], label='90-line') |
---|
| 3009 | linev = linexc[1] |
---|
| 3010 | if drwxcline[1]: |
---|
| 3011 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
| 3012 | linewidth=linev[2]) |
---|
| 3013 | |
---|
| 3014 | # x line |
---|
| 3015 | linev = linex |
---|
| 3016 | if drwxline: |
---|
| 3017 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
| 3018 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
| 3019 | |
---|
| 3020 | # y line |
---|
| 3021 | linev = liney |
---|
| 3022 | if drwyline: |
---|
| 3023 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
| 3024 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
| 3025 | |
---|
| 3026 | # z line |
---|
| 3027 | linev = linez |
---|
| 3028 | if drwzline: |
---|
| 3029 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
| 3030 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
| 3031 | |
---|
| 3032 | plt.legend() |
---|
| 3033 | |
---|
| 3034 | return fig, ax |
---|
[2531] | 3035 | |
---|
| 3036 | def paint_filled(objdic, fillsecs): |
---|
| 3037 | """ Function to draw an object filling given sections |
---|
| 3038 | objdic: dictionary of the object |
---|
| 3039 | filesecs: list of sections to be filled |
---|
| 3040 | """ |
---|
| 3041 | fname = 'paint_filled' |
---|
| 3042 | |
---|
| 3043 | Nsecs = len(fillsecs) |
---|
| 3044 | |
---|
| 3045 | for secn in fillsecs: |
---|
| 3046 | secvals=objdic[secn] |
---|
| 3047 | pvals = secvals[0] |
---|
| 3048 | plt.fill(pvals[:,1], pvals[:,0], color=secvals[2]) |
---|
| 3049 | |
---|
| 3050 | return |
---|
| 3051 | |
---|