[2411] | 1 | # Python tools to manage netCDF files. |
---|
| 2 | # L. Fita, CIMA. Mrch 2019 |
---|
| 3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
| 4 | # |
---|
| 5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
| 6 | # This work is licendes under a Creative Commons |
---|
| 7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
| 8 | # |
---|
| 9 | ## Script for geometry calculations and operations as well as definition of different |
---|
| 10 | ### standard objects and shapes |
---|
| 11 | |
---|
| 12 | import numpy as np |
---|
| 13 | import matplotlib as mpl |
---|
| 14 | from mpl_toolkits.mplot3d import Axes3D |
---|
| 15 | import matplotlib.pyplot as plt |
---|
[2438] | 16 | import os |
---|
[2411] | 17 | |
---|
[2413] | 18 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
[2438] | 19 | infmsg = 'INFORMATION -- information -- INFORMATION -- information' |
---|
[2413] | 20 | |
---|
[2411] | 21 | ####### Contents: |
---|
| 22 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
[2413] | 23 | # dist_points: Function to provide the distance between two points |
---|
[2435] | 24 | # max_coords_poly: Function to provide the extremes of the coordinates of a polygon |
---|
[2452] | 25 | # mirror_polygon: Function to reflex a polygon for a given axis |
---|
[2411] | 26 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
| 27 | # cartesian coordinates over an sphere |
---|
[2449] | 28 | # read_join_poly: Function to read an ASCII file with the combination of polygons |
---|
[2412] | 29 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
[2452] | 30 | # rotate_polygon_2D: Function to rotate 2D plain the vertices of a polygon |
---|
[2412] | 31 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
| 32 | # certain angle in the plain |
---|
| 33 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
| 34 | # coordinates by a certain angle in the plain |
---|
[2411] | 35 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
| 36 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
[2449] | 37 | # write_join_poly: Function to write an ASCII file with the combination of polygons |
---|
[2411] | 38 | |
---|
[2412] | 39 | ## Shapes/objects |
---|
[2450] | 40 | # circ_sec: Function union of point A and B by a section of a circle |
---|
[2412] | 41 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
[2450] | 42 | # p_circle: Function to get a polygon of a circle |
---|
[2454] | 43 | # p_reg_polygon: Function to provide a regular polygon of Nv vertices |
---|
| 44 | # p_reg_star: Function to provide a regular star of Nv vertices |
---|
[2450] | 45 | # p_square: Function to get a polygon square |
---|
[2451] | 46 | # p_spiral: Function to provide a polygon of an Archimedean spiral |
---|
| 47 | # p_triangle: Function to provide the polygon of a triangle from its 3 vertices |
---|
[2413] | 48 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
[2412] | 49 | |
---|
[2411] | 50 | ## Plotting |
---|
| 51 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
| 52 | # also drawn |
---|
| 53 | |
---|
| 54 | def deg_deci(angle): |
---|
| 55 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
| 56 | angle: list of [deg, minute, sec] to pass |
---|
| 57 | >>> deg_deci([41., 58., 34.]) |
---|
| 58 | 0.732621346072 |
---|
| 59 | """ |
---|
| 60 | fname = 'deg_deci' |
---|
| 61 | |
---|
| 62 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
| 63 | |
---|
| 64 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
| 65 | else: deg = deg*np.pi/180. |
---|
| 66 | |
---|
| 67 | return deg |
---|
| 68 | |
---|
| 69 | def position_sphere(radii, alpha, beta): |
---|
| 70 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
| 71 | coordinates over an sphere |
---|
| 72 | radii: radii of the sphere |
---|
| 73 | alpha: longitude of the point |
---|
| 74 | beta: latitude of the point |
---|
| 75 | >>> position_sphere(10., 30., 45.) |
---|
| 76 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
| 77 | """ |
---|
| 78 | fname = 'position_sphere' |
---|
| 79 | |
---|
| 80 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
| 81 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
| 82 | zpt = radii*np.sin(beta) |
---|
| 83 | |
---|
| 84 | return xpt, ypt, zpt |
---|
| 85 | |
---|
| 86 | def spheric_line(radii,lon,lat): |
---|
| 87 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
| 88 | over an 3D space |
---|
| 89 | radii: radius of the sphere |
---|
| 90 | lon: array of angles along longitudes |
---|
| 91 | lat: array of angles along latitudes |
---|
| 92 | """ |
---|
| 93 | fname = 'spheric_line' |
---|
| 94 | |
---|
| 95 | Lint = lon.shape[0] |
---|
| 96 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
| 97 | |
---|
| 98 | for iv in range(Lint): |
---|
| 99 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
| 100 | |
---|
| 101 | return coords |
---|
| 102 | |
---|
[2412] | 103 | def rotate_2D(vector, angle): |
---|
| 104 | """ Function to rotate a vector by a certain angle in the plain |
---|
| 105 | vector= vector to rotate [y, x] |
---|
| 106 | angle= angle to rotate [rad] |
---|
| 107 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
| 108 | [ 0.70710678 -0.70710678] |
---|
| 109 | """ |
---|
| 110 | fname = 'rotate_2D' |
---|
| 111 | |
---|
| 112 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
| 113 | |
---|
| 114 | rotmat[0,0] = np.cos(angle) |
---|
| 115 | rotmat[0,1] = -np.sin(angle) |
---|
| 116 | rotmat[1,0] = np.sin(angle) |
---|
| 117 | rotmat[1,1] = np.cos(angle) |
---|
| 118 | |
---|
| 119 | rotvector = np.zeros((2), dtype=np.float) |
---|
| 120 | |
---|
| 121 | vecv = np.zeros((2), dtype=np.float) |
---|
| 122 | |
---|
| 123 | # Unifying vector |
---|
| 124 | modvec = vector[0]**2+vector[1]**2 |
---|
| 125 | if modvec != 0: |
---|
| 126 | vecv[0] = vector[1]/modvec |
---|
| 127 | vecv[1] = vector[0]/modvec |
---|
| 128 | |
---|
| 129 | rotvec = np.matmul(rotmat, vecv) |
---|
| 130 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
| 131 | |
---|
| 132 | rotvector[0] = rotvec[1]*modvec |
---|
| 133 | rotvector[1] = rotvec[0]*modvec |
---|
| 134 | |
---|
| 135 | return rotvector |
---|
| 136 | |
---|
[2434] | 137 | def rotate_polygon_2D(vectors, angle): |
---|
| 138 | """ Function to rotate 2D plain the vertices of a polygon |
---|
[2412] | 139 | line= matrix of vectors to rotate |
---|
| 140 | angle= angle to rotate [rad] |
---|
| 141 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
| 142 | >>> square[0,:] = [-0.5,-0.5] |
---|
| 143 | >>> square[1,:] = [0.5,-0.5] |
---|
| 144 | >>> square[2,:] = [0.5,0.5] |
---|
| 145 | >>> square[3,:] = [-0.5,0.5] |
---|
[2434] | 146 | >>> rotate_polygon_2D(square, np.pi/4.) |
---|
[2412] | 147 | [[-0.70710678 0. ] |
---|
| 148 | [ 0. -0.70710678] |
---|
| 149 | [ 0.70710678 0. ] |
---|
| 150 | [ 0. 0.70710678]] |
---|
| 151 | """ |
---|
[2434] | 152 | fname = 'rotate_polygon_2D' |
---|
[2412] | 153 | |
---|
| 154 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
| 155 | |
---|
| 156 | Nvecs = vectors.shape[0] |
---|
| 157 | for iv in range(Nvecs): |
---|
| 158 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
| 159 | |
---|
| 160 | return rotvecs |
---|
| 161 | |
---|
| 162 | def rotate_line2D(line, angle): |
---|
| 163 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
| 164 | angle in the plain |
---|
| 165 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
| 166 | angle= angle to rotate [rad] |
---|
| 167 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
| 168 | [[ 0. 0. ] |
---|
| 169 | [0.70710678 -0.70710678]] |
---|
| 170 | """ |
---|
| 171 | fname = 'rotate_2D' |
---|
| 172 | |
---|
| 173 | rotline = np.zeros((2,2), dtype=np.float) |
---|
| 174 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
| 175 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
| 176 | |
---|
| 177 | return rotline |
---|
| 178 | |
---|
| 179 | def rotate_lines2D(lines, angle): |
---|
| 180 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
| 181 | by a certain angle in the plain |
---|
| 182 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
| 183 | angle= angle to rotate [rad] |
---|
| 184 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
| 185 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
| 186 | >>> square[0,1,:] = [0.5,-0.5] |
---|
| 187 | >>> square[1,0,:] = [0.5,-0.5] |
---|
| 188 | >>> square[1,1,:] = [0.5,0.5] |
---|
| 189 | >>> square[2,0,:] = [0.5,0.5] |
---|
| 190 | >>> square[2,1,:] = [-0.5,0.5] |
---|
| 191 | >>> square[3,0,:] = [-0.5,0.5] |
---|
| 192 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
| 193 | >>> rotate_lines2D(square, np.pi/4.) |
---|
| 194 | [[[-0.70710678 0. ] |
---|
| 195 | [ 0. -0.70710678]] |
---|
| 196 | |
---|
| 197 | [[ 0. -0.70710678] |
---|
| 198 | [ 0.70710678 0. ]] |
---|
| 199 | |
---|
| 200 | [[ 0.70710678 0. ] |
---|
| 201 | [ 0. 0.70710678]] |
---|
| 202 | |
---|
| 203 | [[ 0. 0.70710678] |
---|
| 204 | [-0.70710678 0. ]]] |
---|
| 205 | """ |
---|
| 206 | fname = 'rotate_lines2D' |
---|
| 207 | |
---|
| 208 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
| 209 | |
---|
| 210 | Nlines = lines.shape[0] |
---|
| 211 | for il in range(Nlines): |
---|
| 212 | line = np.zeros((2,2), dtype=np.float) |
---|
| 213 | line[0,:] = lines[il,0,:] |
---|
| 214 | line[1,:] = lines[il,1,:] |
---|
| 215 | |
---|
| 216 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
| 217 | |
---|
| 218 | return rotlines |
---|
| 219 | |
---|
[2414] | 220 | def dist_points(ptA, ptB): |
---|
| 221 | """ Function to provide the distance between two points |
---|
| 222 | ptA: coordinates of the point A [yA, xA] |
---|
| 223 | ptB: coordinates of the point B [yB, xB] |
---|
| 224 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
| 225 | 2.82842712475 |
---|
| 226 | """ |
---|
| 227 | fname = 'dist_points' |
---|
| 228 | |
---|
| 229 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
| 230 | |
---|
| 231 | return dist |
---|
| 232 | |
---|
[2435] | 233 | def max_coords_poly(polygon): |
---|
| 234 | """ Function to provide the extremes of the coordinates of a polygon |
---|
| 235 | polygon: coordinates [Nvertexs, 2] of a polygon |
---|
| 236 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
| 237 | >>> square[0,:] = [-0.5,-0.5] |
---|
| 238 | >>> square[1,:] = [0.5,-0.5] |
---|
| 239 | >>> square[2,:] = [0.5,0.5] |
---|
| 240 | >>> square[3,:] = [-0.5,0.5] |
---|
| 241 | >>> max_coords_poly(square) |
---|
[2437] | 242 | [-0.5, 0.5], [-0.5, 0.5], [0.5, 0.5], 0.5 |
---|
[2435] | 243 | """ |
---|
| 244 | fname = 'max_coords_poly' |
---|
| 245 | |
---|
[2437] | 246 | # x-coordinate min/max |
---|
[2435] | 247 | nx = np.min(polygon[:,1]) |
---|
| 248 | xx = np.max(polygon[:,1]) |
---|
[2437] | 249 | |
---|
| 250 | # y-coordinate min/max |
---|
[2435] | 251 | ny = np.min(polygon[:,0]) |
---|
| 252 | xy = np.max(polygon[:,0]) |
---|
| 253 | |
---|
[2437] | 254 | # x/y-coordinate maximum of absolute values |
---|
[2435] | 255 | axx = np.max(np.abs(polygon[:,1])) |
---|
| 256 | ayx = np.max(np.abs(polygon[:,0])) |
---|
| 257 | |
---|
[2437] | 258 | # absolute maximum |
---|
| 259 | xyx = np.max([axx, ayx]) |
---|
[2435] | 260 | |
---|
[2437] | 261 | return [nx, xx], [ny, xy], [ayx, axx], xyx |
---|
| 262 | |
---|
[2452] | 263 | def mirror_polygon(polygon,axis): |
---|
| 264 | """ Function to reflex a polygon for a given axis |
---|
| 265 | polygon: polygon to mirror |
---|
| 266 | axis: axis at which mirror is located ('x' or 'y') |
---|
| 267 | """ |
---|
| 268 | fname = 'mirror_polygon' |
---|
| 269 | |
---|
| 270 | reflex = np.zeros(polygon.shape, dtype=np.float) |
---|
| 271 | |
---|
| 272 | N = polygon.shape[0] |
---|
| 273 | if axis == 'x': |
---|
| 274 | for iv in range(N): |
---|
[2453] | 275 | reflex[iv,:] = [-polygon[iv,0], polygon[iv,1]] |
---|
[2452] | 276 | elif axis == 'y': |
---|
| 277 | for iv in range(N): |
---|
[2453] | 278 | reflex[iv,:] = [polygon[iv,0], -polygon[iv,1]] |
---|
[2452] | 279 | |
---|
| 280 | return reflex |
---|
| 281 | |
---|
[2412] | 282 | ####### ###### ##### #### ### ## # |
---|
| 283 | # Shapes/objects |
---|
| 284 | |
---|
[2413] | 285 | def surface_sphere(radii,Npts): |
---|
| 286 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
| 287 | radii: radii of the sphere |
---|
| 288 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
| 289 | """ |
---|
| 290 | fname = 'surface_sphere' |
---|
| 291 | |
---|
| 292 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 293 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 294 | for ia in range(Npts): |
---|
| 295 | alpha = ia*2*np.pi/(Npts-1) |
---|
| 296 | for ib in range(Npts/2): |
---|
| 297 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
| 298 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 299 | for ib in range(Npts/2): |
---|
| 300 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
| 301 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 302 | |
---|
| 303 | return sphereup, spheredown |
---|
| 304 | |
---|
[2412] | 305 | def ellipse_polar(c, a, b, Nang=100): |
---|
| 306 | """ Function to determine an ellipse from its center and polar coordinates |
---|
| 307 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
| 308 | c= coordinates of the center |
---|
| 309 | a= distance major axis |
---|
| 310 | b= distance minor axis |
---|
| 311 | Nang= number of angles to use |
---|
| 312 | """ |
---|
| 313 | fname = 'ellipse_polar' |
---|
| 314 | |
---|
| 315 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
| 316 | |
---|
| 317 | dtheta = 2*np.pi/(Nang-1) |
---|
| 318 | |
---|
| 319 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
| 320 | for ia in range(Nang): |
---|
| 321 | theta = dtheta*ia |
---|
| 322 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
| 323 | x = rad*np.cos(theta) |
---|
| 324 | y = rad*np.sin(theta) |
---|
| 325 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
| 326 | |
---|
| 327 | return ellipse |
---|
| 328 | |
---|
[2413] | 329 | def hyperbola_polar(a, b, Nang=100): |
---|
| 330 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
| 331 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
| 332 | x^2/a^2 - y^2/b^2 = 1 |
---|
| 333 | a= x-parameter |
---|
| 334 | y= y-parameter |
---|
| 335 | Nang= number of angles to use |
---|
| 336 | DOES NOT WORK!!!! |
---|
| 337 | """ |
---|
| 338 | fname = 'hyperbola_polar' |
---|
[2412] | 339 | |
---|
[2413] | 340 | dtheta = 2.*np.pi/(Nang-1) |
---|
| 341 | |
---|
| 342 | # Positive branch |
---|
| 343 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
| 344 | for ia in range(Nang): |
---|
| 345 | theta = dtheta*ia |
---|
| 346 | x = a*np.cosh(theta) |
---|
| 347 | y = b*np.sinh(theta) |
---|
| 348 | hyperbola_p[ia,:] = [y,x] |
---|
| 349 | |
---|
| 350 | # Negative branch |
---|
| 351 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
| 352 | for ia in range(Nang): |
---|
| 353 | theta = dtheta*ia |
---|
| 354 | x = -a*np.cosh(theta) |
---|
| 355 | y = b*np.sinh(theta) |
---|
| 356 | hyperbola_n[ia,:] = [y,x] |
---|
| 357 | |
---|
| 358 | return hyperbola_p, hyperbola_n |
---|
| 359 | |
---|
| 360 | def circ_sec(ptA, ptB, radii, Nang=100): |
---|
| 361 | """ Function union of point A and B by a section of a circle |
---|
| 362 | ptA= coordinates od the point A [yA, xA] |
---|
| 363 | ptB= coordinates od the point B [yB, xB] |
---|
| 364 | radii= radi of the circle to use to unite the points |
---|
| 365 | Nang= amount of angles to use |
---|
| 366 | """ |
---|
| 367 | fname = 'circ_sec' |
---|
| 368 | |
---|
| 369 | distAB = dist_points(ptA,ptB) |
---|
| 370 | |
---|
| 371 | if distAB > radii: |
---|
| 372 | print errormsg |
---|
| 373 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
| 374 | "between points !!" |
---|
| 375 | print ' distance between points:', distAB |
---|
| 376 | quit(-1) |
---|
| 377 | |
---|
[2414] | 378 | # Coordinate increments |
---|
| 379 | dAB = np.abs(ptA-ptB) |
---|
[2413] | 380 | |
---|
[2414] | 381 | # angle of the circular section joining points |
---|
[2434] | 382 | alpha = 2.*np.arcsin((distAB/2.)/radii) |
---|
[2414] | 383 | |
---|
| 384 | # center along coincident bisection of the union |
---|
| 385 | xcc = -radii |
---|
| 386 | ycc = 0. |
---|
| 387 | |
---|
[2434] | 388 | # Getting the arc of the circle at the x-axis |
---|
| 389 | dalpha = alpha/(Nang-1) |
---|
| 390 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
| 391 | for ia in range(Nang): |
---|
| 392 | alpha = dalpha*ia |
---|
| 393 | x = radii*np.cos(alpha) |
---|
| 394 | y = radii*np.sin(alpha) |
---|
| 395 | |
---|
| 396 | circ_sec[ia,:] = [y+ycc,x+xcc] |
---|
| 397 | |
---|
[2414] | 398 | # Angle of the points |
---|
[2434] | 399 | theta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
[2414] | 400 | |
---|
[2434] | 401 | # rotating angle of the circ |
---|
| 402 | rotangle = theta + 3.*np.pi/2. - alpha/2. |
---|
[2414] | 403 | |
---|
[2434] | 404 | #print 'alpha:', alpha*180./np.pi, 'theta:', theta*180./np.pi, 'rotangle:', rotangle*180./np.pi |
---|
| 405 | |
---|
[2414] | 406 | |
---|
[2434] | 407 | # rotating the arc along the x-axis |
---|
| 408 | rotcirc_sec = rotate_polygon_2D(circ_sec, rotangle) |
---|
[2414] | 409 | |
---|
[2434] | 410 | # Moving arc to the ptA |
---|
| 411 | circ_sec = rotcirc_sec + ptA |
---|
[2413] | 412 | |
---|
| 413 | return circ_sec |
---|
| 414 | |
---|
[2449] | 415 | def p_square(face, N=5): |
---|
| 416 | """ Function to get a polygon square |
---|
| 417 | face: length of the face of the square |
---|
| 418 | N: number of points of the polygon |
---|
| 419 | """ |
---|
| 420 | fname = 'p_square' |
---|
| 421 | |
---|
| 422 | square = np.zeros((N,2), dtype=np.float) |
---|
| 423 | |
---|
| 424 | f2 = face/2. |
---|
| 425 | N4 = N/4 |
---|
| 426 | df = face/(N4) |
---|
| 427 | # SW-NW |
---|
| 428 | for ip in range(N4): |
---|
| 429 | square[ip,:] = [-f2+ip*df,-f2] |
---|
| 430 | # NW-NE |
---|
| 431 | for ip in range(N4): |
---|
| 432 | square[ip+N4,:] = [f2,-f2+ip*df] |
---|
| 433 | # NE-SE |
---|
| 434 | for ip in range(N4): |
---|
| 435 | square[ip+2*N4,:] = [f2-ip*df,f2] |
---|
| 436 | N42 = N-3*N4-1 |
---|
| 437 | df = face/(N42) |
---|
| 438 | # SE-SW |
---|
| 439 | for ip in range(N42): |
---|
| 440 | square[ip+3*N4,:] = [-f2,f2-ip*df] |
---|
| 441 | square[N-1,:] = [-f2,-f2] |
---|
| 442 | |
---|
| 443 | return square |
---|
| 444 | |
---|
| 445 | def p_circle(radii, N=50): |
---|
| 446 | """ Function to get a polygon of a circle |
---|
| 447 | radii: length of the radii of the circle |
---|
| 448 | N: number of points of the polygon |
---|
| 449 | """ |
---|
| 450 | fname = 'p_circle' |
---|
| 451 | |
---|
| 452 | circle = np.zeros((N,2), dtype=np.float) |
---|
| 453 | |
---|
| 454 | dangle = 2.*np.pi/(N-1) |
---|
| 455 | |
---|
| 456 | for ia in range(N): |
---|
| 457 | circle[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
| 458 | |
---|
| 459 | circle[N-1,:] = [0., radii] |
---|
| 460 | |
---|
| 461 | return circle |
---|
| 462 | |
---|
[2451] | 463 | def p_triangle(p1, p2, p3, N=4): |
---|
| 464 | """ Function to provide the polygon of a triangle from its 3 vertices |
---|
| 465 | p1: vertex 1 [y,x] |
---|
| 466 | p2: vertex 2 [y,x] |
---|
| 467 | p3: vertex 3 [y,x] |
---|
| 468 | N: number of vertices of the triangle |
---|
| 469 | """ |
---|
| 470 | fname = 'p_triangle' |
---|
| 471 | |
---|
| 472 | triangle = np.zeros((N,2), dtype=np.float) |
---|
| 473 | |
---|
| 474 | N3 = N / 3 |
---|
| 475 | # 1-2 |
---|
| 476 | dx = (p2[1]-p1[1])/N3 |
---|
| 477 | dy = (p2[0]-p1[0])/N3 |
---|
| 478 | for ip in range(N3): |
---|
| 479 | triangle[ip,:] = [p1[0]+ip*dy,p1[1]+ip*dx] |
---|
| 480 | # 2-3 |
---|
| 481 | dx = (p3[1]-p2[1])/N3 |
---|
| 482 | dy = (p3[0]-p2[0])/N3 |
---|
| 483 | for ip in range(N3): |
---|
| 484 | triangle[ip+N3,:] = [p2[0]+ip*dy,p2[1]+ip*dx] |
---|
| 485 | # 3-1 |
---|
| 486 | N32 = N - 2*N/3 |
---|
| 487 | dx = (p1[1]-p3[1])/N32 |
---|
| 488 | dy = (p1[0]-p3[0])/N32 |
---|
| 489 | for ip in range(N32): |
---|
| 490 | triangle[ip+2*N3,:] = [p3[0]+ip*dy,p3[1]+ip*dx] |
---|
| 491 | |
---|
| 492 | triangle[N-1,:] = p1 |
---|
| 493 | |
---|
| 494 | return triangle |
---|
| 495 | |
---|
| 496 | def p_spiral(loops, eradii, N=1000): |
---|
| 497 | """ Function to provide a polygon of an Archimedean spiral |
---|
| 498 | FROM: https://en.wikipedia.org/wiki/Spiral |
---|
| 499 | loops: number of loops of the spiral |
---|
| 500 | eradii: length of the radii of the final spiral |
---|
| 501 | N: number of points of the polygon |
---|
| 502 | """ |
---|
| 503 | fname = 'p_spiral' |
---|
| 504 | |
---|
| 505 | spiral = np.zeros((N,2), dtype=np.float) |
---|
| 506 | |
---|
| 507 | dangle = 2.*np.pi*loops/(N-1) |
---|
[2452] | 508 | dr = eradii*1./(N-1) |
---|
[2451] | 509 | |
---|
| 510 | for ia in range(N): |
---|
| 511 | radii = dr*ia |
---|
| 512 | spiral[ia,:] = [radii*np.sin(ia*dangle), radii*np.cos(ia*dangle)] |
---|
| 513 | |
---|
| 514 | return spiral |
---|
| 515 | |
---|
[2454] | 516 | def p_reg_polygon(Nv, lf, N=50): |
---|
| 517 | """ Function to provide a regular polygon of Nv vertices |
---|
| 518 | Nv: number of vertices |
---|
| 519 | lf: length of the face |
---|
| 520 | N: number of points |
---|
| 521 | """ |
---|
| 522 | fname = 'p_reg_polygon' |
---|
| 523 | |
---|
| 524 | reg_polygon = np.zeros((N,2), dtype=np.float) |
---|
| 525 | |
---|
| 526 | # Number of points per vertex |
---|
| 527 | Np = N/Nv |
---|
| 528 | # Angle incremental between vertices |
---|
| 529 | da = 2.*np.pi/Nv |
---|
| 530 | # Radii of the circle according to lf |
---|
| 531 | radii = lf*Nv/(2*np.pi) |
---|
| 532 | |
---|
| 533 | iip = 0 |
---|
| 534 | for iv in range(Nv-1): |
---|
| 535 | # Characteristics between vertices iv and iv+1 |
---|
| 536 | av1 = da*iv |
---|
| 537 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 538 | av2 = da*(iv+1) |
---|
| 539 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 540 | dx = (v2[1]-v1[1])/Np |
---|
| 541 | dy = (v2[0]-v1[0])/Np |
---|
| 542 | for ip in range(Np): |
---|
| 543 | reg_polygon[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 544 | |
---|
| 545 | # Characteristics between vertices Nv and 1 |
---|
| 546 | |
---|
| 547 | # Number of points per vertex |
---|
| 548 | Np2 = N - Np*(Nv-1) |
---|
| 549 | |
---|
| 550 | av1 = da*Nv |
---|
| 551 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 552 | av2 = 0. |
---|
| 553 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 554 | dx = (v2[1]-v1[1])/Np2 |
---|
| 555 | dy = (v2[0]-v1[0])/Np2 |
---|
| 556 | for ip in range(Np2): |
---|
| 557 | reg_polygon[ip+(Nv-1)*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 558 | |
---|
| 559 | return reg_polygon |
---|
| 560 | |
---|
| 561 | def p_reg_star(Nv, lf, freq, vs=0, N=50): |
---|
| 562 | """ Function to provide a regular star of Nv vertices |
---|
| 563 | Nv: number of vertices |
---|
| 564 | lf: length of the face of the regular polygon |
---|
| 565 | freq: frequency of union of vertices ('0', for just centered to zero arms) |
---|
| 566 | vs: vertex from which start (0 being first [0,lf]) |
---|
| 567 | N: number of points |
---|
| 568 | """ |
---|
| 569 | fname = 'p_reg_star' |
---|
| 570 | |
---|
| 571 | reg_star = np.zeros((N,2), dtype=np.float) |
---|
| 572 | |
---|
| 573 | # Number of arms of the star |
---|
| 574 | if freq != 0 and np.mod(Nv,freq) == 0: |
---|
| 575 | Na = Nv/freq + 1 |
---|
| 576 | else: |
---|
| 577 | Na = Nv |
---|
| 578 | |
---|
| 579 | # Number of points per arm |
---|
| 580 | Np = N/Na |
---|
| 581 | # Angle incremental between vertices |
---|
| 582 | da = 2.*np.pi/Nv |
---|
| 583 | # Radii of the circle according to lf |
---|
| 584 | radii = lf*Nv/(2*np.pi) |
---|
| 585 | |
---|
| 586 | iip = 0 |
---|
| 587 | av1 = vs*da |
---|
| 588 | for iv in range(Na-1): |
---|
| 589 | # Characteristics between vertices iv and iv+1 |
---|
| 590 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 591 | if freq != 0: |
---|
| 592 | av2 = av1 + da*freq |
---|
| 593 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 594 | else: |
---|
| 595 | v2 = [0., 0.] |
---|
| 596 | av2 = av1 + da |
---|
| 597 | dx = (v2[1]-v1[1])/(Np-1) |
---|
| 598 | dy = (v2[0]-v1[0])/(Np-1) |
---|
| 599 | for ip in range(Np): |
---|
| 600 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 601 | if av2 > 2.*np.pi: av1 = av2 - 2.*np.pi |
---|
| 602 | else: av1 = av2 + 0. |
---|
| 603 | |
---|
| 604 | iv = Na-1 |
---|
| 605 | # Characteristics between vertices Na and 1 |
---|
| 606 | Np2 = N-Np*iv |
---|
| 607 | v1 = [radii*np.sin(av1), radii*np.cos(av1)] |
---|
| 608 | if freq != 0: |
---|
| 609 | av2 = vs*da |
---|
| 610 | v2 = [radii*np.sin(av2), radii*np.cos(av2)] |
---|
| 611 | else: |
---|
| 612 | v2 = [0., 0.] |
---|
| 613 | dx = (v2[1]-v1[1])/(Np2-1) |
---|
| 614 | dy = (v2[0]-v1[0])/(Np2-1) |
---|
| 615 | for ip in range(Np2): |
---|
| 616 | reg_star[ip+iv*Np,:] = [v1[0]+dy*ip,v1[1]+dx*ip] |
---|
| 617 | |
---|
| 618 | return reg_star |
---|
| 619 | |
---|
[2449] | 620 | # Combined objects |
---|
| 621 | ## |
---|
| 622 | |
---|
[2413] | 623 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
[2437] | 624 | def zsailing_boat(length=10., beam=1., lbeam=0.4, sternbp=0.5): |
---|
[2413] | 625 | """ Function to define an schematic boat from the z-plane |
---|
[2435] | 626 | length: length of the boat (without stern, default 10) |
---|
| 627 | beam: beam of the boat (default 1) |
---|
[2437] | 628 | lbeam: length at beam (as percentage of length, default 0.4) |
---|
[2435] | 629 | sternbp: beam at stern (as percentage of beam, default 0.5) |
---|
[2413] | 630 | """ |
---|
| 631 | fname = 'zsailing_boat' |
---|
| 632 | |
---|
[2435] | 633 | bow = np.array([length, 0.]) |
---|
| 634 | maxportside = np.array([length*lbeam, -beam]) |
---|
| 635 | maxstarboardside = np.array([length*lbeam, beam]) |
---|
| 636 | portside = np.array([0., -beam*sternbp]) |
---|
| 637 | starboardside = np.array([0., beam*sternbp]) |
---|
[2413] | 638 | |
---|
[2435] | 639 | # forward section |
---|
| 640 | fportsaid = circ_sec(bow,maxportside, length*2) |
---|
| 641 | fstarboardsaid = circ_sec(maxstarboardside, bow, length*2) |
---|
| 642 | # aft section |
---|
| 643 | aportsaid = circ_sec(maxportside, portside, length*2) |
---|
| 644 | astarboardsaid = circ_sec(starboardside, maxstarboardside, length*2) |
---|
| 645 | # stern |
---|
| 646 | stern = circ_sec(portside, starboardside, length*2) |
---|
| 647 | |
---|
| 648 | dpts = stern.shape[0] |
---|
| 649 | boat = np.zeros((dpts*5,2), dtype=np.float) |
---|
| 650 | |
---|
| 651 | boat[0:dpts,:] = fportsaid |
---|
| 652 | boat[dpts:2*dpts,:] = aportsaid |
---|
| 653 | boat[2*dpts:3*dpts,:] = stern |
---|
| 654 | boat[3*dpts:4*dpts,:] = astarboardsaid |
---|
| 655 | boat[4*dpts:5*dpts,:] = fstarboardsaid |
---|
| 656 | |
---|
[2438] | 657 | fname = 'boat_L' + str(int(length*100.)) + '_B' + str(int(beam*100.)) + '_lb' + \ |
---|
| 658 | str(int(lbeam*100.)) + '_sb' + str(int(sternbp*100.)) + '.dat' |
---|
| 659 | if not os.path.isfile(fname): |
---|
| 660 | print infmsg |
---|
| 661 | print ' ' + fname + ": writting boat coordinates file '" + fname + "' !!" |
---|
| 662 | of = open(fname, 'w') |
---|
| 663 | of.write('# boat file with Length: ' + str(length) +' max_beam: '+str(beam)+ \ |
---|
| 664 | 'length_at_max_beam:' + str(lbeam) + '% beam at stern: ' + str(sternbp)+ \ |
---|
| 665 | ' %\n') |
---|
| 666 | for ip in range(dpts*5): |
---|
| 667 | of.write(str(boat[ip,0]) + ' ' + str(boat[ip,1]) + '\n') |
---|
| 668 | |
---|
| 669 | of.close() |
---|
| 670 | print fname + ": Successfull written '" + fname + "' !!" |
---|
| 671 | |
---|
[2413] | 672 | return boat |
---|
| 673 | |
---|
[2449] | 674 | def write_join_poly(polys, flname='join_polygons.dat'): |
---|
| 675 | """ Function to write an ASCII file with the combination of polygons |
---|
| 676 | polys: dictionary with the names of the different polygons |
---|
| 677 | flname: name of the ASCII file |
---|
| 678 | """ |
---|
| 679 | fname = 'write_join_poly' |
---|
| 680 | |
---|
| 681 | of = open(flname, 'w') |
---|
| 682 | |
---|
| 683 | for polyn in polys.keys(): |
---|
| 684 | vertices = polys[polyn] |
---|
| 685 | Npts = vertices.shape[0] |
---|
| 686 | for ip in range(Npts): |
---|
| 687 | of.write(polyn+' '+str(vertices[ip,1]) + ' ' + str(vertices[ip,0]) + '\n') |
---|
| 688 | |
---|
| 689 | of.close() |
---|
| 690 | |
---|
| 691 | return |
---|
| 692 | |
---|
| 693 | def read_join_poly(flname='join_polygons.dat'): |
---|
| 694 | """ Function to read an ASCII file with the combination of polygons |
---|
| 695 | flname: name of the ASCII file |
---|
| 696 | """ |
---|
| 697 | fname = 'read_join_poly' |
---|
| 698 | |
---|
| 699 | of = open(flname, 'r') |
---|
| 700 | |
---|
| 701 | polys = {} |
---|
| 702 | polyn = '' |
---|
| 703 | poly = [] |
---|
| 704 | for line in of: |
---|
| 705 | if len(line) > 1: |
---|
| 706 | linevals = line.replace('\n','').split(' ') |
---|
| 707 | if polyn != linevals[0]: |
---|
| 708 | if len(poly) > 1: |
---|
| 709 | polys[polyn] = np.array(poly) |
---|
| 710 | polyn = linevals[0] |
---|
| 711 | poly = [] |
---|
| 712 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
| 713 | else: |
---|
| 714 | poly.append([np.float(linevals[2]), np.float(linevals[1])]) |
---|
| 715 | |
---|
| 716 | of.close() |
---|
| 717 | polys[polyn] = np.array(poly) |
---|
| 718 | |
---|
| 719 | return polys |
---|
| 720 | |
---|
[2411] | 721 | ####### ####### ##### #### ### ## # |
---|
| 722 | # Plotting |
---|
| 723 | |
---|
| 724 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
| 725 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
| 726 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
| 727 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
| 728 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
| 729 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
| 730 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
| 731 | """ Function to plot an sphere and determine which standard lines will be also |
---|
| 732 | drawn |
---|
| 733 | iazm: azimut of the camera form the sphere |
---|
| 734 | iele: elevation of the camera form the sphere |
---|
| 735 | dist: distance of the camera form the sphere |
---|
| 736 | Npts: Resolution for the sphere |
---|
| 737 | radii: radius of the sphere |
---|
| 738 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
| 739 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
| 740 | drwxline: whether x-axis line should be drawn |
---|
| 741 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
| 742 | drwyline: whether y-axis line should be drawn |
---|
| 743 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
| 744 | drwzline: whether z-axis line should be drawn |
---|
| 745 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
| 746 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
| 747 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
| 748 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
| 749 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
| 750 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
| 751 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
| 752 | """ |
---|
| 753 | fname = 'plot_sphere' |
---|
| 754 | |
---|
| 755 | iazmrad = iazm*np.pi/180. |
---|
| 756 | ielerad = iele*np.pi/180. |
---|
| 757 | |
---|
| 758 | # 3D surface Sphere |
---|
| 759 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
| 760 | |
---|
| 761 | # greenwhich |
---|
| 762 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
| 763 | ia=np.pi-ielerad |
---|
| 764 | else: |
---|
| 765 | ia=0.-ielerad |
---|
| 766 | ea=ia+np.pi |
---|
| 767 | da = (ea-ia)/(Npts-1) |
---|
| 768 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 769 | alpha = np.zeros((Npts), dtype=np.float) |
---|
| 770 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
| 771 | ia=ea+0. |
---|
| 772 | ea=ia+np.pi |
---|
| 773 | da = (ea-ia)/(Npts-1) |
---|
| 774 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 775 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
| 776 | |
---|
| 777 | # Equator |
---|
| 778 | ia=np.pi-iazmrad/2. |
---|
| 779 | ea=ia+np.pi |
---|
| 780 | da = (ea-ia)/(Npts-1) |
---|
| 781 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 782 | beta = np.zeros((Npts), dtype=np.float) |
---|
| 783 | equatorc = spheric_line(radii,alpha,beta) |
---|
| 784 | ia=ea+0. |
---|
| 785 | ea=ia+np.pi |
---|
| 786 | da = (ea-ia)/(Npts-1) |
---|
| 787 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 788 | equatord = spheric_line(radii,alpha,beta) |
---|
| 789 | |
---|
| 790 | # 90 line |
---|
| 791 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
| 792 | ia=3.*np.pi/2. + ielerad |
---|
| 793 | else: |
---|
| 794 | ia=np.pi/2. - ielerad |
---|
| 795 | if ielerad < 0.: |
---|
| 796 | ia = ia + np.pi |
---|
| 797 | ea=ia+np.pi |
---|
| 798 | da = (ea-ia)/(Npts-1) |
---|
| 799 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 800 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
| 801 | xclinec = spheric_line(radii,alpha,beta) |
---|
| 802 | ia=ea+0. |
---|
| 803 | ea=ia+np.pi |
---|
| 804 | da = (ea-ia)/(Npts-1) |
---|
| 805 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 806 | xclined = spheric_line(radii,alpha,beta) |
---|
| 807 | |
---|
| 808 | # x line |
---|
| 809 | xline = np.zeros((2,3), dtype=np.float) |
---|
| 810 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
| 811 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
| 812 | |
---|
| 813 | # y line |
---|
| 814 | yline = np.zeros((2,3), dtype=np.float) |
---|
| 815 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
| 816 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
| 817 | |
---|
| 818 | # z line |
---|
| 819 | zline = np.zeros((2,3), dtype=np.float) |
---|
| 820 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
| 821 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
| 822 | |
---|
| 823 | fig = plt.figure() |
---|
| 824 | ax = fig.gca(projection='3d') |
---|
| 825 | |
---|
| 826 | # Sphere surface |
---|
| 827 | if drwsfc[0]: |
---|
| 828 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
| 829 | color=colsfc[0]) |
---|
| 830 | if drwsfc[1]: |
---|
| 831 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
| 832 | color=colsfc[1]) |
---|
| 833 | |
---|
| 834 | # greenwhich |
---|
| 835 | linev = linegw[0] |
---|
| 836 | if drwgreeenwhich[0]: |
---|
| 837 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
| 838 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
| 839 | linev = linegw[1] |
---|
| 840 | if drwgreeenwhich[1]: |
---|
| 841 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
| 842 | color=linev[1], linewidth=linev[2]) |
---|
| 843 | |
---|
| 844 | # Equator |
---|
| 845 | linev = lineeq[0] |
---|
| 846 | if drwequator[0]: |
---|
| 847 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
| 848 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
| 849 | linev = lineeq[1] |
---|
| 850 | if drwequator[1]: |
---|
| 851 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
| 852 | color=linev[1], linewidth=linev[2]) |
---|
| 853 | |
---|
| 854 | # 90line |
---|
| 855 | linev = linexc[0] |
---|
| 856 | if drwxcline[0]: |
---|
| 857 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
| 858 | linewidth=linev[2], label='90-line') |
---|
| 859 | linev = linexc[1] |
---|
| 860 | if drwxcline[1]: |
---|
| 861 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
| 862 | linewidth=linev[2]) |
---|
| 863 | |
---|
| 864 | # x line |
---|
| 865 | linev = linex |
---|
| 866 | if drwxline: |
---|
| 867 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
| 868 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
| 869 | |
---|
| 870 | # y line |
---|
| 871 | linev = liney |
---|
| 872 | if drwyline: |
---|
| 873 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
| 874 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
| 875 | |
---|
| 876 | # z line |
---|
| 877 | linev = linez |
---|
| 878 | if drwzline: |
---|
| 879 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
| 880 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
| 881 | |
---|
| 882 | plt.legend() |
---|
| 883 | |
---|
| 884 | return fig, ax |
---|