1 | # Python script to comput diagnostics |
---|
2 | # From L. Fita work in different places: CCRC (Australia), LMD (France) |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component nc_var.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, C.A. Buenos Aires, Argentina |
---|
10 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
11 | # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 |
---|
12 | # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
13 | # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
14 | |
---|
15 | ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@RAINSH@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
16 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
17 | |
---|
18 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
19 | # compute_accum: Function to compute the accumulation of a variable |
---|
20 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
21 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
22 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
23 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
24 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
25 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
26 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
27 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
28 | # compute_prw: Function to compute water vapour path (prw) |
---|
29 | # compute_range_faces: Function to compute faces [uphill, valley, downhill] of sections of a mountain |
---|
30 | # range, along a given face |
---|
31 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
32 | # compute_td: Function to compute the dew point temperature |
---|
33 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
34 | # compute_wds: Function to compute the wind direction |
---|
35 | # compute_wss: Function to compute the wind speed |
---|
36 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
37 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
38 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
39 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
40 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
41 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' |
---|
42 | |
---|
43 | # Others just providing variable values |
---|
44 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
45 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
46 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
47 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
48 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
49 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
50 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
51 | # timeoverthres: When a given variable [varname] overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
52 | # variables_values.dat |
---|
53 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
54 | |
---|
55 | from optparse import OptionParser |
---|
56 | import numpy as np |
---|
57 | from netCDF4 import Dataset as NetCDFFile |
---|
58 | import os |
---|
59 | import re |
---|
60 | import nc_var_tools as ncvar |
---|
61 | import generic_tools as gen |
---|
62 | import datetime as dtime |
---|
63 | import module_ForDiag as fdin |
---|
64 | import module_ForDef as fdef |
---|
65 | import diag_tools as diag |
---|
66 | |
---|
67 | main = 'diagnostics.py' |
---|
68 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
69 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
70 | |
---|
71 | # Constants |
---|
72 | grav = 9.81 |
---|
73 | |
---|
74 | |
---|
75 | ####### ###### ##### #### ### ## # |
---|
76 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
77 | |
---|
78 | parser = OptionParser() |
---|
79 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
80 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
81 | help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, |
---|
82 | metavar="LABELS") |
---|
83 | parser.add_option("-v", "--variables", dest="varns", |
---|
84 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
85 | |
---|
86 | (opts, args) = parser.parse_args() |
---|
87 | |
---|
88 | ####### ####### |
---|
89 | ## MAIN |
---|
90 | ####### |
---|
91 | availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'convini', 'deaccum', 'fog_K84', \ |
---|
92 | 'fog_RUC', 'LMDZrh', 'mslp', 'OMEGAw', 'RAINTOT', 'range_faces', \ |
---|
93 | 'rvors', 'td', 'timemax', 'timeoverthres', 'turbulence', 'uavaFROMwswd', \ |
---|
94 | 'WRFcape_afwa', 'WRFclivi', 'WRFclwvi', 'WRF_denszint', 'WRFgeop', \ |
---|
95 | 'WRFmrso', 'WRFmrsos', 'WRFpotevap_orPM', 'WRFp', 'WRFpsl_ecmwf', \ |
---|
96 | 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ |
---|
97 | 'WRFheightrel', 'WRFtda', 'WRFtdas', 'WRFua', 'WRFva', 'WRFzwind', 'WRFzwind_log', \ |
---|
98 | 'WRFzwindMO'] |
---|
99 | |
---|
100 | methods = ['accum', 'deaccum'] |
---|
101 | |
---|
102 | # Variables not to check |
---|
103 | NONcheckingvars = ['accum', 'cllmh', 'deaccum', 'face', 'LONLATdxdy', 'TSrhs', \ |
---|
104 | 'TStd', 'TSwds', 'TSwss', \ |
---|
105 | 'WRFbils', \ |
---|
106 | 'WRFclivi', 'WRFclwvi', 'WRFdens', 'WRFdx', 'WRFdxdy', 'WRFdy', 'WRFgeop', \ |
---|
107 | 'WRFp', 'WRFtd', \ |
---|
108 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', \ |
---|
109 | 'WRFrhs', 'WRFrvors', \ |
---|
110 | 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz', \ |
---|
111 | 'WRFzg'] |
---|
112 | |
---|
113 | # diagnostics not to check their dependeny |
---|
114 | NONcheckdepvars = ['accum', 'deaccum', 'timeoverthres', 'WRF_denszint', \ |
---|
115 | 'WRFzwind_log', 'WRFzwind', 'WRFzwindMO'] |
---|
116 | |
---|
117 | NONchkvardims = ['WRFtime'] |
---|
118 | |
---|
119 | ofile = 'diagnostics.nc' |
---|
120 | |
---|
121 | dimns = opts.dimns |
---|
122 | varns = opts.varns |
---|
123 | |
---|
124 | # Special method. knowing variable combination |
---|
125 | ## |
---|
126 | if opts.dimns == 'variable_combo': |
---|
127 | print warnmsg |
---|
128 | print ' ' + main + ': knowing variable combination !!!' |
---|
129 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
130 | print ' COMBO: ' + combination |
---|
131 | quit(-1) |
---|
132 | |
---|
133 | if opts.ncfile is None: |
---|
134 | print errormsg |
---|
135 | print ' ' + main + ": No file provided !!" |
---|
136 | print ' is mandatory to provide a file -f [filename]' |
---|
137 | quit(-1) |
---|
138 | |
---|
139 | if opts.dimns is None: |
---|
140 | print errormsg |
---|
141 | print ' ' + main + ": No description of dimensions are provided !!" |
---|
142 | print ' is mandatory to provide description of dimensions as -d [dimn]@[vardimname],... ' |
---|
143 | quit(-1) |
---|
144 | |
---|
145 | if opts.varns is None: |
---|
146 | print errormsg |
---|
147 | print ' ' + main + ": No variable to diagnose is provided !!" |
---|
148 | print ' is mandatory to provide a variable to diagnose as -v [diagn]|[varn1]@... ' |
---|
149 | quit(-1) |
---|
150 | |
---|
151 | if not os.path.isfile(opts.ncfile): |
---|
152 | print errormsg |
---|
153 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
154 | quit(-1) |
---|
155 | |
---|
156 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
157 | |
---|
158 | # Looking for specific variables that might be use in more than one diagnostic |
---|
159 | WRFgeop_compute = False |
---|
160 | WRFp_compute = False |
---|
161 | WRFt_compute = False |
---|
162 | WRFrh_compute = False |
---|
163 | WRFght_compute = False |
---|
164 | WRFdens_compute = False |
---|
165 | WRFpos_compute = False |
---|
166 | WRFtime_compute = False |
---|
167 | WRFz_compute = False |
---|
168 | WRFdxdy_compute = False |
---|
169 | LONLATdxdy_compute = False |
---|
170 | |
---|
171 | # File creation |
---|
172 | newnc = NetCDFFile(ofile,'w') |
---|
173 | |
---|
174 | # dimensions |
---|
175 | dimvalues = dimns.split(',') |
---|
176 | dnames = [] |
---|
177 | dvnames = [] |
---|
178 | |
---|
179 | for dimval in dimvalues: |
---|
180 | dn = dimval.split('@')[0] |
---|
181 | dnv = dimval.split('@')[1] |
---|
182 | dnames.append(dn) |
---|
183 | dvnames.append(dnv) |
---|
184 | # Is there any dimension-variable which should be computed? |
---|
185 | if dnv == 'WRFgeop':WRFgeop_compute = True |
---|
186 | if dnv == 'WRFp': WRFp_compute = True |
---|
187 | if dnv == 'WRFt': WRFt_compute = True |
---|
188 | if dnv == 'WRFrh': WRFrh_compute = True |
---|
189 | if dnv == 'WRFght': WRFght_compute = True |
---|
190 | if dnv == 'WRFdens': WRFdens_compute = True |
---|
191 | if dnv == 'WRFpos': WRFpos_compute = True |
---|
192 | if dnv == 'WRFtime': WRFtime_compute = True |
---|
193 | if dnv == 'WRFz':WRFz_compute = True |
---|
194 | if dnv == 'WRFdxdy':WRFdxdy_compute = True |
---|
195 | if dnv == 'LONLATdxdy':LONLATdxdy_compute = True |
---|
196 | |
---|
197 | # diagnostics to compute |
---|
198 | diags = varns.split(',') |
---|
199 | Ndiags = len(diags) |
---|
200 | |
---|
201 | for idiag in range(Ndiags): |
---|
202 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
203 | depvars = diags[idiag].split('|')[1] |
---|
204 | if depvars == 'WRFgeop':WRFgeop_compute = True |
---|
205 | if depvars == 'WRFp': WRFp_compute = True |
---|
206 | if depvars == 'WRFt': WRFt_compute = True |
---|
207 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
208 | if depvars == 'WRFght': WRFght_compute = True |
---|
209 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
210 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
211 | if depvars == 'WRFtime': WRFtime_compute = True |
---|
212 | if depvars == 'WRFz': WRFz_compute = True |
---|
213 | else: |
---|
214 | depvars = diags[idiag].split('|')[1].split('@') |
---|
215 | if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True |
---|
216 | if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
217 | if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
218 | if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
219 | if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
220 | if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
221 | if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
222 | if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True |
---|
223 | if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True |
---|
224 | if gen.searchInlist(depvars, 'WRFdxdy'): WRFdxdy_compute = True |
---|
225 | if gen.searchInlist(depvars, 'LONLATdxdy'): LONLATdxdy_compute = True |
---|
226 | |
---|
227 | # Dictionary with the new computed variables to be able to add them |
---|
228 | dictcompvars = {} |
---|
229 | if WRFgeop_compute: |
---|
230 | print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' |
---|
231 | dimv = ncobj.variables['PH'].shape |
---|
232 | WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
233 | |
---|
234 | # Attributes of the variable |
---|
235 | Vvals = gen.variables_values('WRFgeop') |
---|
236 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
237 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
238 | |
---|
239 | if WRFp_compute: |
---|
240 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
241 | dimv = ncobj.variables['P'].shape |
---|
242 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
243 | |
---|
244 | # Attributes of the variable |
---|
245 | Vvals = gen.variables_values('WRFp') |
---|
246 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
247 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
248 | |
---|
249 | if WRFght_compute: |
---|
250 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
251 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
252 | |
---|
253 | # Attributes of the variable |
---|
254 | Vvals = gen.variables_values('WRFght') |
---|
255 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
256 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
257 | |
---|
258 | if WRFrh_compute: |
---|
259 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
260 | ' equation (T,P) ...' |
---|
261 | p0=100000. |
---|
262 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
263 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
264 | qv = ncobj.variables['QVAPOR'][:] |
---|
265 | |
---|
266 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
267 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
268 | |
---|
269 | WRFrh = qv/data2 |
---|
270 | |
---|
271 | # Attributes of the variable |
---|
272 | Vvals = gen.variables_values('WRFrh') |
---|
273 | dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
274 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
275 | |
---|
276 | if WRFt_compute: |
---|
277 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
278 | p0=100000. |
---|
279 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
280 | |
---|
281 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
282 | |
---|
283 | # Attributes of the variable |
---|
284 | Vvals = gen.variables_values('WRFt') |
---|
285 | dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
286 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
287 | |
---|
288 | if WRFdens_compute: |
---|
289 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
290 | 'DNW)/g ...' |
---|
291 | |
---|
292 | # Just we need in in absolute values: Size of the central grid cell |
---|
293 | ## dxval = ncobj.getncattr('DX') |
---|
294 | ## dyval = ncobj.getncattr('DY') |
---|
295 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
296 | ## area = dxval*dyval*mapfac |
---|
297 | |
---|
298 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
299 | dnw = ncobj.variables['DNW'][:] |
---|
300 | |
---|
301 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
302 | dtype=np.float) |
---|
303 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
304 | |
---|
305 | for it in range(mu.shape[0]): |
---|
306 | for iz in range(dnw.shape[1]): |
---|
307 | levval.fill(np.abs(dnw[it,iz])) |
---|
308 | WRFdens[it,iz,:,:] = levval |
---|
309 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
310 | |
---|
311 | # Attributes of the variable |
---|
312 | Vvals = gen.variables_values('WRFdens') |
---|
313 | dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
314 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
315 | |
---|
316 | if WRFpos_compute: |
---|
317 | # WRF positions from the lowest-leftest corner of the matrix |
---|
318 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
319 | 'DX*x**2)*MAPFAC_M ...' |
---|
320 | |
---|
321 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
322 | |
---|
323 | distx = np.float(ncobj.getncattr('DX')) |
---|
324 | disty = np.float(ncobj.getncattr('DY')) |
---|
325 | |
---|
326 | print 'distx:',distx,'disty:',disty |
---|
327 | |
---|
328 | dx = mapfac.shape[2] |
---|
329 | dy = mapfac.shape[1] |
---|
330 | dt = mapfac.shape[0] |
---|
331 | |
---|
332 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
333 | |
---|
334 | for i in range(1,dx): |
---|
335 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
336 | for j in range(1,dy): |
---|
337 | i=0 |
---|
338 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
339 | for i in range(1,dx): |
---|
340 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
341 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
342 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
343 | |
---|
344 | for it in range(1,dt): |
---|
345 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
346 | |
---|
347 | if WRFtime_compute: |
---|
348 | print ' ' + main + ': computing time from WRF as CFtime(Times) ...' |
---|
349 | |
---|
350 | refdate='19491201000000' |
---|
351 | tunitsval='minutes' |
---|
352 | |
---|
353 | timeobj = ncobj.variables['Times'] |
---|
354 | timewrfv = timeobj[:] |
---|
355 | |
---|
356 | yrref=refdate[0:4] |
---|
357 | monref=refdate[4:6] |
---|
358 | dayref=refdate[6:8] |
---|
359 | horref=refdate[8:10] |
---|
360 | minref=refdate[10:12] |
---|
361 | secref=refdate[12:14] |
---|
362 | |
---|
363 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
364 | ':' + secref |
---|
365 | |
---|
366 | |
---|
367 | if len(timeobj.shape) == 2: |
---|
368 | dt = timeobj.shape[0] |
---|
369 | else: |
---|
370 | dt = 1 |
---|
371 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
372 | |
---|
373 | if len(timeobj.shape) == 2: |
---|
374 | for it in range(dt): |
---|
375 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', \ |
---|
376 | 'matYmdHMS') |
---|
377 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
378 | else: |
---|
379 | wrfdates = gen.datetimeStr_conversion(timewrfv[:],'WRFdatetime', \ |
---|
380 | 'matYmdHMS') |
---|
381 | WRFtime[0] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
382 | |
---|
383 | tunits = tunitsval + ' since ' + refdateS |
---|
384 | |
---|
385 | # Attributes of the variable |
---|
386 | dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ |
---|
387 | 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} |
---|
388 | |
---|
389 | if WRFz_compute: |
---|
390 | print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ |
---|
391 | 'unstagger(PH + PHB)/9.8-hgt' |
---|
392 | dimv = ncobj.variables['PH'].shape |
---|
393 | WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 |
---|
394 | |
---|
395 | unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) |
---|
396 | unzg = np.zeros(unzgd, dtype=np.float) |
---|
397 | unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) |
---|
398 | |
---|
399 | WRFz = np.zeros(unzgd, dtype=np.float) |
---|
400 | for iz in range(dimv[1]-1): |
---|
401 | WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] |
---|
402 | |
---|
403 | # Attributes of the variable |
---|
404 | Vvals = gen.variables_values('WRFz') |
---|
405 | dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
406 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
407 | |
---|
408 | if WRFdxdy_compute: |
---|
409 | print ' ' + main + ': Retrieving dxdy: real distance between grid points ' + \ |
---|
410 | 'from WRF as dx=(XLONG(i+1)-XLONG(i))*DX/MAPFAC_M, dy=(XLAT(j+1)-XLAT(i))*DY/'+\ |
---|
411 | 'MAPFAC_M, ds=sqrt(dx**2+dy**2)' |
---|
412 | dimv = ncobj.variables['XLONG'].shape |
---|
413 | WRFlon = ncobj.variables['XLONG'][0,:,:] |
---|
414 | WRFlat = ncobj.variables['XLAT'][0,:,:] |
---|
415 | WRFmapfac_m = ncobj.variables['MAPFAC_M'][0,:,:] |
---|
416 | DX = ncobj.DX |
---|
417 | DY = ncobj.DY |
---|
418 | |
---|
419 | dimx = dimv[2] |
---|
420 | dimy = dimv[1] |
---|
421 | |
---|
422 | WRFdx = np.zeros((dimy,dimx), dtype=np.float) |
---|
423 | WRFdy = np.zeros((dimy,dimx), dtype=np.float) |
---|
424 | |
---|
425 | WRFdx[:,0:dimx-1]=(WRFlon[:,1:dimx]-WRFlon[:,0:dimx-1])*DX/WRFmapfac_m[:,0:dimx-1] |
---|
426 | WRFdy[0:dimy-1,:]=(WRFlat[1:dimy,:]-WRFlat[0:dimy-1,:])*DY/WRFmapfac_m[0:dimy-1,:] |
---|
427 | WRFds = np.sqrt(WRFdx**2 + WRFdy**2) |
---|
428 | |
---|
429 | # Attributes of the variable |
---|
430 | Vvals = gen.variables_values('WRFdx') |
---|
431 | dictcompvars['WRFdx'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
432 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
433 | Vvals = gen.variables_values('WRFdy') |
---|
434 | dictcompvars['WRFdy'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
435 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
436 | Vvals = gen.variables_values('WRFds') |
---|
437 | dictcompvars['WRFds'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
438 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
439 | |
---|
440 | if LONLATdxdy_compute: |
---|
441 | print ' ' + main + ': Retrieving dxdy: real distance between grid points ' + \ |
---|
442 | 'from a regular lonlat projection as dx=(lon[i+1]-lon[i])*raddeg*Rearth*' + \ |
---|
443 | 'cos(abs(lat[i])); dy=(lat[j+1]-lat[i])*raddeg*Rearth; ds=sqrt(dx**2+dy**2); '+\ |
---|
444 | 'raddeg = pi/180; Rearth=6370.0e03' |
---|
445 | dimv = ncobj.variables['lon'].shape |
---|
446 | lon = ncobj.variables['lon'][:] |
---|
447 | lat = ncobj.variables['lat'][:] |
---|
448 | |
---|
449 | WRFlon, WRFlat = gen.lonlat2D(lon,lat) |
---|
450 | |
---|
451 | dimx = WRFlon.shape[1] |
---|
452 | dimy = WRFlon.shape[0] |
---|
453 | |
---|
454 | WRFdx = np.zeros((dimy,dimx), dtype=np.float) |
---|
455 | WRFdy = np.zeros((dimy,dimx), dtype=np.float) |
---|
456 | |
---|
457 | raddeg = np.pi/180. |
---|
458 | |
---|
459 | Rearth = fdef.module_definitions.earthradii |
---|
460 | |
---|
461 | WRFdx[:,0:dimx-1]=(WRFlon[:,1:dimx]-WRFlon[:,0:dimx-1])*raddeg*Rearth* \ |
---|
462 | np.cos(np.abs(WRFlat[:,0:dimx-1]*raddeg)) |
---|
463 | WRFdy[0:dimy-1,:]=(WRFlat[1:dimy,:]-WRFlat[0:dimy-1,:])*raddeg*Rearth |
---|
464 | WRFds = np.sqrt(WRFdx**2 + WRFdy**2) |
---|
465 | |
---|
466 | # Attributes of the variable |
---|
467 | Vvals = gen.variables_values('WRFdx') |
---|
468 | dictcompvars['WRFdx'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
469 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
470 | Vvals = gen.variables_values('WRFdy') |
---|
471 | dictcompvars['WRFdy'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
472 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
473 | Vvals = gen.variables_values('WRFds') |
---|
474 | dictcompvars['WRFds'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
475 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
476 | |
---|
477 | ### ## # |
---|
478 | # Going for the diagnostics |
---|
479 | ### ## # |
---|
480 | print ' ' + main + ' ...' |
---|
481 | varsadd = [] |
---|
482 | |
---|
483 | for idiag in range(Ndiags): |
---|
484 | print ' diagnostic:',diags[idiag] |
---|
485 | diagn = diags[idiag].split('|')[0] |
---|
486 | depvars = diags[idiag].split('|')[1].split('@') |
---|
487 | if not gen.searchInlist(NONcheckdepvars, diagn): |
---|
488 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
489 | depvars = diags[idiag].split('|')[1].split('@') |
---|
490 | if depvars[0] == 'deaccum': diagn='deaccum' |
---|
491 | if depvars[0] == 'accum': diagn='accum' |
---|
492 | for depv in depvars: |
---|
493 | # Checking without extra arguments of a depending variable (':', separated) |
---|
494 | if depv.find(':') != -1: depv=depv.split(':')[0] |
---|
495 | if not ncobj.variables.has_key(depv) and not \ |
---|
496 | gen.searchInlist(NONcheckingvars, depv) and \ |
---|
497 | not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum'\ |
---|
498 | and not depvars[0] == 'accum' and not depv[0:2] == 'z=': |
---|
499 | print errormsg |
---|
500 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
501 | "' does not have variable '" + depv + "' !!" |
---|
502 | quit(-1) |
---|
503 | else: |
---|
504 | depvars = diags[idiag].split('|')[1] |
---|
505 | if not ncobj.variables.has_key(depvars) and not \ |
---|
506 | gen.searchInlist(NONcheckingvars, depvars) and \ |
---|
507 | not gen.searchInlist(methods, depvars): |
---|
508 | print errormsg |
---|
509 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
510 | "' does not have variable '" + depvars + "' !!" |
---|
511 | quit(-1) |
---|
512 | |
---|
513 | print "\n Computing '" + diagn + "' from: ", depvars, '...' |
---|
514 | |
---|
515 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC, RAINSH |
---|
516 | if diagn == 'ACRAINTOT': |
---|
517 | |
---|
518 | var0 = ncobj.variables[depvars[0]] |
---|
519 | var1 = ncobj.variables[depvars[1]] |
---|
520 | var2 = ncobj.variables[depvars[2]] |
---|
521 | |
---|
522 | diagout = var0[:] + var1[:] + var2[:] |
---|
523 | |
---|
524 | dnamesvar = var0.dimensions |
---|
525 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
526 | |
---|
527 | # Removing the nonChecking variable-dimensions from the initial list |
---|
528 | varsadd = [] |
---|
529 | for nonvd in NONchkvardims: |
---|
530 | if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) |
---|
531 | varsadd.append(nonvd) |
---|
532 | |
---|
533 | ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) |
---|
534 | |
---|
535 | # accum: acumulation of any variable as (Variable, time [as [tunits] |
---|
536 | # from/since ....], newvarname) |
---|
537 | elif diagn == 'accum': |
---|
538 | |
---|
539 | var0 = ncobj.variables[depvars[0]] |
---|
540 | var1 = ncobj.variables[depvars[1]] |
---|
541 | |
---|
542 | dnamesvar = var0.dimensions |
---|
543 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
544 | |
---|
545 | diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) |
---|
546 | # Removing the nonChecking variable-dimensions from the initial list |
---|
547 | varsadd = [] |
---|
548 | diagoutvd = list(dvnames) |
---|
549 | for nonvd in NONchkvardims: |
---|
550 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
551 | varsadd.append(nonvd) |
---|
552 | |
---|
553 | CFvarn = ncvar.variables_values(depvars[0])[0] |
---|
554 | |
---|
555 | # Removing the flux |
---|
556 | if depvars[1] == 'XTIME': |
---|
557 | dtimeunits = var1.getncattr('description') |
---|
558 | tunits = dtimeunits.split(' ')[0] |
---|
559 | else: |
---|
560 | dtimeunits = var1.getncattr('units') |
---|
561 | tunits = dtimeunits.split(' ')[0] |
---|
562 | |
---|
563 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
564 | |
---|
565 | ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) |
---|
566 | |
---|
567 | # cllmh with cldfra, pres |
---|
568 | elif diagn == 'cllmh': |
---|
569 | |
---|
570 | var0 = ncobj.variables[depvars[0]] |
---|
571 | if depvars[1] == 'WRFp': |
---|
572 | var1 = WRFp |
---|
573 | else: |
---|
574 | var01 = ncobj.variables[depvars[1]] |
---|
575 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
576 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
577 | else: |
---|
578 | var1 = var01 |
---|
579 | |
---|
580 | diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) |
---|
581 | |
---|
582 | # Removing the nonChecking variable-dimensions from the initial list |
---|
583 | varsadd = [] |
---|
584 | for nonvd in NONchkvardims: |
---|
585 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
586 | varsadd.append(nonvd) |
---|
587 | |
---|
588 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
589 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
590 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
591 | |
---|
592 | # clt with cldfra |
---|
593 | elif diagn == 'clt': |
---|
594 | |
---|
595 | var0 = ncobj.variables[depvars] |
---|
596 | diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) |
---|
597 | |
---|
598 | # Removing the nonChecking variable-dimensions from the initial list |
---|
599 | varsadd = [] |
---|
600 | for nonvd in NONchkvardims: |
---|
601 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
602 | varsadd.append(nonvd) |
---|
603 | |
---|
604 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
605 | |
---|
606 | # convini (pr, time) |
---|
607 | elif diagn == 'convini': |
---|
608 | |
---|
609 | var0 = ncobj.variables[depvars[0]][:] |
---|
610 | var1 = ncobj.variables[depvars[1]][:] |
---|
611 | otime = ncobj.variables[depvars[1]] |
---|
612 | |
---|
613 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
614 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
615 | |
---|
616 | diagout, diagoutd, diagoutvd = diag.var_convini(var0, var1, dnames, dvnames) |
---|
617 | |
---|
618 | ncvar.insert_variable(ncobj, 'convini', diagout, diagoutd, diagoutvd, newnc, \ |
---|
619 | fill=gen.fillValueF) |
---|
620 | # Getting the right units |
---|
621 | ovar = newnc.variables['convini'] |
---|
622 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
623 | tunits = otime.getncattr('units') |
---|
624 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
625 | newnc.sync() |
---|
626 | |
---|
627 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
628 | # from/since ....], newvarname) |
---|
629 | elif diagn == 'deaccum': |
---|
630 | |
---|
631 | var0 = ncobj.variables[depvars[0]] |
---|
632 | var1 = ncobj.variables[depvars[1]] |
---|
633 | |
---|
634 | dnamesvar = var0.dimensions |
---|
635 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
636 | |
---|
637 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
638 | # Removing the nonChecking variable-dimensions from the initial list |
---|
639 | varsadd = [] |
---|
640 | diagoutvd = list(dvnames) |
---|
641 | for nonvd in NONchkvardims: |
---|
642 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
643 | varsadd.append(nonvd) |
---|
644 | |
---|
645 | # Transforming to a flux |
---|
646 | if depvars[1] == 'XTIME': |
---|
647 | dtimeunits = var1.getncattr('description') |
---|
648 | tunits = dtimeunits.split(' ')[0] |
---|
649 | else: |
---|
650 | dtimeunits = var1.getncattr('units') |
---|
651 | tunits = dtimeunits.split(' ')[0] |
---|
652 | |
---|
653 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
654 | ncvar.insert_variable(ncobj, depvars[2], diagout/dtime, diagoutd, diagoutvd, \ |
---|
655 | newnc) |
---|
656 | |
---|
657 | # fog_K84: Computation of fog and visibility following Kunkel, (1984) as QCLOUD, QICE |
---|
658 | elif diagn == 'fog_K84': |
---|
659 | |
---|
660 | var0 = ncobj.variables[depvars[0]] |
---|
661 | var1 = ncobj.variables[depvars[1]] |
---|
662 | |
---|
663 | dnamesvar = list(var0.dimensions) |
---|
664 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
665 | |
---|
666 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_K84(var0, var1, \ |
---|
667 | dnamesvar, dvnamesvar) |
---|
668 | # Removing the nonChecking variable-dimensions from the initial list |
---|
669 | varsadd = [] |
---|
670 | diagoutvd = list(dvnames) |
---|
671 | for nonvd in NONchkvardims: |
---|
672 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
673 | varsadd.append(nonvd) |
---|
674 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
675 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
676 | |
---|
677 | # fog_RUC: Computation of fog and visibility following Kunkel, (1984) as QVAPOR, |
---|
678 | # WRFt, WRFp or Q2, T2, PSFC |
---|
679 | elif diagn == 'fog_RUC': |
---|
680 | |
---|
681 | var0 = ncobj.variables[depvars[0]] |
---|
682 | print gen.infmsg |
---|
683 | if depvars[1] == 'WRFt': |
---|
684 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
685 | var1 = WRFt |
---|
686 | var2 = WRFp |
---|
687 | else: |
---|
688 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
689 | var1 = ncobj.variables[depvars[1]] |
---|
690 | var2 = ncobj.variables[depvars[2]] |
---|
691 | |
---|
692 | dnamesvar = list(var0.dimensions) |
---|
693 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
694 | |
---|
695 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_RUC(var0, var1, var2,\ |
---|
696 | dnamesvar, dvnamesvar) |
---|
697 | # Removing the nonChecking variable-dimensions from the initial list |
---|
698 | varsadd = [] |
---|
699 | diagoutvd = list(dvnames) |
---|
700 | for nonvd in NONchkvardims: |
---|
701 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
702 | varsadd.append(nonvd) |
---|
703 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
704 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
705 | |
---|
706 | # fog_FRAML50: Computation of fog and visibility following Gultepe, I. and |
---|
707 | # J.A. Milbrandt, 2010 as QVAPOR, WRFt, WRFp or Q2, T2, PSFC |
---|
708 | elif diagn == 'fog_FRAML50': |
---|
709 | |
---|
710 | var0 = ncobj.variables[depvars[0]] |
---|
711 | print gen.infmsg |
---|
712 | if depvars[1] == 'WRFt': |
---|
713 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
714 | var1 = WRFt |
---|
715 | var2 = WRFp |
---|
716 | else: |
---|
717 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
718 | var1 = ncobj.variables[depvars[1]] |
---|
719 | var2 = ncobj.variables[depvars[2]] |
---|
720 | |
---|
721 | dnamesvar = list(var0.dimensions) |
---|
722 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
723 | |
---|
724 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_FRAML50(var0, var1, \ |
---|
725 | var2, dnamesvar, dvnamesvar) |
---|
726 | # Removing the nonChecking variable-dimensions from the initial list |
---|
727 | varsadd = [] |
---|
728 | diagoutvd = list(dvnames) |
---|
729 | for nonvd in NONchkvardims: |
---|
730 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
731 | varsadd.append(nonvd) |
---|
732 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
733 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
734 | |
---|
735 | # LMDZrh (pres, t, r) |
---|
736 | elif diagn == 'LMDZrh': |
---|
737 | |
---|
738 | var0 = ncobj.variables[depvars[0]][:] |
---|
739 | var1 = ncobj.variables[depvars[1]][:] |
---|
740 | var2 = ncobj.variables[depvars[2]][:] |
---|
741 | |
---|
742 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) |
---|
743 | ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) |
---|
744 | |
---|
745 | # LMDZrhs (psol, t2m, q2m) |
---|
746 | elif diagn == 'LMDZrhs': |
---|
747 | |
---|
748 | var0 = ncobj.variables[depvars[0]][:] |
---|
749 | var1 = ncobj.variables[depvars[1]][:] |
---|
750 | var2 = ncobj.variables[depvars[2]][:] |
---|
751 | |
---|
752 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
753 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
754 | |
---|
755 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
756 | |
---|
757 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
758 | |
---|
759 | # range_faces: LON, LAT, HGT, WRFdxdy, 'face:['WE'/'SN']:[dsfilt]:[dsnewrange]:[hvalleyrange]' |
---|
760 | elif diagn == 'range_faces': |
---|
761 | |
---|
762 | var0 = ncobj.variables[depvars[0]][:] |
---|
763 | var1 = ncobj.variables[depvars[1]][:] |
---|
764 | var2 = ncobj.variables[depvars[2]][:] |
---|
765 | face = depvars[4].split(':')[1] |
---|
766 | dsfilt = np.float(depvars[4].split(':')[2]) |
---|
767 | dsnewrange = np.float(depvars[4].split(':')[3]) |
---|
768 | hvalleyrange = np.float(depvars[4].split(':')[4]) |
---|
769 | |
---|
770 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
771 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
772 | lon, lat = gen.lonlat2D(var0, var1) |
---|
773 | if len(var2.shape) == 3: |
---|
774 | print warnmsg |
---|
775 | print ' ' + diagn + ": shapping to 2D variable '" + depvars[2] + "' !!" |
---|
776 | hgt = var2[0,:,:] |
---|
777 | dnamesvar.pop(0) |
---|
778 | dvnamesvar.pop(0) |
---|
779 | else: |
---|
780 | hgt = var2[:] |
---|
781 | |
---|
782 | orogmax, ptorogmax, dhgt, peaks, valleys, origfaces, diagout, diagoutd, \ |
---|
783 | diagoutvd, rng, rngorogmax, ptrngorogmax= diag.Forcompute_range_faces(lon, \ |
---|
784 | lat, hgt, WRFds, face, dsfilt, dsnewrange, hvalleyrange, dnamesvar, \ |
---|
785 | dvnamesvar) |
---|
786 | |
---|
787 | # Removing the nonChecking variable-dimensions from the initial list |
---|
788 | varsadd = [] |
---|
789 | diagoutvd = list(dvnames) |
---|
790 | for nonvd in NONchkvardims: |
---|
791 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
792 | varsadd.append(nonvd) |
---|
793 | |
---|
794 | ncvar.insert_variable(ncobj, 'dx', WRFdx, diagoutd, diagoutvd, newnc) |
---|
795 | ncvar.insert_variable(ncobj, 'dy', WRFdy, diagoutd, diagoutvd, newnc) |
---|
796 | ncvar.insert_variable(ncobj, 'ds', WRFds, diagoutd, diagoutvd, newnc) |
---|
797 | |
---|
798 | # adding variables to output file |
---|
799 | if face == 'WE': axis = 'lon' |
---|
800 | elif face == 'SN': axis = 'lat' |
---|
801 | |
---|
802 | ncvar.insert_variable(ncobj, 'range', rng, diagoutd, diagoutvd, newnc, \ |
---|
803 | fill=gen.fillValueI) |
---|
804 | ovar = newnc.variables['range'] |
---|
805 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
806 | |
---|
807 | ncvar.insert_variable(ncobj, 'orogmax', rngorogmax, diagoutd, diagoutvd, \ |
---|
808 | newnc, fill=gen.fillValueF) |
---|
809 | newnc.renameVariable('orogmax', 'rangeorogmax') |
---|
810 | ovar = newnc.variables['rangeorogmax'] |
---|
811 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
812 | stdn = ovar.standard_name |
---|
813 | ncvar.set_attribute(ovar, 'standard_name', 'range_' + stdn) |
---|
814 | Ln = ovar.long_name |
---|
815 | ncvar.set_attribute(ovar, 'long_name', 'range ' + stdn) |
---|
816 | |
---|
817 | ncvar.insert_variable(ncobj, 'ptorogmax', ptrngorogmax, diagoutd, diagoutvd, \ |
---|
818 | newnc) |
---|
819 | newnc.renameVariable('ptorogmax', 'rangeptorogmax') |
---|
820 | ovar = newnc.variables['rangeptorogmax'] |
---|
821 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
822 | stdn = ovar.standard_name |
---|
823 | ncvar.set_attribute(ovar, 'standard_name', 'range_' + stdn) |
---|
824 | Ln = ovar.long_name |
---|
825 | ncvar.set_attribute(ovar, 'long_name', 'range ' + stdn) |
---|
826 | |
---|
827 | ncvar.insert_variable(ncobj, 'orogmax', orogmax, diagoutd, diagoutvd, \ |
---|
828 | newnc) |
---|
829 | ovar = newnc.variables['orogmax'] |
---|
830 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
831 | |
---|
832 | ncvar.insert_variable(ncobj, 'ptorogmax', ptorogmax, diagoutd, diagoutvd, \ |
---|
833 | newnc) |
---|
834 | ovar = newnc.variables['ptorogmax'] |
---|
835 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
836 | |
---|
837 | ncvar.insert_variable(ncobj, 'orogderiv', dhgt, diagoutd, diagoutvd, newnc) |
---|
838 | ovar = newnc.variables['orogderiv'] |
---|
839 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
840 | |
---|
841 | ncvar.insert_variable(ncobj, 'peak', peaks, diagoutd, diagoutvd, newnc) |
---|
842 | ncvar.insert_variable(ncobj, 'valley', valleys, diagoutd, diagoutvd, newnc) |
---|
843 | |
---|
844 | ncvar.insert_variable(ncobj, 'rangefaces', diagout, diagoutd, diagoutvd, \ |
---|
845 | newnc) |
---|
846 | newnc.renameVariable('rangefaces', 'rangefacesfilt') |
---|
847 | ovar = newnc.variables['rangefacesfilt'] |
---|
848 | ncvar.set_attribute(ovar, 'face', face) |
---|
849 | ncvar.set_attributek(ovar, 'dist_filter', dsfilt, 'F') |
---|
850 | |
---|
851 | ncvar.insert_variable(ncobj, 'rangefaces', origfaces, diagoutd, diagoutvd, \ |
---|
852 | newnc, fill=gen.fillValueI) |
---|
853 | ovar = newnc.variables['rangefaces'] |
---|
854 | ncvar.set_attribute(ovar, 'face', face) |
---|
855 | ncvar.set_attributek(ovar, 'dist_newrange', dsnewrange, 'F') |
---|
856 | ncvar.set_attributek(ovar, 'h_valley_newrange', hvalleyrange, 'F') |
---|
857 | |
---|
858 | # mrso: total soil moisture SMOIS, DZS |
---|
859 | elif diagn == 'WRFmrso': |
---|
860 | |
---|
861 | var0 = ncobj.variables[depvars[0]][:] |
---|
862 | var10 = ncobj.variables[depvars[1]][:] |
---|
863 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
864 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
865 | |
---|
866 | var1 = var0.copy()*0. |
---|
867 | var2 = var0.copy()*0.+1. |
---|
868 | # Must be a better way.... |
---|
869 | for j in range(var0.shape[2]): |
---|
870 | for i in range(var0.shape[3]): |
---|
871 | var1[:,:,j,i] = var10 |
---|
872 | |
---|
873 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
874 | dnamesvar, dvnamesvar) |
---|
875 | |
---|
876 | # Removing the nonChecking variable-dimensions from the initial list |
---|
877 | varsadd = [] |
---|
878 | diagoutvd = list(dvnames) |
---|
879 | for nonvd in NONchkvardims: |
---|
880 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
881 | varsadd.append(nonvd) |
---|
882 | ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) |
---|
883 | |
---|
884 | # mrsos: First layer soil moisture SMOIS, DZS |
---|
885 | elif diagn == 'WRFmrsos': |
---|
886 | |
---|
887 | var0 = ncobj.variables[depvars[0]][:] |
---|
888 | var1 = ncobj.variables[depvars[1]][:] |
---|
889 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
890 | diagoutvd = ncvar.var_dim_dimv(diagoutd,dnames,dvnames) |
---|
891 | |
---|
892 | diagoutd.pop(1) |
---|
893 | diagoutvd.pop(1) |
---|
894 | |
---|
895 | diagout= np.zeros((var0.shape[0],var0.shape[2],var0.shape[3]), dtype=np.float) |
---|
896 | |
---|
897 | # Must be a better way.... |
---|
898 | for j in range(var0.shape[2]): |
---|
899 | for i in range(var0.shape[3]): |
---|
900 | diagout[:,j,i] = var0[:,0,j,i]*var1[:,0] |
---|
901 | |
---|
902 | # Removing the nonChecking variable-dimensions from the initial list |
---|
903 | varsadd = [] |
---|
904 | diagoutvd = list(dvnames) |
---|
905 | for nonvd in NONchkvardims: |
---|
906 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
907 | varsadd.append(nonvd) |
---|
908 | ncvar.insert_variable(ncobj, 'mrsos', diagout, diagoutd, diagoutvd, newnc) |
---|
909 | |
---|
910 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
911 | elif diagn == 'mslp' or diagn == 'WRFmslp': |
---|
912 | |
---|
913 | var1 = ncobj.variables[depvars[1]][:] |
---|
914 | var2 = ncobj.variables[depvars[2]][:] |
---|
915 | var4 = ncobj.variables[depvars[4]][:] |
---|
916 | |
---|
917 | if diagn == 'WRFmslp': |
---|
918 | var0 = WRFp |
---|
919 | var3 = WRFt |
---|
920 | dnamesvar = ncobj.variables['P'].dimensions |
---|
921 | else: |
---|
922 | var0 = ncobj.variables[depvars[0]][:] |
---|
923 | var3 = ncobj.variables[depvars[3]][:] |
---|
924 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
925 | |
---|
926 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
927 | |
---|
928 | diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ |
---|
929 | dnamesvar, dvnamesvar) |
---|
930 | |
---|
931 | # Removing the nonChecking variable-dimensions from the initial list |
---|
932 | varsadd = [] |
---|
933 | diagoutvd = list(dvnames) |
---|
934 | for nonvd in NONchkvardims: |
---|
935 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
936 | varsadd.append(nonvd) |
---|
937 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
938 | |
---|
939 | # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) |
---|
940 | elif diagn == 'OMEGAw': |
---|
941 | |
---|
942 | var0 = ncobj.variables[depvars[0]][:] |
---|
943 | var1 = ncobj.variables[depvars[1]][:] |
---|
944 | var2 = ncobj.variables[depvars[2]][:] |
---|
945 | |
---|
946 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
947 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
948 | |
---|
949 | diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
950 | |
---|
951 | ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) |
---|
952 | |
---|
953 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC + RAINSH) / dTime |
---|
954 | elif diagn == 'RAINTOT': |
---|
955 | |
---|
956 | var0 = ncobj.variables[depvars[0]] |
---|
957 | var1 = ncobj.variables[depvars[1]] |
---|
958 | var2 = ncobj.variables[depvars[2]] |
---|
959 | |
---|
960 | if depvars[3] != 'WRFtime': |
---|
961 | var3 = ncobj.variables[depvars[3]] |
---|
962 | else: |
---|
963 | var3 = np.arange(var0.shape[0], dtype=int) |
---|
964 | |
---|
965 | var = var0[:] + var1[:] + var2[:] |
---|
966 | |
---|
967 | dnamesvar = var0.dimensions |
---|
968 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
969 | |
---|
970 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
971 | |
---|
972 | # Transforming to a flux |
---|
973 | if var3.shape[0] > 1: |
---|
974 | if depvars[3] != 'WRFtime': |
---|
975 | dtimeunits = var3.getncattr('units') |
---|
976 | tunits = dtimeunits.split(' ')[0] |
---|
977 | |
---|
978 | dtime = (var3[1] - var3[0])*diag.timeunits_seconds(tunits) |
---|
979 | else: |
---|
980 | var3 = ncobj.variables['Times'] |
---|
981 | time1 = var3[0,:] |
---|
982 | time2 = var3[1,:] |
---|
983 | tmf1 = '' |
---|
984 | tmf2 = '' |
---|
985 | for ic in range(len(time1)): |
---|
986 | tmf1 = tmf1 + time1[ic] |
---|
987 | tmf2 = tmf2 + time2[ic] |
---|
988 | dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
989 | dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
990 | diffdate12 = dtdate2 - dtdate1 |
---|
991 | dtime = diffdate12.total_seconds() |
---|
992 | print 'dtime:',dtime |
---|
993 | else: |
---|
994 | print warnmsg |
---|
995 | print ' ' + main + ": only 1 time-step for '" + diag + "' !!" |
---|
996 | print ' leaving a zero value!' |
---|
997 | diagout = var0[:]*0. |
---|
998 | dtime=1. |
---|
999 | |
---|
1000 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1001 | varsadd = [] |
---|
1002 | for nonvd in NONchkvardims: |
---|
1003 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
1004 | varsadd.append(nonvd) |
---|
1005 | |
---|
1006 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
1007 | |
---|
1008 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
1009 | elif diagn == 'timemax': |
---|
1010 | |
---|
1011 | var0 = ncobj.variables[depvars[0]][:] |
---|
1012 | var1 = ncobj.variables[depvars[1]][:] |
---|
1013 | |
---|
1014 | otime = ncobj.variables[depvars[1]] |
---|
1015 | |
---|
1016 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1017 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1018 | |
---|
1019 | diagout, diagoutd, diagoutvd = diag.var_timemax(var0, var1, dnames, \ |
---|
1020 | dvnames) |
---|
1021 | |
---|
1022 | ncvar.insert_variable(ncobj, 'timemax', diagout, diagoutd, diagoutvd, newnc, \ |
---|
1023 | fill=gen.fillValueF) |
---|
1024 | # Getting the right units |
---|
1025 | ovar = newnc.variables['timemax'] |
---|
1026 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
1027 | tunits = otime.getncattr('units') |
---|
1028 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
1029 | newnc.sync() |
---|
1030 | ncvar.set_attribute(ovar, 'variable', depvars[0]) |
---|
1031 | |
---|
1032 | # timeoverthres ([varname], time, [value], [CFvarn]). When a given variable [varname] |
---|
1033 | # overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
1034 | # variables_values.dat |
---|
1035 | elif diagn == 'timeoverthres': |
---|
1036 | |
---|
1037 | var0 = ncobj.variables[depvars[0]][:] |
---|
1038 | var1 = ncobj.variables[depvars[1]][:] |
---|
1039 | var2 = np.float(depvars[2]) |
---|
1040 | var3 = depvars[3] |
---|
1041 | |
---|
1042 | otime = ncobj.variables[depvars[1]] |
---|
1043 | |
---|
1044 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1045 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1046 | |
---|
1047 | diagout, diagoutd, diagoutvd = diag.var_timeoverthres(var0, var1, var2, \ |
---|
1048 | dnames, dvnames) |
---|
1049 | |
---|
1050 | ncvar.insert_variable(ncobj, var3, diagout, diagoutd, diagoutvd, newnc, \ |
---|
1051 | fill=gen.fillValueF) |
---|
1052 | # Getting the right units |
---|
1053 | ovar = newnc.variables[var3] |
---|
1054 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
1055 | tunits = otime.getncattr('units') |
---|
1056 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
1057 | newnc.sync() |
---|
1058 | ncvar.set_attribute(ovar, 'overpassed_threshold', var2) |
---|
1059 | |
---|
1060 | # rhs (psfc, t, q) from TimeSeries files |
---|
1061 | elif diagn == 'TSrhs': |
---|
1062 | |
---|
1063 | p0=100000. |
---|
1064 | var0 = ncobj.variables[depvars[0]][:] |
---|
1065 | var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) |
---|
1066 | var2 = ncobj.variables[depvars[2]][:] |
---|
1067 | |
---|
1068 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1069 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1070 | |
---|
1071 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1072 | |
---|
1073 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
1074 | |
---|
1075 | # slw: total soil liquid water SH2O, DZS |
---|
1076 | elif diagn == 'WRFslw': |
---|
1077 | |
---|
1078 | var0 = ncobj.variables[depvars[0]][:] |
---|
1079 | var10 = ncobj.variables[depvars[1]][:] |
---|
1080 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1081 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1082 | |
---|
1083 | var1 = var0.copy()*0. |
---|
1084 | var2 = var0.copy()*0.+1. |
---|
1085 | # Must be a better way.... |
---|
1086 | for j in range(var0.shape[2]): |
---|
1087 | for i in range(var0.shape[3]): |
---|
1088 | var1[:,:,j,i] = var10 |
---|
1089 | |
---|
1090 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
1091 | dnamesvar, dvnamesvar) |
---|
1092 | |
---|
1093 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1094 | varsadd = [] |
---|
1095 | diagoutvd = list(dvnames) |
---|
1096 | for nonvd in NONchkvardims: |
---|
1097 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1098 | varsadd.append(nonvd) |
---|
1099 | ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) |
---|
1100 | |
---|
1101 | # td (psfc, t, q) from TimeSeries files |
---|
1102 | elif diagn == 'TStd' or diagn == 'td': |
---|
1103 | |
---|
1104 | var0 = ncobj.variables[depvars[0]][:] |
---|
1105 | var1 = ncobj.variables[depvars[1]][:] - 273.15 |
---|
1106 | var2 = ncobj.variables[depvars[2]][:] |
---|
1107 | |
---|
1108 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1109 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1110 | |
---|
1111 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1112 | |
---|
1113 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
1114 | |
---|
1115 | # td (psfc, t, q) from TimeSeries files |
---|
1116 | elif diagn == 'TStdC' or diagn == 'tdC': |
---|
1117 | |
---|
1118 | var0 = ncobj.variables[depvars[0]][:] |
---|
1119 | # Temperature is already in degrees Celsius |
---|
1120 | var1 = ncobj.variables[depvars[1]][:] |
---|
1121 | var2 = ncobj.variables[depvars[2]][:] |
---|
1122 | |
---|
1123 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1124 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1125 | |
---|
1126 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1127 | |
---|
1128 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1129 | varsadd = [] |
---|
1130 | for nonvd in NONchkvardims: |
---|
1131 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1132 | varsadd.append(nonvd) |
---|
1133 | |
---|
1134 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
1135 | |
---|
1136 | # wds (u, v) |
---|
1137 | elif diagn == 'TSwds' or diagn == 'wds' : |
---|
1138 | |
---|
1139 | var0 = ncobj.variables[depvars[0]][:] |
---|
1140 | var1 = ncobj.variables[depvars[1]][:] |
---|
1141 | |
---|
1142 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1143 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1144 | |
---|
1145 | diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) |
---|
1146 | |
---|
1147 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1148 | varsadd = [] |
---|
1149 | for nonvd in NONchkvardims: |
---|
1150 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1151 | varsadd.append(nonvd) |
---|
1152 | |
---|
1153 | ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) |
---|
1154 | |
---|
1155 | # wss (u, v) |
---|
1156 | elif diagn == 'TSwss' or diagn == 'wss': |
---|
1157 | |
---|
1158 | var0 = ncobj.variables[depvars[0]][:] |
---|
1159 | var1 = ncobj.variables[depvars[1]][:] |
---|
1160 | |
---|
1161 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1162 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1163 | |
---|
1164 | diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) |
---|
1165 | |
---|
1166 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1167 | varsadd = [] |
---|
1168 | for nonvd in NONchkvardims: |
---|
1169 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1170 | varsadd.append(nonvd) |
---|
1171 | |
---|
1172 | ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) |
---|
1173 | |
---|
1174 | # turbulence (var) |
---|
1175 | elif diagn == 'turbulence': |
---|
1176 | |
---|
1177 | var0 = ncobj.variables[depvars][:] |
---|
1178 | |
---|
1179 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
1180 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1181 | |
---|
1182 | diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
1183 | valsvar = gen.variables_values(depvars) |
---|
1184 | |
---|
1185 | newvarn = depvars + 'turb' |
---|
1186 | ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, |
---|
1187 | diagoutvd, newnc) |
---|
1188 | varobj = newnc.variables[newvarn] |
---|
1189 | attrv = varobj.long_name |
---|
1190 | attr = varobj.delncattr('long_name') |
---|
1191 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
1192 | " Taylor decomposition turbulence term") |
---|
1193 | |
---|
1194 | # ua va from ws wd (deg) |
---|
1195 | elif diagn == 'uavaFROMwswd': |
---|
1196 | |
---|
1197 | var0 = ncobj.variables[depvars[0]][:] |
---|
1198 | var1 = ncobj.variables[depvars[1]][:] |
---|
1199 | |
---|
1200 | ua = var0*np.cos(var1*np.pi/180.) |
---|
1201 | va = var0*np.sin(var1*np.pi/180.) |
---|
1202 | |
---|
1203 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1204 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1205 | |
---|
1206 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
1207 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
1208 | |
---|
1209 | # ua va from obs ws wd (deg) |
---|
1210 | elif diagn == 'uavaFROMobswswd': |
---|
1211 | |
---|
1212 | var0 = ncobj.variables[depvars[0]][:] |
---|
1213 | var1 = ncobj.variables[depvars[1]][:] |
---|
1214 | |
---|
1215 | ua = var0*np.cos((var1+180.)*np.pi/180.) |
---|
1216 | va = var0*np.sin((var1+180.)*np.pi/180.) |
---|
1217 | |
---|
1218 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1219 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1220 | |
---|
1221 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
1222 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
1223 | |
---|
1224 | # WRFbils fom WRF as HFX + LH |
---|
1225 | elif diagn == 'WRFbils': |
---|
1226 | |
---|
1227 | var0 = ncobj.variables[depvars[0]][:] |
---|
1228 | var1 = ncobj.variables[depvars[1]][:] |
---|
1229 | |
---|
1230 | diagout = var0 + var1 |
---|
1231 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1232 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1233 | |
---|
1234 | ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1235 | |
---|
1236 | # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' |
---|
1237 | # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT |
---|
1238 | elif diagn == 'WRFcape_afwa': |
---|
1239 | var0 = WRFt |
---|
1240 | var1 = WRFrh |
---|
1241 | var2 = WRFp |
---|
1242 | dz = WRFgeop.shape[1] |
---|
1243 | # de-staggering |
---|
1244 | var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:])/9.8 |
---|
1245 | var4 = ncobj.variables[depvars[4]][0,:,:] |
---|
1246 | |
---|
1247 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
1248 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1249 | |
---|
1250 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1251 | diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ |
---|
1252 | diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ |
---|
1253 | dvnamesvar) |
---|
1254 | |
---|
1255 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1256 | varsadd = [] |
---|
1257 | for nonvd in NONchkvardims: |
---|
1258 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1259 | varsadd.append(nonvd) |
---|
1260 | |
---|
1261 | ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) |
---|
1262 | ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) |
---|
1263 | ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) |
---|
1264 | ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) |
---|
1265 | ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) |
---|
1266 | |
---|
1267 | # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL |
---|
1268 | elif diagn == 'WRFclivi': |
---|
1269 | |
---|
1270 | var0 = WRFdens |
---|
1271 | qtot = ncobj.variables[depvars[1]] |
---|
1272 | qtotv = qtot[:] |
---|
1273 | Nspecies = len(depvars) - 2 |
---|
1274 | for iv in range(Nspecies): |
---|
1275 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1276 | var1 = ncobj.variables[depvars[iv+2]][:] |
---|
1277 | qtotv = qtotv + var1 |
---|
1278 | |
---|
1279 | dnamesvar = list(qtot.dimensions) |
---|
1280 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1281 | |
---|
1282 | diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1283 | |
---|
1284 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1285 | varsadd = [] |
---|
1286 | diagoutvd = list(dvnames) |
---|
1287 | for nonvd in NONchkvardims: |
---|
1288 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1289 | varsadd.append(nonvd) |
---|
1290 | ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) |
---|
1291 | |
---|
1292 | # WRFclwvi WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL |
---|
1293 | elif diagn == 'WRFclwvi': |
---|
1294 | |
---|
1295 | var0 = WRFdens |
---|
1296 | qtot = ncobj.variables[depvars[1]] |
---|
1297 | qtotv = ncobj.variables[depvars[1]] |
---|
1298 | Nspecies = len(depvars) - 2 |
---|
1299 | for iv in range(Nspecies): |
---|
1300 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1301 | var1 = ncobj.variables[depvars[iv+2]] |
---|
1302 | qtotv = qtotv + var1[:] |
---|
1303 | |
---|
1304 | dnamesvar = list(qtot.dimensions) |
---|
1305 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1306 | |
---|
1307 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1308 | |
---|
1309 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1310 | varsadd = [] |
---|
1311 | diagoutvd = list(dvnames) |
---|
1312 | for nonvd in NONchkvardims: |
---|
1313 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1314 | varsadd.append(nonvd) |
---|
1315 | ncvar.insert_variable(ncobj, 'clwvi', diagout, diagoutd, diagoutvd, newnc) |
---|
1316 | |
---|
1317 | # WRF_denszint WRF vertical integration as WRFdens, sum(Q[water species1], ..., Q[water speciesN]), varn=[varN] |
---|
1318 | elif diagn == 'WRF_denszint': |
---|
1319 | |
---|
1320 | var0 = WRFdens |
---|
1321 | varn = depvars[1].split('=')[1] |
---|
1322 | qtot = ncobj.variables[depvars[2]] |
---|
1323 | qtotv = ncobj.variables[depvars[2]] |
---|
1324 | Nspecies = len(depvars) - 2 |
---|
1325 | for iv in range(Nspecies): |
---|
1326 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1327 | var1 = ncobj.variables[depvars[iv+2]] |
---|
1328 | qtotv = qtotv + var1[:] |
---|
1329 | |
---|
1330 | dnamesvar = list(qtot.dimensions) |
---|
1331 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1332 | |
---|
1333 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1334 | |
---|
1335 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1336 | varsadd = [] |
---|
1337 | diagoutvd = list(dvnames) |
---|
1338 | for nonvd in NONchkvardims: |
---|
1339 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1340 | varsadd.append(nonvd) |
---|
1341 | ncvar.insert_variable(ncobj, varn, diagout, diagoutd, diagoutvd, newnc) |
---|
1342 | |
---|
1343 | # WRFgeop geopotential from WRF as PH + PHB |
---|
1344 | elif diagn == 'WRFgeop': |
---|
1345 | var0 = ncobj.variables[depvars[0]][:] |
---|
1346 | var1 = ncobj.variables[depvars[1]][:] |
---|
1347 | |
---|
1348 | # de-staggering geopotential |
---|
1349 | diagout0 = var0 + var1 |
---|
1350 | dt = diagout0.shape[0] |
---|
1351 | dz = diagout0.shape[1] |
---|
1352 | dy = diagout0.shape[2] |
---|
1353 | dx = diagout0.shape[3] |
---|
1354 | |
---|
1355 | diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) |
---|
1356 | diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) |
---|
1357 | |
---|
1358 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1359 | varsadd = [] |
---|
1360 | diagoutvd = list(dvnames) |
---|
1361 | for nonvd in NONchkvardims: |
---|
1362 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1363 | varsadd.append(nonvd) |
---|
1364 | |
---|
1365 | ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) |
---|
1366 | |
---|
1367 | # WRFpotevap_orPM potential evapotranspiration following Penman-Monteith formulation |
---|
1368 | # implemented in ORCHIDEE (in src_sechiba/enerbil.f90) as: WRFdens, UST, U10, V10, T2, PSFC, QVAPOR |
---|
1369 | elif diagn == 'WRFpotevap_orPM': |
---|
1370 | var0 = WRFdens[:,0,:,:] |
---|
1371 | var1 = ncobj.variables[depvars[1]][:] |
---|
1372 | var2 = ncobj.variables[depvars[2]][:] |
---|
1373 | var3 = ncobj.variables[depvars[3]][:] |
---|
1374 | var4 = ncobj.variables[depvars[4]][:] |
---|
1375 | var5 = ncobj.variables[depvars[5]][:] |
---|
1376 | var6 = ncobj.variables[depvars[6]][:,0,:,:] |
---|
1377 | |
---|
1378 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
1379 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1380 | |
---|
1381 | diagout = np.zeros(var1.shape, dtype=np.float) |
---|
1382 | diagout, diagoutd, diagoutvd = diag.Forcompute_potevap_orPM(var0, var1, var2,\ |
---|
1383 | var3, var4, var5, var6, dnamesvar, dvnamesvar) |
---|
1384 | |
---|
1385 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1386 | varsadd = [] |
---|
1387 | for nonvd in NONchkvardims: |
---|
1388 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1389 | varsadd.append(nonvd) |
---|
1390 | |
---|
1391 | ncvar.insert_variable(ncobj, 'evspsblpot', diagout, diagoutd, diagoutvd, newnc) |
---|
1392 | |
---|
1393 | # WRFmslp_ptarget sea-level pressure following ECMWF method as PSFC, HGT, WRFt, WRFp, ZNU, ZNW |
---|
1394 | elif diagn == 'WRFpsl_ecmwf': |
---|
1395 | var0 = ncobj.variables[depvars[0]][:] |
---|
1396 | var1 = ncobj.variables[depvars[1]][0,:,:] |
---|
1397 | var2 = WRFt[:,0,:,:] |
---|
1398 | var4 = WRFp[:,0,:,:] |
---|
1399 | var5 = ncobj.variables[depvars[4]][0,:] |
---|
1400 | var6 = ncobj.variables[depvars[5]][0,:] |
---|
1401 | |
---|
1402 | # This is quite too appriximate!! passing pressure at half-levels to 2nd full |
---|
1403 | # level, using eta values at full (ZNW) and half (ZNU) mass levels |
---|
1404 | var3 = WRFp[:,0,:,:] + (var6[1] - var5[0])*(WRFp[:,1,:,:] - WRFp[:,0,:,:])/ \ |
---|
1405 | (var5[1]-var5[0]) |
---|
1406 | |
---|
1407 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1408 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1409 | |
---|
1410 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1411 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ecmwf(var0, var1, var2, \ |
---|
1412 | var3, var4, dnamesvar, dvnamesvar) |
---|
1413 | |
---|
1414 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1415 | varsadd = [] |
---|
1416 | for nonvd in NONchkvardims: |
---|
1417 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1418 | varsadd.append(nonvd) |
---|
1419 | |
---|
1420 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
1421 | |
---|
1422 | # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR |
---|
1423 | elif diagn == 'WRFpsl_ptarget': |
---|
1424 | var0 = WRFp |
---|
1425 | var1 = ncobj.variables[depvars[1]][:] |
---|
1426 | var2 = WRFt |
---|
1427 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
1428 | var4 = ncobj.variables[depvars[4]][:] |
---|
1429 | |
---|
1430 | dnamesvar = list(ncobj.variables[depvars[4]].dimensions) |
---|
1431 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1432 | |
---|
1433 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1434 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ |
---|
1435 | var3, var4, 700000., dnamesvar, dvnamesvar) |
---|
1436 | |
---|
1437 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1438 | varsadd = [] |
---|
1439 | for nonvd in NONchkvardims: |
---|
1440 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1441 | varsadd.append(nonvd) |
---|
1442 | |
---|
1443 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
1444 | |
---|
1445 | # WRFp pressure from WRF as P + PB |
---|
1446 | elif diagn == 'WRFp': |
---|
1447 | var0 = ncobj.variables[depvars[0]][:] |
---|
1448 | var1 = ncobj.variables[depvars[1]][:] |
---|
1449 | |
---|
1450 | diagout = var0 + var1 |
---|
1451 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
1452 | diagoutvd = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1453 | |
---|
1454 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1455 | varsadd = [] |
---|
1456 | for nonvd in NONchkvardims: |
---|
1457 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1458 | varsadd.append(nonvd) |
---|
1459 | |
---|
1460 | ncvar.insert_variable(ncobj, 'pres', diagout, diagoutd, diagoutvd, newnc) |
---|
1461 | |
---|
1462 | # WRFpos |
---|
1463 | elif diagn == 'WRFpos': |
---|
1464 | |
---|
1465 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
1466 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1467 | |
---|
1468 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
1469 | |
---|
1470 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
1471 | elif diagn == 'WRFprw': |
---|
1472 | |
---|
1473 | var0 = WRFdens |
---|
1474 | var1 = ncobj.variables[depvars[1]] |
---|
1475 | |
---|
1476 | dnamesvar = list(var1.dimensions) |
---|
1477 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1478 | |
---|
1479 | diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
1480 | |
---|
1481 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1482 | varsadd = [] |
---|
1483 | diagoutvd = list(dvnames) |
---|
1484 | for nonvd in NONchkvardims: |
---|
1485 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1486 | varsadd.append(nonvd) |
---|
1487 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
1488 | |
---|
1489 | # WRFrh (P, T, QVAPOR) |
---|
1490 | elif diagn == 'WRFrh': |
---|
1491 | |
---|
1492 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1493 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1494 | |
---|
1495 | ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) |
---|
1496 | |
---|
1497 | # WRFrhs (PSFC, T2, Q2) |
---|
1498 | elif diagn == 'WRFrhs': |
---|
1499 | |
---|
1500 | var0 = ncobj.variables[depvars[0]][:] |
---|
1501 | var1 = ncobj.variables[depvars[1]][:] |
---|
1502 | var2 = ncobj.variables[depvars[2]][:] |
---|
1503 | |
---|
1504 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1505 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1506 | |
---|
1507 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1508 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
1509 | |
---|
1510 | # rvors (u10, v10, WRFpos) |
---|
1511 | elif diagn == 'WRFrvors': |
---|
1512 | |
---|
1513 | var0 = ncobj.variables[depvars[0]] |
---|
1514 | var1 = ncobj.variables[depvars[1]] |
---|
1515 | |
---|
1516 | diagout = rotational_z(var0, var1, distx) |
---|
1517 | |
---|
1518 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1519 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1520 | |
---|
1521 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1522 | |
---|
1523 | # WRFt (T, P, PB) |
---|
1524 | elif diagn == 'WRFt': |
---|
1525 | var0 = ncobj.variables[depvars[0]][:] |
---|
1526 | var1 = ncobj.variables[depvars[1]][:] |
---|
1527 | var2 = ncobj.variables[depvars[2]][:] |
---|
1528 | |
---|
1529 | p0=100000. |
---|
1530 | p=var1 + var2 |
---|
1531 | |
---|
1532 | WRFt = (var0 + 300.)*(p/p0)**(2./7.) |
---|
1533 | |
---|
1534 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1535 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1536 | |
---|
1537 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1538 | varsadd = [] |
---|
1539 | diagoutvd = list(dvnames) |
---|
1540 | for nonvd in NONchkvardims: |
---|
1541 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1542 | varsadd.append(nonvd) |
---|
1543 | |
---|
1544 | ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) |
---|
1545 | |
---|
1546 | # WRFtda (WRFrh, WRFt) |
---|
1547 | elif diagn == 'WRFtda': |
---|
1548 | ARM2 = fdef.module_definitions.arm2 |
---|
1549 | ARM3 = fdef.module_definitions.arm3 |
---|
1550 | |
---|
1551 | gammatarh = np.log(WRFrh) + ARM2*(WRFt-273.15)/((WRFt-273.15)+ARM3) |
---|
1552 | td = ARM3*gammatarh/(ARM2-gammatarh) |
---|
1553 | |
---|
1554 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
1555 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1556 | |
---|
1557 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1558 | varsadd = [] |
---|
1559 | diagoutvd = list(dvnames) |
---|
1560 | for nonvd in NONchkvardims: |
---|
1561 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1562 | varsadd.append(nonvd) |
---|
1563 | |
---|
1564 | ncvar.insert_variable(ncobj, 'tda', td, dnames, diagoutvd, newnc) |
---|
1565 | |
---|
1566 | # WRFtdas (PSFC, T2, Q2) |
---|
1567 | elif diagn == 'WRFtdas': |
---|
1568 | ARM2 = fdef.module_definitions.arm2 |
---|
1569 | ARM3 = fdef.module_definitions.arm3 |
---|
1570 | |
---|
1571 | var0 = ncobj.variables[depvars[0]][:] |
---|
1572 | var1 = ncobj.variables[depvars[1]][:] |
---|
1573 | var2 = ncobj.variables[depvars[2]][:] |
---|
1574 | |
---|
1575 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
1576 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1577 | |
---|
1578 | rhs, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1579 | |
---|
1580 | gammatarhs = np.log(rhs) + ARM2*(var1-273.15)/((var1-273.15)+ARM3) |
---|
1581 | tdas = ARM3*gammatarhs/(ARM2-gammatarhs) + 273.15 |
---|
1582 | |
---|
1583 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1584 | varsadd = [] |
---|
1585 | diagoutvd = list(dvnames) |
---|
1586 | for nonvd in NONchkvardims: |
---|
1587 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1588 | varsadd.append(nonvd) |
---|
1589 | |
---|
1590 | ncvar.insert_variable(ncobj, 'tdas', tdas, dnames, diagoutvd, newnc) |
---|
1591 | |
---|
1592 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1593 | elif diagn == 'WRFua': |
---|
1594 | var0 = ncobj.variables[depvars[0]][:] |
---|
1595 | var1 = ncobj.variables[depvars[1]][:] |
---|
1596 | var2 = ncobj.variables[depvars[2]][:] |
---|
1597 | var3 = ncobj.variables[depvars[3]][:] |
---|
1598 | |
---|
1599 | # un-staggering variables |
---|
1600 | if len(var0.shape) == 4: |
---|
1601 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1602 | elif len(var0.shape) == 3: |
---|
1603 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1604 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1605 | |
---|
1606 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1607 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1608 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1609 | |
---|
1610 | if len(var0.shape) == 4: |
---|
1611 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1612 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1613 | |
---|
1614 | for iz in range(var0.shape[1]): |
---|
1615 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1616 | |
---|
1617 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1618 | |
---|
1619 | elif len(var0.shape) == 3: |
---|
1620 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1621 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1622 | for iz in range(var0.shape[1]): |
---|
1623 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1624 | |
---|
1625 | dnamesvar = ['Time','bottom_top'] |
---|
1626 | |
---|
1627 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1628 | |
---|
1629 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1630 | varsadd = [] |
---|
1631 | diagoutvd = list(dvnames) |
---|
1632 | for nonvd in NONchkvardims: |
---|
1633 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1634 | varsadd.append(nonvd) |
---|
1635 | |
---|
1636 | ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) |
---|
1637 | |
---|
1638 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1639 | elif diagn == 'WRFva': |
---|
1640 | var0 = ncobj.variables[depvars[0]][:] |
---|
1641 | var1 = ncobj.variables[depvars[1]][:] |
---|
1642 | var2 = ncobj.variables[depvars[2]][:] |
---|
1643 | var3 = ncobj.variables[depvars[3]][:] |
---|
1644 | |
---|
1645 | # un-staggering variables |
---|
1646 | if len(var0.shape) == 4: |
---|
1647 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1648 | elif len(var0.shape) == 3: |
---|
1649 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1650 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1651 | |
---|
1652 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1653 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1654 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1655 | |
---|
1656 | if len(var0.shape) == 4: |
---|
1657 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1658 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1659 | |
---|
1660 | for iz in range(var0.shape[1]): |
---|
1661 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1662 | |
---|
1663 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1664 | |
---|
1665 | elif len(var0.shape) == 3: |
---|
1666 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1667 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1668 | for iz in range(var0.shape[1]): |
---|
1669 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1670 | |
---|
1671 | dnamesvar = ['Time','bottom_top'] |
---|
1672 | |
---|
1673 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1674 | |
---|
1675 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1676 | varsadd = [] |
---|
1677 | diagoutvd = list(dvnames) |
---|
1678 | for nonvd in NONchkvardims: |
---|
1679 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1680 | varsadd.append(nonvd) |
---|
1681 | ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) |
---|
1682 | |
---|
1683 | |
---|
1684 | # WRFwd (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1685 | elif diagn == 'WRFwd': |
---|
1686 | var0 = ncobj.variables[depvars[0]][:] |
---|
1687 | var1 = ncobj.variables[depvars[1]][:] |
---|
1688 | var2 = ncobj.variables[depvars[2]][:] |
---|
1689 | var3 = ncobj.variables[depvars[3]][:] |
---|
1690 | |
---|
1691 | # un-staggering variables |
---|
1692 | if len(var0.shape) == 4: |
---|
1693 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1694 | elif len(var0.shape) == 3: |
---|
1695 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1696 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1697 | |
---|
1698 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1699 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1700 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1701 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1702 | |
---|
1703 | if len(var0.shape) == 4: |
---|
1704 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1705 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1706 | |
---|
1707 | for iz in range(var0.shape[1]): |
---|
1708 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1709 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1710 | |
---|
1711 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1712 | |
---|
1713 | elif len(var0.shape) == 3: |
---|
1714 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1715 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1716 | for iz in range(var0.shape[1]): |
---|
1717 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1718 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1719 | |
---|
1720 | dnamesvar = ['Time','bottom_top'] |
---|
1721 | |
---|
1722 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1723 | |
---|
1724 | wd, dnames, dvnames = diag.compute_wd(ua, va, dnamesvar, dvnamesvar) |
---|
1725 | |
---|
1726 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1727 | varsadd = [] |
---|
1728 | diagoutvd = list(dvnames) |
---|
1729 | for nonvd in NONchkvardims: |
---|
1730 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1731 | varsadd.append(nonvd) |
---|
1732 | |
---|
1733 | ncvar.insert_variable(ncobj, 'wd', wd, dnames, diagoutvd, newnc) |
---|
1734 | |
---|
1735 | # WRFtime |
---|
1736 | elif diagn == 'WRFtime': |
---|
1737 | |
---|
1738 | diagout = WRFtime |
---|
1739 | |
---|
1740 | dnamesvar = ['Time'] |
---|
1741 | dvnamesvar = ['Times'] |
---|
1742 | |
---|
1743 | ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1744 | |
---|
1745 | # ws (U, V) |
---|
1746 | elif diagn == 'ws': |
---|
1747 | |
---|
1748 | # un-staggering variables |
---|
1749 | if len(var0.shape) == 4: |
---|
1750 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1751 | elif len(var0.shape) == 3: |
---|
1752 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1753 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1754 | |
---|
1755 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1756 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1757 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1758 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1759 | |
---|
1760 | if len(var0.shape) == 4: |
---|
1761 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1762 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1763 | |
---|
1764 | for iz in range(var0.shape[1]): |
---|
1765 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1766 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1767 | |
---|
1768 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1769 | |
---|
1770 | elif len(var0.shape) == 3: |
---|
1771 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1772 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1773 | for iz in range(var0.shape[1]): |
---|
1774 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1775 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1776 | |
---|
1777 | dnamesvar = ['Time','bottom_top'] |
---|
1778 | |
---|
1779 | diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) |
---|
1780 | |
---|
1781 | # dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1782 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1783 | |
---|
1784 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1785 | varsadd = [] |
---|
1786 | diagoutvd = list(dvnamesvar) |
---|
1787 | for nonvd in NONchkvardims: |
---|
1788 | if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) |
---|
1789 | varsadd.append(nonvd) |
---|
1790 | ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) |
---|
1791 | |
---|
1792 | # wss (u10, v10) |
---|
1793 | elif diagn == 'wss': |
---|
1794 | |
---|
1795 | var0 = ncobj.variables[depvars[0]][:] |
---|
1796 | var1 = ncobj.variables[depvars[1]][:] |
---|
1797 | |
---|
1798 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
1799 | |
---|
1800 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1801 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1802 | |
---|
1803 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1804 | |
---|
1805 | # WRFheight height from WRF geopotential as WRFGeop/g |
---|
1806 | elif diagn == 'WRFheight': |
---|
1807 | |
---|
1808 | diagout = WRFgeop/grav |
---|
1809 | |
---|
1810 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1811 | varsadd = [] |
---|
1812 | diagoutvd = list(dvnames) |
---|
1813 | for nonvd in NONchkvardims: |
---|
1814 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1815 | varsadd.append(nonvd) |
---|
1816 | |
---|
1817 | ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) |
---|
1818 | |
---|
1819 | # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT |
---|
1820 | elif diagn == 'WRFheightrel': |
---|
1821 | var0 = ncobj.variables[depvars[0]][:] |
---|
1822 | var1 = ncobj.variables[depvars[1]][:] |
---|
1823 | var2 = ncobj.variables[depvars[2]][:] |
---|
1824 | |
---|
1825 | dimz = var0.shape[1] |
---|
1826 | diagout = np.zeros(tuple(var0.shape), dtype=np.float) |
---|
1827 | for iz in range(dimz): |
---|
1828 | diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 |
---|
1829 | |
---|
1830 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1831 | varsadd = [] |
---|
1832 | diagoutvd = list(dvnames) |
---|
1833 | for nonvd in NONchkvardims: |
---|
1834 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1835 | varsadd.append(nonvd) |
---|
1836 | |
---|
1837 | ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) |
---|
1838 | |
---|
1839 | # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, |
---|
1840 | elif diagn == 'WRFzmlagen': |
---|
1841 | var0 = ncobj.variables[depvars[0]][:]+300. |
---|
1842 | var1 = ncobj.variables[depvars[1]][:] |
---|
1843 | dimz = var0.shape[1] |
---|
1844 | var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 |
---|
1845 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
1846 | |
---|
1847 | diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ |
---|
1848 | dnames,dvnames) |
---|
1849 | |
---|
1850 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1851 | varsadd = [] |
---|
1852 | for nonvd in NONchkvardims: |
---|
1853 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1854 | varsadd.append(nonvd) |
---|
1855 | |
---|
1856 | ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) |
---|
1857 | |
---|
1858 | # WRFzwind wind extrapolation at a given height using power law computation from WRF |
---|
1859 | # U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1860 | elif diagn == 'WRFzwind': |
---|
1861 | var0 = ncobj.variables[depvars[0]][:] |
---|
1862 | var1 = ncobj.variables[depvars[1]][:] |
---|
1863 | var2 = WRFz |
---|
1864 | var3 = ncobj.variables[depvars[3]][:] |
---|
1865 | var4 = ncobj.variables[depvars[4]][:] |
---|
1866 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1867 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1868 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1869 | |
---|
1870 | # un-staggering 3D winds |
---|
1871 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1872 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1873 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1874 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1875 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1876 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1877 | |
---|
1878 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ |
---|
1879 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1880 | |
---|
1881 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1882 | varsadd = [] |
---|
1883 | for nonvd in NONchkvardims: |
---|
1884 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1885 | varsadd.append(nonvd) |
---|
1886 | |
---|
1887 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1888 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1889 | |
---|
1890 | # WRFzwind wind extrapolation at a given hieght using logarithmic law computation |
---|
1891 | # from WRF U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1892 | elif diagn == 'WRFzwind_log': |
---|
1893 | var0 = ncobj.variables[depvars[0]][:] |
---|
1894 | var1 = ncobj.variables[depvars[1]][:] |
---|
1895 | var2 = WRFz |
---|
1896 | var3 = ncobj.variables[depvars[3]][:] |
---|
1897 | var4 = ncobj.variables[depvars[4]][:] |
---|
1898 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1899 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1900 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1901 | |
---|
1902 | # un-staggering 3D winds |
---|
1903 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1904 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1905 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1906 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1907 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1908 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1909 | |
---|
1910 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind_log(unvar0, \ |
---|
1911 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1912 | |
---|
1913 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1914 | varsadd = [] |
---|
1915 | for nonvd in NONchkvardims: |
---|
1916 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1917 | varsadd.append(nonvd) |
---|
1918 | |
---|
1919 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1920 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1921 | |
---|
1922 | # WRFzwindMO wind extrapolation at a given height computation using Monin-Obukhow |
---|
1923 | # theory from WRF UST, ZNT, RMOL, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1924 | # NOTE: only useful for [zval] < 80. m |
---|
1925 | elif diagn == 'WRFzwindMO': |
---|
1926 | var0 = ncobj.variables[depvars[0]][:] |
---|
1927 | var1 = ncobj.variables[depvars[1]][:] |
---|
1928 | var2 = ncobj.variables[depvars[2]][:] |
---|
1929 | var3 = ncobj.variables[depvars[3]][:] |
---|
1930 | var4 = ncobj.variables[depvars[4]][:] |
---|
1931 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1932 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1933 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1934 | |
---|
1935 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwindMO(var0, var1,\ |
---|
1936 | var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1937 | |
---|
1938 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1939 | varsadd = [] |
---|
1940 | for nonvd in NONchkvardims: |
---|
1941 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1942 | varsadd.append(nonvd) |
---|
1943 | |
---|
1944 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1945 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1946 | |
---|
1947 | else: |
---|
1948 | print errormsg |
---|
1949 | print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" |
---|
1950 | print ' available diagnostics: ', availdiags |
---|
1951 | quit(-1) |
---|
1952 | |
---|
1953 | newnc.sync() |
---|
1954 | # Adding that additional variables required to compute some diagnostics which |
---|
1955 | # where not in the original file |
---|
1956 | print ' adding additional variables...' |
---|
1957 | for vadd in varsadd: |
---|
1958 | if not gen.searchInlist(newnc.variables.keys(),vadd) and \ |
---|
1959 | dictcompvars.has_key(vadd): |
---|
1960 | attrs = dictcompvars[vadd] |
---|
1961 | vvn = attrs['name'] |
---|
1962 | if not gen.searchInlist(newnc.variables.keys(), vvn): |
---|
1963 | iidvn = dvnames.index(vadd) |
---|
1964 | dnn = dnames[iidvn] |
---|
1965 | if vadd == 'WRFtime': |
---|
1966 | dvarvals = WRFtime[:] |
---|
1967 | newvar = newnc.createVariable(vvn, 'f8', (dnn)) |
---|
1968 | newvar[:] = dvarvals |
---|
1969 | for attn in attrs.keys(): |
---|
1970 | if attn != 'name': |
---|
1971 | attv = attrs[attn] |
---|
1972 | ncvar.set_attribute(newvar, attn, attv) |
---|
1973 | |
---|
1974 | # end of diagnostics |
---|
1975 | |
---|
1976 | # Global attributes |
---|
1977 | ## |
---|
1978 | ncvar.add_global_PyNCplot(newnc, main, None, '2.0') |
---|
1979 | |
---|
1980 | gorigattrs = ncobj.ncattrs() |
---|
1981 | for attr in gorigattrs: |
---|
1982 | attrv = ncobj.getncattr(attr) |
---|
1983 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
1984 | |
---|
1985 | ncobj.close() |
---|
1986 | newnc.close() |
---|
1987 | |
---|
1988 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|