1 | # Python script to comput diagnostics |
---|
2 | # From L. Fita work in different places: CCRC (Australia), LMD (France) |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component nc_var.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, C.A. Buenos Aires, Argentina |
---|
10 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
11 | # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 |
---|
12 | # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
13 | # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
14 | |
---|
15 | ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@RAINSH@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
16 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
17 | |
---|
18 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
19 | # compute_accum: Function to compute the accumulation of a variable |
---|
20 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
21 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
22 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
23 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
24 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
25 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
26 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
27 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
28 | # compute_prw: Function to compute water vapour path (prw) |
---|
29 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
30 | # compute_td: Function to compute the dew point temperature |
---|
31 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
32 | # compute_wds: Function to compute the wind direction |
---|
33 | # compute_wss: Function to compute the wind speed |
---|
34 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
35 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
36 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
37 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
38 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
39 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' |
---|
40 | |
---|
41 | # Others just providing variable values |
---|
42 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
43 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
44 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
45 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
46 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
47 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
48 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
49 | # timeoverthres: When a given variable [varname] overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
50 | # variables_values.dat |
---|
51 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
52 | |
---|
53 | from optparse import OptionParser |
---|
54 | import numpy as np |
---|
55 | from netCDF4 import Dataset as NetCDFFile |
---|
56 | import os |
---|
57 | import re |
---|
58 | import nc_var_tools as ncvar |
---|
59 | import generic_tools as gen |
---|
60 | import datetime as dtime |
---|
61 | import module_ForDiag as fdin |
---|
62 | import module_ForDef as fdef |
---|
63 | import diag_tools as diag |
---|
64 | |
---|
65 | main = 'diagnostics.py' |
---|
66 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
67 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
68 | |
---|
69 | # Constants |
---|
70 | grav = 9.81 |
---|
71 | |
---|
72 | |
---|
73 | ####### ###### ##### #### ### ## # |
---|
74 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
75 | |
---|
76 | parser = OptionParser() |
---|
77 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
78 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
79 | help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, |
---|
80 | metavar="LABELS") |
---|
81 | parser.add_option("-v", "--variables", dest="varns", |
---|
82 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
83 | |
---|
84 | (opts, args) = parser.parse_args() |
---|
85 | |
---|
86 | ####### ####### |
---|
87 | ## MAIN |
---|
88 | ####### |
---|
89 | availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'convini', 'deaccum', 'fog_K84', \ |
---|
90 | 'fog_RUC', 'LMDZrh', 'mslp', 'OMEGAw', 'RAINTOT', \ |
---|
91 | 'rvors', 'td', 'timemax', 'timeoverthres', 'turbulence', 'uavaFROMwswd', \ |
---|
92 | 'WRFcape_afwa', 'WRFclivi', 'WRFclwvi', 'WRF_denszint', 'WRFgeop', \ |
---|
93 | 'WRFmrso', 'WRFpotevap_orPM', 'WRFp', 'WRFpsl_ecmwf', \ |
---|
94 | 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ |
---|
95 | 'WRFheightrel', 'WRFtda', 'WRFtdas', 'WRFua', 'WRFva', 'WRFzwind', 'WRFzwind_log', \ |
---|
96 | 'WRFzwindMO'] |
---|
97 | |
---|
98 | methods = ['accum', 'deaccum'] |
---|
99 | |
---|
100 | # Variables not to check |
---|
101 | NONcheckingvars = ['accum', 'cllmh', 'deaccum', 'TSrhs', 'TStd', 'TSwds', 'TSwss', \ |
---|
102 | 'WRFbils', \ |
---|
103 | 'WRFclivi', 'WRFclwvi', 'WRFdens', 'WRFgeop', \ |
---|
104 | 'WRFp', 'WRFtd', \ |
---|
105 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', \ |
---|
106 | 'WRFrhs', 'WRFrvors', \ |
---|
107 | 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz'] |
---|
108 | |
---|
109 | # diagnostics not to check their dependeny |
---|
110 | NONcheckdepvars = ['accum', 'deaccum', 'timeoverthres', 'WRF_denszint', \ |
---|
111 | 'WRFzwind_log', 'WRFzwind', 'WRFzwindMO'] |
---|
112 | |
---|
113 | NONchkvardims = ['WRFtime'] |
---|
114 | |
---|
115 | ofile = 'diagnostics.nc' |
---|
116 | |
---|
117 | dimns = opts.dimns |
---|
118 | varns = opts.varns |
---|
119 | |
---|
120 | # Special method. knowing variable combination |
---|
121 | ## |
---|
122 | if opts.dimns == 'variable_combo': |
---|
123 | print warnmsg |
---|
124 | print ' ' + main + ': knowing variable combination !!!' |
---|
125 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
126 | print ' COMBO: ' + combination |
---|
127 | quit(-1) |
---|
128 | |
---|
129 | if opts.ncfile is None: |
---|
130 | print errormsg |
---|
131 | print ' ' + main + ": No file provided !!" |
---|
132 | print ' is mandatory to provide a file -f [filename]' |
---|
133 | quit(-1) |
---|
134 | |
---|
135 | if opts.dimns is None: |
---|
136 | print errormsg |
---|
137 | print ' ' + main + ": No description of dimensions are provided !!" |
---|
138 | print ' is mandatory to provide description of dimensions as -d [dimn]@[vardimname],... ' |
---|
139 | quit(-1) |
---|
140 | |
---|
141 | if opts.varns is None: |
---|
142 | print errormsg |
---|
143 | print ' ' + main + ": No variable to diagnose is provided !!" |
---|
144 | print ' is mandatory to provide a variable to diagnose as -v [diagn]|[varn1]@... ' |
---|
145 | quit(-1) |
---|
146 | |
---|
147 | if not os.path.isfile(opts.ncfile): |
---|
148 | print errormsg |
---|
149 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
150 | quit(-1) |
---|
151 | |
---|
152 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
153 | |
---|
154 | # Looking for specific variables that might be use in more than one diagnostic |
---|
155 | WRFgeop_compute = False |
---|
156 | WRFp_compute = False |
---|
157 | WRFt_compute = False |
---|
158 | WRFrh_compute = False |
---|
159 | WRFght_compute = False |
---|
160 | WRFdens_compute = False |
---|
161 | WRFpos_compute = False |
---|
162 | WRFtime_compute = False |
---|
163 | WRFz_compute = False |
---|
164 | |
---|
165 | # File creation |
---|
166 | newnc = NetCDFFile(ofile,'w') |
---|
167 | |
---|
168 | # dimensions |
---|
169 | dimvalues = dimns.split(',') |
---|
170 | dnames = [] |
---|
171 | dvnames = [] |
---|
172 | |
---|
173 | for dimval in dimvalues: |
---|
174 | dn = dimval.split('@')[0] |
---|
175 | dnv = dimval.split('@')[1] |
---|
176 | dnames.append(dn) |
---|
177 | dvnames.append(dnv) |
---|
178 | # Is there any dimension-variable which should be computed? |
---|
179 | if dnv == 'WRFgeop':WRFgeop_compute = True |
---|
180 | if dnv == 'WRFp': WRFp_compute = True |
---|
181 | if dnv == 'WRFt': WRFt_compute = True |
---|
182 | if dnv == 'WRFrh': WRFrh_compute = True |
---|
183 | if dnv == 'WRFght': WRFght_compute = True |
---|
184 | if dnv == 'WRFdens': WRFdens_compute = True |
---|
185 | if dnv == 'WRFpos': WRFpos_compute = True |
---|
186 | if dnv == 'WRFtime': WRFtime_compute = True |
---|
187 | if dnv == 'WRFz':WRFz_compute = True |
---|
188 | |
---|
189 | # diagnostics to compute |
---|
190 | diags = varns.split(',') |
---|
191 | Ndiags = len(diags) |
---|
192 | |
---|
193 | for idiag in range(Ndiags): |
---|
194 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
195 | depvars = diags[idiag].split('|')[1] |
---|
196 | if depvars == 'WRFgeop':WRFgeop_compute = True |
---|
197 | if depvars == 'WRFp': WRFp_compute = True |
---|
198 | if depvars == 'WRFt': WRFt_compute = True |
---|
199 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
200 | if depvars == 'WRFght': WRFght_compute = True |
---|
201 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
202 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
203 | if depvars == 'WRFtime': WRFtime_compute = True |
---|
204 | if depvars == 'WRFz': WRFz_compute = True |
---|
205 | else: |
---|
206 | depvars = diags[idiag].split('|')[1].split('@') |
---|
207 | if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True |
---|
208 | if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
209 | if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
210 | if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
211 | if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
212 | if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
213 | if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
214 | if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True |
---|
215 | if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True |
---|
216 | |
---|
217 | # Dictionary with the new computed variables to be able to add them |
---|
218 | dictcompvars = {} |
---|
219 | if WRFgeop_compute: |
---|
220 | print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' |
---|
221 | dimv = ncobj.variables['PH'].shape |
---|
222 | WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
223 | |
---|
224 | # Attributes of the variable |
---|
225 | Vvals = gen.variables_values('WRFgeop') |
---|
226 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
227 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
228 | |
---|
229 | if WRFp_compute: |
---|
230 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
231 | dimv = ncobj.variables['P'].shape |
---|
232 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
233 | |
---|
234 | # Attributes of the variable |
---|
235 | Vvals = gen.variables_values('WRFp') |
---|
236 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
237 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
238 | |
---|
239 | if WRFght_compute: |
---|
240 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
241 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
242 | |
---|
243 | # Attributes of the variable |
---|
244 | Vvals = gen.variables_values('WRFght') |
---|
245 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
246 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
247 | |
---|
248 | if WRFrh_compute: |
---|
249 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
250 | ' equation (T,P) ...' |
---|
251 | p0=100000. |
---|
252 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
253 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
254 | qv = ncobj.variables['QVAPOR'][:] |
---|
255 | |
---|
256 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
257 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
258 | |
---|
259 | WRFrh = qv/data2 |
---|
260 | |
---|
261 | # Attributes of the variable |
---|
262 | Vvals = gen.variables_values('WRFrh') |
---|
263 | dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
264 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
265 | |
---|
266 | if WRFt_compute: |
---|
267 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
268 | p0=100000. |
---|
269 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
270 | |
---|
271 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
272 | |
---|
273 | # Attributes of the variable |
---|
274 | Vvals = gen.variables_values('WRFt') |
---|
275 | dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
276 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
277 | |
---|
278 | if WRFdens_compute: |
---|
279 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
280 | 'DNW)/g ...' |
---|
281 | |
---|
282 | # Just we need in in absolute values: Size of the central grid cell |
---|
283 | ## dxval = ncobj.getncattr('DX') |
---|
284 | ## dyval = ncobj.getncattr('DY') |
---|
285 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
286 | ## area = dxval*dyval*mapfac |
---|
287 | |
---|
288 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
289 | dnw = ncobj.variables['DNW'][:] |
---|
290 | |
---|
291 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
292 | dtype=np.float) |
---|
293 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
294 | |
---|
295 | for it in range(mu.shape[0]): |
---|
296 | for iz in range(dnw.shape[1]): |
---|
297 | levval.fill(np.abs(dnw[it,iz])) |
---|
298 | WRFdens[it,iz,:,:] = levval |
---|
299 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
300 | |
---|
301 | # Attributes of the variable |
---|
302 | Vvals = gen.variables_values('WRFdens') |
---|
303 | dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
304 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
305 | |
---|
306 | if WRFpos_compute: |
---|
307 | # WRF positions from the lowest-leftest corner of the matrix |
---|
308 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
309 | 'DX*x**2)*MAPFAC_M ...' |
---|
310 | |
---|
311 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
312 | |
---|
313 | distx = np.float(ncobj.getncattr('DX')) |
---|
314 | disty = np.float(ncobj.getncattr('DY')) |
---|
315 | |
---|
316 | print 'distx:',distx,'disty:',disty |
---|
317 | |
---|
318 | dx = mapfac.shape[2] |
---|
319 | dy = mapfac.shape[1] |
---|
320 | dt = mapfac.shape[0] |
---|
321 | |
---|
322 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
323 | |
---|
324 | for i in range(1,dx): |
---|
325 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
326 | for j in range(1,dy): |
---|
327 | i=0 |
---|
328 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
329 | for i in range(1,dx): |
---|
330 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
331 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
332 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
333 | |
---|
334 | for it in range(1,dt): |
---|
335 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
336 | |
---|
337 | if WRFtime_compute: |
---|
338 | print ' ' + main + ': computing time from WRF as CFtime(Times) ...' |
---|
339 | |
---|
340 | refdate='19491201000000' |
---|
341 | tunitsval='minutes' |
---|
342 | |
---|
343 | timeobj = ncobj.variables['Times'] |
---|
344 | timewrfv = timeobj[:] |
---|
345 | |
---|
346 | yrref=refdate[0:4] |
---|
347 | monref=refdate[4:6] |
---|
348 | dayref=refdate[6:8] |
---|
349 | horref=refdate[8:10] |
---|
350 | minref=refdate[10:12] |
---|
351 | secref=refdate[12:14] |
---|
352 | |
---|
353 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
354 | ':' + secref |
---|
355 | |
---|
356 | |
---|
357 | if len(timeobj.shape) == 2: |
---|
358 | dt = timeobj.shape[0] |
---|
359 | else: |
---|
360 | dt = 1 |
---|
361 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
362 | |
---|
363 | if len(timeobj.shape) == 2: |
---|
364 | for it in range(dt): |
---|
365 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', \ |
---|
366 | 'matYmdHMS') |
---|
367 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
368 | else: |
---|
369 | wrfdates = gen.datetimeStr_conversion(timewrfv[:],'WRFdatetime', \ |
---|
370 | 'matYmdHMS') |
---|
371 | WRFtime[0] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
372 | |
---|
373 | tunits = tunitsval + ' since ' + refdateS |
---|
374 | |
---|
375 | # Attributes of the variable |
---|
376 | dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ |
---|
377 | 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} |
---|
378 | |
---|
379 | if WRFz_compute: |
---|
380 | print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ |
---|
381 | 'unstagger(PH + PHB)/9.8-hgt' |
---|
382 | dimv = ncobj.variables['PH'].shape |
---|
383 | WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 |
---|
384 | |
---|
385 | unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) |
---|
386 | unzg = np.zeros(unzgd, dtype=np.float) |
---|
387 | unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) |
---|
388 | |
---|
389 | WRFz = np.zeros(unzgd, dtype=np.float) |
---|
390 | for iz in range(dimv[1]-1): |
---|
391 | WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] |
---|
392 | |
---|
393 | # Attributes of the variable |
---|
394 | Vvals = gen.variables_values('WRFz') |
---|
395 | dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
396 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
397 | |
---|
398 | ### ## # |
---|
399 | # Going for the diagnostics |
---|
400 | ### ## # |
---|
401 | print ' ' + main + ' ...' |
---|
402 | varsadd = [] |
---|
403 | |
---|
404 | for idiag in range(Ndiags): |
---|
405 | print ' diagnostic:',diags[idiag] |
---|
406 | diagn = diags[idiag].split('|')[0] |
---|
407 | depvars = diags[idiag].split('|')[1].split('@') |
---|
408 | if not gen.searchInlist(NONcheckdepvars, diagn): |
---|
409 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
410 | depvars = diags[idiag].split('|')[1].split('@') |
---|
411 | if depvars[0] == 'deaccum': diagn='deaccum' |
---|
412 | if depvars[0] == 'accum': diagn='accum' |
---|
413 | for depv in depvars: |
---|
414 | if not ncobj.variables.has_key(depv) and not \ |
---|
415 | gen.searchInlist(NONcheckingvars, depv) and \ |
---|
416 | not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum'\ |
---|
417 | and not depvars[0] == 'accum' and not depv[0:2] == 'z=': |
---|
418 | print errormsg |
---|
419 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
420 | "' does not have variable '" + depv + "' !!" |
---|
421 | quit(-1) |
---|
422 | else: |
---|
423 | depvars = diags[idiag].split('|')[1] |
---|
424 | if not ncobj.variables.has_key(depvars) and not \ |
---|
425 | gen.searchInlist(NONcheckingvars, depvars) and \ |
---|
426 | not gen.searchInlist(methods, depvars): |
---|
427 | print errormsg |
---|
428 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
429 | "' does not have variable '" + depvars + "' !!" |
---|
430 | quit(-1) |
---|
431 | |
---|
432 | print "\n Computing '" + diagn + "' from: ", depvars, '...' |
---|
433 | |
---|
434 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC, RAINSH |
---|
435 | if diagn == 'ACRAINTOT': |
---|
436 | |
---|
437 | var0 = ncobj.variables[depvars[0]] |
---|
438 | var1 = ncobj.variables[depvars[1]] |
---|
439 | var2 = ncobj.variables[depvars[2]] |
---|
440 | |
---|
441 | diagout = var0[:] + var1[:] + var2[:] |
---|
442 | |
---|
443 | dnamesvar = var0.dimensions |
---|
444 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
445 | |
---|
446 | # Removing the nonChecking variable-dimensions from the initial list |
---|
447 | varsadd = [] |
---|
448 | for nonvd in NONchkvardims: |
---|
449 | if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) |
---|
450 | varsadd.append(nonvd) |
---|
451 | |
---|
452 | ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) |
---|
453 | |
---|
454 | # accum: acumulation of any variable as (Variable, time [as [tunits] |
---|
455 | # from/since ....], newvarname) |
---|
456 | elif diagn == 'accum': |
---|
457 | |
---|
458 | var0 = ncobj.variables[depvars[0]] |
---|
459 | var1 = ncobj.variables[depvars[1]] |
---|
460 | |
---|
461 | dnamesvar = var0.dimensions |
---|
462 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
463 | |
---|
464 | diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) |
---|
465 | # Removing the nonChecking variable-dimensions from the initial list |
---|
466 | varsadd = [] |
---|
467 | diagoutvd = list(dvnames) |
---|
468 | for nonvd in NONchkvardims: |
---|
469 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
470 | varsadd.append(nonvd) |
---|
471 | |
---|
472 | CFvarn = ncvar.variables_values(depvars[0])[0] |
---|
473 | |
---|
474 | # Removing the flux |
---|
475 | if depvars[1] == 'XTIME': |
---|
476 | dtimeunits = var1.getncattr('description') |
---|
477 | tunits = dtimeunits.split(' ')[0] |
---|
478 | else: |
---|
479 | dtimeunits = var1.getncattr('units') |
---|
480 | tunits = dtimeunits.split(' ')[0] |
---|
481 | |
---|
482 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
483 | |
---|
484 | ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) |
---|
485 | |
---|
486 | # cllmh with cldfra, pres |
---|
487 | elif diagn == 'cllmh': |
---|
488 | |
---|
489 | var0 = ncobj.variables[depvars[0]] |
---|
490 | if depvars[1] == 'WRFp': |
---|
491 | var1 = WRFp |
---|
492 | else: |
---|
493 | var01 = ncobj.variables[depvars[1]] |
---|
494 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
495 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
496 | else: |
---|
497 | var1 = var01 |
---|
498 | |
---|
499 | diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) |
---|
500 | |
---|
501 | # Removing the nonChecking variable-dimensions from the initial list |
---|
502 | varsadd = [] |
---|
503 | for nonvd in NONchkvardims: |
---|
504 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
505 | varsadd.append(nonvd) |
---|
506 | |
---|
507 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
508 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
509 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
510 | |
---|
511 | # clt with cldfra |
---|
512 | elif diagn == 'clt': |
---|
513 | |
---|
514 | var0 = ncobj.variables[depvars] |
---|
515 | diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) |
---|
516 | |
---|
517 | # Removing the nonChecking variable-dimensions from the initial list |
---|
518 | varsadd = [] |
---|
519 | for nonvd in NONchkvardims: |
---|
520 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
521 | varsadd.append(nonvd) |
---|
522 | |
---|
523 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
524 | |
---|
525 | # convini (pr, time) |
---|
526 | elif diagn == 'convini': |
---|
527 | |
---|
528 | var0 = ncobj.variables[depvars[0]][:] |
---|
529 | var1 = ncobj.variables[depvars[1]][:] |
---|
530 | otime = ncobj.variables[depvars[1]] |
---|
531 | |
---|
532 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
533 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
534 | |
---|
535 | diagout, diagoutd, diagoutvd = diag.var_convini(var0, var1, dnames, dvnames) |
---|
536 | |
---|
537 | ncvar.insert_variable(ncobj, 'convini', diagout, diagoutd, diagoutvd, newnc, \ |
---|
538 | fill=gen.fillValueF) |
---|
539 | # Getting the right units |
---|
540 | ovar = newnc.variables['convini'] |
---|
541 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
542 | tunits = otime.getncattr('units') |
---|
543 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
544 | newnc.sync() |
---|
545 | |
---|
546 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
547 | # from/since ....], newvarname) |
---|
548 | elif diagn == 'deaccum': |
---|
549 | |
---|
550 | var0 = ncobj.variables[depvars[0]] |
---|
551 | var1 = ncobj.variables[depvars[1]] |
---|
552 | |
---|
553 | dnamesvar = var0.dimensions |
---|
554 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
555 | |
---|
556 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
557 | # Removing the nonChecking variable-dimensions from the initial list |
---|
558 | varsadd = [] |
---|
559 | diagoutvd = list(dvnames) |
---|
560 | for nonvd in NONchkvardims: |
---|
561 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
562 | varsadd.append(nonvd) |
---|
563 | |
---|
564 | # Transforming to a flux |
---|
565 | if depvars[1] == 'XTIME': |
---|
566 | dtimeunits = var1.getncattr('description') |
---|
567 | tunits = dtimeunits.split(' ')[0] |
---|
568 | else: |
---|
569 | dtimeunits = var1.getncattr('units') |
---|
570 | tunits = dtimeunits.split(' ')[0] |
---|
571 | |
---|
572 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
573 | ncvar.insert_variable(ncobj, depvars[2], diagout/dtime, diagoutd, diagoutvd, \ |
---|
574 | newnc) |
---|
575 | |
---|
576 | # fog_K84: Computation of fog and visibility following Kunkel, (1984) as QCLOUD, QICE |
---|
577 | elif diagn == 'fog_K84': |
---|
578 | |
---|
579 | var0 = ncobj.variables[depvars[0]] |
---|
580 | var1 = ncobj.variables[depvars[1]] |
---|
581 | |
---|
582 | dnamesvar = list(var0.dimensions) |
---|
583 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
584 | |
---|
585 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_K84(var0, var1, \ |
---|
586 | dnamesvar, dvnamesvar) |
---|
587 | # Removing the nonChecking variable-dimensions from the initial list |
---|
588 | varsadd = [] |
---|
589 | diagoutvd = list(dvnames) |
---|
590 | for nonvd in NONchkvardims: |
---|
591 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
592 | varsadd.append(nonvd) |
---|
593 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
594 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
595 | |
---|
596 | # fog_RUC: Computation of fog and visibility following Kunkel, (1984) as QVAPOR, |
---|
597 | # WRFt, WRFp or Q2, T2, PSFC |
---|
598 | elif diagn == 'fog_RUC': |
---|
599 | |
---|
600 | var0 = ncobj.variables[depvars[0]] |
---|
601 | print gen.infmsg |
---|
602 | if depvars[1] == 'WRFt': |
---|
603 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
604 | var1 = WRFt |
---|
605 | var2 = WRFp |
---|
606 | else: |
---|
607 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
608 | var1 = ncobj.variables[depvars[1]] |
---|
609 | var2 = ncobj.variables[depvars[2]] |
---|
610 | |
---|
611 | dnamesvar = list(var0.dimensions) |
---|
612 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
613 | |
---|
614 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_RUC(var0, var1, var2,\ |
---|
615 | dnamesvar, dvnamesvar) |
---|
616 | # Removing the nonChecking variable-dimensions from the initial list |
---|
617 | varsadd = [] |
---|
618 | diagoutvd = list(dvnames) |
---|
619 | for nonvd in NONchkvardims: |
---|
620 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
621 | varsadd.append(nonvd) |
---|
622 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
623 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
624 | |
---|
625 | # fog_FRAML50: Computation of fog and visibility following Gultepe, I. and |
---|
626 | # J.A. Milbrandt, 2010 as QVAPOR, WRFt, WRFp or Q2, T2, PSFC |
---|
627 | elif diagn == 'fog_FRAML50': |
---|
628 | |
---|
629 | var0 = ncobj.variables[depvars[0]] |
---|
630 | print gen.infmsg |
---|
631 | if depvars[1] == 'WRFt': |
---|
632 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
633 | var1 = WRFt |
---|
634 | var2 = WRFp |
---|
635 | else: |
---|
636 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
637 | var1 = ncobj.variables[depvars[1]] |
---|
638 | var2 = ncobj.variables[depvars[2]] |
---|
639 | |
---|
640 | dnamesvar = list(var0.dimensions) |
---|
641 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
642 | |
---|
643 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_FRAML50(var0, var1, \ |
---|
644 | var2, dnamesvar, dvnamesvar) |
---|
645 | # Removing the nonChecking variable-dimensions from the initial list |
---|
646 | varsadd = [] |
---|
647 | diagoutvd = list(dvnames) |
---|
648 | for nonvd in NONchkvardims: |
---|
649 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
650 | varsadd.append(nonvd) |
---|
651 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
652 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
653 | |
---|
654 | # LMDZrh (pres, t, r) |
---|
655 | elif diagn == 'LMDZrh': |
---|
656 | |
---|
657 | var0 = ncobj.variables[depvars[0]][:] |
---|
658 | var1 = ncobj.variables[depvars[1]][:] |
---|
659 | var2 = ncobj.variables[depvars[2]][:] |
---|
660 | |
---|
661 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) |
---|
662 | ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) |
---|
663 | |
---|
664 | # LMDZrhs (psol, t2m, q2m) |
---|
665 | elif diagn == 'LMDZrhs': |
---|
666 | |
---|
667 | var0 = ncobj.variables[depvars[0]][:] |
---|
668 | var1 = ncobj.variables[depvars[1]][:] |
---|
669 | var2 = ncobj.variables[depvars[2]][:] |
---|
670 | |
---|
671 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
672 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
673 | |
---|
674 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
675 | |
---|
676 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
677 | |
---|
678 | # mrso: total soil moisture SMOIS, DZS |
---|
679 | elif diagn == 'WRFmrso': |
---|
680 | |
---|
681 | var0 = ncobj.variables[depvars[0]][:] |
---|
682 | var10 = ncobj.variables[depvars[1]][:] |
---|
683 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
684 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
685 | |
---|
686 | var1 = var0.copy()*0. |
---|
687 | var2 = var0.copy()*0.+1. |
---|
688 | # Must be a better way.... |
---|
689 | for j in range(var0.shape[2]): |
---|
690 | for i in range(var0.shape[3]): |
---|
691 | var1[:,:,j,i] = var10 |
---|
692 | |
---|
693 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
694 | dnamesvar, dvnamesvar) |
---|
695 | |
---|
696 | # Removing the nonChecking variable-dimensions from the initial list |
---|
697 | varsadd = [] |
---|
698 | diagoutvd = list(dvnames) |
---|
699 | for nonvd in NONchkvardims: |
---|
700 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
701 | varsadd.append(nonvd) |
---|
702 | ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) |
---|
703 | |
---|
704 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
705 | elif diagn == 'mslp' or diagn == 'WRFmslp': |
---|
706 | |
---|
707 | var1 = ncobj.variables[depvars[1]][:] |
---|
708 | var2 = ncobj.variables[depvars[2]][:] |
---|
709 | var4 = ncobj.variables[depvars[4]][:] |
---|
710 | |
---|
711 | if diagn == 'WRFmslp': |
---|
712 | var0 = WRFp |
---|
713 | var3 = WRFt |
---|
714 | dnamesvar = ncobj.variables['P'].dimensions |
---|
715 | else: |
---|
716 | var0 = ncobj.variables[depvars[0]][:] |
---|
717 | var3 = ncobj.variables[depvars[3]][:] |
---|
718 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
719 | |
---|
720 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
721 | |
---|
722 | diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ |
---|
723 | dnamesvar, dvnamesvar) |
---|
724 | |
---|
725 | # Removing the nonChecking variable-dimensions from the initial list |
---|
726 | varsadd = [] |
---|
727 | diagoutvd = list(dvnames) |
---|
728 | for nonvd in NONchkvardims: |
---|
729 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
730 | varsadd.append(nonvd) |
---|
731 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
732 | |
---|
733 | # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) |
---|
734 | elif diagn == 'OMEGAw': |
---|
735 | |
---|
736 | var0 = ncobj.variables[depvars[0]][:] |
---|
737 | var1 = ncobj.variables[depvars[1]][:] |
---|
738 | var2 = ncobj.variables[depvars[2]][:] |
---|
739 | |
---|
740 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
741 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
742 | |
---|
743 | diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
744 | |
---|
745 | ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) |
---|
746 | |
---|
747 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC + RAINSH) / dTime |
---|
748 | elif diagn == 'RAINTOT': |
---|
749 | |
---|
750 | var0 = ncobj.variables[depvars[0]] |
---|
751 | var1 = ncobj.variables[depvars[1]] |
---|
752 | var2 = ncobj.variables[depvars[2]] |
---|
753 | |
---|
754 | if depvars[3] != 'WRFtime': |
---|
755 | var3 = ncobj.variables[depvars[3]] |
---|
756 | else: |
---|
757 | var3 = np.arange(var0.shape[0], dtype=int) |
---|
758 | |
---|
759 | var = var0[:] + var1[:] + var2[:] |
---|
760 | |
---|
761 | dnamesvar = var0.dimensions |
---|
762 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
763 | |
---|
764 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
765 | |
---|
766 | # Transforming to a flux |
---|
767 | if var3.shape[0] > 1: |
---|
768 | if depvars[3] != 'WRFtime': |
---|
769 | dtimeunits = var3.getncattr('units') |
---|
770 | tunits = dtimeunits.split(' ')[0] |
---|
771 | |
---|
772 | dtime = (var3[1] - var3[0])*diag.timeunits_seconds(tunits) |
---|
773 | else: |
---|
774 | var3 = ncobj.variables['Times'] |
---|
775 | time1 = var3[0,:] |
---|
776 | time2 = var3[1,:] |
---|
777 | tmf1 = '' |
---|
778 | tmf2 = '' |
---|
779 | for ic in range(len(time1)): |
---|
780 | tmf1 = tmf1 + time1[ic] |
---|
781 | tmf2 = tmf2 + time2[ic] |
---|
782 | dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
783 | dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
784 | diffdate12 = dtdate2 - dtdate1 |
---|
785 | dtime = diffdate12.total_seconds() |
---|
786 | print 'dtime:',dtime |
---|
787 | else: |
---|
788 | print warnmsg |
---|
789 | print ' ' + main + ": only 1 time-step for '" + diag + "' !!" |
---|
790 | print ' leaving a zero value!' |
---|
791 | diagout = var0[:]*0. |
---|
792 | dtime=1. |
---|
793 | |
---|
794 | # Removing the nonChecking variable-dimensions from the initial list |
---|
795 | varsadd = [] |
---|
796 | for nonvd in NONchkvardims: |
---|
797 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
798 | varsadd.append(nonvd) |
---|
799 | |
---|
800 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
801 | |
---|
802 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
803 | elif diagn == 'timemax': |
---|
804 | |
---|
805 | var0 = ncobj.variables[depvars[0]][:] |
---|
806 | var1 = ncobj.variables[depvars[1]][:] |
---|
807 | |
---|
808 | otime = ncobj.variables[depvars[1]] |
---|
809 | |
---|
810 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
811 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
812 | |
---|
813 | diagout, diagoutd, diagoutvd = diag.var_timemax(var0, var1, dnames, \ |
---|
814 | dvnames) |
---|
815 | |
---|
816 | ncvar.insert_variable(ncobj, 'timemax', diagout, diagoutd, diagoutvd, newnc, \ |
---|
817 | fill=gen.fillValueF) |
---|
818 | # Getting the right units |
---|
819 | ovar = newnc.variables['timemax'] |
---|
820 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
821 | tunits = otime.getncattr('units') |
---|
822 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
823 | newnc.sync() |
---|
824 | ncvar.set_attribute(ovar, 'variable', depvars[0]) |
---|
825 | |
---|
826 | # timeoverthres ([varname], time, [value], [CFvarn]). When a given variable [varname] |
---|
827 | # overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
828 | # variables_values.dat |
---|
829 | elif diagn == 'timeoverthres': |
---|
830 | |
---|
831 | var0 = ncobj.variables[depvars[0]][:] |
---|
832 | var1 = ncobj.variables[depvars[1]][:] |
---|
833 | var2 = np.float(depvars[2]) |
---|
834 | var3 = depvars[3] |
---|
835 | |
---|
836 | otime = ncobj.variables[depvars[1]] |
---|
837 | |
---|
838 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
839 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
840 | |
---|
841 | diagout, diagoutd, diagoutvd = diag.var_timeoverthres(var0, var1, var2, \ |
---|
842 | dnames, dvnames) |
---|
843 | |
---|
844 | ncvar.insert_variable(ncobj, var3, diagout, diagoutd, diagoutvd, newnc, \ |
---|
845 | fill=gen.fillValueF) |
---|
846 | # Getting the right units |
---|
847 | ovar = newnc.variables[var3] |
---|
848 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
849 | tunits = otime.getncattr('units') |
---|
850 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
851 | newnc.sync() |
---|
852 | ncvar.set_attribute(ovar, 'overpassed_threshold', var2) |
---|
853 | |
---|
854 | # rhs (psfc, t, q) from TimeSeries files |
---|
855 | elif diagn == 'TSrhs': |
---|
856 | |
---|
857 | p0=100000. |
---|
858 | var0 = ncobj.variables[depvars[0]][:] |
---|
859 | var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) |
---|
860 | var2 = ncobj.variables[depvars[2]][:] |
---|
861 | |
---|
862 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
863 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
864 | |
---|
865 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
866 | |
---|
867 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
868 | |
---|
869 | # slw: total soil liquid water SH2O, DZS |
---|
870 | elif diagn == 'WRFslw': |
---|
871 | |
---|
872 | var0 = ncobj.variables[depvars[0]][:] |
---|
873 | var10 = ncobj.variables[depvars[1]][:] |
---|
874 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
875 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
876 | |
---|
877 | var1 = var0.copy()*0. |
---|
878 | var2 = var0.copy()*0.+1. |
---|
879 | # Must be a better way.... |
---|
880 | for j in range(var0.shape[2]): |
---|
881 | for i in range(var0.shape[3]): |
---|
882 | var1[:,:,j,i] = var10 |
---|
883 | |
---|
884 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
885 | dnamesvar, dvnamesvar) |
---|
886 | |
---|
887 | # Removing the nonChecking variable-dimensions from the initial list |
---|
888 | varsadd = [] |
---|
889 | diagoutvd = list(dvnames) |
---|
890 | for nonvd in NONchkvardims: |
---|
891 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
892 | varsadd.append(nonvd) |
---|
893 | ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) |
---|
894 | |
---|
895 | # td (psfc, t, q) from TimeSeries files |
---|
896 | elif diagn == 'TStd' or diagn == 'td': |
---|
897 | |
---|
898 | var0 = ncobj.variables[depvars[0]][:] |
---|
899 | var1 = ncobj.variables[depvars[1]][:] - 273.15 |
---|
900 | var2 = ncobj.variables[depvars[2]][:] |
---|
901 | |
---|
902 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
903 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
904 | |
---|
905 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
906 | |
---|
907 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
908 | |
---|
909 | # td (psfc, t, q) from TimeSeries files |
---|
910 | elif diagn == 'TStdC' or diagn == 'tdC': |
---|
911 | |
---|
912 | var0 = ncobj.variables[depvars[0]][:] |
---|
913 | # Temperature is already in degrees Celsius |
---|
914 | var1 = ncobj.variables[depvars[1]][:] |
---|
915 | var2 = ncobj.variables[depvars[2]][:] |
---|
916 | |
---|
917 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
918 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
919 | |
---|
920 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
921 | |
---|
922 | # Removing the nonChecking variable-dimensions from the initial list |
---|
923 | varsadd = [] |
---|
924 | for nonvd in NONchkvardims: |
---|
925 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
926 | varsadd.append(nonvd) |
---|
927 | |
---|
928 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
929 | |
---|
930 | # wds (u, v) |
---|
931 | elif diagn == 'TSwds' or diagn == 'wds' : |
---|
932 | |
---|
933 | var0 = ncobj.variables[depvars[0]][:] |
---|
934 | var1 = ncobj.variables[depvars[1]][:] |
---|
935 | |
---|
936 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
937 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
938 | |
---|
939 | diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) |
---|
940 | |
---|
941 | # Removing the nonChecking variable-dimensions from the initial list |
---|
942 | varsadd = [] |
---|
943 | for nonvd in NONchkvardims: |
---|
944 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
945 | varsadd.append(nonvd) |
---|
946 | |
---|
947 | ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) |
---|
948 | |
---|
949 | # wss (u, v) |
---|
950 | elif diagn == 'TSwss' or diagn == 'wss': |
---|
951 | |
---|
952 | var0 = ncobj.variables[depvars[0]][:] |
---|
953 | var1 = ncobj.variables[depvars[1]][:] |
---|
954 | |
---|
955 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
956 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
957 | |
---|
958 | diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) |
---|
959 | |
---|
960 | # Removing the nonChecking variable-dimensions from the initial list |
---|
961 | varsadd = [] |
---|
962 | for nonvd in NONchkvardims: |
---|
963 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
964 | varsadd.append(nonvd) |
---|
965 | |
---|
966 | ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) |
---|
967 | |
---|
968 | # turbulence (var) |
---|
969 | elif diagn == 'turbulence': |
---|
970 | |
---|
971 | var0 = ncobj.variables[depvars][:] |
---|
972 | |
---|
973 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
974 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
975 | |
---|
976 | diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
977 | valsvar = gen.variables_values(depvars) |
---|
978 | |
---|
979 | newvarn = depvars + 'turb' |
---|
980 | ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, |
---|
981 | diagoutvd, newnc) |
---|
982 | varobj = newnc.variables[newvarn] |
---|
983 | attrv = varobj.long_name |
---|
984 | attr = varobj.delncattr('long_name') |
---|
985 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
986 | " Taylor decomposition turbulence term") |
---|
987 | |
---|
988 | # ua va from ws wd (deg) |
---|
989 | elif diagn == 'uavaFROMwswd': |
---|
990 | |
---|
991 | var0 = ncobj.variables[depvars[0]][:] |
---|
992 | var1 = ncobj.variables[depvars[1]][:] |
---|
993 | |
---|
994 | ua = var0*np.cos(var1*np.pi/180.) |
---|
995 | va = var0*np.sin(var1*np.pi/180.) |
---|
996 | |
---|
997 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
998 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
999 | |
---|
1000 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
1001 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
1002 | |
---|
1003 | # ua va from obs ws wd (deg) |
---|
1004 | elif diagn == 'uavaFROMobswswd': |
---|
1005 | |
---|
1006 | var0 = ncobj.variables[depvars[0]][:] |
---|
1007 | var1 = ncobj.variables[depvars[1]][:] |
---|
1008 | |
---|
1009 | ua = var0*np.cos((var1+180.)*np.pi/180.) |
---|
1010 | va = var0*np.sin((var1+180.)*np.pi/180.) |
---|
1011 | |
---|
1012 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1013 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1014 | |
---|
1015 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
1016 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
1017 | |
---|
1018 | # WRFbils fom WRF as HFX + LH |
---|
1019 | elif diagn == 'WRFbils': |
---|
1020 | |
---|
1021 | var0 = ncobj.variables[depvars[0]][:] |
---|
1022 | var1 = ncobj.variables[depvars[1]][:] |
---|
1023 | |
---|
1024 | diagout = var0 + var1 |
---|
1025 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1026 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1027 | |
---|
1028 | ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1029 | |
---|
1030 | # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' |
---|
1031 | # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT |
---|
1032 | elif diagn == 'WRFcape_afwa': |
---|
1033 | var0 = WRFt |
---|
1034 | var1 = WRFrh |
---|
1035 | var2 = WRFp |
---|
1036 | dz = WRFgeop.shape[1] |
---|
1037 | # de-staggering |
---|
1038 | var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:])/9.8 |
---|
1039 | var4 = ncobj.variables[depvars[4]][0,:,:] |
---|
1040 | |
---|
1041 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
1042 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1043 | |
---|
1044 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1045 | diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ |
---|
1046 | diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ |
---|
1047 | dvnamesvar) |
---|
1048 | |
---|
1049 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1050 | varsadd = [] |
---|
1051 | for nonvd in NONchkvardims: |
---|
1052 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1053 | varsadd.append(nonvd) |
---|
1054 | |
---|
1055 | ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) |
---|
1056 | ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) |
---|
1057 | ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) |
---|
1058 | ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) |
---|
1059 | ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) |
---|
1060 | |
---|
1061 | # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL |
---|
1062 | elif diagn == 'WRFclivi': |
---|
1063 | |
---|
1064 | var0 = WRFdens |
---|
1065 | qtot = ncobj.variables[depvars[1]] |
---|
1066 | qtotv = qtot[:] |
---|
1067 | Nspecies = len(depvars) - 2 |
---|
1068 | for iv in range(Nspecies): |
---|
1069 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1070 | var1 = ncobj.variables[depvars[iv+2]][:] |
---|
1071 | qtotv = qtotv + var1 |
---|
1072 | |
---|
1073 | dnamesvar = list(qtot.dimensions) |
---|
1074 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1075 | |
---|
1076 | diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1077 | |
---|
1078 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1079 | varsadd = [] |
---|
1080 | diagoutvd = list(dvnames) |
---|
1081 | for nonvd in NONchkvardims: |
---|
1082 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1083 | varsadd.append(nonvd) |
---|
1084 | ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) |
---|
1085 | |
---|
1086 | # WRFclwvi WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL |
---|
1087 | elif diagn == 'WRFclwvi': |
---|
1088 | |
---|
1089 | var0 = WRFdens |
---|
1090 | qtot = ncobj.variables[depvars[1]] |
---|
1091 | qtotv = ncobj.variables[depvars[1]] |
---|
1092 | Nspecies = len(depvars) - 2 |
---|
1093 | for iv in range(Nspecies): |
---|
1094 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1095 | var1 = ncobj.variables[depvars[iv+2]] |
---|
1096 | qtotv = qtotv + var1[:] |
---|
1097 | |
---|
1098 | dnamesvar = list(qtot.dimensions) |
---|
1099 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1100 | |
---|
1101 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1102 | |
---|
1103 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1104 | varsadd = [] |
---|
1105 | diagoutvd = list(dvnames) |
---|
1106 | for nonvd in NONchkvardims: |
---|
1107 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1108 | varsadd.append(nonvd) |
---|
1109 | ncvar.insert_variable(ncobj, 'clwvi', diagout, diagoutd, diagoutvd, newnc) |
---|
1110 | |
---|
1111 | # WRF_denszint WRF vertical integration as WRFdens, sum(Q[water species1], ..., Q[water speciesN]), varn=[varN] |
---|
1112 | elif diagn == 'WRF_denszint': |
---|
1113 | |
---|
1114 | var0 = WRFdens |
---|
1115 | varn = depvars[1].split('=')[1] |
---|
1116 | qtot = ncobj.variables[depvars[2]] |
---|
1117 | qtotv = ncobj.variables[depvars[2]] |
---|
1118 | Nspecies = len(depvars) - 2 |
---|
1119 | for iv in range(Nspecies): |
---|
1120 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
1121 | var1 = ncobj.variables[depvars[iv+2]] |
---|
1122 | qtotv = qtotv + var1[:] |
---|
1123 | |
---|
1124 | dnamesvar = list(qtot.dimensions) |
---|
1125 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1126 | |
---|
1127 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
1128 | |
---|
1129 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1130 | varsadd = [] |
---|
1131 | diagoutvd = list(dvnames) |
---|
1132 | for nonvd in NONchkvardims: |
---|
1133 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1134 | varsadd.append(nonvd) |
---|
1135 | ncvar.insert_variable(ncobj, varn, diagout, diagoutd, diagoutvd, newnc) |
---|
1136 | |
---|
1137 | # WRFgeop geopotential from WRF as PH + PHB |
---|
1138 | elif diagn == 'WRFgeop': |
---|
1139 | var0 = ncobj.variables[depvars[0]][:] |
---|
1140 | var1 = ncobj.variables[depvars[1]][:] |
---|
1141 | |
---|
1142 | # de-staggering geopotential |
---|
1143 | diagout0 = var0 + var1 |
---|
1144 | dt = diagout0.shape[0] |
---|
1145 | dz = diagout0.shape[1] |
---|
1146 | dy = diagout0.shape[2] |
---|
1147 | dx = diagout0.shape[3] |
---|
1148 | |
---|
1149 | diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) |
---|
1150 | diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) |
---|
1151 | |
---|
1152 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1153 | varsadd = [] |
---|
1154 | diagoutvd = list(dvnames) |
---|
1155 | for nonvd in NONchkvardims: |
---|
1156 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1157 | varsadd.append(nonvd) |
---|
1158 | |
---|
1159 | ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) |
---|
1160 | |
---|
1161 | # WRFpotevap_orPM potential evapotranspiration following Penman-Monteith formulation |
---|
1162 | # implemented in ORCHIDEE (in src_sechiba/enerbil.f90) as: WRFdens, UST, U10, V10, T2, PSFC, QVAPOR |
---|
1163 | elif diagn == 'WRFpotevap_orPM': |
---|
1164 | var0 = WRFdens[:,0,:,:] |
---|
1165 | var1 = ncobj.variables[depvars[1]][:] |
---|
1166 | var2 = ncobj.variables[depvars[2]][:] |
---|
1167 | var3 = ncobj.variables[depvars[3]][:] |
---|
1168 | var4 = ncobj.variables[depvars[4]][:] |
---|
1169 | var5 = ncobj.variables[depvars[5]][:] |
---|
1170 | var6 = ncobj.variables[depvars[6]][:,0,:,:] |
---|
1171 | |
---|
1172 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
1173 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1174 | |
---|
1175 | diagout = np.zeros(var1.shape, dtype=np.float) |
---|
1176 | diagout, diagoutd, diagoutvd = diag.Forcompute_potevap_orPM(var0, var1, var2,\ |
---|
1177 | var3, var4, var5, var6, dnamesvar, dvnamesvar) |
---|
1178 | |
---|
1179 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1180 | varsadd = [] |
---|
1181 | for nonvd in NONchkvardims: |
---|
1182 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1183 | varsadd.append(nonvd) |
---|
1184 | |
---|
1185 | ncvar.insert_variable(ncobj, 'evspsblpot', diagout, diagoutd, diagoutvd, newnc) |
---|
1186 | |
---|
1187 | # WRFmslp_ptarget sea-level pressure following ECMWF method as PSFC, HGT, WRFt, WRFp, ZNU, ZNW |
---|
1188 | elif diagn == 'WRFpsl_ecmwf': |
---|
1189 | var0 = ncobj.variables[depvars[0]][:] |
---|
1190 | var1 = ncobj.variables[depvars[1]][0,:,:] |
---|
1191 | var2 = WRFt[:,0,:,:] |
---|
1192 | var4 = WRFp[:,0,:,:] |
---|
1193 | var5 = ncobj.variables[depvars[4]][0,:] |
---|
1194 | var6 = ncobj.variables[depvars[5]][0,:] |
---|
1195 | |
---|
1196 | # This is quite too appriximate!! passing pressure at half-levels to 2nd full |
---|
1197 | # level, using eta values at full (ZNW) and half (ZNU) mass levels |
---|
1198 | var3 = WRFp[:,0,:,:] + (var6[1] - var5[0])*(WRFp[:,1,:,:] - WRFp[:,0,:,:])/ \ |
---|
1199 | (var5[1]-var5[0]) |
---|
1200 | |
---|
1201 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1202 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1203 | |
---|
1204 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1205 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ecmwf(var0, var1, var2, \ |
---|
1206 | var3, var4, dnamesvar, dvnamesvar) |
---|
1207 | |
---|
1208 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1209 | varsadd = [] |
---|
1210 | for nonvd in NONchkvardims: |
---|
1211 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1212 | varsadd.append(nonvd) |
---|
1213 | |
---|
1214 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
1215 | |
---|
1216 | # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR |
---|
1217 | elif diagn == 'WRFpsl_ptarget': |
---|
1218 | var0 = WRFp |
---|
1219 | var1 = ncobj.variables[depvars[1]][:] |
---|
1220 | var2 = WRFt |
---|
1221 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
1222 | var4 = ncobj.variables[depvars[4]][:] |
---|
1223 | |
---|
1224 | dnamesvar = list(ncobj.variables[depvars[4]].dimensions) |
---|
1225 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1226 | |
---|
1227 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
1228 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ |
---|
1229 | var3, var4, 700000., dnamesvar, dvnamesvar) |
---|
1230 | |
---|
1231 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1232 | varsadd = [] |
---|
1233 | for nonvd in NONchkvardims: |
---|
1234 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1235 | varsadd.append(nonvd) |
---|
1236 | |
---|
1237 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
1238 | |
---|
1239 | # WRFp pressure from WRF as P + PB |
---|
1240 | elif diagn == 'WRFp': |
---|
1241 | var0 = ncobj.variables[depvars[0]][:] |
---|
1242 | var1 = ncobj.variables[depvars[1]][:] |
---|
1243 | |
---|
1244 | diagout = var0 + var1 |
---|
1245 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
1246 | diagoutvd = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1247 | |
---|
1248 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1249 | varsadd = [] |
---|
1250 | for nonvd in NONchkvardims: |
---|
1251 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1252 | varsadd.append(nonvd) |
---|
1253 | |
---|
1254 | ncvar.insert_variable(ncobj, 'pres', diagout, diagoutd, diagoutvd, newnc) |
---|
1255 | |
---|
1256 | # WRFpos |
---|
1257 | elif diagn == 'WRFpos': |
---|
1258 | |
---|
1259 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
1260 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1261 | |
---|
1262 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
1263 | |
---|
1264 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
1265 | elif diagn == 'WRFprw': |
---|
1266 | |
---|
1267 | var0 = WRFdens |
---|
1268 | var1 = ncobj.variables[depvars[1]] |
---|
1269 | |
---|
1270 | dnamesvar = list(var1.dimensions) |
---|
1271 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1272 | |
---|
1273 | diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
1274 | |
---|
1275 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1276 | varsadd = [] |
---|
1277 | diagoutvd = list(dvnames) |
---|
1278 | for nonvd in NONchkvardims: |
---|
1279 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1280 | varsadd.append(nonvd) |
---|
1281 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
1282 | |
---|
1283 | # WRFrh (P, T, QVAPOR) |
---|
1284 | elif diagn == 'WRFrh': |
---|
1285 | |
---|
1286 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1287 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1288 | |
---|
1289 | ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) |
---|
1290 | |
---|
1291 | # WRFrhs (PSFC, T2, Q2) |
---|
1292 | elif diagn == 'WRFrhs': |
---|
1293 | |
---|
1294 | var0 = ncobj.variables[depvars[0]][:] |
---|
1295 | var1 = ncobj.variables[depvars[1]][:] |
---|
1296 | var2 = ncobj.variables[depvars[2]][:] |
---|
1297 | |
---|
1298 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1299 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1300 | |
---|
1301 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1302 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
1303 | |
---|
1304 | # rvors (u10, v10, WRFpos) |
---|
1305 | elif diagn == 'WRFrvors': |
---|
1306 | |
---|
1307 | var0 = ncobj.variables[depvars[0]] |
---|
1308 | var1 = ncobj.variables[depvars[1]] |
---|
1309 | |
---|
1310 | diagout = rotational_z(var0, var1, distx) |
---|
1311 | |
---|
1312 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1313 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1314 | |
---|
1315 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1316 | |
---|
1317 | # WRFt (T, P, PB) |
---|
1318 | elif diagn == 'WRFt': |
---|
1319 | var0 = ncobj.variables[depvars[0]][:] |
---|
1320 | var1 = ncobj.variables[depvars[1]][:] |
---|
1321 | var2 = ncobj.variables[depvars[2]][:] |
---|
1322 | |
---|
1323 | p0=100000. |
---|
1324 | p=var1 + var2 |
---|
1325 | |
---|
1326 | WRFt = (var0 + 300.)*(p/p0)**(2./7.) |
---|
1327 | |
---|
1328 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
1329 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1330 | |
---|
1331 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1332 | varsadd = [] |
---|
1333 | diagoutvd = list(dvnames) |
---|
1334 | for nonvd in NONchkvardims: |
---|
1335 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1336 | varsadd.append(nonvd) |
---|
1337 | |
---|
1338 | ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) |
---|
1339 | |
---|
1340 | # WRFtda (WRFrh, WRFt) |
---|
1341 | elif diagn == 'WRFtda': |
---|
1342 | ARM2 = fdef.module_definitions.arm2 |
---|
1343 | ARM3 = fdef.module_definitions.arm3 |
---|
1344 | |
---|
1345 | gammatarh = np.log(WRFrh) + ARM2*(WRFt-273.15)/((WRFt-273.15)+ARM3) |
---|
1346 | td = ARM3*gammatarh/(ARM2-gammatarh) |
---|
1347 | |
---|
1348 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
1349 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1350 | |
---|
1351 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1352 | varsadd = [] |
---|
1353 | diagoutvd = list(dvnames) |
---|
1354 | for nonvd in NONchkvardims: |
---|
1355 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1356 | varsadd.append(nonvd) |
---|
1357 | |
---|
1358 | ncvar.insert_variable(ncobj, 'tda', td, dnames, diagoutvd, newnc) |
---|
1359 | |
---|
1360 | # WRFtdas (PSFC, T2, Q2) |
---|
1361 | elif diagn == 'WRFtdas': |
---|
1362 | ARM2 = fdef.module_definitions.arm2 |
---|
1363 | ARM3 = fdef.module_definitions.arm3 |
---|
1364 | |
---|
1365 | var0 = ncobj.variables[depvars[0]][:] |
---|
1366 | var1 = ncobj.variables[depvars[1]][:] |
---|
1367 | var2 = ncobj.variables[depvars[2]][:] |
---|
1368 | |
---|
1369 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
1370 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1371 | |
---|
1372 | rhs, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1373 | |
---|
1374 | gammatarhs = np.log(rhs) + ARM2*(var1-273.15)/((var1-273.15)+ARM3) |
---|
1375 | tdas = ARM3*gammatarhs/(ARM2-gammatarhs) + 273.15 |
---|
1376 | |
---|
1377 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1378 | varsadd = [] |
---|
1379 | diagoutvd = list(dvnames) |
---|
1380 | for nonvd in NONchkvardims: |
---|
1381 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1382 | varsadd.append(nonvd) |
---|
1383 | |
---|
1384 | ncvar.insert_variable(ncobj, 'tdas', tdas, dnames, diagoutvd, newnc) |
---|
1385 | |
---|
1386 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1387 | elif diagn == 'WRFua': |
---|
1388 | var0 = ncobj.variables[depvars[0]][:] |
---|
1389 | var1 = ncobj.variables[depvars[1]][:] |
---|
1390 | var2 = ncobj.variables[depvars[2]][:] |
---|
1391 | var3 = ncobj.variables[depvars[3]][:] |
---|
1392 | |
---|
1393 | # un-staggering variables |
---|
1394 | if len(var0.shape) == 4: |
---|
1395 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1396 | elif len(var0.shape) == 3: |
---|
1397 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1398 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1399 | |
---|
1400 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1401 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1402 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1403 | |
---|
1404 | if len(var0.shape) == 4: |
---|
1405 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1406 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1407 | |
---|
1408 | for iz in range(var0.shape[1]): |
---|
1409 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1410 | |
---|
1411 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1412 | |
---|
1413 | elif len(var0.shape) == 3: |
---|
1414 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1415 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1416 | for iz in range(var0.shape[1]): |
---|
1417 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1418 | |
---|
1419 | dnamesvar = ['Time','bottom_top'] |
---|
1420 | |
---|
1421 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1422 | |
---|
1423 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1424 | varsadd = [] |
---|
1425 | diagoutvd = list(dvnames) |
---|
1426 | for nonvd in NONchkvardims: |
---|
1427 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1428 | varsadd.append(nonvd) |
---|
1429 | |
---|
1430 | ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) |
---|
1431 | |
---|
1432 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1433 | elif diagn == 'WRFva': |
---|
1434 | var0 = ncobj.variables[depvars[0]][:] |
---|
1435 | var1 = ncobj.variables[depvars[1]][:] |
---|
1436 | var2 = ncobj.variables[depvars[2]][:] |
---|
1437 | var3 = ncobj.variables[depvars[3]][:] |
---|
1438 | |
---|
1439 | # un-staggering variables |
---|
1440 | if len(var0.shape) == 4: |
---|
1441 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1442 | elif len(var0.shape) == 3: |
---|
1443 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1444 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1445 | |
---|
1446 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1447 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1448 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1449 | |
---|
1450 | if len(var0.shape) == 4: |
---|
1451 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1452 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1453 | |
---|
1454 | for iz in range(var0.shape[1]): |
---|
1455 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1456 | |
---|
1457 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1458 | |
---|
1459 | elif len(var0.shape) == 3: |
---|
1460 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1461 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1462 | for iz in range(var0.shape[1]): |
---|
1463 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1464 | |
---|
1465 | dnamesvar = ['Time','bottom_top'] |
---|
1466 | |
---|
1467 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1468 | |
---|
1469 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1470 | varsadd = [] |
---|
1471 | diagoutvd = list(dvnames) |
---|
1472 | for nonvd in NONchkvardims: |
---|
1473 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1474 | varsadd.append(nonvd) |
---|
1475 | ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) |
---|
1476 | |
---|
1477 | |
---|
1478 | # WRFwd (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1479 | elif diagn == 'WRFwd': |
---|
1480 | var0 = ncobj.variables[depvars[0]][:] |
---|
1481 | var1 = ncobj.variables[depvars[1]][:] |
---|
1482 | var2 = ncobj.variables[depvars[2]][:] |
---|
1483 | var3 = ncobj.variables[depvars[3]][:] |
---|
1484 | |
---|
1485 | # un-staggering variables |
---|
1486 | if len(var0.shape) == 4: |
---|
1487 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1488 | elif len(var0.shape) == 3: |
---|
1489 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1490 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1491 | |
---|
1492 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1493 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1494 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1495 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1496 | |
---|
1497 | if len(var0.shape) == 4: |
---|
1498 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1499 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1500 | |
---|
1501 | for iz in range(var0.shape[1]): |
---|
1502 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1503 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1504 | |
---|
1505 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1506 | |
---|
1507 | elif len(var0.shape) == 3: |
---|
1508 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1509 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1510 | for iz in range(var0.shape[1]): |
---|
1511 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1512 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1513 | |
---|
1514 | dnamesvar = ['Time','bottom_top'] |
---|
1515 | |
---|
1516 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1517 | |
---|
1518 | wd, dnames, dvnames = diag.compute_wd(ua, va, dnamesvar, dvnamesvar) |
---|
1519 | |
---|
1520 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1521 | varsadd = [] |
---|
1522 | diagoutvd = list(dvnames) |
---|
1523 | for nonvd in NONchkvardims: |
---|
1524 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1525 | varsadd.append(nonvd) |
---|
1526 | |
---|
1527 | ncvar.insert_variable(ncobj, 'wd', wd, dnames, diagoutvd, newnc) |
---|
1528 | |
---|
1529 | # WRFtime |
---|
1530 | elif diagn == 'WRFtime': |
---|
1531 | |
---|
1532 | diagout = WRFtime |
---|
1533 | |
---|
1534 | dnamesvar = ['Time'] |
---|
1535 | dvnamesvar = ['Times'] |
---|
1536 | |
---|
1537 | ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1538 | |
---|
1539 | # ws (U, V) |
---|
1540 | elif diagn == 'ws': |
---|
1541 | |
---|
1542 | # un-staggering variables |
---|
1543 | if len(var0.shape) == 4: |
---|
1544 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1545 | elif len(var0.shape) == 3: |
---|
1546 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
1547 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
1548 | |
---|
1549 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1550 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1551 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1552 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1553 | |
---|
1554 | if len(var0.shape) == 4: |
---|
1555 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1556 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1557 | |
---|
1558 | for iz in range(var0.shape[1]): |
---|
1559 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1560 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1561 | |
---|
1562 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1563 | |
---|
1564 | elif len(var0.shape) == 3: |
---|
1565 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
1566 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
1567 | for iz in range(var0.shape[1]): |
---|
1568 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
1569 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
1570 | |
---|
1571 | dnamesvar = ['Time','bottom_top'] |
---|
1572 | |
---|
1573 | diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) |
---|
1574 | |
---|
1575 | # dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1576 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1577 | |
---|
1578 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1579 | varsadd = [] |
---|
1580 | diagoutvd = list(dvnamesvar) |
---|
1581 | for nonvd in NONchkvardims: |
---|
1582 | if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) |
---|
1583 | varsadd.append(nonvd) |
---|
1584 | ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) |
---|
1585 | |
---|
1586 | # wss (u10, v10) |
---|
1587 | elif diagn == 'wss': |
---|
1588 | |
---|
1589 | var0 = ncobj.variables[depvars[0]][:] |
---|
1590 | var1 = ncobj.variables[depvars[1]][:] |
---|
1591 | |
---|
1592 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
1593 | |
---|
1594 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1595 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1596 | |
---|
1597 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1598 | |
---|
1599 | # WRFheight height from WRF geopotential as WRFGeop/g |
---|
1600 | elif diagn == 'WRFheight': |
---|
1601 | |
---|
1602 | diagout = WRFgeop/grav |
---|
1603 | |
---|
1604 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1605 | varsadd = [] |
---|
1606 | diagoutvd = list(dvnames) |
---|
1607 | for nonvd in NONchkvardims: |
---|
1608 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1609 | varsadd.append(nonvd) |
---|
1610 | |
---|
1611 | ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) |
---|
1612 | |
---|
1613 | # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT |
---|
1614 | elif diagn == 'WRFheightrel': |
---|
1615 | var0 = ncobj.variables[depvars[0]][:] |
---|
1616 | var1 = ncobj.variables[depvars[1]][:] |
---|
1617 | var2 = ncobj.variables[depvars[2]][:] |
---|
1618 | |
---|
1619 | dimz = var0.shape[1] |
---|
1620 | diagout = np.zeros(tuple(var0.shape), dtype=np.float) |
---|
1621 | for iz in range(dimz): |
---|
1622 | diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 |
---|
1623 | |
---|
1624 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1625 | varsadd = [] |
---|
1626 | diagoutvd = list(dvnames) |
---|
1627 | for nonvd in NONchkvardims: |
---|
1628 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1629 | varsadd.append(nonvd) |
---|
1630 | |
---|
1631 | ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) |
---|
1632 | |
---|
1633 | # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, |
---|
1634 | elif diagn == 'WRFzmlagen': |
---|
1635 | var0 = ncobj.variables[depvars[0]][:]+300. |
---|
1636 | var1 = ncobj.variables[depvars[1]][:] |
---|
1637 | dimz = var0.shape[1] |
---|
1638 | var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 |
---|
1639 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
1640 | |
---|
1641 | diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ |
---|
1642 | dnames,dvnames) |
---|
1643 | |
---|
1644 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1645 | varsadd = [] |
---|
1646 | for nonvd in NONchkvardims: |
---|
1647 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1648 | varsadd.append(nonvd) |
---|
1649 | |
---|
1650 | ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) |
---|
1651 | |
---|
1652 | # WRFzwind wind extrapolation at a given height using power law computation from WRF |
---|
1653 | # U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1654 | elif diagn == 'WRFzwind': |
---|
1655 | var0 = ncobj.variables[depvars[0]][:] |
---|
1656 | var1 = ncobj.variables[depvars[1]][:] |
---|
1657 | var2 = WRFz |
---|
1658 | var3 = ncobj.variables[depvars[3]][:] |
---|
1659 | var4 = ncobj.variables[depvars[4]][:] |
---|
1660 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1661 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1662 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1663 | |
---|
1664 | # un-staggering 3D winds |
---|
1665 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1666 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1667 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1668 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1669 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1670 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1671 | |
---|
1672 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ |
---|
1673 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1674 | |
---|
1675 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1676 | varsadd = [] |
---|
1677 | for nonvd in NONchkvardims: |
---|
1678 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1679 | varsadd.append(nonvd) |
---|
1680 | |
---|
1681 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1682 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1683 | |
---|
1684 | # WRFzwind wind extrapolation at a given hieght using logarithmic law computation |
---|
1685 | # from WRF U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1686 | elif diagn == 'WRFzwind_log': |
---|
1687 | var0 = ncobj.variables[depvars[0]][:] |
---|
1688 | var1 = ncobj.variables[depvars[1]][:] |
---|
1689 | var2 = WRFz |
---|
1690 | var3 = ncobj.variables[depvars[3]][:] |
---|
1691 | var4 = ncobj.variables[depvars[4]][:] |
---|
1692 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1693 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1694 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1695 | |
---|
1696 | # un-staggering 3D winds |
---|
1697 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1698 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1699 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1700 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1701 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1702 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1703 | |
---|
1704 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind_log(unvar0, \ |
---|
1705 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1706 | |
---|
1707 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1708 | varsadd = [] |
---|
1709 | for nonvd in NONchkvardims: |
---|
1710 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1711 | varsadd.append(nonvd) |
---|
1712 | |
---|
1713 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1714 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1715 | |
---|
1716 | # WRFzwindMO wind extrapolation at a given height computation using Monin-Obukhow |
---|
1717 | # theory from WRF UST, ZNT, RMOL, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1718 | # NOTE: only useful for [zval] < 80. m |
---|
1719 | elif diagn == 'WRFzwindMO': |
---|
1720 | var0 = ncobj.variables[depvars[0]][:] |
---|
1721 | var1 = ncobj.variables[depvars[1]][:] |
---|
1722 | var2 = ncobj.variables[depvars[2]][:] |
---|
1723 | var3 = ncobj.variables[depvars[3]][:] |
---|
1724 | var4 = ncobj.variables[depvars[4]][:] |
---|
1725 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1726 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1727 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1728 | |
---|
1729 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwindMO(var0, var1,\ |
---|
1730 | var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1731 | |
---|
1732 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1733 | varsadd = [] |
---|
1734 | for nonvd in NONchkvardims: |
---|
1735 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1736 | varsadd.append(nonvd) |
---|
1737 | |
---|
1738 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1739 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1740 | |
---|
1741 | else: |
---|
1742 | print errormsg |
---|
1743 | print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" |
---|
1744 | print ' available diagnostics: ', availdiags |
---|
1745 | quit(-1) |
---|
1746 | |
---|
1747 | newnc.sync() |
---|
1748 | # Adding that additional variables required to compute some diagnostics which |
---|
1749 | # where not in the original file |
---|
1750 | print ' adding additional variables...' |
---|
1751 | for vadd in varsadd: |
---|
1752 | if not gen.searchInlist(newnc.variables.keys(),vadd) and \ |
---|
1753 | dictcompvars.has_key(vadd): |
---|
1754 | attrs = dictcompvars[vadd] |
---|
1755 | vvn = attrs['name'] |
---|
1756 | if not gen.searchInlist(newnc.variables.keys(), vvn): |
---|
1757 | iidvn = dvnames.index(vadd) |
---|
1758 | dnn = dnames[iidvn] |
---|
1759 | if vadd == 'WRFtime': |
---|
1760 | dvarvals = WRFtime[:] |
---|
1761 | newvar = newnc.createVariable(vvn, 'f8', (dnn)) |
---|
1762 | newvar[:] = dvarvals |
---|
1763 | for attn in attrs.keys(): |
---|
1764 | if attn != 'name': |
---|
1765 | attv = attrs[attn] |
---|
1766 | ncvar.set_attribute(newvar, attn, attv) |
---|
1767 | |
---|
1768 | # end of diagnostics |
---|
1769 | |
---|
1770 | # Global attributes |
---|
1771 | ## |
---|
1772 | ncvar.add_global_PyNCplot(newnc, main, None, '2.0') |
---|
1773 | |
---|
1774 | gorigattrs = ncobj.ncattrs() |
---|
1775 | for attr in gorigattrs: |
---|
1776 | attrv = ncobj.getncattr(attr) |
---|
1777 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
1778 | |
---|
1779 | ncobj.close() |
---|
1780 | newnc.close() |
---|
1781 | |
---|
1782 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|