1 | # Python script to comput diagnostics |
---|
2 | # L. Fita, LMD. CNR, UPMC-Jussieu, Paris, France |
---|
3 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
4 | # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 |
---|
5 | # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
6 | # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
7 | |
---|
8 | ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
9 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
10 | |
---|
11 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
12 | # compute_accum: Function to compute the accumulation of a variable |
---|
13 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
14 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
15 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
16 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
17 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
18 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
19 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
20 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
21 | # compute_prw: Function to compute water vapour path (prw) |
---|
22 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
23 | # compute_td: Function to compute the dew point temperature |
---|
24 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
25 | # compute_wds: Function to compute the wind direction |
---|
26 | # compute_wss: Function to compute the wind speed |
---|
27 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
28 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
29 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
30 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
31 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
32 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' |
---|
33 | |
---|
34 | # Others just providing variable values |
---|
35 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
36 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
37 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
38 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
39 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
40 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
41 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
42 | |
---|
43 | from optparse import OptionParser |
---|
44 | import numpy as np |
---|
45 | from netCDF4 import Dataset as NetCDFFile |
---|
46 | import os |
---|
47 | import re |
---|
48 | import nc_var_tools as ncvar |
---|
49 | import generic_tools as gen |
---|
50 | import datetime as dtime |
---|
51 | import module_ForDiag as fdin |
---|
52 | import diag_tools as diag |
---|
53 | |
---|
54 | main = 'diagnostics.py' |
---|
55 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
56 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
57 | |
---|
58 | # Constants |
---|
59 | grav = 9.81 |
---|
60 | |
---|
61 | |
---|
62 | ####### ###### ##### #### ### ## # |
---|
63 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
64 | |
---|
65 | parser = OptionParser() |
---|
66 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
67 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
68 | help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, |
---|
69 | metavar="LABELS") |
---|
70 | parser.add_option("-v", "--variables", dest="varns", |
---|
71 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
72 | |
---|
73 | (opts, args) = parser.parse_args() |
---|
74 | |
---|
75 | ####### ####### |
---|
76 | ## MAIN |
---|
77 | ####### |
---|
78 | availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'deaccum', 'LMDZrh', 'mslp', \ |
---|
79 | 'OMEGAw', 'RAINTOT', \ |
---|
80 | 'rvors', 'td', 'turbulence', 'WRFcape_afwa', 'WRFclivi', 'WRFclwvl', 'WRFgeop', \ |
---|
81 | 'WRFmrso', 'WRFp', \ |
---|
82 | 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ |
---|
83 | 'WRFheightrel', 'WRFua', 'WRFva', 'WRzwind'] |
---|
84 | |
---|
85 | methods = ['accum', 'deaccum'] |
---|
86 | |
---|
87 | # Variables not to check |
---|
88 | NONcheckingvars = ['cllmh', 'deaccum', 'TSrhs', 'TStd', 'TSwds', 'TSwss', 'WRFbils', \ |
---|
89 | 'WRFclivi', 'WRFclwvl', 'WRFdens', 'WRFgeop', \ |
---|
90 | 'WRFp', 'WRFtd', \ |
---|
91 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', 'WRFrhs', 'WRFrvors', \ |
---|
92 | 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz'] |
---|
93 | |
---|
94 | NONchkvardims = ['WRFtime'] |
---|
95 | |
---|
96 | ofile = 'diagnostics.nc' |
---|
97 | |
---|
98 | dimns = opts.dimns |
---|
99 | varns = opts.varns |
---|
100 | |
---|
101 | # Special method. knowing variable combination |
---|
102 | ## |
---|
103 | if opts.dimns == 'variable_combo': |
---|
104 | print warnmsg |
---|
105 | print ' ' + main + ': knowing variable combination !!!' |
---|
106 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
107 | print ' COMBO: ' + combination |
---|
108 | quit(-1) |
---|
109 | |
---|
110 | if not os.path.isfile(opts.ncfile): |
---|
111 | print errormsg |
---|
112 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
113 | quit(-1) |
---|
114 | |
---|
115 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
116 | |
---|
117 | # Looking for specific variables that might be use in more than one diagnostic |
---|
118 | WRFgeop_compute = False |
---|
119 | WRFp_compute = False |
---|
120 | WRFt_compute = False |
---|
121 | WRFrh_compute = False |
---|
122 | WRFght_compute = False |
---|
123 | WRFdens_compute = False |
---|
124 | WRFpos_compute = False |
---|
125 | WRFtime_compute = False |
---|
126 | WRFz_compute = False |
---|
127 | |
---|
128 | # File creation |
---|
129 | newnc = NetCDFFile(ofile,'w') |
---|
130 | |
---|
131 | # dimensions |
---|
132 | dimvalues = dimns.split(',') |
---|
133 | dnames = [] |
---|
134 | dvnames = [] |
---|
135 | |
---|
136 | for dimval in dimvalues: |
---|
137 | dn = dimval.split('@')[0] |
---|
138 | dnv = dimval.split('@')[1] |
---|
139 | dnames.append(dn) |
---|
140 | dvnames.append(dnv) |
---|
141 | # Is there any dimension-variable which should be computed? |
---|
142 | if dnv == 'WRFgeop':WRFgeop_compute = True |
---|
143 | if dnv == 'WRFp': WRFp_compute = True |
---|
144 | if dnv == 'WRFt': WRFt_compute = True |
---|
145 | if dnv == 'WRFrh': WRFrh_compute = True |
---|
146 | if dnv == 'WRFght': WRFght_compute = True |
---|
147 | if dnv == 'WRFdens': WRFdens_compute = True |
---|
148 | if dnv == 'WRFpos': WRFpos_compute = True |
---|
149 | if dnv == 'WRFtime': WRFtime_compute = True |
---|
150 | if dnv == 'WRFz':WRFz_compute = True |
---|
151 | |
---|
152 | # diagnostics to compute |
---|
153 | diags = varns.split(',') |
---|
154 | Ndiags = len(diags) |
---|
155 | |
---|
156 | for idiag in range(Ndiags): |
---|
157 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
158 | depvars = diags[idiag].split('|')[1] |
---|
159 | if depvars == 'WRFgeop':WRFgeop_compute = True |
---|
160 | if depvars == 'WRFp': WRFp_compute = True |
---|
161 | if depvars == 'WRFt': WRFt_compute = True |
---|
162 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
163 | if depvars == 'WRFght': WRFght_compute = True |
---|
164 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
165 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
166 | if depvars == 'WRFtime': WRFtime_compute = True |
---|
167 | if depvars == 'WRFz': WRFz_compute = True |
---|
168 | else: |
---|
169 | depvars = diags[idiag].split('|')[1].split('@') |
---|
170 | if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True |
---|
171 | if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
172 | if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
173 | if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
174 | if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
175 | if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
176 | if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
177 | if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True |
---|
178 | if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True |
---|
179 | |
---|
180 | # Dictionary with the new computed variables to be able to add them |
---|
181 | dictcompvars = {} |
---|
182 | if WRFgeop_compute: |
---|
183 | print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' |
---|
184 | dimv = ncobj.variables['PH'].shape |
---|
185 | WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
186 | |
---|
187 | # Attributes of the variable |
---|
188 | Vvals = gen.variables_values('WRFgeop') |
---|
189 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
190 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
191 | |
---|
192 | if WRFp_compute: |
---|
193 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
194 | dimv = ncobj.variables['P'].shape |
---|
195 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
196 | |
---|
197 | # Attributes of the variable |
---|
198 | Vvals = gen.variables_values('WRFp') |
---|
199 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
200 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
201 | |
---|
202 | if WRFght_compute: |
---|
203 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
204 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
205 | |
---|
206 | # Attributes of the variable |
---|
207 | Vvals = gen.variables_values('WRFght') |
---|
208 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
209 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
210 | |
---|
211 | if WRFrh_compute: |
---|
212 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
213 | ' equation (T,P) ...' |
---|
214 | p0=100000. |
---|
215 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
216 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
217 | qv = ncobj.variables['QVAPOR'][:] |
---|
218 | |
---|
219 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
220 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
221 | |
---|
222 | WRFrh = qv/data2 |
---|
223 | |
---|
224 | # Attributes of the variable |
---|
225 | Vvals = gen.variables_values('WRFrh') |
---|
226 | dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
227 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
228 | |
---|
229 | if WRFt_compute: |
---|
230 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
231 | p0=100000. |
---|
232 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
233 | |
---|
234 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
235 | |
---|
236 | # Attributes of the variable |
---|
237 | Vvals = gen.variables_values('WRFt') |
---|
238 | dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
239 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
240 | |
---|
241 | if WRFdens_compute: |
---|
242 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
243 | 'DNW)/g ...' |
---|
244 | |
---|
245 | # Just we need in in absolute values: Size of the central grid cell |
---|
246 | ## dxval = ncobj.getncattr('DX') |
---|
247 | ## dyval = ncobj.getncattr('DY') |
---|
248 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
249 | ## area = dxval*dyval*mapfac |
---|
250 | |
---|
251 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
252 | dnw = ncobj.variables['DNW'][:] |
---|
253 | |
---|
254 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
255 | dtype=np.float) |
---|
256 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
257 | |
---|
258 | for it in range(mu.shape[0]): |
---|
259 | for iz in range(dnw.shape[1]): |
---|
260 | levval.fill(np.abs(dnw[it,iz])) |
---|
261 | WRFdens[it,iz,:,:] = levval |
---|
262 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
263 | |
---|
264 | # Attributes of the variable |
---|
265 | Vvals = gen.variables_values('WRFdens') |
---|
266 | dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
267 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
268 | |
---|
269 | if WRFpos_compute: |
---|
270 | # WRF positions from the lowest-leftest corner of the matrix |
---|
271 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
272 | 'DX*x**2)*MAPFAC_M ...' |
---|
273 | |
---|
274 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
275 | |
---|
276 | distx = np.float(ncobj.getncattr('DX')) |
---|
277 | disty = np.float(ncobj.getncattr('DY')) |
---|
278 | |
---|
279 | print 'distx:',distx,'disty:',disty |
---|
280 | |
---|
281 | dx = mapfac.shape[2] |
---|
282 | dy = mapfac.shape[1] |
---|
283 | dt = mapfac.shape[0] |
---|
284 | |
---|
285 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
286 | |
---|
287 | for i in range(1,dx): |
---|
288 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
289 | for j in range(1,dy): |
---|
290 | i=0 |
---|
291 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
292 | for i in range(1,dx): |
---|
293 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
294 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
295 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
296 | |
---|
297 | for it in range(1,dt): |
---|
298 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
299 | |
---|
300 | if WRFtime_compute: |
---|
301 | print ' ' + main + ': computing time from WRF as CFtime(Times) ...' |
---|
302 | |
---|
303 | refdate='19491201000000' |
---|
304 | tunitsval='minutes' |
---|
305 | |
---|
306 | timeobj = ncobj.variables['Times'] |
---|
307 | timewrfv = timeobj[:] |
---|
308 | |
---|
309 | yrref=refdate[0:4] |
---|
310 | monref=refdate[4:6] |
---|
311 | dayref=refdate[6:8] |
---|
312 | horref=refdate[8:10] |
---|
313 | minref=refdate[10:12] |
---|
314 | secref=refdate[12:14] |
---|
315 | |
---|
316 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
317 | ':' + secref |
---|
318 | |
---|
319 | dt = timeobj.shape[0] |
---|
320 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
321 | |
---|
322 | for it in range(dt): |
---|
323 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
324 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
325 | |
---|
326 | tunits = tunitsval + ' since ' + refdateS |
---|
327 | |
---|
328 | # Attributes of the variable |
---|
329 | dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ |
---|
330 | 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} |
---|
331 | |
---|
332 | if WRFz_compute: |
---|
333 | print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ |
---|
334 | 'unstagger(PH + PHB)/9.8-hgt' |
---|
335 | dimv = ncobj.variables['PH'].shape |
---|
336 | WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 |
---|
337 | |
---|
338 | unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) |
---|
339 | unzg = np.zeros(unzgd, dtype=np.float) |
---|
340 | unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) |
---|
341 | |
---|
342 | WRFz = np.zeros(unzgd, dtype=np.float) |
---|
343 | for iz in range(dimv[1]-1): |
---|
344 | WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] |
---|
345 | |
---|
346 | # Attributes of the variable |
---|
347 | Vvals = gen.variables_values('WRFz') |
---|
348 | dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
349 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
350 | |
---|
351 | ### ## # |
---|
352 | # Going for the diagnostics |
---|
353 | ### ## # |
---|
354 | print ' ' + main + ' ...' |
---|
355 | varsadd = [] |
---|
356 | |
---|
357 | for idiag in range(Ndiags): |
---|
358 | print ' diagnostic:',diags[idiag] |
---|
359 | diagn = diags[idiag].split('|')[0] |
---|
360 | depvars = diags[idiag].split('|')[1].split('@') |
---|
361 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
362 | depvars = diags[idiag].split('|')[1].split('@') |
---|
363 | if depvars[0] == 'deaccum': diagn='deaccum' |
---|
364 | if depvars[0] == 'accum': diagn='accum' |
---|
365 | for depv in depvars: |
---|
366 | if not ncobj.variables.has_key(depv) and not \ |
---|
367 | gen.searchInlist(NONcheckingvars, depv) and \ |
---|
368 | not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum' \ |
---|
369 | and not depvars[0] == 'accum' and not depv[0:2] == 'z=': |
---|
370 | print errormsg |
---|
371 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
372 | "' does not have variable '" + depv + "' !!" |
---|
373 | quit(-1) |
---|
374 | else: |
---|
375 | depvars = diags[idiag].split('|')[1] |
---|
376 | if not ncobj.variables.has_key(depvars) and not \ |
---|
377 | gen.searchInlist(NONcheckingvars, depvars) and \ |
---|
378 | not gen.searchInlist(methods, depvars): |
---|
379 | print errormsg |
---|
380 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
381 | "' does not have variable '" + depvars + "' !!" |
---|
382 | quit(-1) |
---|
383 | |
---|
384 | print "\n Computing '" + diagn + "' from: ", depvars, '...' |
---|
385 | |
---|
386 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC |
---|
387 | if diagn == 'ACRAINTOT': |
---|
388 | |
---|
389 | var0 = ncobj.variables[depvars[0]] |
---|
390 | var1 = ncobj.variables[depvars[1]] |
---|
391 | diagout = var0[:] + var1[:] |
---|
392 | |
---|
393 | dnamesvar = var0.dimensions |
---|
394 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
395 | |
---|
396 | # Removing the nonChecking variable-dimensions from the initial list |
---|
397 | varsadd = [] |
---|
398 | for nonvd in NONchkvardims: |
---|
399 | if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) |
---|
400 | varsadd.append(nonvd) |
---|
401 | |
---|
402 | ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) |
---|
403 | |
---|
404 | # accum: acumulation of any variable as (Variable, time [as [tunits] |
---|
405 | # from/since ....], newvarname) |
---|
406 | elif diagn == 'accum': |
---|
407 | |
---|
408 | var0 = ncobj.variables[depvars[0]] |
---|
409 | var1 = ncobj.variables[depvars[1]] |
---|
410 | |
---|
411 | dnamesvar = var0.dimensions |
---|
412 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
413 | |
---|
414 | diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) |
---|
415 | |
---|
416 | CFvarn = ncvar.variables_values(depvars[0])[0] |
---|
417 | |
---|
418 | # Removing the flux |
---|
419 | if depvars[1] == 'XTIME': |
---|
420 | dtimeunits = var1.getncattr('description') |
---|
421 | tunits = dtimeunits.split(' ')[0] |
---|
422 | else: |
---|
423 | dtimeunits = var1.getncattr('units') |
---|
424 | tunits = dtimeunits.split(' ')[0] |
---|
425 | |
---|
426 | dtime = (var1[1] - var1[0])*timeunits_seconds(tunits) |
---|
427 | |
---|
428 | ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) |
---|
429 | |
---|
430 | # cllmh with cldfra, pres |
---|
431 | elif diagn == 'cllmh': |
---|
432 | |
---|
433 | var0 = ncobj.variables[depvars[0]] |
---|
434 | if depvars[1] == 'WRFp': |
---|
435 | var1 = WRFp |
---|
436 | else: |
---|
437 | var01 = ncobj.variables[depvars[1]] |
---|
438 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
439 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
440 | else: |
---|
441 | var1 = var01 |
---|
442 | |
---|
443 | diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) |
---|
444 | |
---|
445 | # Removing the nonChecking variable-dimensions from the initial list |
---|
446 | varsadd = [] |
---|
447 | for nonvd in NONchkvardims: |
---|
448 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
449 | varsadd.append(nonvd) |
---|
450 | |
---|
451 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
452 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
453 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
454 | |
---|
455 | # clt with cldfra |
---|
456 | elif diagn == 'clt': |
---|
457 | |
---|
458 | var0 = ncobj.variables[depvars] |
---|
459 | diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) |
---|
460 | |
---|
461 | # Removing the nonChecking variable-dimensions from the initial list |
---|
462 | varsadd = [] |
---|
463 | for nonvd in NONchkvardims: |
---|
464 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
465 | varsadd.append(nonvd) |
---|
466 | |
---|
467 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
468 | |
---|
469 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
470 | # from/since ....], newvarname) |
---|
471 | elif diagn == 'deaccum': |
---|
472 | |
---|
473 | var0 = ncobj.variables[depvars[1]] |
---|
474 | var1 = ncobj.variables[depvars[2]] |
---|
475 | |
---|
476 | dnamesvar = var0.dimensions |
---|
477 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
478 | |
---|
479 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
480 | |
---|
481 | # Transforming to a flux |
---|
482 | if depvars[2] == 'XTIME': |
---|
483 | dtimeunits = var1.getncattr('description') |
---|
484 | tunits = dtimeunits.split(' ')[0] |
---|
485 | else: |
---|
486 | dtimeunits = var1.getncattr('units') |
---|
487 | tunits = dtimeunits.split(' ')[0] |
---|
488 | |
---|
489 | dtime = (var1[1] - var1[0])*timeunits_seconds(tunits) |
---|
490 | ncvar.insert_variable(ncobj, depvars[3], diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
491 | |
---|
492 | # LMDZrh (pres, t, r) |
---|
493 | elif diagn == 'LMDZrh': |
---|
494 | |
---|
495 | var0 = ncobj.variables[depvars[0]][:] |
---|
496 | var1 = ncobj.variables[depvars[1]][:] |
---|
497 | var2 = ncobj.variables[depvars[2]][:] |
---|
498 | |
---|
499 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) |
---|
500 | ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) |
---|
501 | |
---|
502 | # LMDZrhs (psol, t2m, q2m) |
---|
503 | elif diagn == 'LMDZrhs': |
---|
504 | |
---|
505 | var0 = ncobj.variables[depvars[0]][:] |
---|
506 | var1 = ncobj.variables[depvars[1]][:] |
---|
507 | var2 = ncobj.variables[depvars[2]][:] |
---|
508 | |
---|
509 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
510 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
511 | |
---|
512 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
513 | |
---|
514 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
515 | |
---|
516 | # mrso: total soil moisture SMOIS, DZS |
---|
517 | elif diagn == 'WRFmrso': |
---|
518 | |
---|
519 | var0 = ncobj.variables[depvars[0]][:] |
---|
520 | var10 = ncobj.variables[depvars[1]][:] |
---|
521 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
522 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
523 | |
---|
524 | var1 = var0.copy()*0. |
---|
525 | var2 = var0.copy()*0.+1. |
---|
526 | # Must be a better way.... |
---|
527 | for j in range(var0.shape[2]): |
---|
528 | for i in range(var0.shape[3]): |
---|
529 | var1[:,:,j,i] = var10 |
---|
530 | |
---|
531 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
532 | dnamesvar, dvnamesvar) |
---|
533 | |
---|
534 | # Removing the nonChecking variable-dimensions from the initial list |
---|
535 | varsadd = [] |
---|
536 | diagoutvd = list(dvnames) |
---|
537 | for nonvd in NONchkvardims: |
---|
538 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
539 | varsadd.append(nonvd) |
---|
540 | ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) |
---|
541 | |
---|
542 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
543 | elif diagn == 'mslp' or diagn == 'WRFmslp': |
---|
544 | |
---|
545 | var1 = ncobj.variables[depvars[1]][:] |
---|
546 | var2 = ncobj.variables[depvars[2]][:] |
---|
547 | var4 = ncobj.variables[depvars[4]][:] |
---|
548 | |
---|
549 | if diagn == 'WRFmslp': |
---|
550 | var0 = WRFp |
---|
551 | var3 = WRFt |
---|
552 | dnamesvar = ncobj.variables['P'].dimensions |
---|
553 | else: |
---|
554 | var0 = ncobj.variables[depvars[0]][:] |
---|
555 | var3 = ncobj.variables[depvars[3]][:] |
---|
556 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
557 | |
---|
558 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
559 | |
---|
560 | diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ |
---|
561 | dnamesvar, dvnamesvar) |
---|
562 | |
---|
563 | # Removing the nonChecking variable-dimensions from the initial list |
---|
564 | varsadd = [] |
---|
565 | diagoutvd = list(dvnames) |
---|
566 | for nonvd in NONchkvardims: |
---|
567 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
568 | varsadd.append(nonvd) |
---|
569 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
570 | |
---|
571 | # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) |
---|
572 | elif diagn == 'OMEGAw': |
---|
573 | |
---|
574 | var0 = ncobj.variables[depvars[0]][:] |
---|
575 | var1 = ncobj.variables[depvars[1]][:] |
---|
576 | var2 = ncobj.variables[depvars[2]][:] |
---|
577 | |
---|
578 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
579 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
580 | |
---|
581 | diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
582 | |
---|
583 | ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) |
---|
584 | |
---|
585 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC) / dTime |
---|
586 | elif diagn == 'RAINTOT': |
---|
587 | |
---|
588 | var0 = ncobj.variables[depvars[0]] |
---|
589 | var1 = ncobj.variables[depvars[1]] |
---|
590 | if depvars[2] != 'WRFtime': |
---|
591 | var2 = ncobj.variables[depvars[2]] |
---|
592 | else: |
---|
593 | var2 = np.arange(var0.shape[0], dtype=int) |
---|
594 | |
---|
595 | var = var0[:] + var1[:] |
---|
596 | |
---|
597 | dnamesvar = var0.dimensions |
---|
598 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
599 | |
---|
600 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
601 | |
---|
602 | # Transforming to a flux |
---|
603 | if var2.shape[0] > 1: |
---|
604 | if depvars[2] != 'WRFtime': |
---|
605 | dtimeunits = var2.getncattr('units') |
---|
606 | tunits = dtimeunits.split(' ')[0] |
---|
607 | |
---|
608 | dtime = (var2[1] - var2[0])*timeunits_seconds(tunits) |
---|
609 | else: |
---|
610 | var2 = ncobj.variables['Times'] |
---|
611 | time1 = var2[0,:] |
---|
612 | time2 = var2[1,:] |
---|
613 | tmf1 = '' |
---|
614 | tmf2 = '' |
---|
615 | for ic in range(len(time1)): |
---|
616 | tmf1 = tmf1 + time1[ic] |
---|
617 | tmf2 = tmf2 + time2[ic] |
---|
618 | dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
619 | dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
620 | diffdate12 = dtdate2 - dtdate1 |
---|
621 | dtime = diffdate12.total_seconds() |
---|
622 | print 'dtime:',dtime |
---|
623 | else: |
---|
624 | print warnmsg |
---|
625 | print ' ' + main + ": only 1 time-step for '" + diag + "' !!" |
---|
626 | print ' leaving a zero value!' |
---|
627 | diagout = var0[:]*0. |
---|
628 | dtime=1. |
---|
629 | |
---|
630 | # Removing the nonChecking variable-dimensions from the initial list |
---|
631 | varsadd = [] |
---|
632 | for nonvd in NONchkvardims: |
---|
633 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
634 | varsadd.append(nonvd) |
---|
635 | |
---|
636 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
637 | |
---|
638 | # rhs (psfc, t, q) from TimeSeries files |
---|
639 | elif diagn == 'TSrhs': |
---|
640 | |
---|
641 | p0=100000. |
---|
642 | var0 = ncobj.variables[depvars[0]][:] |
---|
643 | var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) |
---|
644 | var2 = ncobj.variables[depvars[2]][:] |
---|
645 | |
---|
646 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
647 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
648 | |
---|
649 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
650 | |
---|
651 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
652 | |
---|
653 | # slw: total soil liquid water SH2O, DZS |
---|
654 | elif diagn == 'WRFslw': |
---|
655 | |
---|
656 | var0 = ncobj.variables[depvars[0]][:] |
---|
657 | var10 = ncobj.variables[depvars[1]][:] |
---|
658 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
659 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
660 | |
---|
661 | var1 = var0.copy()*0. |
---|
662 | var2 = var0.copy()*0.+1. |
---|
663 | # Must be a better way.... |
---|
664 | for j in range(var0.shape[2]): |
---|
665 | for i in range(var0.shape[3]): |
---|
666 | var1[:,:,j,i] = var10 |
---|
667 | |
---|
668 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
669 | dnamesvar, dvnamesvar) |
---|
670 | |
---|
671 | # Removing the nonChecking variable-dimensions from the initial list |
---|
672 | varsadd = [] |
---|
673 | diagoutvd = list(dvnames) |
---|
674 | for nonvd in NONchkvardims: |
---|
675 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
676 | varsadd.append(nonvd) |
---|
677 | ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) |
---|
678 | |
---|
679 | # td (psfc, t, q) from TimeSeries files |
---|
680 | elif diagn == 'TStd' or diagn == 'td': |
---|
681 | |
---|
682 | var0 = ncobj.variables[depvars[0]][:] |
---|
683 | var1 = ncobj.variables[depvars[1]][:] - 273.15 |
---|
684 | var2 = ncobj.variables[depvars[2]][:] |
---|
685 | |
---|
686 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
687 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
688 | |
---|
689 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
690 | |
---|
691 | ncvar.insert_variable(ncobj, 'tds', diagout, diagoutd, diagoutvd, newnc) |
---|
692 | |
---|
693 | # td (psfc, t, q) from TimeSeries files |
---|
694 | elif diagn == 'TStdC' or diagn == 'tdC': |
---|
695 | |
---|
696 | var0 = ncobj.variables[depvars[0]][:] |
---|
697 | # Temperature is already in degrees Celsius |
---|
698 | var1 = ncobj.variables[depvars[1]][:] |
---|
699 | var2 = ncobj.variables[depvars[2]][:] |
---|
700 | |
---|
701 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
702 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
703 | |
---|
704 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
705 | |
---|
706 | ncvar.insert_variable(ncobj, 'tds', diagout, diagoutd, diagoutvd, newnc) |
---|
707 | |
---|
708 | # wds (u, v) |
---|
709 | elif diagn == 'TSwds' or diagn == 'wds' : |
---|
710 | |
---|
711 | var0 = ncobj.variables[depvars[0]][:] |
---|
712 | var1 = ncobj.variables[depvars[1]][:] |
---|
713 | |
---|
714 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
715 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
716 | |
---|
717 | diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) |
---|
718 | |
---|
719 | ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) |
---|
720 | |
---|
721 | # wss (u, v) |
---|
722 | elif diagn == 'TSwss' or diagn == 'wss': |
---|
723 | |
---|
724 | var0 = ncobj.variables[depvars[0]][:] |
---|
725 | var1 = ncobj.variables[depvars[1]][:] |
---|
726 | |
---|
727 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
728 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
729 | |
---|
730 | diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) |
---|
731 | |
---|
732 | ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) |
---|
733 | |
---|
734 | # turbulence (var) |
---|
735 | elif diagn == 'turbulence': |
---|
736 | |
---|
737 | var0 = ncobj.variables[depvars][:] |
---|
738 | |
---|
739 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
740 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
741 | |
---|
742 | diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
743 | valsvar = gen.variables_values(depvars) |
---|
744 | |
---|
745 | newvarn = depvars + 'turb' |
---|
746 | print main + '; Lluis newvarn:', newvarn |
---|
747 | ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, |
---|
748 | diagoutvd, newnc) |
---|
749 | print main + '; Lluis variables:', newnc.variables.keys() |
---|
750 | varobj = newnc.variables[newvarn] |
---|
751 | attrv = varobj.long_name |
---|
752 | attr = varobj.delncattr('long_name') |
---|
753 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
754 | " Taylor decomposition turbulence term") |
---|
755 | |
---|
756 | # WRFbils fom WRF as HFX + LH |
---|
757 | elif diagn == 'WRFbils': |
---|
758 | |
---|
759 | var0 = ncobj.variables[depvars[0]][:] |
---|
760 | var1 = ncobj.variables[depvars[1]][:] |
---|
761 | |
---|
762 | diagout = var0 + var1 |
---|
763 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
764 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
765 | |
---|
766 | ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) |
---|
767 | |
---|
768 | # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' |
---|
769 | # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT |
---|
770 | elif diagn == 'WRFcape_afwa': |
---|
771 | var0 = WRFt |
---|
772 | var1 = WRFrh |
---|
773 | var2 = WRFp |
---|
774 | dz = WRFgeop.shape[1] |
---|
775 | # de-staggering |
---|
776 | var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:]) |
---|
777 | var4 = ncobj.variables[depvars[4]][0,:,:] |
---|
778 | |
---|
779 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
780 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
781 | |
---|
782 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
783 | diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ |
---|
784 | diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ |
---|
785 | dvnamesvar) |
---|
786 | |
---|
787 | # Removing the nonChecking variable-dimensions from the initial list |
---|
788 | varsadd = [] |
---|
789 | for nonvd in NONchkvardims: |
---|
790 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
791 | varsadd.append(nonvd) |
---|
792 | |
---|
793 | ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) |
---|
794 | ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) |
---|
795 | ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) |
---|
796 | ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) |
---|
797 | ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) |
---|
798 | |
---|
799 | # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL |
---|
800 | elif diagn == 'WRFclivi': |
---|
801 | |
---|
802 | var0 = WRFdens |
---|
803 | qtot = ncobj.variables[depvars[1]] |
---|
804 | qtotv = qtot[:] |
---|
805 | Nspecies = len(depvars) - 2 |
---|
806 | for iv in range(Nspecies): |
---|
807 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
808 | var1 = ncobj.variables[depvars[iv+2]][:] |
---|
809 | qtotv = qtotv + var1 |
---|
810 | |
---|
811 | dnamesvar = list(qtot.dimensions) |
---|
812 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
813 | |
---|
814 | diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) |
---|
815 | |
---|
816 | # Removing the nonChecking variable-dimensions from the initial list |
---|
817 | varsadd = [] |
---|
818 | diagoutvd = list(dvnames) |
---|
819 | for nonvd in NONchkvardims: |
---|
820 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
821 | varsadd.append(nonvd) |
---|
822 | ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) |
---|
823 | |
---|
824 | # WRFclwvl WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL |
---|
825 | elif diagn == 'WRFclwvl': |
---|
826 | |
---|
827 | var0 = WRFdens |
---|
828 | qtot = ncobj.variables[depvars[1]] |
---|
829 | qtotv = ncobj.variables[depvars[1]] |
---|
830 | Nspecies = len(depvars) - 2 |
---|
831 | for iv in range(Nspecies): |
---|
832 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
833 | var1 = ncobj.variables[depvars[iv+2]] |
---|
834 | qtotv = qtotv + var1[:] |
---|
835 | |
---|
836 | dnamesvar = list(qtot.dimensions) |
---|
837 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
838 | |
---|
839 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
840 | |
---|
841 | # Removing the nonChecking variable-dimensions from the initial list |
---|
842 | varsadd = [] |
---|
843 | diagoutvd = list(dvnames) |
---|
844 | for nonvd in NONchkvardims: |
---|
845 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
846 | varsadd.append(nonvd) |
---|
847 | ncvar.insert_variable(ncobj, 'clwvl', diagout, diagoutd, diagoutvd, newnc) |
---|
848 | |
---|
849 | # WRFgeop geopotential from WRF as PH + PHB |
---|
850 | elif diagn == 'WRFgeop': |
---|
851 | var0 = ncobj.variables[depvars[0]][:] |
---|
852 | var1 = ncobj.variables[depvars[1]][:] |
---|
853 | |
---|
854 | # de-staggering geopotential |
---|
855 | diagout0 = var0 + var1 |
---|
856 | dt = diagout0.shape[0] |
---|
857 | dz = diagout0.shape[1] |
---|
858 | dy = diagout0.shape[2] |
---|
859 | dx = diagout0.shape[3] |
---|
860 | |
---|
861 | diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) |
---|
862 | diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) |
---|
863 | |
---|
864 | # Removing the nonChecking variable-dimensions from the initial list |
---|
865 | varsadd = [] |
---|
866 | diagoutvd = list(dvnames) |
---|
867 | for nonvd in NONchkvardims: |
---|
868 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
869 | varsadd.append(nonvd) |
---|
870 | |
---|
871 | ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) |
---|
872 | |
---|
873 | # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR |
---|
874 | elif diagn == 'WRFpsl_ptarget': |
---|
875 | var0 = WRFp |
---|
876 | var1 = ncobj.variables[depvars[1]][:] |
---|
877 | var2 = WRFt |
---|
878 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
879 | var4 = ncobj.variables[depvars[4]][:] |
---|
880 | |
---|
881 | dnamesvar = list(ncobj.variables[depvars[4]].dimensions) |
---|
882 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
883 | |
---|
884 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
885 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ |
---|
886 | var3, var4, 700000., dnamesvar, dvnamesvar) |
---|
887 | |
---|
888 | # Removing the nonChecking variable-dimensions from the initial list |
---|
889 | varsadd = [] |
---|
890 | for nonvd in NONchkvardims: |
---|
891 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
892 | varsadd.append(nonvd) |
---|
893 | |
---|
894 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
895 | |
---|
896 | # WRFp pressure from WRF as P + PB |
---|
897 | elif diagn == 'WRFp': |
---|
898 | |
---|
899 | diagout = WRFp |
---|
900 | |
---|
901 | ncvar.insert_variable(ncobj, 'pres', diagout, dnames, dvnames, newnc) |
---|
902 | |
---|
903 | # WRFpos |
---|
904 | elif diagn == 'WRFpos': |
---|
905 | |
---|
906 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
907 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
908 | |
---|
909 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
910 | |
---|
911 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
912 | elif diagn == 'WRFprw': |
---|
913 | |
---|
914 | var0 = WRFdens |
---|
915 | var1 = ncobj.variables[depvars[1]] |
---|
916 | |
---|
917 | dnamesvar = list(var1.dimensions) |
---|
918 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
919 | |
---|
920 | diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
921 | |
---|
922 | # Removing the nonChecking variable-dimensions from the initial list |
---|
923 | varsadd = [] |
---|
924 | diagoutvd = list(dvnames) |
---|
925 | for nonvd in NONchkvardims: |
---|
926 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
927 | varsadd.append(nonvd) |
---|
928 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
929 | |
---|
930 | # WRFrh (P, T, QVAPOR) |
---|
931 | elif diagn == 'WRFrh': |
---|
932 | |
---|
933 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
934 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
935 | |
---|
936 | ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) |
---|
937 | |
---|
938 | # WRFrhs (PSFC, T2, Q2) |
---|
939 | elif diagn == 'WRFrhs': |
---|
940 | |
---|
941 | var0 = ncobj.variables[depvars[0]][:] |
---|
942 | var1 = ncobj.variables[depvars[1]][:] |
---|
943 | var2 = ncobj.variables[depvars[2]][:] |
---|
944 | |
---|
945 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
946 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
947 | |
---|
948 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
949 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
950 | |
---|
951 | # rvors (u10, v10, WRFpos) |
---|
952 | elif diagn == 'WRFrvors': |
---|
953 | |
---|
954 | var0 = ncobj.variables[depvars[0]] |
---|
955 | var1 = ncobj.variables[depvars[1]] |
---|
956 | |
---|
957 | diagout = rotational_z(var0, var1, distx) |
---|
958 | |
---|
959 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
960 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
961 | |
---|
962 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
963 | |
---|
964 | # WRFt (T, P, PB) |
---|
965 | elif diagn == 'WRFt': |
---|
966 | var0 = ncobj.variables[depvars[0]][:] |
---|
967 | var1 = ncobj.variables[depvars[1]][:] |
---|
968 | var2 = ncobj.variables[depvars[2]][:] |
---|
969 | |
---|
970 | p0=100000. |
---|
971 | p=var1 + var2 |
---|
972 | |
---|
973 | WRFt = (var0 + 300.)*(p/p0)**(2./7.) |
---|
974 | |
---|
975 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
976 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
977 | |
---|
978 | # Removing the nonChecking variable-dimensions from the initial list |
---|
979 | varsadd = [] |
---|
980 | diagoutvd = list(dvnames) |
---|
981 | for nonvd in NONchkvardims: |
---|
982 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
983 | varsadd.append(nonvd) |
---|
984 | |
---|
985 | ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) |
---|
986 | |
---|
987 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
988 | elif diagn == 'WRFua': |
---|
989 | var0 = ncobj.variables[depvars[0]][:] |
---|
990 | var1 = ncobj.variables[depvars[1]][:] |
---|
991 | var2 = ncobj.variables[depvars[2]][:] |
---|
992 | var3 = ncobj.variables[depvars[3]][:] |
---|
993 | |
---|
994 | # un-staggering variables |
---|
995 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
996 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
997 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
998 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
999 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1000 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1001 | |
---|
1002 | for iz in range(var0.shape[1]): |
---|
1003 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1004 | |
---|
1005 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1006 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1007 | |
---|
1008 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1009 | varsadd = [] |
---|
1010 | diagoutvd = list(dvnames) |
---|
1011 | for nonvd in NONchkvardims: |
---|
1012 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1013 | varsadd.append(nonvd) |
---|
1014 | |
---|
1015 | ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) |
---|
1016 | |
---|
1017 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
1018 | elif diagn == 'WRFva': |
---|
1019 | var0 = ncobj.variables[depvars[0]][:] |
---|
1020 | var1 = ncobj.variables[depvars[1]][:] |
---|
1021 | var2 = ncobj.variables[depvars[2]][:] |
---|
1022 | var3 = ncobj.variables[depvars[3]][:] |
---|
1023 | |
---|
1024 | # un-staggering variables |
---|
1025 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1026 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1027 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1028 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1029 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1030 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1031 | for iz in range(var0.shape[1]): |
---|
1032 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1033 | |
---|
1034 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1035 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1036 | |
---|
1037 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1038 | varsadd = [] |
---|
1039 | diagoutvd = list(dvnames) |
---|
1040 | for nonvd in NONchkvardims: |
---|
1041 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1042 | varsadd.append(nonvd) |
---|
1043 | ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) |
---|
1044 | |
---|
1045 | # WRFtime |
---|
1046 | elif diagn == 'WRFtime': |
---|
1047 | |
---|
1048 | diagout = WRFtime |
---|
1049 | |
---|
1050 | dnamesvar = ['Time'] |
---|
1051 | dvnamesvar = ['Times'] |
---|
1052 | |
---|
1053 | ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1054 | |
---|
1055 | # ws (U, V) |
---|
1056 | elif diagn == 'ws': |
---|
1057 | |
---|
1058 | var0 = ncobj.variables[depvars[0]][:] |
---|
1059 | var1 = ncobj.variables[depvars[1]][:] |
---|
1060 | # un-staggering variables |
---|
1061 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1062 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1063 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1064 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1065 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1066 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1067 | |
---|
1068 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1069 | diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) |
---|
1070 | |
---|
1071 | # dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1072 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1073 | |
---|
1074 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1075 | varsadd = [] |
---|
1076 | diagoutvd = list(dvnamesvar) |
---|
1077 | for nonvd in NONchkvardims: |
---|
1078 | if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) |
---|
1079 | varsadd.append(nonvd) |
---|
1080 | ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) |
---|
1081 | |
---|
1082 | # wss (u10, v10) |
---|
1083 | elif diagn == 'wss': |
---|
1084 | |
---|
1085 | var0 = ncobj.variables[depvars[0]][:] |
---|
1086 | var1 = ncobj.variables[depvars[1]][:] |
---|
1087 | |
---|
1088 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
1089 | |
---|
1090 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1091 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1092 | |
---|
1093 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1094 | |
---|
1095 | # WRFheight height from WRF geopotential as WRFGeop/g |
---|
1096 | elif diagn == 'WRFheight': |
---|
1097 | |
---|
1098 | diagout = WRFgeop/grav |
---|
1099 | |
---|
1100 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1101 | varsadd = [] |
---|
1102 | diagoutvd = list(dvnames) |
---|
1103 | for nonvd in NONchkvardims: |
---|
1104 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1105 | varsadd.append(nonvd) |
---|
1106 | |
---|
1107 | ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) |
---|
1108 | |
---|
1109 | # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT |
---|
1110 | elif diagn == 'WRFheightrel': |
---|
1111 | var0 = ncobj.variables[depvars[0]][:] |
---|
1112 | var1 = ncobj.variables[depvars[1]][:] |
---|
1113 | var2 = ncobj.variables[depvars[2]][:] |
---|
1114 | |
---|
1115 | dimz = var0.shape[1] |
---|
1116 | diagout = np.zeros(tuple(var0.shape), dtype=np.float) |
---|
1117 | for iz in range(dimz): |
---|
1118 | diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 |
---|
1119 | |
---|
1120 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1121 | varsadd = [] |
---|
1122 | diagoutvd = list(dvnames) |
---|
1123 | for nonvd in NONchkvardims: |
---|
1124 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1125 | varsadd.append(nonvd) |
---|
1126 | |
---|
1127 | ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) |
---|
1128 | |
---|
1129 | # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, |
---|
1130 | elif diagn == 'WRFzmlagen': |
---|
1131 | var0 = ncobj.variables[depvars[0]][:]+300. |
---|
1132 | var1 = ncobj.variables[depvars[1]][:] |
---|
1133 | dimz = var0.shape[1] |
---|
1134 | var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 |
---|
1135 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
1136 | |
---|
1137 | diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ |
---|
1138 | dnames,dvnames) |
---|
1139 | |
---|
1140 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1141 | varsadd = [] |
---|
1142 | for nonvd in NONchkvardims: |
---|
1143 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1144 | varsadd.append(nonvd) |
---|
1145 | |
---|
1146 | ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) |
---|
1147 | |
---|
1148 | # WRFzwind wind extrapolation at a given hieght computation from WRF U, V, WRFz, |
---|
1149 | # U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
1150 | elif diagn == 'WRFzwind': |
---|
1151 | var0 = ncobj.variables[depvars[0]][:] |
---|
1152 | var1 = ncobj.variables[depvars[1]][:] |
---|
1153 | var2 = WRFz |
---|
1154 | var3 = ncobj.variables[depvars[3]][:] |
---|
1155 | var4 = ncobj.variables[depvars[4]][:] |
---|
1156 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
1157 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
1158 | var7 = np.float(depvars[7].split('=')[1]) |
---|
1159 | |
---|
1160 | # un-staggering 3D winds |
---|
1161 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1162 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1163 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1164 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1165 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1166 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1167 | |
---|
1168 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ |
---|
1169 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
1170 | |
---|
1171 | # Removing the nonChecking variable-dimensions from the initial list |
---|
1172 | varsadd = [] |
---|
1173 | for nonvd in NONchkvardims: |
---|
1174 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
1175 | varsadd.append(nonvd) |
---|
1176 | |
---|
1177 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
1178 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
1179 | |
---|
1180 | else: |
---|
1181 | print errormsg |
---|
1182 | print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" |
---|
1183 | print ' available diagnostics: ', availdiags |
---|
1184 | quit(-1) |
---|
1185 | |
---|
1186 | newnc.sync() |
---|
1187 | # Adding that additional variables required to compute some diagnostics which |
---|
1188 | # where not in the original file |
---|
1189 | for vadd in varsadd: |
---|
1190 | if not gen.searchInlist(newnc.variables.keys(),vadd): |
---|
1191 | attrs = dictcompvars[vadd] |
---|
1192 | vvn = attrs['name'] |
---|
1193 | if not gen.searchInlist(newnc.variables.keys(), vvn): |
---|
1194 | iidvn = dvnames.index(vadd) |
---|
1195 | dnn = dnames[iidvn] |
---|
1196 | if vadd == 'WRFtime': |
---|
1197 | dvarvals = WRFtime[:] |
---|
1198 | newvar = newnc.createVariable(vvn, 'f8', (dnn)) |
---|
1199 | newvar[:] = dvarvals |
---|
1200 | for attn in attrs.keys(): |
---|
1201 | if attn != 'name': |
---|
1202 | attv = attrs[attn] |
---|
1203 | ncvar.set_attribute(newvar, attn, attv) |
---|
1204 | |
---|
1205 | # end of diagnostics |
---|
1206 | |
---|
1207 | # Global attributes |
---|
1208 | ## |
---|
1209 | ncvar.add_global_PyNCplot(newnc, main, None, '2.0') |
---|
1210 | |
---|
1211 | gorigattrs = ncobj.ncattrs() |
---|
1212 | for attr in gorigattrs: |
---|
1213 | attrv = ncobj.getncattr(attr) |
---|
1214 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
1215 | |
---|
1216 | ncobj.close() |
---|
1217 | newnc.close() |
---|
1218 | |
---|
1219 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|