# Python script to comput diagnostics # L. Fita, LMD. CNR, UPMC-Jussieu, Paris, France # File diagnostics.inf provides the combination of variables to get the desired diagnostic # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) # compute_accum: Function to compute the accumulation of a variable # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ # compute_clivi: Function to compute cloud-ice water path (clivi) # compute_clwvl: Function to compute condensed water path (clwvl) # compute_deaccum: Function to compute the deaccumulation of a variable # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] # compute_prw: Function to compute water vapour path (prw) # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' # compute_td: Function to compute the dew point temperature # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' # compute_wds: Function to compute the wind direction # compute_wss: Function to compute the wind speed # compute_WRFuava: Function to compute geographical rotated WRF 3D winds # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds # derivate_centered: Function to compute the centered derivate of a given field # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' # Others just providing variable values # var_cllmh: Fcuntion to compute cllmh on a 1D column # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values # var_mslp: Fcuntion to compute mean sea-level pressure # var_virtualTemp: This function returns virtual temperature in K, # var_WRFtime: Function to copmute CFtimes from WRFtime variable # rotational_z: z-component of the rotatinoal of horizontal vectorial field # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable from optparse import OptionParser import numpy as np from netCDF4 import Dataset as NetCDFFile import os import re import nc_var_tools as ncvar import generic_tools as gen import datetime as dtime import module_ForDiag as fdin import diag_tools as diag main = 'diagnostics.py' errormsg = 'ERROR -- error -- ERROR -- error' warnmsg = 'WARNING -- warning -- WARNING -- warning' # Constants grav = 9.81 ####### ###### ##### #### ### ## # comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" parser = OptionParser() parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") parser.add_option("-d", "--dimensions", dest="dimns", help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, metavar="LABELS") parser.add_option("-v", "--variables", dest="varns", help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") (opts, args) = parser.parse_args() ####### ####### ## MAIN ####### availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'deaccum', 'LMDZrh', 'mslp', \ 'OMEGAw', 'RAINTOT', \ 'rvors', 'td', 'turbulence', 'WRFcape_afwa', 'WRFclivi', 'WRFclwvl', 'WRFgeop', \ 'WRFmrso', 'WRFp', 'WRFpsl_ecmwf', \ 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ 'WRFheightrel', 'WRFua', 'WRFva', 'WRFzwind', 'WRFzwind_log', 'WRFzwindMO'] methods = ['accum', 'deaccum'] # Variables not to check NONcheckingvars = ['cllmh', 'deaccum', 'TSrhs', 'TStd', 'TSwds', 'TSwss', 'WRFbils', \ 'WRFclivi', 'WRFclwvl', 'WRFdens', 'WRFgeop', \ 'WRFp', 'WRFtd', \ 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', 'WRFrhs', 'WRFrvors', \ 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz'] NONchkvardims = ['WRFtime'] ofile = 'diagnostics.nc' dimns = opts.dimns varns = opts.varns # Special method. knowing variable combination ## if opts.dimns == 'variable_combo': print warnmsg print ' ' + main + ': knowing variable combination !!!' combination = variable_combo(opts.varns,opts.ncfile) print ' COMBO: ' + combination quit(-1) if not os.path.isfile(opts.ncfile): print errormsg print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" quit(-1) ncobj = NetCDFFile(opts.ncfile, 'r') # Looking for specific variables that might be use in more than one diagnostic WRFgeop_compute = False WRFp_compute = False WRFt_compute = False WRFrh_compute = False WRFght_compute = False WRFdens_compute = False WRFpos_compute = False WRFtime_compute = False WRFz_compute = False # File creation newnc = NetCDFFile(ofile,'w') # dimensions dimvalues = dimns.split(',') dnames = [] dvnames = [] for dimval in dimvalues: dn = dimval.split('@')[0] dnv = dimval.split('@')[1] dnames.append(dn) dvnames.append(dnv) # Is there any dimension-variable which should be computed? if dnv == 'WRFgeop':WRFgeop_compute = True if dnv == 'WRFp': WRFp_compute = True if dnv == 'WRFt': WRFt_compute = True if dnv == 'WRFrh': WRFrh_compute = True if dnv == 'WRFght': WRFght_compute = True if dnv == 'WRFdens': WRFdens_compute = True if dnv == 'WRFpos': WRFpos_compute = True if dnv == 'WRFtime': WRFtime_compute = True if dnv == 'WRFz':WRFz_compute = True # diagnostics to compute diags = varns.split(',') Ndiags = len(diags) for idiag in range(Ndiags): if diags[idiag].split('|')[1].find('@') == -1: depvars = diags[idiag].split('|')[1] if depvars == 'WRFgeop':WRFgeop_compute = True if depvars == 'WRFp': WRFp_compute = True if depvars == 'WRFt': WRFt_compute = True if depvars == 'WRFrh': WRFrh_compute = True if depvars == 'WRFght': WRFght_compute = True if depvars == 'WRFdens': WRFdens_compute = True if depvars == 'WRFpos': WRFpos_compute = True if depvars == 'WRFtime': WRFtime_compute = True if depvars == 'WRFz': WRFz_compute = True else: depvars = diags[idiag].split('|')[1].split('@') if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True # Dictionary with the new computed variables to be able to add them dictcompvars = {} if WRFgeop_compute: print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' dimv = ncobj.variables['PH'].shape WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] # Attributes of the variable Vvals = gen.variables_values('WRFgeop') dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFp_compute: print ' ' + main + ': Retrieving pressure value from WRF as P + PB' dimv = ncobj.variables['P'].shape WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] # Attributes of the variable Vvals = gen.variables_values('WRFp') dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFght_compute: print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] # Attributes of the variable Vvals = gen.variables_values('WRFght') dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFrh_compute: print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ ' equation (T,P) ...' p0=100000. p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) qv = ncobj.variables['QVAPOR'][:] data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) WRFrh = qv/data2 # Attributes of the variable Vvals = gen.variables_values('WRFrh') dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFt_compute: print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' p0=100000. p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) # Attributes of the variable Vvals = gen.variables_values('WRFt') dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFdens_compute: print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ 'DNW)/g ...' # Just we need in in absolute values: Size of the central grid cell ## dxval = ncobj.getncattr('DX') ## dyval = ncobj.getncattr('DY') ## mapfac = ncobj.variables['MAPFAC_M'][:] ## area = dxval*dyval*mapfac mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) dnw = ncobj.variables['DNW'][:] WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ dtype=np.float) levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) for it in range(mu.shape[0]): for iz in range(dnw.shape[1]): levval.fill(np.abs(dnw[it,iz])) WRFdens[it,iz,:,:] = levval WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav # Attributes of the variable Vvals = gen.variables_values('WRFdens') dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} if WRFpos_compute: # WRF positions from the lowest-leftest corner of the matrix print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ 'DX*x**2)*MAPFAC_M ...' mapfac = ncobj.variables['MAPFAC_M'][:] distx = np.float(ncobj.getncattr('DX')) disty = np.float(ncobj.getncattr('DY')) print 'distx:',distx,'disty:',disty dx = mapfac.shape[2] dy = mapfac.shape[1] dt = mapfac.shape[0] WRFpos = np.zeros((dt, dy, dx), dtype=np.float) for i in range(1,dx): WRFpos[0,0,i] = distx*i/mapfac[0,0,i] for j in range(1,dy): i=0 WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] for i in range(1,dx): # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] for it in range(1,dt): WRFpos[it,:,:] = WRFpos[0,:,:] if WRFtime_compute: print ' ' + main + ': computing time from WRF as CFtime(Times) ...' refdate='19491201000000' tunitsval='minutes' timeobj = ncobj.variables['Times'] timewrfv = timeobj[:] yrref=refdate[0:4] monref=refdate[4:6] dayref=refdate[6:8] horref=refdate[8:10] minref=refdate[10:12] secref=refdate[12:14] refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ ':' + secref dt = timeobj.shape[0] WRFtime = np.zeros((dt), dtype=np.float) for it in range(dt): wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) tunits = tunitsval + ' since ' + refdateS # Attributes of the variable dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} if WRFz_compute: print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ 'unstagger(PH + PHB)/9.8-hgt' dimv = ncobj.variables['PH'].shape WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) unzg = np.zeros(unzgd, dtype=np.float) unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) WRFz = np.zeros(unzgd, dtype=np.float) for iz in range(dimv[1]-1): WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] # Attributes of the variable Vvals = gen.variables_values('WRFz') dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} ### ## # # Going for the diagnostics ### ## # print ' ' + main + ' ...' varsadd = [] for idiag in range(Ndiags): print ' diagnostic:',diags[idiag] diagn = diags[idiag].split('|')[0] depvars = diags[idiag].split('|')[1].split('@') if diags[idiag].split('|')[1].find('@') != -1: depvars = diags[idiag].split('|')[1].split('@') if depvars[0] == 'deaccum': diagn='deaccum' if depvars[0] == 'accum': diagn='accum' for depv in depvars: if not ncobj.variables.has_key(depv) and not \ gen.searchInlist(NONcheckingvars, depv) and \ not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum' \ and not depvars[0] == 'accum' and not depv[0:2] == 'z=': print errormsg print ' ' + main + ": file '" + opts.ncfile + \ "' does not have variable '" + depv + "' !!" quit(-1) else: depvars = diags[idiag].split('|')[1] if not ncobj.variables.has_key(depvars) and not \ gen.searchInlist(NONcheckingvars, depvars) and \ not gen.searchInlist(methods, depvars): print errormsg print ' ' + main + ": file '" + opts.ncfile + \ "' does not have variable '" + depvars + "' !!" quit(-1) print "\n Computing '" + diagn + "' from: ", depvars, '...' # acraintot: accumulated total precipitation from WRF RAINC, RAINNC if diagn == 'ACRAINTOT': var0 = ncobj.variables[depvars[0]] var1 = ncobj.variables[depvars[1]] diagout = var0[:] + var1[:] dnamesvar = var0.dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) # accum: acumulation of any variable as (Variable, time [as [tunits] # from/since ....], newvarname) elif diagn == 'accum': var0 = ncobj.variables[depvars[0]] var1 = ncobj.variables[depvars[1]] dnamesvar = var0.dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) CFvarn = ncvar.variables_values(depvars[0])[0] # Removing the flux if depvars[1] == 'XTIME': dtimeunits = var1.getncattr('description') tunits = dtimeunits.split(' ')[0] else: dtimeunits = var1.getncattr('units') tunits = dtimeunits.split(' ')[0] dtime = (var1[1] - var1[0])*timeunits_seconds(tunits) ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) # cllmh with cldfra, pres elif diagn == 'cllmh': var0 = ncobj.variables[depvars[0]] if depvars[1] == 'WRFp': var1 = WRFp else: var01 = ncobj.variables[depvars[1]] if len(size(var1.shape)) < len(size(var0.shape)): var1 = np.brodcast_arrays(var01,var0)[0] else: var1 = var01 diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) # clt with cldfra elif diagn == 'clt': var0 = ncobj.variables[depvars] diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) # deaccum: deacumulation of any variable as (Variable, time [as [tunits] # from/since ....], newvarname) elif diagn == 'deaccum': var0 = ncobj.variables[depvars[1]] var1 = ncobj.variables[depvars[2]] dnamesvar = var0.dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) # Transforming to a flux if depvars[2] == 'XTIME': dtimeunits = var1.getncattr('description') tunits = dtimeunits.split(' ')[0] else: dtimeunits = var1.getncattr('units') tunits = dtimeunits.split(' ')[0] dtime = (var1[1] - var1[0])*timeunits_seconds(tunits) ncvar.insert_variable(ncobj, depvars[3], diagout/dtime, diagoutd, diagoutvd, newnc) # LMDZrh (pres, t, r) elif diagn == 'LMDZrh': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) # LMDZrhs (psol, t2m, q2m) elif diagn == 'LMDZrhs': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) # mrso: total soil moisture SMOIS, DZS elif diagn == 'WRFmrso': var0 = ncobj.variables[depvars[0]][:] var10 = ncobj.variables[depvars[1]][:] dnamesvar = list(ncobj.variables[depvars[0]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) var1 = var0.copy()*0. var2 = var0.copy()*0.+1. # Must be a better way.... for j in range(var0.shape[2]): for i in range(var0.shape[3]): var1[:,:,j,i] = var10 diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ dnamesvar, dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) elif diagn == 'mslp' or diagn == 'WRFmslp': var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] var4 = ncobj.variables[depvars[4]][:] if diagn == 'WRFmslp': var0 = WRFp var3 = WRFt dnamesvar = ncobj.variables['P'].dimensions else: var0 = ncobj.variables[depvars[0]][:] var3 = ncobj.variables[depvars[3]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ dnamesvar, dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) elif diagn == 'OMEGAw': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC) / dTime elif diagn == 'RAINTOT': var0 = ncobj.variables[depvars[0]] var1 = ncobj.variables[depvars[1]] if depvars[2] != 'WRFtime': var2 = ncobj.variables[depvars[2]] else: var2 = np.arange(var0.shape[0], dtype=int) var = var0[:] + var1[:] dnamesvar = var0.dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) # Transforming to a flux if var2.shape[0] > 1: if depvars[2] != 'WRFtime': dtimeunits = var2.getncattr('units') tunits = dtimeunits.split(' ')[0] dtime = (var2[1] - var2[0])*timeunits_seconds(tunits) else: var2 = ncobj.variables['Times'] time1 = var2[0,:] time2 = var2[1,:] tmf1 = '' tmf2 = '' for ic in range(len(time1)): tmf1 = tmf1 + time1[ic] tmf2 = tmf2 + time2[ic] dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") diffdate12 = dtdate2 - dtdate1 dtime = diffdate12.total_seconds() print 'dtime:',dtime else: print warnmsg print ' ' + main + ": only 1 time-step for '" + diag + "' !!" print ' leaving a zero value!' diagout = var0[:]*0. dtime=1. # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) # rhs (psfc, t, q) from TimeSeries files elif diagn == 'TSrhs': p0=100000. var0 = ncobj.variables[depvars[0]][:] var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) var2 = ncobj.variables[depvars[2]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) # slw: total soil liquid water SH2O, DZS elif diagn == 'WRFslw': var0 = ncobj.variables[depvars[0]][:] var10 = ncobj.variables[depvars[1]][:] dnamesvar = list(ncobj.variables[depvars[0]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) var1 = var0.copy()*0. var2 = var0.copy()*0.+1. # Must be a better way.... for j in range(var0.shape[2]): for i in range(var0.shape[3]): var1[:,:,j,i] = var10 diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ dnamesvar, dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) # td (psfc, t, q) from TimeSeries files elif diagn == 'TStd' or diagn == 'td': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] - 273.15 var2 = ncobj.variables[depvars[2]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'tds', diagout, diagoutd, diagoutvd, newnc) # td (psfc, t, q) from TimeSeries files elif diagn == 'TStdC' or diagn == 'tdC': var0 = ncobj.variables[depvars[0]][:] # Temperature is already in degrees Celsius var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'tds', diagout, diagoutd, diagoutvd, newnc) # wds (u, v) elif diagn == 'TSwds' or diagn == 'wds' : var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) # wss (u, v) elif diagn == 'TSwss' or diagn == 'wss': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) # turbulence (var) elif diagn == 'turbulence': var0 = ncobj.variables[depvars][:] dnamesvar = list(ncobj.variables[depvars].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) valsvar = gen.variables_values(depvars) newvarn = depvars + 'turb' print main + '; Lluis newvarn:', newvarn ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, diagoutvd, newnc) print main + '; Lluis variables:', newnc.variables.keys() varobj = newnc.variables[newvarn] attrv = varobj.long_name attr = varobj.delncattr('long_name') newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ " Taylor decomposition turbulence term") # WRFbils fom WRF as HFX + LH elif diagn == 'WRFbils': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] diagout = var0 + var1 dnamesvar = list(ncobj.variables[depvars[0]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT elif diagn == 'WRFcape_afwa': var0 = WRFt var1 = WRFrh var2 = WRFp dz = WRFgeop.shape[1] # de-staggering var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:]) var4 = ncobj.variables[depvars[4]][0,:,:] dnamesvar = list(ncobj.variables['T'].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout = np.zeros(var0.shape, dtype=np.float) diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL elif diagn == 'WRFclivi': var0 = WRFdens qtot = ncobj.variables[depvars[1]] qtotv = qtot[:] Nspecies = len(depvars) - 2 for iv in range(Nspecies): if ncobj.variables.has_key(depvars[iv+2]): var1 = ncobj.variables[depvars[iv+2]][:] qtotv = qtotv + var1 dnamesvar = list(qtot.dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) # WRFclwvl WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL elif diagn == 'WRFclwvl': var0 = WRFdens qtot = ncobj.variables[depvars[1]] qtotv = ncobj.variables[depvars[1]] Nspecies = len(depvars) - 2 for iv in range(Nspecies): if ncobj.variables.has_key(depvars[iv+2]): var1 = ncobj.variables[depvars[iv+2]] qtotv = qtotv + var1[:] dnamesvar = list(qtot.dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'clwvl', diagout, diagoutd, diagoutvd, newnc) # WRFgeop geopotential from WRF as PH + PHB elif diagn == 'WRFgeop': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] # de-staggering geopotential diagout0 = var0 + var1 dt = diagout0.shape[0] dz = diagout0.shape[1] dy = diagout0.shape[2] dx = diagout0.shape[3] diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) # WRFmslp_ptarget sea-level pressure following ECMWF method as PSFC, HGT, WRFt, WRFp, ZNU, ZNW elif diagn == 'WRFpsl_ecmwf': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][0,:,:] var2 = WRFt[:,0,:,:] var4 = WRFp[:,0,:,:] var5 = ncobj.variables[depvars[4]][0,:] var6 = ncobj.variables[depvars[5]][0,:] # This is quite too appriximate!! passing pressure at half-levels to 2nd full # level, using eta values at full (ZNW) and half (ZNU) mass levels var3 = WRFp[:,0,:,:] + (var6[1] - var5[0])*(WRFp[:,1,:,:] - WRFp[:,0,:,:])/ \ (var5[1]-var5[0]) dnamesvar = list(ncobj.variables[depvars[0]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout = np.zeros(var0.shape, dtype=np.float) diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ecmwf(var0, var1, var2, \ var3, var4, dnamesvar, dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR elif diagn == 'WRFpsl_ptarget': var0 = WRFp var1 = ncobj.variables[depvars[1]][:] var2 = WRFt var3 = ncobj.variables[depvars[3]][0,:,:] var4 = ncobj.variables[depvars[4]][:] dnamesvar = list(ncobj.variables[depvars[4]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout = np.zeros(var0.shape, dtype=np.float) diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ var3, var4, 700000., dnamesvar, dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) # WRFp pressure from WRF as P + PB elif diagn == 'WRFp': diagout = WRFp ncvar.insert_variable(ncobj, 'pres', diagout, dnames, dvnames, newnc) # WRFpos elif diagn == 'WRFpos': dnamesvar = ncobj.variables['MAPFAC_M'].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) # WRFprw WRF water vapour path WRFdens, QVAPOR elif diagn == 'WRFprw': var0 = WRFdens var1 = ncobj.variables[depvars[1]] dnamesvar = list(var1.dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) # WRFrh (P, T, QVAPOR) elif diagn == 'WRFrh': dnamesvar = list(ncobj.variables[depvars[2]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) # WRFrhs (PSFC, T2, Q2) elif diagn == 'WRFrhs': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] dnamesvar = list(ncobj.variables[depvars[2]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) # rvors (u10, v10, WRFpos) elif diagn == 'WRFrvors': var0 = ncobj.variables[depvars[0]] var1 = ncobj.variables[depvars[1]] diagout = rotational_z(var0, var1, distx) dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) # WRFt (T, P, PB) elif diagn == 'WRFt': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] p0=100000. p=var1 + var2 WRFt = (var0 + 300.)*(p/p0)**(2./7.) dnamesvar = list(ncobj.variables[depvars[0]].dimensions) dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! elif diagn == 'WRFua': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] var3 = ncobj.variables[depvars[3]][:] # un-staggering variables unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] ua = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) for iz in range(var0.shape[1]): ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 dnamesvar = ['Time','bottom_top','south_north','west_east'] dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! elif diagn == 'WRFva': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] var3 = ncobj.variables[depvars[3]][:] # un-staggering variables unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] va = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) for iz in range(var0.shape[1]): va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 dnamesvar = ['Time','bottom_top','south_north','west_east'] dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) # WRFtime elif diagn == 'WRFtime': diagout = WRFtime dnamesvar = ['Time'] dvnamesvar = ['Times'] ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) # ws (U, V) elif diagn == 'ws': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] # un-staggering variables unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] va = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) dnamesvar = ['Time','bottom_top','south_north','west_east'] diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) # dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnamesvar) for nonvd in NONchkvardims: if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) # wss (u10, v10) elif diagn == 'wss': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] diagout = np.sqrt(var0*var0 + var1*var1) dnamesvar = ncobj.variables[depvars[0]].dimensions dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) # WRFheight height from WRF geopotential as WRFGeop/g elif diagn == 'WRFheight': diagout = WRFgeop/grav # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT elif diagn == 'WRFheightrel': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] dimz = var0.shape[1] diagout = np.zeros(tuple(var0.shape), dtype=np.float) for iz in range(dimz): diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 # Removing the nonChecking variable-dimensions from the initial list varsadd = [] diagoutvd = list(dvnames) for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, elif diagn == 'WRFzmlagen': var0 = ncobj.variables[depvars[0]][:]+300. var1 = ncobj.variables[depvars[1]][:] dimz = var0.shape[1] var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 var3 = ncobj.variables[depvars[3]][0,:,:] diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ dnames,dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) # WRFzwind wind extrapolation at a given height using power law computation from WRF # U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] elif diagn == 'WRFzwind': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = WRFz var3 = ncobj.variables[depvars[3]][:] var4 = ncobj.variables[depvars[4]][:] var5 = ncobj.variables[depvars[5]][0,:,:] var6 = ncobj.variables[depvars[6]][0,:,:] var7 = np.float(depvars[7].split('=')[1]) # un-staggering 3D winds unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] va = np.zeros(tuple(unstgdims), dtype=np.float) unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) # WRFzwind wind extrapolation at a given hieght using logarithmic law computation # from WRF U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] elif diagn == 'WRFzwind_log': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = WRFz var3 = ncobj.variables[depvars[3]][:] var4 = ncobj.variables[depvars[4]][:] var5 = ncobj.variables[depvars[5]][0,:,:] var6 = ncobj.variables[depvars[6]][0,:,:] var7 = np.float(depvars[7].split('=')[1]) # un-staggering 3D winds unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] va = np.zeros(tuple(unstgdims), dtype=np.float) unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind_log(unvar0, \ unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) # WRFzwindMO wind extrapolation at a given height computation using Monin-Obukhow # theory from WRF UST, ZNT, RMOL, U10, V10, SINALPHA, COSALPHA, z=[zval] # NOTE: only useful for [zval] < 80. m elif diagn == 'WRFzwindMO': var0 = ncobj.variables[depvars[0]][:] var1 = ncobj.variables[depvars[1]][:] var2 = ncobj.variables[depvars[2]][:] var3 = ncobj.variables[depvars[3]][:] var4 = ncobj.variables[depvars[4]][:] var5 = ncobj.variables[depvars[5]][0,:,:] var6 = ncobj.variables[depvars[6]][0,:,:] var7 = np.float(depvars[7].split('=')[1]) diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwindMO(var0, var1,\ var2, var3, var4, var5, var6, var7, dnames, dvnames) # Removing the nonChecking variable-dimensions from the initial list varsadd = [] for nonvd in NONchkvardims: if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) varsadd.append(nonvd) ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) else: print errormsg print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" print ' available diagnostics: ', availdiags quit(-1) newnc.sync() # Adding that additional variables required to compute some diagnostics which # where not in the original file for vadd in varsadd: if not gen.searchInlist(newnc.variables.keys(),vadd): attrs = dictcompvars[vadd] vvn = attrs['name'] if not gen.searchInlist(newnc.variables.keys(), vvn): iidvn = dvnames.index(vadd) dnn = dnames[iidvn] if vadd == 'WRFtime': dvarvals = WRFtime[:] newvar = newnc.createVariable(vvn, 'f8', (dnn)) newvar[:] = dvarvals for attn in attrs.keys(): if attn != 'name': attv = attrs[attn] ncvar.set_attribute(newvar, attn, attv) # end of diagnostics # Global attributes ## ncvar.add_global_PyNCplot(newnc, main, None, '2.0') gorigattrs = ncobj.ncattrs() for attr in gorigattrs: attrv = ncobj.getncattr(attr) atvar = ncvar.set_attribute(newnc, attr, attrv) ncobj.close() newnc.close() print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!'