1 | # Pthon script to comput diagnostics |
---|
2 | # L. Fita, LMD. CNR, UPMC-Jussieu, Paris, France |
---|
3 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
4 | # |
---|
5 | ## e.g. # diagnostics.py -d 'Time@time,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
6 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
7 | |
---|
8 | from optparse import OptionParser |
---|
9 | import numpy as np |
---|
10 | from netCDF4 import Dataset as NetCDFFile |
---|
11 | import os |
---|
12 | import re |
---|
13 | import nc_var_tools as ncvar |
---|
14 | import datetime as dt |
---|
15 | |
---|
16 | main = 'diagnostics.py' |
---|
17 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
18 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
19 | |
---|
20 | # Gneral information |
---|
21 | ## |
---|
22 | def reduce_spaces(string): |
---|
23 | """ Function to give words of a line of text removing any extra space |
---|
24 | """ |
---|
25 | values = string.replace('\n','').split(' ') |
---|
26 | vals = [] |
---|
27 | for val in values: |
---|
28 | if len(val) > 0: |
---|
29 | vals.append(val) |
---|
30 | |
---|
31 | return vals |
---|
32 | |
---|
33 | def variable_combo(varn,combofile): |
---|
34 | """ Function to provide variables combination from a given variable name |
---|
35 | varn= name of the variable |
---|
36 | combofile= ASCII file with the combination of variables |
---|
37 | [varn] [combo] |
---|
38 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
39 | [WRFdt] to get WRF time-step (from general attributes) |
---|
40 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
41 | deaccum@RAINNC@XTIME@prnc |
---|
42 | """ |
---|
43 | fname = 'variable_combo' |
---|
44 | |
---|
45 | if varn == 'h': |
---|
46 | print fname + '_____________________________________________________________' |
---|
47 | print variable_combo.__doc__ |
---|
48 | quit() |
---|
49 | |
---|
50 | if not os.path.isfile(combofile): |
---|
51 | print errormsg |
---|
52 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
53 | "' does not exist!!" |
---|
54 | quit(-1) |
---|
55 | |
---|
56 | objf = open(combofile, 'r') |
---|
57 | |
---|
58 | found = False |
---|
59 | for line in objf: |
---|
60 | linevals = reduce_spaces(line) |
---|
61 | varnf = linevals[0] |
---|
62 | combo = linevals[1].replace('\n','') |
---|
63 | if varn == varnf: |
---|
64 | found = True |
---|
65 | break |
---|
66 | |
---|
67 | if not found: |
---|
68 | print errormsg |
---|
69 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
70 | "' !!" |
---|
71 | combo='ERROR' |
---|
72 | |
---|
73 | objf.close() |
---|
74 | |
---|
75 | return combo |
---|
76 | |
---|
77 | # Mathematical operators |
---|
78 | ## |
---|
79 | def compute_deaccum(varv, dimns, dimvns): |
---|
80 | """ Function to compute the deaccumulation of a variable |
---|
81 | compute_deaccum(varv, dimnames, dimvns) |
---|
82 | [varv]= values to deaccum (assuming [t,]) |
---|
83 | [dimns]= list of the name of the dimensions of the [varv] |
---|
84 | [dimvns]= list of the name of the variables with the values of the |
---|
85 | dimensions of [varv] |
---|
86 | """ |
---|
87 | fname = 'compute_deaccum' |
---|
88 | |
---|
89 | deacdims = dimns[:] |
---|
90 | deacvdims = dimvns[:] |
---|
91 | |
---|
92 | slicei = [] |
---|
93 | slicee = [] |
---|
94 | |
---|
95 | Ndims = len(varv.shape) |
---|
96 | for iid in range(0,Ndims): |
---|
97 | slicei.append(slice(0,varv.shape[iid])) |
---|
98 | slicee.append(slice(0,varv.shape[iid])) |
---|
99 | |
---|
100 | slicee[0] = np.arange(varv.shape[0]) |
---|
101 | slicei[0] = np.arange(varv.shape[0]) |
---|
102 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
103 | |
---|
104 | vari = varv[tuple(slicei)] |
---|
105 | vare = varv[tuple(slicee)] |
---|
106 | |
---|
107 | deac = vare - vari |
---|
108 | |
---|
109 | return deac, deacdims, deacvdims |
---|
110 | |
---|
111 | def derivate_centered(var,dim,dimv): |
---|
112 | """ Function to compute the centered derivate of a given field |
---|
113 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
114 | [var]= variable |
---|
115 | [dim]= which dimension to compute the derivate |
---|
116 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
117 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
118 | [[ 0. 1. 2. 0.] |
---|
119 | [ 0. 5. 6. 0.] |
---|
120 | [ 0. 9. 10. 0.] |
---|
121 | [ 0. 13. 14. 0.]] |
---|
122 | """ |
---|
123 | |
---|
124 | fname = 'derivate_centered' |
---|
125 | |
---|
126 | vark = var.dtype |
---|
127 | |
---|
128 | if hasattr(dimv, "__len__"): |
---|
129 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
130 | if len(var.shape) != len(dimv.shape): |
---|
131 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
132 | if len(var.shape) - len(dimv.shape) == 1: |
---|
133 | for iz in range(var.shape[0]): |
---|
134 | dimvals[iz,] = dimv |
---|
135 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
136 | for it in range(var.shape[0]): |
---|
137 | for iz in range(var.shape[1]): |
---|
138 | dimvals[it,iz,] = dimv |
---|
139 | else: |
---|
140 | print errormsg |
---|
141 | print ' ' + fname + ': dimension difference between variable', \ |
---|
142 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
143 | ' not ready !!!' |
---|
144 | quit(-1) |
---|
145 | else: |
---|
146 | dimvals = dimv |
---|
147 | else: |
---|
148 | # dimension values are identical everywhere! |
---|
149 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
150 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
151 | |
---|
152 | derivate = np.zeros((var.shape), dtype=vark) |
---|
153 | if dim > len(var.shape) - 1: |
---|
154 | print errormsg |
---|
155 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
156 | 'shape:', var.shape,'!!!' |
---|
157 | quit(-1) |
---|
158 | |
---|
159 | slicebef = [] |
---|
160 | sliceaft = [] |
---|
161 | sliceder = [] |
---|
162 | |
---|
163 | for id in range(len(var.shape)): |
---|
164 | if id == dim: |
---|
165 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
166 | sliceaft.append(slice(2,var.shape[id])) |
---|
167 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
168 | else: |
---|
169 | slicebef.append(slice(0,var.shape[id])) |
---|
170 | sliceaft.append(slice(0,var.shape[id])) |
---|
171 | sliceder.append(slice(0,var.shape[id])) |
---|
172 | |
---|
173 | if hasattr(dimv, "__len__"): |
---|
174 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
175 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
176 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
177 | else: |
---|
178 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
179 | (2.*dimv) |
---|
180 | |
---|
181 | # print 'before________' |
---|
182 | # print var[tuple(slicebef)] |
---|
183 | |
---|
184 | # print 'after________' |
---|
185 | # print var[tuple(sliceaft)] |
---|
186 | |
---|
187 | return derivate |
---|
188 | |
---|
189 | def rotational_z(Vx,Vy,pos): |
---|
190 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
191 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
192 | [Vx]= Variable component x |
---|
193 | [Vy]= Variable component y |
---|
194 | [pos]= poisition of the grid points |
---|
195 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
196 | [[ 0. 1. 2. 0.] |
---|
197 | [ -4. 0. 0. -7.] |
---|
198 | [ -8. 0. 0. -11.] |
---|
199 | [ 0. 13. 14. 0.]] |
---|
200 | """ |
---|
201 | |
---|
202 | fname = 'rotational_z' |
---|
203 | |
---|
204 | ndims = len(Vx.shape) |
---|
205 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
206 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
207 | |
---|
208 | rot = rot1 - rot2 |
---|
209 | |
---|
210 | return rot |
---|
211 | |
---|
212 | # Diagnostics |
---|
213 | ## |
---|
214 | |
---|
215 | def var_clt(cfra): |
---|
216 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
217 | LMDZ using 1D vertical column values |
---|
218 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
219 | """ |
---|
220 | ZEPSEC=1.0E-12 |
---|
221 | |
---|
222 | fname = 'var_clt' |
---|
223 | |
---|
224 | zclear = 1. |
---|
225 | zcloud = 0. |
---|
226 | |
---|
227 | dz = cfra.shape[0] |
---|
228 | for iz in range(dz): |
---|
229 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
230 | clt = 1. - zclear |
---|
231 | zcloud = cfra[iz] |
---|
232 | |
---|
233 | return clt |
---|
234 | |
---|
235 | def compute_clt(cldfra, dimns, dimvns): |
---|
236 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
237 | LMDZ |
---|
238 | compute_clt(cldfra, dimnames) |
---|
239 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
240 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
241 | [dimvns]= list of the name of the variables with the values of the |
---|
242 | dimensions of [cldfra] |
---|
243 | """ |
---|
244 | fname = 'compute_clt' |
---|
245 | |
---|
246 | cltdims = dimns[:] |
---|
247 | cltvdims = dimvns[:] |
---|
248 | |
---|
249 | if len(cldfra.shape) == 4: |
---|
250 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
251 | dtype=np.float) |
---|
252 | dx = cldfra.shape[3] |
---|
253 | dy = cldfra.shape[2] |
---|
254 | dz = cldfra.shape[1] |
---|
255 | dt = cldfra.shape[0] |
---|
256 | cltdims.pop(1) |
---|
257 | cltvdims.pop(1) |
---|
258 | |
---|
259 | for it in range(dt): |
---|
260 | for ix in range(dx): |
---|
261 | for iy in range(dy): |
---|
262 | zclear = 1. |
---|
263 | zcloud = 0. |
---|
264 | ncvar.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
265 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
266 | |
---|
267 | else: |
---|
268 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
269 | dx = cldfra.shape[2] |
---|
270 | dy = cldfra.shape[1] |
---|
271 | dy = cldfra.shape[0] |
---|
272 | cltdims.pop(0) |
---|
273 | cltvdims.pop(0) |
---|
274 | for ix in range(dx): |
---|
275 | for iy in range(dy): |
---|
276 | zclear = 1. |
---|
277 | zcloud = 0. |
---|
278 | ncvar.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
279 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
280 | |
---|
281 | return clt, cltdims, cltvdims |
---|
282 | |
---|
283 | def var_cllmh(cfra, p): |
---|
284 | """ Fcuntion to compute cllmh on a 1D column |
---|
285 | """ |
---|
286 | |
---|
287 | fname = 'var_cllmh' |
---|
288 | |
---|
289 | ZEPSEC =1.0E-12 |
---|
290 | prmhc = 440.*100. |
---|
291 | prmlc = 680.*100. |
---|
292 | |
---|
293 | zclearl = 1. |
---|
294 | zcloudl = 0. |
---|
295 | zclearm = 1. |
---|
296 | zcloudm = 0. |
---|
297 | zclearh = 1. |
---|
298 | zcloudh = 0. |
---|
299 | |
---|
300 | dvz = cfra.shape[0] |
---|
301 | |
---|
302 | cllmh = np.ones((3), dtype=np.float) |
---|
303 | |
---|
304 | for iz in range(dvz): |
---|
305 | if p[iz] < prmhc: |
---|
306 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
307 | np.min([zcloudh,1.-ZEPSEC])) |
---|
308 | zcloudh = cfra[iz] |
---|
309 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
310 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
311 | np.min([zcloudm,1.-ZEPSEC])) |
---|
312 | zcloudm = cfra[iz] |
---|
313 | elif p[iz] >= prmlc: |
---|
314 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
315 | np.min([zcloudl,1.-ZEPSEC])) |
---|
316 | zcloudl = cfra[iz] |
---|
317 | |
---|
318 | cllmh = 1.- cllmh |
---|
319 | |
---|
320 | return cllmh |
---|
321 | |
---|
322 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
323 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
324 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
325 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
326 | [pres] = pressure field |
---|
327 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
328 | [dimvns]= list of the name of the variables with the values of the |
---|
329 | dimensions of [cldfra] |
---|
330 | """ |
---|
331 | fname = 'compute_cllmh' |
---|
332 | |
---|
333 | cllmhdims = dimns[:] |
---|
334 | cllmhvdims = dimvns[:] |
---|
335 | |
---|
336 | if len(cldfra.shape) == 4: |
---|
337 | dx = cldfra.shape[3] |
---|
338 | dy = cldfra.shape[2] |
---|
339 | dz = cldfra.shape[1] |
---|
340 | dt = cldfra.shape[0] |
---|
341 | cllmhdims.pop(1) |
---|
342 | cllmhvdims.pop(1) |
---|
343 | |
---|
344 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
345 | |
---|
346 | for it in range(dt): |
---|
347 | for ix in range(dx): |
---|
348 | for iy in range(dy): |
---|
349 | ncvar.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
350 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
351 | |
---|
352 | else: |
---|
353 | dx = cldfra.shape[2] |
---|
354 | dy = cldfra.shape[1] |
---|
355 | dz = cldfra.shape[0] |
---|
356 | cllmhdims.pop(0) |
---|
357 | cllmhvdims.pop(0) |
---|
358 | |
---|
359 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
360 | |
---|
361 | for ix in range(dx): |
---|
362 | for iy in range(dy): |
---|
363 | ncvar.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
364 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
365 | |
---|
366 | return cllmh, cllmhdims, cllmhvdims |
---|
367 | |
---|
368 | def var_virtualTemp (temp,rmix): |
---|
369 | """ This function returns virtual temperature in K, |
---|
370 | temp: temperature [K] |
---|
371 | rmix: mixing ratio in [kgkg-1] |
---|
372 | """ |
---|
373 | |
---|
374 | fname = 'var_virtualTemp' |
---|
375 | |
---|
376 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
377 | |
---|
378 | return virtual |
---|
379 | |
---|
380 | |
---|
381 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
382 | """ Function to compute mslp on a 1D column |
---|
383 | """ |
---|
384 | |
---|
385 | fname = 'var_mslp' |
---|
386 | |
---|
387 | N = 1.0 |
---|
388 | expon=287.04*.0065/9.81 |
---|
389 | pref = 40000. |
---|
390 | |
---|
391 | # First find where about 400 hPa is located |
---|
392 | dz=len(pres) |
---|
393 | |
---|
394 | kref = -1 |
---|
395 | pinc = pres[0] - pres[dz-1] |
---|
396 | |
---|
397 | if pinc < 0.: |
---|
398 | for iz in range(1,dz): |
---|
399 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
400 | kref = iz |
---|
401 | break |
---|
402 | else: |
---|
403 | for iz in range(dz-1): |
---|
404 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
405 | kref = iz |
---|
406 | break |
---|
407 | |
---|
408 | if kref == -1: |
---|
409 | print errormsg |
---|
410 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
411 | print ' values:',pres[:] |
---|
412 | quit(-1) |
---|
413 | |
---|
414 | mslp = 0. |
---|
415 | |
---|
416 | # We are below both the ground and the lowest data level. |
---|
417 | |
---|
418 | # First, find the model level that is closest to a "target" pressure |
---|
419 | # level, where the "target" pressure is delta-p less that the local |
---|
420 | # value of a horizontally smoothed surface pressure field. We use |
---|
421 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
422 | # passing through the temperature at this model level will be used |
---|
423 | # to define the temperature profile below ground. This is similar |
---|
424 | # to the Benjamin and Miller (1990) method, using |
---|
425 | # 700 hPa everywhere for the "target" pressure. |
---|
426 | |
---|
427 | # ptarget = psfc - 15000. |
---|
428 | ptarget = 70000. |
---|
429 | dpmin=1.e4 |
---|
430 | kupper = 0 |
---|
431 | if pinc > 0.: |
---|
432 | for iz in range(dz-1,0,-1): |
---|
433 | kupper = iz |
---|
434 | dp=np.abs( pres[iz] - ptarget ) |
---|
435 | if dp < dpmin: exit |
---|
436 | dpmin = np.min([dpmin, dp]) |
---|
437 | else: |
---|
438 | for iz in range(dz): |
---|
439 | kupper = iz |
---|
440 | dp=np.abs( pres[iz] - ptarget ) |
---|
441 | if dp < dpmin: exit |
---|
442 | dpmin = np.min([dpmin, dp]) |
---|
443 | |
---|
444 | pbot=np.max([pres[0], psfc]) |
---|
445 | # zbot=0. |
---|
446 | |
---|
447 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
448 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
449 | |
---|
450 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
451 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
452 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
453 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
454 | |
---|
455 | return mslp |
---|
456 | |
---|
457 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
458 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
459 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
460 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
461 | [psurface]= surface pressure field [Pa] |
---|
462 | [terrain]= topography [m] |
---|
463 | [temperature]= temperature [K] |
---|
464 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
465 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
466 | [dimvns]= list of the name of the variables with the values of the |
---|
467 | dimensions of [pres] |
---|
468 | """ |
---|
469 | |
---|
470 | fname = 'compute_mslp' |
---|
471 | |
---|
472 | mslpdims = list(dimns[:]) |
---|
473 | mslpvdims = list(dimvns[:]) |
---|
474 | |
---|
475 | if len(pressure.shape) == 4: |
---|
476 | mslpdims.pop(1) |
---|
477 | mslpvdims.pop(1) |
---|
478 | else: |
---|
479 | mslpdims.pop(0) |
---|
480 | mslpvdims.pop(0) |
---|
481 | |
---|
482 | if len(pressure.shape) == 4: |
---|
483 | dx = pressure.shape[3] |
---|
484 | dy = pressure.shape[2] |
---|
485 | dz = pressure.shape[1] |
---|
486 | dt = pressure.shape[0] |
---|
487 | |
---|
488 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
489 | |
---|
490 | # Terrain... to 2D ! |
---|
491 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
492 | if len(terrain.shape) == 3: |
---|
493 | terval = terrain[0,:,:] |
---|
494 | else: |
---|
495 | terval = terrain |
---|
496 | |
---|
497 | for ix in range(dx): |
---|
498 | for iy in range(dy): |
---|
499 | if terval[iy,ix] > 0.: |
---|
500 | for it in range(dt): |
---|
501 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
502 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
503 | qvapor[it,:,iy,ix]) |
---|
504 | |
---|
505 | ncvar.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
506 | else: |
---|
507 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
508 | |
---|
509 | else: |
---|
510 | dx = pressure.shape[2] |
---|
511 | dy = pressure.shape[1] |
---|
512 | dz = pressure.shape[0] |
---|
513 | |
---|
514 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
515 | |
---|
516 | # Terrain... to 2D ! |
---|
517 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
518 | if len(terrain.shape) == 3: |
---|
519 | terval = terrain[0,:,:] |
---|
520 | else: |
---|
521 | terval = terrain |
---|
522 | |
---|
523 | for ix in range(dx): |
---|
524 | for iy in range(dy): |
---|
525 | ncvar.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
526 | if terval[iy,ix] > 0.: |
---|
527 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
528 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
529 | else: |
---|
530 | mslpv[iy,ix] = psfc[iy,ix] |
---|
531 | |
---|
532 | return mslpv, mslpdims, mslpvdims |
---|
533 | |
---|
534 | def compute_prw(dens, q, dimns, dimvns): |
---|
535 | """ Function to compute water vapour path (prw) |
---|
536 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
537 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
538 | [dimns]= list of the name of the dimensions of [q] |
---|
539 | [dimvns]= list of the name of the variables with the values of the |
---|
540 | dimensions of [q] |
---|
541 | """ |
---|
542 | fname = 'compute_prw' |
---|
543 | |
---|
544 | prwdims = dimns[:] |
---|
545 | prwvdims = dimvns[:] |
---|
546 | |
---|
547 | if len(q.shape) == 4: |
---|
548 | prwdims.pop(1) |
---|
549 | prwvdims.pop(1) |
---|
550 | else: |
---|
551 | prwdims.pop(0) |
---|
552 | prwvdims.pop(0) |
---|
553 | |
---|
554 | data1 = dens*q |
---|
555 | prw = np.sum(data1, axis=1) |
---|
556 | |
---|
557 | return prw, prwdims, prwvdims |
---|
558 | |
---|
559 | def compute_rh(p, t, q, dimns, dimvns): |
---|
560 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
561 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
562 | [p] = pressure field (assuming in [hPa]) |
---|
563 | [q] = mixing ratio in [kgkg-1] |
---|
564 | [dimns]= list of the name of the dimensions of [t] |
---|
565 | [dimvns]= list of the name of the variables with the values of the |
---|
566 | dimensions of [t] |
---|
567 | """ |
---|
568 | fname = 'compute_rh' |
---|
569 | |
---|
570 | rhdims = dimns[:] |
---|
571 | rhvdims = dimvns[:] |
---|
572 | |
---|
573 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
574 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
575 | |
---|
576 | rh = q/data2 |
---|
577 | |
---|
578 | return rh, rhdims, rhvdims |
---|
579 | |
---|
580 | def turbulence_var(varv, dimvn, dimn): |
---|
581 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
582 | x*=<x^2>_t-(<X>_t)^2 |
---|
583 | turbulence_var(varv,dimn) |
---|
584 | varv= values of the variable |
---|
585 | dimvn= names of the dimension of the variable |
---|
586 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
587 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
588 | [[ 54. 54. 54.] |
---|
589 | [ 54. 54. 54.] |
---|
590 | [ 54. 54. 54.]] |
---|
591 | """ |
---|
592 | fname = 'turbulence_varv' |
---|
593 | |
---|
594 | timedimid = dimvn.index(dimn['T']) |
---|
595 | |
---|
596 | varv2 = varv*varv |
---|
597 | |
---|
598 | vartmean = np.mean(varv, axis=timedimid) |
---|
599 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
600 | |
---|
601 | varvturb = var2tmean - (vartmean*vartmean) |
---|
602 | |
---|
603 | return varvturb |
---|
604 | |
---|
605 | def compute_turbulence(v, dimns, dimvns): |
---|
606 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
607 | x*=<x^2>_t-(<X>_t)^2 |
---|
608 | [v]= variable (assuming [[t],z,y,x]) |
---|
609 | [dimns]= list of the name of the dimensions of [v] |
---|
610 | [dimvns]= list of the name of the variables with the values of the |
---|
611 | dimensions of [v] |
---|
612 | """ |
---|
613 | fname = 'compute_turbulence' |
---|
614 | |
---|
615 | turbdims = dimns[:] |
---|
616 | turbvdims = dimvns[:] |
---|
617 | |
---|
618 | turbdims.pop(0) |
---|
619 | turbvdims.pop(0) |
---|
620 | |
---|
621 | v2 = v*v |
---|
622 | |
---|
623 | vartmean = np.mean(v, axis=0) |
---|
624 | var2tmean = np.mean(v2, axis=0) |
---|
625 | |
---|
626 | turb = var2tmean - (vartmean*vartmean) |
---|
627 | |
---|
628 | return turb, turbdims, turbvdims |
---|
629 | |
---|
630 | def timeunits_seconds(dtu): |
---|
631 | """ Function to transform a time units to seconds |
---|
632 | timeunits_seconds(timeuv) |
---|
633 | [dtu]= time units value to transform in seconds |
---|
634 | """ |
---|
635 | fname='timunits_seconds' |
---|
636 | |
---|
637 | if dtu == 'years': |
---|
638 | times = 365.*24.*3600. |
---|
639 | elif dtu == 'weeks': |
---|
640 | times = 7.*24.*3600. |
---|
641 | elif dtu == 'days': |
---|
642 | times = 24.*3600. |
---|
643 | elif dtu == 'hours': |
---|
644 | times = 3600. |
---|
645 | elif dtu == 'minutes': |
---|
646 | times = 60. |
---|
647 | elif dtu == 'seconds': |
---|
648 | times = 1. |
---|
649 | elif dtu == 'miliseconds': |
---|
650 | times = 1./1000. |
---|
651 | else: |
---|
652 | print errormsg |
---|
653 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
654 | quit(-1) |
---|
655 | |
---|
656 | return times |
---|
657 | |
---|
658 | ####### ###### ##### #### ### ## # |
---|
659 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
660 | |
---|
661 | parser = OptionParser() |
---|
662 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
663 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
664 | help="[dimxn]@[dxvn],[dimyn]@[dxvn],[...,[dimtn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension" + comboinf, |
---|
665 | metavar="LABELS") |
---|
666 | parser.add_option("-v", "--variables", dest="varns", |
---|
667 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
668 | |
---|
669 | (opts, args) = parser.parse_args() |
---|
670 | |
---|
671 | ####### ####### |
---|
672 | ## MAIN |
---|
673 | ####### |
---|
674 | availdiags = ['ACRAINTOT', 'clt', 'cllmh', 'deaccum', 'LMDZrh', 'mslp', 'RAINTOT', \ |
---|
675 | 'rvors', 'turbulence', 'WRFrvors'] |
---|
676 | |
---|
677 | # Variables not to check |
---|
678 | NONcheckingvars = ['cllmh', 'deaccum', 'WRFbils', 'WRFdens', 'WRFgeop', 'WRFp', \ |
---|
679 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', 'WRFrhs', 'WRFrvors', \ |
---|
680 | 'WRFt', 'WRFtime'] |
---|
681 | |
---|
682 | ofile = 'diagnostics.nc' |
---|
683 | |
---|
684 | dimns = opts.dimns |
---|
685 | varns = opts.varns |
---|
686 | |
---|
687 | # Special method. knowing variable combination |
---|
688 | ## |
---|
689 | if opts.dimns == 'variable_combo': |
---|
690 | print warnmsg |
---|
691 | print ' ' + main + ': knowing variable combination !!!' |
---|
692 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
693 | print ' COMBO: ' + combination |
---|
694 | quit(-1) |
---|
695 | |
---|
696 | if not os.path.isfile(opts.ncfile): |
---|
697 | print errormsg |
---|
698 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
699 | quit(-1) |
---|
700 | |
---|
701 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
702 | |
---|
703 | # File creation |
---|
704 | newnc = NetCDFFile(ofile,'w') |
---|
705 | |
---|
706 | # dimensions |
---|
707 | dimvalues = dimns.split(',') |
---|
708 | dnames = [] |
---|
709 | dvnames = [] |
---|
710 | |
---|
711 | for dimval in dimvalues: |
---|
712 | dnames.append(dimval.split('@')[0]) |
---|
713 | dvnames.append(dimval.split('@')[1]) |
---|
714 | |
---|
715 | # diagnostics to compute |
---|
716 | diags = varns.split(',') |
---|
717 | Ndiags = len(diags) |
---|
718 | |
---|
719 | # Looking for specific variables that might be use in more than one diagnostic |
---|
720 | WRFp_compute = False |
---|
721 | WRFt_compute = False |
---|
722 | WRFrh_compute = False |
---|
723 | WRFght_compute = False |
---|
724 | WRFdens_compute = False |
---|
725 | WRFpos_compute = False |
---|
726 | |
---|
727 | for idiag in range(Ndiags): |
---|
728 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
729 | depvars = diags[idiag].split('|')[1] |
---|
730 | if depvars == 'WRFp': WRFp_compute = True |
---|
731 | if depvars == 'WRFt': WRFt_compute = True |
---|
732 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
733 | if depvars == 'WRFght': WRFght_compute = True |
---|
734 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
735 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
736 | |
---|
737 | else: |
---|
738 | depvars = diags[idiag].split('|')[1].split('@') |
---|
739 | if ncvar.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
740 | if ncvar.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
741 | if ncvar.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
742 | if ncvar.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
743 | if ncvar.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
744 | if ncvar.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
745 | |
---|
746 | if WRFp_compute: |
---|
747 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
748 | dimv = ncobj.variables['P'].shape |
---|
749 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
750 | |
---|
751 | if WRFght_compute: |
---|
752 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
753 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
754 | |
---|
755 | if WRFrh_compute: |
---|
756 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
757 | ' equation (T,P) ...' |
---|
758 | p0=100000. |
---|
759 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
760 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
761 | qv = ncobj.variables['QVAPOR'][:] |
---|
762 | |
---|
763 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
764 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
765 | |
---|
766 | WRFrh = qv/data2 |
---|
767 | |
---|
768 | if WRFt_compute: |
---|
769 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
770 | p0=100000. |
---|
771 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
772 | |
---|
773 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
774 | |
---|
775 | if WRFdens_compute: |
---|
776 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
777 | 'DNW)/g ...' |
---|
778 | grav = 9.81 |
---|
779 | |
---|
780 | # Just we need in in absolute values: Size of the central grid cell |
---|
781 | ## dxval = ncobj.getncattr('DX') |
---|
782 | ## dyval = ncobj.getncattr('DY') |
---|
783 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
784 | ## area = dxval*dyval*mapfac |
---|
785 | |
---|
786 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
787 | dnw = ncobj.variables['DNW'][:] |
---|
788 | |
---|
789 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
790 | dtype=np.float) |
---|
791 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
792 | |
---|
793 | for it in range(mu.shape[0]): |
---|
794 | for iz in range(dnw.shape[1]): |
---|
795 | levval.fill(np.abs(dnw[it,iz])) |
---|
796 | WRFdens[it,iz,:,:] = levval |
---|
797 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
798 | |
---|
799 | if WRFpos_compute: |
---|
800 | # WRF positions from the lowest-leftest corner of the matrix |
---|
801 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
802 | 'DX*x**2)*MAPFAC_M ...' |
---|
803 | |
---|
804 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
805 | |
---|
806 | distx = np.float(ncobj.getncattr('DX')) |
---|
807 | disty = np.float(ncobj.getncattr('DY')) |
---|
808 | |
---|
809 | print 'distx:',distx,'disty:',disty |
---|
810 | |
---|
811 | dx = mapfac.shape[2] |
---|
812 | dy = mapfac.shape[1] |
---|
813 | dt = mapfac.shape[0] |
---|
814 | |
---|
815 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
816 | |
---|
817 | for i in range(1,dx): |
---|
818 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
819 | for j in range(1,dy): |
---|
820 | i=0 |
---|
821 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
822 | for i in range(1,dx): |
---|
823 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
824 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
825 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
826 | |
---|
827 | for it in range(1,dt): |
---|
828 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
829 | |
---|
830 | ### ## # |
---|
831 | # Going for the diagnostics |
---|
832 | ### ## # |
---|
833 | print ' ' + main + ' ...' |
---|
834 | |
---|
835 | for idiag in range(Ndiags): |
---|
836 | print ' diagnostic:',diags[idiag] |
---|
837 | diag = diags[idiag].split('|')[0] |
---|
838 | depvars = diags[idiag].split('|')[1].split('@') |
---|
839 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
840 | depvars = diags[idiag].split('|')[1].split('@') |
---|
841 | if depvars[0] == 'deaccum': diag='deaccum' |
---|
842 | for depv in depvars: |
---|
843 | if not ncobj.variables.has_key(depv) and not \ |
---|
844 | ncvar.searchInlist(NONcheckingvars, depv) and depvars[0] != 'deaccum': |
---|
845 | print errormsg |
---|
846 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
847 | "' does not have variable '" + depv + "' !!" |
---|
848 | quit(-1) |
---|
849 | else: |
---|
850 | depvars = diags[idiag].split('|')[1] |
---|
851 | if not ncobj.variables.has_key(depvars) and not \ |
---|
852 | ncvar.searchInlist(NONcheckingvars, depvars) and depvars[0] != 'deaccum': |
---|
853 | print errormsg |
---|
854 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
855 | "' does not have variable '" + depvars + "' !!" |
---|
856 | quit(-1) |
---|
857 | |
---|
858 | print "\n Computing '" + diag + "' from: ", depvars, '...' |
---|
859 | |
---|
860 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC |
---|
861 | if diag == 'ACRAINTOT': |
---|
862 | |
---|
863 | var0 = ncobj.variables[depvars[0]] |
---|
864 | var1 = ncobj.variables[depvars[1]] |
---|
865 | diagout = var0[:] + var1[:] |
---|
866 | |
---|
867 | dnamesvar = var0.dimensions |
---|
868 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
869 | |
---|
870 | ncvar.insert_variable(ncobj, 'acpr', diagout, dnamesvar, dvnamesvar, newnc) |
---|
871 | |
---|
872 | # cllmh with cldfra, pres |
---|
873 | elif diag == 'cllmh': |
---|
874 | |
---|
875 | var0 = ncobj.variables[depvars[0]] |
---|
876 | if depvars[1] == 'WRFp': |
---|
877 | var1 = WRFp |
---|
878 | else: |
---|
879 | var01 = ncobj.variables[depvars[1]] |
---|
880 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
881 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
882 | else: |
---|
883 | var1 = var01 |
---|
884 | |
---|
885 | diagout, diagoutd, diagoutvd = compute_cllmh(var0,var1,dnames,dvnames) |
---|
886 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
887 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
888 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
889 | |
---|
890 | # clt with cldfra |
---|
891 | elif diag == 'clt': |
---|
892 | |
---|
893 | var0 = ncobj.variables[depvars] |
---|
894 | diagout, diagoutd, diagoutvd = compute_clt(var0,dnames,dvnames) |
---|
895 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
896 | |
---|
897 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
898 | # from/since ....], newvarname) |
---|
899 | elif diag == 'deaccum': |
---|
900 | |
---|
901 | var0 = ncobj.variables[depvars[1]] |
---|
902 | var1 = ncobj.variables[depvars[2]] |
---|
903 | |
---|
904 | dnamesvar = var0.dimensions |
---|
905 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
906 | |
---|
907 | diagout, diagoutd, diagoutvd = compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
908 | |
---|
909 | # Transforming to a flux |
---|
910 | if depvars[2] == 'XTIME': |
---|
911 | dtimeunits = var1.getncattr('description') |
---|
912 | tunits = dtimeunits.split(' ')[0] |
---|
913 | else: |
---|
914 | dtimeunits = var1.getncattr('units') |
---|
915 | tunits = dtimeunits.split(' ')[0] |
---|
916 | |
---|
917 | dtime = (var1[1] - var1[0])*timeunits_seconds(tunits) |
---|
918 | ncvar.insert_variable(ncobj, depvars[3], diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
919 | |
---|
920 | # LMDZrh (pres, t, r) |
---|
921 | elif diag == 'LMDZrh': |
---|
922 | |
---|
923 | var0 = ncobj.variables[depvars[0]][:] |
---|
924 | var1 = ncobj.variables[depvars[1]][:] |
---|
925 | var2 = ncobj.variables[depvars[2]][:] |
---|
926 | |
---|
927 | diagout, diagoutd, diagoutvd = compute_rh(var0,var1,var2,dnames,dvnames) |
---|
928 | ncvar.insert_variable(ncobj, 'hus', diagout, diagoutd, diagoutvd, newnc) |
---|
929 | |
---|
930 | # LMDZrhs (psol, t2m, q2m) |
---|
931 | elif diag == 'LMDZrhs': |
---|
932 | |
---|
933 | var0 = ncobj.variables[depvars[0]][:] |
---|
934 | var1 = ncobj.variables[depvars[1]][:] |
---|
935 | var2 = ncobj.variables[depvars[2]][:] |
---|
936 | |
---|
937 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
938 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
939 | |
---|
940 | diagout, diagoutd, diagoutvd = compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
941 | |
---|
942 | ncvar.insert_variable(ncobj, 'huss', diagout, diagoutd, diagoutvd, newnc) |
---|
943 | |
---|
944 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
945 | elif diag == 'mslp' or diag == 'WRFmslp': |
---|
946 | |
---|
947 | var1 = ncobj.variables[depvars[1]][:] |
---|
948 | var2 = ncobj.variables[depvars[2]][:] |
---|
949 | var4 = ncobj.variables[depvars[4]][:] |
---|
950 | |
---|
951 | if diag == 'WRFmslp': |
---|
952 | var0 = WRFp |
---|
953 | var3 = WRFt |
---|
954 | dnamesvar = ncobj.variables['P'].dimensions |
---|
955 | else: |
---|
956 | var0 = ncobj.variables[depvars[0]][:] |
---|
957 | var3 = ncobj.variables[depvars[3]][:] |
---|
958 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
959 | |
---|
960 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
961 | |
---|
962 | diagout, diagoutd, diagoutvd = compute_mslp(var0, var1, var2, var3, var4, \ |
---|
963 | dnamesvar, dvnamesvar) |
---|
964 | |
---|
965 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
966 | |
---|
967 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC) / dTime |
---|
968 | elif diag == 'RAINTOT': |
---|
969 | |
---|
970 | var0 = ncobj.variables[depvars[0]] |
---|
971 | var1 = ncobj.variables[depvars[1]] |
---|
972 | if depvars[2] != 'WRFtime': |
---|
973 | var2 = ncobj.variables[depvars[2]] |
---|
974 | |
---|
975 | var = var0[:] + var1[:] |
---|
976 | |
---|
977 | dnamesvar = var0.dimensions |
---|
978 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
979 | |
---|
980 | diagout, diagoutd, diagoutvd = compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
981 | |
---|
982 | # Transforming to a flux |
---|
983 | if depvars[2] != 'WRFtime': |
---|
984 | dtimeunits = var2.getncattr('units') |
---|
985 | tunits = dtimeunits.split(' ')[0] |
---|
986 | |
---|
987 | dtime = (var2[1] - var2[0])*timeunits_seconds(tunits) |
---|
988 | else: |
---|
989 | var2 = ncobj.variables['Times'] |
---|
990 | time1 = var2[0,:] |
---|
991 | time2 = var2[1,:] |
---|
992 | tmf1 = '' |
---|
993 | tmf2 = '' |
---|
994 | for ic in range(len(time1)): |
---|
995 | tmf1 = tmf1 + time1[ic] |
---|
996 | tmf2 = tmf2 + time2[ic] |
---|
997 | dtdate1 = dt.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
998 | dtdate2 = dt.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
999 | diffdate12 = dtdate2 - dtdate1 |
---|
1000 | dtime = diffdate12.total_seconds() |
---|
1001 | print 'dtime:',dtime |
---|
1002 | |
---|
1003 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
1004 | |
---|
1005 | # turbulence (var) |
---|
1006 | elif diag == 'turbulence': |
---|
1007 | |
---|
1008 | var0 = ncobj.variables[depvars][:] |
---|
1009 | |
---|
1010 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
1011 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1012 | |
---|
1013 | diagout, diagoutd, diagoutvd = compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
1014 | valsvar = ncvar.variables_values(depvars) |
---|
1015 | |
---|
1016 | ncvar.insert_variable(ncobj, valsvar[0] + 'turb', diagout, diagoutd, |
---|
1017 | diagoutvd, newnc) |
---|
1018 | varobj = newnc.variables[valsvar[0] + 'turb'] |
---|
1019 | attrv = varobj.long_name |
---|
1020 | attr = varobj.delncattr('long_name') |
---|
1021 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
1022 | " Taylor decomposition turbulence term") |
---|
1023 | |
---|
1024 | # WRFbils fom WRF as HFX + LH |
---|
1025 | elif diag == 'WRFbils': |
---|
1026 | |
---|
1027 | var0 = ncobj.variables[depvars[0]][:] |
---|
1028 | var1 = ncobj.variables[depvars[1]][:] |
---|
1029 | |
---|
1030 | diagout = var0 + var1 |
---|
1031 | |
---|
1032 | ncvar.insert_variable(ncobj, 'bils', diagout, dnames, dvnames, newnc) |
---|
1033 | |
---|
1034 | # WRFp pressure from WRF as P + PB |
---|
1035 | elif diag == 'WRFp': |
---|
1036 | |
---|
1037 | diagout = WRFp |
---|
1038 | |
---|
1039 | ncvar.insert_variable(ncobj, 'pres', diagout, dnames, dvnames, newnc) |
---|
1040 | |
---|
1041 | # WRFpos |
---|
1042 | elif diag == 'WRFpos': |
---|
1043 | |
---|
1044 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
1045 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1046 | |
---|
1047 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
1048 | |
---|
1049 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
1050 | elif diag == 'WRFprw': |
---|
1051 | |
---|
1052 | var0 = WRFdens |
---|
1053 | var1 = ncobj.variables[depvars[1]] |
---|
1054 | |
---|
1055 | dnamesvar = list(var1.dimensions) |
---|
1056 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1057 | |
---|
1058 | diagout, diagoutd, diagoutvd = compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
1059 | |
---|
1060 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
1061 | |
---|
1062 | # WRFrh (P, T, QVAPOR) |
---|
1063 | elif diag == 'WRFrh': |
---|
1064 | |
---|
1065 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1066 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1067 | |
---|
1068 | ncvar.insert_variable(ncobj, 'hus', WRFrh, dnames, dvnames, newnc) |
---|
1069 | |
---|
1070 | # WRFrhs (PSFC, T2, Q2) |
---|
1071 | elif diag == 'WRFrhs': |
---|
1072 | |
---|
1073 | var0 = ncobj.variables[depvars[0]][:] |
---|
1074 | var1 = ncobj.variables[depvars[1]][:] |
---|
1075 | var2 = ncobj.variables[depvars[2]][:] |
---|
1076 | |
---|
1077 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
1078 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1079 | |
---|
1080 | diagout, diagoutd, diagoutvd = compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
1081 | ncvar.insert_variable(ncobj, 'huss', diagout, diagoutd, diagoutvd, newnc) |
---|
1082 | |
---|
1083 | # rvors (u10, v10, WRFpos) |
---|
1084 | elif diag == 'WRFrvors': |
---|
1085 | |
---|
1086 | var0 = ncobj.variables[depvars[0]] |
---|
1087 | var1 = ncobj.variables[depvars[1]] |
---|
1088 | |
---|
1089 | diagout = rotational_z(var0, var1, distx) |
---|
1090 | |
---|
1091 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1092 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1093 | |
---|
1094 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1095 | |
---|
1096 | # wss (u10, v10) |
---|
1097 | elif diag == 'wss': |
---|
1098 | |
---|
1099 | var0 = ncobj.variables[depvars[0]][:] |
---|
1100 | var1 = ncobj.variables[depvars[1]][:] |
---|
1101 | |
---|
1102 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
1103 | |
---|
1104 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
1105 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
1106 | |
---|
1107 | print 'dnamesvar',dnamesvar |
---|
1108 | print 'dnames',dnames |
---|
1109 | print 'dvnames',dvnames |
---|
1110 | print 'dvnamesvar',dvnamesvar |
---|
1111 | |
---|
1112 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
1113 | |
---|
1114 | else: |
---|
1115 | print errormsg |
---|
1116 | print ' ' + main + ": diagnostic '" + diag + "' not ready!!!" |
---|
1117 | print ' available diagnostics: ', availdiags |
---|
1118 | quit(-1) |
---|
1119 | |
---|
1120 | newnc.sync() |
---|
1121 | |
---|
1122 | # end of diagnostics |
---|
1123 | |
---|
1124 | # Global attributes |
---|
1125 | ## |
---|
1126 | atvar = ncvar.set_attribute(newnc, 'program', 'diagnostics.py') |
---|
1127 | atvar = ncvar.set_attribute(newnc, 'version', '1.0') |
---|
1128 | atvar = ncvar.set_attribute(newnc, 'author', 'Fita Borrell, Lluis') |
---|
1129 | atvar = ncvar.set_attribute(newnc, 'institution', 'Laboratoire Meteorologie ' + \ |
---|
1130 | 'Dynamique') |
---|
1131 | atvar = ncvar.set_attribute(newnc, 'university', 'Universite Pierre et Marie ' + \ |
---|
1132 | 'Curie -- Jussieu') |
---|
1133 | atvar = ncvar.set_attribute(newnc, 'centre', 'Centre national de la recherche ' + \ |
---|
1134 | 'scientifique') |
---|
1135 | atvar = ncvar.set_attribute(newnc, 'city', 'Paris') |
---|
1136 | atvar = ncvar.set_attribute(newnc, 'original_file', opts.ncfile) |
---|
1137 | |
---|
1138 | gorigattrs = ncobj.ncattrs() |
---|
1139 | |
---|
1140 | for attr in gorigattrs: |
---|
1141 | attrv = ncobj.getncattr(attr) |
---|
1142 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
1143 | |
---|
1144 | ncobj.close() |
---|
1145 | newnc.close() |
---|
1146 | |
---|
1147 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|