[1675] | 1 | # Python script to comput diagnostics |
---|
[1908] | 2 | # From L. Fita work in different places: CCRC (Australia), LMD (France) |
---|
| 3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
| 4 | # |
---|
| 5 | # pyNCplot and its component nc_var.py comes with ABSOLUTELY NO WARRANTY. |
---|
| 6 | # This work is licendes under a Creative Commons |
---|
| 7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
| 8 | # |
---|
| 9 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, C.A. Buenos Aires, Argentina |
---|
[365] | 10 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
[772] | 11 | # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 |
---|
[1150] | 12 | # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
| 13 | # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
[1149] | 14 | |
---|
[2095] | 15 | ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@RAINSH@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
[413] | 16 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
[365] | 17 | |
---|
[1675] | 18 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
| 19 | # compute_accum: Function to compute the accumulation of a variable |
---|
| 20 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
| 21 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 22 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
| 23 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
| 24 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
| 25 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
| 26 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 27 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 28 | # compute_prw: Function to compute water vapour path (prw) |
---|
[2209] | 29 | # compute_range_faces: Function to compute faces [uphill, valley, downhill] of sections of a mountain |
---|
| 30 | # range, along a given face |
---|
[1675] | 31 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 32 | # compute_td: Function to compute the dew point temperature |
---|
| 33 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
| 34 | # compute_wds: Function to compute the wind direction |
---|
| 35 | # compute_wss: Function to compute the wind speed |
---|
| 36 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
| 37 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
| 38 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
| 39 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 40 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
[1758] | 41 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' |
---|
[1675] | 42 | |
---|
| 43 | # Others just providing variable values |
---|
| 44 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
| 45 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
| 46 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
| 47 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
| 48 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
| 49 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
| 50 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
[2138] | 51 | # timeoverthres: When a given variable [varname] overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
| 52 | # variables_values.dat |
---|
[2141] | 53 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
[1675] | 54 | |
---|
[365] | 55 | from optparse import OptionParser |
---|
| 56 | import numpy as np |
---|
| 57 | from netCDF4 import Dataset as NetCDFFile |
---|
| 58 | import os |
---|
| 59 | import re |
---|
| 60 | import nc_var_tools as ncvar |
---|
[756] | 61 | import generic_tools as gen |
---|
[654] | 62 | import datetime as dtime |
---|
[1163] | 63 | import module_ForDiag as fdin |
---|
[1942] | 64 | import module_ForDef as fdef |
---|
[1675] | 65 | import diag_tools as diag |
---|
[365] | 66 | |
---|
| 67 | main = 'diagnostics.py' |
---|
| 68 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
| 69 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
| 70 | |
---|
[654] | 71 | # Constants |
---|
| 72 | grav = 9.81 |
---|
| 73 | |
---|
[365] | 74 | |
---|
| 75 | ####### ###### ##### #### ### ## # |
---|
| 76 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
| 77 | |
---|
| 78 | parser = OptionParser() |
---|
| 79 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
| 80 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
[1761] | 81 | help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, |
---|
[365] | 82 | metavar="LABELS") |
---|
| 83 | parser.add_option("-v", "--variables", dest="varns", |
---|
| 84 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
| 85 | |
---|
| 86 | (opts, args) = parser.parse_args() |
---|
| 87 | |
---|
| 88 | ####### ####### |
---|
| 89 | ## MAIN |
---|
| 90 | ####### |
---|
[2100] | 91 | availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'convini', 'deaccum', 'fog_K84', \ |
---|
[2209] | 92 | 'fog_RUC', 'LMDZrh', 'mslp', 'OMEGAw', 'RAINTOT', 'range_faces', \ |
---|
[2141] | 93 | 'rvors', 'td', 'timemax', 'timeoverthres', 'turbulence', 'uavaFROMwswd', \ |
---|
[2274] | 94 | 'WRFbnds', 'WRFcape_afwa', 'WRFclivi', 'WRFclwvi', 'WRF_denszint', 'WRFgeop', \ |
---|
[2206] | 95 | 'WRFmrso', 'WRFmrsos', 'WRFpotevap_orPM', 'WRFp', 'WRFpsl_ecmwf', \ |
---|
[1762] | 96 | 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ |
---|
[1966] | 97 | 'WRFheightrel', 'WRFtda', 'WRFtdas', 'WRFua', 'WRFva', 'WRFzwind', 'WRFzwind_log', \ |
---|
[1942] | 98 | 'WRFzwindMO'] |
---|
[365] | 99 | |
---|
[649] | 100 | methods = ['accum', 'deaccum'] |
---|
| 101 | |
---|
[365] | 102 | # Variables not to check |
---|
[2277] | 103 | NONcheckingvars = ['accum', 'cllmh', 'deaccum', 'face', 'LONLATdxdy', \ |
---|
| 104 | 'reglonlatbnds', 'TSrhs', 'TStd', 'TSwds', 'TSwss', \ |
---|
[2274] | 105 | 'WRFbils', 'WRFbnds', \ |
---|
[2257] | 106 | 'WRFclivi', 'WRFclwvi', 'WRFdens', 'WRFdx', 'WRFdxdy', 'WRFdxdywps', 'WRFdy', \ |
---|
| 107 | 'WRFgeop', 'WRFp', 'WRFtd', \ |
---|
[1809] | 108 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', \ |
---|
[1806] | 109 | 'WRFrhs', 'WRFrvors', \ |
---|
[2215] | 110 | 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz', \ |
---|
| 111 | 'WRFzg'] |
---|
[365] | 112 | |
---|
[1809] | 113 | # diagnostics not to check their dependeny |
---|
[2138] | 114 | NONcheckdepvars = ['accum', 'deaccum', 'timeoverthres', 'WRF_denszint', \ |
---|
| 115 | 'WRFzwind_log', 'WRFzwind', 'WRFzwindMO'] |
---|
[1809] | 116 | |
---|
[1351] | 117 | NONchkvardims = ['WRFtime'] |
---|
| 118 | |
---|
[365] | 119 | ofile = 'diagnostics.nc' |
---|
| 120 | |
---|
| 121 | dimns = opts.dimns |
---|
| 122 | varns = opts.varns |
---|
| 123 | |
---|
| 124 | # Special method. knowing variable combination |
---|
| 125 | ## |
---|
| 126 | if opts.dimns == 'variable_combo': |
---|
| 127 | print warnmsg |
---|
| 128 | print ' ' + main + ': knowing variable combination !!!' |
---|
| 129 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
| 130 | print ' COMBO: ' + combination |
---|
| 131 | quit(-1) |
---|
| 132 | |
---|
[1833] | 133 | if opts.ncfile is None: |
---|
| 134 | print errormsg |
---|
| 135 | print ' ' + main + ": No file provided !!" |
---|
| 136 | print ' is mandatory to provide a file -f [filename]' |
---|
| 137 | quit(-1) |
---|
| 138 | |
---|
| 139 | if opts.dimns is None: |
---|
| 140 | print errormsg |
---|
| 141 | print ' ' + main + ": No description of dimensions are provided !!" |
---|
| 142 | print ' is mandatory to provide description of dimensions as -d [dimn]@[vardimname],... ' |
---|
| 143 | quit(-1) |
---|
| 144 | |
---|
| 145 | if opts.varns is None: |
---|
| 146 | print errormsg |
---|
| 147 | print ' ' + main + ": No variable to diagnose is provided !!" |
---|
| 148 | print ' is mandatory to provide a variable to diagnose as -v [diagn]|[varn1]@... ' |
---|
| 149 | quit(-1) |
---|
| 150 | |
---|
[365] | 151 | if not os.path.isfile(opts.ncfile): |
---|
| 152 | print errormsg |
---|
| 153 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
| 154 | quit(-1) |
---|
| 155 | |
---|
| 156 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
| 157 | |
---|
[1351] | 158 | # Looking for specific variables that might be use in more than one diagnostic |
---|
| 159 | WRFgeop_compute = False |
---|
| 160 | WRFp_compute = False |
---|
| 161 | WRFt_compute = False |
---|
| 162 | WRFrh_compute = False |
---|
| 163 | WRFght_compute = False |
---|
| 164 | WRFdens_compute = False |
---|
| 165 | WRFpos_compute = False |
---|
| 166 | WRFtime_compute = False |
---|
[1777] | 167 | WRFz_compute = False |
---|
[2215] | 168 | WRFdxdy_compute = False |
---|
[2257] | 169 | WRFdxdywps_compute = False |
---|
[2222] | 170 | LONLATdxdy_compute = False |
---|
[1351] | 171 | |
---|
[365] | 172 | # File creation |
---|
| 173 | newnc = NetCDFFile(ofile,'w') |
---|
| 174 | |
---|
| 175 | # dimensions |
---|
| 176 | dimvalues = dimns.split(',') |
---|
| 177 | dnames = [] |
---|
| 178 | dvnames = [] |
---|
| 179 | |
---|
| 180 | for dimval in dimvalues: |
---|
[1351] | 181 | dn = dimval.split('@')[0] |
---|
| 182 | dnv = dimval.split('@')[1] |
---|
| 183 | dnames.append(dn) |
---|
| 184 | dvnames.append(dnv) |
---|
| 185 | # Is there any dimension-variable which should be computed? |
---|
| 186 | if dnv == 'WRFgeop':WRFgeop_compute = True |
---|
| 187 | if dnv == 'WRFp': WRFp_compute = True |
---|
| 188 | if dnv == 'WRFt': WRFt_compute = True |
---|
| 189 | if dnv == 'WRFrh': WRFrh_compute = True |
---|
| 190 | if dnv == 'WRFght': WRFght_compute = True |
---|
| 191 | if dnv == 'WRFdens': WRFdens_compute = True |
---|
| 192 | if dnv == 'WRFpos': WRFpos_compute = True |
---|
| 193 | if dnv == 'WRFtime': WRFtime_compute = True |
---|
[1777] | 194 | if dnv == 'WRFz':WRFz_compute = True |
---|
[2215] | 195 | if dnv == 'WRFdxdy':WRFdxdy_compute = True |
---|
[2257] | 196 | if dnv == 'WRFdxdywps':WRFdxdywps_compute = True |
---|
[2222] | 197 | if dnv == 'LONLATdxdy':LONLATdxdy_compute = True |
---|
[365] | 198 | |
---|
| 199 | # diagnostics to compute |
---|
| 200 | diags = varns.split(',') |
---|
| 201 | Ndiags = len(diags) |
---|
| 202 | |
---|
| 203 | for idiag in range(Ndiags): |
---|
| 204 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
| 205 | depvars = diags[idiag].split('|')[1] |
---|
[654] | 206 | if depvars == 'WRFgeop':WRFgeop_compute = True |
---|
[365] | 207 | if depvars == 'WRFp': WRFp_compute = True |
---|
| 208 | if depvars == 'WRFt': WRFt_compute = True |
---|
| 209 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
| 210 | if depvars == 'WRFght': WRFght_compute = True |
---|
| 211 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
| 212 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
[654] | 213 | if depvars == 'WRFtime': WRFtime_compute = True |
---|
[1777] | 214 | if depvars == 'WRFz': WRFz_compute = True |
---|
[365] | 215 | else: |
---|
| 216 | depvars = diags[idiag].split('|')[1].split('@') |
---|
[756] | 217 | if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True |
---|
| 218 | if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
| 219 | if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
| 220 | if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
| 221 | if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
| 222 | if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
| 223 | if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
| 224 | if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True |
---|
[1777] | 225 | if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True |
---|
[2215] | 226 | if gen.searchInlist(depvars, 'WRFdxdy'): WRFdxdy_compute = True |
---|
[2257] | 227 | if gen.searchInlist(depvars, 'WRFdxdywps'): WRFdxdywps_compute = True |
---|
[2222] | 228 | if gen.searchInlist(depvars, 'LONLATdxdy'): LONLATdxdy_compute = True |
---|
[365] | 229 | |
---|
[1351] | 230 | # Dictionary with the new computed variables to be able to add them |
---|
| 231 | dictcompvars = {} |
---|
[654] | 232 | if WRFgeop_compute: |
---|
| 233 | print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' |
---|
| 234 | dimv = ncobj.variables['PH'].shape |
---|
| 235 | WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 236 | |
---|
[1351] | 237 | # Attributes of the variable |
---|
[1412] | 238 | Vvals = gen.variables_values('WRFgeop') |
---|
[1351] | 239 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 240 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 241 | |
---|
[365] | 242 | if WRFp_compute: |
---|
| 243 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
| 244 | dimv = ncobj.variables['P'].shape |
---|
| 245 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 246 | |
---|
[1351] | 247 | # Attributes of the variable |
---|
| 248 | Vvals = gen.variables_values('WRFp') |
---|
| 249 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 250 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 251 | |
---|
[365] | 252 | if WRFght_compute: |
---|
| 253 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 254 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 255 | |
---|
[1351] | 256 | # Attributes of the variable |
---|
| 257 | Vvals = gen.variables_values('WRFght') |
---|
| 258 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 259 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 260 | |
---|
[365] | 261 | if WRFrh_compute: |
---|
| 262 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
| 263 | ' equation (T,P) ...' |
---|
| 264 | p0=100000. |
---|
| 265 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 266 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 267 | qv = ncobj.variables['QVAPOR'][:] |
---|
| 268 | |
---|
| 269 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 270 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 271 | |
---|
| 272 | WRFrh = qv/data2 |
---|
| 273 | |
---|
[1351] | 274 | # Attributes of the variable |
---|
| 275 | Vvals = gen.variables_values('WRFrh') |
---|
| 276 | dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 277 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 278 | |
---|
[365] | 279 | if WRFt_compute: |
---|
| 280 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
| 281 | p0=100000. |
---|
| 282 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 283 | |
---|
| 284 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 285 | |
---|
[1351] | 286 | # Attributes of the variable |
---|
| 287 | Vvals = gen.variables_values('WRFt') |
---|
| 288 | dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 289 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 290 | |
---|
[365] | 291 | if WRFdens_compute: |
---|
| 292 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
| 293 | 'DNW)/g ...' |
---|
| 294 | |
---|
| 295 | # Just we need in in absolute values: Size of the central grid cell |
---|
| 296 | ## dxval = ncobj.getncattr('DX') |
---|
| 297 | ## dyval = ncobj.getncattr('DY') |
---|
| 298 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 299 | ## area = dxval*dyval*mapfac |
---|
| 300 | |
---|
| 301 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
| 302 | dnw = ncobj.variables['DNW'][:] |
---|
| 303 | |
---|
| 304 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
| 305 | dtype=np.float) |
---|
| 306 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
| 307 | |
---|
| 308 | for it in range(mu.shape[0]): |
---|
| 309 | for iz in range(dnw.shape[1]): |
---|
| 310 | levval.fill(np.abs(dnw[it,iz])) |
---|
| 311 | WRFdens[it,iz,:,:] = levval |
---|
| 312 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
| 313 | |
---|
[1351] | 314 | # Attributes of the variable |
---|
| 315 | Vvals = gen.variables_values('WRFdens') |
---|
| 316 | dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 317 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 318 | |
---|
[365] | 319 | if WRFpos_compute: |
---|
| 320 | # WRF positions from the lowest-leftest corner of the matrix |
---|
| 321 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
| 322 | 'DX*x**2)*MAPFAC_M ...' |
---|
| 323 | |
---|
| 324 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 325 | |
---|
| 326 | distx = np.float(ncobj.getncattr('DX')) |
---|
| 327 | disty = np.float(ncobj.getncattr('DY')) |
---|
| 328 | |
---|
| 329 | print 'distx:',distx,'disty:',disty |
---|
| 330 | |
---|
| 331 | dx = mapfac.shape[2] |
---|
| 332 | dy = mapfac.shape[1] |
---|
| 333 | dt = mapfac.shape[0] |
---|
| 334 | |
---|
| 335 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
| 336 | |
---|
| 337 | for i in range(1,dx): |
---|
| 338 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
| 339 | for j in range(1,dy): |
---|
| 340 | i=0 |
---|
| 341 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
| 342 | for i in range(1,dx): |
---|
| 343 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
| 344 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
| 345 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
| 346 | |
---|
| 347 | for it in range(1,dt): |
---|
| 348 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
| 349 | |
---|
[654] | 350 | if WRFtime_compute: |
---|
| 351 | print ' ' + main + ': computing time from WRF as CFtime(Times) ...' |
---|
| 352 | |
---|
| 353 | refdate='19491201000000' |
---|
| 354 | tunitsval='minutes' |
---|
| 355 | |
---|
| 356 | timeobj = ncobj.variables['Times'] |
---|
| 357 | timewrfv = timeobj[:] |
---|
| 358 | |
---|
| 359 | yrref=refdate[0:4] |
---|
| 360 | monref=refdate[4:6] |
---|
| 361 | dayref=refdate[6:8] |
---|
| 362 | horref=refdate[8:10] |
---|
| 363 | minref=refdate[10:12] |
---|
| 364 | secref=refdate[12:14] |
---|
| 365 | |
---|
| 366 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
| 367 | ':' + secref |
---|
| 368 | |
---|
[2065] | 369 | |
---|
| 370 | if len(timeobj.shape) == 2: |
---|
| 371 | dt = timeobj.shape[0] |
---|
| 372 | else: |
---|
| 373 | dt = 1 |
---|
[654] | 374 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
| 375 | |
---|
[2065] | 376 | if len(timeobj.shape) == 2: |
---|
| 377 | for it in range(dt): |
---|
| 378 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', \ |
---|
| 379 | 'matYmdHMS') |
---|
| 380 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
| 381 | else: |
---|
| 382 | wrfdates = gen.datetimeStr_conversion(timewrfv[:],'WRFdatetime', \ |
---|
| 383 | 'matYmdHMS') |
---|
[2072] | 384 | WRFtime[0] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
[654] | 385 | |
---|
| 386 | tunits = tunitsval + ' since ' + refdateS |
---|
| 387 | |
---|
[1351] | 388 | # Attributes of the variable |
---|
| 389 | dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ |
---|
| 390 | 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} |
---|
| 391 | |
---|
[1777] | 392 | if WRFz_compute: |
---|
| 393 | print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ |
---|
| 394 | 'unstagger(PH + PHB)/9.8-hgt' |
---|
| 395 | dimv = ncobj.variables['PH'].shape |
---|
| 396 | WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 |
---|
| 397 | |
---|
| 398 | unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) |
---|
| 399 | unzg = np.zeros(unzgd, dtype=np.float) |
---|
| 400 | unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) |
---|
| 401 | |
---|
| 402 | WRFz = np.zeros(unzgd, dtype=np.float) |
---|
| 403 | for iz in range(dimv[1]-1): |
---|
| 404 | WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] |
---|
| 405 | |
---|
| 406 | # Attributes of the variable |
---|
| 407 | Vvals = gen.variables_values('WRFz') |
---|
[2215] | 408 | dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
[1777] | 409 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 410 | |
---|
[2215] | 411 | if WRFdxdy_compute: |
---|
| 412 | print ' ' + main + ': Retrieving dxdy: real distance between grid points ' + \ |
---|
| 413 | 'from WRF as dx=(XLONG(i+1)-XLONG(i))*DX/MAPFAC_M, dy=(XLAT(j+1)-XLAT(i))*DY/'+\ |
---|
| 414 | 'MAPFAC_M, ds=sqrt(dx**2+dy**2)' |
---|
| 415 | dimv = ncobj.variables['XLONG'].shape |
---|
| 416 | WRFlon = ncobj.variables['XLONG'][0,:,:] |
---|
| 417 | WRFlat = ncobj.variables['XLAT'][0,:,:] |
---|
| 418 | WRFmapfac_m = ncobj.variables['MAPFAC_M'][0,:,:] |
---|
| 419 | DX = ncobj.DX |
---|
| 420 | DY = ncobj.DY |
---|
| 421 | |
---|
| 422 | dimx = dimv[2] |
---|
| 423 | dimy = dimv[1] |
---|
| 424 | |
---|
| 425 | WRFdx = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 426 | WRFdy = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 427 | |
---|
| 428 | WRFdx[:,0:dimx-1]=(WRFlon[:,1:dimx]-WRFlon[:,0:dimx-1])*DX/WRFmapfac_m[:,0:dimx-1] |
---|
| 429 | WRFdy[0:dimy-1,:]=(WRFlat[1:dimy,:]-WRFlat[0:dimy-1,:])*DY/WRFmapfac_m[0:dimy-1,:] |
---|
| 430 | WRFds = np.sqrt(WRFdx**2 + WRFdy**2) |
---|
| 431 | |
---|
| 432 | # Attributes of the variable |
---|
| 433 | Vvals = gen.variables_values('WRFdx') |
---|
| 434 | dictcompvars['WRFdx'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 435 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 436 | Vvals = gen.variables_values('WRFdy') |
---|
| 437 | dictcompvars['WRFdy'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 438 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 439 | Vvals = gen.variables_values('WRFds') |
---|
[2222] | 440 | dictcompvars['WRFds'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 441 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 442 | |
---|
[2257] | 443 | if WRFdxdywps_compute: |
---|
| 444 | print ' ' + main + ': Retrieving dxdy: real distance between grid points ' + \ |
---|
| 445 | 'from wpsWRF as dx=(XLONG_M(i+1)-XLONG_M(i))*DX/MAPFAC_M, ' + \ |
---|
| 446 | 'dy=(XLAT_M(j+1)-XLAT_M(i))*DY/MAPFAC_M, ds=sqrt(dx**2+dy**2)' |
---|
| 447 | dimv = ncobj.variables['XLONG_M'].shape |
---|
| 448 | WRFlon = ncobj.variables['XLONG_M'][0,:,:] |
---|
| 449 | WRFlat = ncobj.variables['XLAT_M'][0,:,:] |
---|
| 450 | WRFmapfac_m = ncobj.variables['MAPFAC_M'][0,:,:] |
---|
| 451 | DX = ncobj.DX |
---|
| 452 | DY = ncobj.DY |
---|
| 453 | |
---|
| 454 | dimx = dimv[2] |
---|
| 455 | dimy = dimv[1] |
---|
| 456 | |
---|
| 457 | WRFdx = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 458 | WRFdy = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 459 | |
---|
| 460 | WRFdx[:,0:dimx-1]=(WRFlon[:,1:dimx]-WRFlon[:,0:dimx-1])*DX/WRFmapfac_m[:,0:dimx-1] |
---|
| 461 | WRFdy[0:dimy-1,:]=(WRFlat[1:dimy,:]-WRFlat[0:dimy-1,:])*DY/WRFmapfac_m[0:dimy-1,:] |
---|
| 462 | WRFds = np.sqrt(WRFdx**2 + WRFdy**2) |
---|
| 463 | |
---|
| 464 | # Attributes of the variable |
---|
| 465 | Vvals = gen.variables_values('WRFdx') |
---|
| 466 | dictcompvars['WRFdx'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 467 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 468 | Vvals = gen.variables_values('WRFdy') |
---|
| 469 | dictcompvars['WRFdy'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 470 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 471 | Vvals = gen.variables_values('WRFds') |
---|
| 472 | dictcompvars['WRFds'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 473 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 474 | |
---|
[2222] | 475 | if LONLATdxdy_compute: |
---|
| 476 | print ' ' + main + ': Retrieving dxdy: real distance between grid points ' + \ |
---|
| 477 | 'from a regular lonlat projection as dx=(lon[i+1]-lon[i])*raddeg*Rearth*' + \ |
---|
| 478 | 'cos(abs(lat[i])); dy=(lat[j+1]-lat[i])*raddeg*Rearth; ds=sqrt(dx**2+dy**2); '+\ |
---|
| 479 | 'raddeg = pi/180; Rearth=6370.0e03' |
---|
| 480 | dimv = ncobj.variables['lon'].shape |
---|
| 481 | lon = ncobj.variables['lon'][:] |
---|
| 482 | lat = ncobj.variables['lat'][:] |
---|
| 483 | |
---|
| 484 | WRFlon, WRFlat = gen.lonlat2D(lon,lat) |
---|
| 485 | |
---|
| 486 | dimx = WRFlon.shape[1] |
---|
| 487 | dimy = WRFlon.shape[0] |
---|
| 488 | |
---|
| 489 | WRFdx = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 490 | WRFdy = np.zeros((dimy,dimx), dtype=np.float) |
---|
| 491 | |
---|
| 492 | raddeg = np.pi/180. |
---|
| 493 | |
---|
| 494 | Rearth = fdef.module_definitions.earthradii |
---|
| 495 | |
---|
| 496 | WRFdx[:,0:dimx-1]=(WRFlon[:,1:dimx]-WRFlon[:,0:dimx-1])*raddeg*Rearth* \ |
---|
| 497 | np.cos(np.abs(WRFlat[:,0:dimx-1]*raddeg)) |
---|
| 498 | WRFdy[0:dimy-1,:]=(WRFlat[1:dimy,:]-WRFlat[0:dimy-1,:])*raddeg*Rearth |
---|
| 499 | WRFds = np.sqrt(WRFdx**2 + WRFdy**2) |
---|
| 500 | |
---|
| 501 | # Attributes of the variable |
---|
| 502 | Vvals = gen.variables_values('WRFdx') |
---|
| 503 | dictcompvars['WRFdx'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 504 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 505 | Vvals = gen.variables_values('WRFdy') |
---|
| 506 | dictcompvars['WRFdy'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 507 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 508 | Vvals = gen.variables_values('WRFds') |
---|
[2215] | 509 | dictcompvars['WRFds'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 510 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 511 | |
---|
[365] | 512 | ### ## # |
---|
| 513 | # Going for the diagnostics |
---|
| 514 | ### ## # |
---|
| 515 | print ' ' + main + ' ...' |
---|
[1404] | 516 | varsadd = [] |
---|
[365] | 517 | |
---|
| 518 | for idiag in range(Ndiags): |
---|
| 519 | print ' diagnostic:',diags[idiag] |
---|
[1758] | 520 | diagn = diags[idiag].split('|')[0] |
---|
[365] | 521 | depvars = diags[idiag].split('|')[1].split('@') |
---|
[1809] | 522 | if not gen.searchInlist(NONcheckdepvars, diagn): |
---|
| 523 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
| 524 | depvars = diags[idiag].split('|')[1].split('@') |
---|
| 525 | if depvars[0] == 'deaccum': diagn='deaccum' |
---|
| 526 | if depvars[0] == 'accum': diagn='accum' |
---|
| 527 | for depv in depvars: |
---|
[2212] | 528 | # Checking without extra arguments of a depending variable (':', separated) |
---|
| 529 | if depv.find(':') != -1: depv=depv.split(':')[0] |
---|
[1809] | 530 | if not ncobj.variables.has_key(depv) and not \ |
---|
| 531 | gen.searchInlist(NONcheckingvars, depv) and \ |
---|
| 532 | not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum'\ |
---|
| 533 | and not depvars[0] == 'accum' and not depv[0:2] == 'z=': |
---|
| 534 | print errormsg |
---|
| 535 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
| 536 | "' does not have variable '" + depv + "' !!" |
---|
| 537 | quit(-1) |
---|
| 538 | else: |
---|
| 539 | depvars = diags[idiag].split('|')[1] |
---|
| 540 | if not ncobj.variables.has_key(depvars) and not \ |
---|
| 541 | gen.searchInlist(NONcheckingvars, depvars) and \ |
---|
| 542 | not gen.searchInlist(methods, depvars): |
---|
[365] | 543 | print errormsg |
---|
| 544 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
[1809] | 545 | "' does not have variable '" + depvars + "' !!" |
---|
[365] | 546 | quit(-1) |
---|
| 547 | |
---|
[1758] | 548 | print "\n Computing '" + diagn + "' from: ", depvars, '...' |
---|
[365] | 549 | |
---|
[2095] | 550 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC, RAINSH |
---|
[1758] | 551 | if diagn == 'ACRAINTOT': |
---|
[365] | 552 | |
---|
| 553 | var0 = ncobj.variables[depvars[0]] |
---|
| 554 | var1 = ncobj.variables[depvars[1]] |
---|
[2095] | 555 | var2 = ncobj.variables[depvars[2]] |
---|
[365] | 556 | |
---|
[2095] | 557 | diagout = var0[:] + var1[:] + var2[:] |
---|
| 558 | |
---|
[365] | 559 | dnamesvar = var0.dimensions |
---|
| 560 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 561 | |
---|
[1647] | 562 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 563 | varsadd = [] |
---|
| 564 | for nonvd in NONchkvardims: |
---|
| 565 | if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) |
---|
| 566 | varsadd.append(nonvd) |
---|
| 567 | |
---|
[649] | 568 | ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) |
---|
[365] | 569 | |
---|
[649] | 570 | # accum: acumulation of any variable as (Variable, time [as [tunits] |
---|
| 571 | # from/since ....], newvarname) |
---|
[1758] | 572 | elif diagn == 'accum': |
---|
[649] | 573 | |
---|
| 574 | var0 = ncobj.variables[depvars[0]] |
---|
| 575 | var1 = ncobj.variables[depvars[1]] |
---|
| 576 | |
---|
| 577 | dnamesvar = var0.dimensions |
---|
| 578 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 579 | |
---|
[1675] | 580 | diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) |
---|
[1825] | 581 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 582 | varsadd = [] |
---|
| 583 | diagoutvd = list(dvnames) |
---|
| 584 | for nonvd in NONchkvardims: |
---|
| 585 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 586 | varsadd.append(nonvd) |
---|
[649] | 587 | |
---|
| 588 | CFvarn = ncvar.variables_values(depvars[0])[0] |
---|
| 589 | |
---|
| 590 | # Removing the flux |
---|
| 591 | if depvars[1] == 'XTIME': |
---|
| 592 | dtimeunits = var1.getncattr('description') |
---|
| 593 | tunits = dtimeunits.split(' ')[0] |
---|
| 594 | else: |
---|
| 595 | dtimeunits = var1.getncattr('units') |
---|
| 596 | tunits = dtimeunits.split(' ')[0] |
---|
| 597 | |
---|
[1825] | 598 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
[649] | 599 | |
---|
| 600 | ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) |
---|
| 601 | |
---|
[365] | 602 | # cllmh with cldfra, pres |
---|
[1758] | 603 | elif diagn == 'cllmh': |
---|
[365] | 604 | |
---|
| 605 | var0 = ncobj.variables[depvars[0]] |
---|
| 606 | if depvars[1] == 'WRFp': |
---|
| 607 | var1 = WRFp |
---|
| 608 | else: |
---|
| 609 | var01 = ncobj.variables[depvars[1]] |
---|
| 610 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
| 611 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
| 612 | else: |
---|
| 613 | var1 = var01 |
---|
| 614 | |
---|
[1675] | 615 | diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) |
---|
[772] | 616 | |
---|
[1351] | 617 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 618 | varsadd = [] |
---|
| 619 | for nonvd in NONchkvardims: |
---|
| 620 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 621 | varsadd.append(nonvd) |
---|
| 622 | |
---|
[365] | 623 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
| 624 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
| 625 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
| 626 | |
---|
| 627 | # clt with cldfra |
---|
[1758] | 628 | elif diagn == 'clt': |
---|
[365] | 629 | |
---|
| 630 | var0 = ncobj.variables[depvars] |
---|
[1675] | 631 | diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) |
---|
[1351] | 632 | |
---|
| 633 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 634 | varsadd = [] |
---|
| 635 | for nonvd in NONchkvardims: |
---|
| 636 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 637 | varsadd.append(nonvd) |
---|
| 638 | |
---|
[365] | 639 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
| 640 | |
---|
[2100] | 641 | # convini (pr, time) |
---|
| 642 | elif diagn == 'convini': |
---|
| 643 | |
---|
| 644 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 645 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 646 | otime = ncobj.variables[depvars[1]] |
---|
| 647 | |
---|
| 648 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 649 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 650 | |
---|
| 651 | diagout, diagoutd, diagoutvd = diag.var_convini(var0, var1, dnames, dvnames) |
---|
| 652 | |
---|
| 653 | ncvar.insert_variable(ncobj, 'convini', diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 654 | fill=gen.fillValueF) |
---|
| 655 | # Getting the right units |
---|
| 656 | ovar = newnc.variables['convini'] |
---|
| 657 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 658 | tunits = otime.getncattr('units') |
---|
| 659 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 660 | newnc.sync() |
---|
| 661 | |
---|
[365] | 662 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
| 663 | # from/since ....], newvarname) |
---|
[1758] | 664 | elif diagn == 'deaccum': |
---|
[365] | 665 | |
---|
[1825] | 666 | var0 = ncobj.variables[depvars[0]] |
---|
| 667 | var1 = ncobj.variables[depvars[1]] |
---|
[365] | 668 | |
---|
| 669 | dnamesvar = var0.dimensions |
---|
| 670 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 671 | |
---|
[1675] | 672 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
[1825] | 673 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 674 | varsadd = [] |
---|
| 675 | diagoutvd = list(dvnames) |
---|
| 676 | for nonvd in NONchkvardims: |
---|
| 677 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 678 | varsadd.append(nonvd) |
---|
[365] | 679 | |
---|
| 680 | # Transforming to a flux |
---|
[1825] | 681 | if depvars[1] == 'XTIME': |
---|
[365] | 682 | dtimeunits = var1.getncattr('description') |
---|
| 683 | tunits = dtimeunits.split(' ')[0] |
---|
| 684 | else: |
---|
| 685 | dtimeunits = var1.getncattr('units') |
---|
| 686 | tunits = dtimeunits.split(' ')[0] |
---|
| 687 | |
---|
[1825] | 688 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
[1908] | 689 | ncvar.insert_variable(ncobj, depvars[2], diagout/dtime, diagoutd, diagoutvd, \ |
---|
| 690 | newnc) |
---|
[365] | 691 | |
---|
[1909] | 692 | # fog_K84: Computation of fog and visibility following Kunkel, (1984) as QCLOUD, QICE |
---|
[1908] | 693 | elif diagn == 'fog_K84': |
---|
| 694 | |
---|
| 695 | var0 = ncobj.variables[depvars[0]] |
---|
| 696 | var1 = ncobj.variables[depvars[1]] |
---|
| 697 | |
---|
| 698 | dnamesvar = list(var0.dimensions) |
---|
| 699 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 700 | |
---|
| 701 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_K84(var0, var1, \ |
---|
| 702 | dnamesvar, dvnamesvar) |
---|
| 703 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 704 | varsadd = [] |
---|
| 705 | diagoutvd = list(dvnames) |
---|
| 706 | for nonvd in NONchkvardims: |
---|
| 707 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 708 | varsadd.append(nonvd) |
---|
| 709 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 710 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 711 | |
---|
[1909] | 712 | # fog_RUC: Computation of fog and visibility following Kunkel, (1984) as QVAPOR, |
---|
| 713 | # WRFt, WRFp or Q2, T2, PSFC |
---|
[1908] | 714 | elif diagn == 'fog_RUC': |
---|
| 715 | |
---|
| 716 | var0 = ncobj.variables[depvars[0]] |
---|
[1909] | 717 | print gen.infmsg |
---|
| 718 | if depvars[1] == 'WRFt': |
---|
| 719 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
| 720 | var1 = WRFt |
---|
| 721 | var2 = WRFp |
---|
| 722 | else: |
---|
| 723 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
| 724 | var1 = ncobj.variables[depvars[1]] |
---|
| 725 | var2 = ncobj.variables[depvars[2]] |
---|
[1908] | 726 | |
---|
| 727 | dnamesvar = list(var0.dimensions) |
---|
| 728 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 729 | |
---|
[1909] | 730 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_RUC(var0, var1, var2,\ |
---|
[1908] | 731 | dnamesvar, dvnamesvar) |
---|
| 732 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 733 | varsadd = [] |
---|
| 734 | diagoutvd = list(dvnames) |
---|
| 735 | for nonvd in NONchkvardims: |
---|
| 736 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 737 | varsadd.append(nonvd) |
---|
| 738 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 739 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 740 | |
---|
[1909] | 741 | # fog_FRAML50: Computation of fog and visibility following Gultepe, I. and |
---|
| 742 | # J.A. Milbrandt, 2010 as QVAPOR, WRFt, WRFp or Q2, T2, PSFC |
---|
| 743 | elif diagn == 'fog_FRAML50': |
---|
| 744 | |
---|
| 745 | var0 = ncobj.variables[depvars[0]] |
---|
| 746 | print gen.infmsg |
---|
| 747 | if depvars[1] == 'WRFt': |
---|
| 748 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
| 749 | var1 = WRFt |
---|
| 750 | var2 = WRFp |
---|
| 751 | else: |
---|
| 752 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
| 753 | var1 = ncobj.variables[depvars[1]] |
---|
| 754 | var2 = ncobj.variables[depvars[2]] |
---|
| 755 | |
---|
| 756 | dnamesvar = list(var0.dimensions) |
---|
| 757 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 758 | |
---|
| 759 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_FRAML50(var0, var1, \ |
---|
| 760 | var2, dnamesvar, dvnamesvar) |
---|
| 761 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 762 | varsadd = [] |
---|
| 763 | diagoutvd = list(dvnames) |
---|
| 764 | for nonvd in NONchkvardims: |
---|
| 765 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 766 | varsadd.append(nonvd) |
---|
| 767 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 768 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 769 | |
---|
[365] | 770 | # LMDZrh (pres, t, r) |
---|
[1758] | 771 | elif diagn == 'LMDZrh': |
---|
[365] | 772 | |
---|
| 773 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 774 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 775 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 776 | |
---|
[1675] | 777 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) |
---|
[1079] | 778 | ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 779 | |
---|
| 780 | # LMDZrhs (psol, t2m, q2m) |
---|
[1758] | 781 | elif diagn == 'LMDZrhs': |
---|
[365] | 782 | |
---|
| 783 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 784 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 785 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 786 | |
---|
| 787 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 788 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 789 | |
---|
[1675] | 790 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[365] | 791 | |
---|
[1079] | 792 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 793 | |
---|
[2215] | 794 | # range_faces: LON, LAT, HGT, WRFdxdy, 'face:['WE'/'SN']:[dsfilt]:[dsnewrange]:[hvalleyrange]' |
---|
[2208] | 795 | elif diagn == 'range_faces': |
---|
| 796 | |
---|
| 797 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 798 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 799 | var2 = ncobj.variables[depvars[2]][:] |
---|
[2215] | 800 | face = depvars[4].split(':')[1] |
---|
| 801 | dsfilt = np.float(depvars[4].split(':')[2]) |
---|
| 802 | dsnewrange = np.float(depvars[4].split(':')[3]) |
---|
| 803 | hvalleyrange = np.float(depvars[4].split(':')[4]) |
---|
[2208] | 804 | |
---|
[2222] | 805 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
[2212] | 806 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
[2209] | 807 | lon, lat = gen.lonlat2D(var0, var1) |
---|
| 808 | if len(var2.shape) == 3: |
---|
| 809 | print warnmsg |
---|
| 810 | print ' ' + diagn + ": shapping to 2D variable '" + depvars[2] + "' !!" |
---|
| 811 | hgt = var2[0,:,:] |
---|
[2212] | 812 | dnamesvar.pop(0) |
---|
| 813 | dvnamesvar.pop(0) |
---|
[2209] | 814 | else: |
---|
| 815 | hgt = var2[:] |
---|
| 816 | |
---|
[2213] | 817 | orogmax, ptorogmax, dhgt, peaks, valleys, origfaces, diagout, diagoutd, \ |
---|
[2223] | 818 | diagoutvd, rng, rngorogmax, ptrngorogmax= diag.Forcompute_range_faces(lon, \ |
---|
[2260] | 819 | lat, hgt, WRFdx, WRFdy, WRFds, face, dsfilt, dsnewrange, hvalleyrange, \ |
---|
| 820 | dnamesvar, dvnamesvar) |
---|
[2208] | 821 | |
---|
| 822 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 823 | varsadd = [] |
---|
| 824 | diagoutvd = list(dvnames) |
---|
| 825 | for nonvd in NONchkvardims: |
---|
| 826 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 827 | varsadd.append(nonvd) |
---|
[2212] | 828 | |
---|
[2215] | 829 | ncvar.insert_variable(ncobj, 'dx', WRFdx, diagoutd, diagoutvd, newnc) |
---|
| 830 | ncvar.insert_variable(ncobj, 'dy', WRFdy, diagoutd, diagoutvd, newnc) |
---|
| 831 | ncvar.insert_variable(ncobj, 'ds', WRFds, diagoutd, diagoutvd, newnc) |
---|
| 832 | |
---|
[2213] | 833 | # adding variables to output file |
---|
| 834 | if face == 'WE': axis = 'lon' |
---|
| 835 | elif face == 'SN': axis = 'lat' |
---|
| 836 | |
---|
[2223] | 837 | ncvar.insert_variable(ncobj, 'range', rng, diagoutd, diagoutvd, newnc, \ |
---|
| 838 | fill=gen.fillValueI) |
---|
| 839 | ovar = newnc.variables['range'] |
---|
| 840 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
| 841 | |
---|
[2214] | 842 | ncvar.insert_variable(ncobj, 'orogmax', rngorogmax, diagoutd, diagoutvd, \ |
---|
[2222] | 843 | newnc, fill=gen.fillValueF) |
---|
[2214] | 844 | newnc.renameVariable('orogmax', 'rangeorogmax') |
---|
| 845 | ovar = newnc.variables['rangeorogmax'] |
---|
| 846 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
| 847 | stdn = ovar.standard_name |
---|
| 848 | ncvar.set_attribute(ovar, 'standard_name', 'range_' + stdn) |
---|
| 849 | Ln = ovar.long_name |
---|
| 850 | ncvar.set_attribute(ovar, 'long_name', 'range ' + stdn) |
---|
| 851 | |
---|
| 852 | ncvar.insert_variable(ncobj, 'ptorogmax', ptrngorogmax, diagoutd, diagoutvd, \ |
---|
| 853 | newnc) |
---|
| 854 | newnc.renameVariable('ptorogmax', 'rangeptorogmax') |
---|
| 855 | ovar = newnc.variables['rangeptorogmax'] |
---|
| 856 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
| 857 | stdn = ovar.standard_name |
---|
| 858 | ncvar.set_attribute(ovar, 'standard_name', 'range_' + stdn) |
---|
| 859 | Ln = ovar.long_name |
---|
| 860 | ncvar.set_attribute(ovar, 'long_name', 'range ' + stdn) |
---|
| 861 | |
---|
[2213] | 862 | ncvar.insert_variable(ncobj, 'orogmax', orogmax, diagoutd, diagoutvd, \ |
---|
| 863 | newnc) |
---|
| 864 | ovar = newnc.variables['orogmax'] |
---|
| 865 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
| 866 | |
---|
| 867 | ncvar.insert_variable(ncobj, 'ptorogmax', ptorogmax, diagoutd, diagoutvd, \ |
---|
| 868 | newnc) |
---|
| 869 | ovar = newnc.variables['ptorogmax'] |
---|
| 870 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
| 871 | |
---|
[2215] | 872 | ncvar.insert_variable(ncobj, 'orogderiv', dhgt, diagoutd, diagoutvd, newnc) |
---|
| 873 | ovar = newnc.variables['orogderiv'] |
---|
[2212] | 874 | ncvar.set_attribute(ovar, 'deriv', axis) |
---|
[2208] | 875 | |
---|
[2212] | 876 | ncvar.insert_variable(ncobj, 'peak', peaks, diagoutd, diagoutvd, newnc) |
---|
| 877 | ncvar.insert_variable(ncobj, 'valley', valleys, diagoutd, diagoutvd, newnc) |
---|
| 878 | |
---|
| 879 | ncvar.insert_variable(ncobj, 'rangefaces', diagout, diagoutd, diagoutvd, \ |
---|
| 880 | newnc) |
---|
| 881 | newnc.renameVariable('rangefaces', 'rangefacesfilt') |
---|
| 882 | ovar = newnc.variables['rangefacesfilt'] |
---|
| 883 | ncvar.set_attribute(ovar, 'face', face) |
---|
[2215] | 884 | ncvar.set_attributek(ovar, 'dist_filter', dsfilt, 'F') |
---|
[2212] | 885 | |
---|
| 886 | ncvar.insert_variable(ncobj, 'rangefaces', origfaces, diagoutd, diagoutvd, \ |
---|
[2215] | 887 | newnc, fill=gen.fillValueI) |
---|
[2212] | 888 | ovar = newnc.variables['rangefaces'] |
---|
| 889 | ncvar.set_attribute(ovar, 'face', face) |
---|
[2215] | 890 | ncvar.set_attributek(ovar, 'dist_newrange', dsnewrange, 'F') |
---|
| 891 | ncvar.set_attributek(ovar, 'h_valley_newrange', hvalleyrange, 'F') |
---|
[2212] | 892 | |
---|
[2277] | 893 | # cell_bnds: grid cell bounds from lon, lat from a reglar lon/lat projection as |
---|
| 894 | # intersection of their related parallels and meridians |
---|
| 895 | elif diagn == 'reglonlatbnds': |
---|
| 896 | |
---|
| 897 | var00 = ncobj.variables[depvars[0]][:] |
---|
| 898 | var01 = ncobj.variables[depvars[1]][:] |
---|
| 899 | |
---|
| 900 | var0, var1 = gen.lonlat2D(var00,var01) |
---|
| 901 | |
---|
| 902 | dnamesvar = [] |
---|
| 903 | dnamesvar.append('bnds') |
---|
| 904 | if (len(var00.shape) == 3): |
---|
| 905 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[1]) |
---|
| 906 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[2]) |
---|
| 907 | elif (len(var00.shape) == 2): |
---|
| 908 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[0]) |
---|
| 909 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[1]) |
---|
| 910 | elif (len(var00.shape) == 1): |
---|
| 911 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[0]) |
---|
| 912 | dnamesvar.append(ncobj.variables[depvars[1]].dimensions[0]) |
---|
| 913 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 914 | |
---|
| 915 | cellbndsx, cellbndsy, diagoutd, diagoutvd = diag.Forcompute_cellbndsreg(var0,\ |
---|
| 916 | var1, dnamesvar, dvnamesvar) |
---|
| 917 | |
---|
| 918 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 919 | varsadd = [] |
---|
| 920 | diagoutvd = list(dvnames) |
---|
| 921 | for nonvd in NONchkvardims: |
---|
| 922 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 923 | varsadd.append(nonvd) |
---|
| 924 | # creation of bounds dimension |
---|
| 925 | newdim = newnc.createDimension('bnds', 4) |
---|
| 926 | |
---|
| 927 | ncvar.insert_variable(ncobj, 'lon_bnds', cellbndsx, diagoutd, diagoutvd, newnc) |
---|
| 928 | ncvar.insert_variable(ncobj, 'lat_bnds', cellbndsy, diagoutd, diagoutvd, newnc) |
---|
| 929 | |
---|
[2274] | 930 | # cell_bnds: grid cell bounds from XLONG_U, XLAT_U, XLONG_V, XLAT_V as intersection |
---|
| 931 | # of their related parallels and meridians |
---|
| 932 | elif diagn == 'WRFbnds': |
---|
| 933 | |
---|
| 934 | var0 = ncobj.variables[depvars[0]][0,:,:] |
---|
| 935 | var1 = ncobj.variables[depvars[1]][0,:,:] |
---|
| 936 | var2 = ncobj.variables[depvars[2]][0,:,:] |
---|
| 937 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
| 938 | |
---|
| 939 | dnamesvar = [] |
---|
[2276] | 940 | dnamesvar.append('bnds') |
---|
| 941 | dnamesvar.append(ncobj.variables[depvars[0]].dimensions[1]) |
---|
[2274] | 942 | dnamesvar.append(ncobj.variables[depvars[2]].dimensions[2]) |
---|
| 943 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 944 | |
---|
| 945 | cellbndsx, cellbndsy, diagoutd, diagoutvd = diag.Forcompute_cellbnds(var0, \ |
---|
| 946 | var1, var2, var3, dnamesvar, dvnamesvar) |
---|
| 947 | |
---|
| 948 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 949 | varsadd = [] |
---|
| 950 | diagoutvd = list(dvnames) |
---|
| 951 | for nonvd in NONchkvardims: |
---|
| 952 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 953 | varsadd.append(nonvd) |
---|
| 954 | # creation of bounds dimension |
---|
| 955 | newdim = newnc.createDimension('bnds', 4) |
---|
| 956 | |
---|
| 957 | ncvar.insert_variable(ncobj, 'lon_bnds', cellbndsx, diagoutd, diagoutvd, newnc) |
---|
[2285] | 958 | newnc.sync() |
---|
[2274] | 959 | ncvar.insert_variable(ncobj, 'lat_bnds', cellbndsy, diagoutd, diagoutvd, newnc) |
---|
[2285] | 960 | newnc.sync() |
---|
[2274] | 961 | |
---|
[2283] | 962 | ovar = newnc.variables['XLONG'] |
---|
[2285] | 963 | ovar.setncattr('bounds', 'lon_bnds lat_bnds') |
---|
[2283] | 964 | ovar = newnc.variables['XLAT'] |
---|
[2285] | 965 | ovar.setncattr('bounds', 'lon_bnds lat_bnds') |
---|
[2283] | 966 | |
---|
[1762] | 967 | # mrso: total soil moisture SMOIS, DZS |
---|
| 968 | elif diagn == 'WRFmrso': |
---|
| 969 | |
---|
| 970 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 971 | var10 = ncobj.variables[depvars[1]][:] |
---|
| 972 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 973 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 974 | |
---|
| 975 | var1 = var0.copy()*0. |
---|
| 976 | var2 = var0.copy()*0.+1. |
---|
| 977 | # Must be a better way.... |
---|
| 978 | for j in range(var0.shape[2]): |
---|
| 979 | for i in range(var0.shape[3]): |
---|
| 980 | var1[:,:,j,i] = var10 |
---|
| 981 | |
---|
| 982 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
| 983 | dnamesvar, dvnamesvar) |
---|
| 984 | |
---|
| 985 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 986 | varsadd = [] |
---|
| 987 | diagoutvd = list(dvnames) |
---|
| 988 | for nonvd in NONchkvardims: |
---|
| 989 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 990 | varsadd.append(nonvd) |
---|
| 991 | ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) |
---|
| 992 | |
---|
[2206] | 993 | # mrsos: First layer soil moisture SMOIS, DZS |
---|
| 994 | elif diagn == 'WRFmrsos': |
---|
| 995 | |
---|
| 996 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 997 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 998 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 999 | diagoutvd = ncvar.var_dim_dimv(diagoutd,dnames,dvnames) |
---|
| 1000 | |
---|
| 1001 | diagoutd.pop(1) |
---|
| 1002 | diagoutvd.pop(1) |
---|
| 1003 | |
---|
| 1004 | diagout= np.zeros((var0.shape[0],var0.shape[2],var0.shape[3]), dtype=np.float) |
---|
| 1005 | |
---|
| 1006 | # Must be a better way.... |
---|
| 1007 | for j in range(var0.shape[2]): |
---|
| 1008 | for i in range(var0.shape[3]): |
---|
| 1009 | diagout[:,j,i] = var0[:,0,j,i]*var1[:,0] |
---|
| 1010 | |
---|
| 1011 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1012 | varsadd = [] |
---|
| 1013 | diagoutvd = list(dvnames) |
---|
| 1014 | for nonvd in NONchkvardims: |
---|
| 1015 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1016 | varsadd.append(nonvd) |
---|
| 1017 | ncvar.insert_variable(ncobj, 'mrsos', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1018 | |
---|
[365] | 1019 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
[1758] | 1020 | elif diagn == 'mslp' or diagn == 'WRFmslp': |
---|
[365] | 1021 | |
---|
| 1022 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1023 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1024 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1025 | |
---|
[1758] | 1026 | if diagn == 'WRFmslp': |
---|
[365] | 1027 | var0 = WRFp |
---|
| 1028 | var3 = WRFt |
---|
| 1029 | dnamesvar = ncobj.variables['P'].dimensions |
---|
| 1030 | else: |
---|
| 1031 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1032 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1033 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1034 | |
---|
| 1035 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1036 | |
---|
[1675] | 1037 | diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ |
---|
[365] | 1038 | dnamesvar, dvnamesvar) |
---|
| 1039 | |
---|
[1581] | 1040 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1041 | varsadd = [] |
---|
| 1042 | diagoutvd = list(dvnames) |
---|
| 1043 | for nonvd in NONchkvardims: |
---|
| 1044 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1045 | varsadd.append(nonvd) |
---|
[365] | 1046 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1047 | |
---|
[642] | 1048 | # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) |
---|
[1758] | 1049 | elif diagn == 'OMEGAw': |
---|
[642] | 1050 | |
---|
| 1051 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1052 | var1 = ncobj.variables[depvars[1]][:] |
---|
[643] | 1053 | var2 = ncobj.variables[depvars[2]][:] |
---|
[642] | 1054 | |
---|
| 1055 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1056 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1057 | |
---|
[1675] | 1058 | diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[642] | 1059 | |
---|
| 1060 | ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1061 | |
---|
[2095] | 1062 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC + RAINSH) / dTime |
---|
[1758] | 1063 | elif diagn == 'RAINTOT': |
---|
[365] | 1064 | |
---|
| 1065 | var0 = ncobj.variables[depvars[0]] |
---|
| 1066 | var1 = ncobj.variables[depvars[1]] |
---|
[2095] | 1067 | var2 = ncobj.variables[depvars[2]] |
---|
| 1068 | |
---|
| 1069 | if depvars[3] != 'WRFtime': |
---|
| 1070 | var3 = ncobj.variables[depvars[3]] |
---|
[654] | 1071 | else: |
---|
[2095] | 1072 | var3 = np.arange(var0.shape[0], dtype=int) |
---|
[365] | 1073 | |
---|
[2095] | 1074 | var = var0[:] + var1[:] + var2[:] |
---|
[365] | 1075 | |
---|
| 1076 | dnamesvar = var0.dimensions |
---|
| 1077 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1078 | |
---|
[1675] | 1079 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
[365] | 1080 | |
---|
| 1081 | # Transforming to a flux |
---|
[2095] | 1082 | if var3.shape[0] > 1: |
---|
| 1083 | if depvars[3] != 'WRFtime': |
---|
| 1084 | dtimeunits = var3.getncattr('units') |
---|
[600] | 1085 | tunits = dtimeunits.split(' ')[0] |
---|
| 1086 | |
---|
[2095] | 1087 | dtime = (var3[1] - var3[0])*diag.timeunits_seconds(tunits) |
---|
[600] | 1088 | else: |
---|
[2095] | 1089 | var3 = ncobj.variables['Times'] |
---|
| 1090 | time1 = var3[0,:] |
---|
| 1091 | time2 = var3[1,:] |
---|
[600] | 1092 | tmf1 = '' |
---|
| 1093 | tmf2 = '' |
---|
| 1094 | for ic in range(len(time1)): |
---|
| 1095 | tmf1 = tmf1 + time1[ic] |
---|
| 1096 | tmf2 = tmf2 + time2[ic] |
---|
[654] | 1097 | dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
| 1098 | dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
[600] | 1099 | diffdate12 = dtdate2 - dtdate1 |
---|
| 1100 | dtime = diffdate12.total_seconds() |
---|
| 1101 | print 'dtime:',dtime |
---|
[442] | 1102 | else: |
---|
[600] | 1103 | print warnmsg |
---|
[1645] | 1104 | print ' ' + main + ": only 1 time-step for '" + diag + "' !!" |
---|
[600] | 1105 | print ' leaving a zero value!' |
---|
[1646] | 1106 | diagout = var0[:]*0. |
---|
[600] | 1107 | dtime=1. |
---|
[442] | 1108 | |
---|
[1644] | 1109 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1110 | varsadd = [] |
---|
| 1111 | for nonvd in NONchkvardims: |
---|
| 1112 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 1113 | varsadd.append(nonvd) |
---|
| 1114 | |
---|
[365] | 1115 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
| 1116 | |
---|
[2140] | 1117 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
| 1118 | elif diagn == 'timemax': |
---|
| 1119 | |
---|
| 1120 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1121 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1122 | |
---|
| 1123 | otime = ncobj.variables[depvars[1]] |
---|
| 1124 | |
---|
| 1125 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1126 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1127 | |
---|
| 1128 | diagout, diagoutd, diagoutvd = diag.var_timemax(var0, var1, dnames, \ |
---|
| 1129 | dvnames) |
---|
| 1130 | |
---|
| 1131 | ncvar.insert_variable(ncobj, 'timemax', diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 1132 | fill=gen.fillValueF) |
---|
| 1133 | # Getting the right units |
---|
| 1134 | ovar = newnc.variables['timemax'] |
---|
| 1135 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 1136 | tunits = otime.getncattr('units') |
---|
| 1137 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 1138 | newnc.sync() |
---|
| 1139 | ncvar.set_attribute(ovar, 'variable', depvars[0]) |
---|
| 1140 | |
---|
[2138] | 1141 | # timeoverthres ([varname], time, [value], [CFvarn]). When a given variable [varname] |
---|
| 1142 | # overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
| 1143 | # variables_values.dat |
---|
| 1144 | elif diagn == 'timeoverthres': |
---|
| 1145 | |
---|
| 1146 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1147 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1148 | var2 = np.float(depvars[2]) |
---|
| 1149 | var3 = depvars[3] |
---|
| 1150 | |
---|
| 1151 | otime = ncobj.variables[depvars[1]] |
---|
| 1152 | |
---|
| 1153 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1154 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1155 | |
---|
| 1156 | diagout, diagoutd, diagoutvd = diag.var_timeoverthres(var0, var1, var2, \ |
---|
| 1157 | dnames, dvnames) |
---|
| 1158 | |
---|
| 1159 | ncvar.insert_variable(ncobj, var3, diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 1160 | fill=gen.fillValueF) |
---|
| 1161 | # Getting the right units |
---|
| 1162 | ovar = newnc.variables[var3] |
---|
| 1163 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 1164 | tunits = otime.getncattr('units') |
---|
| 1165 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 1166 | newnc.sync() |
---|
| 1167 | ncvar.set_attribute(ovar, 'overpassed_threshold', var2) |
---|
| 1168 | |
---|
[612] | 1169 | # rhs (psfc, t, q) from TimeSeries files |
---|
[1758] | 1170 | elif diagn == 'TSrhs': |
---|
[612] | 1171 | |
---|
| 1172 | p0=100000. |
---|
| 1173 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1174 | var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) |
---|
| 1175 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1176 | |
---|
| 1177 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1178 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1179 | |
---|
[1675] | 1180 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 1181 | |
---|
[1079] | 1182 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 1183 | |
---|
[1762] | 1184 | # slw: total soil liquid water SH2O, DZS |
---|
| 1185 | elif diagn == 'WRFslw': |
---|
| 1186 | |
---|
| 1187 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1188 | var10 = ncobj.variables[depvars[1]][:] |
---|
| 1189 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1190 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1191 | |
---|
| 1192 | var1 = var0.copy()*0. |
---|
| 1193 | var2 = var0.copy()*0.+1. |
---|
| 1194 | # Must be a better way.... |
---|
| 1195 | for j in range(var0.shape[2]): |
---|
| 1196 | for i in range(var0.shape[3]): |
---|
| 1197 | var1[:,:,j,i] = var10 |
---|
| 1198 | |
---|
| 1199 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
| 1200 | dnamesvar, dvnamesvar) |
---|
| 1201 | |
---|
| 1202 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1203 | varsadd = [] |
---|
| 1204 | diagoutvd = list(dvnames) |
---|
| 1205 | for nonvd in NONchkvardims: |
---|
| 1206 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1207 | varsadd.append(nonvd) |
---|
| 1208 | ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1209 | |
---|
[612] | 1210 | # td (psfc, t, q) from TimeSeries files |
---|
[1758] | 1211 | elif diagn == 'TStd' or diagn == 'td': |
---|
[612] | 1212 | |
---|
| 1213 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1214 | var1 = ncobj.variables[depvars[1]][:] - 273.15 |
---|
| 1215 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1216 | |
---|
| 1217 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1218 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1219 | |
---|
[1675] | 1220 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 1221 | |
---|
[1966] | 1222 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 1223 | |
---|
| 1224 | # td (psfc, t, q) from TimeSeries files |
---|
[1758] | 1225 | elif diagn == 'TStdC' or diagn == 'tdC': |
---|
[612] | 1226 | |
---|
| 1227 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1228 | # Temperature is already in degrees Celsius |
---|
| 1229 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1230 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1231 | |
---|
| 1232 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1233 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1234 | |
---|
[1675] | 1235 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 1236 | |
---|
[1999] | 1237 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1238 | varsadd = [] |
---|
| 1239 | for nonvd in NONchkvardims: |
---|
| 1240 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1241 | varsadd.append(nonvd) |
---|
| 1242 | |
---|
[1966] | 1243 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 1244 | |
---|
| 1245 | # wds (u, v) |
---|
[1758] | 1246 | elif diagn == 'TSwds' or diagn == 'wds' : |
---|
[612] | 1247 | |
---|
| 1248 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1249 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1250 | |
---|
| 1251 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1252 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1253 | |
---|
[1675] | 1254 | diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) |
---|
[612] | 1255 | |
---|
[1999] | 1256 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1257 | varsadd = [] |
---|
| 1258 | for nonvd in NONchkvardims: |
---|
| 1259 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1260 | varsadd.append(nonvd) |
---|
| 1261 | |
---|
[612] | 1262 | ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1263 | |
---|
| 1264 | # wss (u, v) |
---|
[1758] | 1265 | elif diagn == 'TSwss' or diagn == 'wss': |
---|
[612] | 1266 | |
---|
| 1267 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1268 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1269 | |
---|
| 1270 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1271 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1272 | |
---|
[1675] | 1273 | diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) |
---|
[612] | 1274 | |
---|
[1999] | 1275 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1276 | varsadd = [] |
---|
| 1277 | for nonvd in NONchkvardims: |
---|
| 1278 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1279 | varsadd.append(nonvd) |
---|
| 1280 | |
---|
[612] | 1281 | ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1282 | |
---|
[365] | 1283 | # turbulence (var) |
---|
[1758] | 1284 | elif diagn == 'turbulence': |
---|
[365] | 1285 | |
---|
| 1286 | var0 = ncobj.variables[depvars][:] |
---|
| 1287 | |
---|
| 1288 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
| 1289 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1290 | |
---|
[1675] | 1291 | diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
[959] | 1292 | valsvar = gen.variables_values(depvars) |
---|
[365] | 1293 | |
---|
[959] | 1294 | newvarn = depvars + 'turb' |
---|
| 1295 | ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, |
---|
[365] | 1296 | diagoutvd, newnc) |
---|
[959] | 1297 | varobj = newnc.variables[newvarn] |
---|
[365] | 1298 | attrv = varobj.long_name |
---|
| 1299 | attr = varobj.delncattr('long_name') |
---|
| 1300 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
| 1301 | " Taylor decomposition turbulence term") |
---|
| 1302 | |
---|
[1927] | 1303 | # ua va from ws wd (deg) |
---|
| 1304 | elif diagn == 'uavaFROMwswd': |
---|
| 1305 | |
---|
| 1306 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1307 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1308 | |
---|
| 1309 | ua = var0*np.cos(var1*np.pi/180.) |
---|
| 1310 | va = var0*np.sin(var1*np.pi/180.) |
---|
| 1311 | |
---|
| 1312 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1313 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1314 | |
---|
| 1315 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
| 1316 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
| 1317 | |
---|
[2033] | 1318 | # ua va from obs ws wd (deg) |
---|
| 1319 | elif diagn == 'uavaFROMobswswd': |
---|
| 1320 | |
---|
| 1321 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1322 | var1 = ncobj.variables[depvars[1]][:] |
---|
[1927] | 1323 | |
---|
[2033] | 1324 | ua = var0*np.cos((var1+180.)*np.pi/180.) |
---|
| 1325 | va = var0*np.sin((var1+180.)*np.pi/180.) |
---|
| 1326 | |
---|
| 1327 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1328 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1329 | |
---|
| 1330 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
| 1331 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
| 1332 | |
---|
[390] | 1333 | # WRFbils fom WRF as HFX + LH |
---|
[1758] | 1334 | elif diagn == 'WRFbils': |
---|
[390] | 1335 | |
---|
| 1336 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1337 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1338 | |
---|
| 1339 | diagout = var0 + var1 |
---|
[867] | 1340 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1341 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
[390] | 1342 | |
---|
[867] | 1343 | ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) |
---|
[390] | 1344 | |
---|
[1759] | 1345 | # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' |
---|
| 1346 | # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT |
---|
| 1347 | elif diagn == 'WRFcape_afwa': |
---|
| 1348 | var0 = WRFt |
---|
| 1349 | var1 = WRFrh |
---|
| 1350 | var2 = WRFp |
---|
| 1351 | dz = WRFgeop.shape[1] |
---|
| 1352 | # de-staggering |
---|
[1833] | 1353 | var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:])/9.8 |
---|
[1759] | 1354 | var4 = ncobj.variables[depvars[4]][0,:,:] |
---|
| 1355 | |
---|
| 1356 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
| 1357 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1358 | |
---|
| 1359 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1360 | diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ |
---|
| 1361 | diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ |
---|
| 1362 | dvnamesvar) |
---|
| 1363 | |
---|
| 1364 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1365 | varsadd = [] |
---|
| 1366 | for nonvd in NONchkvardims: |
---|
| 1367 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1368 | varsadd.append(nonvd) |
---|
| 1369 | |
---|
| 1370 | ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1371 | ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1372 | ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) |
---|
| 1373 | ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) |
---|
| 1374 | ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) |
---|
| 1375 | |
---|
[1581] | 1376 | # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL |
---|
[1758] | 1377 | elif diagn == 'WRFclivi': |
---|
[1581] | 1378 | |
---|
| 1379 | var0 = WRFdens |
---|
| 1380 | qtot = ncobj.variables[depvars[1]] |
---|
| 1381 | qtotv = qtot[:] |
---|
| 1382 | Nspecies = len(depvars) - 2 |
---|
| 1383 | for iv in range(Nspecies): |
---|
[1585] | 1384 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1385 | var1 = ncobj.variables[depvars[iv+2]][:] |
---|
| 1386 | qtotv = qtotv + var1 |
---|
[1581] | 1387 | |
---|
| 1388 | dnamesvar = list(qtot.dimensions) |
---|
| 1389 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1390 | |
---|
[1675] | 1391 | diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) |
---|
[1581] | 1392 | |
---|
| 1393 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1394 | varsadd = [] |
---|
| 1395 | diagoutvd = list(dvnames) |
---|
| 1396 | for nonvd in NONchkvardims: |
---|
| 1397 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1398 | varsadd.append(nonvd) |
---|
| 1399 | ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1400 | |
---|
[1803] | 1401 | # WRFclwvi WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL |
---|
| 1402 | elif diagn == 'WRFclwvi': |
---|
[1581] | 1403 | |
---|
| 1404 | var0 = WRFdens |
---|
| 1405 | qtot = ncobj.variables[depvars[1]] |
---|
| 1406 | qtotv = ncobj.variables[depvars[1]] |
---|
| 1407 | Nspecies = len(depvars) - 2 |
---|
| 1408 | for iv in range(Nspecies): |
---|
[1585] | 1409 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1410 | var1 = ncobj.variables[depvars[iv+2]] |
---|
| 1411 | qtotv = qtotv + var1[:] |
---|
[1581] | 1412 | |
---|
| 1413 | dnamesvar = list(qtot.dimensions) |
---|
| 1414 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1415 | |
---|
[1675] | 1416 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
[1581] | 1417 | |
---|
| 1418 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1419 | varsadd = [] |
---|
| 1420 | diagoutvd = list(dvnames) |
---|
| 1421 | for nonvd in NONchkvardims: |
---|
| 1422 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1423 | varsadd.append(nonvd) |
---|
[1803] | 1424 | ncvar.insert_variable(ncobj, 'clwvi', diagout, diagoutd, diagoutvd, newnc) |
---|
[1581] | 1425 | |
---|
[1809] | 1426 | # WRF_denszint WRF vertical integration as WRFdens, sum(Q[water species1], ..., Q[water speciesN]), varn=[varN] |
---|
| 1427 | elif diagn == 'WRF_denszint': |
---|
| 1428 | |
---|
| 1429 | var0 = WRFdens |
---|
| 1430 | varn = depvars[1].split('=')[1] |
---|
| 1431 | qtot = ncobj.variables[depvars[2]] |
---|
| 1432 | qtotv = ncobj.variables[depvars[2]] |
---|
| 1433 | Nspecies = len(depvars) - 2 |
---|
| 1434 | for iv in range(Nspecies): |
---|
| 1435 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1436 | var1 = ncobj.variables[depvars[iv+2]] |
---|
| 1437 | qtotv = qtotv + var1[:] |
---|
| 1438 | |
---|
| 1439 | dnamesvar = list(qtot.dimensions) |
---|
| 1440 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1441 | |
---|
| 1442 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
| 1443 | |
---|
| 1444 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1445 | varsadd = [] |
---|
| 1446 | diagoutvd = list(dvnames) |
---|
| 1447 | for nonvd in NONchkvardims: |
---|
| 1448 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1449 | varsadd.append(nonvd) |
---|
| 1450 | ncvar.insert_variable(ncobj, varn, diagout, diagoutd, diagoutvd, newnc) |
---|
| 1451 | |
---|
[654] | 1452 | # WRFgeop geopotential from WRF as PH + PHB |
---|
[1758] | 1453 | elif diagn == 'WRFgeop': |
---|
[1382] | 1454 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1455 | var1 = ncobj.variables[depvars[1]][:] |
---|
[654] | 1456 | |
---|
[1382] | 1457 | # de-staggering geopotential |
---|
| 1458 | diagout0 = var0 + var1 |
---|
| 1459 | dt = diagout0.shape[0] |
---|
| 1460 | dz = diagout0.shape[1] |
---|
| 1461 | dy = diagout0.shape[2] |
---|
| 1462 | dx = diagout0.shape[3] |
---|
| 1463 | |
---|
| 1464 | diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) |
---|
| 1465 | diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) |
---|
| 1466 | |
---|
| 1467 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1468 | varsadd = [] |
---|
[1389] | 1469 | diagoutvd = list(dvnames) |
---|
[1382] | 1470 | for nonvd in NONchkvardims: |
---|
[1389] | 1471 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
[1382] | 1472 | varsadd.append(nonvd) |
---|
| 1473 | |
---|
[1389] | 1474 | ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) |
---|
[654] | 1475 | |
---|
[1804] | 1476 | # WRFpotevap_orPM potential evapotranspiration following Penman-Monteith formulation |
---|
[1833] | 1477 | # implemented in ORCHIDEE (in src_sechiba/enerbil.f90) as: WRFdens, UST, U10, V10, T2, PSFC, QVAPOR |
---|
[1804] | 1478 | elif diagn == 'WRFpotevap_orPM': |
---|
| 1479 | var0 = WRFdens[:,0,:,:] |
---|
| 1480 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1481 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1482 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1483 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1484 | var5 = ncobj.variables[depvars[5]][:] |
---|
| 1485 | var6 = ncobj.variables[depvars[6]][:,0,:,:] |
---|
| 1486 | |
---|
| 1487 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
| 1488 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1489 | |
---|
| 1490 | diagout = np.zeros(var1.shape, dtype=np.float) |
---|
| 1491 | diagout, diagoutd, diagoutvd = diag.Forcompute_potevap_orPM(var0, var1, var2,\ |
---|
| 1492 | var3, var4, var5, var6, dnamesvar, dvnamesvar) |
---|
| 1493 | |
---|
| 1494 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1495 | varsadd = [] |
---|
| 1496 | for nonvd in NONchkvardims: |
---|
| 1497 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1498 | varsadd.append(nonvd) |
---|
| 1499 | |
---|
| 1500 | ncvar.insert_variable(ncobj, 'evspsblpot', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1501 | |
---|
[1795] | 1502 | # WRFmslp_ptarget sea-level pressure following ECMWF method as PSFC, HGT, WRFt, WRFp, ZNU, ZNW |
---|
| 1503 | elif diagn == 'WRFpsl_ecmwf': |
---|
| 1504 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1505 | var1 = ncobj.variables[depvars[1]][0,:,:] |
---|
| 1506 | var2 = WRFt[:,0,:,:] |
---|
| 1507 | var4 = WRFp[:,0,:,:] |
---|
| 1508 | var5 = ncobj.variables[depvars[4]][0,:] |
---|
| 1509 | var6 = ncobj.variables[depvars[5]][0,:] |
---|
| 1510 | |
---|
| 1511 | # This is quite too appriximate!! passing pressure at half-levels to 2nd full |
---|
| 1512 | # level, using eta values at full (ZNW) and half (ZNU) mass levels |
---|
| 1513 | var3 = WRFp[:,0,:,:] + (var6[1] - var5[0])*(WRFp[:,1,:,:] - WRFp[:,0,:,:])/ \ |
---|
| 1514 | (var5[1]-var5[0]) |
---|
| 1515 | |
---|
| 1516 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1517 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1518 | |
---|
| 1519 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1520 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ecmwf(var0, var1, var2, \ |
---|
| 1521 | var3, var4, dnamesvar, dvnamesvar) |
---|
| 1522 | |
---|
| 1523 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1524 | varsadd = [] |
---|
| 1525 | for nonvd in NONchkvardims: |
---|
| 1526 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1527 | varsadd.append(nonvd) |
---|
| 1528 | |
---|
| 1529 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1530 | |
---|
[1758] | 1531 | # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR |
---|
| 1532 | elif diagn == 'WRFpsl_ptarget': |
---|
| 1533 | var0 = WRFp |
---|
| 1534 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1535 | var2 = WRFt |
---|
| 1536 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
| 1537 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1538 | |
---|
| 1539 | dnamesvar = list(ncobj.variables[depvars[4]].dimensions) |
---|
| 1540 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1541 | |
---|
| 1542 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1543 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ |
---|
| 1544 | var3, var4, 700000., dnamesvar, dvnamesvar) |
---|
| 1545 | |
---|
| 1546 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1547 | varsadd = [] |
---|
| 1548 | for nonvd in NONchkvardims: |
---|
| 1549 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1550 | varsadd.append(nonvd) |
---|
| 1551 | |
---|
| 1552 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1553 | |
---|
[390] | 1554 | # WRFp pressure from WRF as P + PB |
---|
[1758] | 1555 | elif diagn == 'WRFp': |
---|
[1944] | 1556 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1557 | var1 = ncobj.variables[depvars[1]][:] |
---|
[365] | 1558 | |
---|
[1944] | 1559 | diagout = var0 + var1 |
---|
[1999] | 1560 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1561 | diagoutvd = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
[365] | 1562 | |
---|
[1999] | 1563 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1564 | varsadd = [] |
---|
| 1565 | for nonvd in NONchkvardims: |
---|
| 1566 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1567 | varsadd.append(nonvd) |
---|
[365] | 1568 | |
---|
[1999] | 1569 | ncvar.insert_variable(ncobj, 'pres', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1570 | |
---|
[365] | 1571 | # WRFpos |
---|
[1758] | 1572 | elif diagn == 'WRFpos': |
---|
[365] | 1573 | |
---|
| 1574 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
| 1575 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1576 | |
---|
| 1577 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
| 1578 | |
---|
| 1579 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
[1758] | 1580 | elif diagn == 'WRFprw': |
---|
[365] | 1581 | |
---|
| 1582 | var0 = WRFdens |
---|
| 1583 | var1 = ncobj.variables[depvars[1]] |
---|
| 1584 | |
---|
| 1585 | dnamesvar = list(var1.dimensions) |
---|
| 1586 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1587 | |
---|
[1675] | 1588 | diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
[365] | 1589 | |
---|
[1586] | 1590 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1591 | varsadd = [] |
---|
| 1592 | diagoutvd = list(dvnames) |
---|
| 1593 | for nonvd in NONchkvardims: |
---|
| 1594 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1595 | varsadd.append(nonvd) |
---|
[365] | 1596 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1597 | |
---|
| 1598 | # WRFrh (P, T, QVAPOR) |
---|
[1758] | 1599 | elif diagn == 'WRFrh': |
---|
[365] | 1600 | |
---|
| 1601 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
| 1602 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1603 | |
---|
[878] | 1604 | ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) |
---|
[365] | 1605 | |
---|
| 1606 | # WRFrhs (PSFC, T2, Q2) |
---|
[1758] | 1607 | elif diagn == 'WRFrhs': |
---|
[365] | 1608 | |
---|
| 1609 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1610 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1611 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1612 | |
---|
| 1613 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
| 1614 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1615 | |
---|
[1675] | 1616 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[878] | 1617 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 1618 | |
---|
| 1619 | # rvors (u10, v10, WRFpos) |
---|
[1758] | 1620 | elif diagn == 'WRFrvors': |
---|
[365] | 1621 | |
---|
| 1622 | var0 = ncobj.variables[depvars[0]] |
---|
| 1623 | var1 = ncobj.variables[depvars[1]] |
---|
| 1624 | |
---|
| 1625 | diagout = rotational_z(var0, var1, distx) |
---|
| 1626 | |
---|
| 1627 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1628 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1629 | |
---|
| 1630 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1631 | |
---|
[884] | 1632 | # WRFt (T, P, PB) |
---|
[1758] | 1633 | elif diagn == 'WRFt': |
---|
[884] | 1634 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1635 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1636 | var2 = ncobj.variables[depvars[2]][:] |
---|
[654] | 1637 | |
---|
[884] | 1638 | p0=100000. |
---|
| 1639 | p=var1 + var2 |
---|
| 1640 | |
---|
| 1641 | WRFt = (var0 + 300.)*(p/p0)**(2./7.) |
---|
| 1642 | |
---|
| 1643 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1644 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1645 | |
---|
[1382] | 1646 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1647 | varsadd = [] |
---|
[1389] | 1648 | diagoutvd = list(dvnames) |
---|
[1382] | 1649 | for nonvd in NONchkvardims: |
---|
[1389] | 1650 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
[1382] | 1651 | varsadd.append(nonvd) |
---|
| 1652 | |
---|
[1389] | 1653 | ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) |
---|
[884] | 1654 | |
---|
[1942] | 1655 | # WRFtda (WRFrh, WRFt) |
---|
| 1656 | elif diagn == 'WRFtda': |
---|
| 1657 | ARM2 = fdef.module_definitions.arm2 |
---|
| 1658 | ARM3 = fdef.module_definitions.arm3 |
---|
| 1659 | |
---|
| 1660 | gammatarh = np.log(WRFrh) + ARM2*(WRFt-273.15)/((WRFt-273.15)+ARM3) |
---|
[1943] | 1661 | td = ARM3*gammatarh/(ARM2-gammatarh) |
---|
[1942] | 1662 | |
---|
| 1663 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
| 1664 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1665 | |
---|
| 1666 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1667 | varsadd = [] |
---|
| 1668 | diagoutvd = list(dvnames) |
---|
| 1669 | for nonvd in NONchkvardims: |
---|
| 1670 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1671 | varsadd.append(nonvd) |
---|
| 1672 | |
---|
| 1673 | ncvar.insert_variable(ncobj, 'tda', td, dnames, diagoutvd, newnc) |
---|
| 1674 | |
---|
[1966] | 1675 | # WRFtdas (PSFC, T2, Q2) |
---|
| 1676 | elif diagn == 'WRFtdas': |
---|
[1962] | 1677 | ARM2 = fdef.module_definitions.arm2 |
---|
| 1678 | ARM3 = fdef.module_definitions.arm3 |
---|
| 1679 | |
---|
| 1680 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1681 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1682 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1683 | |
---|
| 1684 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
| 1685 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1686 | |
---|
| 1687 | rhs, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
| 1688 | |
---|
| 1689 | gammatarhs = np.log(rhs) + ARM2*(var1-273.15)/((var1-273.15)+ARM3) |
---|
[1970] | 1690 | tdas = ARM3*gammatarhs/(ARM2-gammatarhs) + 273.15 |
---|
[1962] | 1691 | |
---|
| 1692 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1693 | varsadd = [] |
---|
| 1694 | diagoutvd = list(dvnames) |
---|
| 1695 | for nonvd in NONchkvardims: |
---|
| 1696 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1697 | varsadd.append(nonvd) |
---|
| 1698 | |
---|
[1966] | 1699 | ncvar.insert_variable(ncobj, 'tdas', tdas, dnames, diagoutvd, newnc) |
---|
[1962] | 1700 | |
---|
[914] | 1701 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
[1758] | 1702 | elif diagn == 'WRFua': |
---|
[914] | 1703 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1704 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1705 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1706 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1707 | |
---|
| 1708 | # un-staggering variables |
---|
[1999] | 1709 | if len(var0.shape) == 4: |
---|
| 1710 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1711 | elif len(var0.shape) == 3: |
---|
| 1712 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1713 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1714 | |
---|
[914] | 1715 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1716 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1717 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1718 | |
---|
[1999] | 1719 | if len(var0.shape) == 4: |
---|
| 1720 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1721 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
[914] | 1722 | |
---|
[1999] | 1723 | for iz in range(var0.shape[1]): |
---|
| 1724 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1725 | |
---|
| 1726 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1727 | |
---|
| 1728 | elif len(var0.shape) == 3: |
---|
| 1729 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1730 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1731 | for iz in range(var0.shape[1]): |
---|
| 1732 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1733 | |
---|
| 1734 | dnamesvar = ['Time','bottom_top'] |
---|
| 1735 | |
---|
[914] | 1736 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1737 | |
---|
[1404] | 1738 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1739 | varsadd = [] |
---|
| 1740 | diagoutvd = list(dvnames) |
---|
| 1741 | for nonvd in NONchkvardims: |
---|
| 1742 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1743 | varsadd.append(nonvd) |
---|
[914] | 1744 | |
---|
[1404] | 1745 | ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) |
---|
| 1746 | |
---|
[914] | 1747 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
[1758] | 1748 | elif diagn == 'WRFva': |
---|
[914] | 1749 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1750 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1751 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1752 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1753 | |
---|
| 1754 | # un-staggering variables |
---|
[1999] | 1755 | if len(var0.shape) == 4: |
---|
| 1756 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1757 | elif len(var0.shape) == 3: |
---|
| 1758 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1759 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1760 | |
---|
[914] | 1761 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1762 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1763 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1764 | |
---|
[1999] | 1765 | if len(var0.shape) == 4: |
---|
| 1766 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1767 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1768 | |
---|
| 1769 | for iz in range(var0.shape[1]): |
---|
| 1770 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1771 | |
---|
| 1772 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1773 | |
---|
| 1774 | elif len(var0.shape) == 3: |
---|
| 1775 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1776 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1777 | for iz in range(var0.shape[1]): |
---|
| 1778 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1779 | |
---|
| 1780 | dnamesvar = ['Time','bottom_top'] |
---|
| 1781 | |
---|
[914] | 1782 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1783 | |
---|
[1404] | 1784 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1785 | varsadd = [] |
---|
| 1786 | diagoutvd = list(dvnames) |
---|
| 1787 | for nonvd in NONchkvardims: |
---|
| 1788 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1789 | varsadd.append(nonvd) |
---|
| 1790 | ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) |
---|
[914] | 1791 | |
---|
[1980] | 1792 | |
---|
| 1793 | # WRFwd (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
| 1794 | elif diagn == 'WRFwd': |
---|
| 1795 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1796 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1797 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1798 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1799 | |
---|
| 1800 | # un-staggering variables |
---|
[1999] | 1801 | if len(var0.shape) == 4: |
---|
| 1802 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1803 | elif len(var0.shape) == 3: |
---|
| 1804 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1805 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1806 | |
---|
[1980] | 1807 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1808 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1809 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1810 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1811 | |
---|
[1999] | 1812 | if len(var0.shape) == 4: |
---|
| 1813 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1814 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
[1980] | 1815 | |
---|
[1999] | 1816 | for iz in range(var0.shape[1]): |
---|
| 1817 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1818 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1819 | |
---|
| 1820 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1821 | |
---|
| 1822 | elif len(var0.shape) == 3: |
---|
| 1823 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1824 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1825 | for iz in range(var0.shape[1]): |
---|
| 1826 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1827 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1828 | |
---|
| 1829 | dnamesvar = ['Time','bottom_top'] |
---|
| 1830 | |
---|
[1980] | 1831 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1832 | |
---|
| 1833 | wd, dnames, dvnames = diag.compute_wd(ua, va, dnamesvar, dvnamesvar) |
---|
| 1834 | |
---|
| 1835 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1836 | varsadd = [] |
---|
| 1837 | diagoutvd = list(dvnames) |
---|
| 1838 | for nonvd in NONchkvardims: |
---|
| 1839 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1840 | varsadd.append(nonvd) |
---|
| 1841 | |
---|
| 1842 | ncvar.insert_variable(ncobj, 'wd', wd, dnames, diagoutvd, newnc) |
---|
| 1843 | |
---|
[914] | 1844 | # WRFtime |
---|
[1758] | 1845 | elif diagn == 'WRFtime': |
---|
[654] | 1846 | |
---|
| 1847 | diagout = WRFtime |
---|
| 1848 | |
---|
| 1849 | dnamesvar = ['Time'] |
---|
| 1850 | dvnamesvar = ['Times'] |
---|
| 1851 | |
---|
| 1852 | ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1853 | |
---|
[959] | 1854 | # ws (U, V) |
---|
[1758] | 1855 | elif diagn == 'ws': |
---|
[959] | 1856 | |
---|
| 1857 | # un-staggering variables |
---|
[1999] | 1858 | if len(var0.shape) == 4: |
---|
| 1859 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1860 | elif len(var0.shape) == 3: |
---|
| 1861 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1862 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1863 | |
---|
| 1864 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
[959] | 1865 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1866 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1867 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1868 | |
---|
[1999] | 1869 | if len(var0.shape) == 4: |
---|
| 1870 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1871 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1872 | |
---|
| 1873 | for iz in range(var0.shape[1]): |
---|
| 1874 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1875 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1876 | |
---|
| 1877 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1878 | |
---|
| 1879 | elif len(var0.shape) == 3: |
---|
| 1880 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1881 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1882 | for iz in range(var0.shape[1]): |
---|
| 1883 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1884 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1885 | |
---|
| 1886 | dnamesvar = ['Time','bottom_top'] |
---|
| 1887 | |
---|
[959] | 1888 | diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) |
---|
| 1889 | |
---|
| 1890 | # dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1891 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1892 | |
---|
[1408] | 1893 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1894 | varsadd = [] |
---|
| 1895 | diagoutvd = list(dvnamesvar) |
---|
| 1896 | for nonvd in NONchkvardims: |
---|
| 1897 | if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) |
---|
| 1898 | varsadd.append(nonvd) |
---|
| 1899 | ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) |
---|
[959] | 1900 | |
---|
[365] | 1901 | # wss (u10, v10) |
---|
[1758] | 1902 | elif diagn == 'wss': |
---|
[365] | 1903 | |
---|
| 1904 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1905 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1906 | |
---|
| 1907 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
| 1908 | |
---|
| 1909 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1910 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1911 | |
---|
| 1912 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1913 | |
---|
[654] | 1914 | # WRFheight height from WRF geopotential as WRFGeop/g |
---|
[1758] | 1915 | elif diagn == 'WRFheight': |
---|
[654] | 1916 | |
---|
| 1917 | diagout = WRFgeop/grav |
---|
| 1918 | |
---|
[1412] | 1919 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1920 | varsadd = [] |
---|
| 1921 | diagoutvd = list(dvnames) |
---|
| 1922 | for nonvd in NONchkvardims: |
---|
| 1923 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1924 | varsadd.append(nonvd) |
---|
[654] | 1925 | |
---|
[1412] | 1926 | ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) |
---|
| 1927 | |
---|
[1413] | 1928 | # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT |
---|
[1758] | 1929 | elif diagn == 'WRFheightrel': |
---|
[1413] | 1930 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1931 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1932 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1933 | |
---|
| 1934 | dimz = var0.shape[1] |
---|
| 1935 | diagout = np.zeros(tuple(var0.shape), dtype=np.float) |
---|
| 1936 | for iz in range(dimz): |
---|
[1419] | 1937 | diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 |
---|
[1413] | 1938 | |
---|
| 1939 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1940 | varsadd = [] |
---|
| 1941 | diagoutvd = list(dvnames) |
---|
| 1942 | for nonvd in NONchkvardims: |
---|
| 1943 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1944 | varsadd.append(nonvd) |
---|
| 1945 | |
---|
| 1946 | ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) |
---|
| 1947 | |
---|
[1773] | 1948 | # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, |
---|
| 1949 | elif diagn == 'WRFzmlagen': |
---|
| 1950 | var0 = ncobj.variables[depvars[0]][:]+300. |
---|
| 1951 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1952 | dimz = var0.shape[1] |
---|
| 1953 | var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 |
---|
| 1954 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
| 1955 | |
---|
| 1956 | diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ |
---|
| 1957 | dnames,dvnames) |
---|
| 1958 | |
---|
| 1959 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1960 | varsadd = [] |
---|
| 1961 | for nonvd in NONchkvardims: |
---|
| 1962 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1963 | varsadd.append(nonvd) |
---|
| 1964 | |
---|
| 1965 | ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1966 | |
---|
[1784] | 1967 | # WRFzwind wind extrapolation at a given height using power law computation from WRF |
---|
| 1968 | # U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
[1776] | 1969 | elif diagn == 'WRFzwind': |
---|
| 1970 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1971 | var1 = ncobj.variables[depvars[1]][:] |
---|
[1777] | 1972 | var2 = WRFz |
---|
[1776] | 1973 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1974 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1975 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 1976 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
[1777] | 1977 | var7 = np.float(depvars[7].split('=')[1]) |
---|
[1776] | 1978 | |
---|
| 1979 | # un-staggering 3D winds |
---|
| 1980 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1981 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1982 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1983 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1984 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1985 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1986 | |
---|
| 1987 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ |
---|
[1777] | 1988 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
[1776] | 1989 | |
---|
| 1990 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1991 | varsadd = [] |
---|
| 1992 | for nonvd in NONchkvardims: |
---|
| 1993 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1994 | varsadd.append(nonvd) |
---|
| 1995 | |
---|
| 1996 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1997 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1998 | |
---|
[1784] | 1999 | # WRFzwind wind extrapolation at a given hieght using logarithmic law computation |
---|
| 2000 | # from WRF U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
| 2001 | elif diagn == 'WRFzwind_log': |
---|
| 2002 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 2003 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 2004 | var2 = WRFz |
---|
| 2005 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 2006 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 2007 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 2008 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
| 2009 | var7 = np.float(depvars[7].split('=')[1]) |
---|
| 2010 | |
---|
| 2011 | # un-staggering 3D winds |
---|
| 2012 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 2013 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2014 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2015 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2016 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 2017 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 2018 | |
---|
| 2019 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind_log(unvar0, \ |
---|
| 2020 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
| 2021 | |
---|
| 2022 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 2023 | varsadd = [] |
---|
| 2024 | for nonvd in NONchkvardims: |
---|
| 2025 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 2026 | varsadd.append(nonvd) |
---|
| 2027 | |
---|
| 2028 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 2029 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 2030 | |
---|
[1783] | 2031 | # WRFzwindMO wind extrapolation at a given height computation using Monin-Obukhow |
---|
| 2032 | # theory from WRF UST, ZNT, RMOL, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
[1784] | 2033 | # NOTE: only useful for [zval] < 80. m |
---|
[1783] | 2034 | elif diagn == 'WRFzwindMO': |
---|
| 2035 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 2036 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 2037 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 2038 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 2039 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 2040 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 2041 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
| 2042 | var7 = np.float(depvars[7].split('=')[1]) |
---|
| 2043 | |
---|
| 2044 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwindMO(var0, var1,\ |
---|
| 2045 | var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
| 2046 | |
---|
| 2047 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 2048 | varsadd = [] |
---|
| 2049 | for nonvd in NONchkvardims: |
---|
| 2050 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 2051 | varsadd.append(nonvd) |
---|
| 2052 | |
---|
| 2053 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 2054 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 2055 | |
---|
[365] | 2056 | else: |
---|
| 2057 | print errormsg |
---|
[1758] | 2058 | print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" |
---|
[365] | 2059 | print ' available diagnostics: ', availdiags |
---|
| 2060 | quit(-1) |
---|
| 2061 | |
---|
| 2062 | newnc.sync() |
---|
[1351] | 2063 | # Adding that additional variables required to compute some diagnostics which |
---|
| 2064 | # where not in the original file |
---|
[1944] | 2065 | print ' adding additional variables...' |
---|
[1351] | 2066 | for vadd in varsadd: |
---|
[1942] | 2067 | if not gen.searchInlist(newnc.variables.keys(),vadd) and \ |
---|
| 2068 | dictcompvars.has_key(vadd): |
---|
[1351] | 2069 | attrs = dictcompvars[vadd] |
---|
| 2070 | vvn = attrs['name'] |
---|
| 2071 | if not gen.searchInlist(newnc.variables.keys(), vvn): |
---|
| 2072 | iidvn = dvnames.index(vadd) |
---|
| 2073 | dnn = dnames[iidvn] |
---|
| 2074 | if vadd == 'WRFtime': |
---|
| 2075 | dvarvals = WRFtime[:] |
---|
| 2076 | newvar = newnc.createVariable(vvn, 'f8', (dnn)) |
---|
| 2077 | newvar[:] = dvarvals |
---|
| 2078 | for attn in attrs.keys(): |
---|
| 2079 | if attn != 'name': |
---|
| 2080 | attv = attrs[attn] |
---|
| 2081 | ncvar.set_attribute(newvar, attn, attv) |
---|
[365] | 2082 | |
---|
| 2083 | # end of diagnostics |
---|
| 2084 | |
---|
| 2085 | # Global attributes |
---|
| 2086 | ## |
---|
[1758] | 2087 | ncvar.add_global_PyNCplot(newnc, main, None, '2.0') |
---|
[365] | 2088 | |
---|
| 2089 | gorigattrs = ncobj.ncattrs() |
---|
| 2090 | for attr in gorigattrs: |
---|
| 2091 | attrv = ncobj.getncattr(attr) |
---|
| 2092 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
| 2093 | |
---|
| 2094 | ncobj.close() |
---|
| 2095 | newnc.close() |
---|
| 2096 | |
---|
| 2097 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|