[1675] | 1 | # Python script to comput diagnostics |
---|
[1908] | 2 | # From L. Fita work in different places: CCRC (Australia), LMD (France) |
---|
| 3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
| 4 | # |
---|
| 5 | # pyNCplot and its component nc_var.py comes with ABSOLUTELY NO WARRANTY. |
---|
| 6 | # This work is licendes under a Creative Commons |
---|
| 7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
| 8 | # |
---|
| 9 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, C.A. Buenos Aires, Argentina |
---|
[365] | 10 | # File diagnostics.inf provides the combination of variables to get the desired diagnostic |
---|
[772] | 11 | # To be used with module_ForDiagnostics.F90, module_ForDiagnosticsVars.F90, module_generic.F90 |
---|
[1150] | 12 | # foudre: f2py -m module_ForDiagnostics --f90exec=/usr/bin/gfortran-4.7 -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
| 13 | # ciclad: f2py --f90flags="-fPIC" --f90exec=/usr/bin/gfortran -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -L/usr/lib64/ -L/opt/canopy-1.3.0/Canopy_64bit/System/lib/ -m module_ForDiagnostics -c module_generic.F90 module_ForDiagnosticsVars.F90 module_ForDiagnostics.F90 >& run_f2py.log |
---|
[1149] | 14 | |
---|
[2095] | 15 | ## e.g. # diagnostics.py -d 'Time@WRFtime,bottom_top@ZNU,south_north@XLAT,west_east@XLONG' -v 'clt|CLDFRA,cllmh|CLDFRA@WRFp,RAINTOT|RAINC@RAINNC@RAINSH@XTIME' -f WRF_LMDZ/NPv31/wrfout_d01_1980-03-01_00:00:00 |
---|
[413] | 16 | ## e.g. # diagnostics.py -f /home/lluis/PY/diagnostics.inf -d variable_combo -v WRFprc |
---|
[365] | 17 | |
---|
[1675] | 18 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
| 19 | # compute_accum: Function to compute the accumulation of a variable |
---|
| 20 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
| 21 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 22 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
| 23 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
| 24 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
| 25 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
| 26 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 27 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 28 | # compute_prw: Function to compute water vapour path (prw) |
---|
| 29 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 30 | # compute_td: Function to compute the dew point temperature |
---|
| 31 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
| 32 | # compute_wds: Function to compute the wind direction |
---|
| 33 | # compute_wss: Function to compute the wind speed |
---|
| 34 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
| 35 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
| 36 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
| 37 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 38 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
[1758] | 39 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following target_pressure value found in `p_interp.F' |
---|
[1675] | 40 | |
---|
| 41 | # Others just providing variable values |
---|
| 42 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
| 43 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
| 44 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
| 45 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
| 46 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
| 47 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
| 48 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
[2138] | 49 | # timeoverthres: When a given variable [varname] overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
| 50 | # variables_values.dat |
---|
[2141] | 51 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
[1675] | 52 | |
---|
[365] | 53 | from optparse import OptionParser |
---|
| 54 | import numpy as np |
---|
| 55 | from netCDF4 import Dataset as NetCDFFile |
---|
| 56 | import os |
---|
| 57 | import re |
---|
| 58 | import nc_var_tools as ncvar |
---|
[756] | 59 | import generic_tools as gen |
---|
[654] | 60 | import datetime as dtime |
---|
[1163] | 61 | import module_ForDiag as fdin |
---|
[1942] | 62 | import module_ForDef as fdef |
---|
[1675] | 63 | import diag_tools as diag |
---|
[365] | 64 | |
---|
| 65 | main = 'diagnostics.py' |
---|
| 66 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
| 67 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
| 68 | |
---|
[654] | 69 | # Constants |
---|
| 70 | grav = 9.81 |
---|
| 71 | |
---|
[365] | 72 | |
---|
| 73 | ####### ###### ##### #### ### ## # |
---|
| 74 | comboinf="\nIF -d 'variable_combo', provides information of the combination to obtain -v [varn] with the ASCII file with the combinations as -f [combofile]" |
---|
| 75 | |
---|
| 76 | parser = OptionParser() |
---|
| 77 | parser.add_option("-f", "--netCDF_file", dest="ncfile", help="file to use", metavar="FILE") |
---|
| 78 | parser.add_option("-d", "--dimensions", dest="dimns", |
---|
[1761] | 79 | help="[dimtn]@[dtvn],[dimzn]@[dzvn],[...,[dimxn]@[dxvn]], ',' list with the couples [dimDn]@[dDvn], [dimDn], name of the dimension D and name of the variable [dDvn] with the values of the dimension ('WRFtime', for WRF time copmutation). NOTE: same order as in file!!!!" + comboinf, |
---|
[365] | 80 | metavar="LABELS") |
---|
| 81 | parser.add_option("-v", "--variables", dest="varns", |
---|
| 82 | help=" [varn1]|[var11]@[...[varN1]],[...,[varnM]|[var1M]@[...[varLM]]] ',' list of variables to compute [varnK] and its necessary ones [var1K]...[varPK]", metavar="VALUES") |
---|
| 83 | |
---|
| 84 | (opts, args) = parser.parse_args() |
---|
| 85 | |
---|
| 86 | ####### ####### |
---|
| 87 | ## MAIN |
---|
| 88 | ####### |
---|
[2100] | 89 | availdiags = ['ACRAINTOT', 'accum', 'clt', 'cllmh', 'convini', 'deaccum', 'fog_K84', \ |
---|
| 90 | 'fog_RUC', 'LMDZrh', 'mslp', 'OMEGAw', 'RAINTOT', \ |
---|
[2141] | 91 | 'rvors', 'td', 'timemax', 'timeoverthres', 'turbulence', 'uavaFROMwswd', \ |
---|
| 92 | 'WRFcape_afwa', 'WRFclivi', 'WRFclwvi', 'WRF_denszint', 'WRFgeop', \ |
---|
[1806] | 93 | 'WRFmrso', 'WRFpotevap_orPM', 'WRFp', 'WRFpsl_ecmwf', \ |
---|
[1762] | 94 | 'WRFpsl_ptarget', 'WRFrvors', 'WRFslw', 'ws', 'wds', 'wss', 'WRFheight', \ |
---|
[1966] | 95 | 'WRFheightrel', 'WRFtda', 'WRFtdas', 'WRFua', 'WRFva', 'WRFzwind', 'WRFzwind_log', \ |
---|
[1942] | 96 | 'WRFzwindMO'] |
---|
[365] | 97 | |
---|
[649] | 98 | methods = ['accum', 'deaccum'] |
---|
| 99 | |
---|
[365] | 100 | # Variables not to check |
---|
[1825] | 101 | NONcheckingvars = ['accum', 'cllmh', 'deaccum', 'TSrhs', 'TStd', 'TSwds', 'TSwss', \ |
---|
| 102 | 'WRFbils', \ |
---|
[1803] | 103 | 'WRFclivi', 'WRFclwvi', 'WRFdens', 'WRFgeop', \ |
---|
[612] | 104 | 'WRFp', 'WRFtd', \ |
---|
[1809] | 105 | 'WRFpos', 'WRFprc', 'WRFprls', 'WRFrh', 'LMDZrh', 'LMDZrhs', \ |
---|
[1806] | 106 | 'WRFrhs', 'WRFrvors', \ |
---|
[1777] | 107 | 'WRFt', 'WRFtime', 'WRFua', 'WRFva', 'WRFwds', 'WRFwss', 'WRFheight', 'WRFz'] |
---|
[365] | 108 | |
---|
[1809] | 109 | # diagnostics not to check their dependeny |
---|
[2138] | 110 | NONcheckdepvars = ['accum', 'deaccum', 'timeoverthres', 'WRF_denszint', \ |
---|
| 111 | 'WRFzwind_log', 'WRFzwind', 'WRFzwindMO'] |
---|
[1809] | 112 | |
---|
[1351] | 113 | NONchkvardims = ['WRFtime'] |
---|
| 114 | |
---|
[365] | 115 | ofile = 'diagnostics.nc' |
---|
| 116 | |
---|
| 117 | dimns = opts.dimns |
---|
| 118 | varns = opts.varns |
---|
| 119 | |
---|
| 120 | # Special method. knowing variable combination |
---|
| 121 | ## |
---|
| 122 | if opts.dimns == 'variable_combo': |
---|
| 123 | print warnmsg |
---|
| 124 | print ' ' + main + ': knowing variable combination !!!' |
---|
| 125 | combination = variable_combo(opts.varns,opts.ncfile) |
---|
| 126 | print ' COMBO: ' + combination |
---|
| 127 | quit(-1) |
---|
| 128 | |
---|
[1833] | 129 | if opts.ncfile is None: |
---|
| 130 | print errormsg |
---|
| 131 | print ' ' + main + ": No file provided !!" |
---|
| 132 | print ' is mandatory to provide a file -f [filename]' |
---|
| 133 | quit(-1) |
---|
| 134 | |
---|
| 135 | if opts.dimns is None: |
---|
| 136 | print errormsg |
---|
| 137 | print ' ' + main + ": No description of dimensions are provided !!" |
---|
| 138 | print ' is mandatory to provide description of dimensions as -d [dimn]@[vardimname],... ' |
---|
| 139 | quit(-1) |
---|
| 140 | |
---|
| 141 | if opts.varns is None: |
---|
| 142 | print errormsg |
---|
| 143 | print ' ' + main + ": No variable to diagnose is provided !!" |
---|
| 144 | print ' is mandatory to provide a variable to diagnose as -v [diagn]|[varn1]@... ' |
---|
| 145 | quit(-1) |
---|
| 146 | |
---|
[365] | 147 | if not os.path.isfile(opts.ncfile): |
---|
| 148 | print errormsg |
---|
| 149 | print ' ' + main + ": file '" + opts.ncfile + "' does not exist !!" |
---|
| 150 | quit(-1) |
---|
| 151 | |
---|
| 152 | ncobj = NetCDFFile(opts.ncfile, 'r') |
---|
| 153 | |
---|
[1351] | 154 | # Looking for specific variables that might be use in more than one diagnostic |
---|
| 155 | WRFgeop_compute = False |
---|
| 156 | WRFp_compute = False |
---|
| 157 | WRFt_compute = False |
---|
| 158 | WRFrh_compute = False |
---|
| 159 | WRFght_compute = False |
---|
| 160 | WRFdens_compute = False |
---|
| 161 | WRFpos_compute = False |
---|
| 162 | WRFtime_compute = False |
---|
[1777] | 163 | WRFz_compute = False |
---|
[1351] | 164 | |
---|
[365] | 165 | # File creation |
---|
| 166 | newnc = NetCDFFile(ofile,'w') |
---|
| 167 | |
---|
| 168 | # dimensions |
---|
| 169 | dimvalues = dimns.split(',') |
---|
| 170 | dnames = [] |
---|
| 171 | dvnames = [] |
---|
| 172 | |
---|
| 173 | for dimval in dimvalues: |
---|
[1351] | 174 | dn = dimval.split('@')[0] |
---|
| 175 | dnv = dimval.split('@')[1] |
---|
| 176 | dnames.append(dn) |
---|
| 177 | dvnames.append(dnv) |
---|
| 178 | # Is there any dimension-variable which should be computed? |
---|
| 179 | if dnv == 'WRFgeop':WRFgeop_compute = True |
---|
| 180 | if dnv == 'WRFp': WRFp_compute = True |
---|
| 181 | if dnv == 'WRFt': WRFt_compute = True |
---|
| 182 | if dnv == 'WRFrh': WRFrh_compute = True |
---|
| 183 | if dnv == 'WRFght': WRFght_compute = True |
---|
| 184 | if dnv == 'WRFdens': WRFdens_compute = True |
---|
| 185 | if dnv == 'WRFpos': WRFpos_compute = True |
---|
| 186 | if dnv == 'WRFtime': WRFtime_compute = True |
---|
[1777] | 187 | if dnv == 'WRFz':WRFz_compute = True |
---|
[365] | 188 | |
---|
| 189 | # diagnostics to compute |
---|
| 190 | diags = varns.split(',') |
---|
| 191 | Ndiags = len(diags) |
---|
| 192 | |
---|
| 193 | for idiag in range(Ndiags): |
---|
| 194 | if diags[idiag].split('|')[1].find('@') == -1: |
---|
| 195 | depvars = diags[idiag].split('|')[1] |
---|
[654] | 196 | if depvars == 'WRFgeop':WRFgeop_compute = True |
---|
[365] | 197 | if depvars == 'WRFp': WRFp_compute = True |
---|
| 198 | if depvars == 'WRFt': WRFt_compute = True |
---|
| 199 | if depvars == 'WRFrh': WRFrh_compute = True |
---|
| 200 | if depvars == 'WRFght': WRFght_compute = True |
---|
| 201 | if depvars == 'WRFdens': WRFdens_compute = True |
---|
| 202 | if depvars == 'WRFpos': WRFpos_compute = True |
---|
[654] | 203 | if depvars == 'WRFtime': WRFtime_compute = True |
---|
[1777] | 204 | if depvars == 'WRFz': WRFz_compute = True |
---|
[365] | 205 | else: |
---|
| 206 | depvars = diags[idiag].split('|')[1].split('@') |
---|
[756] | 207 | if gen.searchInlist(depvars, 'WRFgeop'): WRFgeop_compute = True |
---|
| 208 | if gen.searchInlist(depvars, 'WRFp'): WRFp_compute = True |
---|
| 209 | if gen.searchInlist(depvars, 'WRFt'): WRFt_compute = True |
---|
| 210 | if gen.searchInlist(depvars, 'WRFrh'): WRFrh_compute = True |
---|
| 211 | if gen.searchInlist(depvars, 'WRFght'): WRFght_compute = True |
---|
| 212 | if gen.searchInlist(depvars, 'WRFdens'): WRFdens_compute = True |
---|
| 213 | if gen.searchInlist(depvars, 'WRFpos'): WRFpos_compute = True |
---|
| 214 | if gen.searchInlist(depvars, 'WRFtime'): WRFtime_compute = True |
---|
[1777] | 215 | if gen.searchInlist(depvars, 'WRFz'): WRFz_compute = True |
---|
[365] | 216 | |
---|
[1351] | 217 | # Dictionary with the new computed variables to be able to add them |
---|
| 218 | dictcompvars = {} |
---|
[654] | 219 | if WRFgeop_compute: |
---|
| 220 | print ' ' + main + ': Retrieving geopotential value from WRF as PH + PHB' |
---|
| 221 | dimv = ncobj.variables['PH'].shape |
---|
| 222 | WRFgeop = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 223 | |
---|
[1351] | 224 | # Attributes of the variable |
---|
[1412] | 225 | Vvals = gen.variables_values('WRFgeop') |
---|
[1351] | 226 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 227 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 228 | |
---|
[365] | 229 | if WRFp_compute: |
---|
| 230 | print ' ' + main + ': Retrieving pressure value from WRF as P + PB' |
---|
| 231 | dimv = ncobj.variables['P'].shape |
---|
| 232 | WRFp = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 233 | |
---|
[1351] | 234 | # Attributes of the variable |
---|
| 235 | Vvals = gen.variables_values('WRFp') |
---|
| 236 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 237 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 238 | |
---|
[365] | 239 | if WRFght_compute: |
---|
| 240 | print ' ' + main + ': computing geopotential height from WRF as PH + PHB ...' |
---|
| 241 | WRFght = ncobj.variables['PH'][:] + ncobj.variables['PHB'][:] |
---|
| 242 | |
---|
[1351] | 243 | # Attributes of the variable |
---|
| 244 | Vvals = gen.variables_values('WRFght') |
---|
| 245 | dictcompvars['WRFgeop'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 246 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 247 | |
---|
[365] | 248 | if WRFrh_compute: |
---|
| 249 | print ' ' + main + ": computing relative humidity from WRF as 'Tetens'" + \ |
---|
| 250 | ' equation (T,P) ...' |
---|
| 251 | p0=100000. |
---|
| 252 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 253 | tk = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 254 | qv = ncobj.variables['QVAPOR'][:] |
---|
| 255 | |
---|
| 256 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 257 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 258 | |
---|
| 259 | WRFrh = qv/data2 |
---|
| 260 | |
---|
[1351] | 261 | # Attributes of the variable |
---|
| 262 | Vvals = gen.variables_values('WRFrh') |
---|
| 263 | dictcompvars['WRFrh'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 264 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 265 | |
---|
[365] | 266 | if WRFt_compute: |
---|
| 267 | print ' ' + main + ': computing temperature from WRF as inv_potT(T + 300) ...' |
---|
| 268 | p0=100000. |
---|
| 269 | p=ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 270 | |
---|
| 271 | WRFt = (ncobj.variables['T'][:] + 300.)*(p/p0)**(2./7.) |
---|
| 272 | |
---|
[1351] | 273 | # Attributes of the variable |
---|
| 274 | Vvals = gen.variables_values('WRFt') |
---|
| 275 | dictcompvars['WRFt'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 276 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 277 | |
---|
[365] | 278 | if WRFdens_compute: |
---|
| 279 | print ' ' + main + ': computing air density from WRF as ((MU + MUB) * ' + \ |
---|
| 280 | 'DNW)/g ...' |
---|
| 281 | |
---|
| 282 | # Just we need in in absolute values: Size of the central grid cell |
---|
| 283 | ## dxval = ncobj.getncattr('DX') |
---|
| 284 | ## dyval = ncobj.getncattr('DY') |
---|
| 285 | ## mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 286 | ## area = dxval*dyval*mapfac |
---|
| 287 | |
---|
| 288 | mu = (ncobj.variables['MU'][:] + ncobj.variables['MUB'][:]) |
---|
| 289 | dnw = ncobj.variables['DNW'][:] |
---|
| 290 | |
---|
| 291 | WRFdens = np.zeros((mu.shape[0], dnw.shape[1], mu.shape[1], mu.shape[2]), \ |
---|
| 292 | dtype=np.float) |
---|
| 293 | levval = np.zeros((mu.shape[1], mu.shape[2]), dtype=np.float) |
---|
| 294 | |
---|
| 295 | for it in range(mu.shape[0]): |
---|
| 296 | for iz in range(dnw.shape[1]): |
---|
| 297 | levval.fill(np.abs(dnw[it,iz])) |
---|
| 298 | WRFdens[it,iz,:,:] = levval |
---|
| 299 | WRFdens[it,iz,:,:] = mu[it,:,:]*WRFdens[it,iz,:,:]/grav |
---|
| 300 | |
---|
[1351] | 301 | # Attributes of the variable |
---|
| 302 | Vvals = gen.variables_values('WRFdens') |
---|
| 303 | dictcompvars['WRFdens'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 304 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 305 | |
---|
[365] | 306 | if WRFpos_compute: |
---|
| 307 | # WRF positions from the lowest-leftest corner of the matrix |
---|
| 308 | print ' ' + main + ': computing position from MAPFAC_M as sqrt(DY*j**2 + ' + \ |
---|
| 309 | 'DX*x**2)*MAPFAC_M ...' |
---|
| 310 | |
---|
| 311 | mapfac = ncobj.variables['MAPFAC_M'][:] |
---|
| 312 | |
---|
| 313 | distx = np.float(ncobj.getncattr('DX')) |
---|
| 314 | disty = np.float(ncobj.getncattr('DY')) |
---|
| 315 | |
---|
| 316 | print 'distx:',distx,'disty:',disty |
---|
| 317 | |
---|
| 318 | dx = mapfac.shape[2] |
---|
| 319 | dy = mapfac.shape[1] |
---|
| 320 | dt = mapfac.shape[0] |
---|
| 321 | |
---|
| 322 | WRFpos = np.zeros((dt, dy, dx), dtype=np.float) |
---|
| 323 | |
---|
| 324 | for i in range(1,dx): |
---|
| 325 | WRFpos[0,0,i] = distx*i/mapfac[0,0,i] |
---|
| 326 | for j in range(1,dy): |
---|
| 327 | i=0 |
---|
| 328 | WRFpos[0,j,i] = WRFpos[0,j-1,i] + disty/mapfac[0,j,i] |
---|
| 329 | for i in range(1,dx): |
---|
| 330 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.)/mapfac[0,j,i] |
---|
| 331 | # WRFpos[0,j,i] = np.sqrt((disty*j)**2. + (distx*i)**2.) |
---|
| 332 | WRFpos[0,j,i] = WRFpos[0,j,i-1] + distx/mapfac[0,j,i] |
---|
| 333 | |
---|
| 334 | for it in range(1,dt): |
---|
| 335 | WRFpos[it,:,:] = WRFpos[0,:,:] |
---|
| 336 | |
---|
[654] | 337 | if WRFtime_compute: |
---|
| 338 | print ' ' + main + ': computing time from WRF as CFtime(Times) ...' |
---|
| 339 | |
---|
| 340 | refdate='19491201000000' |
---|
| 341 | tunitsval='minutes' |
---|
| 342 | |
---|
| 343 | timeobj = ncobj.variables['Times'] |
---|
| 344 | timewrfv = timeobj[:] |
---|
| 345 | |
---|
| 346 | yrref=refdate[0:4] |
---|
| 347 | monref=refdate[4:6] |
---|
| 348 | dayref=refdate[6:8] |
---|
| 349 | horref=refdate[8:10] |
---|
| 350 | minref=refdate[10:12] |
---|
| 351 | secref=refdate[12:14] |
---|
| 352 | |
---|
| 353 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
| 354 | ':' + secref |
---|
| 355 | |
---|
[2065] | 356 | |
---|
| 357 | if len(timeobj.shape) == 2: |
---|
| 358 | dt = timeobj.shape[0] |
---|
| 359 | else: |
---|
| 360 | dt = 1 |
---|
[654] | 361 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
| 362 | |
---|
[2065] | 363 | if len(timeobj.shape) == 2: |
---|
| 364 | for it in range(dt): |
---|
| 365 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', \ |
---|
| 366 | 'matYmdHMS') |
---|
| 367 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
| 368 | else: |
---|
| 369 | wrfdates = gen.datetimeStr_conversion(timewrfv[:],'WRFdatetime', \ |
---|
| 370 | 'matYmdHMS') |
---|
[2072] | 371 | WRFtime[0] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
[654] | 372 | |
---|
| 373 | tunits = tunitsval + ' since ' + refdateS |
---|
| 374 | |
---|
[1351] | 375 | # Attributes of the variable |
---|
| 376 | dictcompvars['WRFtime'] = {'name': 'time', 'standard_name': 'time', \ |
---|
| 377 | 'long_name': 'time', 'units': tunits, 'calendar': 'gregorian'} |
---|
| 378 | |
---|
[1777] | 379 | if WRFz_compute: |
---|
| 380 | print ' ' + main + ': Retrieving z: height above surface value from WRF as ' + \ |
---|
| 381 | 'unstagger(PH + PHB)/9.8-hgt' |
---|
| 382 | dimv = ncobj.variables['PH'].shape |
---|
| 383 | WRFzg = (ncobj.variables['PH'][:] + ncobj.variables['PHB'][:])/9.8 |
---|
| 384 | |
---|
| 385 | unzgd = (dimv[0], dimv[1]-1, dimv[2], dimv[3]) |
---|
| 386 | unzg = np.zeros(unzgd, dtype=np.float) |
---|
| 387 | unzg = 0.5*(WRFzg[:,0:dimv[1]-1,:,:] + WRFzg[:,1:dimv[1],:,:]) |
---|
| 388 | |
---|
| 389 | WRFz = np.zeros(unzgd, dtype=np.float) |
---|
| 390 | for iz in range(dimv[1]-1): |
---|
| 391 | WRFz[:,iz,:,:] = unzg[:,iz,:,:] - ncobj.variables['HGT'][:] |
---|
| 392 | |
---|
| 393 | # Attributes of the variable |
---|
| 394 | Vvals = gen.variables_values('WRFz') |
---|
| 395 | dictcompvars['WRFz'] = {'name': Vvals[0], 'standard_name': Vvals[1], \ |
---|
| 396 | 'long_name': Vvals[4].replace('|',' '), 'units': Vvals[5]} |
---|
| 397 | |
---|
[365] | 398 | ### ## # |
---|
| 399 | # Going for the diagnostics |
---|
| 400 | ### ## # |
---|
| 401 | print ' ' + main + ' ...' |
---|
[1404] | 402 | varsadd = [] |
---|
[365] | 403 | |
---|
| 404 | for idiag in range(Ndiags): |
---|
| 405 | print ' diagnostic:',diags[idiag] |
---|
[1758] | 406 | diagn = diags[idiag].split('|')[0] |
---|
[365] | 407 | depvars = diags[idiag].split('|')[1].split('@') |
---|
[1809] | 408 | if not gen.searchInlist(NONcheckdepvars, diagn): |
---|
| 409 | if diags[idiag].split('|')[1].find('@') != -1: |
---|
| 410 | depvars = diags[idiag].split('|')[1].split('@') |
---|
| 411 | if depvars[0] == 'deaccum': diagn='deaccum' |
---|
| 412 | if depvars[0] == 'accum': diagn='accum' |
---|
| 413 | for depv in depvars: |
---|
| 414 | if not ncobj.variables.has_key(depv) and not \ |
---|
| 415 | gen.searchInlist(NONcheckingvars, depv) and \ |
---|
| 416 | not gen.searchInlist(methods, depv) and not depvars[0] == 'deaccum'\ |
---|
| 417 | and not depvars[0] == 'accum' and not depv[0:2] == 'z=': |
---|
| 418 | print errormsg |
---|
| 419 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
| 420 | "' does not have variable '" + depv + "' !!" |
---|
| 421 | quit(-1) |
---|
| 422 | else: |
---|
| 423 | depvars = diags[idiag].split('|')[1] |
---|
| 424 | if not ncobj.variables.has_key(depvars) and not \ |
---|
| 425 | gen.searchInlist(NONcheckingvars, depvars) and \ |
---|
| 426 | not gen.searchInlist(methods, depvars): |
---|
[365] | 427 | print errormsg |
---|
| 428 | print ' ' + main + ": file '" + opts.ncfile + \ |
---|
[1809] | 429 | "' does not have variable '" + depvars + "' !!" |
---|
[365] | 430 | quit(-1) |
---|
| 431 | |
---|
[1758] | 432 | print "\n Computing '" + diagn + "' from: ", depvars, '...' |
---|
[365] | 433 | |
---|
[2095] | 434 | # acraintot: accumulated total precipitation from WRF RAINC, RAINNC, RAINSH |
---|
[1758] | 435 | if diagn == 'ACRAINTOT': |
---|
[365] | 436 | |
---|
| 437 | var0 = ncobj.variables[depvars[0]] |
---|
| 438 | var1 = ncobj.variables[depvars[1]] |
---|
[2095] | 439 | var2 = ncobj.variables[depvars[2]] |
---|
[365] | 440 | |
---|
[2095] | 441 | diagout = var0[:] + var1[:] + var2[:] |
---|
| 442 | |
---|
[365] | 443 | dnamesvar = var0.dimensions |
---|
| 444 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 445 | |
---|
[1647] | 446 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 447 | varsadd = [] |
---|
| 448 | for nonvd in NONchkvardims: |
---|
| 449 | if gen.searchInlist(dvnamesvar,nonvd): dvnamesvar.remove(nonvd) |
---|
| 450 | varsadd.append(nonvd) |
---|
| 451 | |
---|
[649] | 452 | ncvar.insert_variable(ncobj, 'pracc', diagout, dnamesvar, dvnamesvar, newnc) |
---|
[365] | 453 | |
---|
[649] | 454 | # accum: acumulation of any variable as (Variable, time [as [tunits] |
---|
| 455 | # from/since ....], newvarname) |
---|
[1758] | 456 | elif diagn == 'accum': |
---|
[649] | 457 | |
---|
| 458 | var0 = ncobj.variables[depvars[0]] |
---|
| 459 | var1 = ncobj.variables[depvars[1]] |
---|
| 460 | |
---|
| 461 | dnamesvar = var0.dimensions |
---|
| 462 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 463 | |
---|
[1675] | 464 | diagout, diagoutd, diagoutvd = diag.compute_accum(var0,dnamesvar,dvnamesvar) |
---|
[1825] | 465 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 466 | varsadd = [] |
---|
| 467 | diagoutvd = list(dvnames) |
---|
| 468 | for nonvd in NONchkvardims: |
---|
| 469 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 470 | varsadd.append(nonvd) |
---|
[649] | 471 | |
---|
| 472 | CFvarn = ncvar.variables_values(depvars[0])[0] |
---|
| 473 | |
---|
| 474 | # Removing the flux |
---|
| 475 | if depvars[1] == 'XTIME': |
---|
| 476 | dtimeunits = var1.getncattr('description') |
---|
| 477 | tunits = dtimeunits.split(' ')[0] |
---|
| 478 | else: |
---|
| 479 | dtimeunits = var1.getncattr('units') |
---|
| 480 | tunits = dtimeunits.split(' ')[0] |
---|
| 481 | |
---|
[1825] | 482 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
[649] | 483 | |
---|
| 484 | ncvar.insert_variable(ncobj, CFvarn + 'acc', diagout*dtime, diagoutd, diagoutvd, newnc) |
---|
| 485 | |
---|
[365] | 486 | # cllmh with cldfra, pres |
---|
[1758] | 487 | elif diagn == 'cllmh': |
---|
[365] | 488 | |
---|
| 489 | var0 = ncobj.variables[depvars[0]] |
---|
| 490 | if depvars[1] == 'WRFp': |
---|
| 491 | var1 = WRFp |
---|
| 492 | else: |
---|
| 493 | var01 = ncobj.variables[depvars[1]] |
---|
| 494 | if len(size(var1.shape)) < len(size(var0.shape)): |
---|
| 495 | var1 = np.brodcast_arrays(var01,var0)[0] |
---|
| 496 | else: |
---|
| 497 | var1 = var01 |
---|
| 498 | |
---|
[1675] | 499 | diagout, diagoutd, diagoutvd = diag.Forcompute_cllmh(var0,var1,dnames,dvnames) |
---|
[772] | 500 | |
---|
[1351] | 501 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 502 | varsadd = [] |
---|
| 503 | for nonvd in NONchkvardims: |
---|
| 504 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 505 | varsadd.append(nonvd) |
---|
| 506 | |
---|
[365] | 507 | ncvar.insert_variable(ncobj, 'cll', diagout[0,:], diagoutd, diagoutvd, newnc) |
---|
| 508 | ncvar.insert_variable(ncobj, 'clm', diagout[1,:], diagoutd, diagoutvd, newnc) |
---|
| 509 | ncvar.insert_variable(ncobj, 'clh', diagout[2,:], diagoutd, diagoutvd, newnc) |
---|
| 510 | |
---|
| 511 | # clt with cldfra |
---|
[1758] | 512 | elif diagn == 'clt': |
---|
[365] | 513 | |
---|
| 514 | var0 = ncobj.variables[depvars] |
---|
[1675] | 515 | diagout, diagoutd, diagoutvd = diag.Forcompute_clt(var0,dnames,dvnames) |
---|
[1351] | 516 | |
---|
| 517 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 518 | varsadd = [] |
---|
| 519 | for nonvd in NONchkvardims: |
---|
| 520 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 521 | varsadd.append(nonvd) |
---|
| 522 | |
---|
[365] | 523 | ncvar.insert_variable(ncobj, 'clt', diagout, diagoutd, diagoutvd, newnc) |
---|
| 524 | |
---|
[2100] | 525 | # convini (pr, time) |
---|
| 526 | elif diagn == 'convini': |
---|
| 527 | |
---|
| 528 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 529 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 530 | otime = ncobj.variables[depvars[1]] |
---|
| 531 | |
---|
| 532 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 533 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 534 | |
---|
| 535 | diagout, diagoutd, diagoutvd = diag.var_convini(var0, var1, dnames, dvnames) |
---|
| 536 | |
---|
| 537 | ncvar.insert_variable(ncobj, 'convini', diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 538 | fill=gen.fillValueF) |
---|
| 539 | # Getting the right units |
---|
| 540 | ovar = newnc.variables['convini'] |
---|
| 541 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 542 | tunits = otime.getncattr('units') |
---|
| 543 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 544 | newnc.sync() |
---|
| 545 | |
---|
[365] | 546 | # deaccum: deacumulation of any variable as (Variable, time [as [tunits] |
---|
| 547 | # from/since ....], newvarname) |
---|
[1758] | 548 | elif diagn == 'deaccum': |
---|
[365] | 549 | |
---|
[1825] | 550 | var0 = ncobj.variables[depvars[0]] |
---|
| 551 | var1 = ncobj.variables[depvars[1]] |
---|
[365] | 552 | |
---|
| 553 | dnamesvar = var0.dimensions |
---|
| 554 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 555 | |
---|
[1675] | 556 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var0,dnamesvar,dvnamesvar) |
---|
[1825] | 557 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 558 | varsadd = [] |
---|
| 559 | diagoutvd = list(dvnames) |
---|
| 560 | for nonvd in NONchkvardims: |
---|
| 561 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 562 | varsadd.append(nonvd) |
---|
[365] | 563 | |
---|
| 564 | # Transforming to a flux |
---|
[1825] | 565 | if depvars[1] == 'XTIME': |
---|
[365] | 566 | dtimeunits = var1.getncattr('description') |
---|
| 567 | tunits = dtimeunits.split(' ')[0] |
---|
| 568 | else: |
---|
| 569 | dtimeunits = var1.getncattr('units') |
---|
| 570 | tunits = dtimeunits.split(' ')[0] |
---|
| 571 | |
---|
[1825] | 572 | dtime = (var1[1] - var1[0])*diag.timeunits_seconds(tunits) |
---|
[1908] | 573 | ncvar.insert_variable(ncobj, depvars[2], diagout/dtime, diagoutd, diagoutvd, \ |
---|
| 574 | newnc) |
---|
[365] | 575 | |
---|
[1909] | 576 | # fog_K84: Computation of fog and visibility following Kunkel, (1984) as QCLOUD, QICE |
---|
[1908] | 577 | elif diagn == 'fog_K84': |
---|
| 578 | |
---|
| 579 | var0 = ncobj.variables[depvars[0]] |
---|
| 580 | var1 = ncobj.variables[depvars[1]] |
---|
| 581 | |
---|
| 582 | dnamesvar = list(var0.dimensions) |
---|
| 583 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 584 | |
---|
| 585 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_K84(var0, var1, \ |
---|
| 586 | dnamesvar, dvnamesvar) |
---|
| 587 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 588 | varsadd = [] |
---|
| 589 | diagoutvd = list(dvnames) |
---|
| 590 | for nonvd in NONchkvardims: |
---|
| 591 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 592 | varsadd.append(nonvd) |
---|
| 593 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 594 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 595 | |
---|
[1909] | 596 | # fog_RUC: Computation of fog and visibility following Kunkel, (1984) as QVAPOR, |
---|
| 597 | # WRFt, WRFp or Q2, T2, PSFC |
---|
[1908] | 598 | elif diagn == 'fog_RUC': |
---|
| 599 | |
---|
| 600 | var0 = ncobj.variables[depvars[0]] |
---|
[1909] | 601 | print gen.infmsg |
---|
| 602 | if depvars[1] == 'WRFt': |
---|
| 603 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
| 604 | var1 = WRFt |
---|
| 605 | var2 = WRFp |
---|
| 606 | else: |
---|
| 607 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
| 608 | var1 = ncobj.variables[depvars[1]] |
---|
| 609 | var2 = ncobj.variables[depvars[2]] |
---|
[1908] | 610 | |
---|
| 611 | dnamesvar = list(var0.dimensions) |
---|
| 612 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 613 | |
---|
[1909] | 614 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_RUC(var0, var1, var2,\ |
---|
[1908] | 615 | dnamesvar, dvnamesvar) |
---|
| 616 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 617 | varsadd = [] |
---|
| 618 | diagoutvd = list(dvnames) |
---|
| 619 | for nonvd in NONchkvardims: |
---|
| 620 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 621 | varsadd.append(nonvd) |
---|
| 622 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 623 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 624 | |
---|
[1909] | 625 | # fog_FRAML50: Computation of fog and visibility following Gultepe, I. and |
---|
| 626 | # J.A. Milbrandt, 2010 as QVAPOR, WRFt, WRFp or Q2, T2, PSFC |
---|
| 627 | elif diagn == 'fog_FRAML50': |
---|
| 628 | |
---|
| 629 | var0 = ncobj.variables[depvars[0]] |
---|
| 630 | print gen.infmsg |
---|
| 631 | if depvars[1] == 'WRFt': |
---|
| 632 | print ' ' + main + ": computing '" + diagn + "' using 3D variables !!" |
---|
| 633 | var1 = WRFt |
---|
| 634 | var2 = WRFp |
---|
| 635 | else: |
---|
| 636 | print ' ' + main + ": computing '" + diagn + "' using 2D variables !!" |
---|
| 637 | var1 = ncobj.variables[depvars[1]] |
---|
| 638 | var2 = ncobj.variables[depvars[2]] |
---|
| 639 | |
---|
| 640 | dnamesvar = list(var0.dimensions) |
---|
| 641 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 642 | |
---|
| 643 | diag1, diag2, diagoutd, diagoutvd = diag.Forcompute_fog_FRAML50(var0, var1, \ |
---|
| 644 | var2, dnamesvar, dvnamesvar) |
---|
| 645 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 646 | varsadd = [] |
---|
| 647 | diagoutvd = list(dvnames) |
---|
| 648 | for nonvd in NONchkvardims: |
---|
| 649 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 650 | varsadd.append(nonvd) |
---|
| 651 | ncvar.insert_variable(ncobj, 'fog', diag1, diagoutd, diagoutvd, newnc) |
---|
| 652 | ncvar.insert_variable(ncobj, 'fogvisblty', diag2, diagoutd, diagoutvd, newnc) |
---|
| 653 | |
---|
[365] | 654 | # LMDZrh (pres, t, r) |
---|
[1758] | 655 | elif diagn == 'LMDZrh': |
---|
[365] | 656 | |
---|
| 657 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 658 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 659 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 660 | |
---|
[1675] | 661 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnames,dvnames) |
---|
[1079] | 662 | ncvar.insert_variable(ncobj, 'hur', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 663 | |
---|
| 664 | # LMDZrhs (psol, t2m, q2m) |
---|
[1758] | 665 | elif diagn == 'LMDZrhs': |
---|
[365] | 666 | |
---|
| 667 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 668 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 669 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 670 | |
---|
| 671 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 672 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 673 | |
---|
[1675] | 674 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[365] | 675 | |
---|
[1079] | 676 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 677 | |
---|
[1762] | 678 | # mrso: total soil moisture SMOIS, DZS |
---|
| 679 | elif diagn == 'WRFmrso': |
---|
| 680 | |
---|
| 681 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 682 | var10 = ncobj.variables[depvars[1]][:] |
---|
| 683 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 684 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 685 | |
---|
| 686 | var1 = var0.copy()*0. |
---|
| 687 | var2 = var0.copy()*0.+1. |
---|
| 688 | # Must be a better way.... |
---|
| 689 | for j in range(var0.shape[2]): |
---|
| 690 | for i in range(var0.shape[3]): |
---|
| 691 | var1[:,:,j,i] = var10 |
---|
| 692 | |
---|
| 693 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
| 694 | dnamesvar, dvnamesvar) |
---|
| 695 | |
---|
| 696 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 697 | varsadd = [] |
---|
| 698 | diagoutvd = list(dvnames) |
---|
| 699 | for nonvd in NONchkvardims: |
---|
| 700 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 701 | varsadd.append(nonvd) |
---|
| 702 | ncvar.insert_variable(ncobj, 'mrso', diagout, diagoutd, diagoutvd, newnc) |
---|
| 703 | |
---|
[365] | 704 | # mslp: mean sea level pressure (pres, psfc, terrain, temp, qv) |
---|
[1758] | 705 | elif diagn == 'mslp' or diagn == 'WRFmslp': |
---|
[365] | 706 | |
---|
| 707 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 708 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 709 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 710 | |
---|
[1758] | 711 | if diagn == 'WRFmslp': |
---|
[365] | 712 | var0 = WRFp |
---|
| 713 | var3 = WRFt |
---|
| 714 | dnamesvar = ncobj.variables['P'].dimensions |
---|
| 715 | else: |
---|
| 716 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 717 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 718 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 719 | |
---|
| 720 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 721 | |
---|
[1675] | 722 | diagout, diagoutd, diagoutvd = diag.compute_mslp(var0, var1, var2, var3, var4, \ |
---|
[365] | 723 | dnamesvar, dvnamesvar) |
---|
| 724 | |
---|
[1581] | 725 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 726 | varsadd = [] |
---|
| 727 | diagoutvd = list(dvnames) |
---|
| 728 | for nonvd in NONchkvardims: |
---|
| 729 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 730 | varsadd.append(nonvd) |
---|
[365] | 731 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 732 | |
---|
[642] | 733 | # OMEGAw (omega, p, t) from NCL formulation (https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml) |
---|
[1758] | 734 | elif diagn == 'OMEGAw': |
---|
[642] | 735 | |
---|
| 736 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 737 | var1 = ncobj.variables[depvars[1]][:] |
---|
[643] | 738 | var2 = ncobj.variables[depvars[2]][:] |
---|
[642] | 739 | |
---|
| 740 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 741 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 742 | |
---|
[1675] | 743 | diagout, diagoutd, diagoutvd = diag.compute_OMEGAw(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[642] | 744 | |
---|
| 745 | ncvar.insert_variable(ncobj, 'wa', diagout, diagoutd, diagoutvd, newnc) |
---|
| 746 | |
---|
[2095] | 747 | # raintot: instantaneous total precipitation from WRF as (RAINC + RAINC + RAINSH) / dTime |
---|
[1758] | 748 | elif diagn == 'RAINTOT': |
---|
[365] | 749 | |
---|
| 750 | var0 = ncobj.variables[depvars[0]] |
---|
| 751 | var1 = ncobj.variables[depvars[1]] |
---|
[2095] | 752 | var2 = ncobj.variables[depvars[2]] |
---|
| 753 | |
---|
| 754 | if depvars[3] != 'WRFtime': |
---|
| 755 | var3 = ncobj.variables[depvars[3]] |
---|
[654] | 756 | else: |
---|
[2095] | 757 | var3 = np.arange(var0.shape[0], dtype=int) |
---|
[365] | 758 | |
---|
[2095] | 759 | var = var0[:] + var1[:] + var2[:] |
---|
[365] | 760 | |
---|
| 761 | dnamesvar = var0.dimensions |
---|
| 762 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 763 | |
---|
[1675] | 764 | diagout, diagoutd, diagoutvd = diag.compute_deaccum(var,dnamesvar,dvnamesvar) |
---|
[365] | 765 | |
---|
| 766 | # Transforming to a flux |
---|
[2095] | 767 | if var3.shape[0] > 1: |
---|
| 768 | if depvars[3] != 'WRFtime': |
---|
| 769 | dtimeunits = var3.getncattr('units') |
---|
[600] | 770 | tunits = dtimeunits.split(' ')[0] |
---|
| 771 | |
---|
[2095] | 772 | dtime = (var3[1] - var3[0])*diag.timeunits_seconds(tunits) |
---|
[600] | 773 | else: |
---|
[2095] | 774 | var3 = ncobj.variables['Times'] |
---|
| 775 | time1 = var3[0,:] |
---|
| 776 | time2 = var3[1,:] |
---|
[600] | 777 | tmf1 = '' |
---|
| 778 | tmf2 = '' |
---|
| 779 | for ic in range(len(time1)): |
---|
| 780 | tmf1 = tmf1 + time1[ic] |
---|
| 781 | tmf2 = tmf2 + time2[ic] |
---|
[654] | 782 | dtdate1 = dtime.datetime.strptime(tmf1,"%Y-%m-%d_%H:%M:%S") |
---|
| 783 | dtdate2 = dtime.datetime.strptime(tmf2,"%Y-%m-%d_%H:%M:%S") |
---|
[600] | 784 | diffdate12 = dtdate2 - dtdate1 |
---|
| 785 | dtime = diffdate12.total_seconds() |
---|
| 786 | print 'dtime:',dtime |
---|
[442] | 787 | else: |
---|
[600] | 788 | print warnmsg |
---|
[1645] | 789 | print ' ' + main + ": only 1 time-step for '" + diag + "' !!" |
---|
[600] | 790 | print ' leaving a zero value!' |
---|
[1646] | 791 | diagout = var0[:]*0. |
---|
[600] | 792 | dtime=1. |
---|
[442] | 793 | |
---|
[1644] | 794 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 795 | varsadd = [] |
---|
| 796 | for nonvd in NONchkvardims: |
---|
| 797 | if gen.searchInlist(diagoutvd,nonvd): diagoutvd.remove(nonvd) |
---|
| 798 | varsadd.append(nonvd) |
---|
| 799 | |
---|
[365] | 800 | ncvar.insert_variable(ncobj, 'pr', diagout/dtime, diagoutd, diagoutvd, newnc) |
---|
| 801 | |
---|
[2140] | 802 | # timemax ([varname], time). When a given variable [varname] got its maximum |
---|
| 803 | elif diagn == 'timemax': |
---|
| 804 | |
---|
| 805 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 806 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 807 | |
---|
| 808 | otime = ncobj.variables[depvars[1]] |
---|
| 809 | |
---|
| 810 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 811 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 812 | |
---|
| 813 | diagout, diagoutd, diagoutvd = diag.var_timemax(var0, var1, dnames, \ |
---|
| 814 | dvnames) |
---|
| 815 | |
---|
| 816 | ncvar.insert_variable(ncobj, 'timemax', diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 817 | fill=gen.fillValueF) |
---|
| 818 | # Getting the right units |
---|
| 819 | ovar = newnc.variables['timemax'] |
---|
| 820 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 821 | tunits = otime.getncattr('units') |
---|
| 822 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 823 | newnc.sync() |
---|
| 824 | ncvar.set_attribute(ovar, 'variable', depvars[0]) |
---|
| 825 | |
---|
[2138] | 826 | # timeoverthres ([varname], time, [value], [CFvarn]). When a given variable [varname] |
---|
| 827 | # overpass a given [value]. Being [CFvarn] the name of the diagnostics in |
---|
| 828 | # variables_values.dat |
---|
| 829 | elif diagn == 'timeoverthres': |
---|
| 830 | |
---|
| 831 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 832 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 833 | var2 = np.float(depvars[2]) |
---|
| 834 | var3 = depvars[3] |
---|
| 835 | |
---|
| 836 | otime = ncobj.variables[depvars[1]] |
---|
| 837 | |
---|
| 838 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 839 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 840 | |
---|
| 841 | diagout, diagoutd, diagoutvd = diag.var_timeoverthres(var0, var1, var2, \ |
---|
| 842 | dnames, dvnames) |
---|
| 843 | |
---|
| 844 | ncvar.insert_variable(ncobj, var3, diagout, diagoutd, diagoutvd, newnc, \ |
---|
| 845 | fill=gen.fillValueF) |
---|
| 846 | # Getting the right units |
---|
| 847 | ovar = newnc.variables[var3] |
---|
| 848 | if gen.searchInlist(otime.ncattrs(), 'units'): |
---|
| 849 | tunits = otime.getncattr('units') |
---|
| 850 | ncvar.set_attribute(ovar, 'units', tunits) |
---|
| 851 | newnc.sync() |
---|
| 852 | ncvar.set_attribute(ovar, 'overpassed_threshold', var2) |
---|
| 853 | |
---|
[612] | 854 | # rhs (psfc, t, q) from TimeSeries files |
---|
[1758] | 855 | elif diagn == 'TSrhs': |
---|
[612] | 856 | |
---|
| 857 | p0=100000. |
---|
| 858 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 859 | var1 = (ncobj.variables[depvars[1]][:])*(var0/p0)**(2./7.) |
---|
| 860 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 861 | |
---|
| 862 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 863 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 864 | |
---|
[1675] | 865 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 866 | |
---|
[1079] | 867 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 868 | |
---|
[1762] | 869 | # slw: total soil liquid water SH2O, DZS |
---|
| 870 | elif diagn == 'WRFslw': |
---|
| 871 | |
---|
| 872 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 873 | var10 = ncobj.variables[depvars[1]][:] |
---|
| 874 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 875 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 876 | |
---|
| 877 | var1 = var0.copy()*0. |
---|
| 878 | var2 = var0.copy()*0.+1. |
---|
| 879 | # Must be a better way.... |
---|
| 880 | for j in range(var0.shape[2]): |
---|
| 881 | for i in range(var0.shape[3]): |
---|
| 882 | var1[:,:,j,i] = var10 |
---|
| 883 | |
---|
| 884 | diagout, diagoutd, diagoutvd = diag.Forcompute_zint(var0, var1, var2, \ |
---|
| 885 | dnamesvar, dvnamesvar) |
---|
| 886 | |
---|
| 887 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 888 | varsadd = [] |
---|
| 889 | diagoutvd = list(dvnames) |
---|
| 890 | for nonvd in NONchkvardims: |
---|
| 891 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 892 | varsadd.append(nonvd) |
---|
| 893 | ncvar.insert_variable(ncobj, 'slw', diagout, diagoutd, diagoutvd, newnc) |
---|
| 894 | |
---|
[612] | 895 | # td (psfc, t, q) from TimeSeries files |
---|
[1758] | 896 | elif diagn == 'TStd' or diagn == 'td': |
---|
[612] | 897 | |
---|
| 898 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 899 | var1 = ncobj.variables[depvars[1]][:] - 273.15 |
---|
| 900 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 901 | |
---|
| 902 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 903 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 904 | |
---|
[1675] | 905 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 906 | |
---|
[1966] | 907 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 908 | |
---|
| 909 | # td (psfc, t, q) from TimeSeries files |
---|
[1758] | 910 | elif diagn == 'TStdC' or diagn == 'tdC': |
---|
[612] | 911 | |
---|
| 912 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 913 | # Temperature is already in degrees Celsius |
---|
| 914 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 915 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 916 | |
---|
| 917 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 918 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 919 | |
---|
[1675] | 920 | diagout, diagoutd, diagoutvd = diag.compute_td(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[612] | 921 | |
---|
[1999] | 922 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 923 | varsadd = [] |
---|
| 924 | for nonvd in NONchkvardims: |
---|
| 925 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 926 | varsadd.append(nonvd) |
---|
| 927 | |
---|
[1966] | 928 | ncvar.insert_variable(ncobj, 'tdas', diagout, diagoutd, diagoutvd, newnc) |
---|
[612] | 929 | |
---|
| 930 | # wds (u, v) |
---|
[1758] | 931 | elif diagn == 'TSwds' or diagn == 'wds' : |
---|
[612] | 932 | |
---|
| 933 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 934 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 935 | |
---|
| 936 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 937 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 938 | |
---|
[1675] | 939 | diagout, diagoutd, diagoutvd = diag.compute_wds(var0,var1,dnamesvar,dvnamesvar) |
---|
[612] | 940 | |
---|
[1999] | 941 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 942 | varsadd = [] |
---|
| 943 | for nonvd in NONchkvardims: |
---|
| 944 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 945 | varsadd.append(nonvd) |
---|
| 946 | |
---|
[612] | 947 | ncvar.insert_variable(ncobj, 'wds', diagout, diagoutd, diagoutvd, newnc) |
---|
| 948 | |
---|
| 949 | # wss (u, v) |
---|
[1758] | 950 | elif diagn == 'TSwss' or diagn == 'wss': |
---|
[612] | 951 | |
---|
| 952 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 953 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 954 | |
---|
| 955 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 956 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 957 | |
---|
[1675] | 958 | diagout, diagoutd, diagoutvd = diag.compute_wss(var0,var1,dnamesvar,dvnamesvar) |
---|
[612] | 959 | |
---|
[1999] | 960 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 961 | varsadd = [] |
---|
| 962 | for nonvd in NONchkvardims: |
---|
| 963 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 964 | varsadd.append(nonvd) |
---|
| 965 | |
---|
[612] | 966 | ncvar.insert_variable(ncobj, 'wss', diagout, diagoutd, diagoutvd, newnc) |
---|
| 967 | |
---|
[365] | 968 | # turbulence (var) |
---|
[1758] | 969 | elif diagn == 'turbulence': |
---|
[365] | 970 | |
---|
| 971 | var0 = ncobj.variables[depvars][:] |
---|
| 972 | |
---|
| 973 | dnamesvar = list(ncobj.variables[depvars].dimensions) |
---|
| 974 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 975 | |
---|
[1675] | 976 | diagout, diagoutd, diagoutvd = diag.compute_turbulence(var0,dnamesvar,dvnamesvar) |
---|
[959] | 977 | valsvar = gen.variables_values(depvars) |
---|
[365] | 978 | |
---|
[959] | 979 | newvarn = depvars + 'turb' |
---|
| 980 | ncvar.insert_variable(ncobj, newvarn, diagout, diagoutd, |
---|
[365] | 981 | diagoutvd, newnc) |
---|
[959] | 982 | varobj = newnc.variables[newvarn] |
---|
[365] | 983 | attrv = varobj.long_name |
---|
| 984 | attr = varobj.delncattr('long_name') |
---|
| 985 | newattr = ncvar.set_attribute(varobj, 'long_name', attrv + \ |
---|
| 986 | " Taylor decomposition turbulence term") |
---|
| 987 | |
---|
[1927] | 988 | # ua va from ws wd (deg) |
---|
| 989 | elif diagn == 'uavaFROMwswd': |
---|
| 990 | |
---|
| 991 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 992 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 993 | |
---|
| 994 | ua = var0*np.cos(var1*np.pi/180.) |
---|
| 995 | va = var0*np.sin(var1*np.pi/180.) |
---|
| 996 | |
---|
| 997 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 998 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 999 | |
---|
| 1000 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
| 1001 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
| 1002 | |
---|
[2033] | 1003 | # ua va from obs ws wd (deg) |
---|
| 1004 | elif diagn == 'uavaFROMobswswd': |
---|
| 1005 | |
---|
| 1006 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1007 | var1 = ncobj.variables[depvars[1]][:] |
---|
[1927] | 1008 | |
---|
[2033] | 1009 | ua = var0*np.cos((var1+180.)*np.pi/180.) |
---|
| 1010 | va = var0*np.sin((var1+180.)*np.pi/180.) |
---|
| 1011 | |
---|
| 1012 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1013 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1014 | |
---|
| 1015 | ncvar.insert_variable(ncobj, 'ua', ua, dnamesvar, dvnamesvar, newnc) |
---|
| 1016 | ncvar.insert_variable(ncobj, 'va', va, dnamesvar, dvnamesvar, newnc) |
---|
| 1017 | |
---|
[390] | 1018 | # WRFbils fom WRF as HFX + LH |
---|
[1758] | 1019 | elif diagn == 'WRFbils': |
---|
[390] | 1020 | |
---|
| 1021 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1022 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1023 | |
---|
| 1024 | diagout = var0 + var1 |
---|
[867] | 1025 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1026 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
[390] | 1027 | |
---|
[867] | 1028 | ncvar.insert_variable(ncobj, 'bils', diagout, dnamesvar, dvnamesvar, newnc) |
---|
[390] | 1029 | |
---|
[1759] | 1030 | # WRFcape_afwa CAPE, CIN, ZLFC, PLFC, LI following WRF 'phys/module_diaf_afwa.F' |
---|
| 1031 | # methodology as WRFt, WRFrh, WRFp, WRFgeop, HGT |
---|
| 1032 | elif diagn == 'WRFcape_afwa': |
---|
| 1033 | var0 = WRFt |
---|
| 1034 | var1 = WRFrh |
---|
| 1035 | var2 = WRFp |
---|
| 1036 | dz = WRFgeop.shape[1] |
---|
| 1037 | # de-staggering |
---|
[1833] | 1038 | var3 = 0.5*(WRFgeop[:,0:dz-1,:,:]+WRFgeop[:,1:dz,:,:])/9.8 |
---|
[1759] | 1039 | var4 = ncobj.variables[depvars[4]][0,:,:] |
---|
| 1040 | |
---|
| 1041 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
| 1042 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1043 | |
---|
| 1044 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1045 | diagout1, diagout2, diagout3, diagout4, diagout5, diagoutd, diagoutvd = \ |
---|
| 1046 | diag.Forcompute_cape_afwa(var0, var1, var2, var3, var4, 3, dnamesvar, \ |
---|
| 1047 | dvnamesvar) |
---|
| 1048 | |
---|
| 1049 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1050 | varsadd = [] |
---|
| 1051 | for nonvd in NONchkvardims: |
---|
| 1052 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1053 | varsadd.append(nonvd) |
---|
| 1054 | |
---|
| 1055 | ncvar.insert_variable(ncobj, 'cape', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1056 | ncvar.insert_variable(ncobj, 'cin', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1057 | ncvar.insert_variable(ncobj, 'zlfc', diagout3, diagoutd, diagoutvd, newnc) |
---|
| 1058 | ncvar.insert_variable(ncobj, 'plfc', diagout4, diagoutd, diagoutvd, newnc) |
---|
| 1059 | ncvar.insert_variable(ncobj, 'li', diagout5, diagoutd, diagoutvd, newnc) |
---|
| 1060 | |
---|
[1581] | 1061 | # WRFclivi WRF water vapour path WRFdens, QICE, QGRAUPEL, QHAIL |
---|
[1758] | 1062 | elif diagn == 'WRFclivi': |
---|
[1581] | 1063 | |
---|
| 1064 | var0 = WRFdens |
---|
| 1065 | qtot = ncobj.variables[depvars[1]] |
---|
| 1066 | qtotv = qtot[:] |
---|
| 1067 | Nspecies = len(depvars) - 2 |
---|
| 1068 | for iv in range(Nspecies): |
---|
[1585] | 1069 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1070 | var1 = ncobj.variables[depvars[iv+2]][:] |
---|
| 1071 | qtotv = qtotv + var1 |
---|
[1581] | 1072 | |
---|
| 1073 | dnamesvar = list(qtot.dimensions) |
---|
| 1074 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1075 | |
---|
[1675] | 1076 | diagout, diagoutd, diagoutvd = diag.compute_clivi(var0, qtotv, dnamesvar,dvnamesvar) |
---|
[1581] | 1077 | |
---|
| 1078 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1079 | varsadd = [] |
---|
| 1080 | diagoutvd = list(dvnames) |
---|
| 1081 | for nonvd in NONchkvardims: |
---|
| 1082 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1083 | varsadd.append(nonvd) |
---|
| 1084 | ncvar.insert_variable(ncobj, 'clivi', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1085 | |
---|
[1803] | 1086 | # WRFclwvi WRF water cloud-condensed path WRFdens, QCLOUD, QICE, QGRAUPEL, QHAIL |
---|
| 1087 | elif diagn == 'WRFclwvi': |
---|
[1581] | 1088 | |
---|
| 1089 | var0 = WRFdens |
---|
| 1090 | qtot = ncobj.variables[depvars[1]] |
---|
| 1091 | qtotv = ncobj.variables[depvars[1]] |
---|
| 1092 | Nspecies = len(depvars) - 2 |
---|
| 1093 | for iv in range(Nspecies): |
---|
[1585] | 1094 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1095 | var1 = ncobj.variables[depvars[iv+2]] |
---|
| 1096 | qtotv = qtotv + var1[:] |
---|
[1581] | 1097 | |
---|
| 1098 | dnamesvar = list(qtot.dimensions) |
---|
| 1099 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1100 | |
---|
[1675] | 1101 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
[1581] | 1102 | |
---|
| 1103 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1104 | varsadd = [] |
---|
| 1105 | diagoutvd = list(dvnames) |
---|
| 1106 | for nonvd in NONchkvardims: |
---|
| 1107 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1108 | varsadd.append(nonvd) |
---|
[1803] | 1109 | ncvar.insert_variable(ncobj, 'clwvi', diagout, diagoutd, diagoutvd, newnc) |
---|
[1581] | 1110 | |
---|
[1809] | 1111 | # WRF_denszint WRF vertical integration as WRFdens, sum(Q[water species1], ..., Q[water speciesN]), varn=[varN] |
---|
| 1112 | elif diagn == 'WRF_denszint': |
---|
| 1113 | |
---|
| 1114 | var0 = WRFdens |
---|
| 1115 | varn = depvars[1].split('=')[1] |
---|
| 1116 | qtot = ncobj.variables[depvars[2]] |
---|
| 1117 | qtotv = ncobj.variables[depvars[2]] |
---|
| 1118 | Nspecies = len(depvars) - 2 |
---|
| 1119 | for iv in range(Nspecies): |
---|
| 1120 | if ncobj.variables.has_key(depvars[iv+2]): |
---|
| 1121 | var1 = ncobj.variables[depvars[iv+2]] |
---|
| 1122 | qtotv = qtotv + var1[:] |
---|
| 1123 | |
---|
| 1124 | dnamesvar = list(qtot.dimensions) |
---|
| 1125 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1126 | |
---|
| 1127 | diagout, diagoutd, diagoutvd = diag.compute_clwvl(var0, qtotv, dnamesvar,dvnamesvar) |
---|
| 1128 | |
---|
| 1129 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1130 | varsadd = [] |
---|
| 1131 | diagoutvd = list(dvnames) |
---|
| 1132 | for nonvd in NONchkvardims: |
---|
| 1133 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1134 | varsadd.append(nonvd) |
---|
| 1135 | ncvar.insert_variable(ncobj, varn, diagout, diagoutd, diagoutvd, newnc) |
---|
| 1136 | |
---|
[654] | 1137 | # WRFgeop geopotential from WRF as PH + PHB |
---|
[1758] | 1138 | elif diagn == 'WRFgeop': |
---|
[1382] | 1139 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1140 | var1 = ncobj.variables[depvars[1]][:] |
---|
[654] | 1141 | |
---|
[1382] | 1142 | # de-staggering geopotential |
---|
| 1143 | diagout0 = var0 + var1 |
---|
| 1144 | dt = diagout0.shape[0] |
---|
| 1145 | dz = diagout0.shape[1] |
---|
| 1146 | dy = diagout0.shape[2] |
---|
| 1147 | dx = diagout0.shape[3] |
---|
| 1148 | |
---|
| 1149 | diagout = np.zeros((dt,dz-1,dy,dx), dtype=np.float) |
---|
| 1150 | diagout = 0.5*(diagout0[:,1:dz,:,:]+diagout0[:,0:dz-1,:,:]) |
---|
| 1151 | |
---|
| 1152 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1153 | varsadd = [] |
---|
[1389] | 1154 | diagoutvd = list(dvnames) |
---|
[1382] | 1155 | for nonvd in NONchkvardims: |
---|
[1389] | 1156 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
[1382] | 1157 | varsadd.append(nonvd) |
---|
| 1158 | |
---|
[1389] | 1159 | ncvar.insert_variable(ncobj, 'zg', diagout, dnames, diagoutvd, newnc) |
---|
[654] | 1160 | |
---|
[1804] | 1161 | # WRFpotevap_orPM potential evapotranspiration following Penman-Monteith formulation |
---|
[1833] | 1162 | # implemented in ORCHIDEE (in src_sechiba/enerbil.f90) as: WRFdens, UST, U10, V10, T2, PSFC, QVAPOR |
---|
[1804] | 1163 | elif diagn == 'WRFpotevap_orPM': |
---|
| 1164 | var0 = WRFdens[:,0,:,:] |
---|
| 1165 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1166 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1167 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1168 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1169 | var5 = ncobj.variables[depvars[5]][:] |
---|
| 1170 | var6 = ncobj.variables[depvars[6]][:,0,:,:] |
---|
| 1171 | |
---|
| 1172 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
| 1173 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1174 | |
---|
| 1175 | diagout = np.zeros(var1.shape, dtype=np.float) |
---|
| 1176 | diagout, diagoutd, diagoutvd = diag.Forcompute_potevap_orPM(var0, var1, var2,\ |
---|
| 1177 | var3, var4, var5, var6, dnamesvar, dvnamesvar) |
---|
| 1178 | |
---|
| 1179 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1180 | varsadd = [] |
---|
| 1181 | for nonvd in NONchkvardims: |
---|
| 1182 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1183 | varsadd.append(nonvd) |
---|
| 1184 | |
---|
| 1185 | ncvar.insert_variable(ncobj, 'evspsblpot', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1186 | |
---|
[1795] | 1187 | # WRFmslp_ptarget sea-level pressure following ECMWF method as PSFC, HGT, WRFt, WRFp, ZNU, ZNW |
---|
| 1188 | elif diagn == 'WRFpsl_ecmwf': |
---|
| 1189 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1190 | var1 = ncobj.variables[depvars[1]][0,:,:] |
---|
| 1191 | var2 = WRFt[:,0,:,:] |
---|
| 1192 | var4 = WRFp[:,0,:,:] |
---|
| 1193 | var5 = ncobj.variables[depvars[4]][0,:] |
---|
| 1194 | var6 = ncobj.variables[depvars[5]][0,:] |
---|
| 1195 | |
---|
| 1196 | # This is quite too appriximate!! passing pressure at half-levels to 2nd full |
---|
| 1197 | # level, using eta values at full (ZNW) and half (ZNU) mass levels |
---|
| 1198 | var3 = WRFp[:,0,:,:] + (var6[1] - var5[0])*(WRFp[:,1,:,:] - WRFp[:,0,:,:])/ \ |
---|
| 1199 | (var5[1]-var5[0]) |
---|
| 1200 | |
---|
| 1201 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1202 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1203 | |
---|
| 1204 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1205 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ecmwf(var0, var1, var2, \ |
---|
| 1206 | var3, var4, dnamesvar, dvnamesvar) |
---|
| 1207 | |
---|
| 1208 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1209 | varsadd = [] |
---|
| 1210 | for nonvd in NONchkvardims: |
---|
| 1211 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1212 | varsadd.append(nonvd) |
---|
| 1213 | |
---|
| 1214 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1215 | |
---|
[1758] | 1216 | # WRFmslp_ptarget sea-level pressure following ptarget method as WRFp, PSFC, WRFt, HGT, QVAPOR |
---|
| 1217 | elif diagn == 'WRFpsl_ptarget': |
---|
| 1218 | var0 = WRFp |
---|
| 1219 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1220 | var2 = WRFt |
---|
| 1221 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
| 1222 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1223 | |
---|
| 1224 | dnamesvar = list(ncobj.variables[depvars[4]].dimensions) |
---|
| 1225 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1226 | |
---|
| 1227 | diagout = np.zeros(var0.shape, dtype=np.float) |
---|
| 1228 | diagout, diagoutd, diagoutvd = diag.Forcompute_psl_ptarget(var0, var1, var2, \ |
---|
| 1229 | var3, var4, 700000., dnamesvar, dvnamesvar) |
---|
| 1230 | |
---|
| 1231 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1232 | varsadd = [] |
---|
| 1233 | for nonvd in NONchkvardims: |
---|
| 1234 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1235 | varsadd.append(nonvd) |
---|
| 1236 | |
---|
| 1237 | ncvar.insert_variable(ncobj, 'psl', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1238 | |
---|
[390] | 1239 | # WRFp pressure from WRF as P + PB |
---|
[1758] | 1240 | elif diagn == 'WRFp': |
---|
[1944] | 1241 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1242 | var1 = ncobj.variables[depvars[1]][:] |
---|
[365] | 1243 | |
---|
[1944] | 1244 | diagout = var0 + var1 |
---|
[1999] | 1245 | diagoutd = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1246 | diagoutvd = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
[365] | 1247 | |
---|
[1999] | 1248 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1249 | varsadd = [] |
---|
| 1250 | for nonvd in NONchkvardims: |
---|
| 1251 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1252 | varsadd.append(nonvd) |
---|
[365] | 1253 | |
---|
[1999] | 1254 | ncvar.insert_variable(ncobj, 'pres', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1255 | |
---|
[365] | 1256 | # WRFpos |
---|
[1758] | 1257 | elif diagn == 'WRFpos': |
---|
[365] | 1258 | |
---|
| 1259 | dnamesvar = ncobj.variables['MAPFAC_M'].dimensions |
---|
| 1260 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1261 | |
---|
| 1262 | ncvar.insert_variable(ncobj, 'WRFpos', WRFpos, dnamesvar, dvnamesvar, newnc) |
---|
| 1263 | |
---|
| 1264 | # WRFprw WRF water vapour path WRFdens, QVAPOR |
---|
[1758] | 1265 | elif diagn == 'WRFprw': |
---|
[365] | 1266 | |
---|
| 1267 | var0 = WRFdens |
---|
| 1268 | var1 = ncobj.variables[depvars[1]] |
---|
| 1269 | |
---|
| 1270 | dnamesvar = list(var1.dimensions) |
---|
| 1271 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1272 | |
---|
[1675] | 1273 | diagout, diagoutd, diagoutvd = diag.compute_prw(var0, var1, dnamesvar,dvnamesvar) |
---|
[365] | 1274 | |
---|
[1586] | 1275 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1276 | varsadd = [] |
---|
| 1277 | diagoutvd = list(dvnames) |
---|
| 1278 | for nonvd in NONchkvardims: |
---|
| 1279 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1280 | varsadd.append(nonvd) |
---|
[365] | 1281 | ncvar.insert_variable(ncobj, 'prw', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1282 | |
---|
| 1283 | # WRFrh (P, T, QVAPOR) |
---|
[1758] | 1284 | elif diagn == 'WRFrh': |
---|
[365] | 1285 | |
---|
| 1286 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
| 1287 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1288 | |
---|
[878] | 1289 | ncvar.insert_variable(ncobj, 'hur', WRFrh, dnames, dvnames, newnc) |
---|
[365] | 1290 | |
---|
| 1291 | # WRFrhs (PSFC, T2, Q2) |
---|
[1758] | 1292 | elif diagn == 'WRFrhs': |
---|
[365] | 1293 | |
---|
| 1294 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1295 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1296 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1297 | |
---|
| 1298 | dnamesvar = list(ncobj.variables[depvars[2]].dimensions) |
---|
| 1299 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1300 | |
---|
[1675] | 1301 | diagout, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
[878] | 1302 | ncvar.insert_variable(ncobj, 'hurs', diagout, diagoutd, diagoutvd, newnc) |
---|
[365] | 1303 | |
---|
| 1304 | # rvors (u10, v10, WRFpos) |
---|
[1758] | 1305 | elif diagn == 'WRFrvors': |
---|
[365] | 1306 | |
---|
| 1307 | var0 = ncobj.variables[depvars[0]] |
---|
| 1308 | var1 = ncobj.variables[depvars[1]] |
---|
| 1309 | |
---|
| 1310 | diagout = rotational_z(var0, var1, distx) |
---|
| 1311 | |
---|
| 1312 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1313 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1314 | |
---|
| 1315 | ncvar.insert_variable(ncobj, 'rvors', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1316 | |
---|
[884] | 1317 | # WRFt (T, P, PB) |
---|
[1758] | 1318 | elif diagn == 'WRFt': |
---|
[884] | 1319 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1320 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1321 | var2 = ncobj.variables[depvars[2]][:] |
---|
[654] | 1322 | |
---|
[884] | 1323 | p0=100000. |
---|
| 1324 | p=var1 + var2 |
---|
| 1325 | |
---|
| 1326 | WRFt = (var0 + 300.)*(p/p0)**(2./7.) |
---|
| 1327 | |
---|
| 1328 | dnamesvar = list(ncobj.variables[depvars[0]].dimensions) |
---|
| 1329 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1330 | |
---|
[1382] | 1331 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1332 | varsadd = [] |
---|
[1389] | 1333 | diagoutvd = list(dvnames) |
---|
[1382] | 1334 | for nonvd in NONchkvardims: |
---|
[1389] | 1335 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
[1382] | 1336 | varsadd.append(nonvd) |
---|
| 1337 | |
---|
[1389] | 1338 | ncvar.insert_variable(ncobj, 'ta', WRFt, dnames, diagoutvd, newnc) |
---|
[884] | 1339 | |
---|
[1942] | 1340 | # WRFtda (WRFrh, WRFt) |
---|
| 1341 | elif diagn == 'WRFtda': |
---|
| 1342 | ARM2 = fdef.module_definitions.arm2 |
---|
| 1343 | ARM3 = fdef.module_definitions.arm3 |
---|
| 1344 | |
---|
| 1345 | gammatarh = np.log(WRFrh) + ARM2*(WRFt-273.15)/((WRFt-273.15)+ARM3) |
---|
[1943] | 1346 | td = ARM3*gammatarh/(ARM2-gammatarh) |
---|
[1942] | 1347 | |
---|
| 1348 | dnamesvar = list(ncobj.variables['T'].dimensions) |
---|
| 1349 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1350 | |
---|
| 1351 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1352 | varsadd = [] |
---|
| 1353 | diagoutvd = list(dvnames) |
---|
| 1354 | for nonvd in NONchkvardims: |
---|
| 1355 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1356 | varsadd.append(nonvd) |
---|
| 1357 | |
---|
| 1358 | ncvar.insert_variable(ncobj, 'tda', td, dnames, diagoutvd, newnc) |
---|
| 1359 | |
---|
[1966] | 1360 | # WRFtdas (PSFC, T2, Q2) |
---|
| 1361 | elif diagn == 'WRFtdas': |
---|
[1962] | 1362 | ARM2 = fdef.module_definitions.arm2 |
---|
| 1363 | ARM3 = fdef.module_definitions.arm3 |
---|
| 1364 | |
---|
| 1365 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1366 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1367 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1368 | |
---|
| 1369 | dnamesvar = list(ncobj.variables[depvars[1]].dimensions) |
---|
| 1370 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1371 | |
---|
| 1372 | rhs, diagoutd, diagoutvd = diag.compute_rh(var0,var1,var2,dnamesvar,dvnamesvar) |
---|
| 1373 | |
---|
| 1374 | gammatarhs = np.log(rhs) + ARM2*(var1-273.15)/((var1-273.15)+ARM3) |
---|
[1970] | 1375 | tdas = ARM3*gammatarhs/(ARM2-gammatarhs) + 273.15 |
---|
[1962] | 1376 | |
---|
| 1377 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1378 | varsadd = [] |
---|
| 1379 | diagoutvd = list(dvnames) |
---|
| 1380 | for nonvd in NONchkvardims: |
---|
| 1381 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1382 | varsadd.append(nonvd) |
---|
| 1383 | |
---|
[1966] | 1384 | ncvar.insert_variable(ncobj, 'tdas', tdas, dnames, diagoutvd, newnc) |
---|
[1962] | 1385 | |
---|
[914] | 1386 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
[1758] | 1387 | elif diagn == 'WRFua': |
---|
[914] | 1388 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1389 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1390 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1391 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1392 | |
---|
| 1393 | # un-staggering variables |
---|
[1999] | 1394 | if len(var0.shape) == 4: |
---|
| 1395 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1396 | elif len(var0.shape) == 3: |
---|
| 1397 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1398 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1399 | |
---|
[914] | 1400 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1401 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1402 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1403 | |
---|
[1999] | 1404 | if len(var0.shape) == 4: |
---|
| 1405 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1406 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
[914] | 1407 | |
---|
[1999] | 1408 | for iz in range(var0.shape[1]): |
---|
| 1409 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1410 | |
---|
| 1411 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1412 | |
---|
| 1413 | elif len(var0.shape) == 3: |
---|
| 1414 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1415 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1416 | for iz in range(var0.shape[1]): |
---|
| 1417 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1418 | |
---|
| 1419 | dnamesvar = ['Time','bottom_top'] |
---|
| 1420 | |
---|
[914] | 1421 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1422 | |
---|
[1404] | 1423 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1424 | varsadd = [] |
---|
| 1425 | diagoutvd = list(dvnames) |
---|
| 1426 | for nonvd in NONchkvardims: |
---|
| 1427 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1428 | varsadd.append(nonvd) |
---|
[914] | 1429 | |
---|
[1404] | 1430 | ncvar.insert_variable(ncobj, 'ua', ua, dnames, diagoutvd, newnc) |
---|
| 1431 | |
---|
[914] | 1432 | # WRFua (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
[1758] | 1433 | elif diagn == 'WRFva': |
---|
[914] | 1434 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1435 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1436 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1437 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1438 | |
---|
| 1439 | # un-staggering variables |
---|
[1999] | 1440 | if len(var0.shape) == 4: |
---|
| 1441 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1442 | elif len(var0.shape) == 3: |
---|
| 1443 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1444 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1445 | |
---|
[914] | 1446 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1447 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1448 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1449 | |
---|
[1999] | 1450 | if len(var0.shape) == 4: |
---|
| 1451 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1452 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1453 | |
---|
| 1454 | for iz in range(var0.shape[1]): |
---|
| 1455 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1456 | |
---|
| 1457 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1458 | |
---|
| 1459 | elif len(var0.shape) == 3: |
---|
| 1460 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1461 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1462 | for iz in range(var0.shape[1]): |
---|
| 1463 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1464 | |
---|
| 1465 | dnamesvar = ['Time','bottom_top'] |
---|
| 1466 | |
---|
[914] | 1467 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1468 | |
---|
[1404] | 1469 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1470 | varsadd = [] |
---|
| 1471 | diagoutvd = list(dvnames) |
---|
| 1472 | for nonvd in NONchkvardims: |
---|
| 1473 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1474 | varsadd.append(nonvd) |
---|
| 1475 | ncvar.insert_variable(ncobj, 'va', va, dnames, diagoutvd, newnc) |
---|
[914] | 1476 | |
---|
[1980] | 1477 | |
---|
| 1478 | # WRFwd (U, V, SINALPHA, COSALPHA) to be rotated !! |
---|
| 1479 | elif diagn == 'WRFwd': |
---|
| 1480 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1481 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1482 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1483 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1484 | |
---|
| 1485 | # un-staggering variables |
---|
[1999] | 1486 | if len(var0.shape) == 4: |
---|
| 1487 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1488 | elif len(var0.shape) == 3: |
---|
| 1489 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1490 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1491 | |
---|
[1980] | 1492 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1493 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1494 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1495 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1496 | |
---|
[1999] | 1497 | if len(var0.shape) == 4: |
---|
| 1498 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1499 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
[1980] | 1500 | |
---|
[1999] | 1501 | for iz in range(var0.shape[1]): |
---|
| 1502 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1503 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1504 | |
---|
| 1505 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1506 | |
---|
| 1507 | elif len(var0.shape) == 3: |
---|
| 1508 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1509 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1510 | for iz in range(var0.shape[1]): |
---|
| 1511 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1512 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1513 | |
---|
| 1514 | dnamesvar = ['Time','bottom_top'] |
---|
| 1515 | |
---|
[1980] | 1516 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1517 | |
---|
| 1518 | wd, dnames, dvnames = diag.compute_wd(ua, va, dnamesvar, dvnamesvar) |
---|
| 1519 | |
---|
| 1520 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1521 | varsadd = [] |
---|
| 1522 | diagoutvd = list(dvnames) |
---|
| 1523 | for nonvd in NONchkvardims: |
---|
| 1524 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1525 | varsadd.append(nonvd) |
---|
| 1526 | |
---|
| 1527 | ncvar.insert_variable(ncobj, 'wd', wd, dnames, diagoutvd, newnc) |
---|
| 1528 | |
---|
[914] | 1529 | # WRFtime |
---|
[1758] | 1530 | elif diagn == 'WRFtime': |
---|
[654] | 1531 | |
---|
| 1532 | diagout = WRFtime |
---|
| 1533 | |
---|
| 1534 | dnamesvar = ['Time'] |
---|
| 1535 | dvnamesvar = ['Times'] |
---|
| 1536 | |
---|
| 1537 | ncvar.insert_variable(ncobj, 'time', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1538 | |
---|
[959] | 1539 | # ws (U, V) |
---|
[1758] | 1540 | elif diagn == 'ws': |
---|
[959] | 1541 | |
---|
| 1542 | # un-staggering variables |
---|
[1999] | 1543 | if len(var0.shape) == 4: |
---|
| 1544 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1545 | elif len(var0.shape) == 3: |
---|
| 1546 | # Asuming sunding point (dimt, dimz, dimstgx) |
---|
| 1547 | unstgdims = [var0.shape[0], var0.shape[1]] |
---|
| 1548 | |
---|
| 1549 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
[959] | 1550 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1551 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1552 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1553 | |
---|
[1999] | 1554 | if len(var0.shape) == 4: |
---|
| 1555 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1556 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1557 | |
---|
| 1558 | for iz in range(var0.shape[1]): |
---|
| 1559 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1560 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1561 | |
---|
| 1562 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1563 | |
---|
| 1564 | elif len(var0.shape) == 3: |
---|
| 1565 | unstgvar0 = 0.5*(var0[:,:,0] + var0[:,:,1]) |
---|
| 1566 | unstgvar1 = 0.5*(var1[:,:,0] + var1[:,:,1]) |
---|
| 1567 | for iz in range(var0.shape[1]): |
---|
| 1568 | ua[:,iz] = unstgvar0[:,iz]*var3 - unstgvar1[:,iz]*var2 |
---|
| 1569 | va[:,iz] = unstgvar0[:,iz]*var2 + unstgvar1[:,iz]*var3 |
---|
| 1570 | |
---|
| 1571 | dnamesvar = ['Time','bottom_top'] |
---|
| 1572 | |
---|
[959] | 1573 | diagout = np.sqrt(unstgvar0*unstgvar0 + unstgvar1*unstgvar1) |
---|
| 1574 | |
---|
| 1575 | # dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1576 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1577 | |
---|
[1408] | 1578 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1579 | varsadd = [] |
---|
| 1580 | diagoutvd = list(dvnamesvar) |
---|
| 1581 | for nonvd in NONchkvardims: |
---|
| 1582 | if gen.searchInlist(dvnamesvar,nonvd): diagoutvd.remove(nonvd) |
---|
| 1583 | varsadd.append(nonvd) |
---|
| 1584 | ncvar.insert_variable(ncobj, 'ws', diagout, dnamesvar, diagoutvd, newnc) |
---|
[959] | 1585 | |
---|
[365] | 1586 | # wss (u10, v10) |
---|
[1758] | 1587 | elif diagn == 'wss': |
---|
[365] | 1588 | |
---|
| 1589 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1590 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1591 | |
---|
| 1592 | diagout = np.sqrt(var0*var0 + var1*var1) |
---|
| 1593 | |
---|
| 1594 | dnamesvar = ncobj.variables[depvars[0]].dimensions |
---|
| 1595 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dnames,dvnames) |
---|
| 1596 | |
---|
| 1597 | ncvar.insert_variable(ncobj, 'wss', diagout, dnamesvar, dvnamesvar, newnc) |
---|
| 1598 | |
---|
[654] | 1599 | # WRFheight height from WRF geopotential as WRFGeop/g |
---|
[1758] | 1600 | elif diagn == 'WRFheight': |
---|
[654] | 1601 | |
---|
| 1602 | diagout = WRFgeop/grav |
---|
| 1603 | |
---|
[1412] | 1604 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1605 | varsadd = [] |
---|
| 1606 | diagoutvd = list(dvnames) |
---|
| 1607 | for nonvd in NONchkvardims: |
---|
| 1608 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1609 | varsadd.append(nonvd) |
---|
[654] | 1610 | |
---|
[1412] | 1611 | ncvar.insert_variable(ncobj, 'zhgt', diagout, dnames, diagoutvd, newnc) |
---|
| 1612 | |
---|
[1413] | 1613 | # WRFheightrel relative-height from WRF geopotential as WRFgeop(PH + PHB)/g-HGT 'WRFheightrel|PH@PHB@HGT |
---|
[1758] | 1614 | elif diagn == 'WRFheightrel': |
---|
[1413] | 1615 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1616 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1617 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1618 | |
---|
| 1619 | dimz = var0.shape[1] |
---|
| 1620 | diagout = np.zeros(tuple(var0.shape), dtype=np.float) |
---|
| 1621 | for iz in range(dimz): |
---|
[1419] | 1622 | diagout[:,iz,:,:] = (var0[:,iz,:,:]+ var1[:,iz,:,:])/grav - var2 |
---|
[1413] | 1623 | |
---|
| 1624 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1625 | varsadd = [] |
---|
| 1626 | diagoutvd = list(dvnames) |
---|
| 1627 | for nonvd in NONchkvardims: |
---|
| 1628 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1629 | varsadd.append(nonvd) |
---|
| 1630 | |
---|
| 1631 | ncvar.insert_variable(ncobj, 'zhgtrel', diagout, dnames, diagoutvd, newnc) |
---|
| 1632 | |
---|
[1773] | 1633 | # WRFzmla_gen generic boundary layer hieght computation from WRF theta, QVAPOR, WRFgeop, HGT, |
---|
| 1634 | elif diagn == 'WRFzmlagen': |
---|
| 1635 | var0 = ncobj.variables[depvars[0]][:]+300. |
---|
| 1636 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1637 | dimz = var0.shape[1] |
---|
| 1638 | var2 = WRFgeop[:,1:dimz+1,:,:]/9.8 |
---|
| 1639 | var3 = ncobj.variables[depvars[3]][0,:,:] |
---|
| 1640 | |
---|
| 1641 | diagout, diagoutd, diagoutvd = diag.Forcompute_zmla_gen(var0,var1,var2,var3, \ |
---|
| 1642 | dnames,dvnames) |
---|
| 1643 | |
---|
| 1644 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1645 | varsadd = [] |
---|
| 1646 | for nonvd in NONchkvardims: |
---|
| 1647 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1648 | varsadd.append(nonvd) |
---|
| 1649 | |
---|
| 1650 | ncvar.insert_variable(ncobj, 'zmla', diagout, diagoutd, diagoutvd, newnc) |
---|
| 1651 | |
---|
[1784] | 1652 | # WRFzwind wind extrapolation at a given height using power law computation from WRF |
---|
| 1653 | # U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
[1776] | 1654 | elif diagn == 'WRFzwind': |
---|
| 1655 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1656 | var1 = ncobj.variables[depvars[1]][:] |
---|
[1777] | 1657 | var2 = WRFz |
---|
[1776] | 1658 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1659 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1660 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 1661 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
[1777] | 1662 | var7 = np.float(depvars[7].split('=')[1]) |
---|
[1776] | 1663 | |
---|
| 1664 | # un-staggering 3D winds |
---|
| 1665 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1666 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1667 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1668 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1669 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1670 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1671 | |
---|
| 1672 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind(unvar0, \ |
---|
[1777] | 1673 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
[1776] | 1674 | |
---|
| 1675 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1676 | varsadd = [] |
---|
| 1677 | for nonvd in NONchkvardims: |
---|
| 1678 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1679 | varsadd.append(nonvd) |
---|
| 1680 | |
---|
| 1681 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1682 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1683 | |
---|
[1784] | 1684 | # WRFzwind wind extrapolation at a given hieght using logarithmic law computation |
---|
| 1685 | # from WRF U, V, WRFz, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
| 1686 | elif diagn == 'WRFzwind_log': |
---|
| 1687 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1688 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1689 | var2 = WRFz |
---|
| 1690 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1691 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1692 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 1693 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
| 1694 | var7 = np.float(depvars[7].split('=')[1]) |
---|
| 1695 | |
---|
| 1696 | # un-staggering 3D winds |
---|
| 1697 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1698 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1699 | unvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1700 | unvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1701 | unvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1702 | unvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1703 | |
---|
| 1704 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwind_log(unvar0, \ |
---|
| 1705 | unvar1, var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
| 1706 | |
---|
| 1707 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1708 | varsadd = [] |
---|
| 1709 | for nonvd in NONchkvardims: |
---|
| 1710 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1711 | varsadd.append(nonvd) |
---|
| 1712 | |
---|
| 1713 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1714 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1715 | |
---|
[1783] | 1716 | # WRFzwindMO wind extrapolation at a given height computation using Monin-Obukhow |
---|
| 1717 | # theory from WRF UST, ZNT, RMOL, U10, V10, SINALPHA, COSALPHA, z=[zval] |
---|
[1784] | 1718 | # NOTE: only useful for [zval] < 80. m |
---|
[1783] | 1719 | elif diagn == 'WRFzwindMO': |
---|
| 1720 | var0 = ncobj.variables[depvars[0]][:] |
---|
| 1721 | var1 = ncobj.variables[depvars[1]][:] |
---|
| 1722 | var2 = ncobj.variables[depvars[2]][:] |
---|
| 1723 | var3 = ncobj.variables[depvars[3]][:] |
---|
| 1724 | var4 = ncobj.variables[depvars[4]][:] |
---|
| 1725 | var5 = ncobj.variables[depvars[5]][0,:,:] |
---|
| 1726 | var6 = ncobj.variables[depvars[6]][0,:,:] |
---|
| 1727 | var7 = np.float(depvars[7].split('=')[1]) |
---|
| 1728 | |
---|
| 1729 | diagout1, diagout2, diagoutd, diagoutvd = diag.Forcompute_zwindMO(var0, var1,\ |
---|
| 1730 | var2, var3, var4, var5, var6, var7, dnames, dvnames) |
---|
| 1731 | |
---|
| 1732 | # Removing the nonChecking variable-dimensions from the initial list |
---|
| 1733 | varsadd = [] |
---|
| 1734 | for nonvd in NONchkvardims: |
---|
| 1735 | if gen.searchInlist(dvnames,nonvd): diagoutvd.remove(nonvd) |
---|
| 1736 | varsadd.append(nonvd) |
---|
| 1737 | |
---|
| 1738 | ncvar.insert_variable(ncobj, 'uaz', diagout1, diagoutd, diagoutvd, newnc) |
---|
| 1739 | ncvar.insert_variable(ncobj, 'vaz', diagout2, diagoutd, diagoutvd, newnc) |
---|
| 1740 | |
---|
[365] | 1741 | else: |
---|
| 1742 | print errormsg |
---|
[1758] | 1743 | print ' ' + main + ": diagnostic '" + diagn + "' not ready!!!" |
---|
[365] | 1744 | print ' available diagnostics: ', availdiags |
---|
| 1745 | quit(-1) |
---|
| 1746 | |
---|
| 1747 | newnc.sync() |
---|
[1351] | 1748 | # Adding that additional variables required to compute some diagnostics which |
---|
| 1749 | # where not in the original file |
---|
[1944] | 1750 | print ' adding additional variables...' |
---|
[1351] | 1751 | for vadd in varsadd: |
---|
[1942] | 1752 | if not gen.searchInlist(newnc.variables.keys(),vadd) and \ |
---|
| 1753 | dictcompvars.has_key(vadd): |
---|
[1351] | 1754 | attrs = dictcompvars[vadd] |
---|
| 1755 | vvn = attrs['name'] |
---|
| 1756 | if not gen.searchInlist(newnc.variables.keys(), vvn): |
---|
| 1757 | iidvn = dvnames.index(vadd) |
---|
| 1758 | dnn = dnames[iidvn] |
---|
| 1759 | if vadd == 'WRFtime': |
---|
| 1760 | dvarvals = WRFtime[:] |
---|
| 1761 | newvar = newnc.createVariable(vvn, 'f8', (dnn)) |
---|
| 1762 | newvar[:] = dvarvals |
---|
| 1763 | for attn in attrs.keys(): |
---|
| 1764 | if attn != 'name': |
---|
| 1765 | attv = attrs[attn] |
---|
| 1766 | ncvar.set_attribute(newvar, attn, attv) |
---|
[365] | 1767 | |
---|
| 1768 | # end of diagnostics |
---|
| 1769 | |
---|
| 1770 | # Global attributes |
---|
| 1771 | ## |
---|
[1758] | 1772 | ncvar.add_global_PyNCplot(newnc, main, None, '2.0') |
---|
[365] | 1773 | |
---|
| 1774 | gorigattrs = ncobj.ncattrs() |
---|
| 1775 | for attr in gorigattrs: |
---|
| 1776 | attrv = ncobj.getncattr(attr) |
---|
| 1777 | atvar = ncvar.set_attribute(newnc, attr, attrv) |
---|
| 1778 | |
---|
| 1779 | ncobj.close() |
---|
| 1780 | newnc.close() |
---|
| 1781 | |
---|
| 1782 | print '\n' + main + ': successfull writting of diagnostics file "' + ofile + '" !!!' |
---|