1 | # Tools for the compute of diagnostics |
---|
2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
3 | |
---|
4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
5 | # compute_accum: Function to compute the accumulation of a variable |
---|
6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
14 | # compute_prw: Function to compute water vapour path (prw) |
---|
15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
16 | # compute_td: Function to compute the dew point temperature |
---|
17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
18 | # C_diagnostic: Class to compute generic variables |
---|
19 | # compute_wd: Function to compute the wind direction 3D |
---|
20 | # compute_wds: Function to compute the wind direction |
---|
21 | # compute_wss: Function to compute the wind speed |
---|
22 | # compute_WRFhur: Function to compute WRF relative humidity following Teten's equation |
---|
23 | # compute_WRFta: Function to compute WRF air temperature |
---|
24 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
25 | # compute_WRFua: Function to compute geographical rotated WRF x-wind |
---|
26 | # compute_WRFva: Function to compute geographical rotated WRF y-wind |
---|
27 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
28 | # compute_WRFuas: Function to compute geographical rotated WRF 2-meter x-wind |
---|
29 | # compute_WRFvas: Function to compute geographical rotated WRF 2-meter y-wind |
---|
30 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
31 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
32 | # Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction |
---|
33 | # following newmicro.F90 from LMDZ via Fortran subroutine |
---|
34 | # Forcompute_clt: Function to compute the total cloud fraction following |
---|
35 | # 'newmicro.F90' from LMDZ via a Fortran module |
---|
36 | # Forcompute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
37 | # Forcompute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
38 | # Forcompute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
39 | # Forcompute_potevap_orPM: Function to compute potential evapotranspiration following |
---|
40 | # Penman-Monteith formulation implemented in ORCHIDEE |
---|
41 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following |
---|
42 | # target_pressure value found in `p_interp.F' |
---|
43 | # Forcompute_zmla_gen: Function to compute the boundary layer height following a |
---|
44 | # generic method with Fortran |
---|
45 | # Forcompute_zwind: Function to compute the wind at a given height following the |
---|
46 | # power law method |
---|
47 | # Forcompute_zwind_log: Function to compute the wind at a given height following the |
---|
48 | # logarithmic law method |
---|
49 | # Forcompute_zwindMO: Function to compute the wind at a given height following the |
---|
50 | # Monin-Obukhov theory |
---|
51 | # W_diagnostic: Class to compute WRF diagnostics variables |
---|
52 | |
---|
53 | # Others just providing variable values |
---|
54 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
55 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
56 | # LMDZ using 1D vertical column values |
---|
57 | # var_convini: Function returns convective initialization (pr(t) > 0.0001) in time units |
---|
58 | # var_hur: Function to compute relative humidity following 'August - Roche - Magnus' |
---|
59 | # formula |
---|
60 | # var_hur_Uhus: Function to compute relative humidity following 'August-Roche-Magnus' |
---|
61 | # formula using hus |
---|
62 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
63 | # var_td: Function to compute dew-point air temperature from temperature and pressure |
---|
64 | # values |
---|
65 | # var_td_Uhus: Function to compute dew-point air temperature from temperature and |
---|
66 | # pressure values using hus |
---|
67 | # var_timemax: This function returns the time at which variable reaches its maximum in time |
---|
68 | # units |
---|
69 | # var_timeoverthres: This function returns the time at which (varv(t) > thres) in time units |
---|
70 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
71 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
72 | # var_wd: Function to compute the wind direction |
---|
73 | # var_wd: Function to compute the wind speed |
---|
74 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
75 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from |
---|
76 | # a a given variable |
---|
77 | |
---|
78 | import numpy as np |
---|
79 | from netCDF4 import Dataset as NetCDFFile |
---|
80 | import os |
---|
81 | import re |
---|
82 | import nc_var_tools as ncvar |
---|
83 | import generic_tools as gen |
---|
84 | import datetime as dtime |
---|
85 | import module_ForDiag as fdin |
---|
86 | import module_ForDef as fdef |
---|
87 | |
---|
88 | main = 'diag_tools.py' |
---|
89 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
90 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
91 | |
---|
92 | # Constants |
---|
93 | grav = fdef.module_definitions.grav |
---|
94 | |
---|
95 | # Available WRFiag |
---|
96 | Wavailablediags = ['hur', 'p', 'ta', 'td', 'ua', 'va', 'uas', 'vas', 'wd', 'ws', 'zg'] |
---|
97 | |
---|
98 | # Available General diagnostics |
---|
99 | Cavailablediags = ['hur', 'hur_Uhus', 'td', 'td_Uhus', 'wd', 'ws'] |
---|
100 | |
---|
101 | # Gneral information |
---|
102 | ## |
---|
103 | def reduce_spaces(string): |
---|
104 | """ Function to give words of a line of text removing any extra space |
---|
105 | """ |
---|
106 | values = string.replace('\n','').split(' ') |
---|
107 | vals = [] |
---|
108 | for val in values: |
---|
109 | if len(val) > 0: |
---|
110 | vals.append(val) |
---|
111 | |
---|
112 | return vals |
---|
113 | |
---|
114 | def variable_combo(varn,combofile): |
---|
115 | """ Function to provide variables combination from a given variable name |
---|
116 | varn= name of the variable |
---|
117 | combofile= ASCII file with the combination of variables |
---|
118 | [varn] [combo] |
---|
119 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
120 | [WRFdt] to get WRF time-step (from general attributes) |
---|
121 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
122 | deaccum@RAINNC@XTIME@prnc |
---|
123 | """ |
---|
124 | fname = 'variable_combo' |
---|
125 | |
---|
126 | if varn == 'h': |
---|
127 | print fname + '_____________________________________________________________' |
---|
128 | print variable_combo.__doc__ |
---|
129 | quit() |
---|
130 | |
---|
131 | if not os.path.isfile(combofile): |
---|
132 | print errormsg |
---|
133 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
134 | "' does not exist!!" |
---|
135 | quit(-1) |
---|
136 | |
---|
137 | objf = open(combofile, 'r') |
---|
138 | |
---|
139 | found = False |
---|
140 | for line in objf: |
---|
141 | linevals = reduce_spaces(line) |
---|
142 | varnf = linevals[0] |
---|
143 | combo = linevals[1].replace('\n','') |
---|
144 | if varn == varnf: |
---|
145 | found = True |
---|
146 | break |
---|
147 | |
---|
148 | if not found: |
---|
149 | print errormsg |
---|
150 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
151 | "' !!" |
---|
152 | combo='ERROR' |
---|
153 | |
---|
154 | objf.close() |
---|
155 | |
---|
156 | return combo |
---|
157 | |
---|
158 | # Mathematical operators |
---|
159 | ## |
---|
160 | def compute_accum(varv, dimns, dimvns): |
---|
161 | """ Function to compute the accumulation of a variable |
---|
162 | compute_accum(varv, dimnames, dimvns) |
---|
163 | [varv]= values to accum (assuming [t,]) |
---|
164 | [dimns]= list of the name of the dimensions of the [varv] |
---|
165 | [dimvns]= list of the name of the variables with the values of the |
---|
166 | dimensions of [varv] |
---|
167 | """ |
---|
168 | fname = 'compute_accum' |
---|
169 | |
---|
170 | deacdims = dimns[:] |
---|
171 | deacvdims = dimvns[:] |
---|
172 | |
---|
173 | slicei = [] |
---|
174 | slicee = [] |
---|
175 | |
---|
176 | Ndims = len(varv.shape) |
---|
177 | for iid in range(0,Ndims): |
---|
178 | slicei.append(slice(0,varv.shape[iid])) |
---|
179 | slicee.append(slice(0,varv.shape[iid])) |
---|
180 | |
---|
181 | slicee[0] = np.arange(varv.shape[0]) |
---|
182 | slicei[0] = np.arange(varv.shape[0]) |
---|
183 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
184 | |
---|
185 | vari = varv[tuple(slicei)] |
---|
186 | vare = varv[tuple(slicee)] |
---|
187 | |
---|
188 | ac = vari*0. |
---|
189 | for it in range(1,varv.shape[0]): |
---|
190 | ac[it,] = ac[it-1,] + vare[it,] |
---|
191 | |
---|
192 | return ac, deacdims, deacvdims |
---|
193 | |
---|
194 | def compute_deaccum(varv, dimns, dimvns): |
---|
195 | """ Function to compute the deaccumulation of a variable |
---|
196 | compute_deaccum(varv, dimnames, dimvns) |
---|
197 | [varv]= values to deaccum (assuming [t,]) |
---|
198 | [dimns]= list of the name of the dimensions of the [varv] |
---|
199 | [dimvns]= list of the name of the variables with the values of the |
---|
200 | dimensions of [varv] |
---|
201 | """ |
---|
202 | fname = 'compute_deaccum' |
---|
203 | |
---|
204 | deacdims = dimns[:] |
---|
205 | deacvdims = dimvns[:] |
---|
206 | |
---|
207 | slicei = [] |
---|
208 | slicee = [] |
---|
209 | |
---|
210 | Ndims = len(varv.shape) |
---|
211 | for iid in range(0,Ndims): |
---|
212 | slicei.append(slice(0,varv.shape[iid])) |
---|
213 | slicee.append(slice(0,varv.shape[iid])) |
---|
214 | |
---|
215 | slicee[0] = np.arange(varv.shape[0]) |
---|
216 | slicei[0] = np.arange(varv.shape[0]) |
---|
217 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
218 | |
---|
219 | vari = varv[tuple(slicei)] |
---|
220 | vare = varv[tuple(slicee)] |
---|
221 | |
---|
222 | deac = vare - vari |
---|
223 | |
---|
224 | return deac, deacdims, deacvdims |
---|
225 | |
---|
226 | def derivate_centered(var,dim,dimv): |
---|
227 | """ Function to compute the centered derivate of a given field |
---|
228 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
229 | [var]= variable |
---|
230 | [dim]= which dimension to compute the derivate |
---|
231 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
232 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
233 | [[ 0. 1. 2. 0.] |
---|
234 | [ 0. 5. 6. 0.] |
---|
235 | [ 0. 9. 10. 0.] |
---|
236 | [ 0. 13. 14. 0.]] |
---|
237 | """ |
---|
238 | |
---|
239 | fname = 'derivate_centered' |
---|
240 | |
---|
241 | vark = var.dtype |
---|
242 | |
---|
243 | if hasattr(dimv, "__len__"): |
---|
244 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
245 | if len(var.shape) != len(dimv.shape): |
---|
246 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
247 | if len(var.shape) - len(dimv.shape) == 1: |
---|
248 | for iz in range(var.shape[0]): |
---|
249 | dimvals[iz,] = dimv |
---|
250 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
251 | for it in range(var.shape[0]): |
---|
252 | for iz in range(var.shape[1]): |
---|
253 | dimvals[it,iz,] = dimv |
---|
254 | else: |
---|
255 | print errormsg |
---|
256 | print ' ' + fname + ': dimension difference between variable', \ |
---|
257 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
258 | ' not ready !!!' |
---|
259 | quit(-1) |
---|
260 | else: |
---|
261 | dimvals = dimv |
---|
262 | else: |
---|
263 | # dimension values are identical everywhere! |
---|
264 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
265 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
266 | |
---|
267 | derivate = np.zeros((var.shape), dtype=vark) |
---|
268 | if dim > len(var.shape) - 1: |
---|
269 | print errormsg |
---|
270 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
271 | 'shape:', var.shape,'!!!' |
---|
272 | quit(-1) |
---|
273 | |
---|
274 | slicebef = [] |
---|
275 | sliceaft = [] |
---|
276 | sliceder = [] |
---|
277 | |
---|
278 | for id in range(len(var.shape)): |
---|
279 | if id == dim: |
---|
280 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
281 | sliceaft.append(slice(2,var.shape[id])) |
---|
282 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
283 | else: |
---|
284 | slicebef.append(slice(0,var.shape[id])) |
---|
285 | sliceaft.append(slice(0,var.shape[id])) |
---|
286 | sliceder.append(slice(0,var.shape[id])) |
---|
287 | |
---|
288 | if hasattr(dimv, "__len__"): |
---|
289 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
290 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
291 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
292 | else: |
---|
293 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
294 | (2.*dimv) |
---|
295 | |
---|
296 | # print 'before________' |
---|
297 | # print var[tuple(slicebef)] |
---|
298 | |
---|
299 | # print 'after________' |
---|
300 | # print var[tuple(sliceaft)] |
---|
301 | |
---|
302 | return derivate |
---|
303 | |
---|
304 | def rotational_z(Vx,Vy,pos): |
---|
305 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
306 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
307 | [Vx]= Variable component x |
---|
308 | [Vy]= Variable component y |
---|
309 | [pos]= poisition of the grid points |
---|
310 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
311 | [[ 0. 1. 2. 0.] |
---|
312 | [ -4. 0. 0. -7.] |
---|
313 | [ -8. 0. 0. -11.] |
---|
314 | [ 0. 13. 14. 0.]] |
---|
315 | """ |
---|
316 | |
---|
317 | fname = 'rotational_z' |
---|
318 | |
---|
319 | ndims = len(Vx.shape) |
---|
320 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
321 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
322 | |
---|
323 | rot = rot1 - rot2 |
---|
324 | |
---|
325 | return rot |
---|
326 | |
---|
327 | # Diagnostics |
---|
328 | ## |
---|
329 | def Forcompute_cape_afwa(ta, hur, pa, zg, hgt, parcelm, dimns, dimvns): |
---|
330 | """ Function to compute the CAPE, CIN, ZLFC, PLFC, LI following WRF |
---|
331 | 'phys/module_diaf_afwa.F' methodology |
---|
332 | Forcompute_cape_afwa(ta, hur, pa, hgt, zsfc, parcelm, dimns, dimvns) |
---|
333 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
334 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
335 | [zg]= gopotential height (assuming [[t],z,y,x]) [gpm] |
---|
336 | [hgt]= topographical height (assuming [m] |
---|
337 | [parcelm]= method of air-parcel to use |
---|
338 | [dimns]= list of the name of the dimensions of [pa] |
---|
339 | [dimvns]= list of the name of the variables with the values of the |
---|
340 | dimensions of [pa] |
---|
341 | """ |
---|
342 | fname = 'Forcompute_cape_afwa' |
---|
343 | |
---|
344 | psldims = dimns[:] |
---|
345 | pslvdims = dimvns[:] |
---|
346 | |
---|
347 | if len(pa.shape) == 4: |
---|
348 | cape = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
349 | cin = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
350 | zlfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
351 | plfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
352 | li = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
353 | |
---|
354 | dx = pa.shape[3] |
---|
355 | dy = pa.shape[2] |
---|
356 | dz = pa.shape[1] |
---|
357 | dt = pa.shape[0] |
---|
358 | psldims.pop(1) |
---|
359 | pslvdims.pop(1) |
---|
360 | |
---|
361 | pcape,pcin,pzlfc,pplfc,pli= fdin.module_fordiagnostics.compute_cape_afwa4d( \ |
---|
362 | ta=ta[:].transpose(), hur=hur[:].transpose(), press=pa[:].transpose(), \ |
---|
363 | zg=zg[:].transpose(), hgt=hgt.transpose(), parcelmethod=parcelm, d1=dx, \ |
---|
364 | d2=dy, d3=dz, d4=dt) |
---|
365 | cape = pcape.transpose() |
---|
366 | cin = pcin.transpose() |
---|
367 | zlfc = pzlfc.transpose() |
---|
368 | plfc = pplfc.transpose() |
---|
369 | li = pli.transpose() |
---|
370 | else: |
---|
371 | print errormsg |
---|
372 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
373 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
374 | quit(-1) |
---|
375 | |
---|
376 | return cape, cin, zlfc, plfc, li, psldims, pslvdims |
---|
377 | |
---|
378 | |
---|
379 | |
---|
380 | def var_clt(cfra): |
---|
381 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
382 | LMDZ using 1D vertical column values |
---|
383 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
384 | """ |
---|
385 | ZEPSEC=1.0E-12 |
---|
386 | |
---|
387 | fname = 'var_clt' |
---|
388 | |
---|
389 | zclear = 1. |
---|
390 | zcloud = 0. |
---|
391 | |
---|
392 | dz = cfra.shape[0] |
---|
393 | for iz in range(dz): |
---|
394 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
395 | clt = 1. - zclear |
---|
396 | zcloud = cfra[iz] |
---|
397 | |
---|
398 | return clt |
---|
399 | |
---|
400 | def compute_clt(cldfra, dimns, dimvns): |
---|
401 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
402 | LMDZ |
---|
403 | compute_clt(cldfra, dimnames) |
---|
404 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
405 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
406 | [dimvns]= list of the name of the variables with the values of the |
---|
407 | dimensions of [cldfra] |
---|
408 | """ |
---|
409 | fname = 'compute_clt' |
---|
410 | |
---|
411 | cltdims = dimns[:] |
---|
412 | cltvdims = dimvns[:] |
---|
413 | |
---|
414 | if len(cldfra.shape) == 4: |
---|
415 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
416 | dtype=np.float) |
---|
417 | dx = cldfra.shape[3] |
---|
418 | dy = cldfra.shape[2] |
---|
419 | dz = cldfra.shape[1] |
---|
420 | dt = cldfra.shape[0] |
---|
421 | cltdims.pop(1) |
---|
422 | cltvdims.pop(1) |
---|
423 | |
---|
424 | for it in range(dt): |
---|
425 | for ix in range(dx): |
---|
426 | for iy in range(dy): |
---|
427 | zclear = 1. |
---|
428 | zcloud = 0. |
---|
429 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
430 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
431 | |
---|
432 | else: |
---|
433 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
434 | dx = cldfra.shape[2] |
---|
435 | dy = cldfra.shape[1] |
---|
436 | dy = cldfra.shape[0] |
---|
437 | cltdims.pop(0) |
---|
438 | cltvdims.pop(0) |
---|
439 | for ix in range(dx): |
---|
440 | for iy in range(dy): |
---|
441 | zclear = 1. |
---|
442 | zcloud = 0. |
---|
443 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
444 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
445 | |
---|
446 | return clt, cltdims, cltvdims |
---|
447 | |
---|
448 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
449 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
450 | LMDZ via a Fortran module |
---|
451 | compute_clt(cldfra, dimnames) |
---|
452 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
453 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
454 | [dimvns]= list of the name of the variables with the values of the |
---|
455 | dimensions of [cldfra] |
---|
456 | """ |
---|
457 | fname = 'Forcompute_clt' |
---|
458 | |
---|
459 | cltdims = dimns[:] |
---|
460 | cltvdims = dimvns[:] |
---|
461 | |
---|
462 | |
---|
463 | if len(cldfra.shape) == 4: |
---|
464 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
465 | dtype=np.float) |
---|
466 | dx = cldfra.shape[3] |
---|
467 | dy = cldfra.shape[2] |
---|
468 | dz = cldfra.shape[1] |
---|
469 | dt = cldfra.shape[0] |
---|
470 | cltdims.pop(1) |
---|
471 | cltvdims.pop(1) |
---|
472 | |
---|
473 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
474 | |
---|
475 | else: |
---|
476 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
477 | dx = cldfra.shape[2] |
---|
478 | dy = cldfra.shape[1] |
---|
479 | dy = cldfra.shape[0] |
---|
480 | cltdims.pop(0) |
---|
481 | cltvdims.pop(0) |
---|
482 | |
---|
483 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
484 | |
---|
485 | return clt, cltdims, cltvdims |
---|
486 | |
---|
487 | def var_cllmh(cfra, p): |
---|
488 | """ Fcuntion to compute cllmh on a 1D column |
---|
489 | """ |
---|
490 | |
---|
491 | fname = 'var_cllmh' |
---|
492 | |
---|
493 | ZEPSEC =1.0E-12 |
---|
494 | prmhc = 440.*100. |
---|
495 | prmlc = 680.*100. |
---|
496 | |
---|
497 | zclearl = 1. |
---|
498 | zcloudl = 0. |
---|
499 | zclearm = 1. |
---|
500 | zcloudm = 0. |
---|
501 | zclearh = 1. |
---|
502 | zcloudh = 0. |
---|
503 | |
---|
504 | dvz = cfra.shape[0] |
---|
505 | |
---|
506 | cllmh = np.ones((3), dtype=np.float) |
---|
507 | |
---|
508 | for iz in range(dvz): |
---|
509 | if p[iz] < prmhc: |
---|
510 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
511 | np.min([zcloudh,1.-ZEPSEC])) |
---|
512 | zcloudh = cfra[iz] |
---|
513 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
514 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
515 | np.min([zcloudm,1.-ZEPSEC])) |
---|
516 | zcloudm = cfra[iz] |
---|
517 | elif p[iz] >= prmlc: |
---|
518 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
519 | np.min([zcloudl,1.-ZEPSEC])) |
---|
520 | zcloudl = cfra[iz] |
---|
521 | |
---|
522 | cllmh = 1.- cllmh |
---|
523 | |
---|
524 | return cllmh |
---|
525 | |
---|
526 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
527 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
528 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
529 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
530 | [pres] = pressure field |
---|
531 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
532 | [dimvns]= list of the name of the variables with the values of the |
---|
533 | dimensions of [cldfra] |
---|
534 | """ |
---|
535 | fname = 'Forcompute_cllmh' |
---|
536 | |
---|
537 | cllmhdims = dimns[:] |
---|
538 | cllmhvdims = dimvns[:] |
---|
539 | |
---|
540 | if len(cldfra.shape) == 4: |
---|
541 | dx = cldfra.shape[3] |
---|
542 | dy = cldfra.shape[2] |
---|
543 | dz = cldfra.shape[1] |
---|
544 | dt = cldfra.shape[0] |
---|
545 | cllmhdims.pop(1) |
---|
546 | cllmhvdims.pop(1) |
---|
547 | |
---|
548 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
549 | |
---|
550 | else: |
---|
551 | dx = cldfra.shape[2] |
---|
552 | dy = cldfra.shape[1] |
---|
553 | dz = cldfra.shape[0] |
---|
554 | cllmhdims.pop(0) |
---|
555 | cllmhvdims.pop(0) |
---|
556 | |
---|
557 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
558 | |
---|
559 | return cllmh, cllmhdims, cllmhvdims |
---|
560 | |
---|
561 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
562 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
563 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
564 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
565 | [pres] = pressure field |
---|
566 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
567 | [dimvns]= list of the name of the variables with the values of the |
---|
568 | dimensions of [cldfra] |
---|
569 | """ |
---|
570 | fname = 'compute_cllmh' |
---|
571 | |
---|
572 | cllmhdims = dimns[:] |
---|
573 | cllmhvdims = dimvns[:] |
---|
574 | |
---|
575 | if len(cldfra.shape) == 4: |
---|
576 | dx = cldfra.shape[3] |
---|
577 | dy = cldfra.shape[2] |
---|
578 | dz = cldfra.shape[1] |
---|
579 | dt = cldfra.shape[0] |
---|
580 | cllmhdims.pop(1) |
---|
581 | cllmhvdims.pop(1) |
---|
582 | |
---|
583 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
584 | |
---|
585 | for it in range(dt): |
---|
586 | for ix in range(dx): |
---|
587 | for iy in range(dy): |
---|
588 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
589 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
590 | |
---|
591 | else: |
---|
592 | dx = cldfra.shape[2] |
---|
593 | dy = cldfra.shape[1] |
---|
594 | dz = cldfra.shape[0] |
---|
595 | cllmhdims.pop(0) |
---|
596 | cllmhvdims.pop(0) |
---|
597 | |
---|
598 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
599 | |
---|
600 | for ix in range(dx): |
---|
601 | for iy in range(dy): |
---|
602 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
603 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
604 | |
---|
605 | return cllmh, cllmhdims, cllmhvdims |
---|
606 | |
---|
607 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
608 | """ Function to compute cloud-ice water path (clivi) |
---|
609 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
610 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
611 | [dimns]= list of the name of the dimensions of [q] |
---|
612 | [dimvns]= list of the name of the variables with the values of the |
---|
613 | dimensions of [q] |
---|
614 | """ |
---|
615 | fname = 'compute_clivi' |
---|
616 | |
---|
617 | clividims = dimns[:] |
---|
618 | clivivdims = dimvns[:] |
---|
619 | |
---|
620 | if len(qtot.shape) == 4: |
---|
621 | clividims.pop(1) |
---|
622 | clivivdims.pop(1) |
---|
623 | else: |
---|
624 | clividims.pop(0) |
---|
625 | clivivdims.pop(0) |
---|
626 | |
---|
627 | data1 = dens*qtot |
---|
628 | clivi = np.sum(data1, axis=1) |
---|
629 | |
---|
630 | return clivi, clividims, clivivdims |
---|
631 | |
---|
632 | |
---|
633 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
634 | """ Function to compute condensed water path (clwvl) |
---|
635 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
636 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
637 | [dimns]= list of the name of the dimensions of [q] |
---|
638 | [dimvns]= list of the name of the variables with the values of the |
---|
639 | dimensions of [q] |
---|
640 | """ |
---|
641 | fname = 'compute_clwvl' |
---|
642 | |
---|
643 | clwvldims = dimns[:] |
---|
644 | clwvlvdims = dimvns[:] |
---|
645 | |
---|
646 | if len(qtot.shape) == 4: |
---|
647 | clwvldims.pop(1) |
---|
648 | clwvlvdims.pop(1) |
---|
649 | else: |
---|
650 | clwvldims.pop(0) |
---|
651 | clwvlvdims.pop(0) |
---|
652 | |
---|
653 | data1 = dens*qtot |
---|
654 | clwvl = np.sum(data1, axis=1) |
---|
655 | |
---|
656 | return clwvl, clwvldims, clwvlvdims |
---|
657 | |
---|
658 | def var_virtualTemp (temp,rmix): |
---|
659 | """ This function returns virtual temperature in K, |
---|
660 | temp: temperature [K] |
---|
661 | rmix: mixing ratio in [kgkg-1] |
---|
662 | """ |
---|
663 | |
---|
664 | fname = 'var_virtualTemp' |
---|
665 | |
---|
666 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
667 | |
---|
668 | return virtual |
---|
669 | |
---|
670 | def var_convini(pr, time, dimns, dimvns): |
---|
671 | """ This function returns convective initialization (pr(t) > 0.0001) in time units |
---|
672 | pr: precipitation fux [kgm-2s-1] |
---|
673 | time: time in CF coordinates |
---|
674 | """ |
---|
675 | fname = 'var_convini' |
---|
676 | |
---|
677 | dt = pr.shape[0] |
---|
678 | dy = pr.shape[1] |
---|
679 | dx = pr.shape[2] |
---|
680 | |
---|
681 | vardims = dimns[:] |
---|
682 | varvdims = dimvns[:] |
---|
683 | |
---|
684 | vardims.pop(0) |
---|
685 | varvdims.pop(0) |
---|
686 | |
---|
687 | prmin = 0.0001 |
---|
688 | convini = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
689 | for it in range(dt): |
---|
690 | # NOT working ? |
---|
691 | # convini = np.where(convini == gen.fillValueF and pr[it,:,:] >= prmin, \ |
---|
692 | # time[it], fillValueF) |
---|
693 | for j in range(dy): |
---|
694 | for i in range(dx): |
---|
695 | if convini[j,i] == gen.fillValueF and pr[it,j,i] >= prmin: |
---|
696 | convini[j,i] = time[it] |
---|
697 | break |
---|
698 | |
---|
699 | return convini, vardims, varvdims |
---|
700 | |
---|
701 | def var_timemax(varv, time, dimns, dimvns): |
---|
702 | """ This function returns the time at which variable reaches its maximum in time |
---|
703 | units |
---|
704 | varv: values of the variable to use |
---|
705 | time: time in CF coordinates |
---|
706 | """ |
---|
707 | fname = 'var_timemax' |
---|
708 | |
---|
709 | dt = varv.shape[0] |
---|
710 | dy = varv.shape[1] |
---|
711 | dx = varv.shape[2] |
---|
712 | |
---|
713 | vardims = dimns[:] |
---|
714 | varvdims = dimvns[:] |
---|
715 | |
---|
716 | vardims.pop(0) |
---|
717 | varvdims.pop(0) |
---|
718 | |
---|
719 | timemax = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
720 | varmax = np.max(varv, axis=0) |
---|
721 | for j in range(dy): |
---|
722 | for i in range(dx): |
---|
723 | it = gen.index_vec(varv[:,j,i], varmax[j,i]) |
---|
724 | timemax[j,i] = time[it] |
---|
725 | |
---|
726 | return timemax, vardims, varvdims |
---|
727 | |
---|
728 | def var_timeoverthres(varv, time, thres, dimns, dimvns): |
---|
729 | """ This function returns the time at which (varv(t) > thres) in time units |
---|
730 | varv: values of the variable to use |
---|
731 | time: time in CF coordinates |
---|
732 | thres: threshold to overpass |
---|
733 | """ |
---|
734 | fname = 'var_timeoverthres' |
---|
735 | |
---|
736 | dt = varv.shape[0] |
---|
737 | dy = varv.shape[1] |
---|
738 | dx = varv.shape[2] |
---|
739 | |
---|
740 | vardims = dimns[:] |
---|
741 | varvdims = dimvns[:] |
---|
742 | |
---|
743 | vardims.pop(0) |
---|
744 | varvdims.pop(0) |
---|
745 | |
---|
746 | timeoverthres = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
747 | for it in range(dt): |
---|
748 | for j in range(dy): |
---|
749 | for i in range(dx): |
---|
750 | if timeoverthres[j,i] == gen.fillValueF and varv[it,j,i] >= thres: |
---|
751 | timeoverthres[j,i] = time[it] |
---|
752 | break |
---|
753 | |
---|
754 | return timeoverthres, vardims, varvdims |
---|
755 | |
---|
756 | def Forcompute_zint(var, zinterlev, zweights, dimns, dimvns): |
---|
757 | """ Function to compute a vertical integration of volumetric quantities |
---|
758 | Forcompute_mrso(smois, dsoil, dimns, dimvns) |
---|
759 | [var]= values (assuming [[t],z,y,x]) [volumetric units] |
---|
760 | [zinterlev]= depth of each layer (assuming [z]) [same z units as var] |
---|
761 | [zweights]= weights to apply to each level (just in case...) |
---|
762 | [dimns]= list of the name of the dimensions of [smois] |
---|
763 | [dimvns]= list of the name of the variables with the values of the |
---|
764 | dimensions of [smois] |
---|
765 | """ |
---|
766 | fname = 'Forcompute_zint' |
---|
767 | |
---|
768 | vardims = dimns[:] |
---|
769 | varvdims = dimvns[:] |
---|
770 | |
---|
771 | if len(var.shape) == 4: |
---|
772 | zint = np.zeros((var.shape[0],var.shape[2],var.shape[3]), dtype=np.float) |
---|
773 | dx = var.shape[3] |
---|
774 | dy = var.shape[2] |
---|
775 | dz = var.shape[1] |
---|
776 | dt = var.shape[0] |
---|
777 | vardims.pop(1) |
---|
778 | varvdims.pop(1) |
---|
779 | |
---|
780 | zintvart=fdin.module_fordiagnostics.compute_zint4d(var4d=var[:].transpose(), \ |
---|
781 | dlev=zinterlev[:].transpose(), zweight=zweights[:].transpose(), d1=dx, \ |
---|
782 | d2=dy, d3=dz, d4=dt) |
---|
783 | zintvar = zintvart.transpose() |
---|
784 | else: |
---|
785 | print errormsg |
---|
786 | print ' ' + fname + ': rank', len(var.shape), 'not ready !!' |
---|
787 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
788 | quit(-1) |
---|
789 | |
---|
790 | return zintvar, vardims, varvdims |
---|
791 | |
---|
792 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
793 | """ Function to compute mslp on a 1D column |
---|
794 | """ |
---|
795 | |
---|
796 | fname = 'var_mslp' |
---|
797 | |
---|
798 | N = 1.0 |
---|
799 | expon=287.04*.0065/9.81 |
---|
800 | pref = 40000. |
---|
801 | |
---|
802 | # First find where about 400 hPa is located |
---|
803 | dz=len(pres) |
---|
804 | |
---|
805 | kref = -1 |
---|
806 | pinc = pres[0] - pres[dz-1] |
---|
807 | |
---|
808 | if pinc < 0.: |
---|
809 | for iz in range(1,dz): |
---|
810 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
811 | kref = iz |
---|
812 | break |
---|
813 | else: |
---|
814 | for iz in range(dz-1): |
---|
815 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
816 | kref = iz |
---|
817 | break |
---|
818 | |
---|
819 | if kref == -1: |
---|
820 | print errormsg |
---|
821 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
822 | print ' values:',pres[:] |
---|
823 | quit(-1) |
---|
824 | |
---|
825 | mslp = 0. |
---|
826 | |
---|
827 | # We are below both the ground and the lowest data level. |
---|
828 | |
---|
829 | # First, find the model level that is closest to a "target" pressure |
---|
830 | # level, where the "target" pressure is delta-p less that the local |
---|
831 | # value of a horizontally smoothed surface pressure field. We use |
---|
832 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
833 | # passing through the temperature at this model level will be used |
---|
834 | # to define the temperature profile below ground. This is similar |
---|
835 | # to the Benjamin and Miller (1990) method, using |
---|
836 | # 700 hPa everywhere for the "target" pressure. |
---|
837 | |
---|
838 | # ptarget = psfc - 15000. |
---|
839 | ptarget = 70000. |
---|
840 | dpmin=1.e4 |
---|
841 | kupper = 0 |
---|
842 | if pinc > 0.: |
---|
843 | for iz in range(dz-1,0,-1): |
---|
844 | kupper = iz |
---|
845 | dp=np.abs( pres[iz] - ptarget ) |
---|
846 | if dp < dpmin: exit |
---|
847 | dpmin = np.min([dpmin, dp]) |
---|
848 | else: |
---|
849 | for iz in range(dz): |
---|
850 | kupper = iz |
---|
851 | dp=np.abs( pres[iz] - ptarget ) |
---|
852 | if dp < dpmin: exit |
---|
853 | dpmin = np.min([dpmin, dp]) |
---|
854 | |
---|
855 | pbot=np.max([pres[0], psfc]) |
---|
856 | # zbot=0. |
---|
857 | |
---|
858 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
859 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
860 | |
---|
861 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
862 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
863 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
864 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
865 | |
---|
866 | return mslp |
---|
867 | |
---|
868 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
869 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
870 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
871 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
872 | [psurface]= surface pressure field [Pa] |
---|
873 | [terrain]= topography [m] |
---|
874 | [temperature]= temperature [K] |
---|
875 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
876 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
877 | [dimvns]= list of the name of the variables with the values of the |
---|
878 | dimensions of [pres] |
---|
879 | """ |
---|
880 | |
---|
881 | fname = 'compute_mslp' |
---|
882 | |
---|
883 | mslpdims = list(dimns[:]) |
---|
884 | mslpvdims = list(dimvns[:]) |
---|
885 | |
---|
886 | if len(pressure.shape) == 4: |
---|
887 | mslpdims.pop(1) |
---|
888 | mslpvdims.pop(1) |
---|
889 | else: |
---|
890 | mslpdims.pop(0) |
---|
891 | mslpvdims.pop(0) |
---|
892 | |
---|
893 | if len(pressure.shape) == 4: |
---|
894 | dx = pressure.shape[3] |
---|
895 | dy = pressure.shape[2] |
---|
896 | dz = pressure.shape[1] |
---|
897 | dt = pressure.shape[0] |
---|
898 | |
---|
899 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
900 | |
---|
901 | # Terrain... to 2D ! |
---|
902 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
903 | if len(terrain.shape) == 3: |
---|
904 | terval = terrain[0,:,:] |
---|
905 | else: |
---|
906 | terval = terrain |
---|
907 | |
---|
908 | for ix in range(dx): |
---|
909 | for iy in range(dy): |
---|
910 | if terval[iy,ix] > 0.: |
---|
911 | for it in range(dt): |
---|
912 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
913 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
914 | qvapor[it,:,iy,ix]) |
---|
915 | |
---|
916 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
917 | else: |
---|
918 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
919 | |
---|
920 | else: |
---|
921 | dx = pressure.shape[2] |
---|
922 | dy = pressure.shape[1] |
---|
923 | dz = pressure.shape[0] |
---|
924 | |
---|
925 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
926 | |
---|
927 | # Terrain... to 2D ! |
---|
928 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
929 | if len(terrain.shape) == 3: |
---|
930 | terval = terrain[0,:,:] |
---|
931 | else: |
---|
932 | terval = terrain |
---|
933 | |
---|
934 | for ix in range(dx): |
---|
935 | for iy in range(dy): |
---|
936 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
937 | if terval[iy,ix] > 0.: |
---|
938 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
939 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
940 | else: |
---|
941 | mslpv[iy,ix] = psfc[iy,ix] |
---|
942 | |
---|
943 | return mslpv, mslpdims, mslpvdims |
---|
944 | |
---|
945 | def Forcompute_psl_ecmwf(ps, hgt, ta1, pa2, unpa1, dimns, dimvns): |
---|
946 | """ Function to compute the sea-level pressure following Mats Hamrud and Philippe Courtier [Pa] |
---|
947 | Forcompute_psl_ptarget(ps, hgt, ta1, pa2, unpa1, dimns, dimvns) |
---|
948 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
949 | [hgt]= opography (assuming [y,x]) [m] |
---|
950 | [ta1]= air-temperature values at first half-mass level (assuming [[t],y,x]) [K] |
---|
951 | [pa2]= pressure values at second full-mass levels (assuming [[t],y,x]) [Pa] |
---|
952 | [unpa1]= pressure values at first half-mass levels (assuming [[t],y,x]) [Pa] |
---|
953 | [dimns]= list of the name of the dimensions of [pa] |
---|
954 | [dimvns]= list of the name of the variables with the values of the |
---|
955 | dimensions of [pa] |
---|
956 | """ |
---|
957 | fname = 'Forcompute_psl_ecmwf' |
---|
958 | |
---|
959 | vardims = dimns[:] |
---|
960 | varvdims = dimvns[:] |
---|
961 | |
---|
962 | if len(pa2.shape) == 3: |
---|
963 | psl = np.zeros((pa2.shape[0],pa2.shape[1],pa2.shape[2]), dtype=np.float) |
---|
964 | dx = pa2.shape[2] |
---|
965 | dy = pa2.shape[1] |
---|
966 | dt = pa2.shape[0] |
---|
967 | pslt= fdin.module_fordiagnostics.compute_psl_ecmwf( ps=ps[:].transpose(), \ |
---|
968 | hgt=hgt[:].transpose(), t=ta1[:].transpose(), press=pa2[:].transpose(), \ |
---|
969 | unpress=unpa1[:].transpose(), d1=dx, d2=dy, d4=dt) |
---|
970 | psl = pslt.transpose() |
---|
971 | else: |
---|
972 | print errormsg |
---|
973 | print ' ' + fname + ': rank', len(pa2.shape), 'not ready !!' |
---|
974 | print ' it only computes 3D [t,y,x] rank values' |
---|
975 | quit(-1) |
---|
976 | |
---|
977 | return psl, vardims, varvdims |
---|
978 | |
---|
979 | def Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, target_pressure, dimns, dimvns): |
---|
980 | """ Function to compute the sea-level pressure following target_pressure value |
---|
981 | found in `p_interp.F' |
---|
982 | Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, dimns, dimvns) |
---|
983 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
984 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
985 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
986 | [hgt]= opography (assuming [y,x]) [m] |
---|
987 | [qv]= water vapour mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
988 | [dimns]= list of the name of the dimensions of [pa] |
---|
989 | [dimvns]= list of the name of the variables with the values of the |
---|
990 | dimensions of [pa] |
---|
991 | """ |
---|
992 | fname = 'Forcompute_psl_ptarget' |
---|
993 | |
---|
994 | psldims = dimns[:] |
---|
995 | pslvdims = dimvns[:] |
---|
996 | |
---|
997 | if len(pa.shape) == 4: |
---|
998 | psl = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
999 | dx = pa.shape[3] |
---|
1000 | dy = pa.shape[2] |
---|
1001 | dz = pa.shape[1] |
---|
1002 | dt = pa.shape[0] |
---|
1003 | psldims.pop(1) |
---|
1004 | pslvdims.pop(1) |
---|
1005 | |
---|
1006 | pslt= fdin.module_fordiagnostics.compute_psl_ptarget4d2( \ |
---|
1007 | press=pa[:].transpose(), ps=ps[:].transpose(), hgt=hgt[:].transpose(), \ |
---|
1008 | ta=ta[:].transpose(), qv=qv[:].transpose(), ptarget=target_pressure, \ |
---|
1009 | d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1010 | psl = pslt.transpose() |
---|
1011 | else: |
---|
1012 | print errormsg |
---|
1013 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
1014 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1015 | quit(-1) |
---|
1016 | |
---|
1017 | return psl, psldims, pslvdims |
---|
1018 | |
---|
1019 | def Forcompute_zmla_gen(theta, qratio, zpl, hgt, dimns, dimvns): |
---|
1020 | """ Function to compute the boundary layer height following a generic method |
---|
1021 | with Fortran |
---|
1022 | Forcompute_zmla_gen(theta, qratio, zpl, hgt, zmla, dimns, dimvns) |
---|
1023 | [theta]= potential air-temperature values (assuming [[t],z,y,x]) [K] |
---|
1024 | [qratio]= water mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
1025 | [zpl]= height from sea level (assuming [[t],z,y,x]) [m] |
---|
1026 | [hgt]= topographical height (assuming [m] |
---|
1027 | [zmla]= boundary layer height [m] |
---|
1028 | [dimns]= list of the name of the dimensions of [theta] |
---|
1029 | [dimvns]= list of the name of the variables with the values of the |
---|
1030 | dimensions of [theta] |
---|
1031 | """ |
---|
1032 | fname = 'Forcompute_zmla_gen' |
---|
1033 | |
---|
1034 | zmladims = dimns[:] |
---|
1035 | zmlavdims = dimvns[:] |
---|
1036 | |
---|
1037 | if len(theta.shape) == 4: |
---|
1038 | zmla= np.zeros((theta.shape[0],theta.shape[2],theta.shape[3]), dtype=np.float) |
---|
1039 | |
---|
1040 | dx = theta.shape[3] |
---|
1041 | dy = theta.shape[2] |
---|
1042 | dz = theta.shape[1] |
---|
1043 | dt = theta.shape[0] |
---|
1044 | zmladims.pop(1) |
---|
1045 | zmlavdims.pop(1) |
---|
1046 | |
---|
1047 | pzmla= fdin.module_fordiagnostics.compute_zmla_generic4d( \ |
---|
1048 | tpot=theta[:].transpose(), qratio=qratio[:].transpose(), \ |
---|
1049 | z=zpl[:].transpose(), hgt=hgt.transpose(), d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1050 | zmla = pzmla.transpose() |
---|
1051 | else: |
---|
1052 | print errormsg |
---|
1053 | print ' ' + fname + ': rank', len(theta.shape), 'not ready !!' |
---|
1054 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1055 | quit(-1) |
---|
1056 | |
---|
1057 | return zmla, zmladims, zmlavdims |
---|
1058 | |
---|
1059 | def Forcompute_zwind(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
1060 | """ Function to compute the wind at a given height following the power law method |
---|
1061 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
1062 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1063 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1064 | [z]= height above surface [m] |
---|
1065 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1066 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1067 | [sina]= local sine of map rotation [1.] |
---|
1068 | [cosa]= local cosine of map rotation [1.] |
---|
1069 | [zval]= desired height for winds [m] |
---|
1070 | [dimns]= list of the name of the dimensions of [ua] |
---|
1071 | [dimvns]= list of the name of the variables with the values of the |
---|
1072 | dimensions of [ua] |
---|
1073 | """ |
---|
1074 | fname = 'Forcompute_zwind' |
---|
1075 | |
---|
1076 | vardims = dimns[:] |
---|
1077 | varvdims = dimvns[:] |
---|
1078 | |
---|
1079 | if len(ua.shape) == 4: |
---|
1080 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1081 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1082 | |
---|
1083 | dx = ua.shape[3] |
---|
1084 | dy = ua.shape[2] |
---|
1085 | dz = ua.shape[1] |
---|
1086 | dt = ua.shape[0] |
---|
1087 | vardims.pop(1) |
---|
1088 | varvdims.pop(1) |
---|
1089 | |
---|
1090 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind4d(ua=ua.transpose(), \ |
---|
1091 | va=va[:].transpose(), z=z[:].transpose(), uas=uas.transpose(), \ |
---|
1092 | vas=vas.transpose(), sina=sina.transpose(), cosa=cosa.transpose(), \ |
---|
1093 | zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1094 | var1 = pvar1.transpose() |
---|
1095 | var2 = pvar2.transpose() |
---|
1096 | else: |
---|
1097 | print errormsg |
---|
1098 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
1099 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1100 | quit(-1) |
---|
1101 | |
---|
1102 | return var1, var2, vardims, varvdims |
---|
1103 | |
---|
1104 | def Forcompute_zwind_log(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
1105 | """ Function to compute the wind at a given height following the logarithmic law method |
---|
1106 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
1107 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1108 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1109 | [z]= height above surface [m] |
---|
1110 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1111 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1112 | [sina]= local sine of map rotation [1.] |
---|
1113 | [cosa]= local cosine of map rotation [1.] |
---|
1114 | [zval]= desired height for winds [m] |
---|
1115 | [dimns]= list of the name of the dimensions of [ua] |
---|
1116 | [dimvns]= list of the name of the variables with the values of the |
---|
1117 | dimensions of [ua] |
---|
1118 | """ |
---|
1119 | fname = 'Forcompute_zwind_log' |
---|
1120 | |
---|
1121 | vardims = dimns[:] |
---|
1122 | varvdims = dimvns[:] |
---|
1123 | |
---|
1124 | if len(ua.shape) == 4: |
---|
1125 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1126 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1127 | |
---|
1128 | dx = ua.shape[3] |
---|
1129 | dy = ua.shape[2] |
---|
1130 | dz = ua.shape[1] |
---|
1131 | dt = ua.shape[0] |
---|
1132 | vardims.pop(1) |
---|
1133 | varvdims.pop(1) |
---|
1134 | |
---|
1135 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind_log4d( \ |
---|
1136 | ua=ua.transpose(), va=va[:].transpose(), z=z[:].transpose(), \ |
---|
1137 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
1138 | cosa=cosa.transpose(), zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1139 | var1 = pvar1.transpose() |
---|
1140 | var2 = pvar2.transpose() |
---|
1141 | else: |
---|
1142 | print errormsg |
---|
1143 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
1144 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1145 | quit(-1) |
---|
1146 | |
---|
1147 | return var1, var2, vardims, varvdims |
---|
1148 | |
---|
1149 | def Forcompute_zwindMO(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
1150 | """ Function to compute the wind at a given height following the Monin-Obukhov theory |
---|
1151 | Forcompute_zwind(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns) |
---|
1152 | [ust]: u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
1153 | [znt]: thermal time-varying roughness length (assuming [[t],y,x]) [m] |
---|
1154 | [rmol]: inverse of Obukhov length (assuming [[t],y,x]) [m-1] |
---|
1155 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1156 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1157 | [sina]= local sine of map rotation [1.] |
---|
1158 | [cosa]= local cosine of map rotation [1.] |
---|
1159 | [zval]= desired height for winds [m] |
---|
1160 | [dimns]= list of the name of the dimensions of [uas] |
---|
1161 | [dimvns]= list of the name of the variables with the values of the |
---|
1162 | dimensions of [uas] |
---|
1163 | """ |
---|
1164 | fname = 'Forcompute_zwindMO' |
---|
1165 | |
---|
1166 | vardims = dimns[:] |
---|
1167 | varvdims = dimvns[:] |
---|
1168 | |
---|
1169 | if len(uas.shape) == 3: |
---|
1170 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1171 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1172 | |
---|
1173 | dx = uas.shape[2] |
---|
1174 | dy = uas.shape[1] |
---|
1175 | dt = uas.shape[0] |
---|
1176 | |
---|
1177 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_zwindmo3d( \ |
---|
1178 | ust=ust.transpose(), znt=znt[:].transpose(), rmol=rmol[:].transpose(), \ |
---|
1179 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
1180 | cosa=cosa.transpose(), newz=zval, d1=dx, d2=dy, d3=dt) |
---|
1181 | var1 = pvar1.transpose() |
---|
1182 | var2 = pvar2.transpose() |
---|
1183 | else: |
---|
1184 | print errormsg |
---|
1185 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
1186 | print ' it only computes 3D [t,y,x] rank values' |
---|
1187 | quit(-1) |
---|
1188 | |
---|
1189 | return var1, var2, vardims, varvdims |
---|
1190 | |
---|
1191 | def Forcompute_potevap_orPM(rho1, ust, uas, vas, tas, ps, qv1, dimns, dimvns): |
---|
1192 | """ Function to compute potential evapotranspiration following Penman-Monteith |
---|
1193 | formulation implemented in ORCHIDEE in src_sechiba/enerbil.f90 |
---|
1194 | Forcompute_potevap_orPM(rho1, uas, vas, tas, ps, qv2, qv1, dimns, dimvns) |
---|
1195 | [rho1]= air-density at the first layer (assuming [[t],y,m]) [kgm-3] |
---|
1196 | [ust]= u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
1197 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1198 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1199 | [tas]= 2m air temperature [K] |
---|
1200 | [ps]= surface pressure [Pa] |
---|
1201 | [qv1]= mixing ratio at the first atmospheric layer [kgkg-1] |
---|
1202 | [dimns]= list of the name of the dimensions of [uas] |
---|
1203 | [dimvns]= list of the name of the variables with the values of the |
---|
1204 | dimensions of [uas] |
---|
1205 | """ |
---|
1206 | fname = 'Forcompute_potevap_orPM' |
---|
1207 | |
---|
1208 | vardims = dimns[:] |
---|
1209 | varvdims = dimvns[:] |
---|
1210 | |
---|
1211 | if len(uas.shape) == 3: |
---|
1212 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1213 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1214 | |
---|
1215 | dx = uas.shape[2] |
---|
1216 | dy = uas.shape[1] |
---|
1217 | dt = uas.shape[0] |
---|
1218 | |
---|
1219 | pvar = fdin.module_fordiagnostics.compute_potevap_orpm3d( \ |
---|
1220 | rho1=rho1.transpose(), ust=ust.transpose(), uas=uas.transpose(), \ |
---|
1221 | vas=vas.transpose(), tas=tas.transpose(), ps=ps.transpose(), \ |
---|
1222 | qv1=qv1.transpose(), d1=dx, d2=dy, d3=dt) |
---|
1223 | var = pvar.transpose() |
---|
1224 | else: |
---|
1225 | print errormsg |
---|
1226 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
1227 | print ' it only computes 3D [t,y,x] rank values' |
---|
1228 | quit(-1) |
---|
1229 | |
---|
1230 | return var, vardims, varvdims |
---|
1231 | |
---|
1232 | def Forcompute_fog_K84(qcloud, qice, dimns, dimvns): |
---|
1233 | """ Function to compute fog and visibility following Kunkel, (1984) |
---|
1234 | Forcompute_fog_K84(qcloud, qice, dimns, dimvns) |
---|
1235 | [qcloud]= cloud mixing ratio [kgk-1] |
---|
1236 | [qice]= ice mixing ratio [kgk-1] |
---|
1237 | [dimns]= list of the name of the dimensions of [uas] |
---|
1238 | [dimvns]= list of the name of the variables with the values of the |
---|
1239 | dimensions of [qcloud] |
---|
1240 | """ |
---|
1241 | fname = 'Forcompute_fog_K84' |
---|
1242 | |
---|
1243 | vardims = dimns[:] |
---|
1244 | varvdims = dimvns[:] |
---|
1245 | |
---|
1246 | if len(qcloud.shape) == 4: |
---|
1247 | var= np.zeros((qcloud.shape[0],qcloud.shape[2],qcloud.shape[3]), dtype=np.float) |
---|
1248 | |
---|
1249 | dx = qcloud.shape[3] |
---|
1250 | dy = qcloud.shape[2] |
---|
1251 | dz = qcloud.shape[1] |
---|
1252 | dt = qcloud.shape[0] |
---|
1253 | vardims.pop(1) |
---|
1254 | varvdims.pop(1) |
---|
1255 | |
---|
1256 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_k84( \ |
---|
1257 | qc=qcloud[:,0,:,:].transpose(), qi=qice[:,0,:,:].transpose(), d1=dx, d2=dy,\ |
---|
1258 | d3=dt) |
---|
1259 | var1 = pvar1.transpose() |
---|
1260 | var2 = pvar2.transpose() |
---|
1261 | else: |
---|
1262 | print errormsg |
---|
1263 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
1264 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1265 | quit(-1) |
---|
1266 | |
---|
1267 | return var1, var2, vardims, varvdims |
---|
1268 | |
---|
1269 | def Forcompute_fog_RUC(qvapor, temp, pres, dimns, dimvns): |
---|
1270 | """ Function to compute fog and visibility following RUC method Smirnova, (2000) |
---|
1271 | Forcompute_fog_RUC(qcloud, qice, dimns, dimvns) |
---|
1272 | [qvapor]= water vapor mixing ratio [kgk-1] |
---|
1273 | [temp]= temperature [K] |
---|
1274 | [pres]= pressure [Pa] |
---|
1275 | [dimns]= list of the name of the dimensions of [uas] |
---|
1276 | [dimvns]= list of the name of the variables with the values of the |
---|
1277 | dimensions of [qcloud] |
---|
1278 | """ |
---|
1279 | fname = 'Forcompute_fog_RUC' |
---|
1280 | |
---|
1281 | vardims = dimns[:] |
---|
1282 | varvdims = dimvns[:] |
---|
1283 | |
---|
1284 | if len(qvapor.shape) == 4: |
---|
1285 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
1286 | |
---|
1287 | dx = qvapor.shape[3] |
---|
1288 | dy = qvapor.shape[2] |
---|
1289 | dz = qvapor.shape[1] |
---|
1290 | dt = qvapor.shape[0] |
---|
1291 | vardims.pop(1) |
---|
1292 | varvdims.pop(1) |
---|
1293 | |
---|
1294 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
1295 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
1296 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
1297 | var1 = pvar1.transpose() |
---|
1298 | var2 = pvar2.transpose() |
---|
1299 | elif len(qvapor.shape) == 3: |
---|
1300 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
1301 | |
---|
1302 | dx = qvapor.shape[2] |
---|
1303 | dy = qvapor.shape[1] |
---|
1304 | dt = qvapor.shape[0] |
---|
1305 | |
---|
1306 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
1307 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
1308 | d1=dx, d2=dy, d3=dt) |
---|
1309 | var1 = pvar1.transpose() |
---|
1310 | var2 = pvar2.transpose() |
---|
1311 | else: |
---|
1312 | print errormsg |
---|
1313 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
1314 | print ' it only computes 4D [t,z,y,x] or 3D [t,z,y,x] rank values' |
---|
1315 | quit(-1) |
---|
1316 | |
---|
1317 | return var1, var2, vardims, varvdims |
---|
1318 | |
---|
1319 | def Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns): |
---|
1320 | """ Function to compute fog (vis < 1km) and visibility following FRAM-L 50 % prob |
---|
1321 | Gultepe, and Milbrandt, (2010), J. Appl. Meteor. Climatol. |
---|
1322 | Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns) |
---|
1323 | [qvapor]= vapor mixing ratio [kgk-1] |
---|
1324 | [temp]= temperature [K] |
---|
1325 | [pres]= pressure [Pa] |
---|
1326 | [dimns]= list of the name of the dimensions of [uas] |
---|
1327 | [dimvns]= list of the name of the variables with the values of the |
---|
1328 | dimensions of [qvapor] |
---|
1329 | """ |
---|
1330 | fname = 'Forcompute_fog_FRAML50' |
---|
1331 | |
---|
1332 | vardims = dimns[:] |
---|
1333 | varvdims = dimvns[:] |
---|
1334 | |
---|
1335 | if len(qvapor.shape) == 4: |
---|
1336 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
1337 | |
---|
1338 | dx = qvapor.shape[3] |
---|
1339 | dy = qvapor.shape[2] |
---|
1340 | dz = qvapor.shape[1] |
---|
1341 | dt = qvapor.shape[0] |
---|
1342 | vardims.pop(1) |
---|
1343 | varvdims.pop(1) |
---|
1344 | |
---|
1345 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
1346 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
1347 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
1348 | var1 = pvar1.transpose() |
---|
1349 | var2 = pvar2.transpose() |
---|
1350 | elif len(qvapor.shape) == 3: |
---|
1351 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
1352 | |
---|
1353 | dx = qvapor.shape[2] |
---|
1354 | dy = qvapor.shape[1] |
---|
1355 | dt = qvapor.shape[0] |
---|
1356 | |
---|
1357 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
1358 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
1359 | d1=dx, d2=dy, d3=dt) |
---|
1360 | var1 = pvar1.transpose() |
---|
1361 | var2 = pvar2.transpose() |
---|
1362 | else: |
---|
1363 | print errormsg |
---|
1364 | print ' ' + fname + ': rank', len(qvapor.shape), 'not ready !!' |
---|
1365 | print ' it only computes 4D [t,z,y,x] or 3D [t,y,x] rank values' |
---|
1366 | quit(-1) |
---|
1367 | |
---|
1368 | return var1, var2, vardims, varvdims |
---|
1369 | |
---|
1370 | ####### ###### ##### #### ### ## # END Fortran diagnostics |
---|
1371 | |
---|
1372 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
1373 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
1374 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
1375 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
1376 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
1377 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
1378 | [dimns]= list of the name of the dimensions of [q] |
---|
1379 | [dimvns]= list of the name of the variables with the values of the |
---|
1380 | dimensions of [q] |
---|
1381 | """ |
---|
1382 | fname = 'compute_OMEGAw' |
---|
1383 | |
---|
1384 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
1385 | g = 9.80665 # m/s2 |
---|
1386 | |
---|
1387 | wdims = dimns[:] |
---|
1388 | wvdims = dimvns[:] |
---|
1389 | |
---|
1390 | rho = p/(rgas*t) # density => kg/m3 |
---|
1391 | w = -omega/(rho*g) |
---|
1392 | |
---|
1393 | return w, wdims, wvdims |
---|
1394 | |
---|
1395 | def compute_prw(dens, q, dimns, dimvns): |
---|
1396 | """ Function to compute water vapour path (prw) |
---|
1397 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
1398 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
1399 | [dimns]= list of the name of the dimensions of [q] |
---|
1400 | [dimvns]= list of the name of the variables with the values of the |
---|
1401 | dimensions of [q] |
---|
1402 | """ |
---|
1403 | fname = 'compute_prw' |
---|
1404 | |
---|
1405 | prwdims = dimns[:] |
---|
1406 | prwvdims = dimvns[:] |
---|
1407 | |
---|
1408 | if len(q.shape) == 4: |
---|
1409 | prwdims.pop(1) |
---|
1410 | prwvdims.pop(1) |
---|
1411 | else: |
---|
1412 | prwdims.pop(0) |
---|
1413 | prwvdims.pop(0) |
---|
1414 | |
---|
1415 | data1 = dens*q |
---|
1416 | prw = np.sum(data1, axis=1) |
---|
1417 | |
---|
1418 | return prw, prwdims, prwvdims |
---|
1419 | |
---|
1420 | def compute_rh(p, t, q, dimns, dimvns): |
---|
1421 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
1422 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1423 | [p] = pressure field (assuming in [hPa]) |
---|
1424 | [q] = mixing ratio in [kgkg-1] |
---|
1425 | [dimns]= list of the name of the dimensions of [t] |
---|
1426 | [dimvns]= list of the name of the variables with the values of the |
---|
1427 | dimensions of [t] |
---|
1428 | """ |
---|
1429 | fname = 'compute_rh' |
---|
1430 | |
---|
1431 | rhdims = dimns[:] |
---|
1432 | rhvdims = dimvns[:] |
---|
1433 | |
---|
1434 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1435 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1436 | |
---|
1437 | rh = q/data2 |
---|
1438 | |
---|
1439 | return rh, rhdims, rhvdims |
---|
1440 | |
---|
1441 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
1442 | """ Function to compute the dew point temperature |
---|
1443 | [p]= pressure [Pa] |
---|
1444 | [temp]= temperature [C] |
---|
1445 | [qv]= mixing ratio [kgkg-1] |
---|
1446 | [dimns]= list of the name of the dimensions of [p] |
---|
1447 | [dimvns]= list of the name of the variables with the values of the |
---|
1448 | dimensions of [p] |
---|
1449 | """ |
---|
1450 | fname = 'compute_td' |
---|
1451 | |
---|
1452 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
1453 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
1454 | tk = temp |
---|
1455 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1456 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1457 | |
---|
1458 | rh = qv/data2 |
---|
1459 | |
---|
1460 | pa = rh * data1 |
---|
1461 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1462 | |
---|
1463 | tddims = dimns[:] |
---|
1464 | tdvdims = dimvns[:] |
---|
1465 | |
---|
1466 | return td, tddims, tdvdims |
---|
1467 | |
---|
1468 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
1469 | """ Function to copmute CFtimes from WRFtime variable |
---|
1470 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
1471 | tunitsval= CF time units |
---|
1472 | timewrfv= matrix string values of WRF 'Times' variable |
---|
1473 | """ |
---|
1474 | fname = 'var_WRFtime' |
---|
1475 | |
---|
1476 | yrref=refdate[0:4] |
---|
1477 | monref=refdate[4:6] |
---|
1478 | dayref=refdate[6:8] |
---|
1479 | horref=refdate[8:10] |
---|
1480 | minref=refdate[10:12] |
---|
1481 | secref=refdate[12:14] |
---|
1482 | |
---|
1483 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
1484 | ':' + secref |
---|
1485 | |
---|
1486 | dt = timewrfv.shape[0] |
---|
1487 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
1488 | |
---|
1489 | for it in range(dt): |
---|
1490 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
1491 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
1492 | |
---|
1493 | tunits = tunitsval + ' since ' + refdateS |
---|
1494 | |
---|
1495 | return WRFtime, tunits |
---|
1496 | |
---|
1497 | def turbulence_var(varv, dimvn, dimn): |
---|
1498 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
1499 | x*=<x^2>_t-(<X>_t)^2 |
---|
1500 | turbulence_var(varv,dimn) |
---|
1501 | varv= values of the variable |
---|
1502 | dimvn= names of the dimension of the variable |
---|
1503 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
1504 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
1505 | [[ 54. 54. 54.] |
---|
1506 | [ 54. 54. 54.] |
---|
1507 | [ 54. 54. 54.]] |
---|
1508 | """ |
---|
1509 | fname = 'turbulence_varv' |
---|
1510 | |
---|
1511 | timedimid = dimvn.index(dimn['T']) |
---|
1512 | |
---|
1513 | varv2 = varv*varv |
---|
1514 | |
---|
1515 | vartmean = np.mean(varv, axis=timedimid) |
---|
1516 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
1517 | |
---|
1518 | varvturb = var2tmean - (vartmean*vartmean) |
---|
1519 | |
---|
1520 | return varvturb |
---|
1521 | |
---|
1522 | def compute_turbulence(v, dimns, dimvns): |
---|
1523 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
1524 | x*=<x^2>_t-(<X>_t)^2 |
---|
1525 | [v]= variable (assuming [[t],z,y,x]) |
---|
1526 | [dimns]= list of the name of the dimensions of [v] |
---|
1527 | [dimvns]= list of the name of the variables with the values of the |
---|
1528 | dimensions of [v] |
---|
1529 | """ |
---|
1530 | fname = 'compute_turbulence' |
---|
1531 | |
---|
1532 | turbdims = dimns[:] |
---|
1533 | turbvdims = dimvns[:] |
---|
1534 | |
---|
1535 | turbdims.pop(0) |
---|
1536 | turbvdims.pop(0) |
---|
1537 | |
---|
1538 | v2 = v*v |
---|
1539 | |
---|
1540 | vartmean = np.mean(v, axis=0) |
---|
1541 | var2tmean = np.mean(v2, axis=0) |
---|
1542 | |
---|
1543 | turb = var2tmean - (vartmean*vartmean) |
---|
1544 | |
---|
1545 | return turb, turbdims, turbvdims |
---|
1546 | |
---|
1547 | def compute_wd(u, v, dimns, dimvns): |
---|
1548 | """ Function to compute the wind direction |
---|
1549 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1550 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1551 | [dimns]= list of the name of the dimensions of [u] |
---|
1552 | [dimvns]= list of the name of the variables with the values of the |
---|
1553 | dimensions of [u] |
---|
1554 | """ |
---|
1555 | fname = 'compute_wds' |
---|
1556 | |
---|
1557 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
1558 | theta = np.arctan2(v,u) |
---|
1559 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1560 | |
---|
1561 | var = 360.*theta/(2.*np.pi) |
---|
1562 | |
---|
1563 | vardims = dimns[:] |
---|
1564 | varvdims = dimvns[:] |
---|
1565 | |
---|
1566 | return var, vardims, varvdims |
---|
1567 | |
---|
1568 | def compute_wds(u, v, dimns, dimvns): |
---|
1569 | """ Function to compute the wind direction |
---|
1570 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1571 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1572 | [dimns]= list of the name of the dimensions of [u] |
---|
1573 | [dimvns]= list of the name of the variables with the values of the |
---|
1574 | dimensions of [u] |
---|
1575 | """ |
---|
1576 | fname = 'compute_wds' |
---|
1577 | |
---|
1578 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
1579 | theta = np.arctan2(v,u) |
---|
1580 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1581 | |
---|
1582 | wds = 360.*theta/(2.*np.pi) |
---|
1583 | |
---|
1584 | wdsdims = dimns[:] |
---|
1585 | wdsvdims = dimvns[:] |
---|
1586 | |
---|
1587 | return wds, wdsdims, wdsvdims |
---|
1588 | |
---|
1589 | def compute_wss(u, v, dimns, dimvns): |
---|
1590 | """ Function to compute the wind speed |
---|
1591 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1592 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1593 | [dimns]= list of the name of the dimensions of [u] |
---|
1594 | [dimvns]= list of the name of the variables with the values of the |
---|
1595 | dimensions of [u] |
---|
1596 | """ |
---|
1597 | fname = 'compute_wss' |
---|
1598 | |
---|
1599 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
1600 | wss = np.sqrt(u*u + v*v) |
---|
1601 | |
---|
1602 | wssdims = dimns[:] |
---|
1603 | wssvdims = dimvns[:] |
---|
1604 | |
---|
1605 | return wss, wssdims, wssvdims |
---|
1606 | |
---|
1607 | def timeunits_seconds(dtu): |
---|
1608 | """ Function to transform a time units to seconds |
---|
1609 | timeunits_seconds(timeuv) |
---|
1610 | [dtu]= time units value to transform in seconds |
---|
1611 | """ |
---|
1612 | fname='timunits_seconds' |
---|
1613 | |
---|
1614 | if dtu == 'years': |
---|
1615 | times = 365.*24.*3600. |
---|
1616 | elif dtu == 'weeks': |
---|
1617 | times = 7.*24.*3600. |
---|
1618 | elif dtu == 'days': |
---|
1619 | times = 24.*3600. |
---|
1620 | elif dtu == 'hours': |
---|
1621 | times = 3600. |
---|
1622 | elif dtu == 'minutes': |
---|
1623 | times = 60. |
---|
1624 | elif dtu == 'seconds': |
---|
1625 | times = 1. |
---|
1626 | elif dtu == 'miliseconds': |
---|
1627 | times = 1./1000. |
---|
1628 | else: |
---|
1629 | print errormsg |
---|
1630 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
1631 | quit(-1) |
---|
1632 | |
---|
1633 | return times |
---|
1634 | |
---|
1635 | def compute_WRFhur(t, p, qv, dimns, dimvns): |
---|
1636 | """ Function to compute WRF relative humidity following Teten's equation |
---|
1637 | t= orginal WRF temperature |
---|
1638 | p= original WRF pressure (P + PB) |
---|
1639 | formula: |
---|
1640 | temp = theta*(p/p0)**(R/Cp) |
---|
1641 | |
---|
1642 | """ |
---|
1643 | fname = 'compute_WRFtd' |
---|
1644 | |
---|
1645 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1646 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1647 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1648 | |
---|
1649 | rh = qv/data2 |
---|
1650 | |
---|
1651 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1652 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1653 | |
---|
1654 | return rh, dnamesvar, dvnamesvar |
---|
1655 | |
---|
1656 | def compute_WRFua(u, v, sina, cosa, dimns, dimvns): |
---|
1657 | """ Function to compute geographical rotated WRF 3D winds |
---|
1658 | u= orginal WRF x-wind |
---|
1659 | v= orginal WRF y-wind |
---|
1660 | sina= original WRF local sinus of map rotation |
---|
1661 | cosa= original WRF local cosinus of map rotation |
---|
1662 | formula: |
---|
1663 | ua = u*cosa-va*sina |
---|
1664 | va = u*sina+va*cosa |
---|
1665 | """ |
---|
1666 | fname = 'compute_WRFua' |
---|
1667 | |
---|
1668 | var0 = u |
---|
1669 | var1 = v |
---|
1670 | var2 = sina |
---|
1671 | var3 = cosa |
---|
1672 | |
---|
1673 | # un-staggering variables |
---|
1674 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1675 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1676 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1677 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1678 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1679 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1680 | |
---|
1681 | for iz in range(var0.shape[1]): |
---|
1682 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1683 | |
---|
1684 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1685 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1686 | |
---|
1687 | return ua, dnamesvar, dvnamesvar |
---|
1688 | |
---|
1689 | def compute_WRFva(u, v, sina, cosa, dimns, dimvns): |
---|
1690 | """ Function to compute geographical rotated WRF 3D winds |
---|
1691 | u= orginal WRF x-wind |
---|
1692 | v= orginal WRF y-wind |
---|
1693 | sina= original WRF local sinus of map rotation |
---|
1694 | cosa= original WRF local cosinus of map rotation |
---|
1695 | formula: |
---|
1696 | ua = u*cosa-va*sina |
---|
1697 | va = u*sina+va*cosa |
---|
1698 | """ |
---|
1699 | fname = 'compute_WRFva' |
---|
1700 | |
---|
1701 | var0 = u |
---|
1702 | var1 = v |
---|
1703 | var2 = sina |
---|
1704 | var3 = cosa |
---|
1705 | |
---|
1706 | # un-staggering variables |
---|
1707 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1708 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1709 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1710 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1711 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1712 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1713 | |
---|
1714 | for iz in range(var0.shape[1]): |
---|
1715 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1716 | |
---|
1717 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1718 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1719 | |
---|
1720 | return va, dnamesvar, dvnamesvar |
---|
1721 | |
---|
1722 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
1723 | """ Function to compute geographical rotated WRF 3D winds |
---|
1724 | u= orginal WRF x-wind |
---|
1725 | v= orginal WRF y-wind |
---|
1726 | sina= original WRF local sinus of map rotation |
---|
1727 | cosa= original WRF local cosinus of map rotation |
---|
1728 | formula: |
---|
1729 | ua = u*cosa-va*sina |
---|
1730 | va = u*sina+va*cosa |
---|
1731 | """ |
---|
1732 | fname = 'compute_WRFuava' |
---|
1733 | |
---|
1734 | var0 = u |
---|
1735 | var1 = v |
---|
1736 | var2 = sina |
---|
1737 | var3 = cosa |
---|
1738 | |
---|
1739 | # un-staggering variables |
---|
1740 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1741 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1742 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1743 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1744 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1745 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1746 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1747 | |
---|
1748 | for iz in range(var0.shape[1]): |
---|
1749 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1750 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1751 | |
---|
1752 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1753 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1754 | |
---|
1755 | return ua, va, dnamesvar, dvnamesvar |
---|
1756 | |
---|
1757 | def compute_WRFuas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1758 | """ Function to compute geographical rotated WRF 2-meter x-wind |
---|
1759 | u10= orginal WRF 10m x-wind |
---|
1760 | v10= orginal WRF 10m y-wind |
---|
1761 | sina= original WRF local sinus of map rotation |
---|
1762 | cosa= original WRF local cosinus of map rotation |
---|
1763 | formula: |
---|
1764 | uas = u10*cosa-va10*sina |
---|
1765 | vas = u10*sina+va10*cosa |
---|
1766 | """ |
---|
1767 | fname = 'compute_WRFuas' |
---|
1768 | |
---|
1769 | var0 = u10 |
---|
1770 | var1 = v10 |
---|
1771 | var2 = sina |
---|
1772 | var3 = cosa |
---|
1773 | |
---|
1774 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1775 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1776 | |
---|
1777 | uas = var0*var3 - var1*var2 |
---|
1778 | |
---|
1779 | dnamesvar = ['Time','south_north','west_east'] |
---|
1780 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1781 | |
---|
1782 | return uas, dnamesvar, dvnamesvar |
---|
1783 | |
---|
1784 | def compute_WRFvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1785 | """ Function to compute geographical rotated WRF 2-meter y-wind |
---|
1786 | u10= orginal WRF 10m x-wind |
---|
1787 | v10= orginal WRF 10m y-wind |
---|
1788 | sina= original WRF local sinus of map rotation |
---|
1789 | cosa= original WRF local cosinus of map rotation |
---|
1790 | formula: |
---|
1791 | uas = u10*cosa-va10*sina |
---|
1792 | vas = u10*sina+va10*cosa |
---|
1793 | """ |
---|
1794 | fname = 'compute_WRFvas' |
---|
1795 | |
---|
1796 | var0 = u10 |
---|
1797 | var1 = v10 |
---|
1798 | var2 = sina |
---|
1799 | var3 = cosa |
---|
1800 | |
---|
1801 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1802 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1803 | |
---|
1804 | vas = var0*var2 + var1*var3 |
---|
1805 | |
---|
1806 | dnamesvar = ['Time','south_north','west_east'] |
---|
1807 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1808 | |
---|
1809 | return vas, dnamesvar, dvnamesvar |
---|
1810 | |
---|
1811 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1812 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
1813 | u10= orginal WRF 10m x-wind |
---|
1814 | v10= orginal WRF 10m y-wind |
---|
1815 | sina= original WRF local sinus of map rotation |
---|
1816 | cosa= original WRF local cosinus of map rotation |
---|
1817 | formula: |
---|
1818 | uas = u10*cosa-va10*sina |
---|
1819 | vas = u10*sina+va10*cosa |
---|
1820 | """ |
---|
1821 | fname = 'compute_WRFuasvas' |
---|
1822 | |
---|
1823 | var0 = u10 |
---|
1824 | var1 = v10 |
---|
1825 | var2 = sina |
---|
1826 | var3 = cosa |
---|
1827 | |
---|
1828 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1829 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1830 | |
---|
1831 | uas = var0*var3 - var1*var2 |
---|
1832 | vas = var0*var2 + var1*var3 |
---|
1833 | |
---|
1834 | dnamesvar = ['Time','south_north','west_east'] |
---|
1835 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1836 | |
---|
1837 | return uas, vas, dnamesvar, dvnamesvar |
---|
1838 | |
---|
1839 | def compute_WRFta(t, p, dimns, dimvns): |
---|
1840 | """ Function to compute WRF air temperature |
---|
1841 | t= orginal WRF temperature |
---|
1842 | p= original WRF pressure (P + PB) |
---|
1843 | formula: |
---|
1844 | temp = theta*(p/p0)**(R/Cp) |
---|
1845 | |
---|
1846 | """ |
---|
1847 | fname = 'compute_WRFta' |
---|
1848 | |
---|
1849 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1850 | |
---|
1851 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1852 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1853 | |
---|
1854 | return ta, dnamesvar, dvnamesvar |
---|
1855 | |
---|
1856 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
1857 | """ Function to compute WRF dew-point air temperature |
---|
1858 | t= orginal WRF temperature |
---|
1859 | p= original WRF pressure (P + PB) |
---|
1860 | formula: |
---|
1861 | temp = theta*(p/p0)**(R/Cp) |
---|
1862 | |
---|
1863 | """ |
---|
1864 | fname = 'compute_WRFtd' |
---|
1865 | |
---|
1866 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1867 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1868 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1869 | |
---|
1870 | rh = qv/data2 |
---|
1871 | |
---|
1872 | pa = rh * data1 |
---|
1873 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1874 | |
---|
1875 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1876 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1877 | |
---|
1878 | return td, dnamesvar, dvnamesvar |
---|
1879 | |
---|
1880 | def compute_WRFwd(u, v, sina, cosa, dimns, dimvns): |
---|
1881 | """ Function to compute the wind direction |
---|
1882 | u= W-E wind direction [ms-1] |
---|
1883 | v= N-S wind direction [ms-1] |
---|
1884 | sina= original WRF local sinus of map rotation |
---|
1885 | cosa= original WRF local cosinus of map rotation |
---|
1886 | """ |
---|
1887 | fname = 'compute_WRFwd' |
---|
1888 | var0 = u |
---|
1889 | var1 = v |
---|
1890 | var2 = sina |
---|
1891 | var3 = cosa |
---|
1892 | |
---|
1893 | # un-staggering variables |
---|
1894 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1895 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1896 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1897 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1898 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1899 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1900 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1901 | |
---|
1902 | for iz in range(var0.shape[1]): |
---|
1903 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1904 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1905 | |
---|
1906 | theta = np.arctan2(va,ua) |
---|
1907 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1908 | |
---|
1909 | wd = 360.*theta/(2.*np.pi) |
---|
1910 | |
---|
1911 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1912 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1913 | |
---|
1914 | return wd |
---|
1915 | |
---|
1916 | ####### Variables (as they arrive without dimensions staff) |
---|
1917 | |
---|
1918 | def var_hur(p, t, q): |
---|
1919 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula |
---|
1920 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1921 | [p] = pressure field (assuming in [Pa]) |
---|
1922 | [q] = mixing ratio in [kgkg-1] |
---|
1923 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
1924 | >>> print var_rh(101300., 290., 3.) |
---|
1925 | 0.250250256174 |
---|
1926 | """ |
---|
1927 | fname = 'var_hur' |
---|
1928 | |
---|
1929 | # Enthalpy of vaporization [Jkg-1] |
---|
1930 | L = 2.453*10.**6 |
---|
1931 | # Gas constant for water vapor [JK-1Kg-1] |
---|
1932 | Rv = 461.5 |
---|
1933 | |
---|
1934 | # Computing saturated pressure |
---|
1935 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1936 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
1937 | |
---|
1938 | # August - Roche - Magnus formula |
---|
1939 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
1940 | |
---|
1941 | # Saturated mixing ratio [g/kg] |
---|
1942 | ws = 0.622*es/(0.01*p-es) |
---|
1943 | |
---|
1944 | hur = q/(ws*1000.) |
---|
1945 | |
---|
1946 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
1947 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
1948 | |
---|
1949 | return hur |
---|
1950 | |
---|
1951 | def var_hur_Uhus(p, t, hus): |
---|
1952 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula using hus |
---|
1953 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1954 | [p] = pressure field (assuming in [Pa]) |
---|
1955 | [hus] = specific humidty [1] |
---|
1956 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
1957 | >>> print var_rh(101300., 290., 3.) |
---|
1958 | 0.250250256174 |
---|
1959 | """ |
---|
1960 | fname = 'var_hur_Uhus' |
---|
1961 | |
---|
1962 | # Enthalpy of vaporization [Jkg-1] |
---|
1963 | L = 2.453*10.**6 |
---|
1964 | # Gas constant for water vapor [JK-1Kg-1] |
---|
1965 | Rv = 461.5 |
---|
1966 | |
---|
1967 | # Computing saturated pressure |
---|
1968 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1969 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
1970 | |
---|
1971 | # August - Roche - Magnus formula |
---|
1972 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
1973 | |
---|
1974 | # Saturated mixing ratio [g/kg] |
---|
1975 | ws = 0.622*es/(0.01*p-es) |
---|
1976 | |
---|
1977 | # Mixing ratio |
---|
1978 | q = hus/(1.+hus) |
---|
1979 | |
---|
1980 | hur = q/ws |
---|
1981 | |
---|
1982 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
1983 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
1984 | |
---|
1985 | return hur |
---|
1986 | |
---|
1987 | def var_td(t, p, qv): |
---|
1988 | """ Function to compute dew-point air temperature from temperature and pressure values |
---|
1989 | t= temperature [K] |
---|
1990 | p= pressure (Pa) |
---|
1991 | formula: |
---|
1992 | temp = theta*(p/p0)**(R/Cp) |
---|
1993 | |
---|
1994 | """ |
---|
1995 | fname = 'compute_td' |
---|
1996 | |
---|
1997 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1998 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1999 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
2000 | |
---|
2001 | rh = qv/data2 |
---|
2002 | |
---|
2003 | pa = rh * data1 |
---|
2004 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
2005 | |
---|
2006 | return td |
---|
2007 | |
---|
2008 | def var_td_Uhus(t, p, hus): |
---|
2009 | """ Function to compute dew-point air temperature from temperature and pressure values using hus |
---|
2010 | t= temperature [K] |
---|
2011 | hus= specific humidity [1] |
---|
2012 | formula: |
---|
2013 | temp = theta*(p/p0)**(R/Cp) |
---|
2014 | |
---|
2015 | """ |
---|
2016 | fname = 'compute_td' |
---|
2017 | |
---|
2018 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
2019 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
2020 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
2021 | |
---|
2022 | qv = hus/(1.+hus) |
---|
2023 | |
---|
2024 | rh = qv/data2 |
---|
2025 | |
---|
2026 | pa = rh * data1 |
---|
2027 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
2028 | |
---|
2029 | return td |
---|
2030 | |
---|
2031 | def var_wd(u, v): |
---|
2032 | """ Function to compute the wind direction |
---|
2033 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
2034 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
2035 | """ |
---|
2036 | fname = 'var_wd' |
---|
2037 | |
---|
2038 | theta = np.arctan2(v,u) |
---|
2039 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
2040 | |
---|
2041 | wd = 360.*theta/(2.*np.pi) |
---|
2042 | |
---|
2043 | return wd |
---|
2044 | |
---|
2045 | def var_ws(u, v): |
---|
2046 | """ Function to compute the wind speed |
---|
2047 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
2048 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
2049 | """ |
---|
2050 | fname = 'var_ws' |
---|
2051 | |
---|
2052 | ws = np.sqrt(u*u + v*v) |
---|
2053 | |
---|
2054 | return ws |
---|
2055 | |
---|
2056 | class C_diagnostic(object): |
---|
2057 | """ Class to compute generic variables |
---|
2058 | Cdiag: name of the diagnostic to compute |
---|
2059 | ncobj: netcdf object with data |
---|
2060 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
2061 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
2062 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
2063 | self.values = Values of the diagnostic |
---|
2064 | self.dims = Dimensions of the diagnostic |
---|
2065 | self.units = units of the diagnostic |
---|
2066 | self.incvars = list of variables from the input netCDF object |
---|
2067 | """ |
---|
2068 | def __init__(self, Cdiag, ncobj, sfcvars, vars3D, dictdims): |
---|
2069 | fname = 'C_diagnostic' |
---|
2070 | self.values = None |
---|
2071 | self.dims = None |
---|
2072 | self.incvars = ncobj.variables |
---|
2073 | self.units = None |
---|
2074 | |
---|
2075 | if Cdiag == 'hur': |
---|
2076 | """ Computing relative humidity |
---|
2077 | """ |
---|
2078 | vn = 'hur' |
---|
2079 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
2080 | for v3D in CF3Dvars: |
---|
2081 | if not vars3D.has_key(v3D): |
---|
2082 | print gen.errormsg |
---|
2083 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2084 | "' attribution to compute '" + vn + "' !!" |
---|
2085 | print ' Equivalence of 3D variables provided _______' |
---|
2086 | gen.printing_dictionary(vars3D) |
---|
2087 | quit(-1) |
---|
2088 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2089 | print gen.errormsg |
---|
2090 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2091 | "' in input file to compute '" + vn + "' !!" |
---|
2092 | print ' available variables:', self.incvars.keys() |
---|
2093 | print ' looking for variables _______' |
---|
2094 | gen.printing_dictionary(vars3D) |
---|
2095 | quit(-1) |
---|
2096 | |
---|
2097 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2098 | p = ncobj.variables[vars3D['plev']][:] |
---|
2099 | q = ncobj.variables[vars3D['q']][:] |
---|
2100 | |
---|
2101 | if len(ta.shape) != len(p.shape): |
---|
2102 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2103 | |
---|
2104 | self.values = var_hur(p, ta, q) |
---|
2105 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2106 | dictdims['lon']] |
---|
2107 | self.units = '1' |
---|
2108 | |
---|
2109 | if Cdiag == 'hur_Uhus': |
---|
2110 | """ Computing relative humidity using hus |
---|
2111 | """ |
---|
2112 | vn = 'hur' |
---|
2113 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
2114 | for v3D in CF3Dvars: |
---|
2115 | if not vars3D.has_key(v3D): |
---|
2116 | print gen.errormsg |
---|
2117 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2118 | "' attribution to compute '" + vn + "' !!" |
---|
2119 | print ' Equivalence of 3D variables provided _______' |
---|
2120 | gen.printing_dictionary(vars3D) |
---|
2121 | quit(-1) |
---|
2122 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2123 | print gen.errormsg |
---|
2124 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2125 | "' in input file to compute '" + vn + "' !!" |
---|
2126 | print ' available variables:', self.incvars.keys() |
---|
2127 | print ' looking for variables _______' |
---|
2128 | gen.printing_dictionary(vars3D) |
---|
2129 | quit(-1) |
---|
2130 | |
---|
2131 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2132 | p = ncobj.variables[vars3D['plev']][:] |
---|
2133 | hus = ncobj.variables[vars3D['hus']][:] |
---|
2134 | |
---|
2135 | if len(ta.shape) != len(p.shape): |
---|
2136 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2137 | |
---|
2138 | self.values = var_hur_Uhus(p, ta, hus) |
---|
2139 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2140 | dictdims['lon']] |
---|
2141 | self.units = '1' |
---|
2142 | |
---|
2143 | elif Cdiag == 'td': |
---|
2144 | """ Computing dew-point temperature |
---|
2145 | """ |
---|
2146 | vn = 'td' |
---|
2147 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
2148 | for v3D in CF3Dvars: |
---|
2149 | if not vars3D.has_key(v3D): |
---|
2150 | print gen.errormsg |
---|
2151 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2152 | "' attribution to compute '" + vn + "' !!" |
---|
2153 | print ' Equivalence of 3D variables provided _______' |
---|
2154 | gen.printing_dictionary(vars3D) |
---|
2155 | quit(-1) |
---|
2156 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2157 | print gen.errormsg |
---|
2158 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2159 | "' in input file to compute '" + vn + "' !!" |
---|
2160 | print ' available variables:', self.incvars.keys() |
---|
2161 | print ' looking for variables _______' |
---|
2162 | gen.printing_dictionary(vars3D) |
---|
2163 | quit(-1) |
---|
2164 | |
---|
2165 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2166 | p = ncobj.variables[vars3D['plev']][:] |
---|
2167 | q = ncobj.variables[vars3D['q']][:] |
---|
2168 | |
---|
2169 | if len(ta.shape) != len(p.shape): |
---|
2170 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2171 | |
---|
2172 | self.values = var_td(ta, p, q) |
---|
2173 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2174 | dictdims['lon']] |
---|
2175 | self.units = 'K' |
---|
2176 | |
---|
2177 | elif Cdiag == 'td_Uhus': |
---|
2178 | """ Computing dew-point temperature |
---|
2179 | """ |
---|
2180 | vn = 'td' |
---|
2181 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
2182 | for v3D in CF3Dvars: |
---|
2183 | if not vars3D.has_key(v3D): |
---|
2184 | print gen.errormsg |
---|
2185 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2186 | "' attribution to compute '" + vn + "' !!" |
---|
2187 | print ' Equivalence of 3D variables provided _______' |
---|
2188 | gen.printing_dictionary(vars3D) |
---|
2189 | quit(-1) |
---|
2190 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2191 | print gen.errormsg |
---|
2192 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2193 | "' in input file to compute '" + vn + "' !!" |
---|
2194 | print ' available variables:', self.incvars.keys() |
---|
2195 | print ' looking for variables _______' |
---|
2196 | gen.printing_dictionary(vars3D) |
---|
2197 | quit(-1) |
---|
2198 | |
---|
2199 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2200 | p = ncobj.variables[vars3D['plev']][:] |
---|
2201 | hus = ncobj.variables[vars3D['hus']][:] |
---|
2202 | |
---|
2203 | if len(ta.shape) != len(p.shape): |
---|
2204 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2205 | |
---|
2206 | self.values = var_td_Uhus(ta, p, hus) |
---|
2207 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2208 | dictdims['lon']] |
---|
2209 | self.units = 'K' |
---|
2210 | |
---|
2211 | elif Cdiag == 'wd': |
---|
2212 | """ Computing wind direction |
---|
2213 | """ |
---|
2214 | vn = 'wd' |
---|
2215 | CF3Dvars = ['ua', 'va'] |
---|
2216 | for v3D in CF3Dvars: |
---|
2217 | if not vars3D.has_key(v3D): |
---|
2218 | print gen.errormsg |
---|
2219 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2220 | "self.' attribution to compute '" + vn + "' !!" |
---|
2221 | print ' Equivalence of 3D variables provided _______' |
---|
2222 | gen.printing_dictionary(vars3D) |
---|
2223 | quit(-1) |
---|
2224 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2225 | print gen.errormsg |
---|
2226 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2227 | "' in input file to compute '" + vn + "' !!" |
---|
2228 | print ' available variables:', self.incvars.keys() |
---|
2229 | print ' looking for variables _______' |
---|
2230 | gen.printing_dictionary(vars3D) |
---|
2231 | quit(-1) |
---|
2232 | |
---|
2233 | ua = ncobj.variables[vars3D['ua']][:] |
---|
2234 | va = ncobj.variables[vars3D['va']][:] |
---|
2235 | |
---|
2236 | self.values = var_wd(ua, va) |
---|
2237 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2238 | dictdims['lon']] |
---|
2239 | self.units = 'degree' |
---|
2240 | |
---|
2241 | elif Cdiag == 'ws': |
---|
2242 | """ Computing wind speed |
---|
2243 | """ |
---|
2244 | vn = 'ws' |
---|
2245 | CF3Dvars = ['ua', 'va'] |
---|
2246 | for v3D in CF3Dvars: |
---|
2247 | if not vars3D.has_key(v3D): |
---|
2248 | print gen.errormsg |
---|
2249 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2250 | "' attribution to compute '" + vn + "' !!" |
---|
2251 | print ' Equivalence of 3D variables provided _______' |
---|
2252 | gen.printing_dictionary(vars3D) |
---|
2253 | quit(-1) |
---|
2254 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2255 | print gen.errormsg |
---|
2256 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2257 | "' in input file to compute '" + vn + "' !!" |
---|
2258 | print ' available variables:', self.incvars.keys() |
---|
2259 | print ' looking for variables _______' |
---|
2260 | gen.printing_dictionary(vars3D) |
---|
2261 | quit(-1) |
---|
2262 | |
---|
2263 | ua = ncobj.variables[vars3D['ua']][:] |
---|
2264 | va = ncobj.variables[vars3D['va']][:] |
---|
2265 | |
---|
2266 | self.values = var_ws(ua, va) |
---|
2267 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2268 | dictdims['lon']] |
---|
2269 | self.units = ncobj.variables[vars3D['ua']].units |
---|
2270 | |
---|
2271 | else: |
---|
2272 | print gen.errormsg |
---|
2273 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
2274 | print ' available ones:', Cavailablediags |
---|
2275 | quit(-1) |
---|
2276 | |
---|
2277 | class W_diagnostic(object): |
---|
2278 | """ Class to compute WRF diagnostics variables |
---|
2279 | Wdiag: name of the diagnostic to compute |
---|
2280 | ncobj: netcdf object with data |
---|
2281 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
2282 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
2283 | indims: list of dimensions inside file |
---|
2284 | invardims: list of dimension-variables inside file |
---|
2285 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
2286 | self.values = Values of the diagnostic |
---|
2287 | self.dims = Dimensions of the diagnostic |
---|
2288 | self.units = units of the diagnostic |
---|
2289 | self.incvars = list of variables from the input netCDF object |
---|
2290 | """ |
---|
2291 | def __init__(self, Wdiag, ncobj, sfcvars, vars3D, indims, invardims, dictdims): |
---|
2292 | fname = 'W_diagnostic' |
---|
2293 | |
---|
2294 | self.values = None |
---|
2295 | self.dims = None |
---|
2296 | self.incvars = ncobj.variables |
---|
2297 | self.units = None |
---|
2298 | |
---|
2299 | if Wdiag == 'hur': |
---|
2300 | """ Computing relative humidity |
---|
2301 | """ |
---|
2302 | vn = 'hur' |
---|
2303 | CF3Dvars = ['ta', 'hus'] |
---|
2304 | for v3D in CF3Dvars: |
---|
2305 | if not vars3D.has_key(v3D): |
---|
2306 | print gen.errormsg |
---|
2307 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2308 | "' attribution to compute '" + vn + "' !!" |
---|
2309 | print ' Equivalence of 3D variables provided _______' |
---|
2310 | gen.printing_dictionary(vars3D) |
---|
2311 | quit(-1) |
---|
2312 | |
---|
2313 | ta = ncobj.variables['T'][:] |
---|
2314 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2315 | hur = ncobj.variables['QVAPOR'][:] |
---|
2316 | |
---|
2317 | vals, dims, vdims = compute_WRFhur(ta, p, hur, indims, invardims) |
---|
2318 | self.values = vals |
---|
2319 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2320 | dictdims['lon']] |
---|
2321 | self.units = '1' |
---|
2322 | |
---|
2323 | elif Wdiag == 'p': |
---|
2324 | """ Computing air pressure |
---|
2325 | """ |
---|
2326 | vn = 'p' |
---|
2327 | |
---|
2328 | self.values = ncobj.variables['PB'][:] + ncobj.variables['P'][:] |
---|
2329 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2330 | dictdims['lon']] |
---|
2331 | self.units = ncobj.variables['PB'].units |
---|
2332 | |
---|
2333 | elif Wdiag == 'ta': |
---|
2334 | """ Computing air temperature |
---|
2335 | """ |
---|
2336 | vn = 'ta' |
---|
2337 | CF3Dvars = ['ta'] |
---|
2338 | for v3D in CF3Dvars: |
---|
2339 | if not vars3D.has_key(v3D): |
---|
2340 | print gen.errormsg |
---|
2341 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2342 | "' attribution to compute '" + vn + "' !!" |
---|
2343 | print ' Equivalence of 3D variables provided _______' |
---|
2344 | gen.printing_dictionary(vars3D) |
---|
2345 | quit(-1) |
---|
2346 | |
---|
2347 | ta = ncobj.variables['T'][:] |
---|
2348 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2349 | |
---|
2350 | vals, dims, vdims = compute_WRFta(ta, p, indims, invardims) |
---|
2351 | self.values = vals |
---|
2352 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2353 | dictdims['lon']] |
---|
2354 | self.units = 'K' |
---|
2355 | |
---|
2356 | elif Wdiag == 'td': |
---|
2357 | """ Computing dew-point temperature |
---|
2358 | """ |
---|
2359 | vn = 'td' |
---|
2360 | CF3Dvars = ['ta', 'hus'] |
---|
2361 | for v3D in CF3Dvars: |
---|
2362 | if not vars3D.has_key(v3D): |
---|
2363 | print gen.errormsg |
---|
2364 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2365 | "' attribution to compute '" + vn + "' !!" |
---|
2366 | print ' Equivalence of 3D variables provided _______' |
---|
2367 | gen.printing_dictionary(vars3D) |
---|
2368 | quit(-1) |
---|
2369 | |
---|
2370 | ta = ncobj.variables['T'][:] |
---|
2371 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2372 | hus = ncobj.variables['QVAPOR'][:] |
---|
2373 | |
---|
2374 | vals, dims, vdims = compute_WRFtd(ta, p, hus, indims, invardims) |
---|
2375 | self.values = vals |
---|
2376 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2377 | dictdims['lon']] |
---|
2378 | self.units = 'K' |
---|
2379 | |
---|
2380 | elif Wdiag == 'ua': |
---|
2381 | """ Computing x-wind |
---|
2382 | """ |
---|
2383 | vn = 'ua' |
---|
2384 | CF3Dvars = ['ua', 'va'] |
---|
2385 | for v3D in CF3Dvars: |
---|
2386 | if not vars3D.has_key(v3D): |
---|
2387 | print gen.errormsg |
---|
2388 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2389 | "' attribution to compute '" + vn + "' !!" |
---|
2390 | print ' Equivalence of 3D variables provided _______' |
---|
2391 | gen.printing_dictionary(vars3D) |
---|
2392 | quit(-1) |
---|
2393 | |
---|
2394 | ua = ncobj.variables['U'][:] |
---|
2395 | va = ncobj.variables['V'][:] |
---|
2396 | sina = ncobj.variables['SINALPHA'][:] |
---|
2397 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2398 | |
---|
2399 | vals, dims, vdims = compute_WRFua(ua, va, sina, cosa, indims, invardims) |
---|
2400 | self.values = vals |
---|
2401 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2402 | dictdims['lon']] |
---|
2403 | self.units = ncobj.variables['U'].units |
---|
2404 | |
---|
2405 | elif Wdiag == 'uas': |
---|
2406 | """ Computing 10m x-wind |
---|
2407 | """ |
---|
2408 | vn = 'uas' |
---|
2409 | CFsfcvars = ['uas', 'vas'] |
---|
2410 | for vsf in CFsfcvars: |
---|
2411 | if not sfcvars.has_key(vsf): |
---|
2412 | print gen.errormsg |
---|
2413 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
2414 | "' attribution to compute '" + vn + "' !!" |
---|
2415 | print ' Equivalence of sfc variables provided _______' |
---|
2416 | gen.printing_dictionary(sfcvars) |
---|
2417 | quit(-1) |
---|
2418 | |
---|
2419 | uas = ncobj.variables['U10'][:] |
---|
2420 | vas = ncobj.variables['V10'][:] |
---|
2421 | sina = ncobj.variables['SINALPHA'][:] |
---|
2422 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2423 | |
---|
2424 | vals,dims,vdims = compute_WRFuas(uas, vas, sina, cosa, indims, invardims) |
---|
2425 | self.values = vals |
---|
2426 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2427 | dictdims['lon']] |
---|
2428 | self.units = ncobj.variables['U10'].units |
---|
2429 | |
---|
2430 | elif Wdiag == 'va': |
---|
2431 | """ Computing y-wind |
---|
2432 | """ |
---|
2433 | vn = 'ua' |
---|
2434 | CF3Dvars = ['ua', 'va'] |
---|
2435 | for v3D in CF3Dvars: |
---|
2436 | if not vars3D.has_key(v3D): |
---|
2437 | print gen.errormsg |
---|
2438 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2439 | "' attribution to compute '" + vn + "' !!" |
---|
2440 | print ' Equivalence of 3D variables provided _______' |
---|
2441 | gen.printing_dictionary(vars3D) |
---|
2442 | quit(-1) |
---|
2443 | |
---|
2444 | ua = ncobj.variables['U'][:] |
---|
2445 | va = ncobj.variables['V'][:] |
---|
2446 | sina = ncobj.variables['SINALPHA'][:] |
---|
2447 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2448 | |
---|
2449 | vals, dims, vdims = compute_WRFva(ua, va, sina, cosa, indims, invardims) |
---|
2450 | self.values = vals |
---|
2451 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2452 | dictdims['lon']] |
---|
2453 | self.units = ncobj.variables['U'].units |
---|
2454 | |
---|
2455 | elif Wdiag == 'vas': |
---|
2456 | """ Computing 10m y-wind |
---|
2457 | """ |
---|
2458 | vn = 'uas' |
---|
2459 | CFsfcvars = ['uas', 'vas'] |
---|
2460 | for vsf in CFsfcvars: |
---|
2461 | if not sfcvars.has_key(vsf): |
---|
2462 | print gen.errormsg |
---|
2463 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
2464 | "' attribution to compute '" + vn + "' !!" |
---|
2465 | print ' Equivalence of sfc variables provided _______' |
---|
2466 | gen.printing_dictionary(sfcvars) |
---|
2467 | quit(-1) |
---|
2468 | |
---|
2469 | uas = ncobj.variables['U10'][:] |
---|
2470 | vas = ncobj.variables['V10'][:] |
---|
2471 | sina = ncobj.variables['SINALPHA'][:] |
---|
2472 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2473 | |
---|
2474 | vals,dims,vdims = compute_WRFvas(uas, vas, sina, cosa, indims, invardims) |
---|
2475 | self.values = vals |
---|
2476 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2477 | dictdims['lon']] |
---|
2478 | self.units = ncobj.variables['U10'].units |
---|
2479 | |
---|
2480 | elif Wdiag == 'wd': |
---|
2481 | """ Computing wind direction |
---|
2482 | """ |
---|
2483 | vn = 'wd' |
---|
2484 | CF3Dvars = ['ua', 'va'] |
---|
2485 | for v3D in CF3Dvars: |
---|
2486 | if not vars3D.has_key(v3D): |
---|
2487 | print gen.errormsg |
---|
2488 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2489 | "' attribution to compute '" + vn + "' !!" |
---|
2490 | print ' Equivalence of 3D variables provided _______' |
---|
2491 | gen.printing_dictionary(vars3D) |
---|
2492 | quit(-1) |
---|
2493 | |
---|
2494 | ua = ncobj.variables['U10'][:] |
---|
2495 | va = ncobj.variables['V10'][:] |
---|
2496 | sina = ncobj.variables['SINALPHA'][:] |
---|
2497 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2498 | |
---|
2499 | vals, dims, vdims = compute_WRFwd(ua, va, sina, cosa, indims, invardims) |
---|
2500 | self.values = vals |
---|
2501 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2502 | dictdims['lon']] |
---|
2503 | self.units = 'degree' |
---|
2504 | |
---|
2505 | elif Wdiag == 'ws': |
---|
2506 | """ Computing wind speed |
---|
2507 | """ |
---|
2508 | vn = 'ws' |
---|
2509 | CF3Dvars = ['ua', 'va'] |
---|
2510 | for v3D in CF3Dvars: |
---|
2511 | if not vars3D.has_key(v3D): |
---|
2512 | print gen.errormsg |
---|
2513 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2514 | "' attribution to compute '" + vn + "' !!" |
---|
2515 | print ' Equivalence of 3D variables provided _______' |
---|
2516 | gen.printing_dictionary(vars3D) |
---|
2517 | quit(-1) |
---|
2518 | |
---|
2519 | ua = ncobj.variables['U10'][:] |
---|
2520 | va = ncobj.variables['V10'][:] |
---|
2521 | |
---|
2522 | self.values = var_ws(ua, va) |
---|
2523 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2524 | dictdims['lon']] |
---|
2525 | self.units = ncobj.variables['U10'].units |
---|
2526 | |
---|
2527 | elif Wdiag == 'zg': |
---|
2528 | """ Computing geopotential |
---|
2529 | """ |
---|
2530 | vn = 'zg' |
---|
2531 | |
---|
2532 | self.values = ncobj.variables['PHB'][:] + ncobj.variables['PH'][:] |
---|
2533 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2534 | dictdims['lon']] |
---|
2535 | self.units = ncobj.variables['PHB'].units |
---|
2536 | |
---|
2537 | else: |
---|
2538 | print gen.errormsg |
---|
2539 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
2540 | print ' available ones:', Wavailablediags |
---|
2541 | quit(-1) |
---|