1 | # Tools for the compute of diagnostics |
---|
2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
3 | |
---|
4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
5 | # compute_accum: Function to compute the accumulation of a variable |
---|
6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
14 | # compute_prw: Function to compute water vapour path (prw) |
---|
15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
16 | # compute_td: Function to compute the dew point temperature |
---|
17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
18 | # C_diagnostic: Class to compute generic variables |
---|
19 | # compute_wd: Function to compute the wind direction 3D |
---|
20 | # compute_wds: Function to compute the wind direction |
---|
21 | # compute_wss: Function to compute the wind speed |
---|
22 | # compute_WRFhur: Function to compute WRF relative humidity following Teten's equation |
---|
23 | # compute_WRFta: Function to compute WRF air temperature |
---|
24 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
25 | # compute_WRFua: Function to compute geographical rotated WRF x-wind |
---|
26 | # compute_WRFva: Function to compute geographical rotated WRF y-wind |
---|
27 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
28 | # compute_WRFuas: Function to compute geographical rotated WRF 2-meter x-wind |
---|
29 | # compute_WRFvas: Function to compute geographical rotated WRF 2-meter y-wind |
---|
30 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
31 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
32 | # Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction |
---|
33 | # following newmicro.F90 from LMDZ via Fortran subroutine |
---|
34 | # Forcompute_clt: Function to compute the total cloud fraction following |
---|
35 | # 'newmicro.F90' from LMDZ via a Fortran module |
---|
36 | # Forcompute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
37 | # Forcompute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
38 | # Forcompute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
39 | # Forcompute_potevap_orPM: Function to compute potential evapotranspiration following |
---|
40 | # Penman-Monteith formulation implemented in ORCHIDEE |
---|
41 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following |
---|
42 | # target_pressure value found in `p_interp.F' |
---|
43 | # Forcompute_zmla_gen: Function to compute the boundary layer height following a |
---|
44 | # generic method with Fortran |
---|
45 | # Forcompute_zwind: Function to compute the wind at a given height following the |
---|
46 | # power law method |
---|
47 | # Forcompute_zwind_log: Function to compute the wind at a given height following the |
---|
48 | # logarithmic law method |
---|
49 | # Forcompute_zwindMO: Function to compute the wind at a given height following the |
---|
50 | # Monin-Obukhov theory |
---|
51 | # W_diagnostic: Class to compute WRF diagnostics variables |
---|
52 | |
---|
53 | # Others just providing variable values |
---|
54 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
55 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
56 | # LMDZ using 1D vertical column values |
---|
57 | # var_hur: Function to compute relative humidity following 'August - Roche - Magnus' |
---|
58 | # formula |
---|
59 | # var_hur_Uhus: Function to compute relative humidity following 'August-Roche-Magnus' |
---|
60 | # formula using hus |
---|
61 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
62 | # var_td: Function to compute dew-point air temperature from temperature and pressure |
---|
63 | # values |
---|
64 | # var_td_Uhus: Function to compute dew-point air temperature from temperature and |
---|
65 | # pressure values using hus |
---|
66 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
67 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
68 | # var_wd: Function to compute the wind direction |
---|
69 | # var_wd: Function to compute the wind speed |
---|
70 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
71 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from |
---|
72 | # a a given variable |
---|
73 | |
---|
74 | import numpy as np |
---|
75 | from netCDF4 import Dataset as NetCDFFile |
---|
76 | import os |
---|
77 | import re |
---|
78 | import nc_var_tools as ncvar |
---|
79 | import generic_tools as gen |
---|
80 | import datetime as dtime |
---|
81 | import module_ForDiag as fdin |
---|
82 | import module_ForDef as fdef |
---|
83 | |
---|
84 | main = 'diag_tools.py' |
---|
85 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
86 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
87 | |
---|
88 | # Constants |
---|
89 | grav = fdef.module_definitions.grav |
---|
90 | |
---|
91 | # Available WRFiag |
---|
92 | Wavailablediags = ['hur', 'p', 'ta', 'td', 'ua', 'va', 'uas', 'vas', 'wd', 'ws', 'zg'] |
---|
93 | |
---|
94 | # Available General diagnostics |
---|
95 | Cavailablediags = ['hur', 'hur_Uhus', 'td', 'td_Uhus', 'wd', 'ws'] |
---|
96 | |
---|
97 | # Gneral information |
---|
98 | ## |
---|
99 | def reduce_spaces(string): |
---|
100 | """ Function to give words of a line of text removing any extra space |
---|
101 | """ |
---|
102 | values = string.replace('\n','').split(' ') |
---|
103 | vals = [] |
---|
104 | for val in values: |
---|
105 | if len(val) > 0: |
---|
106 | vals.append(val) |
---|
107 | |
---|
108 | return vals |
---|
109 | |
---|
110 | def variable_combo(varn,combofile): |
---|
111 | """ Function to provide variables combination from a given variable name |
---|
112 | varn= name of the variable |
---|
113 | combofile= ASCII file with the combination of variables |
---|
114 | [varn] [combo] |
---|
115 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
116 | [WRFdt] to get WRF time-step (from general attributes) |
---|
117 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
118 | deaccum@RAINNC@XTIME@prnc |
---|
119 | """ |
---|
120 | fname = 'variable_combo' |
---|
121 | |
---|
122 | if varn == 'h': |
---|
123 | print fname + '_____________________________________________________________' |
---|
124 | print variable_combo.__doc__ |
---|
125 | quit() |
---|
126 | |
---|
127 | if not os.path.isfile(combofile): |
---|
128 | print errormsg |
---|
129 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
130 | "' does not exist!!" |
---|
131 | quit(-1) |
---|
132 | |
---|
133 | objf = open(combofile, 'r') |
---|
134 | |
---|
135 | found = False |
---|
136 | for line in objf: |
---|
137 | linevals = reduce_spaces(line) |
---|
138 | varnf = linevals[0] |
---|
139 | combo = linevals[1].replace('\n','') |
---|
140 | if varn == varnf: |
---|
141 | found = True |
---|
142 | break |
---|
143 | |
---|
144 | if not found: |
---|
145 | print errormsg |
---|
146 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
147 | "' !!" |
---|
148 | combo='ERROR' |
---|
149 | |
---|
150 | objf.close() |
---|
151 | |
---|
152 | return combo |
---|
153 | |
---|
154 | # Mathematical operators |
---|
155 | ## |
---|
156 | def compute_accum(varv, dimns, dimvns): |
---|
157 | """ Function to compute the accumulation of a variable |
---|
158 | compute_accum(varv, dimnames, dimvns) |
---|
159 | [varv]= values to accum (assuming [t,]) |
---|
160 | [dimns]= list of the name of the dimensions of the [varv] |
---|
161 | [dimvns]= list of the name of the variables with the values of the |
---|
162 | dimensions of [varv] |
---|
163 | """ |
---|
164 | fname = 'compute_accum' |
---|
165 | |
---|
166 | deacdims = dimns[:] |
---|
167 | deacvdims = dimvns[:] |
---|
168 | |
---|
169 | slicei = [] |
---|
170 | slicee = [] |
---|
171 | |
---|
172 | Ndims = len(varv.shape) |
---|
173 | for iid in range(0,Ndims): |
---|
174 | slicei.append(slice(0,varv.shape[iid])) |
---|
175 | slicee.append(slice(0,varv.shape[iid])) |
---|
176 | |
---|
177 | slicee[0] = np.arange(varv.shape[0]) |
---|
178 | slicei[0] = np.arange(varv.shape[0]) |
---|
179 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
180 | |
---|
181 | vari = varv[tuple(slicei)] |
---|
182 | vare = varv[tuple(slicee)] |
---|
183 | |
---|
184 | ac = vari*0. |
---|
185 | for it in range(1,varv.shape[0]): |
---|
186 | ac[it,] = ac[it-1,] + vare[it,] |
---|
187 | |
---|
188 | return ac, deacdims, deacvdims |
---|
189 | |
---|
190 | def compute_deaccum(varv, dimns, dimvns): |
---|
191 | """ Function to compute the deaccumulation of a variable |
---|
192 | compute_deaccum(varv, dimnames, dimvns) |
---|
193 | [varv]= values to deaccum (assuming [t,]) |
---|
194 | [dimns]= list of the name of the dimensions of the [varv] |
---|
195 | [dimvns]= list of the name of the variables with the values of the |
---|
196 | dimensions of [varv] |
---|
197 | """ |
---|
198 | fname = 'compute_deaccum' |
---|
199 | |
---|
200 | deacdims = dimns[:] |
---|
201 | deacvdims = dimvns[:] |
---|
202 | |
---|
203 | slicei = [] |
---|
204 | slicee = [] |
---|
205 | |
---|
206 | Ndims = len(varv.shape) |
---|
207 | for iid in range(0,Ndims): |
---|
208 | slicei.append(slice(0,varv.shape[iid])) |
---|
209 | slicee.append(slice(0,varv.shape[iid])) |
---|
210 | |
---|
211 | slicee[0] = np.arange(varv.shape[0]) |
---|
212 | slicei[0] = np.arange(varv.shape[0]) |
---|
213 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
214 | |
---|
215 | vari = varv[tuple(slicei)] |
---|
216 | vare = varv[tuple(slicee)] |
---|
217 | |
---|
218 | deac = vare - vari |
---|
219 | |
---|
220 | return deac, deacdims, deacvdims |
---|
221 | |
---|
222 | def derivate_centered(var,dim,dimv): |
---|
223 | """ Function to compute the centered derivate of a given field |
---|
224 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
225 | [var]= variable |
---|
226 | [dim]= which dimension to compute the derivate |
---|
227 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
228 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
229 | [[ 0. 1. 2. 0.] |
---|
230 | [ 0. 5. 6. 0.] |
---|
231 | [ 0. 9. 10. 0.] |
---|
232 | [ 0. 13. 14. 0.]] |
---|
233 | """ |
---|
234 | |
---|
235 | fname = 'derivate_centered' |
---|
236 | |
---|
237 | vark = var.dtype |
---|
238 | |
---|
239 | if hasattr(dimv, "__len__"): |
---|
240 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
241 | if len(var.shape) != len(dimv.shape): |
---|
242 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
243 | if len(var.shape) - len(dimv.shape) == 1: |
---|
244 | for iz in range(var.shape[0]): |
---|
245 | dimvals[iz,] = dimv |
---|
246 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
247 | for it in range(var.shape[0]): |
---|
248 | for iz in range(var.shape[1]): |
---|
249 | dimvals[it,iz,] = dimv |
---|
250 | else: |
---|
251 | print errormsg |
---|
252 | print ' ' + fname + ': dimension difference between variable', \ |
---|
253 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
254 | ' not ready !!!' |
---|
255 | quit(-1) |
---|
256 | else: |
---|
257 | dimvals = dimv |
---|
258 | else: |
---|
259 | # dimension values are identical everywhere! |
---|
260 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
261 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
262 | |
---|
263 | derivate = np.zeros((var.shape), dtype=vark) |
---|
264 | if dim > len(var.shape) - 1: |
---|
265 | print errormsg |
---|
266 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
267 | 'shape:', var.shape,'!!!' |
---|
268 | quit(-1) |
---|
269 | |
---|
270 | slicebef = [] |
---|
271 | sliceaft = [] |
---|
272 | sliceder = [] |
---|
273 | |
---|
274 | for id in range(len(var.shape)): |
---|
275 | if id == dim: |
---|
276 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
277 | sliceaft.append(slice(2,var.shape[id])) |
---|
278 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
279 | else: |
---|
280 | slicebef.append(slice(0,var.shape[id])) |
---|
281 | sliceaft.append(slice(0,var.shape[id])) |
---|
282 | sliceder.append(slice(0,var.shape[id])) |
---|
283 | |
---|
284 | if hasattr(dimv, "__len__"): |
---|
285 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
286 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
287 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
288 | else: |
---|
289 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
290 | (2.*dimv) |
---|
291 | |
---|
292 | # print 'before________' |
---|
293 | # print var[tuple(slicebef)] |
---|
294 | |
---|
295 | # print 'after________' |
---|
296 | # print var[tuple(sliceaft)] |
---|
297 | |
---|
298 | return derivate |
---|
299 | |
---|
300 | def rotational_z(Vx,Vy,pos): |
---|
301 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
302 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
303 | [Vx]= Variable component x |
---|
304 | [Vy]= Variable component y |
---|
305 | [pos]= poisition of the grid points |
---|
306 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
307 | [[ 0. 1. 2. 0.] |
---|
308 | [ -4. 0. 0. -7.] |
---|
309 | [ -8. 0. 0. -11.] |
---|
310 | [ 0. 13. 14. 0.]] |
---|
311 | """ |
---|
312 | |
---|
313 | fname = 'rotational_z' |
---|
314 | |
---|
315 | ndims = len(Vx.shape) |
---|
316 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
317 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
318 | |
---|
319 | rot = rot1 - rot2 |
---|
320 | |
---|
321 | return rot |
---|
322 | |
---|
323 | # Diagnostics |
---|
324 | ## |
---|
325 | def Forcompute_cape_afwa(ta, hur, pa, zg, hgt, parcelm, dimns, dimvns): |
---|
326 | """ Function to compute the CAPE, CIN, ZLFC, PLFC, LI following WRF |
---|
327 | 'phys/module_diaf_afwa.F' methodology |
---|
328 | Forcompute_cape_afwa(ta, hur, pa, hgt, zsfc, parcelm, dimns, dimvns) |
---|
329 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
330 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
331 | [zg]= gopotential height (assuming [[t],z,y,x]) [gpm] |
---|
332 | [hgt]= topographical height (assuming [m] |
---|
333 | [parcelm]= method of air-parcel to use |
---|
334 | [dimns]= list of the name of the dimensions of [pa] |
---|
335 | [dimvns]= list of the name of the variables with the values of the |
---|
336 | dimensions of [pa] |
---|
337 | """ |
---|
338 | fname = 'Forcompute_cape_afwa' |
---|
339 | |
---|
340 | psldims = dimns[:] |
---|
341 | pslvdims = dimvns[:] |
---|
342 | |
---|
343 | if len(pa.shape) == 4: |
---|
344 | cape = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
345 | cin = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
346 | zlfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
347 | plfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
348 | li = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
349 | |
---|
350 | dx = pa.shape[3] |
---|
351 | dy = pa.shape[2] |
---|
352 | dz = pa.shape[1] |
---|
353 | dt = pa.shape[0] |
---|
354 | psldims.pop(1) |
---|
355 | pslvdims.pop(1) |
---|
356 | |
---|
357 | pcape,pcin,pzlfc,pplfc,pli= fdin.module_fordiagnostics.compute_cape_afwa4d( \ |
---|
358 | ta=ta[:].transpose(), hur=hur[:].transpose(), press=pa[:].transpose(), \ |
---|
359 | zg=zg[:].transpose(), hgt=hgt.transpose(), parcelmethod=parcelm, d1=dx, \ |
---|
360 | d2=dy, d3=dz, d4=dt) |
---|
361 | cape = pcape.transpose() |
---|
362 | cin = pcin.transpose() |
---|
363 | zlfc = pzlfc.transpose() |
---|
364 | plfc = pplfc.transpose() |
---|
365 | li = pli.transpose() |
---|
366 | else: |
---|
367 | print errormsg |
---|
368 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
369 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
370 | quit(-1) |
---|
371 | |
---|
372 | return cape, cin, zlfc, plfc, li, psldims, pslvdims |
---|
373 | |
---|
374 | |
---|
375 | |
---|
376 | def var_clt(cfra): |
---|
377 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
378 | LMDZ using 1D vertical column values |
---|
379 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
380 | """ |
---|
381 | ZEPSEC=1.0E-12 |
---|
382 | |
---|
383 | fname = 'var_clt' |
---|
384 | |
---|
385 | zclear = 1. |
---|
386 | zcloud = 0. |
---|
387 | |
---|
388 | dz = cfra.shape[0] |
---|
389 | for iz in range(dz): |
---|
390 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
391 | clt = 1. - zclear |
---|
392 | zcloud = cfra[iz] |
---|
393 | |
---|
394 | return clt |
---|
395 | |
---|
396 | def compute_clt(cldfra, dimns, dimvns): |
---|
397 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
398 | LMDZ |
---|
399 | compute_clt(cldfra, dimnames) |
---|
400 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
401 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
402 | [dimvns]= list of the name of the variables with the values of the |
---|
403 | dimensions of [cldfra] |
---|
404 | """ |
---|
405 | fname = 'compute_clt' |
---|
406 | |
---|
407 | cltdims = dimns[:] |
---|
408 | cltvdims = dimvns[:] |
---|
409 | |
---|
410 | if len(cldfra.shape) == 4: |
---|
411 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
412 | dtype=np.float) |
---|
413 | dx = cldfra.shape[3] |
---|
414 | dy = cldfra.shape[2] |
---|
415 | dz = cldfra.shape[1] |
---|
416 | dt = cldfra.shape[0] |
---|
417 | cltdims.pop(1) |
---|
418 | cltvdims.pop(1) |
---|
419 | |
---|
420 | for it in range(dt): |
---|
421 | for ix in range(dx): |
---|
422 | for iy in range(dy): |
---|
423 | zclear = 1. |
---|
424 | zcloud = 0. |
---|
425 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
426 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
427 | |
---|
428 | else: |
---|
429 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
430 | dx = cldfra.shape[2] |
---|
431 | dy = cldfra.shape[1] |
---|
432 | dy = cldfra.shape[0] |
---|
433 | cltdims.pop(0) |
---|
434 | cltvdims.pop(0) |
---|
435 | for ix in range(dx): |
---|
436 | for iy in range(dy): |
---|
437 | zclear = 1. |
---|
438 | zcloud = 0. |
---|
439 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
440 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
441 | |
---|
442 | return clt, cltdims, cltvdims |
---|
443 | |
---|
444 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
445 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
446 | LMDZ via a Fortran module |
---|
447 | compute_clt(cldfra, dimnames) |
---|
448 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
449 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
450 | [dimvns]= list of the name of the variables with the values of the |
---|
451 | dimensions of [cldfra] |
---|
452 | """ |
---|
453 | fname = 'Forcompute_clt' |
---|
454 | |
---|
455 | cltdims = dimns[:] |
---|
456 | cltvdims = dimvns[:] |
---|
457 | |
---|
458 | |
---|
459 | if len(cldfra.shape) == 4: |
---|
460 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
461 | dtype=np.float) |
---|
462 | dx = cldfra.shape[3] |
---|
463 | dy = cldfra.shape[2] |
---|
464 | dz = cldfra.shape[1] |
---|
465 | dt = cldfra.shape[0] |
---|
466 | cltdims.pop(1) |
---|
467 | cltvdims.pop(1) |
---|
468 | |
---|
469 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
470 | |
---|
471 | else: |
---|
472 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
473 | dx = cldfra.shape[2] |
---|
474 | dy = cldfra.shape[1] |
---|
475 | dy = cldfra.shape[0] |
---|
476 | cltdims.pop(0) |
---|
477 | cltvdims.pop(0) |
---|
478 | |
---|
479 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
480 | |
---|
481 | return clt, cltdims, cltvdims |
---|
482 | |
---|
483 | def var_cllmh(cfra, p): |
---|
484 | """ Fcuntion to compute cllmh on a 1D column |
---|
485 | """ |
---|
486 | |
---|
487 | fname = 'var_cllmh' |
---|
488 | |
---|
489 | ZEPSEC =1.0E-12 |
---|
490 | prmhc = 440.*100. |
---|
491 | prmlc = 680.*100. |
---|
492 | |
---|
493 | zclearl = 1. |
---|
494 | zcloudl = 0. |
---|
495 | zclearm = 1. |
---|
496 | zcloudm = 0. |
---|
497 | zclearh = 1. |
---|
498 | zcloudh = 0. |
---|
499 | |
---|
500 | dvz = cfra.shape[0] |
---|
501 | |
---|
502 | cllmh = np.ones((3), dtype=np.float) |
---|
503 | |
---|
504 | for iz in range(dvz): |
---|
505 | if p[iz] < prmhc: |
---|
506 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
507 | np.min([zcloudh,1.-ZEPSEC])) |
---|
508 | zcloudh = cfra[iz] |
---|
509 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
510 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
511 | np.min([zcloudm,1.-ZEPSEC])) |
---|
512 | zcloudm = cfra[iz] |
---|
513 | elif p[iz] >= prmlc: |
---|
514 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
515 | np.min([zcloudl,1.-ZEPSEC])) |
---|
516 | zcloudl = cfra[iz] |
---|
517 | |
---|
518 | cllmh = 1.- cllmh |
---|
519 | |
---|
520 | return cllmh |
---|
521 | |
---|
522 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
523 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
524 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
525 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
526 | [pres] = pressure field |
---|
527 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
528 | [dimvns]= list of the name of the variables with the values of the |
---|
529 | dimensions of [cldfra] |
---|
530 | """ |
---|
531 | fname = 'Forcompute_cllmh' |
---|
532 | |
---|
533 | cllmhdims = dimns[:] |
---|
534 | cllmhvdims = dimvns[:] |
---|
535 | |
---|
536 | if len(cldfra.shape) == 4: |
---|
537 | dx = cldfra.shape[3] |
---|
538 | dy = cldfra.shape[2] |
---|
539 | dz = cldfra.shape[1] |
---|
540 | dt = cldfra.shape[0] |
---|
541 | cllmhdims.pop(1) |
---|
542 | cllmhvdims.pop(1) |
---|
543 | |
---|
544 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
545 | |
---|
546 | else: |
---|
547 | dx = cldfra.shape[2] |
---|
548 | dy = cldfra.shape[1] |
---|
549 | dz = cldfra.shape[0] |
---|
550 | cllmhdims.pop(0) |
---|
551 | cllmhvdims.pop(0) |
---|
552 | |
---|
553 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
554 | |
---|
555 | return cllmh, cllmhdims, cllmhvdims |
---|
556 | |
---|
557 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
558 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
559 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
560 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
561 | [pres] = pressure field |
---|
562 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
563 | [dimvns]= list of the name of the variables with the values of the |
---|
564 | dimensions of [cldfra] |
---|
565 | """ |
---|
566 | fname = 'compute_cllmh' |
---|
567 | |
---|
568 | cllmhdims = dimns[:] |
---|
569 | cllmhvdims = dimvns[:] |
---|
570 | |
---|
571 | if len(cldfra.shape) == 4: |
---|
572 | dx = cldfra.shape[3] |
---|
573 | dy = cldfra.shape[2] |
---|
574 | dz = cldfra.shape[1] |
---|
575 | dt = cldfra.shape[0] |
---|
576 | cllmhdims.pop(1) |
---|
577 | cllmhvdims.pop(1) |
---|
578 | |
---|
579 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
580 | |
---|
581 | for it in range(dt): |
---|
582 | for ix in range(dx): |
---|
583 | for iy in range(dy): |
---|
584 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
585 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
586 | |
---|
587 | else: |
---|
588 | dx = cldfra.shape[2] |
---|
589 | dy = cldfra.shape[1] |
---|
590 | dz = cldfra.shape[0] |
---|
591 | cllmhdims.pop(0) |
---|
592 | cllmhvdims.pop(0) |
---|
593 | |
---|
594 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
595 | |
---|
596 | for ix in range(dx): |
---|
597 | for iy in range(dy): |
---|
598 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
599 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
600 | |
---|
601 | return cllmh, cllmhdims, cllmhvdims |
---|
602 | |
---|
603 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
604 | """ Function to compute cloud-ice water path (clivi) |
---|
605 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
606 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
607 | [dimns]= list of the name of the dimensions of [q] |
---|
608 | [dimvns]= list of the name of the variables with the values of the |
---|
609 | dimensions of [q] |
---|
610 | """ |
---|
611 | fname = 'compute_clivi' |
---|
612 | |
---|
613 | clividims = dimns[:] |
---|
614 | clivivdims = dimvns[:] |
---|
615 | |
---|
616 | if len(qtot.shape) == 4: |
---|
617 | clividims.pop(1) |
---|
618 | clivivdims.pop(1) |
---|
619 | else: |
---|
620 | clividims.pop(0) |
---|
621 | clivivdims.pop(0) |
---|
622 | |
---|
623 | data1 = dens*qtot |
---|
624 | clivi = np.sum(data1, axis=1) |
---|
625 | |
---|
626 | return clivi, clividims, clivivdims |
---|
627 | |
---|
628 | |
---|
629 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
630 | """ Function to compute condensed water path (clwvl) |
---|
631 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
632 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
633 | [dimns]= list of the name of the dimensions of [q] |
---|
634 | [dimvns]= list of the name of the variables with the values of the |
---|
635 | dimensions of [q] |
---|
636 | """ |
---|
637 | fname = 'compute_clwvl' |
---|
638 | |
---|
639 | clwvldims = dimns[:] |
---|
640 | clwvlvdims = dimvns[:] |
---|
641 | |
---|
642 | if len(qtot.shape) == 4: |
---|
643 | clwvldims.pop(1) |
---|
644 | clwvlvdims.pop(1) |
---|
645 | else: |
---|
646 | clwvldims.pop(0) |
---|
647 | clwvlvdims.pop(0) |
---|
648 | |
---|
649 | data1 = dens*qtot |
---|
650 | clwvl = np.sum(data1, axis=1) |
---|
651 | |
---|
652 | return clwvl, clwvldims, clwvlvdims |
---|
653 | |
---|
654 | def var_virtualTemp (temp,rmix): |
---|
655 | """ This function returns virtual temperature in K, |
---|
656 | temp: temperature [K] |
---|
657 | rmix: mixing ratio in [kgkg-1] |
---|
658 | """ |
---|
659 | |
---|
660 | fname = 'var_virtualTemp' |
---|
661 | |
---|
662 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
663 | |
---|
664 | return virtual |
---|
665 | |
---|
666 | def Forcompute_zint(var, zinterlev, zweights, dimns, dimvns): |
---|
667 | """ Function to compute a vertical integration of volumetric quantities |
---|
668 | Forcompute_mrso(smois, dsoil, dimns, dimvns) |
---|
669 | [var]= values (assuming [[t],z,y,x]) [volumetric units] |
---|
670 | [zinterlev]= depth of each layer (assuming [z]) [same z units as var] |
---|
671 | [zweights]= weights to apply to each level (just in case...) |
---|
672 | [dimns]= list of the name of the dimensions of [smois] |
---|
673 | [dimvns]= list of the name of the variables with the values of the |
---|
674 | dimensions of [smois] |
---|
675 | """ |
---|
676 | fname = 'Forcompute_zint' |
---|
677 | |
---|
678 | vardims = dimns[:] |
---|
679 | varvdims = dimvns[:] |
---|
680 | |
---|
681 | if len(var.shape) == 4: |
---|
682 | zint = np.zeros((var.shape[0],var.shape[2],var.shape[3]), dtype=np.float) |
---|
683 | dx = var.shape[3] |
---|
684 | dy = var.shape[2] |
---|
685 | dz = var.shape[1] |
---|
686 | dt = var.shape[0] |
---|
687 | vardims.pop(1) |
---|
688 | varvdims.pop(1) |
---|
689 | |
---|
690 | zintvart=fdin.module_fordiagnostics.compute_zint4d(var4d=var[:].transpose(), \ |
---|
691 | dlev=zinterlev[:].transpose(), zweight=zweights[:].transpose(), d1=dx, \ |
---|
692 | d2=dy, d3=dz, d4=dt) |
---|
693 | zintvar = zintvart.transpose() |
---|
694 | else: |
---|
695 | print errormsg |
---|
696 | print ' ' + fname + ': rank', len(var.shape), 'not ready !!' |
---|
697 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
698 | quit(-1) |
---|
699 | |
---|
700 | return zintvar, vardims, varvdims |
---|
701 | |
---|
702 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
703 | """ Function to compute mslp on a 1D column |
---|
704 | """ |
---|
705 | |
---|
706 | fname = 'var_mslp' |
---|
707 | |
---|
708 | N = 1.0 |
---|
709 | expon=287.04*.0065/9.81 |
---|
710 | pref = 40000. |
---|
711 | |
---|
712 | # First find where about 400 hPa is located |
---|
713 | dz=len(pres) |
---|
714 | |
---|
715 | kref = -1 |
---|
716 | pinc = pres[0] - pres[dz-1] |
---|
717 | |
---|
718 | if pinc < 0.: |
---|
719 | for iz in range(1,dz): |
---|
720 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
721 | kref = iz |
---|
722 | break |
---|
723 | else: |
---|
724 | for iz in range(dz-1): |
---|
725 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
726 | kref = iz |
---|
727 | break |
---|
728 | |
---|
729 | if kref == -1: |
---|
730 | print errormsg |
---|
731 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
732 | print ' values:',pres[:] |
---|
733 | quit(-1) |
---|
734 | |
---|
735 | mslp = 0. |
---|
736 | |
---|
737 | # We are below both the ground and the lowest data level. |
---|
738 | |
---|
739 | # First, find the model level that is closest to a "target" pressure |
---|
740 | # level, where the "target" pressure is delta-p less that the local |
---|
741 | # value of a horizontally smoothed surface pressure field. We use |
---|
742 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
743 | # passing through the temperature at this model level will be used |
---|
744 | # to define the temperature profile below ground. This is similar |
---|
745 | # to the Benjamin and Miller (1990) method, using |
---|
746 | # 700 hPa everywhere for the "target" pressure. |
---|
747 | |
---|
748 | # ptarget = psfc - 15000. |
---|
749 | ptarget = 70000. |
---|
750 | dpmin=1.e4 |
---|
751 | kupper = 0 |
---|
752 | if pinc > 0.: |
---|
753 | for iz in range(dz-1,0,-1): |
---|
754 | kupper = iz |
---|
755 | dp=np.abs( pres[iz] - ptarget ) |
---|
756 | if dp < dpmin: exit |
---|
757 | dpmin = np.min([dpmin, dp]) |
---|
758 | else: |
---|
759 | for iz in range(dz): |
---|
760 | kupper = iz |
---|
761 | dp=np.abs( pres[iz] - ptarget ) |
---|
762 | if dp < dpmin: exit |
---|
763 | dpmin = np.min([dpmin, dp]) |
---|
764 | |
---|
765 | pbot=np.max([pres[0], psfc]) |
---|
766 | # zbot=0. |
---|
767 | |
---|
768 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
769 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
770 | |
---|
771 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
772 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
773 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
774 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
775 | |
---|
776 | return mslp |
---|
777 | |
---|
778 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
779 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
780 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
781 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
782 | [psurface]= surface pressure field [Pa] |
---|
783 | [terrain]= topography [m] |
---|
784 | [temperature]= temperature [K] |
---|
785 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
786 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
787 | [dimvns]= list of the name of the variables with the values of the |
---|
788 | dimensions of [pres] |
---|
789 | """ |
---|
790 | |
---|
791 | fname = 'compute_mslp' |
---|
792 | |
---|
793 | mslpdims = list(dimns[:]) |
---|
794 | mslpvdims = list(dimvns[:]) |
---|
795 | |
---|
796 | if len(pressure.shape) == 4: |
---|
797 | mslpdims.pop(1) |
---|
798 | mslpvdims.pop(1) |
---|
799 | else: |
---|
800 | mslpdims.pop(0) |
---|
801 | mslpvdims.pop(0) |
---|
802 | |
---|
803 | if len(pressure.shape) == 4: |
---|
804 | dx = pressure.shape[3] |
---|
805 | dy = pressure.shape[2] |
---|
806 | dz = pressure.shape[1] |
---|
807 | dt = pressure.shape[0] |
---|
808 | |
---|
809 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
810 | |
---|
811 | # Terrain... to 2D ! |
---|
812 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
813 | if len(terrain.shape) == 3: |
---|
814 | terval = terrain[0,:,:] |
---|
815 | else: |
---|
816 | terval = terrain |
---|
817 | |
---|
818 | for ix in range(dx): |
---|
819 | for iy in range(dy): |
---|
820 | if terval[iy,ix] > 0.: |
---|
821 | for it in range(dt): |
---|
822 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
823 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
824 | qvapor[it,:,iy,ix]) |
---|
825 | |
---|
826 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
827 | else: |
---|
828 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
829 | |
---|
830 | else: |
---|
831 | dx = pressure.shape[2] |
---|
832 | dy = pressure.shape[1] |
---|
833 | dz = pressure.shape[0] |
---|
834 | |
---|
835 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
836 | |
---|
837 | # Terrain... to 2D ! |
---|
838 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
839 | if len(terrain.shape) == 3: |
---|
840 | terval = terrain[0,:,:] |
---|
841 | else: |
---|
842 | terval = terrain |
---|
843 | |
---|
844 | for ix in range(dx): |
---|
845 | for iy in range(dy): |
---|
846 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
847 | if terval[iy,ix] > 0.: |
---|
848 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
849 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
850 | else: |
---|
851 | mslpv[iy,ix] = psfc[iy,ix] |
---|
852 | |
---|
853 | return mslpv, mslpdims, mslpvdims |
---|
854 | |
---|
855 | def Forcompute_psl_ecmwf(ps, hgt, ta1, pa2, unpa1, dimns, dimvns): |
---|
856 | """ Function to compute the sea-level pressure following Mats Hamrud and Philippe Courtier [Pa] |
---|
857 | Forcompute_psl_ptarget(ps, hgt, ta1, pa2, unpa1, dimns, dimvns) |
---|
858 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
859 | [hgt]= opography (assuming [y,x]) [m] |
---|
860 | [ta1]= air-temperature values at first half-mass level (assuming [[t],y,x]) [K] |
---|
861 | [pa2]= pressure values at second full-mass levels (assuming [[t],y,x]) [Pa] |
---|
862 | [unpa1]= pressure values at first half-mass levels (assuming [[t],y,x]) [Pa] |
---|
863 | [dimns]= list of the name of the dimensions of [pa] |
---|
864 | [dimvns]= list of the name of the variables with the values of the |
---|
865 | dimensions of [pa] |
---|
866 | """ |
---|
867 | fname = 'Forcompute_psl_ecmwf' |
---|
868 | |
---|
869 | vardims = dimns[:] |
---|
870 | varvdims = dimvns[:] |
---|
871 | |
---|
872 | if len(pa2.shape) == 3: |
---|
873 | psl = np.zeros((pa2.shape[0],pa2.shape[1],pa2.shape[2]), dtype=np.float) |
---|
874 | dx = pa2.shape[2] |
---|
875 | dy = pa2.shape[1] |
---|
876 | dt = pa2.shape[0] |
---|
877 | pslt= fdin.module_fordiagnostics.compute_psl_ecmwf( ps=ps[:].transpose(), \ |
---|
878 | hgt=hgt[:].transpose(), t=ta1[:].transpose(), press=pa2[:].transpose(), \ |
---|
879 | unpress=unpa1[:].transpose(), d1=dx, d2=dy, d4=dt) |
---|
880 | psl = pslt.transpose() |
---|
881 | else: |
---|
882 | print errormsg |
---|
883 | print ' ' + fname + ': rank', len(pa2.shape), 'not ready !!' |
---|
884 | print ' it only computes 3D [t,y,x] rank values' |
---|
885 | quit(-1) |
---|
886 | |
---|
887 | return psl, vardims, varvdims |
---|
888 | |
---|
889 | def Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, target_pressure, dimns, dimvns): |
---|
890 | """ Function to compute the sea-level pressure following target_pressure value |
---|
891 | found in `p_interp.F' |
---|
892 | Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, dimns, dimvns) |
---|
893 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
894 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
895 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
896 | [hgt]= opography (assuming [y,x]) [m] |
---|
897 | [qv]= water vapour mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
898 | [dimns]= list of the name of the dimensions of [pa] |
---|
899 | [dimvns]= list of the name of the variables with the values of the |
---|
900 | dimensions of [pa] |
---|
901 | """ |
---|
902 | fname = 'Forcompute_psl_ptarget' |
---|
903 | |
---|
904 | psldims = dimns[:] |
---|
905 | pslvdims = dimvns[:] |
---|
906 | |
---|
907 | if len(pa.shape) == 4: |
---|
908 | psl = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
909 | dx = pa.shape[3] |
---|
910 | dy = pa.shape[2] |
---|
911 | dz = pa.shape[1] |
---|
912 | dt = pa.shape[0] |
---|
913 | psldims.pop(1) |
---|
914 | pslvdims.pop(1) |
---|
915 | |
---|
916 | pslt= fdin.module_fordiagnostics.compute_psl_ptarget4d2( \ |
---|
917 | press=pa[:].transpose(), ps=ps[:].transpose(), hgt=hgt[:].transpose(), \ |
---|
918 | ta=ta[:].transpose(), qv=qv[:].transpose(), ptarget=target_pressure, \ |
---|
919 | d1=dx, d2=dy, d3=dz, d4=dt) |
---|
920 | psl = pslt.transpose() |
---|
921 | else: |
---|
922 | print errormsg |
---|
923 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
924 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
925 | quit(-1) |
---|
926 | |
---|
927 | return psl, psldims, pslvdims |
---|
928 | |
---|
929 | def Forcompute_zmla_gen(theta, qratio, zpl, hgt, dimns, dimvns): |
---|
930 | """ Function to compute the boundary layer height following a generic method |
---|
931 | with Fortran |
---|
932 | Forcompute_zmla_gen(theta, qratio, zpl, hgt, zmla, dimns, dimvns) |
---|
933 | [theta]= potential air-temperature values (assuming [[t],z,y,x]) [K] |
---|
934 | [qratio]= water mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
935 | [zpl]= height from sea level (assuming [[t],z,y,x]) [m] |
---|
936 | [hgt]= topographical height (assuming [m] |
---|
937 | [zmla]= boundary layer height [m] |
---|
938 | [dimns]= list of the name of the dimensions of [theta] |
---|
939 | [dimvns]= list of the name of the variables with the values of the |
---|
940 | dimensions of [theta] |
---|
941 | """ |
---|
942 | fname = 'Forcompute_zmla_gen' |
---|
943 | |
---|
944 | zmladims = dimns[:] |
---|
945 | zmlavdims = dimvns[:] |
---|
946 | |
---|
947 | if len(theta.shape) == 4: |
---|
948 | zmla= np.zeros((theta.shape[0],theta.shape[2],theta.shape[3]), dtype=np.float) |
---|
949 | |
---|
950 | dx = theta.shape[3] |
---|
951 | dy = theta.shape[2] |
---|
952 | dz = theta.shape[1] |
---|
953 | dt = theta.shape[0] |
---|
954 | zmladims.pop(1) |
---|
955 | zmlavdims.pop(1) |
---|
956 | |
---|
957 | pzmla= fdin.module_fordiagnostics.compute_zmla_generic4d( \ |
---|
958 | tpot=theta[:].transpose(), qratio=qratio[:].transpose(), \ |
---|
959 | z=zpl[:].transpose(), hgt=hgt.transpose(), d1=dx, d2=dy, d3=dz, d4=dt) |
---|
960 | zmla = pzmla.transpose() |
---|
961 | else: |
---|
962 | print errormsg |
---|
963 | print ' ' + fname + ': rank', len(theta.shape), 'not ready !!' |
---|
964 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
965 | quit(-1) |
---|
966 | |
---|
967 | return zmla, zmladims, zmlavdims |
---|
968 | |
---|
969 | def Forcompute_zwind(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
970 | """ Function to compute the wind at a given height following the power law method |
---|
971 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
972 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
973 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
974 | [z]= height above surface [m] |
---|
975 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
976 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
977 | [sina]= local sine of map rotation [1.] |
---|
978 | [cosa]= local cosine of map rotation [1.] |
---|
979 | [zval]= desired height for winds [m] |
---|
980 | [dimns]= list of the name of the dimensions of [ua] |
---|
981 | [dimvns]= list of the name of the variables with the values of the |
---|
982 | dimensions of [ua] |
---|
983 | """ |
---|
984 | fname = 'Forcompute_zwind' |
---|
985 | |
---|
986 | vardims = dimns[:] |
---|
987 | varvdims = dimvns[:] |
---|
988 | |
---|
989 | if len(ua.shape) == 4: |
---|
990 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
991 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
992 | |
---|
993 | dx = ua.shape[3] |
---|
994 | dy = ua.shape[2] |
---|
995 | dz = ua.shape[1] |
---|
996 | dt = ua.shape[0] |
---|
997 | vardims.pop(1) |
---|
998 | varvdims.pop(1) |
---|
999 | |
---|
1000 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind4d(ua=ua.transpose(), \ |
---|
1001 | va=va[:].transpose(), z=z[:].transpose(), uas=uas.transpose(), \ |
---|
1002 | vas=vas.transpose(), sina=sina.transpose(), cosa=cosa.transpose(), \ |
---|
1003 | zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1004 | var1 = pvar1.transpose() |
---|
1005 | var2 = pvar2.transpose() |
---|
1006 | else: |
---|
1007 | print errormsg |
---|
1008 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
1009 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1010 | quit(-1) |
---|
1011 | |
---|
1012 | return var1, var2, vardims, varvdims |
---|
1013 | |
---|
1014 | def Forcompute_zwind_log(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
1015 | """ Function to compute the wind at a given height following the logarithmic law method |
---|
1016 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
1017 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1018 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
1019 | [z]= height above surface [m] |
---|
1020 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1021 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
1022 | [sina]= local sine of map rotation [1.] |
---|
1023 | [cosa]= local cosine of map rotation [1.] |
---|
1024 | [zval]= desired height for winds [m] |
---|
1025 | [dimns]= list of the name of the dimensions of [ua] |
---|
1026 | [dimvns]= list of the name of the variables with the values of the |
---|
1027 | dimensions of [ua] |
---|
1028 | """ |
---|
1029 | fname = 'Forcompute_zwind_log' |
---|
1030 | |
---|
1031 | vardims = dimns[:] |
---|
1032 | varvdims = dimvns[:] |
---|
1033 | |
---|
1034 | if len(ua.shape) == 4: |
---|
1035 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1036 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
1037 | |
---|
1038 | dx = ua.shape[3] |
---|
1039 | dy = ua.shape[2] |
---|
1040 | dz = ua.shape[1] |
---|
1041 | dt = ua.shape[0] |
---|
1042 | vardims.pop(1) |
---|
1043 | varvdims.pop(1) |
---|
1044 | |
---|
1045 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind_log4d( \ |
---|
1046 | ua=ua.transpose(), va=va[:].transpose(), z=z[:].transpose(), \ |
---|
1047 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
1048 | cosa=cosa.transpose(), zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
1049 | var1 = pvar1.transpose() |
---|
1050 | var2 = pvar2.transpose() |
---|
1051 | else: |
---|
1052 | print errormsg |
---|
1053 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
1054 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1055 | quit(-1) |
---|
1056 | |
---|
1057 | return var1, var2, vardims, varvdims |
---|
1058 | |
---|
1059 | def Forcompute_zwindMO(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
1060 | """ Function to compute the wind at a given height following the Monin-Obukhov theory |
---|
1061 | Forcompute_zwind(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns) |
---|
1062 | [ust]: u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
1063 | [znt]: thermal time-varying roughness length (assuming [[t],y,x]) [m] |
---|
1064 | [rmol]: inverse of Obukhov length (assuming [[t],y,x]) [m-1] |
---|
1065 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1066 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1067 | [sina]= local sine of map rotation [1.] |
---|
1068 | [cosa]= local cosine of map rotation [1.] |
---|
1069 | [zval]= desired height for winds [m] |
---|
1070 | [dimns]= list of the name of the dimensions of [uas] |
---|
1071 | [dimvns]= list of the name of the variables with the values of the |
---|
1072 | dimensions of [uas] |
---|
1073 | """ |
---|
1074 | fname = 'Forcompute_zwindMO' |
---|
1075 | |
---|
1076 | vardims = dimns[:] |
---|
1077 | varvdims = dimvns[:] |
---|
1078 | |
---|
1079 | if len(uas.shape) == 3: |
---|
1080 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1081 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1082 | |
---|
1083 | dx = uas.shape[2] |
---|
1084 | dy = uas.shape[1] |
---|
1085 | dt = uas.shape[0] |
---|
1086 | |
---|
1087 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_zwindmo3d( \ |
---|
1088 | ust=ust.transpose(), znt=znt[:].transpose(), rmol=rmol[:].transpose(), \ |
---|
1089 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
1090 | cosa=cosa.transpose(), newz=zval, d1=dx, d2=dy, d3=dt) |
---|
1091 | var1 = pvar1.transpose() |
---|
1092 | var2 = pvar2.transpose() |
---|
1093 | else: |
---|
1094 | print errormsg |
---|
1095 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
1096 | print ' it only computes 3D [t,y,x] rank values' |
---|
1097 | quit(-1) |
---|
1098 | |
---|
1099 | return var1, var2, vardims, varvdims |
---|
1100 | |
---|
1101 | def Forcompute_potevap_orPM(rho1, ust, uas, vas, tas, ps, qv1, dimns, dimvns): |
---|
1102 | """ Function to compute potential evapotranspiration following Penman-Monteith |
---|
1103 | formulation implemented in ORCHIDEE in src_sechiba/enerbil.f90 |
---|
1104 | Forcompute_potevap_orPM(rho1, uas, vas, tas, ps, qv2, qv1, dimns, dimvns) |
---|
1105 | [rho1]= air-density at the first layer (assuming [[t],y,m]) [kgm-3] |
---|
1106 | [ust]= u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
1107 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1108 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
1109 | [tas]= 2m air temperature [K] |
---|
1110 | [ps]= surface pressure [Pa] |
---|
1111 | [qv1]= mixing ratio at the first atmospheric layer [kgkg-1] |
---|
1112 | [dimns]= list of the name of the dimensions of [uas] |
---|
1113 | [dimvns]= list of the name of the variables with the values of the |
---|
1114 | dimensions of [uas] |
---|
1115 | """ |
---|
1116 | fname = 'Forcompute_potevap_orPM' |
---|
1117 | |
---|
1118 | vardims = dimns[:] |
---|
1119 | varvdims = dimvns[:] |
---|
1120 | |
---|
1121 | if len(uas.shape) == 3: |
---|
1122 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1123 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
1124 | |
---|
1125 | dx = uas.shape[2] |
---|
1126 | dy = uas.shape[1] |
---|
1127 | dt = uas.shape[0] |
---|
1128 | |
---|
1129 | pvar = fdin.module_fordiagnostics.compute_potevap_orpm3d( \ |
---|
1130 | rho1=rho1.transpose(), ust=ust.transpose(), uas=uas.transpose(), \ |
---|
1131 | vas=vas.transpose(), tas=tas.transpose(), ps=ps.transpose(), \ |
---|
1132 | qv1=qv1.transpose(), d1=dx, d2=dy, d3=dt) |
---|
1133 | var = pvar.transpose() |
---|
1134 | else: |
---|
1135 | print errormsg |
---|
1136 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
1137 | print ' it only computes 3D [t,y,x] rank values' |
---|
1138 | quit(-1) |
---|
1139 | |
---|
1140 | return var, vardims, varvdims |
---|
1141 | |
---|
1142 | def Forcompute_fog_K84(qcloud, qice, dimns, dimvns): |
---|
1143 | """ Function to compute fog and visibility following Kunkel, (1984) |
---|
1144 | Forcompute_fog_K84(qcloud, qice, dimns, dimvns) |
---|
1145 | [qcloud]= cloud mixing ratio [kgk-1] |
---|
1146 | [qice]= ice mixing ratio [kgk-1] |
---|
1147 | [dimns]= list of the name of the dimensions of [uas] |
---|
1148 | [dimvns]= list of the name of the variables with the values of the |
---|
1149 | dimensions of [qcloud] |
---|
1150 | """ |
---|
1151 | fname = 'Forcompute_fog_K84' |
---|
1152 | |
---|
1153 | vardims = dimns[:] |
---|
1154 | varvdims = dimvns[:] |
---|
1155 | |
---|
1156 | if len(qcloud.shape) == 4: |
---|
1157 | var= np.zeros((qcloud.shape[0],qcloud.shape[2],qcloud.shape[3]), dtype=np.float) |
---|
1158 | |
---|
1159 | dx = qcloud.shape[3] |
---|
1160 | dy = qcloud.shape[2] |
---|
1161 | dz = qcloud.shape[1] |
---|
1162 | dt = qcloud.shape[0] |
---|
1163 | vardims.pop(1) |
---|
1164 | varvdims.pop(1) |
---|
1165 | |
---|
1166 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_k84( \ |
---|
1167 | qc=qcloud[:,0,:,:].transpose(), qi=qice[:,0,:,:].transpose(), d1=dx, d2=dy,\ |
---|
1168 | d3=dt) |
---|
1169 | var1 = pvar1.transpose() |
---|
1170 | var2 = pvar2.transpose() |
---|
1171 | else: |
---|
1172 | print errormsg |
---|
1173 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
1174 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
1175 | quit(-1) |
---|
1176 | |
---|
1177 | return var1, var2, vardims, varvdims |
---|
1178 | |
---|
1179 | def Forcompute_fog_RUC(qvapor, temp, pres, dimns, dimvns): |
---|
1180 | """ Function to compute fog and visibility following RUC method Smirnova, (2000) |
---|
1181 | Forcompute_fog_RUC(qcloud, qice, dimns, dimvns) |
---|
1182 | [qvapor]= water vapor mixing ratio [kgk-1] |
---|
1183 | [temp]= temperature [K] |
---|
1184 | [pres]= pressure [Pa] |
---|
1185 | [dimns]= list of the name of the dimensions of [uas] |
---|
1186 | [dimvns]= list of the name of the variables with the values of the |
---|
1187 | dimensions of [qcloud] |
---|
1188 | """ |
---|
1189 | fname = 'Forcompute_fog_RUC' |
---|
1190 | |
---|
1191 | vardims = dimns[:] |
---|
1192 | varvdims = dimvns[:] |
---|
1193 | |
---|
1194 | if len(qvapor.shape) == 4: |
---|
1195 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
1196 | |
---|
1197 | dx = qvapor.shape[3] |
---|
1198 | dy = qvapor.shape[2] |
---|
1199 | dz = qvapor.shape[1] |
---|
1200 | dt = qvapor.shape[0] |
---|
1201 | vardims.pop(1) |
---|
1202 | varvdims.pop(1) |
---|
1203 | |
---|
1204 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
1205 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
1206 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
1207 | var1 = pvar1.transpose() |
---|
1208 | var2 = pvar2.transpose() |
---|
1209 | elif len(qvapor.shape) == 3: |
---|
1210 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
1211 | |
---|
1212 | dx = qvapor.shape[2] |
---|
1213 | dy = qvapor.shape[1] |
---|
1214 | dt = qvapor.shape[0] |
---|
1215 | |
---|
1216 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
1217 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
1218 | d1=dx, d2=dy, d3=dt) |
---|
1219 | var1 = pvar1.transpose() |
---|
1220 | var2 = pvar2.transpose() |
---|
1221 | else: |
---|
1222 | print errormsg |
---|
1223 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
1224 | print ' it only computes 4D [t,z,y,x] or 3D [t,z,y,x] rank values' |
---|
1225 | quit(-1) |
---|
1226 | |
---|
1227 | return var1, var2, vardims, varvdims |
---|
1228 | |
---|
1229 | def Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns): |
---|
1230 | """ Function to compute fog (vis < 1km) and visibility following FRAM-L 50 % prob |
---|
1231 | Gultepe, and Milbrandt, (2010), J. Appl. Meteor. Climatol. |
---|
1232 | Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns) |
---|
1233 | [qvapor]= vapor mixing ratio [kgk-1] |
---|
1234 | [temp]= temperature [K] |
---|
1235 | [pres]= pressure [Pa] |
---|
1236 | [dimns]= list of the name of the dimensions of [uas] |
---|
1237 | [dimvns]= list of the name of the variables with the values of the |
---|
1238 | dimensions of [qvapor] |
---|
1239 | """ |
---|
1240 | fname = 'Forcompute_fog_FRAML50' |
---|
1241 | |
---|
1242 | vardims = dimns[:] |
---|
1243 | varvdims = dimvns[:] |
---|
1244 | |
---|
1245 | if len(qvapor.shape) == 4: |
---|
1246 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
1247 | |
---|
1248 | dx = qvapor.shape[3] |
---|
1249 | dy = qvapor.shape[2] |
---|
1250 | dz = qvapor.shape[1] |
---|
1251 | dt = qvapor.shape[0] |
---|
1252 | vardims.pop(1) |
---|
1253 | varvdims.pop(1) |
---|
1254 | |
---|
1255 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
1256 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
1257 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
1258 | var1 = pvar1.transpose() |
---|
1259 | var2 = pvar2.transpose() |
---|
1260 | elif len(qvapor.shape) == 3: |
---|
1261 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
1262 | |
---|
1263 | dx = qvapor.shape[2] |
---|
1264 | dy = qvapor.shape[1] |
---|
1265 | dt = qvapor.shape[0] |
---|
1266 | |
---|
1267 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
1268 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
1269 | d1=dx, d2=dy, d3=dt) |
---|
1270 | var1 = pvar1.transpose() |
---|
1271 | var2 = pvar2.transpose() |
---|
1272 | else: |
---|
1273 | print errormsg |
---|
1274 | print ' ' + fname + ': rank', len(qvapor.shape), 'not ready !!' |
---|
1275 | print ' it only computes 4D [t,z,y,x] or 3D [t,y,x] rank values' |
---|
1276 | quit(-1) |
---|
1277 | |
---|
1278 | return var1, var2, vardims, varvdims |
---|
1279 | |
---|
1280 | ####### ###### ##### #### ### ## # END Fortran diagnostics |
---|
1281 | |
---|
1282 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
1283 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
1284 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
1285 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
1286 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
1287 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
1288 | [dimns]= list of the name of the dimensions of [q] |
---|
1289 | [dimvns]= list of the name of the variables with the values of the |
---|
1290 | dimensions of [q] |
---|
1291 | """ |
---|
1292 | fname = 'compute_OMEGAw' |
---|
1293 | |
---|
1294 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
1295 | g = 9.80665 # m/s2 |
---|
1296 | |
---|
1297 | wdims = dimns[:] |
---|
1298 | wvdims = dimvns[:] |
---|
1299 | |
---|
1300 | rho = p/(rgas*t) # density => kg/m3 |
---|
1301 | w = -omega/(rho*g) |
---|
1302 | |
---|
1303 | return w, wdims, wvdims |
---|
1304 | |
---|
1305 | def compute_prw(dens, q, dimns, dimvns): |
---|
1306 | """ Function to compute water vapour path (prw) |
---|
1307 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
1308 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
1309 | [dimns]= list of the name of the dimensions of [q] |
---|
1310 | [dimvns]= list of the name of the variables with the values of the |
---|
1311 | dimensions of [q] |
---|
1312 | """ |
---|
1313 | fname = 'compute_prw' |
---|
1314 | |
---|
1315 | prwdims = dimns[:] |
---|
1316 | prwvdims = dimvns[:] |
---|
1317 | |
---|
1318 | if len(q.shape) == 4: |
---|
1319 | prwdims.pop(1) |
---|
1320 | prwvdims.pop(1) |
---|
1321 | else: |
---|
1322 | prwdims.pop(0) |
---|
1323 | prwvdims.pop(0) |
---|
1324 | |
---|
1325 | data1 = dens*q |
---|
1326 | prw = np.sum(data1, axis=1) |
---|
1327 | |
---|
1328 | return prw, prwdims, prwvdims |
---|
1329 | |
---|
1330 | def compute_rh(p, t, q, dimns, dimvns): |
---|
1331 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
1332 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1333 | [p] = pressure field (assuming in [hPa]) |
---|
1334 | [q] = mixing ratio in [kgkg-1] |
---|
1335 | [dimns]= list of the name of the dimensions of [t] |
---|
1336 | [dimvns]= list of the name of the variables with the values of the |
---|
1337 | dimensions of [t] |
---|
1338 | """ |
---|
1339 | fname = 'compute_rh' |
---|
1340 | |
---|
1341 | rhdims = dimns[:] |
---|
1342 | rhvdims = dimvns[:] |
---|
1343 | |
---|
1344 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1345 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1346 | |
---|
1347 | rh = q/data2 |
---|
1348 | |
---|
1349 | return rh, rhdims, rhvdims |
---|
1350 | |
---|
1351 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
1352 | """ Function to compute the dew point temperature |
---|
1353 | [p]= pressure [Pa] |
---|
1354 | [temp]= temperature [C] |
---|
1355 | [qv]= mixing ratio [kgkg-1] |
---|
1356 | [dimns]= list of the name of the dimensions of [p] |
---|
1357 | [dimvns]= list of the name of the variables with the values of the |
---|
1358 | dimensions of [p] |
---|
1359 | """ |
---|
1360 | fname = 'compute_td' |
---|
1361 | |
---|
1362 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
1363 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
1364 | tk = temp |
---|
1365 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1366 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1367 | |
---|
1368 | rh = qv/data2 |
---|
1369 | |
---|
1370 | pa = rh * data1 |
---|
1371 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1372 | |
---|
1373 | tddims = dimns[:] |
---|
1374 | tdvdims = dimvns[:] |
---|
1375 | |
---|
1376 | return td, tddims, tdvdims |
---|
1377 | |
---|
1378 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
1379 | """ Function to copmute CFtimes from WRFtime variable |
---|
1380 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
1381 | tunitsval= CF time units |
---|
1382 | timewrfv= matrix string values of WRF 'Times' variable |
---|
1383 | """ |
---|
1384 | fname = 'var_WRFtime' |
---|
1385 | |
---|
1386 | yrref=refdate[0:4] |
---|
1387 | monref=refdate[4:6] |
---|
1388 | dayref=refdate[6:8] |
---|
1389 | horref=refdate[8:10] |
---|
1390 | minref=refdate[10:12] |
---|
1391 | secref=refdate[12:14] |
---|
1392 | |
---|
1393 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
1394 | ':' + secref |
---|
1395 | |
---|
1396 | dt = timewrfv.shape[0] |
---|
1397 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
1398 | |
---|
1399 | for it in range(dt): |
---|
1400 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
1401 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
1402 | |
---|
1403 | tunits = tunitsval + ' since ' + refdateS |
---|
1404 | |
---|
1405 | return WRFtime, tunits |
---|
1406 | |
---|
1407 | def turbulence_var(varv, dimvn, dimn): |
---|
1408 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
1409 | x*=<x^2>_t-(<X>_t)^2 |
---|
1410 | turbulence_var(varv,dimn) |
---|
1411 | varv= values of the variable |
---|
1412 | dimvn= names of the dimension of the variable |
---|
1413 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
1414 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
1415 | [[ 54. 54. 54.] |
---|
1416 | [ 54. 54. 54.] |
---|
1417 | [ 54. 54. 54.]] |
---|
1418 | """ |
---|
1419 | fname = 'turbulence_varv' |
---|
1420 | |
---|
1421 | timedimid = dimvn.index(dimn['T']) |
---|
1422 | |
---|
1423 | varv2 = varv*varv |
---|
1424 | |
---|
1425 | vartmean = np.mean(varv, axis=timedimid) |
---|
1426 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
1427 | |
---|
1428 | varvturb = var2tmean - (vartmean*vartmean) |
---|
1429 | |
---|
1430 | return varvturb |
---|
1431 | |
---|
1432 | def compute_turbulence(v, dimns, dimvns): |
---|
1433 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
1434 | x*=<x^2>_t-(<X>_t)^2 |
---|
1435 | [v]= variable (assuming [[t],z,y,x]) |
---|
1436 | [dimns]= list of the name of the dimensions of [v] |
---|
1437 | [dimvns]= list of the name of the variables with the values of the |
---|
1438 | dimensions of [v] |
---|
1439 | """ |
---|
1440 | fname = 'compute_turbulence' |
---|
1441 | |
---|
1442 | turbdims = dimns[:] |
---|
1443 | turbvdims = dimvns[:] |
---|
1444 | |
---|
1445 | turbdims.pop(0) |
---|
1446 | turbvdims.pop(0) |
---|
1447 | |
---|
1448 | v2 = v*v |
---|
1449 | |
---|
1450 | vartmean = np.mean(v, axis=0) |
---|
1451 | var2tmean = np.mean(v2, axis=0) |
---|
1452 | |
---|
1453 | turb = var2tmean - (vartmean*vartmean) |
---|
1454 | |
---|
1455 | return turb, turbdims, turbvdims |
---|
1456 | |
---|
1457 | def compute_wd(u, v, dimns, dimvns): |
---|
1458 | """ Function to compute the wind direction |
---|
1459 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1460 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1461 | [dimns]= list of the name of the dimensions of [u] |
---|
1462 | [dimvns]= list of the name of the variables with the values of the |
---|
1463 | dimensions of [u] |
---|
1464 | """ |
---|
1465 | fname = 'compute_wds' |
---|
1466 | |
---|
1467 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
1468 | theta = np.arctan2(v,u) |
---|
1469 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1470 | |
---|
1471 | var = 360.*theta/(2.*np.pi) |
---|
1472 | |
---|
1473 | vardims = dimns[:] |
---|
1474 | varvdims = dimvns[:] |
---|
1475 | |
---|
1476 | return var, vardims, varvdims |
---|
1477 | |
---|
1478 | def compute_wds(u, v, dimns, dimvns): |
---|
1479 | """ Function to compute the wind direction |
---|
1480 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1481 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1482 | [dimns]= list of the name of the dimensions of [u] |
---|
1483 | [dimvns]= list of the name of the variables with the values of the |
---|
1484 | dimensions of [u] |
---|
1485 | """ |
---|
1486 | fname = 'compute_wds' |
---|
1487 | |
---|
1488 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
1489 | theta = np.arctan2(v,u) |
---|
1490 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1491 | |
---|
1492 | wds = 360.*theta/(2.*np.pi) |
---|
1493 | |
---|
1494 | wdsdims = dimns[:] |
---|
1495 | wdsvdims = dimvns[:] |
---|
1496 | |
---|
1497 | return wds, wdsdims, wdsvdims |
---|
1498 | |
---|
1499 | def compute_wss(u, v, dimns, dimvns): |
---|
1500 | """ Function to compute the wind speed |
---|
1501 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1502 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1503 | [dimns]= list of the name of the dimensions of [u] |
---|
1504 | [dimvns]= list of the name of the variables with the values of the |
---|
1505 | dimensions of [u] |
---|
1506 | """ |
---|
1507 | fname = 'compute_wss' |
---|
1508 | |
---|
1509 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
1510 | wss = np.sqrt(u*u + v*v) |
---|
1511 | |
---|
1512 | wssdims = dimns[:] |
---|
1513 | wssvdims = dimvns[:] |
---|
1514 | |
---|
1515 | return wss, wssdims, wssvdims |
---|
1516 | |
---|
1517 | def timeunits_seconds(dtu): |
---|
1518 | """ Function to transform a time units to seconds |
---|
1519 | timeunits_seconds(timeuv) |
---|
1520 | [dtu]= time units value to transform in seconds |
---|
1521 | """ |
---|
1522 | fname='timunits_seconds' |
---|
1523 | |
---|
1524 | if dtu == 'years': |
---|
1525 | times = 365.*24.*3600. |
---|
1526 | elif dtu == 'weeks': |
---|
1527 | times = 7.*24.*3600. |
---|
1528 | elif dtu == 'days': |
---|
1529 | times = 24.*3600. |
---|
1530 | elif dtu == 'hours': |
---|
1531 | times = 3600. |
---|
1532 | elif dtu == 'minutes': |
---|
1533 | times = 60. |
---|
1534 | elif dtu == 'seconds': |
---|
1535 | times = 1. |
---|
1536 | elif dtu == 'miliseconds': |
---|
1537 | times = 1./1000. |
---|
1538 | else: |
---|
1539 | print errormsg |
---|
1540 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
1541 | quit(-1) |
---|
1542 | |
---|
1543 | return times |
---|
1544 | |
---|
1545 | def compute_WRFhur(t, p, qv, dimns, dimvns): |
---|
1546 | """ Function to compute WRF relative humidity following Teten's equation |
---|
1547 | t= orginal WRF temperature |
---|
1548 | p= original WRF pressure (P + PB) |
---|
1549 | formula: |
---|
1550 | temp = theta*(p/p0)**(R/Cp) |
---|
1551 | |
---|
1552 | """ |
---|
1553 | fname = 'compute_WRFtd' |
---|
1554 | |
---|
1555 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1556 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1557 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1558 | |
---|
1559 | rh = qv/data2 |
---|
1560 | |
---|
1561 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1562 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1563 | |
---|
1564 | return rh, dnamesvar, dvnamesvar |
---|
1565 | |
---|
1566 | def compute_WRFua(u, v, sina, cosa, dimns, dimvns): |
---|
1567 | """ Function to compute geographical rotated WRF 3D winds |
---|
1568 | u= orginal WRF x-wind |
---|
1569 | v= orginal WRF y-wind |
---|
1570 | sina= original WRF local sinus of map rotation |
---|
1571 | cosa= original WRF local cosinus of map rotation |
---|
1572 | formula: |
---|
1573 | ua = u*cosa-va*sina |
---|
1574 | va = u*sina+va*cosa |
---|
1575 | """ |
---|
1576 | fname = 'compute_WRFua' |
---|
1577 | |
---|
1578 | var0 = u |
---|
1579 | var1 = v |
---|
1580 | var2 = sina |
---|
1581 | var3 = cosa |
---|
1582 | |
---|
1583 | # un-staggering variables |
---|
1584 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1585 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1586 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1587 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1588 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1589 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1590 | |
---|
1591 | for iz in range(var0.shape[1]): |
---|
1592 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1593 | |
---|
1594 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1595 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1596 | |
---|
1597 | return ua, dnamesvar, dvnamesvar |
---|
1598 | |
---|
1599 | def compute_WRFva(u, v, sina, cosa, dimns, dimvns): |
---|
1600 | """ Function to compute geographical rotated WRF 3D winds |
---|
1601 | u= orginal WRF x-wind |
---|
1602 | v= orginal WRF y-wind |
---|
1603 | sina= original WRF local sinus of map rotation |
---|
1604 | cosa= original WRF local cosinus of map rotation |
---|
1605 | formula: |
---|
1606 | ua = u*cosa-va*sina |
---|
1607 | va = u*sina+va*cosa |
---|
1608 | """ |
---|
1609 | fname = 'compute_WRFva' |
---|
1610 | |
---|
1611 | var0 = u |
---|
1612 | var1 = v |
---|
1613 | var2 = sina |
---|
1614 | var3 = cosa |
---|
1615 | |
---|
1616 | # un-staggering variables |
---|
1617 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1618 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1619 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1620 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1621 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1622 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1623 | |
---|
1624 | for iz in range(var0.shape[1]): |
---|
1625 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1626 | |
---|
1627 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1628 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1629 | |
---|
1630 | return va, dnamesvar, dvnamesvar |
---|
1631 | |
---|
1632 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
1633 | """ Function to compute geographical rotated WRF 3D winds |
---|
1634 | u= orginal WRF x-wind |
---|
1635 | v= orginal WRF y-wind |
---|
1636 | sina= original WRF local sinus of map rotation |
---|
1637 | cosa= original WRF local cosinus of map rotation |
---|
1638 | formula: |
---|
1639 | ua = u*cosa-va*sina |
---|
1640 | va = u*sina+va*cosa |
---|
1641 | """ |
---|
1642 | fname = 'compute_WRFuava' |
---|
1643 | |
---|
1644 | var0 = u |
---|
1645 | var1 = v |
---|
1646 | var2 = sina |
---|
1647 | var3 = cosa |
---|
1648 | |
---|
1649 | # un-staggering variables |
---|
1650 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1651 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1652 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1653 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1654 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1655 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1656 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1657 | |
---|
1658 | for iz in range(var0.shape[1]): |
---|
1659 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1660 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1661 | |
---|
1662 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1663 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1664 | |
---|
1665 | return ua, va, dnamesvar, dvnamesvar |
---|
1666 | |
---|
1667 | def compute_WRFuas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1668 | """ Function to compute geographical rotated WRF 2-meter x-wind |
---|
1669 | u10= orginal WRF 10m x-wind |
---|
1670 | v10= orginal WRF 10m y-wind |
---|
1671 | sina= original WRF local sinus of map rotation |
---|
1672 | cosa= original WRF local cosinus of map rotation |
---|
1673 | formula: |
---|
1674 | uas = u10*cosa-va10*sina |
---|
1675 | vas = u10*sina+va10*cosa |
---|
1676 | """ |
---|
1677 | fname = 'compute_WRFuas' |
---|
1678 | |
---|
1679 | var0 = u10 |
---|
1680 | var1 = v10 |
---|
1681 | var2 = sina |
---|
1682 | var3 = cosa |
---|
1683 | |
---|
1684 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1685 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1686 | |
---|
1687 | uas = var0*var3 - var1*var2 |
---|
1688 | |
---|
1689 | dnamesvar = ['Time','south_north','west_east'] |
---|
1690 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1691 | |
---|
1692 | return uas, dnamesvar, dvnamesvar |
---|
1693 | |
---|
1694 | def compute_WRFvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1695 | """ Function to compute geographical rotated WRF 2-meter y-wind |
---|
1696 | u10= orginal WRF 10m x-wind |
---|
1697 | v10= orginal WRF 10m y-wind |
---|
1698 | sina= original WRF local sinus of map rotation |
---|
1699 | cosa= original WRF local cosinus of map rotation |
---|
1700 | formula: |
---|
1701 | uas = u10*cosa-va10*sina |
---|
1702 | vas = u10*sina+va10*cosa |
---|
1703 | """ |
---|
1704 | fname = 'compute_WRFvas' |
---|
1705 | |
---|
1706 | var0 = u10 |
---|
1707 | var1 = v10 |
---|
1708 | var2 = sina |
---|
1709 | var3 = cosa |
---|
1710 | |
---|
1711 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1712 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1713 | |
---|
1714 | vas = var0*var2 + var1*var3 |
---|
1715 | |
---|
1716 | dnamesvar = ['Time','south_north','west_east'] |
---|
1717 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1718 | |
---|
1719 | return vas, dnamesvar, dvnamesvar |
---|
1720 | |
---|
1721 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1722 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
1723 | u10= orginal WRF 10m x-wind |
---|
1724 | v10= orginal WRF 10m y-wind |
---|
1725 | sina= original WRF local sinus of map rotation |
---|
1726 | cosa= original WRF local cosinus of map rotation |
---|
1727 | formula: |
---|
1728 | uas = u10*cosa-va10*sina |
---|
1729 | vas = u10*sina+va10*cosa |
---|
1730 | """ |
---|
1731 | fname = 'compute_WRFuasvas' |
---|
1732 | |
---|
1733 | var0 = u10 |
---|
1734 | var1 = v10 |
---|
1735 | var2 = sina |
---|
1736 | var3 = cosa |
---|
1737 | |
---|
1738 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1739 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1740 | |
---|
1741 | uas = var0*var3 - var1*var2 |
---|
1742 | vas = var0*var2 + var1*var3 |
---|
1743 | |
---|
1744 | dnamesvar = ['Time','south_north','west_east'] |
---|
1745 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1746 | |
---|
1747 | return uas, vas, dnamesvar, dvnamesvar |
---|
1748 | |
---|
1749 | def compute_WRFta(t, p, dimns, dimvns): |
---|
1750 | """ Function to compute WRF air temperature |
---|
1751 | t= orginal WRF temperature |
---|
1752 | p= original WRF pressure (P + PB) |
---|
1753 | formula: |
---|
1754 | temp = theta*(p/p0)**(R/Cp) |
---|
1755 | |
---|
1756 | """ |
---|
1757 | fname = 'compute_WRFta' |
---|
1758 | |
---|
1759 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1760 | |
---|
1761 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1762 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1763 | |
---|
1764 | return ta, dnamesvar, dvnamesvar |
---|
1765 | |
---|
1766 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
1767 | """ Function to compute WRF dew-point air temperature |
---|
1768 | t= orginal WRF temperature |
---|
1769 | p= original WRF pressure (P + PB) |
---|
1770 | formula: |
---|
1771 | temp = theta*(p/p0)**(R/Cp) |
---|
1772 | |
---|
1773 | """ |
---|
1774 | fname = 'compute_WRFtd' |
---|
1775 | |
---|
1776 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1777 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1778 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1779 | |
---|
1780 | rh = qv/data2 |
---|
1781 | |
---|
1782 | pa = rh * data1 |
---|
1783 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1784 | |
---|
1785 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1786 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1787 | |
---|
1788 | return td, dnamesvar, dvnamesvar |
---|
1789 | |
---|
1790 | def compute_WRFwd(u, v, sina, cosa, dimns, dimvns): |
---|
1791 | """ Function to compute the wind direction |
---|
1792 | u= W-E wind direction [ms-1] |
---|
1793 | v= N-S wind direction [ms-1] |
---|
1794 | sina= original WRF local sinus of map rotation |
---|
1795 | cosa= original WRF local cosinus of map rotation |
---|
1796 | """ |
---|
1797 | fname = 'compute_WRFwd' |
---|
1798 | var0 = u |
---|
1799 | var1 = v |
---|
1800 | var2 = sina |
---|
1801 | var3 = cosa |
---|
1802 | |
---|
1803 | # un-staggering variables |
---|
1804 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1805 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1806 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1807 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1808 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1809 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1810 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1811 | |
---|
1812 | for iz in range(var0.shape[1]): |
---|
1813 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1814 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1815 | |
---|
1816 | theta = np.arctan2(va,ua) |
---|
1817 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1818 | |
---|
1819 | wd = 360.*theta/(2.*np.pi) |
---|
1820 | |
---|
1821 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1822 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1823 | |
---|
1824 | return wd |
---|
1825 | |
---|
1826 | ####### Variables (as they arrive without dimensions staff) |
---|
1827 | |
---|
1828 | def var_hur(p, t, q): |
---|
1829 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula |
---|
1830 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1831 | [p] = pressure field (assuming in [Pa]) |
---|
1832 | [q] = mixing ratio in [kgkg-1] |
---|
1833 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
1834 | >>> print var_rh(101300., 290., 3.) |
---|
1835 | 0.250250256174 |
---|
1836 | """ |
---|
1837 | fname = 'var_hur' |
---|
1838 | |
---|
1839 | # Enthalpy of vaporization [Jkg-1] |
---|
1840 | L = 2.453*10.**6 |
---|
1841 | # Gas constant for water vapor [JK-1Kg-1] |
---|
1842 | Rv = 461.5 |
---|
1843 | |
---|
1844 | # Computing saturated pressure |
---|
1845 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1846 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
1847 | |
---|
1848 | # August - Roche - Magnus formula |
---|
1849 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
1850 | |
---|
1851 | # Saturated mixing ratio [g/kg] |
---|
1852 | ws = 0.622*es/(0.01*p-es) |
---|
1853 | |
---|
1854 | hur = q/(ws*1000.) |
---|
1855 | |
---|
1856 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
1857 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
1858 | |
---|
1859 | return hur |
---|
1860 | |
---|
1861 | def var_hur_Uhus(p, t, hus): |
---|
1862 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula using hus |
---|
1863 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
1864 | [p] = pressure field (assuming in [Pa]) |
---|
1865 | [hus] = specific humidty [1] |
---|
1866 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
1867 | >>> print var_rh(101300., 290., 3.) |
---|
1868 | 0.250250256174 |
---|
1869 | """ |
---|
1870 | fname = 'var_hur_Uhus' |
---|
1871 | |
---|
1872 | # Enthalpy of vaporization [Jkg-1] |
---|
1873 | L = 2.453*10.**6 |
---|
1874 | # Gas constant for water vapor [JK-1Kg-1] |
---|
1875 | Rv = 461.5 |
---|
1876 | |
---|
1877 | # Computing saturated pressure |
---|
1878 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
1879 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
1880 | |
---|
1881 | # August - Roche - Magnus formula |
---|
1882 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
1883 | |
---|
1884 | # Saturated mixing ratio [g/kg] |
---|
1885 | ws = 0.622*es/(0.01*p-es) |
---|
1886 | |
---|
1887 | # Mixing ratio |
---|
1888 | q = hus/(1.+hus) |
---|
1889 | |
---|
1890 | hur = q/ws |
---|
1891 | |
---|
1892 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
1893 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
1894 | |
---|
1895 | return hur |
---|
1896 | |
---|
1897 | def var_td(t, p, qv): |
---|
1898 | """ Function to compute dew-point air temperature from temperature and pressure values |
---|
1899 | t= temperature [K] |
---|
1900 | p= pressure (Pa) |
---|
1901 | formula: |
---|
1902 | temp = theta*(p/p0)**(R/Cp) |
---|
1903 | |
---|
1904 | """ |
---|
1905 | fname = 'compute_td' |
---|
1906 | |
---|
1907 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1908 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1909 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1910 | |
---|
1911 | rh = qv/data2 |
---|
1912 | |
---|
1913 | pa = rh * data1 |
---|
1914 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1915 | |
---|
1916 | return td |
---|
1917 | |
---|
1918 | def var_td_Uhus(t, p, hus): |
---|
1919 | """ Function to compute dew-point air temperature from temperature and pressure values using hus |
---|
1920 | t= temperature [K] |
---|
1921 | hus= specific humidity [1] |
---|
1922 | formula: |
---|
1923 | temp = theta*(p/p0)**(R/Cp) |
---|
1924 | |
---|
1925 | """ |
---|
1926 | fname = 'compute_td' |
---|
1927 | |
---|
1928 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1929 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1930 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1931 | |
---|
1932 | qv = hus/(1.+hus) |
---|
1933 | |
---|
1934 | rh = qv/data2 |
---|
1935 | |
---|
1936 | pa = rh * data1 |
---|
1937 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1938 | |
---|
1939 | return td |
---|
1940 | |
---|
1941 | def var_wd(u, v): |
---|
1942 | """ Function to compute the wind direction |
---|
1943 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1944 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1945 | """ |
---|
1946 | fname = 'var_wd' |
---|
1947 | |
---|
1948 | theta = np.arctan2(v,u) |
---|
1949 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1950 | |
---|
1951 | wd = 360.*theta/(2.*np.pi) |
---|
1952 | |
---|
1953 | return wd |
---|
1954 | |
---|
1955 | def var_ws(u, v): |
---|
1956 | """ Function to compute the wind speed |
---|
1957 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1958 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1959 | """ |
---|
1960 | fname = 'var_ws' |
---|
1961 | |
---|
1962 | ws = np.sqrt(u*u + v*v) |
---|
1963 | |
---|
1964 | return ws |
---|
1965 | |
---|
1966 | class C_diagnostic(object): |
---|
1967 | """ Class to compute generic variables |
---|
1968 | Cdiag: name of the diagnostic to compute |
---|
1969 | ncobj: netcdf object with data |
---|
1970 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
1971 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
1972 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
1973 | self.values = Values of the diagnostic |
---|
1974 | self.dims = Dimensions of the diagnostic |
---|
1975 | self.units = units of the diagnostic |
---|
1976 | self.incvars = list of variables from the input netCDF object |
---|
1977 | """ |
---|
1978 | def __init__(self, Cdiag, ncobj, sfcvars, vars3D, dictdims): |
---|
1979 | fname = 'C_diagnostic' |
---|
1980 | self.values = None |
---|
1981 | self.dims = None |
---|
1982 | self.incvars = ncobj.variables |
---|
1983 | self.units = None |
---|
1984 | |
---|
1985 | if Cdiag == 'hur': |
---|
1986 | """ Computing relative humidity |
---|
1987 | """ |
---|
1988 | vn = 'hur' |
---|
1989 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
1990 | for v3D in CF3Dvars: |
---|
1991 | if not vars3D.has_key(v3D): |
---|
1992 | print gen.errormsg |
---|
1993 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1994 | "' attribution to compute '" + vn + "' !!" |
---|
1995 | print ' Equivalence of 3D variables provided _______' |
---|
1996 | gen.printing_dictionary(vars3D) |
---|
1997 | quit(-1) |
---|
1998 | if not self.incvars.has_key(vars3D[v3D]): |
---|
1999 | print gen.errormsg |
---|
2000 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2001 | "' in input file to compute '" + vn + "' !!" |
---|
2002 | print ' available variables:', self.incvars.keys() |
---|
2003 | print ' looking for variables _______' |
---|
2004 | gen.printing_dictionary(vars3D) |
---|
2005 | quit(-1) |
---|
2006 | |
---|
2007 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2008 | p = ncobj.variables[vars3D['plev']][:] |
---|
2009 | q = ncobj.variables[vars3D['q']][:] |
---|
2010 | |
---|
2011 | if len(ta.shape) != len(p.shape): |
---|
2012 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2013 | |
---|
2014 | self.values = var_hur(p, ta, q) |
---|
2015 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2016 | dictdims['lon']] |
---|
2017 | self.units = '1' |
---|
2018 | |
---|
2019 | if Cdiag == 'hur_Uhus': |
---|
2020 | """ Computing relative humidity using hus |
---|
2021 | """ |
---|
2022 | vn = 'hur' |
---|
2023 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
2024 | for v3D in CF3Dvars: |
---|
2025 | if not vars3D.has_key(v3D): |
---|
2026 | print gen.errormsg |
---|
2027 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2028 | "' attribution to compute '" + vn + "' !!" |
---|
2029 | print ' Equivalence of 3D variables provided _______' |
---|
2030 | gen.printing_dictionary(vars3D) |
---|
2031 | quit(-1) |
---|
2032 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2033 | print gen.errormsg |
---|
2034 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2035 | "' in input file to compute '" + vn + "' !!" |
---|
2036 | print ' available variables:', self.incvars.keys() |
---|
2037 | print ' looking for variables _______' |
---|
2038 | gen.printing_dictionary(vars3D) |
---|
2039 | quit(-1) |
---|
2040 | |
---|
2041 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2042 | p = ncobj.variables[vars3D['plev']][:] |
---|
2043 | hus = ncobj.variables[vars3D['hus']][:] |
---|
2044 | |
---|
2045 | if len(ta.shape) != len(p.shape): |
---|
2046 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2047 | |
---|
2048 | self.values = var_hur_Uhus(p, ta, hus) |
---|
2049 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2050 | dictdims['lon']] |
---|
2051 | self.units = '1' |
---|
2052 | |
---|
2053 | elif Cdiag == 'td': |
---|
2054 | """ Computing dew-point temperature |
---|
2055 | """ |
---|
2056 | vn = 'td' |
---|
2057 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
2058 | for v3D in CF3Dvars: |
---|
2059 | if not vars3D.has_key(v3D): |
---|
2060 | print gen.errormsg |
---|
2061 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2062 | "' attribution to compute '" + vn + "' !!" |
---|
2063 | print ' Equivalence of 3D variables provided _______' |
---|
2064 | gen.printing_dictionary(vars3D) |
---|
2065 | quit(-1) |
---|
2066 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2067 | print gen.errormsg |
---|
2068 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2069 | "' in input file to compute '" + vn + "' !!" |
---|
2070 | print ' available variables:', self.incvars.keys() |
---|
2071 | print ' looking for variables _______' |
---|
2072 | gen.printing_dictionary(vars3D) |
---|
2073 | quit(-1) |
---|
2074 | |
---|
2075 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2076 | p = ncobj.variables[vars3D['plev']][:] |
---|
2077 | q = ncobj.variables[vars3D['q']][:] |
---|
2078 | |
---|
2079 | if len(ta.shape) != len(p.shape): |
---|
2080 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2081 | |
---|
2082 | self.values = var_td(ta, p, q) |
---|
2083 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2084 | dictdims['lon']] |
---|
2085 | self.units = 'K' |
---|
2086 | |
---|
2087 | elif Cdiag == 'td_Uhus': |
---|
2088 | """ Computing dew-point temperature |
---|
2089 | """ |
---|
2090 | vn = 'td' |
---|
2091 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
2092 | for v3D in CF3Dvars: |
---|
2093 | if not vars3D.has_key(v3D): |
---|
2094 | print gen.errormsg |
---|
2095 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2096 | "' attribution to compute '" + vn + "' !!" |
---|
2097 | print ' Equivalence of 3D variables provided _______' |
---|
2098 | gen.printing_dictionary(vars3D) |
---|
2099 | quit(-1) |
---|
2100 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2101 | print gen.errormsg |
---|
2102 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2103 | "' in input file to compute '" + vn + "' !!" |
---|
2104 | print ' available variables:', self.incvars.keys() |
---|
2105 | print ' looking for variables _______' |
---|
2106 | gen.printing_dictionary(vars3D) |
---|
2107 | quit(-1) |
---|
2108 | |
---|
2109 | ta = ncobj.variables[vars3D['ta']][:] |
---|
2110 | p = ncobj.variables[vars3D['plev']][:] |
---|
2111 | hus = ncobj.variables[vars3D['hus']][:] |
---|
2112 | |
---|
2113 | if len(ta.shape) != len(p.shape): |
---|
2114 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
2115 | |
---|
2116 | self.values = var_td_Uhus(ta, p, hus) |
---|
2117 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2118 | dictdims['lon']] |
---|
2119 | self.units = 'K' |
---|
2120 | |
---|
2121 | elif Cdiag == 'wd': |
---|
2122 | """ Computing wind direction |
---|
2123 | """ |
---|
2124 | vn = 'wd' |
---|
2125 | CF3Dvars = ['ua', 'va'] |
---|
2126 | for v3D in CF3Dvars: |
---|
2127 | if not vars3D.has_key(v3D): |
---|
2128 | print gen.errormsg |
---|
2129 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2130 | "self.' attribution to compute '" + vn + "' !!" |
---|
2131 | print ' Equivalence of 3D variables provided _______' |
---|
2132 | gen.printing_dictionary(vars3D) |
---|
2133 | quit(-1) |
---|
2134 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2135 | print gen.errormsg |
---|
2136 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2137 | "' in input file to compute '" + vn + "' !!" |
---|
2138 | print ' available variables:', self.incvars.keys() |
---|
2139 | print ' looking for variables _______' |
---|
2140 | gen.printing_dictionary(vars3D) |
---|
2141 | quit(-1) |
---|
2142 | |
---|
2143 | ua = ncobj.variables[vars3D['ua']][:] |
---|
2144 | va = ncobj.variables[vars3D['va']][:] |
---|
2145 | |
---|
2146 | self.values = var_wd(ua, va) |
---|
2147 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2148 | dictdims['lon']] |
---|
2149 | self.units = 'degree' |
---|
2150 | |
---|
2151 | elif Cdiag == 'ws': |
---|
2152 | """ Computing wind speed |
---|
2153 | """ |
---|
2154 | vn = 'ws' |
---|
2155 | CF3Dvars = ['ua', 'va'] |
---|
2156 | for v3D in CF3Dvars: |
---|
2157 | if not vars3D.has_key(v3D): |
---|
2158 | print gen.errormsg |
---|
2159 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2160 | "' attribution to compute '" + vn + "' !!" |
---|
2161 | print ' Equivalence of 3D variables provided _______' |
---|
2162 | gen.printing_dictionary(vars3D) |
---|
2163 | quit(-1) |
---|
2164 | if not self.incvars.has_key(vars3D[v3D]): |
---|
2165 | print gen.errormsg |
---|
2166 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
2167 | "' in input file to compute '" + vn + "' !!" |
---|
2168 | print ' available variables:', self.incvars.keys() |
---|
2169 | print ' looking for variables _______' |
---|
2170 | gen.printing_dictionary(vars3D) |
---|
2171 | quit(-1) |
---|
2172 | |
---|
2173 | ua = ncobj.variables[vars3D['ua']][:] |
---|
2174 | va = ncobj.variables[vars3D['va']][:] |
---|
2175 | |
---|
2176 | self.values = var_ws(ua, va) |
---|
2177 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2178 | dictdims['lon']] |
---|
2179 | self.units = ncobj.variables[vars3D['ua']].units |
---|
2180 | |
---|
2181 | else: |
---|
2182 | print gen.errormsg |
---|
2183 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
2184 | print ' available ones:', Cavailablediags |
---|
2185 | quit(-1) |
---|
2186 | |
---|
2187 | class W_diagnostic(object): |
---|
2188 | """ Class to compute WRF diagnostics variables |
---|
2189 | Wdiag: name of the diagnostic to compute |
---|
2190 | ncobj: netcdf object with data |
---|
2191 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
2192 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
2193 | indims: list of dimensions inside file |
---|
2194 | invardims: list of dimension-variables inside file |
---|
2195 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
2196 | self.values = Values of the diagnostic |
---|
2197 | self.dims = Dimensions of the diagnostic |
---|
2198 | self.units = units of the diagnostic |
---|
2199 | self.incvars = list of variables from the input netCDF object |
---|
2200 | """ |
---|
2201 | def __init__(self, Wdiag, ncobj, sfcvars, vars3D, indims, invardims, dictdims): |
---|
2202 | fname = 'W_diagnostic' |
---|
2203 | |
---|
2204 | self.values = None |
---|
2205 | self.dims = None |
---|
2206 | self.incvars = ncobj.variables |
---|
2207 | self.units = None |
---|
2208 | |
---|
2209 | if Wdiag == 'hur': |
---|
2210 | """ Computing relative humidity |
---|
2211 | """ |
---|
2212 | vn = 'hur' |
---|
2213 | CF3Dvars = ['ta', 'hus'] |
---|
2214 | for v3D in CF3Dvars: |
---|
2215 | if not vars3D.has_key(v3D): |
---|
2216 | print gen.errormsg |
---|
2217 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2218 | "' attribution to compute '" + vn + "' !!" |
---|
2219 | print ' Equivalence of 3D variables provided _______' |
---|
2220 | gen.printing_dictionary(vars3D) |
---|
2221 | quit(-1) |
---|
2222 | |
---|
2223 | ta = ncobj.variables['T'][:] |
---|
2224 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2225 | hur = ncobj.variables['QVAPOR'][:] |
---|
2226 | |
---|
2227 | vals, dims, vdims = compute_WRFhur(ta, p, hur, indims, invardims) |
---|
2228 | self.values = vals |
---|
2229 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2230 | dictdims['lon']] |
---|
2231 | self.units = '1' |
---|
2232 | |
---|
2233 | elif Wdiag == 'p': |
---|
2234 | """ Computing air pressure |
---|
2235 | """ |
---|
2236 | vn = 'p' |
---|
2237 | |
---|
2238 | self.values = ncobj.variables['PB'][:] + ncobj.variables['P'][:] |
---|
2239 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2240 | dictdims['lon']] |
---|
2241 | self.units = ncobj.variables['PB'].units |
---|
2242 | |
---|
2243 | elif Wdiag == 'ta': |
---|
2244 | """ Computing air temperature |
---|
2245 | """ |
---|
2246 | vn = 'ta' |
---|
2247 | CF3Dvars = ['ta'] |
---|
2248 | for v3D in CF3Dvars: |
---|
2249 | if not vars3D.has_key(v3D): |
---|
2250 | print gen.errormsg |
---|
2251 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2252 | "' attribution to compute '" + vn + "' !!" |
---|
2253 | print ' Equivalence of 3D variables provided _______' |
---|
2254 | gen.printing_dictionary(vars3D) |
---|
2255 | quit(-1) |
---|
2256 | |
---|
2257 | ta = ncobj.variables['T'][:] |
---|
2258 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2259 | |
---|
2260 | vals, dims, vdims = compute_WRFta(ta, p, indims, invardims) |
---|
2261 | self.values = vals |
---|
2262 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2263 | dictdims['lon']] |
---|
2264 | self.units = 'K' |
---|
2265 | |
---|
2266 | elif Wdiag == 'td': |
---|
2267 | """ Computing dew-point temperature |
---|
2268 | """ |
---|
2269 | vn = 'td' |
---|
2270 | CF3Dvars = ['ta', 'hus'] |
---|
2271 | for v3D in CF3Dvars: |
---|
2272 | if not vars3D.has_key(v3D): |
---|
2273 | print gen.errormsg |
---|
2274 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2275 | "' attribution to compute '" + vn + "' !!" |
---|
2276 | print ' Equivalence of 3D variables provided _______' |
---|
2277 | gen.printing_dictionary(vars3D) |
---|
2278 | quit(-1) |
---|
2279 | |
---|
2280 | ta = ncobj.variables['T'][:] |
---|
2281 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
2282 | hus = ncobj.variables['QVAPOR'][:] |
---|
2283 | |
---|
2284 | vals, dims, vdims = compute_WRFtd(ta, p, hus, indims, invardims) |
---|
2285 | self.values = vals |
---|
2286 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2287 | dictdims['lon']] |
---|
2288 | self.units = 'K' |
---|
2289 | |
---|
2290 | elif Wdiag == 'ua': |
---|
2291 | """ Computing x-wind |
---|
2292 | """ |
---|
2293 | vn = 'ua' |
---|
2294 | CF3Dvars = ['ua', 'va'] |
---|
2295 | for v3D in CF3Dvars: |
---|
2296 | if not vars3D.has_key(v3D): |
---|
2297 | print gen.errormsg |
---|
2298 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2299 | "' attribution to compute '" + vn + "' !!" |
---|
2300 | print ' Equivalence of 3D variables provided _______' |
---|
2301 | gen.printing_dictionary(vars3D) |
---|
2302 | quit(-1) |
---|
2303 | |
---|
2304 | ua = ncobj.variables['U'][:] |
---|
2305 | va = ncobj.variables['V'][:] |
---|
2306 | sina = ncobj.variables['SINALPHA'][:] |
---|
2307 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2308 | |
---|
2309 | vals, dims, vdims = compute_WRFua(ua, va, sina, cosa, indims, invardims) |
---|
2310 | self.values = vals |
---|
2311 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2312 | dictdims['lon']] |
---|
2313 | self.units = ncobj.variables['U'].units |
---|
2314 | |
---|
2315 | elif Wdiag == 'uas': |
---|
2316 | """ Computing 10m x-wind |
---|
2317 | """ |
---|
2318 | vn = 'uas' |
---|
2319 | CFsfcvars = ['uas', 'vas'] |
---|
2320 | for vsf in CFsfcvars: |
---|
2321 | if not sfcvars.has_key(vsf): |
---|
2322 | print gen.errormsg |
---|
2323 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
2324 | "' attribution to compute '" + vn + "' !!" |
---|
2325 | print ' Equivalence of sfc variables provided _______' |
---|
2326 | gen.printing_dictionary(sfcvars) |
---|
2327 | quit(-1) |
---|
2328 | |
---|
2329 | uas = ncobj.variables['U10'][:] |
---|
2330 | vas = ncobj.variables['V10'][:] |
---|
2331 | sina = ncobj.variables['SINALPHA'][:] |
---|
2332 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2333 | |
---|
2334 | vals,dims,vdims = compute_WRFuas(uas, vas, sina, cosa, indims, invardims) |
---|
2335 | self.values = vals |
---|
2336 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2337 | dictdims['lon']] |
---|
2338 | self.units = ncobj.variables['U10'].units |
---|
2339 | |
---|
2340 | elif Wdiag == 'va': |
---|
2341 | """ Computing y-wind |
---|
2342 | """ |
---|
2343 | vn = 'ua' |
---|
2344 | CF3Dvars = ['ua', 'va'] |
---|
2345 | for v3D in CF3Dvars: |
---|
2346 | if not vars3D.has_key(v3D): |
---|
2347 | print gen.errormsg |
---|
2348 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2349 | "' attribution to compute '" + vn + "' !!" |
---|
2350 | print ' Equivalence of 3D variables provided _______' |
---|
2351 | gen.printing_dictionary(vars3D) |
---|
2352 | quit(-1) |
---|
2353 | |
---|
2354 | ua = ncobj.variables['U'][:] |
---|
2355 | va = ncobj.variables['V'][:] |
---|
2356 | sina = ncobj.variables['SINALPHA'][:] |
---|
2357 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2358 | |
---|
2359 | vals, dims, vdims = compute_WRFva(ua, va, sina, cosa, indims, invardims) |
---|
2360 | self.values = vals |
---|
2361 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2362 | dictdims['lon']] |
---|
2363 | self.units = ncobj.variables['U'].units |
---|
2364 | |
---|
2365 | elif Wdiag == 'vas': |
---|
2366 | """ Computing 10m y-wind |
---|
2367 | """ |
---|
2368 | vn = 'uas' |
---|
2369 | CFsfcvars = ['uas', 'vas'] |
---|
2370 | for vsf in CFsfcvars: |
---|
2371 | if not sfcvars.has_key(vsf): |
---|
2372 | print gen.errormsg |
---|
2373 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
2374 | "' attribution to compute '" + vn + "' !!" |
---|
2375 | print ' Equivalence of sfc variables provided _______' |
---|
2376 | gen.printing_dictionary(sfcvars) |
---|
2377 | quit(-1) |
---|
2378 | |
---|
2379 | uas = ncobj.variables['U10'][:] |
---|
2380 | vas = ncobj.variables['V10'][:] |
---|
2381 | sina = ncobj.variables['SINALPHA'][:] |
---|
2382 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2383 | |
---|
2384 | vals,dims,vdims = compute_WRFvas(uas, vas, sina, cosa, indims, invardims) |
---|
2385 | self.values = vals |
---|
2386 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2387 | dictdims['lon']] |
---|
2388 | self.units = ncobj.variables['U10'].units |
---|
2389 | |
---|
2390 | elif Wdiag == 'wd': |
---|
2391 | """ Computing wind direction |
---|
2392 | """ |
---|
2393 | vn = 'wd' |
---|
2394 | CF3Dvars = ['ua', 'va'] |
---|
2395 | for v3D in CF3Dvars: |
---|
2396 | if not vars3D.has_key(v3D): |
---|
2397 | print gen.errormsg |
---|
2398 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2399 | "' attribution to compute '" + vn + "' !!" |
---|
2400 | print ' Equivalence of 3D variables provided _______' |
---|
2401 | gen.printing_dictionary(vars3D) |
---|
2402 | quit(-1) |
---|
2403 | |
---|
2404 | ua = ncobj.variables['U10'][:] |
---|
2405 | va = ncobj.variables['V10'][:] |
---|
2406 | sina = ncobj.variables['SINALPHA'][:] |
---|
2407 | cosa = ncobj.variables['COSALPHA'][:] |
---|
2408 | |
---|
2409 | vals, dims, vdims = compute_WRFwd(ua, va, sina, cosa, indims, invardims) |
---|
2410 | self.values = vals |
---|
2411 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2412 | dictdims['lon']] |
---|
2413 | self.units = 'degree' |
---|
2414 | |
---|
2415 | elif Wdiag == 'ws': |
---|
2416 | """ Computing wind speed |
---|
2417 | """ |
---|
2418 | vn = 'ws' |
---|
2419 | CF3Dvars = ['ua', 'va'] |
---|
2420 | for v3D in CF3Dvars: |
---|
2421 | if not vars3D.has_key(v3D): |
---|
2422 | print gen.errormsg |
---|
2423 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
2424 | "' attribution to compute '" + vn + "' !!" |
---|
2425 | print ' Equivalence of 3D variables provided _______' |
---|
2426 | gen.printing_dictionary(vars3D) |
---|
2427 | quit(-1) |
---|
2428 | |
---|
2429 | ua = ncobj.variables['U10'][:] |
---|
2430 | va = ncobj.variables['V10'][:] |
---|
2431 | |
---|
2432 | self.values = var_ws(ua, va) |
---|
2433 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2434 | dictdims['lon']] |
---|
2435 | self.units = ncobj.variables['U10'].units |
---|
2436 | |
---|
2437 | elif Wdiag == 'zg': |
---|
2438 | """ Computing geopotential |
---|
2439 | """ |
---|
2440 | vn = 'zg' |
---|
2441 | |
---|
2442 | self.values = ncobj.variables['PHB'][:] + ncobj.variables['PH'][:] |
---|
2443 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
2444 | dictdims['lon']] |
---|
2445 | self.units = ncobj.variables['PHB'].units |
---|
2446 | |
---|
2447 | else: |
---|
2448 | print gen.errormsg |
---|
2449 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
2450 | print ' available ones:', Wavailablediags |
---|
2451 | quit(-1) |
---|