1 | # Tools for the compute of diagnostics |
---|
2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
3 | |
---|
4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
5 | # compute_accum: Function to compute the accumulation of a variable |
---|
6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
14 | # compute_prw: Function to compute water vapour path (prw) |
---|
15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
16 | # compute_td: Function to compute the dew point temperature |
---|
17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
18 | # compute_wds: Function to compute the wind direction |
---|
19 | # compute_wss: Function to compute the wind speed |
---|
20 | # compute_WRFta: Function to compute WRF air temperature |
---|
21 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
22 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
23 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
24 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
25 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
26 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
27 | |
---|
28 | # Others just providing variable values |
---|
29 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
30 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
31 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
32 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
33 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
34 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
35 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
36 | |
---|
37 | import numpy as np |
---|
38 | from netCDF4 import Dataset as NetCDFFile |
---|
39 | import os |
---|
40 | import re |
---|
41 | import nc_var_tools as ncvar |
---|
42 | import generic_tools as gen |
---|
43 | import datetime as dtime |
---|
44 | import module_ForDiag as fdin |
---|
45 | import module_ForDef as fdef |
---|
46 | |
---|
47 | main = 'diag_tools.py' |
---|
48 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
49 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
50 | |
---|
51 | # Constants |
---|
52 | grav = fdef.module_definitions.grav |
---|
53 | |
---|
54 | # Gneral information |
---|
55 | ## |
---|
56 | def reduce_spaces(string): |
---|
57 | """ Function to give words of a line of text removing any extra space |
---|
58 | """ |
---|
59 | values = string.replace('\n','').split(' ') |
---|
60 | vals = [] |
---|
61 | for val in values: |
---|
62 | if len(val) > 0: |
---|
63 | vals.append(val) |
---|
64 | |
---|
65 | return vals |
---|
66 | |
---|
67 | def variable_combo(varn,combofile): |
---|
68 | """ Function to provide variables combination from a given variable name |
---|
69 | varn= name of the variable |
---|
70 | combofile= ASCII file with the combination of variables |
---|
71 | [varn] [combo] |
---|
72 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
73 | [WRFdt] to get WRF time-step (from general attributes) |
---|
74 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
75 | deaccum@RAINNC@XTIME@prnc |
---|
76 | """ |
---|
77 | fname = 'variable_combo' |
---|
78 | |
---|
79 | if varn == 'h': |
---|
80 | print fname + '_____________________________________________________________' |
---|
81 | print variable_combo.__doc__ |
---|
82 | quit() |
---|
83 | |
---|
84 | if not os.path.isfile(combofile): |
---|
85 | print errormsg |
---|
86 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
87 | "' does not exist!!" |
---|
88 | quit(-1) |
---|
89 | |
---|
90 | objf = open(combofile, 'r') |
---|
91 | |
---|
92 | found = False |
---|
93 | for line in objf: |
---|
94 | linevals = reduce_spaces(line) |
---|
95 | varnf = linevals[0] |
---|
96 | combo = linevals[1].replace('\n','') |
---|
97 | if varn == varnf: |
---|
98 | found = True |
---|
99 | break |
---|
100 | |
---|
101 | if not found: |
---|
102 | print errormsg |
---|
103 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
104 | "' !!" |
---|
105 | combo='ERROR' |
---|
106 | |
---|
107 | objf.close() |
---|
108 | |
---|
109 | return combo |
---|
110 | |
---|
111 | # Mathematical operators |
---|
112 | ## |
---|
113 | def compute_accum(varv, dimns, dimvns): |
---|
114 | """ Function to compute the accumulation of a variable |
---|
115 | compute_accum(varv, dimnames, dimvns) |
---|
116 | [varv]= values to accum (assuming [t,]) |
---|
117 | [dimns]= list of the name of the dimensions of the [varv] |
---|
118 | [dimvns]= list of the name of the variables with the values of the |
---|
119 | dimensions of [varv] |
---|
120 | """ |
---|
121 | fname = 'compute_accum' |
---|
122 | |
---|
123 | deacdims = dimns[:] |
---|
124 | deacvdims = dimvns[:] |
---|
125 | |
---|
126 | slicei = [] |
---|
127 | slicee = [] |
---|
128 | |
---|
129 | Ndims = len(varv.shape) |
---|
130 | for iid in range(0,Ndims): |
---|
131 | slicei.append(slice(0,varv.shape[iid])) |
---|
132 | slicee.append(slice(0,varv.shape[iid])) |
---|
133 | |
---|
134 | slicee[0] = np.arange(varv.shape[0]) |
---|
135 | slicei[0] = np.arange(varv.shape[0]) |
---|
136 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
137 | |
---|
138 | vari = varv[tuple(slicei)] |
---|
139 | vare = varv[tuple(slicee)] |
---|
140 | |
---|
141 | ac = vari*0. |
---|
142 | for it in range(1,varv.shape[0]): |
---|
143 | ac[it,] = ac[it-1,] + vare[it,] |
---|
144 | |
---|
145 | return ac, deacdims, deacvdims |
---|
146 | |
---|
147 | def compute_deaccum(varv, dimns, dimvns): |
---|
148 | """ Function to compute the deaccumulation of a variable |
---|
149 | compute_deaccum(varv, dimnames, dimvns) |
---|
150 | [varv]= values to deaccum (assuming [t,]) |
---|
151 | [dimns]= list of the name of the dimensions of the [varv] |
---|
152 | [dimvns]= list of the name of the variables with the values of the |
---|
153 | dimensions of [varv] |
---|
154 | """ |
---|
155 | fname = 'compute_deaccum' |
---|
156 | |
---|
157 | deacdims = dimns[:] |
---|
158 | deacvdims = dimvns[:] |
---|
159 | |
---|
160 | slicei = [] |
---|
161 | slicee = [] |
---|
162 | |
---|
163 | Ndims = len(varv.shape) |
---|
164 | for iid in range(0,Ndims): |
---|
165 | slicei.append(slice(0,varv.shape[iid])) |
---|
166 | slicee.append(slice(0,varv.shape[iid])) |
---|
167 | |
---|
168 | slicee[0] = np.arange(varv.shape[0]) |
---|
169 | slicei[0] = np.arange(varv.shape[0]) |
---|
170 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
171 | |
---|
172 | vari = varv[tuple(slicei)] |
---|
173 | vare = varv[tuple(slicee)] |
---|
174 | |
---|
175 | deac = vare - vari |
---|
176 | |
---|
177 | return deac, deacdims, deacvdims |
---|
178 | |
---|
179 | def derivate_centered(var,dim,dimv): |
---|
180 | """ Function to compute the centered derivate of a given field |
---|
181 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
182 | [var]= variable |
---|
183 | [dim]= which dimension to compute the derivate |
---|
184 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
185 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
186 | [[ 0. 1. 2. 0.] |
---|
187 | [ 0. 5. 6. 0.] |
---|
188 | [ 0. 9. 10. 0.] |
---|
189 | [ 0. 13. 14. 0.]] |
---|
190 | """ |
---|
191 | |
---|
192 | fname = 'derivate_centered' |
---|
193 | |
---|
194 | vark = var.dtype |
---|
195 | |
---|
196 | if hasattr(dimv, "__len__"): |
---|
197 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
198 | if len(var.shape) != len(dimv.shape): |
---|
199 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
200 | if len(var.shape) - len(dimv.shape) == 1: |
---|
201 | for iz in range(var.shape[0]): |
---|
202 | dimvals[iz,] = dimv |
---|
203 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
204 | for it in range(var.shape[0]): |
---|
205 | for iz in range(var.shape[1]): |
---|
206 | dimvals[it,iz,] = dimv |
---|
207 | else: |
---|
208 | print errormsg |
---|
209 | print ' ' + fname + ': dimension difference between variable', \ |
---|
210 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
211 | ' not ready !!!' |
---|
212 | quit(-1) |
---|
213 | else: |
---|
214 | dimvals = dimv |
---|
215 | else: |
---|
216 | # dimension values are identical everywhere! |
---|
217 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
218 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
219 | |
---|
220 | derivate = np.zeros((var.shape), dtype=vark) |
---|
221 | if dim > len(var.shape) - 1: |
---|
222 | print errormsg |
---|
223 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
224 | 'shape:', var.shape,'!!!' |
---|
225 | quit(-1) |
---|
226 | |
---|
227 | slicebef = [] |
---|
228 | sliceaft = [] |
---|
229 | sliceder = [] |
---|
230 | |
---|
231 | for id in range(len(var.shape)): |
---|
232 | if id == dim: |
---|
233 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
234 | sliceaft.append(slice(2,var.shape[id])) |
---|
235 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
236 | else: |
---|
237 | slicebef.append(slice(0,var.shape[id])) |
---|
238 | sliceaft.append(slice(0,var.shape[id])) |
---|
239 | sliceder.append(slice(0,var.shape[id])) |
---|
240 | |
---|
241 | if hasattr(dimv, "__len__"): |
---|
242 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
243 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
244 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
245 | else: |
---|
246 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
247 | (2.*dimv) |
---|
248 | |
---|
249 | # print 'before________' |
---|
250 | # print var[tuple(slicebef)] |
---|
251 | |
---|
252 | # print 'after________' |
---|
253 | # print var[tuple(sliceaft)] |
---|
254 | |
---|
255 | return derivate |
---|
256 | |
---|
257 | def rotational_z(Vx,Vy,pos): |
---|
258 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
259 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
260 | [Vx]= Variable component x |
---|
261 | [Vy]= Variable component y |
---|
262 | [pos]= poisition of the grid points |
---|
263 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
264 | [[ 0. 1. 2. 0.] |
---|
265 | [ -4. 0. 0. -7.] |
---|
266 | [ -8. 0. 0. -11.] |
---|
267 | [ 0. 13. 14. 0.]] |
---|
268 | """ |
---|
269 | |
---|
270 | fname = 'rotational_z' |
---|
271 | |
---|
272 | ndims = len(Vx.shape) |
---|
273 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
274 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
275 | |
---|
276 | rot = rot1 - rot2 |
---|
277 | |
---|
278 | return rot |
---|
279 | |
---|
280 | # Diagnostics |
---|
281 | ## |
---|
282 | |
---|
283 | def var_clt(cfra): |
---|
284 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
285 | LMDZ using 1D vertical column values |
---|
286 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
287 | """ |
---|
288 | ZEPSEC=1.0E-12 |
---|
289 | |
---|
290 | fname = 'var_clt' |
---|
291 | |
---|
292 | zclear = 1. |
---|
293 | zcloud = 0. |
---|
294 | |
---|
295 | dz = cfra.shape[0] |
---|
296 | for iz in range(dz): |
---|
297 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
298 | clt = 1. - zclear |
---|
299 | zcloud = cfra[iz] |
---|
300 | |
---|
301 | return clt |
---|
302 | |
---|
303 | def compute_clt(cldfra, dimns, dimvns): |
---|
304 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
305 | LMDZ |
---|
306 | compute_clt(cldfra, dimnames) |
---|
307 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
308 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
309 | [dimvns]= list of the name of the variables with the values of the |
---|
310 | dimensions of [cldfra] |
---|
311 | """ |
---|
312 | fname = 'compute_clt' |
---|
313 | |
---|
314 | cltdims = dimns[:] |
---|
315 | cltvdims = dimvns[:] |
---|
316 | |
---|
317 | if len(cldfra.shape) == 4: |
---|
318 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
319 | dtype=np.float) |
---|
320 | dx = cldfra.shape[3] |
---|
321 | dy = cldfra.shape[2] |
---|
322 | dz = cldfra.shape[1] |
---|
323 | dt = cldfra.shape[0] |
---|
324 | cltdims.pop(1) |
---|
325 | cltvdims.pop(1) |
---|
326 | |
---|
327 | for it in range(dt): |
---|
328 | for ix in range(dx): |
---|
329 | for iy in range(dy): |
---|
330 | zclear = 1. |
---|
331 | zcloud = 0. |
---|
332 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
333 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
334 | |
---|
335 | else: |
---|
336 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
337 | dx = cldfra.shape[2] |
---|
338 | dy = cldfra.shape[1] |
---|
339 | dy = cldfra.shape[0] |
---|
340 | cltdims.pop(0) |
---|
341 | cltvdims.pop(0) |
---|
342 | for ix in range(dx): |
---|
343 | for iy in range(dy): |
---|
344 | zclear = 1. |
---|
345 | zcloud = 0. |
---|
346 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
347 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
348 | |
---|
349 | return clt, cltdims, cltvdims |
---|
350 | |
---|
351 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
352 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
353 | LMDZ via a Fortran module |
---|
354 | compute_clt(cldfra, dimnames) |
---|
355 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
356 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
357 | [dimvns]= list of the name of the variables with the values of the |
---|
358 | dimensions of [cldfra] |
---|
359 | """ |
---|
360 | fname = 'Forcompute_clt' |
---|
361 | |
---|
362 | cltdims = dimns[:] |
---|
363 | cltvdims = dimvns[:] |
---|
364 | |
---|
365 | |
---|
366 | if len(cldfra.shape) == 4: |
---|
367 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
368 | dtype=np.float) |
---|
369 | dx = cldfra.shape[3] |
---|
370 | dy = cldfra.shape[2] |
---|
371 | dz = cldfra.shape[1] |
---|
372 | dt = cldfra.shape[0] |
---|
373 | cltdims.pop(1) |
---|
374 | cltvdims.pop(1) |
---|
375 | |
---|
376 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
377 | |
---|
378 | else: |
---|
379 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
380 | dx = cldfra.shape[2] |
---|
381 | dy = cldfra.shape[1] |
---|
382 | dy = cldfra.shape[0] |
---|
383 | cltdims.pop(0) |
---|
384 | cltvdims.pop(0) |
---|
385 | |
---|
386 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
387 | |
---|
388 | return clt, cltdims, cltvdims |
---|
389 | |
---|
390 | def var_cllmh(cfra, p): |
---|
391 | """ Fcuntion to compute cllmh on a 1D column |
---|
392 | """ |
---|
393 | |
---|
394 | fname = 'var_cllmh' |
---|
395 | |
---|
396 | ZEPSEC =1.0E-12 |
---|
397 | prmhc = 440.*100. |
---|
398 | prmlc = 680.*100. |
---|
399 | |
---|
400 | zclearl = 1. |
---|
401 | zcloudl = 0. |
---|
402 | zclearm = 1. |
---|
403 | zcloudm = 0. |
---|
404 | zclearh = 1. |
---|
405 | zcloudh = 0. |
---|
406 | |
---|
407 | dvz = cfra.shape[0] |
---|
408 | |
---|
409 | cllmh = np.ones((3), dtype=np.float) |
---|
410 | |
---|
411 | for iz in range(dvz): |
---|
412 | if p[iz] < prmhc: |
---|
413 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
414 | np.min([zcloudh,1.-ZEPSEC])) |
---|
415 | zcloudh = cfra[iz] |
---|
416 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
417 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
418 | np.min([zcloudm,1.-ZEPSEC])) |
---|
419 | zcloudm = cfra[iz] |
---|
420 | elif p[iz] >= prmlc: |
---|
421 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
422 | np.min([zcloudl,1.-ZEPSEC])) |
---|
423 | zcloudl = cfra[iz] |
---|
424 | |
---|
425 | cllmh = 1.- cllmh |
---|
426 | |
---|
427 | return cllmh |
---|
428 | |
---|
429 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
430 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
431 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
432 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
433 | [pres] = pressure field |
---|
434 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
435 | [dimvns]= list of the name of the variables with the values of the |
---|
436 | dimensions of [cldfra] |
---|
437 | """ |
---|
438 | fname = 'Forcompute_cllmh' |
---|
439 | |
---|
440 | cllmhdims = dimns[:] |
---|
441 | cllmhvdims = dimvns[:] |
---|
442 | |
---|
443 | if len(cldfra.shape) == 4: |
---|
444 | dx = cldfra.shape[3] |
---|
445 | dy = cldfra.shape[2] |
---|
446 | dz = cldfra.shape[1] |
---|
447 | dt = cldfra.shape[0] |
---|
448 | cllmhdims.pop(1) |
---|
449 | cllmhvdims.pop(1) |
---|
450 | |
---|
451 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
452 | |
---|
453 | else: |
---|
454 | dx = cldfra.shape[2] |
---|
455 | dy = cldfra.shape[1] |
---|
456 | dz = cldfra.shape[0] |
---|
457 | cllmhdims.pop(0) |
---|
458 | cllmhvdims.pop(0) |
---|
459 | |
---|
460 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
461 | |
---|
462 | return cllmh, cllmhdims, cllmhvdims |
---|
463 | |
---|
464 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
465 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
466 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
467 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
468 | [pres] = pressure field |
---|
469 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
470 | [dimvns]= list of the name of the variables with the values of the |
---|
471 | dimensions of [cldfra] |
---|
472 | """ |
---|
473 | fname = 'compute_cllmh' |
---|
474 | |
---|
475 | cllmhdims = dimns[:] |
---|
476 | cllmhvdims = dimvns[:] |
---|
477 | |
---|
478 | if len(cldfra.shape) == 4: |
---|
479 | dx = cldfra.shape[3] |
---|
480 | dy = cldfra.shape[2] |
---|
481 | dz = cldfra.shape[1] |
---|
482 | dt = cldfra.shape[0] |
---|
483 | cllmhdims.pop(1) |
---|
484 | cllmhvdims.pop(1) |
---|
485 | |
---|
486 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
487 | |
---|
488 | for it in range(dt): |
---|
489 | for ix in range(dx): |
---|
490 | for iy in range(dy): |
---|
491 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
492 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
493 | |
---|
494 | else: |
---|
495 | dx = cldfra.shape[2] |
---|
496 | dy = cldfra.shape[1] |
---|
497 | dz = cldfra.shape[0] |
---|
498 | cllmhdims.pop(0) |
---|
499 | cllmhvdims.pop(0) |
---|
500 | |
---|
501 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
502 | |
---|
503 | for ix in range(dx): |
---|
504 | for iy in range(dy): |
---|
505 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
506 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
507 | |
---|
508 | return cllmh, cllmhdims, cllmhvdims |
---|
509 | |
---|
510 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
511 | """ Function to compute cloud-ice water path (clivi) |
---|
512 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
513 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
514 | [dimns]= list of the name of the dimensions of [q] |
---|
515 | [dimvns]= list of the name of the variables with the values of the |
---|
516 | dimensions of [q] |
---|
517 | """ |
---|
518 | fname = 'compute_clivi' |
---|
519 | |
---|
520 | clividims = dimns[:] |
---|
521 | clivivdims = dimvns[:] |
---|
522 | |
---|
523 | if len(qtot.shape) == 4: |
---|
524 | clividims.pop(1) |
---|
525 | clivivdims.pop(1) |
---|
526 | else: |
---|
527 | clividims.pop(0) |
---|
528 | clivivdims.pop(0) |
---|
529 | |
---|
530 | data1 = dens*qtot |
---|
531 | clivi = np.sum(data1, axis=1) |
---|
532 | |
---|
533 | return clivi, clividims, clivivdims |
---|
534 | |
---|
535 | |
---|
536 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
537 | """ Function to compute condensed water path (clwvl) |
---|
538 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
539 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
540 | [dimns]= list of the name of the dimensions of [q] |
---|
541 | [dimvns]= list of the name of the variables with the values of the |
---|
542 | dimensions of [q] |
---|
543 | """ |
---|
544 | fname = 'compute_clwvl' |
---|
545 | |
---|
546 | clwvldims = dimns[:] |
---|
547 | clwvlvdims = dimvns[:] |
---|
548 | |
---|
549 | if len(qtot.shape) == 4: |
---|
550 | clwvldims.pop(1) |
---|
551 | clwvlvdims.pop(1) |
---|
552 | else: |
---|
553 | clwvldims.pop(0) |
---|
554 | clwvlvdims.pop(0) |
---|
555 | |
---|
556 | data1 = dens*qtot |
---|
557 | clwvl = np.sum(data1, axis=1) |
---|
558 | |
---|
559 | return clwvl, clwvldims, clwvlvdims |
---|
560 | |
---|
561 | def var_virtualTemp (temp,rmix): |
---|
562 | """ This function returns virtual temperature in K, |
---|
563 | temp: temperature [K] |
---|
564 | rmix: mixing ratio in [kgkg-1] |
---|
565 | """ |
---|
566 | |
---|
567 | fname = 'var_virtualTemp' |
---|
568 | |
---|
569 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
570 | |
---|
571 | return virtual |
---|
572 | |
---|
573 | |
---|
574 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
575 | """ Function to compute mslp on a 1D column |
---|
576 | """ |
---|
577 | |
---|
578 | fname = 'var_mslp' |
---|
579 | |
---|
580 | N = 1.0 |
---|
581 | expon=287.04*.0065/9.81 |
---|
582 | pref = 40000. |
---|
583 | |
---|
584 | # First find where about 400 hPa is located |
---|
585 | dz=len(pres) |
---|
586 | |
---|
587 | kref = -1 |
---|
588 | pinc = pres[0] - pres[dz-1] |
---|
589 | |
---|
590 | if pinc < 0.: |
---|
591 | for iz in range(1,dz): |
---|
592 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
593 | kref = iz |
---|
594 | break |
---|
595 | else: |
---|
596 | for iz in range(dz-1): |
---|
597 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
598 | kref = iz |
---|
599 | break |
---|
600 | |
---|
601 | if kref == -1: |
---|
602 | print errormsg |
---|
603 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
604 | print ' values:',pres[:] |
---|
605 | quit(-1) |
---|
606 | |
---|
607 | mslp = 0. |
---|
608 | |
---|
609 | # We are below both the ground and the lowest data level. |
---|
610 | |
---|
611 | # First, find the model level that is closest to a "target" pressure |
---|
612 | # level, where the "target" pressure is delta-p less that the local |
---|
613 | # value of a horizontally smoothed surface pressure field. We use |
---|
614 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
615 | # passing through the temperature at this model level will be used |
---|
616 | # to define the temperature profile below ground. This is similar |
---|
617 | # to the Benjamin and Miller (1990) method, using |
---|
618 | # 700 hPa everywhere for the "target" pressure. |
---|
619 | |
---|
620 | # ptarget = psfc - 15000. |
---|
621 | ptarget = 70000. |
---|
622 | dpmin=1.e4 |
---|
623 | kupper = 0 |
---|
624 | if pinc > 0.: |
---|
625 | for iz in range(dz-1,0,-1): |
---|
626 | kupper = iz |
---|
627 | dp=np.abs( pres[iz] - ptarget ) |
---|
628 | if dp < dpmin: exit |
---|
629 | dpmin = np.min([dpmin, dp]) |
---|
630 | else: |
---|
631 | for iz in range(dz): |
---|
632 | kupper = iz |
---|
633 | dp=np.abs( pres[iz] - ptarget ) |
---|
634 | if dp < dpmin: exit |
---|
635 | dpmin = np.min([dpmin, dp]) |
---|
636 | |
---|
637 | pbot=np.max([pres[0], psfc]) |
---|
638 | # zbot=0. |
---|
639 | |
---|
640 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
641 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
642 | |
---|
643 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
644 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
645 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
646 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
647 | |
---|
648 | return mslp |
---|
649 | |
---|
650 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
651 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
652 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
653 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
654 | [psurface]= surface pressure field [Pa] |
---|
655 | [terrain]= topography [m] |
---|
656 | [temperature]= temperature [K] |
---|
657 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
658 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
659 | [dimvns]= list of the name of the variables with the values of the |
---|
660 | dimensions of [pres] |
---|
661 | """ |
---|
662 | |
---|
663 | fname = 'compute_mslp' |
---|
664 | |
---|
665 | mslpdims = list(dimns[:]) |
---|
666 | mslpvdims = list(dimvns[:]) |
---|
667 | |
---|
668 | if len(pressure.shape) == 4: |
---|
669 | mslpdims.pop(1) |
---|
670 | mslpvdims.pop(1) |
---|
671 | else: |
---|
672 | mslpdims.pop(0) |
---|
673 | mslpvdims.pop(0) |
---|
674 | |
---|
675 | if len(pressure.shape) == 4: |
---|
676 | dx = pressure.shape[3] |
---|
677 | dy = pressure.shape[2] |
---|
678 | dz = pressure.shape[1] |
---|
679 | dt = pressure.shape[0] |
---|
680 | |
---|
681 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
682 | |
---|
683 | # Terrain... to 2D ! |
---|
684 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
685 | if len(terrain.shape) == 3: |
---|
686 | terval = terrain[0,:,:] |
---|
687 | else: |
---|
688 | terval = terrain |
---|
689 | |
---|
690 | for ix in range(dx): |
---|
691 | for iy in range(dy): |
---|
692 | if terval[iy,ix] > 0.: |
---|
693 | for it in range(dt): |
---|
694 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
695 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
696 | qvapor[it,:,iy,ix]) |
---|
697 | |
---|
698 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
699 | else: |
---|
700 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
701 | |
---|
702 | else: |
---|
703 | dx = pressure.shape[2] |
---|
704 | dy = pressure.shape[1] |
---|
705 | dz = pressure.shape[0] |
---|
706 | |
---|
707 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
708 | |
---|
709 | # Terrain... to 2D ! |
---|
710 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
711 | if len(terrain.shape) == 3: |
---|
712 | terval = terrain[0,:,:] |
---|
713 | else: |
---|
714 | terval = terrain |
---|
715 | |
---|
716 | for ix in range(dx): |
---|
717 | for iy in range(dy): |
---|
718 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
719 | if terval[iy,ix] > 0.: |
---|
720 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
721 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
722 | else: |
---|
723 | mslpv[iy,ix] = psfc[iy,ix] |
---|
724 | |
---|
725 | return mslpv, mslpdims, mslpvdims |
---|
726 | |
---|
727 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
728 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
729 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
730 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
731 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
732 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
733 | [dimns]= list of the name of the dimensions of [q] |
---|
734 | [dimvns]= list of the name of the variables with the values of the |
---|
735 | dimensions of [q] |
---|
736 | """ |
---|
737 | fname = 'compute_OMEGAw' |
---|
738 | |
---|
739 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
740 | g = 9.80665 # m/s2 |
---|
741 | |
---|
742 | wdims = dimns[:] |
---|
743 | wvdims = dimvns[:] |
---|
744 | |
---|
745 | rho = p/(rgas*t) # density => kg/m3 |
---|
746 | w = -omega/(rho*g) |
---|
747 | |
---|
748 | return w, wdims, wvdims |
---|
749 | |
---|
750 | def compute_prw(dens, q, dimns, dimvns): |
---|
751 | """ Function to compute water vapour path (prw) |
---|
752 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
753 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
754 | [dimns]= list of the name of the dimensions of [q] |
---|
755 | [dimvns]= list of the name of the variables with the values of the |
---|
756 | dimensions of [q] |
---|
757 | """ |
---|
758 | fname = 'compute_prw' |
---|
759 | |
---|
760 | prwdims = dimns[:] |
---|
761 | prwvdims = dimvns[:] |
---|
762 | |
---|
763 | if len(q.shape) == 4: |
---|
764 | prwdims.pop(1) |
---|
765 | prwvdims.pop(1) |
---|
766 | else: |
---|
767 | prwdims.pop(0) |
---|
768 | prwvdims.pop(0) |
---|
769 | |
---|
770 | data1 = dens*q |
---|
771 | prw = np.sum(data1, axis=1) |
---|
772 | |
---|
773 | return prw, prwdims, prwvdims |
---|
774 | |
---|
775 | def compute_rh(p, t, q, dimns, dimvns): |
---|
776 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
777 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
778 | [p] = pressure field (assuming in [hPa]) |
---|
779 | [q] = mixing ratio in [kgkg-1] |
---|
780 | [dimns]= list of the name of the dimensions of [t] |
---|
781 | [dimvns]= list of the name of the variables with the values of the |
---|
782 | dimensions of [t] |
---|
783 | """ |
---|
784 | fname = 'compute_rh' |
---|
785 | |
---|
786 | rhdims = dimns[:] |
---|
787 | rhvdims = dimvns[:] |
---|
788 | |
---|
789 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
790 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
791 | |
---|
792 | rh = q/data2 |
---|
793 | |
---|
794 | return rh, rhdims, rhvdims |
---|
795 | |
---|
796 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
797 | """ Function to compute the dew point temperature |
---|
798 | [p]= pressure [Pa] |
---|
799 | [temp]= temperature [C] |
---|
800 | [qv]= mixing ratio [kgkg-1] |
---|
801 | [dimns]= list of the name of the dimensions of [p] |
---|
802 | [dimvns]= list of the name of the variables with the values of the |
---|
803 | dimensions of [p] |
---|
804 | """ |
---|
805 | fname = 'compute_td' |
---|
806 | |
---|
807 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
808 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
809 | tk = temp |
---|
810 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
811 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
812 | |
---|
813 | rh = qv/data2 |
---|
814 | |
---|
815 | pa = rh * data1 |
---|
816 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
817 | |
---|
818 | tddims = dimns[:] |
---|
819 | tdvdims = dimvns[:] |
---|
820 | |
---|
821 | return td, tddims, tdvdims |
---|
822 | |
---|
823 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
824 | """ Function to copmute CFtimes from WRFtime variable |
---|
825 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
826 | tunitsval= CF time units |
---|
827 | timewrfv= matrix string values of WRF 'Times' variable |
---|
828 | """ |
---|
829 | fname = 'var_WRFtime' |
---|
830 | |
---|
831 | yrref=refdate[0:4] |
---|
832 | monref=refdate[4:6] |
---|
833 | dayref=refdate[6:8] |
---|
834 | horref=refdate[8:10] |
---|
835 | minref=refdate[10:12] |
---|
836 | secref=refdate[12:14] |
---|
837 | |
---|
838 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
839 | ':' + secref |
---|
840 | |
---|
841 | dt = timewrfv.shape[0] |
---|
842 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
843 | |
---|
844 | for it in range(dt): |
---|
845 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
846 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
847 | |
---|
848 | tunits = tunitsval + ' since ' + refdateS |
---|
849 | |
---|
850 | return WRFtime, tunits |
---|
851 | |
---|
852 | def turbulence_var(varv, dimvn, dimn): |
---|
853 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
854 | x*=<x^2>_t-(<X>_t)^2 |
---|
855 | turbulence_var(varv,dimn) |
---|
856 | varv= values of the variable |
---|
857 | dimvn= names of the dimension of the variable |
---|
858 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
859 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
860 | [[ 54. 54. 54.] |
---|
861 | [ 54. 54. 54.] |
---|
862 | [ 54. 54. 54.]] |
---|
863 | """ |
---|
864 | fname = 'turbulence_varv' |
---|
865 | |
---|
866 | timedimid = dimvn.index(dimn['T']) |
---|
867 | |
---|
868 | varv2 = varv*varv |
---|
869 | |
---|
870 | vartmean = np.mean(varv, axis=timedimid) |
---|
871 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
872 | |
---|
873 | varvturb = var2tmean - (vartmean*vartmean) |
---|
874 | |
---|
875 | return varvturb |
---|
876 | |
---|
877 | def compute_turbulence(v, dimns, dimvns): |
---|
878 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
879 | x*=<x^2>_t-(<X>_t)^2 |
---|
880 | [v]= variable (assuming [[t],z,y,x]) |
---|
881 | [dimns]= list of the name of the dimensions of [v] |
---|
882 | [dimvns]= list of the name of the variables with the values of the |
---|
883 | dimensions of [v] |
---|
884 | """ |
---|
885 | fname = 'compute_turbulence' |
---|
886 | |
---|
887 | turbdims = dimns[:] |
---|
888 | turbvdims = dimvns[:] |
---|
889 | |
---|
890 | turbdims.pop(0) |
---|
891 | turbvdims.pop(0) |
---|
892 | |
---|
893 | v2 = v*v |
---|
894 | |
---|
895 | vartmean = np.mean(v, axis=0) |
---|
896 | var2tmean = np.mean(v2, axis=0) |
---|
897 | |
---|
898 | turb = var2tmean - (vartmean*vartmean) |
---|
899 | |
---|
900 | return turb, turbdims, turbvdims |
---|
901 | |
---|
902 | def compute_wds(u, v, dimns, dimvns): |
---|
903 | """ Function to compute the wind direction |
---|
904 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
905 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
906 | [dimns]= list of the name of the dimensions of [u] |
---|
907 | [dimvns]= list of the name of the variables with the values of the |
---|
908 | dimensions of [u] |
---|
909 | """ |
---|
910 | fname = 'compute_wds' |
---|
911 | |
---|
912 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
913 | theta = np.arctan2(v,u) |
---|
914 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
915 | |
---|
916 | wds = 360.*theta/(2.*np.pi) |
---|
917 | |
---|
918 | wdsdims = dimns[:] |
---|
919 | wdsvdims = dimvns[:] |
---|
920 | |
---|
921 | return wds, wdsdims, wdsvdims |
---|
922 | |
---|
923 | def compute_wss(u, v, dimns, dimvns): |
---|
924 | """ Function to compute the wind speed |
---|
925 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
926 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
927 | [dimns]= list of the name of the dimensions of [u] |
---|
928 | [dimvns]= list of the name of the variables with the values of the |
---|
929 | dimensions of [u] |
---|
930 | """ |
---|
931 | fname = 'compute_wss' |
---|
932 | |
---|
933 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
934 | wss = np.sqrt(u*u + v*v) |
---|
935 | |
---|
936 | wssdims = dimns[:] |
---|
937 | wssvdims = dimvns[:] |
---|
938 | |
---|
939 | return wss, wssdims, wssvdims |
---|
940 | |
---|
941 | def timeunits_seconds(dtu): |
---|
942 | """ Function to transform a time units to seconds |
---|
943 | timeunits_seconds(timeuv) |
---|
944 | [dtu]= time units value to transform in seconds |
---|
945 | """ |
---|
946 | fname='timunits_seconds' |
---|
947 | |
---|
948 | if dtu == 'years': |
---|
949 | times = 365.*24.*3600. |
---|
950 | elif dtu == 'weeks': |
---|
951 | times = 7.*24.*3600. |
---|
952 | elif dtu == 'days': |
---|
953 | times = 24.*3600. |
---|
954 | elif dtu == 'hours': |
---|
955 | times = 3600. |
---|
956 | elif dtu == 'minutes': |
---|
957 | times = 60. |
---|
958 | elif dtu == 'seconds': |
---|
959 | times = 1. |
---|
960 | elif dtu == 'miliseconds': |
---|
961 | times = 1./1000. |
---|
962 | else: |
---|
963 | print errormsg |
---|
964 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
965 | quit(-1) |
---|
966 | |
---|
967 | return times |
---|
968 | |
---|
969 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
970 | """ Function to compute geographical rotated WRF 3D winds |
---|
971 | u= orginal WRF x-wind |
---|
972 | v= orginal WRF y-wind |
---|
973 | sina= original WRF local sinus of map rotation |
---|
974 | cosa= original WRF local cosinus of map rotation |
---|
975 | formula: |
---|
976 | ua = u*cosa-va*sina |
---|
977 | va = u*sina+va*cosa |
---|
978 | """ |
---|
979 | fname = 'compute_WRFuava' |
---|
980 | |
---|
981 | var0 = u |
---|
982 | var1 = v |
---|
983 | var2 = sina |
---|
984 | var3 = cosa |
---|
985 | |
---|
986 | # un-staggering variables |
---|
987 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
988 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
989 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
990 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
991 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
992 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
993 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
994 | |
---|
995 | for iz in range(var0.shape[1]): |
---|
996 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
997 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
998 | |
---|
999 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1000 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1001 | |
---|
1002 | return ua, va, dnamesvar, dvnamesvar |
---|
1003 | |
---|
1004 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1005 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
1006 | u10= orginal WRF 10m x-wind |
---|
1007 | v10= orginal WRF 10m y-wind |
---|
1008 | sina= original WRF local sinus of map rotation |
---|
1009 | cosa= original WRF local cosinus of map rotation |
---|
1010 | formula: |
---|
1011 | uas = u10*cosa-va10*sina |
---|
1012 | vas = u10*sina+va10*cosa |
---|
1013 | """ |
---|
1014 | fname = 'compute_WRFuasvas' |
---|
1015 | |
---|
1016 | var0 = u10 |
---|
1017 | var1 = v10 |
---|
1018 | var2 = sina |
---|
1019 | var3 = cosa |
---|
1020 | |
---|
1021 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1022 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1023 | |
---|
1024 | uas = var0*var3 - var1*var2 |
---|
1025 | vas = var0*var2 + var1*var3 |
---|
1026 | |
---|
1027 | dnamesvar = ['Time','south_north','west_east'] |
---|
1028 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1029 | |
---|
1030 | return uas, vas, dnamesvar, dvnamesvar |
---|
1031 | |
---|
1032 | def compute_WRFta(t, p, dimns, dimvns): |
---|
1033 | """ Function to compute WRF air temperature |
---|
1034 | t= orginal WRF temperature |
---|
1035 | p= original WRF pressure (P + PB) |
---|
1036 | formula: |
---|
1037 | temp = theta*(p/p0)**(R/Cp) |
---|
1038 | |
---|
1039 | """ |
---|
1040 | fname = 'compute_WRFta' |
---|
1041 | |
---|
1042 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1043 | |
---|
1044 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1045 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1046 | |
---|
1047 | return ta, dnamesvar, dvnamesvar |
---|
1048 | |
---|
1049 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
1050 | """ Function to compute WRF dew-point air temperature |
---|
1051 | t= orginal WRF temperature |
---|
1052 | p= original WRF pressure (P + PB) |
---|
1053 | formula: |
---|
1054 | temp = theta*(p/p0)**(R/Cp) |
---|
1055 | |
---|
1056 | """ |
---|
1057 | fname = 'compute_WRFtd' |
---|
1058 | |
---|
1059 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1060 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1061 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1062 | |
---|
1063 | rh = qv/data2 |
---|
1064 | |
---|
1065 | pa = rh * data1 |
---|
1066 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1067 | |
---|
1068 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1069 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1070 | |
---|
1071 | return td, dnamesvar, dvnamesvar |
---|