[1675] | 1 | # Tools for the compute of diagnostics |
---|
| 2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
| 3 | |
---|
| 4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
| 5 | # compute_accum: Function to compute the accumulation of a variable |
---|
| 6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
| 7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
| 9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
| 10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
| 11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
| 12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 14 | # compute_prw: Function to compute water vapour path (prw) |
---|
| 15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 16 | # compute_td: Function to compute the dew point temperature |
---|
| 17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
[1687] | 18 | # C_diagnostic: Class to compute generic variables |
---|
[1980] | 19 | # compute_wd: Function to compute the wind direction 3D |
---|
[1675] | 20 | # compute_wds: Function to compute the wind direction |
---|
| 21 | # compute_wss: Function to compute the wind speed |
---|
[1710] | 22 | # compute_WRFhur: Function to compute WRF relative humidity following Teten's equation |
---|
[1675] | 23 | # compute_WRFta: Function to compute WRF air temperature |
---|
| 24 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
[1687] | 25 | # compute_WRFua: Function to compute geographical rotated WRF x-wind |
---|
| 26 | # compute_WRFva: Function to compute geographical rotated WRF y-wind |
---|
[1675] | 27 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
[1687] | 28 | # compute_WRFuas: Function to compute geographical rotated WRF 2-meter x-wind |
---|
| 29 | # compute_WRFvas: Function to compute geographical rotated WRF 2-meter y-wind |
---|
[1675] | 30 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
| 31 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
[2274] | 32 | # Forcompute_cellbnds: Function to compute cellboundaries using wind-staggered lon, |
---|
| 33 | # lats as intersection of their related parallels and meridians |
---|
[2277] | 34 | # Forcompute_cellbndsreg: Function to compute cellboundaries using lon, lat from a |
---|
| 35 | # reglar lon/lat projection as intersection of their related parallels and meridians |
---|
[1804] | 36 | # Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction |
---|
| 37 | # following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 38 | # Forcompute_clt: Function to compute the total cloud fraction following |
---|
| 39 | # 'newmicro.F90' from LMDZ via a Fortran module |
---|
[1908] | 40 | # Forcompute_fog_K84: Computation of fog and visibility following Kunkel, (1984) |
---|
| 41 | # Forcompute_fog_RUC: Computation of fog and visibility following RUC method Smirnova, (2000) |
---|
[1909] | 42 | # Forcompute_fog_FRAML50: fog and visibility following Gultepe and Milbrandt, (2010) |
---|
[2643] | 43 | # Forcompute_front_R04: Function to compute front following Rodrigues et al.(2004) |
---|
[2674] | 44 | # Forcompute_frontogenesis: Function to compute frontogenesis |
---|
[1804] | 45 | # Forcompute_potevap_orPM: Function to compute potential evapotranspiration following |
---|
| 46 | # Penman-Monteith formulation implemented in ORCHIDEE |
---|
| 47 | # Forcompute_psl_ptarget: Function to compute the sea-level pressure following |
---|
| 48 | # target_pressure value found in `p_interp.F' |
---|
[2209] | 49 | # Forcompute_range_faces: Function to compute faces [uphill, valley, downhill] of sections of a |
---|
| 50 | # mountain rage, along a given face |
---|
[1804] | 51 | # Forcompute_zmla_gen: Function to compute the boundary layer height following a |
---|
| 52 | # generic method with Fortran |
---|
| 53 | # Forcompute_zwind: Function to compute the wind at a given height following the |
---|
| 54 | # power law method |
---|
| 55 | # Forcompute_zwind_log: Function to compute the wind at a given height following the |
---|
| 56 | # logarithmic law method |
---|
| 57 | # Forcompute_zwindMO: Function to compute the wind at a given height following the |
---|
| 58 | # Monin-Obukhov theory |
---|
[1687] | 59 | # W_diagnostic: Class to compute WRF diagnostics variables |
---|
[1675] | 60 | |
---|
| 61 | # Others just providing variable values |
---|
| 62 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
[1804] | 63 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 64 | # LMDZ using 1D vertical column values |
---|
[2100] | 65 | # var_convini: Function returns convective initialization (pr(t) > 0.0001) in time units |
---|
[1804] | 66 | # var_hur: Function to compute relative humidity following 'August - Roche - Magnus' |
---|
| 67 | # formula |
---|
| 68 | # var_hur_Uhus: Function to compute relative humidity following 'August-Roche-Magnus' |
---|
| 69 | # formula using hus |
---|
[2391] | 70 | # var_hur_tas_tds: Function to compute hur relative humidity from tas and tds |
---|
[1675] | 71 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
[1804] | 72 | # var_td: Function to compute dew-point air temperature from temperature and pressure |
---|
| 73 | # values |
---|
| 74 | # var_td_Uhus: Function to compute dew-point air temperature from temperature and |
---|
| 75 | # pressure values using hus |
---|
[2387] | 76 | # var_tws_S11: Function to compute Wet Bulb temperature after Stull, 2011 |
---|
[2140] | 77 | # var_timemax: This function returns the time at which variable reaches its maximum in time |
---|
| 78 | # units |
---|
[2138] | 79 | # var_timeoverthres: This function returns the time at which (varv(t) > thres) in time units |
---|
[1675] | 80 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
| 81 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
[1687] | 82 | # var_wd: Function to compute the wind direction |
---|
| 83 | # var_wd: Function to compute the wind speed |
---|
[1675] | 84 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
[1804] | 85 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from |
---|
| 86 | # a a given variable |
---|
[1675] | 87 | |
---|
| 88 | import numpy as np |
---|
| 89 | from netCDF4 import Dataset as NetCDFFile |
---|
| 90 | import os |
---|
| 91 | import re |
---|
| 92 | import nc_var_tools as ncvar |
---|
| 93 | import generic_tools as gen |
---|
| 94 | import datetime as dtime |
---|
| 95 | import module_ForDiag as fdin |
---|
| 96 | import module_ForDef as fdef |
---|
| 97 | |
---|
| 98 | main = 'diag_tools.py' |
---|
| 99 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
| 100 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
| 101 | |
---|
| 102 | # Constants |
---|
| 103 | grav = fdef.module_definitions.grav |
---|
| 104 | |
---|
[1687] | 105 | # Available WRFiag |
---|
[1713] | 106 | Wavailablediags = ['hur', 'p', 'ta', 'td', 'ua', 'va', 'uas', 'vas', 'wd', 'ws', 'zg'] |
---|
[1687] | 107 | |
---|
| 108 | # Available General diagnostics |
---|
[1724] | 109 | Cavailablediags = ['hur', 'hur_Uhus', 'td', 'td_Uhus', 'wd', 'ws'] |
---|
[1687] | 110 | |
---|
[1675] | 111 | # Gneral information |
---|
| 112 | ## |
---|
| 113 | def reduce_spaces(string): |
---|
| 114 | """ Function to give words of a line of text removing any extra space |
---|
| 115 | """ |
---|
| 116 | values = string.replace('\n','').split(' ') |
---|
| 117 | vals = [] |
---|
| 118 | for val in values: |
---|
| 119 | if len(val) > 0: |
---|
| 120 | vals.append(val) |
---|
| 121 | |
---|
| 122 | return vals |
---|
| 123 | |
---|
| 124 | def variable_combo(varn,combofile): |
---|
| 125 | """ Function to provide variables combination from a given variable name |
---|
| 126 | varn= name of the variable |
---|
| 127 | combofile= ASCII file with the combination of variables |
---|
| 128 | [varn] [combo] |
---|
| 129 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
| 130 | [WRFdt] to get WRF time-step (from general attributes) |
---|
| 131 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
| 132 | deaccum@RAINNC@XTIME@prnc |
---|
| 133 | """ |
---|
| 134 | fname = 'variable_combo' |
---|
| 135 | |
---|
| 136 | if varn == 'h': |
---|
| 137 | print fname + '_____________________________________________________________' |
---|
| 138 | print variable_combo.__doc__ |
---|
| 139 | quit() |
---|
| 140 | |
---|
| 141 | if not os.path.isfile(combofile): |
---|
| 142 | print errormsg |
---|
| 143 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
| 144 | "' does not exist!!" |
---|
| 145 | quit(-1) |
---|
| 146 | |
---|
| 147 | objf = open(combofile, 'r') |
---|
| 148 | |
---|
| 149 | found = False |
---|
| 150 | for line in objf: |
---|
| 151 | linevals = reduce_spaces(line) |
---|
| 152 | varnf = linevals[0] |
---|
| 153 | combo = linevals[1].replace('\n','') |
---|
| 154 | if varn == varnf: |
---|
| 155 | found = True |
---|
| 156 | break |
---|
| 157 | |
---|
| 158 | if not found: |
---|
| 159 | print errormsg |
---|
| 160 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
| 161 | "' !!" |
---|
| 162 | combo='ERROR' |
---|
| 163 | |
---|
| 164 | objf.close() |
---|
| 165 | |
---|
| 166 | return combo |
---|
| 167 | |
---|
| 168 | # Mathematical operators |
---|
| 169 | ## |
---|
| 170 | def compute_accum(varv, dimns, dimvns): |
---|
| 171 | """ Function to compute the accumulation of a variable |
---|
| 172 | compute_accum(varv, dimnames, dimvns) |
---|
| 173 | [varv]= values to accum (assuming [t,]) |
---|
| 174 | [dimns]= list of the name of the dimensions of the [varv] |
---|
| 175 | [dimvns]= list of the name of the variables with the values of the |
---|
| 176 | dimensions of [varv] |
---|
| 177 | """ |
---|
| 178 | fname = 'compute_accum' |
---|
| 179 | |
---|
| 180 | deacdims = dimns[:] |
---|
| 181 | deacvdims = dimvns[:] |
---|
| 182 | |
---|
| 183 | slicei = [] |
---|
| 184 | slicee = [] |
---|
| 185 | |
---|
| 186 | Ndims = len(varv.shape) |
---|
| 187 | for iid in range(0,Ndims): |
---|
| 188 | slicei.append(slice(0,varv.shape[iid])) |
---|
| 189 | slicee.append(slice(0,varv.shape[iid])) |
---|
| 190 | |
---|
| 191 | slicee[0] = np.arange(varv.shape[0]) |
---|
| 192 | slicei[0] = np.arange(varv.shape[0]) |
---|
| 193 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
| 194 | |
---|
| 195 | vari = varv[tuple(slicei)] |
---|
| 196 | vare = varv[tuple(slicee)] |
---|
| 197 | |
---|
| 198 | ac = vari*0. |
---|
| 199 | for it in range(1,varv.shape[0]): |
---|
| 200 | ac[it,] = ac[it-1,] + vare[it,] |
---|
| 201 | |
---|
| 202 | return ac, deacdims, deacvdims |
---|
| 203 | |
---|
| 204 | def compute_deaccum(varv, dimns, dimvns): |
---|
| 205 | """ Function to compute the deaccumulation of a variable |
---|
| 206 | compute_deaccum(varv, dimnames, dimvns) |
---|
| 207 | [varv]= values to deaccum (assuming [t,]) |
---|
| 208 | [dimns]= list of the name of the dimensions of the [varv] |
---|
| 209 | [dimvns]= list of the name of the variables with the values of the |
---|
| 210 | dimensions of [varv] |
---|
| 211 | """ |
---|
| 212 | fname = 'compute_deaccum' |
---|
| 213 | |
---|
| 214 | deacdims = dimns[:] |
---|
| 215 | deacvdims = dimvns[:] |
---|
| 216 | |
---|
| 217 | slicei = [] |
---|
| 218 | slicee = [] |
---|
| 219 | |
---|
| 220 | Ndims = len(varv.shape) |
---|
| 221 | for iid in range(0,Ndims): |
---|
| 222 | slicei.append(slice(0,varv.shape[iid])) |
---|
| 223 | slicee.append(slice(0,varv.shape[iid])) |
---|
| 224 | |
---|
| 225 | slicee[0] = np.arange(varv.shape[0]) |
---|
| 226 | slicei[0] = np.arange(varv.shape[0]) |
---|
| 227 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
| 228 | |
---|
| 229 | vari = varv[tuple(slicei)] |
---|
| 230 | vare = varv[tuple(slicee)] |
---|
| 231 | |
---|
| 232 | deac = vare - vari |
---|
| 233 | |
---|
| 234 | return deac, deacdims, deacvdims |
---|
| 235 | |
---|
| 236 | def derivate_centered(var,dim,dimv): |
---|
| 237 | """ Function to compute the centered derivate of a given field |
---|
| 238 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
| 239 | [var]= variable |
---|
| 240 | [dim]= which dimension to compute the derivate |
---|
| 241 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
| 242 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
| 243 | [[ 0. 1. 2. 0.] |
---|
| 244 | [ 0. 5. 6. 0.] |
---|
| 245 | [ 0. 9. 10. 0.] |
---|
| 246 | [ 0. 13. 14. 0.]] |
---|
| 247 | """ |
---|
| 248 | |
---|
| 249 | fname = 'derivate_centered' |
---|
| 250 | |
---|
| 251 | vark = var.dtype |
---|
| 252 | |
---|
| 253 | if hasattr(dimv, "__len__"): |
---|
| 254 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
| 255 | if len(var.shape) != len(dimv.shape): |
---|
| 256 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
| 257 | if len(var.shape) - len(dimv.shape) == 1: |
---|
| 258 | for iz in range(var.shape[0]): |
---|
| 259 | dimvals[iz,] = dimv |
---|
| 260 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
| 261 | for it in range(var.shape[0]): |
---|
| 262 | for iz in range(var.shape[1]): |
---|
| 263 | dimvals[it,iz,] = dimv |
---|
| 264 | else: |
---|
| 265 | print errormsg |
---|
| 266 | print ' ' + fname + ': dimension difference between variable', \ |
---|
| 267 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
| 268 | ' not ready !!!' |
---|
| 269 | quit(-1) |
---|
| 270 | else: |
---|
| 271 | dimvals = dimv |
---|
| 272 | else: |
---|
| 273 | # dimension values are identical everywhere! |
---|
| 274 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
| 275 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
| 276 | |
---|
| 277 | derivate = np.zeros((var.shape), dtype=vark) |
---|
| 278 | if dim > len(var.shape) - 1: |
---|
| 279 | print errormsg |
---|
| 280 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
| 281 | 'shape:', var.shape,'!!!' |
---|
| 282 | quit(-1) |
---|
| 283 | |
---|
| 284 | slicebef = [] |
---|
| 285 | sliceaft = [] |
---|
| 286 | sliceder = [] |
---|
| 287 | |
---|
| 288 | for id in range(len(var.shape)): |
---|
| 289 | if id == dim: |
---|
| 290 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
| 291 | sliceaft.append(slice(2,var.shape[id])) |
---|
| 292 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
| 293 | else: |
---|
| 294 | slicebef.append(slice(0,var.shape[id])) |
---|
| 295 | sliceaft.append(slice(0,var.shape[id])) |
---|
| 296 | sliceder.append(slice(0,var.shape[id])) |
---|
| 297 | |
---|
| 298 | if hasattr(dimv, "__len__"): |
---|
| 299 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
| 300 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
| 301 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
| 302 | else: |
---|
| 303 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
| 304 | (2.*dimv) |
---|
| 305 | |
---|
| 306 | # print 'before________' |
---|
| 307 | # print var[tuple(slicebef)] |
---|
| 308 | |
---|
| 309 | # print 'after________' |
---|
| 310 | # print var[tuple(sliceaft)] |
---|
| 311 | |
---|
| 312 | return derivate |
---|
| 313 | |
---|
| 314 | def rotational_z(Vx,Vy,pos): |
---|
| 315 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
| 316 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
| 317 | [Vx]= Variable component x |
---|
| 318 | [Vy]= Variable component y |
---|
| 319 | [pos]= poisition of the grid points |
---|
| 320 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
| 321 | [[ 0. 1. 2. 0.] |
---|
| 322 | [ -4. 0. 0. -7.] |
---|
| 323 | [ -8. 0. 0. -11.] |
---|
| 324 | [ 0. 13. 14. 0.]] |
---|
| 325 | """ |
---|
| 326 | |
---|
| 327 | fname = 'rotational_z' |
---|
| 328 | |
---|
| 329 | ndims = len(Vx.shape) |
---|
| 330 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
| 331 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
| 332 | |
---|
| 333 | rot = rot1 - rot2 |
---|
| 334 | |
---|
| 335 | return rot |
---|
| 336 | |
---|
| 337 | # Diagnostics |
---|
| 338 | ## |
---|
[1759] | 339 | def Forcompute_cape_afwa(ta, hur, pa, zg, hgt, parcelm, dimns, dimvns): |
---|
| 340 | """ Function to compute the CAPE, CIN, ZLFC, PLFC, LI following WRF |
---|
| 341 | 'phys/module_diaf_afwa.F' methodology |
---|
| 342 | Forcompute_cape_afwa(ta, hur, pa, hgt, zsfc, parcelm, dimns, dimvns) |
---|
| 343 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
| 344 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
| 345 | [zg]= gopotential height (assuming [[t],z,y,x]) [gpm] |
---|
| 346 | [hgt]= topographical height (assuming [m] |
---|
| 347 | [parcelm]= method of air-parcel to use |
---|
| 348 | [dimns]= list of the name of the dimensions of [pa] |
---|
| 349 | [dimvns]= list of the name of the variables with the values of the |
---|
| 350 | dimensions of [pa] |
---|
| 351 | """ |
---|
| 352 | fname = 'Forcompute_cape_afwa' |
---|
[1675] | 353 | |
---|
[1759] | 354 | psldims = dimns[:] |
---|
| 355 | pslvdims = dimvns[:] |
---|
| 356 | |
---|
| 357 | if len(pa.shape) == 4: |
---|
| 358 | cape = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 359 | cin = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 360 | zlfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 361 | plfc = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 362 | li = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 363 | |
---|
| 364 | dx = pa.shape[3] |
---|
| 365 | dy = pa.shape[2] |
---|
| 366 | dz = pa.shape[1] |
---|
| 367 | dt = pa.shape[0] |
---|
| 368 | psldims.pop(1) |
---|
| 369 | pslvdims.pop(1) |
---|
| 370 | |
---|
| 371 | pcape,pcin,pzlfc,pplfc,pli= fdin.module_fordiagnostics.compute_cape_afwa4d( \ |
---|
| 372 | ta=ta[:].transpose(), hur=hur[:].transpose(), press=pa[:].transpose(), \ |
---|
| 373 | zg=zg[:].transpose(), hgt=hgt.transpose(), parcelmethod=parcelm, d1=dx, \ |
---|
| 374 | d2=dy, d3=dz, d4=dt) |
---|
| 375 | cape = pcape.transpose() |
---|
| 376 | cin = pcin.transpose() |
---|
| 377 | zlfc = pzlfc.transpose() |
---|
| 378 | plfc = pplfc.transpose() |
---|
| 379 | li = pli.transpose() |
---|
| 380 | else: |
---|
| 381 | print errormsg |
---|
| 382 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
| 383 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 384 | quit(-1) |
---|
| 385 | |
---|
| 386 | return cape, cin, zlfc, plfc, li, psldims, pslvdims |
---|
| 387 | |
---|
[1773] | 388 | |
---|
| 389 | |
---|
[1675] | 390 | def var_clt(cfra): |
---|
| 391 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 392 | LMDZ using 1D vertical column values |
---|
| 393 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 394 | """ |
---|
| 395 | ZEPSEC=1.0E-12 |
---|
| 396 | |
---|
| 397 | fname = 'var_clt' |
---|
| 398 | |
---|
| 399 | zclear = 1. |
---|
| 400 | zcloud = 0. |
---|
| 401 | |
---|
| 402 | dz = cfra.shape[0] |
---|
| 403 | for iz in range(dz): |
---|
| 404 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
| 405 | clt = 1. - zclear |
---|
| 406 | zcloud = cfra[iz] |
---|
| 407 | |
---|
| 408 | return clt |
---|
| 409 | |
---|
| 410 | def compute_clt(cldfra, dimns, dimvns): |
---|
| 411 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 412 | LMDZ |
---|
| 413 | compute_clt(cldfra, dimnames) |
---|
| 414 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 415 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 416 | [dimvns]= list of the name of the variables with the values of the |
---|
| 417 | dimensions of [cldfra] |
---|
| 418 | """ |
---|
| 419 | fname = 'compute_clt' |
---|
| 420 | |
---|
| 421 | cltdims = dimns[:] |
---|
| 422 | cltvdims = dimvns[:] |
---|
| 423 | |
---|
| 424 | if len(cldfra.shape) == 4: |
---|
| 425 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
| 426 | dtype=np.float) |
---|
| 427 | dx = cldfra.shape[3] |
---|
| 428 | dy = cldfra.shape[2] |
---|
| 429 | dz = cldfra.shape[1] |
---|
| 430 | dt = cldfra.shape[0] |
---|
| 431 | cltdims.pop(1) |
---|
| 432 | cltvdims.pop(1) |
---|
| 433 | |
---|
| 434 | for it in range(dt): |
---|
| 435 | for ix in range(dx): |
---|
| 436 | for iy in range(dy): |
---|
| 437 | zclear = 1. |
---|
| 438 | zcloud = 0. |
---|
| 439 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 440 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
| 441 | |
---|
| 442 | else: |
---|
| 443 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
| 444 | dx = cldfra.shape[2] |
---|
| 445 | dy = cldfra.shape[1] |
---|
| 446 | dy = cldfra.shape[0] |
---|
| 447 | cltdims.pop(0) |
---|
| 448 | cltvdims.pop(0) |
---|
| 449 | for ix in range(dx): |
---|
| 450 | for iy in range(dy): |
---|
| 451 | zclear = 1. |
---|
| 452 | zcloud = 0. |
---|
| 453 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 454 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
| 455 | |
---|
| 456 | return clt, cltdims, cltvdims |
---|
| 457 | |
---|
| 458 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
| 459 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 460 | LMDZ via a Fortran module |
---|
| 461 | compute_clt(cldfra, dimnames) |
---|
| 462 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 463 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 464 | [dimvns]= list of the name of the variables with the values of the |
---|
| 465 | dimensions of [cldfra] |
---|
| 466 | """ |
---|
| 467 | fname = 'Forcompute_clt' |
---|
| 468 | |
---|
| 469 | cltdims = dimns[:] |
---|
| 470 | cltvdims = dimvns[:] |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | if len(cldfra.shape) == 4: |
---|
| 474 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
| 475 | dtype=np.float) |
---|
| 476 | dx = cldfra.shape[3] |
---|
| 477 | dy = cldfra.shape[2] |
---|
| 478 | dz = cldfra.shape[1] |
---|
| 479 | dt = cldfra.shape[0] |
---|
| 480 | cltdims.pop(1) |
---|
| 481 | cltvdims.pop(1) |
---|
| 482 | |
---|
| 483 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
| 484 | |
---|
| 485 | else: |
---|
| 486 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
| 487 | dx = cldfra.shape[2] |
---|
| 488 | dy = cldfra.shape[1] |
---|
| 489 | dy = cldfra.shape[0] |
---|
| 490 | cltdims.pop(0) |
---|
| 491 | cltvdims.pop(0) |
---|
| 492 | |
---|
| 493 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
| 494 | |
---|
| 495 | return clt, cltdims, cltvdims |
---|
| 496 | |
---|
| 497 | def var_cllmh(cfra, p): |
---|
| 498 | """ Fcuntion to compute cllmh on a 1D column |
---|
| 499 | """ |
---|
| 500 | |
---|
| 501 | fname = 'var_cllmh' |
---|
| 502 | |
---|
| 503 | ZEPSEC =1.0E-12 |
---|
| 504 | prmhc = 440.*100. |
---|
| 505 | prmlc = 680.*100. |
---|
| 506 | |
---|
| 507 | zclearl = 1. |
---|
| 508 | zcloudl = 0. |
---|
| 509 | zclearm = 1. |
---|
| 510 | zcloudm = 0. |
---|
| 511 | zclearh = 1. |
---|
| 512 | zcloudh = 0. |
---|
| 513 | |
---|
| 514 | dvz = cfra.shape[0] |
---|
| 515 | |
---|
| 516 | cllmh = np.ones((3), dtype=np.float) |
---|
| 517 | |
---|
| 518 | for iz in range(dvz): |
---|
| 519 | if p[iz] < prmhc: |
---|
| 520 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
| 521 | np.min([zcloudh,1.-ZEPSEC])) |
---|
| 522 | zcloudh = cfra[iz] |
---|
| 523 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
| 524 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
| 525 | np.min([zcloudm,1.-ZEPSEC])) |
---|
| 526 | zcloudm = cfra[iz] |
---|
| 527 | elif p[iz] >= prmlc: |
---|
| 528 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
| 529 | np.min([zcloudl,1.-ZEPSEC])) |
---|
| 530 | zcloudl = cfra[iz] |
---|
| 531 | |
---|
| 532 | cllmh = 1.- cllmh |
---|
| 533 | |
---|
| 534 | return cllmh |
---|
| 535 | |
---|
[2274] | 536 | def Forcompute_cellbnds(ulon, ulat, vlon, vlat, dimns, dimvns): |
---|
| 537 | """ Function to compute cellboundaries using wind-staggered lon, lats as |
---|
| 538 | intersection of their related parallels and meridians |
---|
| 539 | compute_cellbnds(ulon, ulat, vlon, vlat, dimns, dimvns) |
---|
| 540 | [ulon]= x-staggered longitudes (assuming [y,x+1]) |
---|
| 541 | [ulat]= x-staggered latitudes (assuming [y,x+1]) |
---|
| 542 | [vlon]= y-staggered longitudes (assuming [y+1,x]) |
---|
| 543 | [vlat]= y-staggered latitudes (assuming [y+1,x]) |
---|
| 544 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 545 | [dimvns]= list of the name of the variables with the values of the |
---|
| 546 | dimensions of [ulon] |
---|
| 547 | """ |
---|
| 548 | fname = 'Forcompute_cellbnds' |
---|
| 549 | |
---|
| 550 | dims = dimns[:] |
---|
| 551 | vdims = dimvns[:] |
---|
| 552 | |
---|
| 553 | if len(ulon.shape) == 2: |
---|
| 554 | sdx = ulon.shape[1] |
---|
| 555 | dy = ulon.shape[0] |
---|
| 556 | dx = vlon.shape[1] |
---|
| 557 | sdy = vlon.shape[0] |
---|
| 558 | |
---|
| 559 | ulont = ulon.transpose() |
---|
| 560 | ulatt = ulat.transpose() |
---|
| 561 | vlont = vlon.transpose() |
---|
| 562 | vlatt = vlat.transpose() |
---|
| 563 | |
---|
| 564 | xbndst, ybndst = fdin.module_fordiagnostics.compute_cellbnds(ulon=ulont, \ |
---|
| 565 | ulat=ulatt, vlon=vlont, vlat=vlatt, dx=dx, dy=dy, sdx=sdx, sdy=sdy) |
---|
| 566 | else: |
---|
| 567 | print errormsg |
---|
| 568 | print ' ' + fname + ": wrong rank of variables !!" |
---|
| 569 | print ' 2D matrices are expected and its found instead' |
---|
| 570 | print ' ulon shape:', ulon.shape |
---|
| 571 | print ' ulat shape:', ulat.shape |
---|
| 572 | print ' vlon shape:', vlon.shape |
---|
| 573 | print ' vlat shape:', vlat.shape |
---|
| 574 | quit(-1) |
---|
| 575 | |
---|
| 576 | xbnds = xbndst.transpose() |
---|
| 577 | ybnds = ybndst.transpose() |
---|
| 578 | |
---|
| 579 | return xbnds, ybnds, dims, vdims |
---|
| 580 | |
---|
[2277] | 581 | |
---|
| 582 | def Forcompute_cellbndsreg(lon, lat, dimns, dimvns): |
---|
| 583 | """ Function to compute cellboundaries using lon, lat from a reglar lon/lat |
---|
| 584 | projection as intersection of their related parallels and meridians |
---|
| 585 | compute_cellbnds(ulon, ulat, vlon, vlat, dimns, dimvns) |
---|
| 586 | [ulon]= x-staggered longitudes (assuming [y,x+1]) |
---|
| 587 | [ulat]= x-staggered latitudes (assuming [y,x+1]) |
---|
| 588 | [vlon]= y-staggered longitudes (assuming [y+1,x]) |
---|
| 589 | [vlat]= y-staggered latitudes (assuming [y+1,x]) |
---|
| 590 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 591 | [dimvns]= list of the name of the variables with the values of the |
---|
| 592 | dimensions of [ulon] |
---|
| 593 | """ |
---|
| 594 | fname = 'Forcompute_cellbndsreg' |
---|
| 595 | |
---|
| 596 | dims = dimns[:] |
---|
| 597 | vdims = dimvns[:] |
---|
| 598 | |
---|
| 599 | if len(lon.shape) == 2: |
---|
| 600 | dy = lon.shape[0] |
---|
| 601 | dx = lon.shape[1] |
---|
| 602 | |
---|
| 603 | lont = lon.transpose() |
---|
| 604 | latt = lat.transpose() |
---|
| 605 | |
---|
| 606 | xbndst, ybndst = fdin.module_fordiagnostics.compute_cellbndsreg(lon=lont, \ |
---|
| 607 | lat=latt, dx=dx, dy=dy) |
---|
| 608 | else: |
---|
| 609 | print errormsg |
---|
| 610 | print ' ' + fname + ": wrong rank of variables !!" |
---|
| 611 | print ' 2D matrices are expected and its found instead' |
---|
| 612 | print ' lon shape:', lon.shape |
---|
| 613 | print ' lat shape:', lat.shape |
---|
| 614 | quit(-1) |
---|
| 615 | |
---|
| 616 | xbnds = xbndst.transpose() |
---|
| 617 | ybnds = ybndst.transpose() |
---|
| 618 | |
---|
| 619 | return xbnds, ybnds, dims, vdims |
---|
| 620 | |
---|
[1675] | 621 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
| 622 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 623 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 624 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 625 | [pres] = pressure field |
---|
| 626 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 627 | [dimvns]= list of the name of the variables with the values of the |
---|
| 628 | dimensions of [cldfra] |
---|
| 629 | """ |
---|
| 630 | fname = 'Forcompute_cllmh' |
---|
| 631 | |
---|
| 632 | cllmhdims = dimns[:] |
---|
| 633 | cllmhvdims = dimvns[:] |
---|
| 634 | |
---|
| 635 | if len(cldfra.shape) == 4: |
---|
| 636 | dx = cldfra.shape[3] |
---|
| 637 | dy = cldfra.shape[2] |
---|
| 638 | dz = cldfra.shape[1] |
---|
| 639 | dt = cldfra.shape[0] |
---|
| 640 | cllmhdims.pop(1) |
---|
| 641 | cllmhvdims.pop(1) |
---|
| 642 | |
---|
| 643 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
| 644 | |
---|
| 645 | else: |
---|
| 646 | dx = cldfra.shape[2] |
---|
| 647 | dy = cldfra.shape[1] |
---|
| 648 | dz = cldfra.shape[0] |
---|
| 649 | cllmhdims.pop(0) |
---|
| 650 | cllmhvdims.pop(0) |
---|
| 651 | |
---|
| 652 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
| 653 | |
---|
| 654 | return cllmh, cllmhdims, cllmhvdims |
---|
| 655 | |
---|
| 656 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
| 657 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
| 658 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 659 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 660 | [pres] = pressure field |
---|
| 661 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 662 | [dimvns]= list of the name of the variables with the values of the |
---|
| 663 | dimensions of [cldfra] |
---|
| 664 | """ |
---|
| 665 | fname = 'compute_cllmh' |
---|
| 666 | |
---|
| 667 | cllmhdims = dimns[:] |
---|
| 668 | cllmhvdims = dimvns[:] |
---|
| 669 | |
---|
| 670 | if len(cldfra.shape) == 4: |
---|
| 671 | dx = cldfra.shape[3] |
---|
| 672 | dy = cldfra.shape[2] |
---|
| 673 | dz = cldfra.shape[1] |
---|
| 674 | dt = cldfra.shape[0] |
---|
| 675 | cllmhdims.pop(1) |
---|
| 676 | cllmhvdims.pop(1) |
---|
| 677 | |
---|
| 678 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
| 679 | |
---|
| 680 | for it in range(dt): |
---|
| 681 | for ix in range(dx): |
---|
| 682 | for iy in range(dy): |
---|
| 683 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 684 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
| 685 | |
---|
| 686 | else: |
---|
| 687 | dx = cldfra.shape[2] |
---|
| 688 | dy = cldfra.shape[1] |
---|
| 689 | dz = cldfra.shape[0] |
---|
| 690 | cllmhdims.pop(0) |
---|
| 691 | cllmhvdims.pop(0) |
---|
| 692 | |
---|
| 693 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
| 694 | |
---|
| 695 | for ix in range(dx): |
---|
| 696 | for iy in range(dy): |
---|
| 697 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
| 698 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
| 699 | |
---|
| 700 | return cllmh, cllmhdims, cllmhvdims |
---|
| 701 | |
---|
| 702 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
| 703 | """ Function to compute cloud-ice water path (clivi) |
---|
| 704 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 705 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
| 706 | [dimns]= list of the name of the dimensions of [q] |
---|
| 707 | [dimvns]= list of the name of the variables with the values of the |
---|
| 708 | dimensions of [q] |
---|
| 709 | """ |
---|
| 710 | fname = 'compute_clivi' |
---|
| 711 | |
---|
| 712 | clividims = dimns[:] |
---|
| 713 | clivivdims = dimvns[:] |
---|
| 714 | |
---|
| 715 | if len(qtot.shape) == 4: |
---|
| 716 | clividims.pop(1) |
---|
| 717 | clivivdims.pop(1) |
---|
| 718 | else: |
---|
| 719 | clividims.pop(0) |
---|
| 720 | clivivdims.pop(0) |
---|
| 721 | |
---|
| 722 | data1 = dens*qtot |
---|
| 723 | clivi = np.sum(data1, axis=1) |
---|
| 724 | |
---|
| 725 | return clivi, clividims, clivivdims |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
| 729 | """ Function to compute condensed water path (clwvl) |
---|
| 730 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 731 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
| 732 | [dimns]= list of the name of the dimensions of [q] |
---|
| 733 | [dimvns]= list of the name of the variables with the values of the |
---|
| 734 | dimensions of [q] |
---|
| 735 | """ |
---|
| 736 | fname = 'compute_clwvl' |
---|
| 737 | |
---|
| 738 | clwvldims = dimns[:] |
---|
| 739 | clwvlvdims = dimvns[:] |
---|
| 740 | |
---|
| 741 | if len(qtot.shape) == 4: |
---|
| 742 | clwvldims.pop(1) |
---|
| 743 | clwvlvdims.pop(1) |
---|
| 744 | else: |
---|
| 745 | clwvldims.pop(0) |
---|
| 746 | clwvlvdims.pop(0) |
---|
| 747 | |
---|
| 748 | data1 = dens*qtot |
---|
| 749 | clwvl = np.sum(data1, axis=1) |
---|
| 750 | |
---|
| 751 | return clwvl, clwvldims, clwvlvdims |
---|
| 752 | |
---|
| 753 | def var_virtualTemp (temp,rmix): |
---|
| 754 | """ This function returns virtual temperature in K, |
---|
| 755 | temp: temperature [K] |
---|
| 756 | rmix: mixing ratio in [kgkg-1] |
---|
| 757 | """ |
---|
| 758 | |
---|
| 759 | fname = 'var_virtualTemp' |
---|
| 760 | |
---|
| 761 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
| 762 | |
---|
| 763 | return virtual |
---|
| 764 | |
---|
[2100] | 765 | def var_convini(pr, time, dimns, dimvns): |
---|
| 766 | """ This function returns convective initialization (pr(t) > 0.0001) in time units |
---|
| 767 | pr: precipitation fux [kgm-2s-1] |
---|
| 768 | time: time in CF coordinates |
---|
| 769 | """ |
---|
| 770 | fname = 'var_convini' |
---|
| 771 | |
---|
| 772 | dt = pr.shape[0] |
---|
| 773 | dy = pr.shape[1] |
---|
| 774 | dx = pr.shape[2] |
---|
| 775 | |
---|
| 776 | vardims = dimns[:] |
---|
| 777 | varvdims = dimvns[:] |
---|
| 778 | |
---|
| 779 | vardims.pop(0) |
---|
| 780 | varvdims.pop(0) |
---|
| 781 | |
---|
| 782 | prmin = 0.0001 |
---|
| 783 | convini = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
| 784 | for it in range(dt): |
---|
| 785 | # NOT working ? |
---|
| 786 | # convini = np.where(convini == gen.fillValueF and pr[it,:,:] >= prmin, \ |
---|
| 787 | # time[it], fillValueF) |
---|
| 788 | for j in range(dy): |
---|
| 789 | for i in range(dx): |
---|
| 790 | if convini[j,i] == gen.fillValueF and pr[it,j,i] >= prmin: |
---|
| 791 | convini[j,i] = time[it] |
---|
| 792 | break |
---|
| 793 | |
---|
| 794 | return convini, vardims, varvdims |
---|
| 795 | |
---|
[2140] | 796 | def var_timemax(varv, time, dimns, dimvns): |
---|
| 797 | """ This function returns the time at which variable reaches its maximum in time |
---|
| 798 | units |
---|
| 799 | varv: values of the variable to use |
---|
| 800 | time: time in CF coordinates |
---|
| 801 | """ |
---|
| 802 | fname = 'var_timemax' |
---|
| 803 | |
---|
| 804 | dt = varv.shape[0] |
---|
| 805 | dy = varv.shape[1] |
---|
| 806 | dx = varv.shape[2] |
---|
| 807 | |
---|
| 808 | vardims = dimns[:] |
---|
| 809 | varvdims = dimvns[:] |
---|
| 810 | |
---|
| 811 | vardims.pop(0) |
---|
| 812 | varvdims.pop(0) |
---|
| 813 | |
---|
| 814 | timemax = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
| 815 | varmax = np.max(varv, axis=0) |
---|
| 816 | for j in range(dy): |
---|
| 817 | for i in range(dx): |
---|
| 818 | it = gen.index_vec(varv[:,j,i], varmax[j,i]) |
---|
| 819 | timemax[j,i] = time[it] |
---|
| 820 | |
---|
| 821 | return timemax, vardims, varvdims |
---|
| 822 | |
---|
[2138] | 823 | def var_timeoverthres(varv, time, thres, dimns, dimvns): |
---|
| 824 | """ This function returns the time at which (varv(t) > thres) in time units |
---|
| 825 | varv: values of the variable to use |
---|
| 826 | time: time in CF coordinates |
---|
| 827 | thres: threshold to overpass |
---|
| 828 | """ |
---|
| 829 | fname = 'var_timeoverthres' |
---|
| 830 | |
---|
| 831 | dt = varv.shape[0] |
---|
| 832 | dy = varv.shape[1] |
---|
| 833 | dx = varv.shape[2] |
---|
| 834 | |
---|
| 835 | vardims = dimns[:] |
---|
| 836 | varvdims = dimvns[:] |
---|
| 837 | |
---|
| 838 | vardims.pop(0) |
---|
| 839 | varvdims.pop(0) |
---|
| 840 | |
---|
| 841 | timeoverthres = np.ones((dy, dx), dtype=np.float)*gen.fillValueF |
---|
| 842 | for it in range(dt): |
---|
| 843 | for j in range(dy): |
---|
| 844 | for i in range(dx): |
---|
| 845 | if timeoverthres[j,i] == gen.fillValueF and varv[it,j,i] >= thres: |
---|
| 846 | timeoverthres[j,i] = time[it] |
---|
| 847 | break |
---|
| 848 | |
---|
| 849 | return timeoverthres, vardims, varvdims |
---|
| 850 | |
---|
[1762] | 851 | def Forcompute_zint(var, zinterlev, zweights, dimns, dimvns): |
---|
| 852 | """ Function to compute a vertical integration of volumetric quantities |
---|
| 853 | Forcompute_mrso(smois, dsoil, dimns, dimvns) |
---|
| 854 | [var]= values (assuming [[t],z,y,x]) [volumetric units] |
---|
| 855 | [zinterlev]= depth of each layer (assuming [z]) [same z units as var] |
---|
| 856 | [zweights]= weights to apply to each level (just in case...) |
---|
| 857 | [dimns]= list of the name of the dimensions of [smois] |
---|
| 858 | [dimvns]= list of the name of the variables with the values of the |
---|
| 859 | dimensions of [smois] |
---|
| 860 | """ |
---|
| 861 | fname = 'Forcompute_zint' |
---|
[1675] | 862 | |
---|
[1762] | 863 | vardims = dimns[:] |
---|
| 864 | varvdims = dimvns[:] |
---|
| 865 | |
---|
| 866 | if len(var.shape) == 4: |
---|
| 867 | zint = np.zeros((var.shape[0],var.shape[2],var.shape[3]), dtype=np.float) |
---|
| 868 | dx = var.shape[3] |
---|
| 869 | dy = var.shape[2] |
---|
| 870 | dz = var.shape[1] |
---|
| 871 | dt = var.shape[0] |
---|
| 872 | vardims.pop(1) |
---|
| 873 | varvdims.pop(1) |
---|
| 874 | |
---|
| 875 | zintvart=fdin.module_fordiagnostics.compute_zint4d(var4d=var[:].transpose(), \ |
---|
| 876 | dlev=zinterlev[:].transpose(), zweight=zweights[:].transpose(), d1=dx, \ |
---|
| 877 | d2=dy, d3=dz, d4=dt) |
---|
| 878 | zintvar = zintvart.transpose() |
---|
| 879 | else: |
---|
| 880 | print errormsg |
---|
| 881 | print ' ' + fname + ': rank', len(var.shape), 'not ready !!' |
---|
| 882 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 883 | quit(-1) |
---|
| 884 | |
---|
| 885 | return zintvar, vardims, varvdims |
---|
| 886 | |
---|
[1675] | 887 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
| 888 | """ Function to compute mslp on a 1D column |
---|
| 889 | """ |
---|
| 890 | |
---|
| 891 | fname = 'var_mslp' |
---|
| 892 | |
---|
| 893 | N = 1.0 |
---|
| 894 | expon=287.04*.0065/9.81 |
---|
| 895 | pref = 40000. |
---|
| 896 | |
---|
| 897 | # First find where about 400 hPa is located |
---|
| 898 | dz=len(pres) |
---|
| 899 | |
---|
| 900 | kref = -1 |
---|
| 901 | pinc = pres[0] - pres[dz-1] |
---|
| 902 | |
---|
| 903 | if pinc < 0.: |
---|
| 904 | for iz in range(1,dz): |
---|
| 905 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
| 906 | kref = iz |
---|
| 907 | break |
---|
| 908 | else: |
---|
| 909 | for iz in range(dz-1): |
---|
| 910 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
| 911 | kref = iz |
---|
| 912 | break |
---|
| 913 | |
---|
| 914 | if kref == -1: |
---|
| 915 | print errormsg |
---|
| 916 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
| 917 | print ' values:',pres[:] |
---|
| 918 | quit(-1) |
---|
| 919 | |
---|
| 920 | mslp = 0. |
---|
| 921 | |
---|
| 922 | # We are below both the ground and the lowest data level. |
---|
| 923 | |
---|
| 924 | # First, find the model level that is closest to a "target" pressure |
---|
| 925 | # level, where the "target" pressure is delta-p less that the local |
---|
| 926 | # value of a horizontally smoothed surface pressure field. We use |
---|
| 927 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
| 928 | # passing through the temperature at this model level will be used |
---|
| 929 | # to define the temperature profile below ground. This is similar |
---|
| 930 | # to the Benjamin and Miller (1990) method, using |
---|
| 931 | # 700 hPa everywhere for the "target" pressure. |
---|
| 932 | |
---|
| 933 | # ptarget = psfc - 15000. |
---|
| 934 | ptarget = 70000. |
---|
| 935 | dpmin=1.e4 |
---|
| 936 | kupper = 0 |
---|
| 937 | if pinc > 0.: |
---|
| 938 | for iz in range(dz-1,0,-1): |
---|
| 939 | kupper = iz |
---|
| 940 | dp=np.abs( pres[iz] - ptarget ) |
---|
| 941 | if dp < dpmin: exit |
---|
| 942 | dpmin = np.min([dpmin, dp]) |
---|
| 943 | else: |
---|
| 944 | for iz in range(dz): |
---|
| 945 | kupper = iz |
---|
| 946 | dp=np.abs( pres[iz] - ptarget ) |
---|
| 947 | if dp < dpmin: exit |
---|
| 948 | dpmin = np.min([dpmin, dp]) |
---|
| 949 | |
---|
| 950 | pbot=np.max([pres[0], psfc]) |
---|
| 951 | # zbot=0. |
---|
| 952 | |
---|
| 953 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
| 954 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
| 955 | |
---|
| 956 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
| 957 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
| 958 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
| 959 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
| 960 | |
---|
| 961 | return mslp |
---|
| 962 | |
---|
| 963 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
| 964 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 965 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
| 966 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
| 967 | [psurface]= surface pressure field [Pa] |
---|
| 968 | [terrain]= topography [m] |
---|
| 969 | [temperature]= temperature [K] |
---|
| 970 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
| 971 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 972 | [dimvns]= list of the name of the variables with the values of the |
---|
| 973 | dimensions of [pres] |
---|
| 974 | """ |
---|
| 975 | |
---|
| 976 | fname = 'compute_mslp' |
---|
| 977 | |
---|
| 978 | mslpdims = list(dimns[:]) |
---|
| 979 | mslpvdims = list(dimvns[:]) |
---|
| 980 | |
---|
| 981 | if len(pressure.shape) == 4: |
---|
| 982 | mslpdims.pop(1) |
---|
| 983 | mslpvdims.pop(1) |
---|
| 984 | else: |
---|
| 985 | mslpdims.pop(0) |
---|
| 986 | mslpvdims.pop(0) |
---|
| 987 | |
---|
| 988 | if len(pressure.shape) == 4: |
---|
| 989 | dx = pressure.shape[3] |
---|
| 990 | dy = pressure.shape[2] |
---|
| 991 | dz = pressure.shape[1] |
---|
| 992 | dt = pressure.shape[0] |
---|
| 993 | |
---|
| 994 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
| 995 | |
---|
| 996 | # Terrain... to 2D ! |
---|
| 997 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 998 | if len(terrain.shape) == 3: |
---|
| 999 | terval = terrain[0,:,:] |
---|
| 1000 | else: |
---|
| 1001 | terval = terrain |
---|
| 1002 | |
---|
| 1003 | for ix in range(dx): |
---|
| 1004 | for iy in range(dy): |
---|
| 1005 | if terval[iy,ix] > 0.: |
---|
| 1006 | for it in range(dt): |
---|
| 1007 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
| 1008 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
| 1009 | qvapor[it,:,iy,ix]) |
---|
| 1010 | |
---|
| 1011 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 1012 | else: |
---|
| 1013 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
| 1014 | |
---|
| 1015 | else: |
---|
| 1016 | dx = pressure.shape[2] |
---|
| 1017 | dy = pressure.shape[1] |
---|
| 1018 | dz = pressure.shape[0] |
---|
| 1019 | |
---|
| 1020 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 1021 | |
---|
| 1022 | # Terrain... to 2D ! |
---|
| 1023 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 1024 | if len(terrain.shape) == 3: |
---|
| 1025 | terval = terrain[0,:,:] |
---|
| 1026 | else: |
---|
| 1027 | terval = terrain |
---|
| 1028 | |
---|
| 1029 | for ix in range(dx): |
---|
| 1030 | for iy in range(dy): |
---|
| 1031 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
| 1032 | if terval[iy,ix] > 0.: |
---|
[1758] | 1033 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
[1675] | 1034 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
| 1035 | else: |
---|
| 1036 | mslpv[iy,ix] = psfc[iy,ix] |
---|
| 1037 | |
---|
| 1038 | return mslpv, mslpdims, mslpvdims |
---|
| 1039 | |
---|
[1795] | 1040 | def Forcompute_psl_ecmwf(ps, hgt, ta1, pa2, unpa1, dimns, dimvns): |
---|
| 1041 | """ Function to compute the sea-level pressure following Mats Hamrud and Philippe Courtier [Pa] |
---|
| 1042 | Forcompute_psl_ptarget(ps, hgt, ta1, pa2, unpa1, dimns, dimvns) |
---|
| 1043 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
| 1044 | [hgt]= opography (assuming [y,x]) [m] |
---|
| 1045 | [ta1]= air-temperature values at first half-mass level (assuming [[t],y,x]) [K] |
---|
| 1046 | [pa2]= pressure values at second full-mass levels (assuming [[t],y,x]) [Pa] |
---|
| 1047 | [unpa1]= pressure values at first half-mass levels (assuming [[t],y,x]) [Pa] |
---|
| 1048 | [dimns]= list of the name of the dimensions of [pa] |
---|
| 1049 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1050 | dimensions of [pa] |
---|
| 1051 | """ |
---|
| 1052 | fname = 'Forcompute_psl_ecmwf' |
---|
| 1053 | |
---|
| 1054 | vardims = dimns[:] |
---|
| 1055 | varvdims = dimvns[:] |
---|
| 1056 | |
---|
| 1057 | if len(pa2.shape) == 3: |
---|
| 1058 | psl = np.zeros((pa2.shape[0],pa2.shape[1],pa2.shape[2]), dtype=np.float) |
---|
| 1059 | dx = pa2.shape[2] |
---|
| 1060 | dy = pa2.shape[1] |
---|
| 1061 | dt = pa2.shape[0] |
---|
| 1062 | pslt= fdin.module_fordiagnostics.compute_psl_ecmwf( ps=ps[:].transpose(), \ |
---|
| 1063 | hgt=hgt[:].transpose(), t=ta1[:].transpose(), press=pa2[:].transpose(), \ |
---|
| 1064 | unpress=unpa1[:].transpose(), d1=dx, d2=dy, d4=dt) |
---|
| 1065 | psl = pslt.transpose() |
---|
| 1066 | else: |
---|
| 1067 | print errormsg |
---|
| 1068 | print ' ' + fname + ': rank', len(pa2.shape), 'not ready !!' |
---|
| 1069 | print ' it only computes 3D [t,y,x] rank values' |
---|
| 1070 | quit(-1) |
---|
| 1071 | |
---|
| 1072 | return psl, vardims, varvdims |
---|
| 1073 | |
---|
[1758] | 1074 | def Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, target_pressure, dimns, dimvns): |
---|
| 1075 | """ Function to compute the sea-level pressure following target_pressure value |
---|
| 1076 | found in `p_interp.F' |
---|
| 1077 | Forcompute_psl_ptarget(pa, ps, ta, hgt, qv, dimns, dimvns) |
---|
| 1078 | [pa]= pressure values (assuming [[t],z,y,x]) [Pa] |
---|
| 1079 | [ps]= surface pressure values (assuming [[t],y,x]) [Pa] |
---|
| 1080 | [ta]= air-temperature values (assuming [[t],z,y,x]) [K] |
---|
| 1081 | [hgt]= opography (assuming [y,x]) [m] |
---|
| 1082 | [qv]= water vapour mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
| 1083 | [dimns]= list of the name of the dimensions of [pa] |
---|
| 1084 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1085 | dimensions of [pa] |
---|
| 1086 | """ |
---|
| 1087 | fname = 'Forcompute_psl_ptarget' |
---|
| 1088 | |
---|
| 1089 | psldims = dimns[:] |
---|
| 1090 | pslvdims = dimvns[:] |
---|
| 1091 | |
---|
| 1092 | if len(pa.shape) == 4: |
---|
| 1093 | psl = np.zeros((pa.shape[0],pa.shape[2],pa.shape[3]), dtype=np.float) |
---|
| 1094 | dx = pa.shape[3] |
---|
| 1095 | dy = pa.shape[2] |
---|
| 1096 | dz = pa.shape[1] |
---|
| 1097 | dt = pa.shape[0] |
---|
| 1098 | psldims.pop(1) |
---|
| 1099 | pslvdims.pop(1) |
---|
| 1100 | |
---|
| 1101 | pslt= fdin.module_fordiagnostics.compute_psl_ptarget4d2( \ |
---|
| 1102 | press=pa[:].transpose(), ps=ps[:].transpose(), hgt=hgt[:].transpose(), \ |
---|
| 1103 | ta=ta[:].transpose(), qv=qv[:].transpose(), ptarget=target_pressure, \ |
---|
| 1104 | d1=dx, d2=dy, d3=dz, d4=dt) |
---|
| 1105 | psl = pslt.transpose() |
---|
| 1106 | else: |
---|
| 1107 | print errormsg |
---|
| 1108 | print ' ' + fname + ': rank', len(pa.shape), 'not ready !!' |
---|
| 1109 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1110 | quit(-1) |
---|
| 1111 | |
---|
| 1112 | return psl, psldims, pslvdims |
---|
| 1113 | |
---|
[1773] | 1114 | def Forcompute_zmla_gen(theta, qratio, zpl, hgt, dimns, dimvns): |
---|
| 1115 | """ Function to compute the boundary layer height following a generic method |
---|
| 1116 | with Fortran |
---|
| 1117 | Forcompute_zmla_gen(theta, qratio, zpl, hgt, zmla, dimns, dimvns) |
---|
| 1118 | [theta]= potential air-temperature values (assuming [[t],z,y,x]) [K] |
---|
| 1119 | [qratio]= water mixing ratio (assuming [[t],z,y,x]) [kgkg-1] |
---|
| 1120 | [zpl]= height from sea level (assuming [[t],z,y,x]) [m] |
---|
| 1121 | [hgt]= topographical height (assuming [m] |
---|
| 1122 | [zmla]= boundary layer height [m] |
---|
| 1123 | [dimns]= list of the name of the dimensions of [theta] |
---|
| 1124 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1125 | dimensions of [theta] |
---|
| 1126 | """ |
---|
| 1127 | fname = 'Forcompute_zmla_gen' |
---|
| 1128 | |
---|
| 1129 | zmladims = dimns[:] |
---|
| 1130 | zmlavdims = dimvns[:] |
---|
| 1131 | |
---|
| 1132 | if len(theta.shape) == 4: |
---|
| 1133 | zmla= np.zeros((theta.shape[0],theta.shape[2],theta.shape[3]), dtype=np.float) |
---|
| 1134 | |
---|
| 1135 | dx = theta.shape[3] |
---|
| 1136 | dy = theta.shape[2] |
---|
| 1137 | dz = theta.shape[1] |
---|
| 1138 | dt = theta.shape[0] |
---|
| 1139 | zmladims.pop(1) |
---|
| 1140 | zmlavdims.pop(1) |
---|
| 1141 | |
---|
| 1142 | pzmla= fdin.module_fordiagnostics.compute_zmla_generic4d( \ |
---|
| 1143 | tpot=theta[:].transpose(), qratio=qratio[:].transpose(), \ |
---|
| 1144 | z=zpl[:].transpose(), hgt=hgt.transpose(), d1=dx, d2=dy, d3=dz, d4=dt) |
---|
| 1145 | zmla = pzmla.transpose() |
---|
[2619] | 1146 | |
---|
| 1147 | elif len(theta.shape) == 2: |
---|
| 1148 | zmla= np.zeros((theta.shape[0], theta.shape[1]), dtype=np.float) |
---|
| 1149 | |
---|
| 1150 | dz = theta.shape[1] |
---|
| 1151 | dt = theta.shape[0] |
---|
| 1152 | zmladims.pop(1) |
---|
| 1153 | zmlavdims.pop(1) |
---|
| 1154 | |
---|
| 1155 | pzmla= fdin.module_fordiagnostics.compute_zmla_generic2d( \ |
---|
| 1156 | tpot=theta[:].transpose(), qratio=qratio[:].transpose(), \ |
---|
| 1157 | z=zpl[:].transpose(), hgt=hgt, d1=dz, d2=dt) |
---|
| 1158 | zmla = pzmla.transpose() |
---|
| 1159 | |
---|
[1773] | 1160 | else: |
---|
| 1161 | print errormsg |
---|
| 1162 | print ' ' + fname + ': rank', len(theta.shape), 'not ready !!' |
---|
| 1163 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1164 | quit(-1) |
---|
| 1165 | |
---|
| 1166 | return zmla, zmladims, zmlavdims |
---|
| 1167 | |
---|
[1777] | 1168 | def Forcompute_zwind(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
[1776] | 1169 | """ Function to compute the wind at a given height following the power law method |
---|
| 1170 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
| 1171 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1172 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
[1777] | 1173 | [z]= height above surface [m] |
---|
[1776] | 1174 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1175 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1176 | [sina]= local sine of map rotation [1.] |
---|
| 1177 | [cosa]= local cosine of map rotation [1.] |
---|
| 1178 | [zval]= desired height for winds [m] |
---|
| 1179 | [dimns]= list of the name of the dimensions of [ua] |
---|
| 1180 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1181 | dimensions of [ua] |
---|
| 1182 | """ |
---|
| 1183 | fname = 'Forcompute_zwind' |
---|
| 1184 | |
---|
| 1185 | vardims = dimns[:] |
---|
| 1186 | varvdims = dimvns[:] |
---|
| 1187 | |
---|
| 1188 | if len(ua.shape) == 4: |
---|
| 1189 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
| 1190 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
| 1191 | |
---|
| 1192 | dx = ua.shape[3] |
---|
| 1193 | dy = ua.shape[2] |
---|
| 1194 | dz = ua.shape[1] |
---|
| 1195 | dt = ua.shape[0] |
---|
| 1196 | vardims.pop(1) |
---|
| 1197 | varvdims.pop(1) |
---|
| 1198 | |
---|
| 1199 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind4d(ua=ua.transpose(), \ |
---|
[1777] | 1200 | va=va[:].transpose(), z=z[:].transpose(), uas=uas.transpose(), \ |
---|
| 1201 | vas=vas.transpose(), sina=sina.transpose(), cosa=cosa.transpose(), \ |
---|
| 1202 | zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
[1776] | 1203 | var1 = pvar1.transpose() |
---|
| 1204 | var2 = pvar2.transpose() |
---|
| 1205 | else: |
---|
| 1206 | print errormsg |
---|
| 1207 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
| 1208 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1209 | quit(-1) |
---|
| 1210 | |
---|
| 1211 | return var1, var2, vardims, varvdims |
---|
| 1212 | |
---|
[1784] | 1213 | def Forcompute_zwind_log(ua, va, z, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
| 1214 | """ Function to compute the wind at a given height following the logarithmic law method |
---|
| 1215 | Forcompute_zwind(ua, va, zsl, uas, vas, hgt, sina, cosa, zval, dimns, dimvns) |
---|
| 1216 | [ua]= x-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1217 | [va]= y-component of unstaggered 3D wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1218 | [z]= height above surface [m] |
---|
| 1219 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1220 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1221 | [sina]= local sine of map rotation [1.] |
---|
| 1222 | [cosa]= local cosine of map rotation [1.] |
---|
| 1223 | [zval]= desired height for winds [m] |
---|
| 1224 | [dimns]= list of the name of the dimensions of [ua] |
---|
| 1225 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1226 | dimensions of [ua] |
---|
| 1227 | """ |
---|
| 1228 | fname = 'Forcompute_zwind_log' |
---|
| 1229 | |
---|
| 1230 | vardims = dimns[:] |
---|
| 1231 | varvdims = dimvns[:] |
---|
| 1232 | |
---|
| 1233 | if len(ua.shape) == 4: |
---|
| 1234 | var1= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
| 1235 | var2= np.zeros((ua.shape[0],ua.shape[2],ua.shape[3]), dtype=np.float) |
---|
| 1236 | |
---|
| 1237 | dx = ua.shape[3] |
---|
| 1238 | dy = ua.shape[2] |
---|
| 1239 | dz = ua.shape[1] |
---|
| 1240 | dt = ua.shape[0] |
---|
| 1241 | vardims.pop(1) |
---|
| 1242 | varvdims.pop(1) |
---|
| 1243 | |
---|
| 1244 | pvar1, pvar2= fdin.module_fordiagnostics.compute_zwind_log4d( \ |
---|
| 1245 | ua=ua.transpose(), va=va[:].transpose(), z=z[:].transpose(), \ |
---|
| 1246 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
| 1247 | cosa=cosa.transpose(), zextrap=zval, d1=dx, d2=dy, d3=dz, d4=dt) |
---|
| 1248 | var1 = pvar1.transpose() |
---|
| 1249 | var2 = pvar2.transpose() |
---|
| 1250 | else: |
---|
| 1251 | print errormsg |
---|
| 1252 | print ' ' + fname + ': rank', len(ua.shape), 'not ready !!' |
---|
| 1253 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1254 | quit(-1) |
---|
| 1255 | |
---|
| 1256 | return var1, var2, vardims, varvdims |
---|
| 1257 | |
---|
[1783] | 1258 | def Forcompute_zwindMO(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns): |
---|
| 1259 | """ Function to compute the wind at a given height following the Monin-Obukhov theory |
---|
| 1260 | Forcompute_zwind(ust, znt, rmol, uas, vas, sina, cosa, zval, dimns, dimvns) |
---|
| 1261 | [ust]: u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
| 1262 | [znt]: thermal time-varying roughness length (assuming [[t],y,x]) [m] |
---|
| 1263 | [rmol]: inverse of Obukhov length (assuming [[t],y,x]) [m-1] |
---|
| 1264 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
| 1265 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
| 1266 | [sina]= local sine of map rotation [1.] |
---|
| 1267 | [cosa]= local cosine of map rotation [1.] |
---|
| 1268 | [zval]= desired height for winds [m] |
---|
| 1269 | [dimns]= list of the name of the dimensions of [uas] |
---|
| 1270 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1271 | dimensions of [uas] |
---|
| 1272 | """ |
---|
| 1273 | fname = 'Forcompute_zwindMO' |
---|
| 1274 | |
---|
| 1275 | vardims = dimns[:] |
---|
| 1276 | varvdims = dimvns[:] |
---|
| 1277 | |
---|
| 1278 | if len(uas.shape) == 3: |
---|
| 1279 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
| 1280 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
| 1281 | |
---|
| 1282 | dx = uas.shape[2] |
---|
| 1283 | dy = uas.shape[1] |
---|
| 1284 | dt = uas.shape[0] |
---|
| 1285 | |
---|
| 1286 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_zwindmo3d( \ |
---|
| 1287 | ust=ust.transpose(), znt=znt[:].transpose(), rmol=rmol[:].transpose(), \ |
---|
| 1288 | uas=uas.transpose(), vas=vas.transpose(), sina=sina.transpose(), \ |
---|
| 1289 | cosa=cosa.transpose(), newz=zval, d1=dx, d2=dy, d3=dt) |
---|
| 1290 | var1 = pvar1.transpose() |
---|
| 1291 | var2 = pvar2.transpose() |
---|
| 1292 | else: |
---|
| 1293 | print errormsg |
---|
| 1294 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
| 1295 | print ' it only computes 3D [t,y,x] rank values' |
---|
| 1296 | quit(-1) |
---|
| 1297 | |
---|
| 1298 | return var1, var2, vardims, varvdims |
---|
| 1299 | |
---|
[1804] | 1300 | def Forcompute_potevap_orPM(rho1, ust, uas, vas, tas, ps, qv1, dimns, dimvns): |
---|
| 1301 | """ Function to compute potential evapotranspiration following Penman-Monteith |
---|
[1833] | 1302 | formulation implemented in ORCHIDEE in src_sechiba/enerbil.f90 |
---|
[1804] | 1303 | Forcompute_potevap_orPM(rho1, uas, vas, tas, ps, qv2, qv1, dimns, dimvns) |
---|
| 1304 | [rho1]= air-density at the first layer (assuming [[t],y,m]) [kgm-3] |
---|
| 1305 | [ust]= u* in similarity theory (assuming [[t],y,x]) [ms-1] |
---|
| 1306 | [uas]= x-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
| 1307 | [vas]= y-component of unstaggered 10 m wind (assuming [[t],y,x]) [ms-1] |
---|
| 1308 | [tas]= 2m air temperature [K] |
---|
| 1309 | [ps]= surface pressure [Pa] |
---|
| 1310 | [qv1]= mixing ratio at the first atmospheric layer [kgkg-1] |
---|
| 1311 | [dimns]= list of the name of the dimensions of [uas] |
---|
| 1312 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1313 | dimensions of [uas] |
---|
| 1314 | """ |
---|
| 1315 | fname = 'Forcompute_potevap_orPM' |
---|
| 1316 | |
---|
| 1317 | vardims = dimns[:] |
---|
| 1318 | varvdims = dimvns[:] |
---|
| 1319 | |
---|
| 1320 | if len(uas.shape) == 3: |
---|
| 1321 | var1= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
| 1322 | var2= np.zeros((uas.shape[0],uas.shape[1],uas.shape[2]), dtype=np.float) |
---|
| 1323 | |
---|
| 1324 | dx = uas.shape[2] |
---|
| 1325 | dy = uas.shape[1] |
---|
| 1326 | dt = uas.shape[0] |
---|
| 1327 | |
---|
| 1328 | pvar = fdin.module_fordiagnostics.compute_potevap_orpm3d( \ |
---|
| 1329 | rho1=rho1.transpose(), ust=ust.transpose(), uas=uas.transpose(), \ |
---|
| 1330 | vas=vas.transpose(), tas=tas.transpose(), ps=ps.transpose(), \ |
---|
| 1331 | qv1=qv1.transpose(), d1=dx, d2=dy, d3=dt) |
---|
| 1332 | var = pvar.transpose() |
---|
| 1333 | else: |
---|
| 1334 | print errormsg |
---|
| 1335 | print ' ' + fname + ': rank', len(uas.shape), 'not ready !!' |
---|
| 1336 | print ' it only computes 3D [t,y,x] rank values' |
---|
| 1337 | quit(-1) |
---|
| 1338 | |
---|
| 1339 | return var, vardims, varvdims |
---|
| 1340 | |
---|
[1908] | 1341 | def Forcompute_fog_K84(qcloud, qice, dimns, dimvns): |
---|
| 1342 | """ Function to compute fog and visibility following Kunkel, (1984) |
---|
| 1343 | Forcompute_fog_K84(qcloud, qice, dimns, dimvns) |
---|
| 1344 | [qcloud]= cloud mixing ratio [kgk-1] |
---|
| 1345 | [qice]= ice mixing ratio [kgk-1] |
---|
| 1346 | [dimns]= list of the name of the dimensions of [uas] |
---|
| 1347 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1348 | dimensions of [qcloud] |
---|
| 1349 | """ |
---|
| 1350 | fname = 'Forcompute_fog_K84' |
---|
| 1351 | |
---|
| 1352 | vardims = dimns[:] |
---|
| 1353 | varvdims = dimvns[:] |
---|
| 1354 | |
---|
| 1355 | if len(qcloud.shape) == 4: |
---|
| 1356 | var= np.zeros((qcloud.shape[0],qcloud.shape[2],qcloud.shape[3]), dtype=np.float) |
---|
| 1357 | |
---|
| 1358 | dx = qcloud.shape[3] |
---|
| 1359 | dy = qcloud.shape[2] |
---|
| 1360 | dz = qcloud.shape[1] |
---|
| 1361 | dt = qcloud.shape[0] |
---|
| 1362 | vardims.pop(1) |
---|
| 1363 | varvdims.pop(1) |
---|
| 1364 | |
---|
| 1365 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_k84( \ |
---|
| 1366 | qc=qcloud[:,0,:,:].transpose(), qi=qice[:,0,:,:].transpose(), d1=dx, d2=dy,\ |
---|
| 1367 | d3=dt) |
---|
| 1368 | var1 = pvar1.transpose() |
---|
| 1369 | var2 = pvar2.transpose() |
---|
| 1370 | else: |
---|
| 1371 | print errormsg |
---|
| 1372 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
| 1373 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1374 | quit(-1) |
---|
| 1375 | |
---|
| 1376 | return var1, var2, vardims, varvdims |
---|
| 1377 | |
---|
[1909] | 1378 | def Forcompute_fog_RUC(qvapor, temp, pres, dimns, dimvns): |
---|
[1908] | 1379 | """ Function to compute fog and visibility following RUC method Smirnova, (2000) |
---|
[1909] | 1380 | Forcompute_fog_RUC(qcloud, qice, dimns, dimvns) |
---|
| 1381 | [qvapor]= water vapor mixing ratio [kgk-1] |
---|
| 1382 | [temp]= temperature [K] |
---|
| 1383 | [pres]= pressure [Pa] |
---|
[1908] | 1384 | [dimns]= list of the name of the dimensions of [uas] |
---|
| 1385 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1386 | dimensions of [qcloud] |
---|
| 1387 | """ |
---|
| 1388 | fname = 'Forcompute_fog_RUC' |
---|
| 1389 | |
---|
| 1390 | vardims = dimns[:] |
---|
| 1391 | varvdims = dimvns[:] |
---|
| 1392 | |
---|
[1909] | 1393 | if len(qvapor.shape) == 4: |
---|
| 1394 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
[1908] | 1395 | |
---|
[1909] | 1396 | dx = qvapor.shape[3] |
---|
| 1397 | dy = qvapor.shape[2] |
---|
| 1398 | dz = qvapor.shape[1] |
---|
| 1399 | dt = qvapor.shape[0] |
---|
[1908] | 1400 | vardims.pop(1) |
---|
| 1401 | varvdims.pop(1) |
---|
| 1402 | |
---|
| 1403 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
[1909] | 1404 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
| 1405 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
[1908] | 1406 | var1 = pvar1.transpose() |
---|
| 1407 | var2 = pvar2.transpose() |
---|
[1909] | 1408 | elif len(qvapor.shape) == 3: |
---|
| 1409 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
| 1410 | |
---|
| 1411 | dx = qvapor.shape[2] |
---|
| 1412 | dy = qvapor.shape[1] |
---|
| 1413 | dt = qvapor.shape[0] |
---|
| 1414 | |
---|
| 1415 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_ruc( \ |
---|
| 1416 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
| 1417 | d1=dx, d2=dy, d3=dt) |
---|
| 1418 | var1 = pvar1.transpose() |
---|
| 1419 | var2 = pvar2.transpose() |
---|
[1908] | 1420 | else: |
---|
| 1421 | print errormsg |
---|
| 1422 | print ' ' + fname + ': rank', len(qcloud.shape), 'not ready !!' |
---|
[1909] | 1423 | print ' it only computes 4D [t,z,y,x] or 3D [t,z,y,x] rank values' |
---|
[1908] | 1424 | quit(-1) |
---|
| 1425 | |
---|
| 1426 | return var1, var2, vardims, varvdims |
---|
| 1427 | |
---|
[1909] | 1428 | def Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns): |
---|
| 1429 | """ Function to compute fog (vis < 1km) and visibility following FRAM-L 50 % prob |
---|
| 1430 | Gultepe, and Milbrandt, (2010), J. Appl. Meteor. Climatol. |
---|
| 1431 | Forcompute_fog_FRAML50(qvapor, temp, pres, dimns, dimvns) |
---|
| 1432 | [qvapor]= vapor mixing ratio [kgk-1] |
---|
| 1433 | [temp]= temperature [K] |
---|
| 1434 | [pres]= pressure [Pa] |
---|
| 1435 | [dimns]= list of the name of the dimensions of [uas] |
---|
| 1436 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1437 | dimensions of [qvapor] |
---|
| 1438 | """ |
---|
| 1439 | fname = 'Forcompute_fog_FRAML50' |
---|
| 1440 | |
---|
| 1441 | vardims = dimns[:] |
---|
| 1442 | varvdims = dimvns[:] |
---|
| 1443 | |
---|
| 1444 | if len(qvapor.shape) == 4: |
---|
| 1445 | var= np.zeros((qvapor.shape[0],qvapor.shape[2],qvapor.shape[3]), dtype=np.float) |
---|
| 1446 | |
---|
| 1447 | dx = qvapor.shape[3] |
---|
| 1448 | dy = qvapor.shape[2] |
---|
| 1449 | dz = qvapor.shape[1] |
---|
| 1450 | dt = qvapor.shape[0] |
---|
| 1451 | vardims.pop(1) |
---|
| 1452 | varvdims.pop(1) |
---|
| 1453 | |
---|
| 1454 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
| 1455 | qv=qvapor[:,0,:,:].transpose(), ta=temp[:,0,:,:].transpose(), \ |
---|
| 1456 | pres=pres[:,0,:,:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
| 1457 | var1 = pvar1.transpose() |
---|
| 1458 | var2 = pvar2.transpose() |
---|
| 1459 | elif len(qvapor.shape) == 3: |
---|
| 1460 | var= np.zeros((qvapor.shape[0],qvapor.shape[1],qvapor.shape[2]), dtype=np.float) |
---|
| 1461 | |
---|
| 1462 | dx = qvapor.shape[2] |
---|
| 1463 | dy = qvapor.shape[1] |
---|
| 1464 | dt = qvapor.shape[0] |
---|
| 1465 | |
---|
| 1466 | pvar1, pvar2 = fdin.module_fordiagnostics.compute_fog_framl50( \ |
---|
| 1467 | qv=qvapor[:].transpose(), ta=temp[:].transpose(), pres=pres[:].transpose(),\ |
---|
| 1468 | d1=dx, d2=dy, d3=dt) |
---|
| 1469 | var1 = pvar1.transpose() |
---|
| 1470 | var2 = pvar2.transpose() |
---|
| 1471 | else: |
---|
| 1472 | print errormsg |
---|
| 1473 | print ' ' + fname + ': rank', len(qvapor.shape), 'not ready !!' |
---|
| 1474 | print ' it only computes 4D [t,z,y,x] or 3D [t,y,x] rank values' |
---|
| 1475 | quit(-1) |
---|
| 1476 | |
---|
| 1477 | return var1, var2, vardims, varvdims |
---|
| 1478 | |
---|
[2260] | 1479 | def Forcompute_range_faces(lon, lat, hgt, dsx, dsy, ds, face, dsfilt, dsnewrng, \ |
---|
| 1480 | hvalleyrng, dimns, dimvns): |
---|
[2208] | 1481 | """ Function to compute faces [uphill, valley, downhill] of sections of a mountain |
---|
| 1482 | rage, along a given face |
---|
| 1483 | Forcompute_range_faces(lon, lat, hgt, face, dimns, dimvns) |
---|
| 1484 | [lon]= longitude values (assuming [y,x]) [degrees east] |
---|
| 1485 | [lat]= latitude values (assuming [y,x]) [degrees north] |
---|
| 1486 | [hgt]= height values (assuming [y,x]) [m] |
---|
[2260] | 1487 | [dsx]= distance between grid points along x-axis (assuming [y,x]) [m] |
---|
| 1488 | [dsy]= distance between grid points along y-axis (assuming [y,x]) [m] |
---|
[2215] | 1489 | [ds]= distance between grid points (assuming [y,x]) [m] |
---|
| 1490 | face= which face (axis along which produce slices) to use to compute the |
---|
| 1491 | faces: WE, SN |
---|
| 1492 | dsfilt= distance to filter orography smaller scale of it [m] |
---|
| 1493 | dsnewrng= distance to start a new mountain range [m] |
---|
| 1494 | hvalleyrng: maximum height of a valley to mark change of range [m] |
---|
[2208] | 1495 | [dimns]= list of the name of the dimensions of [smois] |
---|
| 1496 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1497 | dimensions of [smois] |
---|
| 1498 | """ |
---|
| 1499 | fname = 'Forcompute_range_faces' |
---|
| 1500 | |
---|
| 1501 | vardims = dimns[:] |
---|
| 1502 | varvdims = dimvns[:] |
---|
| 1503 | |
---|
[2209] | 1504 | if len(hgt.shape) == 2: |
---|
| 1505 | faces = np.zeros(hgt.shape, dtype=np.float) |
---|
| 1506 | dx = hgt.shape[1] |
---|
| 1507 | dy = hgt.shape[0] |
---|
[2208] | 1508 | |
---|
[2223] | 1509 | hgtmaxt, pthgtmaxt, dhgtt, peakst, valleyst, ofacest, ffacest, rngt, \ |
---|
| 1510 | rnghgtmaxt, ptrnghgtmaxt = \ |
---|
[2212] | 1511 | fdin.module_fordiagnostics.compute_range_faces(lon=lon[:].transpose(), \ |
---|
[2260] | 1512 | lat=lat[:].transpose(), hgt=hgt[:].transpose(), xdist=ds[:].transpose(), \ |
---|
| 1513 | ydist=ds[:].transpose(), dist=ds[:].transpose(), face=face, dsfilt=dsfilt, \ |
---|
| 1514 | dsnewrange=dsnewrng, hvalrng=hvalleyrng, d1=dx, d2=dy) |
---|
[2338] | 1515 | |
---|
[2213] | 1516 | hgtmax = hgtmaxt.transpose() |
---|
| 1517 | pthgtmax = pthgtmaxt.transpose() |
---|
[2212] | 1518 | dhgt = dhgtt.transpose() |
---|
| 1519 | peaks = peakst.transpose() |
---|
| 1520 | valleys = valleyst.transpose() |
---|
| 1521 | origfaces = ofacest.transpose() |
---|
| 1522 | filtfaces = ffacest.transpose() |
---|
[2223] | 1523 | ranges = rngt.transpose() |
---|
[2214] | 1524 | rangeshgtmax = rnghgtmaxt.transpose() |
---|
| 1525 | ptrangeshgtmax = ptrnghgtmaxt.transpose() |
---|
[2338] | 1526 | |
---|
[2208] | 1527 | else: |
---|
| 1528 | print errormsg |
---|
| 1529 | print ' ' + fname + ': rank', len(var.shape), 'not ready !!' |
---|
| 1530 | print ' it only computes 2D [y,x] rank values' |
---|
| 1531 | quit(-1) |
---|
| 1532 | |
---|
[2213] | 1533 | return hgtmax, pthgtmax, dhgt, peaks, valleys, origfaces, filtfaces, vardims, \ |
---|
[2223] | 1534 | varvdims, ranges, rangeshgtmax, ptrangeshgtmax |
---|
[2208] | 1535 | |
---|
[2655] | 1536 | def Forcompute_front_R04(tas, uas, vas, dxs, dys, dtas, dwss, dimns, dimvns): |
---|
[2643] | 1537 | """ Function to compute front following Rodrigues et al.(2004), Rev. Bras. |
---|
| 1538 | Geofis. 22, 135-151 |
---|
| 1539 | Forcompute_front_R04(tas, vas, dimns, dimvns) |
---|
| 1540 | [tas]= surface air-temperature values (assuming [[t],y,x]) [K] |
---|
| 1541 | [uas]= latitudinal wind (assuming [[t],y,x]) [ms-1] |
---|
| 1542 | [vas]= meridional wind (assuming [[t],y,x]) [ms-1] |
---|
| 1543 | [dxs]= grid spacing between grid points along x-axis (assuming [y,x]) [m] |
---|
| 1544 | [dys]= grid spacing between grid points along y-axis (assuming [y,x]) [m] |
---|
[2655] | 1545 | [dtas]= sensitivity to the thermal temporal increment [K] |
---|
| 1546 | [ddwss]= sensitivity to the wind gradient [ms-1m-1] |
---|
[2643] | 1547 | [dimns]= list of the name of the dimensions of [pa] |
---|
| 1548 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1549 | dimensions of [pa] |
---|
| 1550 | """ |
---|
| 1551 | fname = 'Forcompute_front_R04' |
---|
| 1552 | |
---|
[2655] | 1553 | frontdims = dimns[:] |
---|
| 1554 | frontvdims = dimvns[:] |
---|
[2643] | 1555 | |
---|
[2655] | 1556 | if len(tas.shape) == 3: |
---|
[2643] | 1557 | front = np.zeros((tas.shape[0],tas.shape[1],tas.shape[2]), dtype=np.float) |
---|
| 1558 | |
---|
| 1559 | dx = tas.shape[2] |
---|
| 1560 | dy = tas.shape[1] |
---|
| 1561 | dt = tas.shape[0] |
---|
| 1562 | |
---|
[2655] | 1563 | pfront, pdt1tas, pdd1wss, pdt2tas = \ |
---|
| 1564 | fdin.module_fordiagnostics.compute_front_r04d3(tas=tas[:].transpose(), \ |
---|
| 1565 | uas=uas[:].transpose(), vas=vas[:].transpose(), ddtas=dtas, ddwss=dwss, \ |
---|
| 1566 | dsx=dxs[:].transpose(), dsy=dys[:].transpose(), d1=dx, d2=dy, d3=dt) |
---|
[2643] | 1567 | front = pfront.transpose() |
---|
[2655] | 1568 | dt1tas = pdt1tas.transpose() |
---|
| 1569 | dd1wss = pdd1wss.transpose() |
---|
| 1570 | dt2tas = pdt2tas.transpose() |
---|
| 1571 | |
---|
[2643] | 1572 | else: |
---|
| 1573 | print errormsg |
---|
[2655] | 1574 | print ' ' + fname + ': rank', len(tas.shape), 'not ready !!' |
---|
[2643] | 1575 | print ' it only computes 3D [t,y,x] rank values' |
---|
| 1576 | quit(-1) |
---|
| 1577 | |
---|
[2655] | 1578 | return front, dt1tas, dd1wss, dt2tas, frontdims, frontvdims |
---|
[2643] | 1579 | |
---|
[2674] | 1580 | def Forcompute_frontogenesis(theta, ua, va, wa, press, dxs, dys, dzs, dts, dimns, \ |
---|
| 1581 | dimvns): |
---|
| 1582 | """ Function to compute frontogenesis |
---|
| 1583 | Forcompute_frontogenesis(ta, ua, va, wa, press, dxs, dys, dzs, dts, dimns, dimvns) |
---|
| 1584 | [theta]= potential air-temperature values (assuming [[t],z,y,x]) [K] |
---|
| 1585 | [ua]= latitudinal wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1586 | [va]= meridional wind (assuming [[t],z,y,x]) [ms-1] |
---|
| 1587 | [wa]= vertical wind (assuming [[t],z,y,x]) [ms-1] |
---|
[2682] | 1588 | [press]= pressure (assuming [[t],z,y,x]) [Pa] |
---|
[2674] | 1589 | [dxs]= grid spacing between grid points along x-axis (assuming [y,x]) [m] |
---|
| 1590 | [dys]= grid spacing between grid points along y-axis (assuming [y,x]) [m] |
---|
| 1591 | [dzs]= grid spacing between grid points along z-axis (assuming [z]) [m] |
---|
| 1592 | [dts]= time-step [s] |
---|
| 1593 | [dimns]= list of the name of the dimensions of [pa] |
---|
| 1594 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1595 | dimensions of [pa] |
---|
| 1596 | """ |
---|
| 1597 | fname = 'Forcompute_frontogenesis' |
---|
| 1598 | |
---|
| 1599 | frontdims = dimns[:] |
---|
| 1600 | frontvdims = dimvns[:] |
---|
| 1601 | |
---|
| 1602 | if len(theta.shape) == 4: |
---|
[2675] | 1603 | dx = theta.shape[3] |
---|
| 1604 | dy = theta.shape[2] |
---|
| 1605 | dz = theta.shape[1] |
---|
| 1606 | dt = theta.shape[0] |
---|
[2674] | 1607 | |
---|
| 1608 | xdiab = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1609 | ydiab = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1610 | zdiab = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1611 | xdef = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1612 | ydef = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1613 | zdef = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1614 | xtilt = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1615 | ytilt = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1616 | zdiv = np.zeros((dt,dz,dy,dx), dtype=np.float) |
---|
| 1617 | f = np.zeros((3,dt,dz,dy,dx), dtype=np.float) |
---|
| 1618 | |
---|
| 1619 | thetat = theta.transpose() |
---|
| 1620 | uat = ua.transpose() |
---|
| 1621 | vat = va.transpose() |
---|
| 1622 | wat = wa.transpose() |
---|
| 1623 | presst = press.transpose() |
---|
| 1624 | dxst = dxs.transpose() |
---|
| 1625 | dyst = dys.transpose() |
---|
[2675] | 1626 | |
---|
[2674] | 1627 | pxdiab, pydiab, pzdiab, pxdef, pydef, pzdef, pxtilt, pytilt, pzdiv, pf = \ |
---|
| 1628 | fdin.module_fordiagnostics.compute_frontogenesis(theta=thetat, ua=uat, \ |
---|
[2675] | 1629 | va=vat, wa=wat, press=presst, dsx=dxst, dsy=dyst, dsz=dzs, dst=dts, d1=dx, \ |
---|
[2674] | 1630 | d2=dy, d3=dz, d4=dt) |
---|
| 1631 | xdiab = pxdiab.transpose() |
---|
| 1632 | ydiab = pydiab.transpose() |
---|
| 1633 | zdiab = pzdiab.transpose() |
---|
| 1634 | xdef = pxdef.transpose() |
---|
| 1635 | ydef = pydef.transpose() |
---|
| 1636 | zdef = pzdef.transpose() |
---|
| 1637 | xtilt = pxtilt.transpose() |
---|
| 1638 | ytilt = pytilt.transpose() |
---|
| 1639 | zdiv = pzdiv.transpose() |
---|
| 1640 | f = pf.transpose() |
---|
| 1641 | else: |
---|
| 1642 | print errormsg |
---|
| 1643 | print ' ' + fname + ': rank', len(theta.shape), 'not ready !!' |
---|
| 1644 | print ' it only computes 4D [t,z,y,x] rank values' |
---|
| 1645 | quit(-1) |
---|
| 1646 | |
---|
[2678] | 1647 | return xdiab, ydiab, zdiab, xdef, ydef, zdef, xtilt, ytilt, zdiv, f, frontdims, frontvdims |
---|
[2674] | 1648 | |
---|
[1804] | 1649 | ####### ###### ##### #### ### ## # END Fortran diagnostics |
---|
| 1650 | |
---|
[1675] | 1651 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
| 1652 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 1653 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
| 1654 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
| 1655 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
| 1656 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
| 1657 | [dimns]= list of the name of the dimensions of [q] |
---|
| 1658 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1659 | dimensions of [q] |
---|
| 1660 | """ |
---|
| 1661 | fname = 'compute_OMEGAw' |
---|
| 1662 | |
---|
| 1663 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
| 1664 | g = 9.80665 # m/s2 |
---|
| 1665 | |
---|
| 1666 | wdims = dimns[:] |
---|
| 1667 | wvdims = dimvns[:] |
---|
| 1668 | |
---|
| 1669 | rho = p/(rgas*t) # density => kg/m3 |
---|
| 1670 | w = -omega/(rho*g) |
---|
| 1671 | |
---|
| 1672 | return w, wdims, wvdims |
---|
| 1673 | |
---|
| 1674 | def compute_prw(dens, q, dimns, dimvns): |
---|
| 1675 | """ Function to compute water vapour path (prw) |
---|
| 1676 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 1677 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
| 1678 | [dimns]= list of the name of the dimensions of [q] |
---|
| 1679 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1680 | dimensions of [q] |
---|
| 1681 | """ |
---|
| 1682 | fname = 'compute_prw' |
---|
| 1683 | |
---|
| 1684 | prwdims = dimns[:] |
---|
| 1685 | prwvdims = dimvns[:] |
---|
| 1686 | |
---|
| 1687 | if len(q.shape) == 4: |
---|
| 1688 | prwdims.pop(1) |
---|
| 1689 | prwvdims.pop(1) |
---|
| 1690 | else: |
---|
| 1691 | prwdims.pop(0) |
---|
| 1692 | prwvdims.pop(0) |
---|
| 1693 | |
---|
| 1694 | data1 = dens*q |
---|
| 1695 | prw = np.sum(data1, axis=1) |
---|
| 1696 | |
---|
| 1697 | return prw, prwdims, prwvdims |
---|
| 1698 | |
---|
| 1699 | def compute_rh(p, t, q, dimns, dimvns): |
---|
| 1700 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 1701 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
| 1702 | [p] = pressure field (assuming in [hPa]) |
---|
| 1703 | [q] = mixing ratio in [kgkg-1] |
---|
| 1704 | [dimns]= list of the name of the dimensions of [t] |
---|
| 1705 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1706 | dimensions of [t] |
---|
| 1707 | """ |
---|
| 1708 | fname = 'compute_rh' |
---|
| 1709 | |
---|
| 1710 | rhdims = dimns[:] |
---|
| 1711 | rhvdims = dimvns[:] |
---|
| 1712 | |
---|
| 1713 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
| 1714 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 1715 | |
---|
| 1716 | rh = q/data2 |
---|
| 1717 | |
---|
| 1718 | return rh, rhdims, rhvdims |
---|
| 1719 | |
---|
| 1720 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
| 1721 | """ Function to compute the dew point temperature |
---|
| 1722 | [p]= pressure [Pa] |
---|
| 1723 | [temp]= temperature [C] |
---|
| 1724 | [qv]= mixing ratio [kgkg-1] |
---|
| 1725 | [dimns]= list of the name of the dimensions of [p] |
---|
| 1726 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1727 | dimensions of [p] |
---|
| 1728 | """ |
---|
| 1729 | fname = 'compute_td' |
---|
| 1730 | |
---|
| 1731 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
| 1732 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
| 1733 | tk = temp |
---|
| 1734 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 1735 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 1736 | |
---|
| 1737 | rh = qv/data2 |
---|
| 1738 | |
---|
| 1739 | pa = rh * data1 |
---|
| 1740 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 1741 | |
---|
| 1742 | tddims = dimns[:] |
---|
| 1743 | tdvdims = dimvns[:] |
---|
| 1744 | |
---|
| 1745 | return td, tddims, tdvdims |
---|
| 1746 | |
---|
| 1747 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
| 1748 | """ Function to copmute CFtimes from WRFtime variable |
---|
| 1749 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
| 1750 | tunitsval= CF time units |
---|
| 1751 | timewrfv= matrix string values of WRF 'Times' variable |
---|
| 1752 | """ |
---|
| 1753 | fname = 'var_WRFtime' |
---|
| 1754 | |
---|
| 1755 | yrref=refdate[0:4] |
---|
| 1756 | monref=refdate[4:6] |
---|
| 1757 | dayref=refdate[6:8] |
---|
| 1758 | horref=refdate[8:10] |
---|
| 1759 | minref=refdate[10:12] |
---|
| 1760 | secref=refdate[12:14] |
---|
| 1761 | |
---|
| 1762 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
| 1763 | ':' + secref |
---|
| 1764 | |
---|
| 1765 | dt = timewrfv.shape[0] |
---|
| 1766 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
| 1767 | |
---|
| 1768 | for it in range(dt): |
---|
| 1769 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
| 1770 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
| 1771 | |
---|
| 1772 | tunits = tunitsval + ' since ' + refdateS |
---|
| 1773 | |
---|
| 1774 | return WRFtime, tunits |
---|
| 1775 | |
---|
| 1776 | def turbulence_var(varv, dimvn, dimn): |
---|
| 1777 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
| 1778 | x*=<x^2>_t-(<X>_t)^2 |
---|
| 1779 | turbulence_var(varv,dimn) |
---|
| 1780 | varv= values of the variable |
---|
| 1781 | dimvn= names of the dimension of the variable |
---|
| 1782 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
| 1783 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
| 1784 | [[ 54. 54. 54.] |
---|
| 1785 | [ 54. 54. 54.] |
---|
| 1786 | [ 54. 54. 54.]] |
---|
| 1787 | """ |
---|
| 1788 | fname = 'turbulence_varv' |
---|
| 1789 | |
---|
| 1790 | timedimid = dimvn.index(dimn['T']) |
---|
| 1791 | |
---|
| 1792 | varv2 = varv*varv |
---|
| 1793 | |
---|
| 1794 | vartmean = np.mean(varv, axis=timedimid) |
---|
| 1795 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
| 1796 | |
---|
| 1797 | varvturb = var2tmean - (vartmean*vartmean) |
---|
| 1798 | |
---|
| 1799 | return varvturb |
---|
| 1800 | |
---|
| 1801 | def compute_turbulence(v, dimns, dimvns): |
---|
| 1802 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
| 1803 | x*=<x^2>_t-(<X>_t)^2 |
---|
| 1804 | [v]= variable (assuming [[t],z,y,x]) |
---|
| 1805 | [dimns]= list of the name of the dimensions of [v] |
---|
| 1806 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1807 | dimensions of [v] |
---|
| 1808 | """ |
---|
| 1809 | fname = 'compute_turbulence' |
---|
| 1810 | |
---|
| 1811 | turbdims = dimns[:] |
---|
| 1812 | turbvdims = dimvns[:] |
---|
| 1813 | |
---|
| 1814 | turbdims.pop(0) |
---|
| 1815 | turbvdims.pop(0) |
---|
| 1816 | |
---|
| 1817 | v2 = v*v |
---|
| 1818 | |
---|
| 1819 | vartmean = np.mean(v, axis=0) |
---|
| 1820 | var2tmean = np.mean(v2, axis=0) |
---|
| 1821 | |
---|
| 1822 | turb = var2tmean - (vartmean*vartmean) |
---|
| 1823 | |
---|
| 1824 | return turb, turbdims, turbvdims |
---|
| 1825 | |
---|
[1980] | 1826 | def compute_wd(u, v, dimns, dimvns): |
---|
| 1827 | """ Function to compute the wind direction |
---|
| 1828 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 1829 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 1830 | [dimns]= list of the name of the dimensions of [u] |
---|
| 1831 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1832 | dimensions of [u] |
---|
| 1833 | """ |
---|
| 1834 | fname = 'compute_wds' |
---|
| 1835 | |
---|
| 1836 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
| 1837 | theta = np.arctan2(v,u) |
---|
| 1838 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 1839 | |
---|
| 1840 | var = 360.*theta/(2.*np.pi) |
---|
| 1841 | |
---|
| 1842 | vardims = dimns[:] |
---|
| 1843 | varvdims = dimvns[:] |
---|
| 1844 | |
---|
| 1845 | return var, vardims, varvdims |
---|
| 1846 | |
---|
[1675] | 1847 | def compute_wds(u, v, dimns, dimvns): |
---|
| 1848 | """ Function to compute the wind direction |
---|
| 1849 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 1850 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 1851 | [dimns]= list of the name of the dimensions of [u] |
---|
| 1852 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1853 | dimensions of [u] |
---|
| 1854 | """ |
---|
| 1855 | fname = 'compute_wds' |
---|
| 1856 | |
---|
| 1857 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
| 1858 | theta = np.arctan2(v,u) |
---|
| 1859 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 1860 | |
---|
| 1861 | wds = 360.*theta/(2.*np.pi) |
---|
| 1862 | |
---|
| 1863 | wdsdims = dimns[:] |
---|
| 1864 | wdsvdims = dimvns[:] |
---|
| 1865 | |
---|
| 1866 | return wds, wdsdims, wdsvdims |
---|
| 1867 | |
---|
| 1868 | def compute_wss(u, v, dimns, dimvns): |
---|
| 1869 | """ Function to compute the wind speed |
---|
| 1870 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 1871 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 1872 | [dimns]= list of the name of the dimensions of [u] |
---|
| 1873 | [dimvns]= list of the name of the variables with the values of the |
---|
| 1874 | dimensions of [u] |
---|
| 1875 | """ |
---|
| 1876 | fname = 'compute_wss' |
---|
| 1877 | |
---|
| 1878 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
| 1879 | wss = np.sqrt(u*u + v*v) |
---|
| 1880 | |
---|
| 1881 | wssdims = dimns[:] |
---|
| 1882 | wssvdims = dimvns[:] |
---|
| 1883 | |
---|
| 1884 | return wss, wssdims, wssvdims |
---|
| 1885 | |
---|
| 1886 | def timeunits_seconds(dtu): |
---|
| 1887 | """ Function to transform a time units to seconds |
---|
| 1888 | timeunits_seconds(timeuv) |
---|
| 1889 | [dtu]= time units value to transform in seconds |
---|
| 1890 | """ |
---|
| 1891 | fname='timunits_seconds' |
---|
| 1892 | |
---|
| 1893 | if dtu == 'years': |
---|
| 1894 | times = 365.*24.*3600. |
---|
| 1895 | elif dtu == 'weeks': |
---|
| 1896 | times = 7.*24.*3600. |
---|
| 1897 | elif dtu == 'days': |
---|
| 1898 | times = 24.*3600. |
---|
| 1899 | elif dtu == 'hours': |
---|
| 1900 | times = 3600. |
---|
| 1901 | elif dtu == 'minutes': |
---|
| 1902 | times = 60. |
---|
| 1903 | elif dtu == 'seconds': |
---|
| 1904 | times = 1. |
---|
| 1905 | elif dtu == 'miliseconds': |
---|
| 1906 | times = 1./1000. |
---|
| 1907 | else: |
---|
| 1908 | print errormsg |
---|
| 1909 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
| 1910 | quit(-1) |
---|
| 1911 | |
---|
| 1912 | return times |
---|
| 1913 | |
---|
[1710] | 1914 | def compute_WRFhur(t, p, qv, dimns, dimvns): |
---|
| 1915 | """ Function to compute WRF relative humidity following Teten's equation |
---|
| 1916 | t= orginal WRF temperature |
---|
| 1917 | p= original WRF pressure (P + PB) |
---|
| 1918 | formula: |
---|
| 1919 | temp = theta*(p/p0)**(R/Cp) |
---|
| 1920 | |
---|
| 1921 | """ |
---|
| 1922 | fname = 'compute_WRFtd' |
---|
| 1923 | |
---|
| 1924 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 1925 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 1926 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 1927 | |
---|
| 1928 | rh = qv/data2 |
---|
| 1929 | |
---|
| 1930 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1931 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1932 | |
---|
| 1933 | return rh, dnamesvar, dvnamesvar |
---|
| 1934 | |
---|
[1687] | 1935 | def compute_WRFua(u, v, sina, cosa, dimns, dimvns): |
---|
| 1936 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 1937 | u= orginal WRF x-wind |
---|
| 1938 | v= orginal WRF y-wind |
---|
| 1939 | sina= original WRF local sinus of map rotation |
---|
| 1940 | cosa= original WRF local cosinus of map rotation |
---|
| 1941 | formula: |
---|
| 1942 | ua = u*cosa-va*sina |
---|
| 1943 | va = u*sina+va*cosa |
---|
| 1944 | """ |
---|
| 1945 | fname = 'compute_WRFua' |
---|
| 1946 | |
---|
| 1947 | var0 = u |
---|
| 1948 | var1 = v |
---|
| 1949 | var2 = sina |
---|
| 1950 | var3 = cosa |
---|
| 1951 | |
---|
| 1952 | # un-staggering variables |
---|
| 1953 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1954 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1955 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1956 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1957 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1958 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1959 | |
---|
| 1960 | for iz in range(var0.shape[1]): |
---|
| 1961 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1962 | |
---|
| 1963 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1964 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1965 | |
---|
| 1966 | return ua, dnamesvar, dvnamesvar |
---|
| 1967 | |
---|
| 1968 | def compute_WRFva(u, v, sina, cosa, dimns, dimvns): |
---|
| 1969 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 1970 | u= orginal WRF x-wind |
---|
| 1971 | v= orginal WRF y-wind |
---|
| 1972 | sina= original WRF local sinus of map rotation |
---|
| 1973 | cosa= original WRF local cosinus of map rotation |
---|
| 1974 | formula: |
---|
| 1975 | ua = u*cosa-va*sina |
---|
| 1976 | va = u*sina+va*cosa |
---|
| 1977 | """ |
---|
| 1978 | fname = 'compute_WRFva' |
---|
| 1979 | |
---|
| 1980 | var0 = u |
---|
| 1981 | var1 = v |
---|
| 1982 | var2 = sina |
---|
| 1983 | var3 = cosa |
---|
| 1984 | |
---|
| 1985 | # un-staggering variables |
---|
| 1986 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1987 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1988 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1989 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1990 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1991 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1992 | |
---|
| 1993 | for iz in range(var0.shape[1]): |
---|
| 1994 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1995 | |
---|
| 1996 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1997 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1998 | |
---|
| 1999 | return va, dnamesvar, dvnamesvar |
---|
| 2000 | |
---|
[1675] | 2001 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
| 2002 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 2003 | u= orginal WRF x-wind |
---|
| 2004 | v= orginal WRF y-wind |
---|
| 2005 | sina= original WRF local sinus of map rotation |
---|
| 2006 | cosa= original WRF local cosinus of map rotation |
---|
| 2007 | formula: |
---|
| 2008 | ua = u*cosa-va*sina |
---|
| 2009 | va = u*sina+va*cosa |
---|
| 2010 | """ |
---|
| 2011 | fname = 'compute_WRFuava' |
---|
| 2012 | |
---|
| 2013 | var0 = u |
---|
| 2014 | var1 = v |
---|
| 2015 | var2 = sina |
---|
| 2016 | var3 = cosa |
---|
| 2017 | |
---|
| 2018 | # un-staggering variables |
---|
| 2019 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 2020 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2021 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2022 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2023 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2024 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 2025 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 2026 | |
---|
| 2027 | for iz in range(var0.shape[1]): |
---|
| 2028 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 2029 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 2030 | |
---|
| 2031 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 2032 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2033 | |
---|
| 2034 | return ua, va, dnamesvar, dvnamesvar |
---|
| 2035 | |
---|
[1687] | 2036 | def compute_WRFuas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 2037 | """ Function to compute geographical rotated WRF 2-meter x-wind |
---|
| 2038 | u10= orginal WRF 10m x-wind |
---|
| 2039 | v10= orginal WRF 10m y-wind |
---|
| 2040 | sina= original WRF local sinus of map rotation |
---|
| 2041 | cosa= original WRF local cosinus of map rotation |
---|
| 2042 | formula: |
---|
| 2043 | uas = u10*cosa-va10*sina |
---|
| 2044 | vas = u10*sina+va10*cosa |
---|
| 2045 | """ |
---|
| 2046 | fname = 'compute_WRFuas' |
---|
| 2047 | |
---|
| 2048 | var0 = u10 |
---|
| 2049 | var1 = v10 |
---|
| 2050 | var2 = sina |
---|
| 2051 | var3 = cosa |
---|
| 2052 | |
---|
| 2053 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2054 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2055 | |
---|
| 2056 | uas = var0*var3 - var1*var2 |
---|
| 2057 | |
---|
| 2058 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 2059 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2060 | |
---|
| 2061 | return uas, dnamesvar, dvnamesvar |
---|
| 2062 | |
---|
| 2063 | def compute_WRFvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 2064 | """ Function to compute geographical rotated WRF 2-meter y-wind |
---|
| 2065 | u10= orginal WRF 10m x-wind |
---|
| 2066 | v10= orginal WRF 10m y-wind |
---|
| 2067 | sina= original WRF local sinus of map rotation |
---|
| 2068 | cosa= original WRF local cosinus of map rotation |
---|
| 2069 | formula: |
---|
| 2070 | uas = u10*cosa-va10*sina |
---|
| 2071 | vas = u10*sina+va10*cosa |
---|
| 2072 | """ |
---|
| 2073 | fname = 'compute_WRFvas' |
---|
| 2074 | |
---|
| 2075 | var0 = u10 |
---|
| 2076 | var1 = v10 |
---|
| 2077 | var2 = sina |
---|
| 2078 | var3 = cosa |
---|
| 2079 | |
---|
| 2080 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2081 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2082 | |
---|
| 2083 | vas = var0*var2 + var1*var3 |
---|
| 2084 | |
---|
| 2085 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 2086 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2087 | |
---|
| 2088 | return vas, dnamesvar, dvnamesvar |
---|
| 2089 | |
---|
[1675] | 2090 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 2091 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
| 2092 | u10= orginal WRF 10m x-wind |
---|
| 2093 | v10= orginal WRF 10m y-wind |
---|
| 2094 | sina= original WRF local sinus of map rotation |
---|
| 2095 | cosa= original WRF local cosinus of map rotation |
---|
| 2096 | formula: |
---|
| 2097 | uas = u10*cosa-va10*sina |
---|
| 2098 | vas = u10*sina+va10*cosa |
---|
| 2099 | """ |
---|
| 2100 | fname = 'compute_WRFuasvas' |
---|
| 2101 | |
---|
| 2102 | var0 = u10 |
---|
| 2103 | var1 = v10 |
---|
| 2104 | var2 = sina |
---|
| 2105 | var3 = cosa |
---|
| 2106 | |
---|
| 2107 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2108 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 2109 | |
---|
| 2110 | uas = var0*var3 - var1*var2 |
---|
| 2111 | vas = var0*var2 + var1*var3 |
---|
| 2112 | |
---|
| 2113 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 2114 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2115 | |
---|
| 2116 | return uas, vas, dnamesvar, dvnamesvar |
---|
| 2117 | |
---|
| 2118 | def compute_WRFta(t, p, dimns, dimvns): |
---|
| 2119 | """ Function to compute WRF air temperature |
---|
| 2120 | t= orginal WRF temperature |
---|
| 2121 | p= original WRF pressure (P + PB) |
---|
| 2122 | formula: |
---|
| 2123 | temp = theta*(p/p0)**(R/Cp) |
---|
| 2124 | |
---|
| 2125 | """ |
---|
| 2126 | fname = 'compute_WRFta' |
---|
| 2127 | |
---|
| 2128 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 2129 | |
---|
| 2130 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 2131 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2132 | |
---|
| 2133 | return ta, dnamesvar, dvnamesvar |
---|
| 2134 | |
---|
| 2135 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
| 2136 | """ Function to compute WRF dew-point air temperature |
---|
| 2137 | t= orginal WRF temperature |
---|
| 2138 | p= original WRF pressure (P + PB) |
---|
| 2139 | formula: |
---|
| 2140 | temp = theta*(p/p0)**(R/Cp) |
---|
| 2141 | |
---|
| 2142 | """ |
---|
[1680] | 2143 | fname = 'compute_WRFtd' |
---|
[1675] | 2144 | |
---|
| 2145 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 2146 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 2147 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 2148 | |
---|
| 2149 | rh = qv/data2 |
---|
| 2150 | |
---|
| 2151 | pa = rh * data1 |
---|
| 2152 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 2153 | |
---|
| 2154 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 2155 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2156 | |
---|
| 2157 | return td, dnamesvar, dvnamesvar |
---|
[1685] | 2158 | |
---|
[1687] | 2159 | def compute_WRFwd(u, v, sina, cosa, dimns, dimvns): |
---|
| 2160 | """ Function to compute the wind direction |
---|
| 2161 | u= W-E wind direction [ms-1] |
---|
| 2162 | v= N-S wind direction [ms-1] |
---|
| 2163 | sina= original WRF local sinus of map rotation |
---|
| 2164 | cosa= original WRF local cosinus of map rotation |
---|
| 2165 | """ |
---|
| 2166 | fname = 'compute_WRFwd' |
---|
| 2167 | var0 = u |
---|
| 2168 | var1 = v |
---|
| 2169 | var2 = sina |
---|
| 2170 | var3 = cosa |
---|
| 2171 | |
---|
| 2172 | # un-staggering variables |
---|
| 2173 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 2174 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2175 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2176 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2177 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 2178 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 2179 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 2180 | |
---|
| 2181 | for iz in range(var0.shape[1]): |
---|
| 2182 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 2183 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 2184 | |
---|
| 2185 | theta = np.arctan2(va,ua) |
---|
| 2186 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 2187 | |
---|
| 2188 | wd = 360.*theta/(2.*np.pi) |
---|
| 2189 | |
---|
| 2190 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 2191 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 2192 | |
---|
| 2193 | return wd |
---|
| 2194 | |
---|
[1711] | 2195 | ####### Variables (as they arrive without dimensions staff) |
---|
| 2196 | |
---|
[1716] | 2197 | def var_hur(p, t, q): |
---|
| 2198 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula |
---|
[1711] | 2199 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
[1714] | 2200 | [p] = pressure field (assuming in [Pa]) |
---|
[1711] | 2201 | [q] = mixing ratio in [kgkg-1] |
---|
[1715] | 2202 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
| 2203 | >>> print var_rh(101300., 290., 3.) |
---|
| 2204 | 0.250250256174 |
---|
[1711] | 2205 | """ |
---|
[1716] | 2206 | fname = 'var_hur' |
---|
[1711] | 2207 | |
---|
[1715] | 2208 | # Enthalpy of vaporization [Jkg-1] |
---|
| 2209 | L = 2.453*10.**6 |
---|
| 2210 | # Gas constant for water vapor [JK-1Kg-1] |
---|
| 2211 | Rv = 461.5 |
---|
[1711] | 2212 | |
---|
[1715] | 2213 | # Computing saturated pressure |
---|
| 2214 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
| 2215 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
[1711] | 2216 | |
---|
[1715] | 2217 | # August - Roche - Magnus formula |
---|
| 2218 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
| 2219 | |
---|
| 2220 | # Saturated mixing ratio [g/kg] |
---|
| 2221 | ws = 0.622*es/(0.01*p-es) |
---|
| 2222 | |
---|
[1716] | 2223 | hur = q/(ws*1000.) |
---|
[1715] | 2224 | |
---|
[1718] | 2225 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
| 2226 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
[1717] | 2227 | |
---|
[1716] | 2228 | return hur |
---|
[1711] | 2229 | |
---|
[1718] | 2230 | def var_hur_Uhus(p, t, hus): |
---|
| 2231 | """ Function to compute relative humidity following 'August - Roche - Magnus' formula using hus |
---|
| 2232 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
| 2233 | [p] = pressure field (assuming in [Pa]) |
---|
| 2234 | [hus] = specific humidty [1] |
---|
| 2235 | ref.: M. G. Lawrence, BAMS, 2005, 225 |
---|
| 2236 | >>> print var_rh(101300., 290., 3.) |
---|
| 2237 | 0.250250256174 |
---|
| 2238 | """ |
---|
| 2239 | fname = 'var_hur_Uhus' |
---|
| 2240 | |
---|
| 2241 | # Enthalpy of vaporization [Jkg-1] |
---|
| 2242 | L = 2.453*10.**6 |
---|
| 2243 | # Gas constant for water vapor [JK-1Kg-1] |
---|
| 2244 | Rv = 461.5 |
---|
| 2245 | |
---|
| 2246 | # Computing saturated pressure |
---|
| 2247 | #es = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
| 2248 | #es = 6.11*np.exp(L/Rv*(1.-273./t)/273.) |
---|
| 2249 | |
---|
| 2250 | # August - Roche - Magnus formula |
---|
| 2251 | es = 6.1094*np.exp(17.625*(t-273.15)/((t-273.15)+243.04)) |
---|
| 2252 | |
---|
| 2253 | # Saturated mixing ratio [g/kg] |
---|
| 2254 | ws = 0.622*es/(0.01*p-es) |
---|
| 2255 | |
---|
| 2256 | # Mixing ratio |
---|
| 2257 | q = hus/(1.+hus) |
---|
| 2258 | |
---|
[1726] | 2259 | hur = q/ws |
---|
[1718] | 2260 | |
---|
| 2261 | #print 'q:', q[5,5,5,5], 't:', t[5,5,5,5], 'p:', p[5,5,5,5] |
---|
| 2262 | #print 'es:', es[5,5,5,5], 'ws:', ws[5,5,5,5], 'hur:', hur[5,5,5,5] |
---|
| 2263 | |
---|
| 2264 | return hur |
---|
| 2265 | |
---|
[2390] | 2266 | def var_hur_tas_tds(tas, tds, dimns, dimvns): |
---|
| 2267 | """ Function to compute hur relative humidity from tas and tds |
---|
| 2268 | tas= surface temperature [K] |
---|
| 2269 | tds= dew point temperature [K] |
---|
| 2270 | Magnus formula with D. Bolton, 1980, Mon. Wea. Rev. values: |
---|
| 2271 | gamma = log(hur/100) + b*tas/(c+tas) |
---|
| 2272 | tdps = c*gamma/(b-gamma) |
---|
| 2273 | hur = 100*expr[b(tdps/(c+tdps)-tas/(c+tas))] |
---|
| 2274 | |
---|
| 2275 | """ |
---|
| 2276 | fname = 'compute_hur_tas_tds' |
---|
| 2277 | |
---|
| 2278 | dnamesvar = dimns |
---|
| 2279 | dvnamesvar = dimvns |
---|
| 2280 | |
---|
| 2281 | tasC = tas - fdef.module_definitions.svpt0 |
---|
| 2282 | tdsC = tds - fdef.module_definitions.svpt0 |
---|
| 2283 | |
---|
| 2284 | # Magnus formula with D. Bolton, 1980, Mon. Wea. Rev. values |
---|
| 2285 | b = 17.67 |
---|
| 2286 | c = 243.5 |
---|
| 2287 | |
---|
| 2288 | hur = np.exp(b*(tdsC/(c+tdsC)-tasC/(c+tasC))) |
---|
| 2289 | |
---|
| 2290 | return hur, dnamesvar, dvnamesvar |
---|
| 2291 | |
---|
[1685] | 2292 | def var_td(t, p, qv): |
---|
| 2293 | """ Function to compute dew-point air temperature from temperature and pressure values |
---|
| 2294 | t= temperature [K] |
---|
| 2295 | p= pressure (Pa) |
---|
| 2296 | formula: |
---|
| 2297 | temp = theta*(p/p0)**(R/Cp) |
---|
| 2298 | |
---|
| 2299 | """ |
---|
| 2300 | fname = 'compute_td' |
---|
| 2301 | |
---|
| 2302 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 2303 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 2304 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 2305 | |
---|
| 2306 | rh = qv/data2 |
---|
| 2307 | |
---|
| 2308 | pa = rh * data1 |
---|
| 2309 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 2310 | |
---|
| 2311 | return td |
---|
[1687] | 2312 | |
---|
[1720] | 2313 | def var_td_Uhus(t, p, hus): |
---|
| 2314 | """ Function to compute dew-point air temperature from temperature and pressure values using hus |
---|
| 2315 | t= temperature [K] |
---|
| 2316 | hus= specific humidity [1] |
---|
| 2317 | formula: |
---|
| 2318 | temp = theta*(p/p0)**(R/Cp) |
---|
| 2319 | |
---|
| 2320 | """ |
---|
| 2321 | fname = 'compute_td' |
---|
| 2322 | |
---|
| 2323 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 2324 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 2325 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 2326 | |
---|
| 2327 | qv = hus/(1.+hus) |
---|
| 2328 | |
---|
| 2329 | rh = qv/data2 |
---|
| 2330 | |
---|
| 2331 | pa = rh * data1 |
---|
| 2332 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 2333 | |
---|
| 2334 | return td |
---|
| 2335 | |
---|
[2387] | 2336 | def var_tws_S11(ta0, hur0): |
---|
| 2337 | """ Function to compute Wet Bulb temperature using equation after: |
---|
| 2338 | Stull, R. (2011), J. Appl. Meteor. Climatol. 50(11):2267-2269, |
---|
| 2339 | doi: 10.1175/JAMC-D-11-0143.1 |
---|
| 2340 | [ta]= temperature (assuming [[t],z,y,x] in [K]) |
---|
| 2341 | [hur] = relative humidity (assuming in [1]) |
---|
| 2342 | >>> var_rh_S11(293.15, 0.5) |
---|
| 2343 | 13.699341969 |
---|
| 2344 | """ |
---|
| 2345 | fname = 'var_tws_S11' |
---|
| 2346 | |
---|
| 2347 | ta = ta0 - 273.15 |
---|
| 2348 | hur = hur0*100. |
---|
| 2349 | |
---|
| 2350 | # Does it has any sense not in surface? |
---|
| 2351 | tws = ta*np.arctan(0.151977*np.sqrt(hur+8.313659)) + np.arctan(ta+hur) - \ |
---|
| 2352 | np.arctan(hur-1.676331) + 0.00391838*(hur)**(1.5)*np.arctan(0.023101*hur) - \ |
---|
| 2353 | 4.686035 |
---|
| 2354 | |
---|
| 2355 | return tws |
---|
| 2356 | |
---|
[1687] | 2357 | def var_wd(u, v): |
---|
| 2358 | """ Function to compute the wind direction |
---|
| 2359 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 2360 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 2361 | """ |
---|
| 2362 | fname = 'var_wd' |
---|
| 2363 | |
---|
| 2364 | theta = np.arctan2(v,u) |
---|
| 2365 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 2366 | |
---|
| 2367 | wd = 360.*theta/(2.*np.pi) |
---|
| 2368 | |
---|
| 2369 | return wd |
---|
| 2370 | |
---|
| 2371 | def var_ws(u, v): |
---|
| 2372 | """ Function to compute the wind speed |
---|
| 2373 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 2374 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 2375 | """ |
---|
| 2376 | fname = 'var_ws' |
---|
| 2377 | |
---|
| 2378 | ws = np.sqrt(u*u + v*v) |
---|
| 2379 | |
---|
| 2380 | return ws |
---|
| 2381 | |
---|
| 2382 | class C_diagnostic(object): |
---|
| 2383 | """ Class to compute generic variables |
---|
| 2384 | Cdiag: name of the diagnostic to compute |
---|
| 2385 | ncobj: netcdf object with data |
---|
| 2386 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
| 2387 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
| 2388 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
| 2389 | self.values = Values of the diagnostic |
---|
| 2390 | self.dims = Dimensions of the diagnostic |
---|
| 2391 | self.units = units of the diagnostic |
---|
| 2392 | self.incvars = list of variables from the input netCDF object |
---|
| 2393 | """ |
---|
| 2394 | def __init__(self, Cdiag, ncobj, sfcvars, vars3D, dictdims): |
---|
| 2395 | fname = 'C_diagnostic' |
---|
| 2396 | self.values = None |
---|
| 2397 | self.dims = None |
---|
| 2398 | self.incvars = ncobj.variables |
---|
| 2399 | self.units = None |
---|
| 2400 | |
---|
[1711] | 2401 | if Cdiag == 'hur': |
---|
[1717] | 2402 | """ Computing relative humidity |
---|
[1687] | 2403 | """ |
---|
[1711] | 2404 | vn = 'hur' |
---|
[1718] | 2405 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
| 2406 | for v3D in CF3Dvars: |
---|
| 2407 | if not vars3D.has_key(v3D): |
---|
| 2408 | print gen.errormsg |
---|
| 2409 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2410 | "' attribution to compute '" + vn + "' !!" |
---|
| 2411 | print ' Equivalence of 3D variables provided _______' |
---|
| 2412 | gen.printing_dictionary(vars3D) |
---|
| 2413 | quit(-1) |
---|
| 2414 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2415 | print gen.errormsg |
---|
| 2416 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2417 | "' in input file to compute '" + vn + "' !!" |
---|
| 2418 | print ' available variables:', self.incvars.keys() |
---|
| 2419 | print ' looking for variables _______' |
---|
| 2420 | gen.printing_dictionary(vars3D) |
---|
| 2421 | quit(-1) |
---|
| 2422 | |
---|
| 2423 | ta = ncobj.variables[vars3D['ta']][:] |
---|
| 2424 | p = ncobj.variables[vars3D['plev']][:] |
---|
| 2425 | q = ncobj.variables[vars3D['q']][:] |
---|
| 2426 | |
---|
| 2427 | if len(ta.shape) != len(p.shape): |
---|
| 2428 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
| 2429 | |
---|
| 2430 | self.values = var_hur(p, ta, q) |
---|
| 2431 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2432 | dictdims['lon']] |
---|
| 2433 | self.units = '1' |
---|
| 2434 | |
---|
| 2435 | if Cdiag == 'hur_Uhus': |
---|
| 2436 | """ Computing relative humidity using hus |
---|
| 2437 | """ |
---|
| 2438 | vn = 'hur' |
---|
[1711] | 2439 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
| 2440 | for v3D in CF3Dvars: |
---|
| 2441 | if not vars3D.has_key(v3D): |
---|
| 2442 | print gen.errormsg |
---|
| 2443 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2444 | "' attribution to compute '" + vn + "' !!" |
---|
| 2445 | print ' Equivalence of 3D variables provided _______' |
---|
| 2446 | gen.printing_dictionary(vars3D) |
---|
| 2447 | quit(-1) |
---|
| 2448 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2449 | print gen.errormsg |
---|
| 2450 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2451 | "' in input file to compute '" + vn + "' !!" |
---|
| 2452 | print ' available variables:', self.incvars.keys() |
---|
| 2453 | print ' looking for variables _______' |
---|
| 2454 | gen.printing_dictionary(vars3D) |
---|
| 2455 | quit(-1) |
---|
| 2456 | |
---|
| 2457 | ta = ncobj.variables[vars3D['ta']][:] |
---|
| 2458 | p = ncobj.variables[vars3D['plev']][:] |
---|
| 2459 | hus = ncobj.variables[vars3D['hus']][:] |
---|
| 2460 | |
---|
| 2461 | if len(ta.shape) != len(p.shape): |
---|
| 2462 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
| 2463 | |
---|
[1718] | 2464 | self.values = var_hur_Uhus(p, ta, hus) |
---|
[1711] | 2465 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2466 | dictdims['lon']] |
---|
| 2467 | self.units = '1' |
---|
| 2468 | |
---|
| 2469 | elif Cdiag == 'td': |
---|
| 2470 | """ Computing dew-point temperature |
---|
| 2471 | """ |
---|
[1687] | 2472 | vn = 'td' |
---|
[1720] | 2473 | CF3Dvars = ['ta', 'plev', 'q'] |
---|
| 2474 | for v3D in CF3Dvars: |
---|
| 2475 | if not vars3D.has_key(v3D): |
---|
| 2476 | print gen.errormsg |
---|
| 2477 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2478 | "' attribution to compute '" + vn + "' !!" |
---|
| 2479 | print ' Equivalence of 3D variables provided _______' |
---|
| 2480 | gen.printing_dictionary(vars3D) |
---|
| 2481 | quit(-1) |
---|
| 2482 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2483 | print gen.errormsg |
---|
| 2484 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2485 | "' in input file to compute '" + vn + "' !!" |
---|
| 2486 | print ' available variables:', self.incvars.keys() |
---|
| 2487 | print ' looking for variables _______' |
---|
| 2488 | gen.printing_dictionary(vars3D) |
---|
| 2489 | quit(-1) |
---|
| 2490 | |
---|
| 2491 | ta = ncobj.variables[vars3D['ta']][:] |
---|
| 2492 | p = ncobj.variables[vars3D['plev']][:] |
---|
| 2493 | q = ncobj.variables[vars3D['q']][:] |
---|
| 2494 | |
---|
| 2495 | if len(ta.shape) != len(p.shape): |
---|
| 2496 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
| 2497 | |
---|
| 2498 | self.values = var_td(ta, p, q) |
---|
| 2499 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2500 | dictdims['lon']] |
---|
| 2501 | self.units = 'K' |
---|
| 2502 | |
---|
| 2503 | elif Cdiag == 'td_Uhus': |
---|
| 2504 | """ Computing dew-point temperature |
---|
| 2505 | """ |
---|
| 2506 | vn = 'td' |
---|
[1696] | 2507 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
[1687] | 2508 | for v3D in CF3Dvars: |
---|
| 2509 | if not vars3D.has_key(v3D): |
---|
| 2510 | print gen.errormsg |
---|
| 2511 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2512 | "' attribution to compute '" + vn + "' !!" |
---|
| 2513 | print ' Equivalence of 3D variables provided _______' |
---|
| 2514 | gen.printing_dictionary(vars3D) |
---|
| 2515 | quit(-1) |
---|
| 2516 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2517 | print gen.errormsg |
---|
| 2518 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2519 | "' in input file to compute '" + vn + "' !!" |
---|
| 2520 | print ' available variables:', self.incvars.keys() |
---|
| 2521 | print ' looking for variables _______' |
---|
| 2522 | gen.printing_dictionary(vars3D) |
---|
| 2523 | quit(-1) |
---|
| 2524 | |
---|
| 2525 | ta = ncobj.variables[vars3D['ta']][:] |
---|
| 2526 | p = ncobj.variables[vars3D['plev']][:] |
---|
[1711] | 2527 | hus = ncobj.variables[vars3D['hus']][:] |
---|
[1687] | 2528 | |
---|
[1700] | 2529 | if len(ta.shape) != len(p.shape): |
---|
[1702] | 2530 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
[1700] | 2531 | |
---|
[1720] | 2532 | self.values = var_td_Uhus(ta, p, hus) |
---|
[1687] | 2533 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2534 | dictdims['lon']] |
---|
| 2535 | self.units = 'K' |
---|
| 2536 | |
---|
| 2537 | elif Cdiag == 'wd': |
---|
| 2538 | """ Computing wind direction |
---|
| 2539 | """ |
---|
| 2540 | vn = 'wd' |
---|
| 2541 | CF3Dvars = ['ua', 'va'] |
---|
| 2542 | for v3D in CF3Dvars: |
---|
| 2543 | if not vars3D.has_key(v3D): |
---|
| 2544 | print gen.errormsg |
---|
| 2545 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2546 | "self.' attribution to compute '" + vn + "' !!" |
---|
| 2547 | print ' Equivalence of 3D variables provided _______' |
---|
| 2548 | gen.printing_dictionary(vars3D) |
---|
| 2549 | quit(-1) |
---|
| 2550 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2551 | print gen.errormsg |
---|
| 2552 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2553 | "' in input file to compute '" + vn + "' !!" |
---|
| 2554 | print ' available variables:', self.incvars.keys() |
---|
| 2555 | print ' looking for variables _______' |
---|
| 2556 | gen.printing_dictionary(vars3D) |
---|
| 2557 | quit(-1) |
---|
| 2558 | |
---|
| 2559 | ua = ncobj.variables[vars3D['ua']][:] |
---|
| 2560 | va = ncobj.variables[vars3D['va']][:] |
---|
| 2561 | |
---|
| 2562 | self.values = var_wd(ua, va) |
---|
| 2563 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2564 | dictdims['lon']] |
---|
| 2565 | self.units = 'degree' |
---|
| 2566 | |
---|
| 2567 | elif Cdiag == 'ws': |
---|
| 2568 | """ Computing wind speed |
---|
| 2569 | """ |
---|
| 2570 | vn = 'ws' |
---|
| 2571 | CF3Dvars = ['ua', 'va'] |
---|
| 2572 | for v3D in CF3Dvars: |
---|
| 2573 | if not vars3D.has_key(v3D): |
---|
| 2574 | print gen.errormsg |
---|
| 2575 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2576 | "' attribution to compute '" + vn + "' !!" |
---|
| 2577 | print ' Equivalence of 3D variables provided _______' |
---|
| 2578 | gen.printing_dictionary(vars3D) |
---|
| 2579 | quit(-1) |
---|
| 2580 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 2581 | print gen.errormsg |
---|
| 2582 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 2583 | "' in input file to compute '" + vn + "' !!" |
---|
| 2584 | print ' available variables:', self.incvars.keys() |
---|
| 2585 | print ' looking for variables _______' |
---|
| 2586 | gen.printing_dictionary(vars3D) |
---|
| 2587 | quit(-1) |
---|
| 2588 | |
---|
| 2589 | ua = ncobj.variables[vars3D['ua']][:] |
---|
| 2590 | va = ncobj.variables[vars3D['va']][:] |
---|
| 2591 | |
---|
| 2592 | self.values = var_ws(ua, va) |
---|
| 2593 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2594 | dictdims['lon']] |
---|
| 2595 | self.units = ncobj.variables[vars3D['ua']].units |
---|
| 2596 | |
---|
| 2597 | else: |
---|
| 2598 | print gen.errormsg |
---|
| 2599 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
| 2600 | print ' available ones:', Cavailablediags |
---|
| 2601 | quit(-1) |
---|
| 2602 | |
---|
| 2603 | class W_diagnostic(object): |
---|
| 2604 | """ Class to compute WRF diagnostics variables |
---|
| 2605 | Wdiag: name of the diagnostic to compute |
---|
| 2606 | ncobj: netcdf object with data |
---|
| 2607 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
| 2608 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
| 2609 | indims: list of dimensions inside file |
---|
| 2610 | invardims: list of dimension-variables inside file |
---|
| 2611 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
| 2612 | self.values = Values of the diagnostic |
---|
| 2613 | self.dims = Dimensions of the diagnostic |
---|
| 2614 | self.units = units of the diagnostic |
---|
| 2615 | self.incvars = list of variables from the input netCDF object |
---|
| 2616 | """ |
---|
| 2617 | def __init__(self, Wdiag, ncobj, sfcvars, vars3D, indims, invardims, dictdims): |
---|
| 2618 | fname = 'W_diagnostic' |
---|
| 2619 | |
---|
| 2620 | self.values = None |
---|
| 2621 | self.dims = None |
---|
| 2622 | self.incvars = ncobj.variables |
---|
| 2623 | self.units = None |
---|
| 2624 | |
---|
[1710] | 2625 | if Wdiag == 'hur': |
---|
| 2626 | """ Computing relative humidity |
---|
| 2627 | """ |
---|
| 2628 | vn = 'hur' |
---|
| 2629 | CF3Dvars = ['ta', 'hus'] |
---|
| 2630 | for v3D in CF3Dvars: |
---|
| 2631 | if not vars3D.has_key(v3D): |
---|
| 2632 | print gen.errormsg |
---|
| 2633 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2634 | "' attribution to compute '" + vn + "' !!" |
---|
| 2635 | print ' Equivalence of 3D variables provided _______' |
---|
| 2636 | gen.printing_dictionary(vars3D) |
---|
| 2637 | quit(-1) |
---|
| 2638 | |
---|
| 2639 | ta = ncobj.variables['T'][:] |
---|
| 2640 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 2641 | hur = ncobj.variables['QVAPOR'][:] |
---|
| 2642 | |
---|
| 2643 | vals, dims, vdims = compute_WRFhur(ta, p, hur, indims, invardims) |
---|
| 2644 | self.values = vals |
---|
| 2645 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2646 | dictdims['lon']] |
---|
| 2647 | self.units = '1' |
---|
| 2648 | |
---|
| 2649 | elif Wdiag == 'p': |
---|
[1687] | 2650 | """ Computing air pressure |
---|
| 2651 | """ |
---|
| 2652 | vn = 'p' |
---|
| 2653 | |
---|
| 2654 | self.values = ncobj.variables['PB'][:] + ncobj.variables['P'][:] |
---|
| 2655 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2656 | dictdims['lon']] |
---|
| 2657 | self.units = ncobj.variables['PB'].units |
---|
| 2658 | |
---|
| 2659 | elif Wdiag == 'ta': |
---|
| 2660 | """ Computing air temperature |
---|
| 2661 | """ |
---|
| 2662 | vn = 'ta' |
---|
| 2663 | CF3Dvars = ['ta'] |
---|
| 2664 | for v3D in CF3Dvars: |
---|
| 2665 | if not vars3D.has_key(v3D): |
---|
| 2666 | print gen.errormsg |
---|
| 2667 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2668 | "' attribution to compute '" + vn + "' !!" |
---|
| 2669 | print ' Equivalence of 3D variables provided _______' |
---|
| 2670 | gen.printing_dictionary(vars3D) |
---|
| 2671 | quit(-1) |
---|
| 2672 | |
---|
| 2673 | ta = ncobj.variables['T'][:] |
---|
| 2674 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 2675 | |
---|
| 2676 | vals, dims, vdims = compute_WRFta(ta, p, indims, invardims) |
---|
| 2677 | self.values = vals |
---|
| 2678 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2679 | dictdims['lon']] |
---|
| 2680 | self.units = 'K' |
---|
| 2681 | |
---|
| 2682 | elif Wdiag == 'td': |
---|
| 2683 | """ Computing dew-point temperature |
---|
| 2684 | """ |
---|
| 2685 | vn = 'td' |
---|
| 2686 | CF3Dvars = ['ta', 'hus'] |
---|
| 2687 | for v3D in CF3Dvars: |
---|
| 2688 | if not vars3D.has_key(v3D): |
---|
| 2689 | print gen.errormsg |
---|
| 2690 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2691 | "' attribution to compute '" + vn + "' !!" |
---|
| 2692 | print ' Equivalence of 3D variables provided _______' |
---|
| 2693 | gen.printing_dictionary(vars3D) |
---|
| 2694 | quit(-1) |
---|
| 2695 | |
---|
| 2696 | ta = ncobj.variables['T'][:] |
---|
| 2697 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
[1710] | 2698 | hus = ncobj.variables['QVAPOR'][:] |
---|
[1687] | 2699 | |
---|
[1710] | 2700 | vals, dims, vdims = compute_WRFtd(ta, p, hus, indims, invardims) |
---|
[1687] | 2701 | self.values = vals |
---|
| 2702 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2703 | dictdims['lon']] |
---|
| 2704 | self.units = 'K' |
---|
| 2705 | |
---|
| 2706 | elif Wdiag == 'ua': |
---|
| 2707 | """ Computing x-wind |
---|
| 2708 | """ |
---|
| 2709 | vn = 'ua' |
---|
| 2710 | CF3Dvars = ['ua', 'va'] |
---|
| 2711 | for v3D in CF3Dvars: |
---|
| 2712 | if not vars3D.has_key(v3D): |
---|
| 2713 | print gen.errormsg |
---|
| 2714 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2715 | "' attribution to compute '" + vn + "' !!" |
---|
| 2716 | print ' Equivalence of 3D variables provided _______' |
---|
| 2717 | gen.printing_dictionary(vars3D) |
---|
| 2718 | quit(-1) |
---|
| 2719 | |
---|
| 2720 | ua = ncobj.variables['U'][:] |
---|
| 2721 | va = ncobj.variables['V'][:] |
---|
| 2722 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 2723 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 2724 | |
---|
| 2725 | vals, dims, vdims = compute_WRFua(ua, va, sina, cosa, indims, invardims) |
---|
| 2726 | self.values = vals |
---|
| 2727 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2728 | dictdims['lon']] |
---|
| 2729 | self.units = ncobj.variables['U'].units |
---|
| 2730 | |
---|
| 2731 | elif Wdiag == 'uas': |
---|
| 2732 | """ Computing 10m x-wind |
---|
| 2733 | """ |
---|
| 2734 | vn = 'uas' |
---|
| 2735 | CFsfcvars = ['uas', 'vas'] |
---|
| 2736 | for vsf in CFsfcvars: |
---|
| 2737 | if not sfcvars.has_key(vsf): |
---|
| 2738 | print gen.errormsg |
---|
| 2739 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
| 2740 | "' attribution to compute '" + vn + "' !!" |
---|
| 2741 | print ' Equivalence of sfc variables provided _______' |
---|
| 2742 | gen.printing_dictionary(sfcvars) |
---|
| 2743 | quit(-1) |
---|
| 2744 | |
---|
| 2745 | uas = ncobj.variables['U10'][:] |
---|
| 2746 | vas = ncobj.variables['V10'][:] |
---|
| 2747 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 2748 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 2749 | |
---|
| 2750 | vals,dims,vdims = compute_WRFuas(uas, vas, sina, cosa, indims, invardims) |
---|
| 2751 | self.values = vals |
---|
| 2752 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2753 | dictdims['lon']] |
---|
| 2754 | self.units = ncobj.variables['U10'].units |
---|
| 2755 | |
---|
| 2756 | elif Wdiag == 'va': |
---|
| 2757 | """ Computing y-wind |
---|
| 2758 | """ |
---|
| 2759 | vn = 'ua' |
---|
| 2760 | CF3Dvars = ['ua', 'va'] |
---|
| 2761 | for v3D in CF3Dvars: |
---|
| 2762 | if not vars3D.has_key(v3D): |
---|
| 2763 | print gen.errormsg |
---|
| 2764 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2765 | "' attribution to compute '" + vn + "' !!" |
---|
| 2766 | print ' Equivalence of 3D variables provided _______' |
---|
| 2767 | gen.printing_dictionary(vars3D) |
---|
| 2768 | quit(-1) |
---|
| 2769 | |
---|
| 2770 | ua = ncobj.variables['U'][:] |
---|
| 2771 | va = ncobj.variables['V'][:] |
---|
| 2772 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 2773 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 2774 | |
---|
| 2775 | vals, dims, vdims = compute_WRFva(ua, va, sina, cosa, indims, invardims) |
---|
| 2776 | self.values = vals |
---|
| 2777 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2778 | dictdims['lon']] |
---|
| 2779 | self.units = ncobj.variables['U'].units |
---|
| 2780 | |
---|
| 2781 | elif Wdiag == 'vas': |
---|
| 2782 | """ Computing 10m y-wind |
---|
| 2783 | """ |
---|
| 2784 | vn = 'uas' |
---|
| 2785 | CFsfcvars = ['uas', 'vas'] |
---|
| 2786 | for vsf in CFsfcvars: |
---|
| 2787 | if not sfcvars.has_key(vsf): |
---|
| 2788 | print gen.errormsg |
---|
| 2789 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
| 2790 | "' attribution to compute '" + vn + "' !!" |
---|
| 2791 | print ' Equivalence of sfc variables provided _______' |
---|
| 2792 | gen.printing_dictionary(sfcvars) |
---|
| 2793 | quit(-1) |
---|
| 2794 | |
---|
| 2795 | uas = ncobj.variables['U10'][:] |
---|
| 2796 | vas = ncobj.variables['V10'][:] |
---|
| 2797 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 2798 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 2799 | |
---|
| 2800 | vals,dims,vdims = compute_WRFvas(uas, vas, sina, cosa, indims, invardims) |
---|
| 2801 | self.values = vals |
---|
| 2802 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2803 | dictdims['lon']] |
---|
| 2804 | self.units = ncobj.variables['U10'].units |
---|
| 2805 | |
---|
| 2806 | elif Wdiag == 'wd': |
---|
| 2807 | """ Computing wind direction |
---|
| 2808 | """ |
---|
| 2809 | vn = 'wd' |
---|
| 2810 | CF3Dvars = ['ua', 'va'] |
---|
| 2811 | for v3D in CF3Dvars: |
---|
| 2812 | if not vars3D.has_key(v3D): |
---|
| 2813 | print gen.errormsg |
---|
| 2814 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2815 | "' attribution to compute '" + vn + "' !!" |
---|
| 2816 | print ' Equivalence of 3D variables provided _______' |
---|
| 2817 | gen.printing_dictionary(vars3D) |
---|
| 2818 | quit(-1) |
---|
| 2819 | |
---|
| 2820 | ua = ncobj.variables['U10'][:] |
---|
| 2821 | va = ncobj.variables['V10'][:] |
---|
| 2822 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 2823 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 2824 | |
---|
| 2825 | vals, dims, vdims = compute_WRFwd(ua, va, sina, cosa, indims, invardims) |
---|
| 2826 | self.values = vals |
---|
| 2827 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2828 | dictdims['lon']] |
---|
| 2829 | self.units = 'degree' |
---|
| 2830 | |
---|
| 2831 | elif Wdiag == 'ws': |
---|
| 2832 | """ Computing wind speed |
---|
| 2833 | """ |
---|
| 2834 | vn = 'ws' |
---|
| 2835 | CF3Dvars = ['ua', 'va'] |
---|
| 2836 | for v3D in CF3Dvars: |
---|
| 2837 | if not vars3D.has_key(v3D): |
---|
| 2838 | print gen.errormsg |
---|
| 2839 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 2840 | "' attribution to compute '" + vn + "' !!" |
---|
| 2841 | print ' Equivalence of 3D variables provided _______' |
---|
| 2842 | gen.printing_dictionary(vars3D) |
---|
| 2843 | quit(-1) |
---|
| 2844 | |
---|
| 2845 | ua = ncobj.variables['U10'][:] |
---|
| 2846 | va = ncobj.variables['V10'][:] |
---|
| 2847 | |
---|
| 2848 | self.values = var_ws(ua, va) |
---|
| 2849 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2850 | dictdims['lon']] |
---|
| 2851 | self.units = ncobj.variables['U10'].units |
---|
| 2852 | |
---|
| 2853 | elif Wdiag == 'zg': |
---|
| 2854 | """ Computing geopotential |
---|
| 2855 | """ |
---|
| 2856 | vn = 'zg' |
---|
| 2857 | |
---|
| 2858 | self.values = ncobj.variables['PHB'][:] + ncobj.variables['PH'][:] |
---|
| 2859 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 2860 | dictdims['lon']] |
---|
| 2861 | self.units = ncobj.variables['PHB'].units |
---|
| 2862 | |
---|
| 2863 | else: |
---|
| 2864 | print gen.errormsg |
---|
| 2865 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
| 2866 | print ' available ones:', Wavailablediags |
---|
| 2867 | quit(-1) |
---|