#include #include #include #ifndef _WIN32 # include #endif #include "protos.h" #include "registry.h" #include "data.h" #include "sym.h" int gen_alloc ( char * dirname ) { gen_alloc1( dirname ) ; gen_ddt_write( dirname ) ; return(0) ; } int get_count_for_alloc( node_t *node , int *numguys, int *stats) ; /* forward */ int gen_alloc1 ( char * dirname ) { FILE * fp ; char fname[NAMELEN] ; char * fn = "allocs.inc" ; int startpiece, fraction, iguy, numguys ; int stats[4] ; #define FRAC 8 if ( dirname == NULL ) return(1) ; if ( strlen(dirname) > 0 ) { sprintf(fname,"%s/%s",dirname,fn) ; } else { sprintf(fname,"%s",fn) ; } if ((fp = fopen( fname , "w" )) == NULL ) return(1) ; print_warning(fp,fname) ; startpiece = 0 ; fraction = 0 ; numguys = 0 ; iguy = -1 ; stats[0] = 0 ; stats[1] = 0 ; stats[2] = 0 ; stats[3] = 0 ; get_count_for_alloc( &Domain, &numguys , stats) ; /* howmany deez guys? */ fprintf(stderr,"Registry INFO variable counts: 0d %d 1d %d 2d %d 3d %d\n",stats[0],stats[1],stats[2],stats[3]) ; fprintf(fp,"#if 1\n") ; gen_alloc2( fp , "grid%", &Domain, &startpiece , &iguy, &fraction, numguys, FRAC, 1 ) ; fprintf(fp,"#endif\n") ; close_the_file( fp ) ; return(0) ; } int get_count_for_alloc( node_t *node , int *numguys, int * stats ) { node_t * p ; for ( p = node->fields ; p != NULL ; p = p->next ) { if ( p->type != NULL && p->type->type_type == DERIVED ) { get_count_for_alloc( p->type , numguys, stats ) ; } else if (p->ndims >= 0) { (*numguys)++ ; if ( p->ndims == 0 ) { stats[p->ndims]++ ; } else if ( p->ndims == 1 ) { stats[p->ndims]++ ; } else if ( p->ndims == 2 ) { stats[p->ndims]++ ; } else if ( p->ndims == 3 ) { stats[p->ndims]++ ; } } } } int nolistthese( char * ) ; int gen_alloc2 ( FILE * fp , char * structname , node_t * node, int *j, int *iguy, int *fraction, int numguys, int frac, int sw ) /* 1 = allocate, 2 = just count */ { node_t * p ; int tag ; char post[NAMELEN], post_for_count[NAMELEN] ; char fname[NAMELEN], dname[NAMELEN], dname_tmp[NAMELEN] ; char x[NAMELEN] ; char dimname[3][NAMELEN] ; char tchar ; unsigned int *io_mask ; int nd ; int restart ; if ( node == NULL ) return(1) ; for ( p = node->fields ; p != NULL ; p = p->next ) { (*iguy)++ ; if ( (*iguy % ((numguys+1)/frac+1)) == 0 ) { fprintf(fp,"#endif\n") ; fprintf(fp,"#if (NNN == %d)\n",(*j)++) ; } nd = p->ndims + ((p->node_kind & FOURD)?1:0) ; /* construct data name -- maybe same as vname if dname not spec'd */ if ( strlen(p->dname) == 0 || !strcmp(p->dname,"-") || p->dname[0] == ' ' ) { strcpy(dname_tmp,p->name) ; } else { strcpy(dname_tmp,p->dname) ; } make_upper_case(dname_tmp) ; /* Generate error if input or output for two state variables would be generated with the same dataname example wrong: misc tg "SOILTB" -> gen_tg,SOILTB misc soiltb "SOILTB" -> gen_soiltb,SOILTB */ if ( tag == 1 ) { char dname_symbol[128] ; sym_nodeptr sym_node ; sprintf(dname_symbol, "DNAME_%s", dname_tmp ) ; /* check and see if it is in the symbol table already */ if ((sym_node = sym_get( dname_symbol )) == NULL ) { /* add it */ sym_node = sym_add ( dname_symbol ) ; strcpy( sym_node->internal_name , p->name ) ; } else { fprintf(stderr,"REGISTRY ERROR: Data-name collision on %s for %s -- %s\n", dname_tmp,p->name,p->dname ) ; } } /* end July 2004 */ if ( p->ndims == 0 ) { if ( p->type->name[0] != 'c' && p->type->type_type != DERIVED && p->node_kind != RCONFIG && !nolistthese(p->name) ) { for ( tag = 1 ; tag <= p->ntl ; tag++ ) { strcpy(fname,field_name(t4,p,(p->ntl>1)?tag:0)) ; if ( p->ntl > 1 ) sprintf(dname,"%s_%d",dname_tmp,tag) ; else strcpy(dname,dname_tmp) ; fprintf(fp," IF (.NOT.grid%%is_intermediate) THEN\n") ; fprintf(fp," ALLOCATE( grid%%tail_statevars%%next )\n") ; fprintf(fp," grid%%tail_statevars => grid%%tail_statevars%%next\n") ; fprintf(fp," NULLIFY( grid%%tail_statevars%%next )\n" ) ; fprintf(fp," grid%%tail_statevars%%ProcOrient = ' '\n") ; fprintf(fp," grid%%tail_statevars%%VarName = '%s'\n",fname ) ; fprintf(fp," grid%%tail_statevars%%DataName = '%s'\n",dname ) ; fprintf(fp," grid%%tail_statevars%%Description = '%s'\n",p->descrip ) ; fprintf(fp," grid%%tail_statevars%%Units = '%s'\n",p->units ) ; fprintf(fp," grid%%tail_statevars%%Type = '%c'\n",p->type->name[0]) ; fprintf(fp," grid%%tail_statevars%%Ntl = %d\n",p->ntl<2?0:tag+p->ntl*100 ) ; /* if single tl, then 0, else tl itself */ fprintf(fp," grid%%tail_statevars%%Restart = %s\n", (p->restart)?".TRUE.":".FALSE." ) ; fprintf(fp," grid%%tail_statevars%%Ndim = %d\n",p->ndims ) ; fprintf(fp," grid%%tail_statevars%%scalar_array = .FALSE. \n" ) ; fprintf(fp," grid%%tail_statevars%%%cfield_%1dd => %s%s\n",p->type->name[0],p->ndims, structname, fname ) ; io_mask = p->io_mask ; if ( io_mask != NULL ) { int i ; for ( i = 0 ; i < IO_MASK_SIZE ; i++ ) { fprintf(fp," grid%%tail_statevars%%streams(%d) = %d ! %08x \n", i+1, io_mask[i], io_mask[i] ) ; } } fprintf(fp," ENDIF\n") ; } } if ( sw == 1 ) { for ( tag = 1 ; tag <= p->ntl ; tag++ ) { strcpy(fname,field_name(t4,p,(p->ntl>1)?tag:0)) ; if ( p->ntl > 1 ) sprintf(dname,"%s_%d",dname_tmp,tag) ; else strcpy(dname,dname_tmp) ; if( !strcmp( p->type->name , "real" ) || !strcmp( p->type->name , "doubleprecision" ) ) { /* if a real */ fprintf(fp, "IF ( setinitval .EQ. 3 ) %s%s=initial_data_value\n", structname , fname ) ; } else if ( !strcmp( p->type->name , "integer" ) ) { fprintf(fp, "IF ( setinitval .EQ. 3 ) %s%s=0\n", structname , fname ) ; } else if ( !strcmp( p->type->name , "logical" ) ) { fprintf(fp, "IF ( setinitval .EQ. 3 ) %s%s=.FALSE.\n", structname , fname ) ; } } } } if ( (p->ndims > 0 || p->boundary_array) && ( /* any array or a boundary array and... */ (p->node_kind & FIELD) || /* scalar arrays */ (p->node_kind & FOURD) ) /* scalar arrays */ ) { if ( p->type != NULL ) { tchar = '?' ; if ( !strcmp( p->type->name , "real" ) ) { tchar = 'R' ; } else if ( !strcmp( p->type->name , "doubleprecision" ) ) { tchar = 'D' ; } else if ( !strcmp( p->type->name , "logical" ) ) { tchar = 'L' ; } else if ( !strcmp( p->type->name , "integer" ) ) { tchar = 'I' ; } else { fprintf(stderr,"WARNING: what is the type for %s ?\n", p->name) ; } } if ( p->node_kind & FOURD ) { sprintf(post, ",num_%s)",field_name(t4,p,0)) ; sprintf(post_for_count, "*num_%s)",field_name(t4,p,0)) ; } else { sprintf(post, ")" ) ; sprintf(post_for_count, ")" ) ; } for ( tag = 1 ; tag <= p->ntl ; tag++ ) { if ( !strcmp ( p->use , "_4d_bdy_array_") ) { strcpy(fname,p->name) ; } else { strcpy(fname,field_name(t4,p,(p->ntl>1)?tag:0)) ; } /* check for errors in memory allocation */ if ( ! p->boundary_array ) { fprintf(fp,"IF(in_use_for_config(id,'%s')",fname) ; } else { fprintf(fp,"IF(.TRUE.") ; } if ( ! ( p->node_kind & FOURD ) && sw == 1 && ! ( p->nest_mask & INTERP_DOWN || p->nest_mask & FORCE_DOWN || p->nest_mask & INTERP_UP || p->nest_mask & SMOOTH_UP ) ) { fprintf(fp,".AND.(.NOT.grid%%is_intermediate)") ; } if ( p->ntl > 1 && sw == 1 ) { fprintf(fp,".AND.(IAND(%d,tl).NE.0)",tag) ; } fprintf(fp,")THEN\n") ; if ( p->boundary_array && sw_new_bdys ) { int bdy ; for ( bdy = 1 ; bdy <= 4 ; bdy++ ) { if( p->type != NULL && tchar != '?' ) { fprintf(fp," num_bytes_allocated = num_bytes_allocated + &\n(%s) * %cWORDSIZE\n", array_size_expression("", "(", bdy, t2, p, post_for_count, "model_config_rec%"), tchar) ; } if ( sw == 1 ) { fprintf(fp, " ALLOCATE(%s%s%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n 'frame/module_domain.f: Failed to allocate %s%s%s%s. ')\n endif\n", structname, fname, bdy_indicator(bdy), dimension_with_ranges( "", "(", bdy, t2, p, post, "model_config_rec%"), structname, fname, bdy_indicator(bdy), dimension_with_ranges( "", "(", bdy, t2, p, post, "model_config_rec%")); fprintf(fp, " IF ( setinitval .EQ. 1 .OR. setinitval .EQ. 3 ) %s%s%s=", structname , fname , bdy_indicator(bdy)); if( p->type != NULL && (!strcmp( p->type->name , "real" ) || !strcmp( p->type->name , "doubleprecision") ) ) { /* if a real */ fprintf(fp, "initial_data_value\n"); } else if ( !strcmp( p->type->name , "logical" ) ) { fprintf(fp, ".FALSE.\n"); } else if ( !strcmp( p->type->name , "integer" ) ) { fprintf(fp, "0\n"); } } } } else { if( p->type != NULL && tchar != '?' ) { fprintf(fp," num_bytes_allocated = num_bytes_allocated + &\n(%s) * %cWORDSIZE\n", array_size_expression("", "(", -1, t2, p, post_for_count, "model_config_rec%"), tchar) ; } if ( sw == 1 ) { fprintf(fp, " ALLOCATE(%s%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n 'frame/module_domain.f: Failed to allocate %s%s%s. ')\n endif\n", structname, fname, dimension_with_ranges( "", "(", -1, t2, p, post, "model_config_rec%"), structname, fname, dimension_with_ranges( "", "(", -1, t2, p, post, "model_config_rec%")); fprintf(fp, " IF ( setinitval .EQ. 1 .OR. setinitval .EQ. 3 ) %s%s=", structname , fname); if( p->type != NULL && (!strcmp( p->type->name , "real" ) || !strcmp( p->type->name , "doubleprecision") ) ) { /* if a real */ fprintf(fp, "initial_data_value\n"); } else if ( !strcmp( p->type->name , "logical" ) ) { fprintf(fp, ".FALSE.\n"); } else if ( !strcmp( p->type->name , "integer" ) ) { fprintf(fp, "0\n"); } if ( p->type->name[0] == 'l' && p->ndims >= 3 ) { fprintf(stderr,"ADVISORY: %1dd logical array %s is allowed but cannot be input or output\n", p->ndims, p->name ) ; } if ( p->type->type_type != DERIVED && p->node_kind != RCONFIG && !nolistthese(p->name) && ! ( p->type->name[0] == 'l' && p->ndims >= 3 ) ) /* dont list logical arrays larger than 2d */ { char memord[NAMELEN], stagstr[NAMELEN] ; char *ornt ; if ( p->proc_orient == ALL_X_ON_PROC ) ornt = "X" ; else if ( p->proc_orient == ALL_Y_ON_PROC ) ornt = "Y" ; else ornt = " " ; strcpy(stagstr, "") ; if ( p->node_kind & FOURD ) { set_mem_order( p->members, memord , NAMELEN) ; if ( p->members->stag_x ) strcat(stagstr, "X") ; if ( p->members->stag_y ) strcat(stagstr, "Y") ; if ( p->members->stag_z ) strcat(stagstr, "Z") ; } else { set_mem_order( p, memord , NAMELEN) ; if ( p->stag_x ) strcat(stagstr, "X") ; if ( p->stag_y ) strcat(stagstr, "Y") ; if ( p->stag_z ) strcat(stagstr, "Z") ; } memord[3] = '\0' ; /* snip off any extra dimensions */ if ( p->ntl > 1 ) sprintf(dname,"%s_%d",dname_tmp,tag) ; else strcpy(dname,dname_tmp) ; fprintf(fp," IF (.NOT.grid%%is_intermediate) THEN\n") ; /*{*/ fprintf(fp," ALLOCATE( grid%%tail_statevars%%next )\n" ) ; fprintf(fp," grid%%tail_statevars => grid%%tail_statevars%%next\n") ; fprintf(fp," NULLIFY( grid%%tail_statevars%%next )\n") ; fprintf(fp," grid%%tail_statevars%%VarName = '%s'\n", fname) ; fprintf(fp," grid%%tail_statevars%%DataName = '%s'\n", dname) ; fprintf(fp," grid%%tail_statevars%%Description = '%s'\n",p->descrip ) ; fprintf(fp," grid%%tail_statevars%%Units = '%s'\n",p->units ) ; fprintf(fp," grid%%tail_statevars%%Type = '%c'\n", p->type->name[0]) ; fprintf(fp," grid%%tail_statevars%%ProcOrient = '%s'\n", ornt) ; fprintf(fp," grid%%tail_statevars%%MemoryOrder = '%s'\n", memord) ; fprintf(fp," grid%%tail_statevars%%Stagger = '%s'\n", stagstr) ; /* in next line for Ntl, if single tl, then zero, otherwise tl itself */ fprintf(fp," grid%%tail_statevars%%Ntl = %d\n", p->ntl<2?0:tag+p->ntl*100 ) ; fprintf(fp," grid%%tail_statevars%%Ndim = %d\n", nd ) ; restart = 0 ; if ( p->node_kind & FOURD ) { node_t *q ; for ( q = p->members ; q->next != NULL ; q = q->next ) { /* use the last one */ if ( q != NULL ) { restart = q->restart ; } } } else { restart = p->restart ; } fprintf(fp," grid%%tail_statevars%%Restart = %s\n", (restart)?".TRUE.":".FALSE." ) ; fprintf(fp," grid%%tail_statevars%%scalar_array = %s\n", (p->node_kind & FOURD)?".TRUE.":".FALSE.") ; fprintf(fp," grid%%tail_statevars%%%cfield_%1dd => %s%s\n", p->type->name[0],nd, structname, fname ) ; if ( p->node_kind & FOURD ) { fprintf(fp," grid%%tail_statevars%%num_table => %s_num_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%index_table => %s_index_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%boundary_table => %s_boundary_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%dname_table => %s_dname_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%desc_table => %s_desc_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%units_table => %s_units_table\n", p->name ) ; fprintf(fp," grid%%tail_statevars%%streams_table => %s_streams_table\n", p->name ) ; } if ( p->node_kind & FOURD ) { node_t *q ; io_mask = NULL ; for ( q = p->members ; q->next != NULL ; q = q->next ) { /* use the last one */ if ( q != NULL ) { io_mask = q->io_mask ; } } } else { io_mask = p->io_mask ; } if ( io_mask != NULL ) { int i ; for ( i = 0 ; i < IO_MASK_SIZE ; i++ ) { fprintf(fp," grid%%tail_statevars%%streams(%d) = %d ! %08x \n", i+1, io_mask[i], io_mask[i] ) ; } } { char ddim[3][2][NAMELEN] ; char mdim[3][2][NAMELEN] ; char pdim[3][2][NAMELEN] ; set_dim_strs3( p, ddim, mdim, pdim , "", 0 ) ; /* dimensions with staggering */ fprintf(fp," grid%%tail_statevars%%sd1 = %s\n", ddim[0][0] ) ; fprintf(fp," grid%%tail_statevars%%ed1 = %s\n", ddim[0][1] ) ; fprintf(fp," grid%%tail_statevars%%sd2 = %s\n", ddim[1][0] ) ; fprintf(fp," grid%%tail_statevars%%ed2 = %s\n", ddim[1][1] ) ; fprintf(fp," grid%%tail_statevars%%sd3 = %s\n", ddim[2][0] ) ; fprintf(fp," grid%%tail_statevars%%ed3 = %s\n", ddim[2][1] ) ; fprintf(fp," grid%%tail_statevars%%sm1 = %s\n", mdim[0][0] ) ; fprintf(fp," grid%%tail_statevars%%em1 = %s\n", mdim[0][1] ) ; fprintf(fp," grid%%tail_statevars%%sm2 = %s\n", mdim[1][0] ) ; fprintf(fp," grid%%tail_statevars%%em2 = %s\n", mdim[1][1] ) ; fprintf(fp," grid%%tail_statevars%%sm3 = %s\n", mdim[2][0] ) ; fprintf(fp," grid%%tail_statevars%%em3 = %s\n", mdim[2][1] ) ; fprintf(fp," grid%%tail_statevars%%sp1 = %s\n", pdim[0][0] ) ; fprintf(fp," grid%%tail_statevars%%ep1 = %s\n", pdim[0][1] ) ; fprintf(fp," grid%%tail_statevars%%sp2 = %s\n", pdim[1][0] ) ; fprintf(fp," grid%%tail_statevars%%ep2 = %s\n", pdim[1][1] ) ; fprintf(fp," grid%%tail_statevars%%sp3 = %s\n", pdim[2][0] ) ; fprintf(fp," grid%%tail_statevars%%ep3 = %s\n", pdim[2][1] ) ; } { int i ; node_t * dimnode ; for ( i = 0 ; i < 3 ; i++ ) strcpy(dimname[i],"") ; for ( i = 0 ; i < 3 ; i++ ) { if (( dimnode = p->dims[i]) != NULL ) { switch ( dimnode->coord_axis ) { case (COORD_X) : if ( ( ! sw_3dvar_iry_kludge && p->stag_x ) || ( sw_3dvar_iry_kludge && p->stag_y ) ) { sprintf( dimname[i] ,"%s_stag", dimnode->dim_data_name) ; } else if ( p->dims[i]->subgrid ) { sprintf( dimname[i] ,"%s_subgrid", dimnode->dim_data_name) ; } else { strcpy( dimname[i], dimnode->dim_data_name) ; } fprintf(fp," grid%%tail_statevars%%subgrid_x = %s\n",(p->dims[i]->subgrid)?".TRUE.":".FALSE.") ; break ; case (COORD_Y) : if ( ( ! sw_3dvar_iry_kludge && p->stag_y ) || ( sw_3dvar_iry_kludge && p->stag_x ) ) { sprintf( dimname[i] ,"%s_stag", dimnode->dim_data_name) ; } else if ( p->dims[i]->subgrid ) { sprintf( dimname[i] ,"%s_subgrid", dimnode->dim_data_name) ; } else { strcpy( dimname[i], dimnode->dim_data_name) ; } fprintf(fp," grid%%tail_statevars%%subgrid_y = %s\n",(p->dims[i]->subgrid)?".TRUE.":".FALSE.") ; break ; case (COORD_Z) : if ( p->stag_z ) { sprintf( dimname[i] ,"%s_stag", dimnode->dim_data_name) ; } else if ( p->dims[i]->subgrid ) { sprintf( dimname[i] ,"%s_subgrid", dimnode->dim_data_name) ; } else { strcpy( dimname[i], dimnode->dim_data_name) ; } break ; } } } fprintf(fp," grid%%tail_statevars%%dimname1 = '%s'\n", dimname[0] ) ; fprintf(fp," grid%%tail_statevars%%dimname2 = '%s'\n", dimname[1] ) ; fprintf(fp," grid%%tail_statevars%%dimname3 = '%s'\n", dimname[2] ) ; } fprintf(fp," ENDIF\n") ; /*}*/ } } } fprintf(fp,"ELSE\n") ; if ( p->boundary_array && sw_new_bdys ) { int bdy ; for ( bdy = 1 ; bdy <= 4 ; bdy++ ) { fprintf(fp, " ALLOCATE(%s%s%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n 'frame/module_domain.f: Failed to allocate %s%s%s%s. ')\n endif\n", structname, fname, bdy_indicator(bdy), dimension_with_ones( "(",t2,p,")" ), structname, fname, bdy_indicator(bdy), dimension_with_ones( "(",t2,p,")" ) ) ; } } else { fprintf(fp, " ALLOCATE(%s%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n 'frame/module_domain.f: Failed to allocate %s%s%s. ')\n endif\n", structname, fname, dimension_with_ones( "(",t2,p,")" ), structname, fname, dimension_with_ones( "(",t2,p,")" ) ) ; } fprintf(fp,"ENDIF\n") ; /* end of in_use conditional */ } } if ( p->type != NULL ) { if ( p->type->type_type == DERIVED ) { sprintf(x,"%s%s%%",structname,p->name ) ; gen_alloc2(fp,x, p->type, j, iguy, fraction, numguys, 1, sw) ; } } } /* fraction loop */ return(0) ; } #if 0 int gen_alloc_count ( char * dirname ) { gen_alloc_count1( dirname ) ; return(0) ; } int gen_alloc_count1 ( char * dirname ) { FILE * fp ; char fname[NAMELEN] ; char * fn = "alloc_count.inc" ; if ( dirname == NULL ) return(1) ; if ( strlen(dirname) > 0 ) { sprintf(fname,"%s/%s",dirname,fn) ; } else { sprintf(fname,"%s",fn) ; } if ((fp = fopen( fname , "w" )) == NULL ) return(1) ; print_warning(fp,fname) ; gen_alloc2( fp , "grid%", &Domain, 0 ) ; close_the_file( fp ) ; return(0) ; } #endif int gen_ddt_write ( char * dirname ) { FILE * fp ; char fname[NAMELEN] ; char * fn = "write_ddt.inc" ; if ( dirname == NULL ) return(1) ; if ( strlen(dirname) > 0 ) { sprintf(fname,"%s/%s",dirname,fn) ; } else { sprintf(fname,"%s",fn) ; } if ((fp = fopen( fname , "w" )) == NULL ) return(1) ; print_warning(fp,fname) ; gen_ddt_write1( fp , "grid%", &Domain ) ; close_the_file( fp ) ; return(0) ; } int gen_ddt_write1 ( FILE * fp , char * structname , node_t * node ) { node_t * p ; int tag ; char post[NAMELEN] ; char fname[NAMELEN] ; char x[NAMELEN] ; if ( node == NULL ) return(1) ; for ( p = node->fields ; p != NULL ; p = p->next ) { if ( (p->ndims > 1 && ! p->boundary_array) && ( /* any array or a boundary array and... */ (p->node_kind & FIELD) || /* scalar arrays or... */ (p->node_kind & FOURD) ) /* scalar arrays or... */ ) { if ( p->node_kind & FOURD ) { sprintf(post,",num_%s)",field_name(t4,p,0)) ; } else { sprintf(post,")") ; } for ( tag = 1 ; tag <= p->ntl ; tag++ ) { strcpy(fname,field_name(t4,p,(p->ntl>1)?tag:0)) ; if ( p->node_kind & FOURD ) { fprintf(fp, "write(0,*)'%s',%s%s(IDEBUG,KDEBUG,JDEBUG,2)\n",fname,structname,fname) ; } else { if ( p->ndims == 2 ) fprintf(fp, "write(0,*)'%s',%s%s(IDEBUG,JDEBUG)\n",fname,structname,fname) ; if ( p->ndims == 3 ) fprintf(fp, "write(0,*)'%s',%s%s(IDEBUG,KDEBUG,JDEBUG)\n",fname,structname,fname) ; } } } } return(0) ; } int gen_dealloc ( char * dirname ) { gen_dealloc1( dirname ) ; return(0) ; } int gen_dealloc1 ( char * dirname ) { FILE * fp ; char fname[NAMELEN] ; char * fn = "deallocs.inc" ; if ( dirname == NULL ) return(1) ; if ( strlen(dirname) > 0 ) { sprintf(fname,"%s/%s",dirname,fn) ; } else { sprintf(fname,"%s",fn) ; } if ((fp = fopen( fname , "w" )) == NULL ) return(1) ; print_warning(fp,fname) ; gen_dealloc2( fp , "grid%", &Domain ) ; close_the_file( fp ) ; return(0) ; } int gen_dealloc2 ( FILE * fp , char * structname , node_t * node ) { node_t * p ; int tag ; char post[NAMELEN] ; char fname[NAMELEN] ; char x[NAMELEN] ; if ( node == NULL ) return(1) ; for ( p = node->fields ; p != NULL ; p = p->next ) { if ( (p->ndims > 0 || p->boundary_array) && ( /* any array or a boundary array and... */ (p->node_kind & FIELD) || /* scalar arrays or */ (p->node_kind & FOURD) ) /* scalar arrays or */ ) { if ( p->node_kind & FOURD ) { sprintf(post,",num_%s)",field_name(t4,p,0)) ; } else { sprintf(post,")") ; } for ( tag = 1 ; tag <= p->ntl ; tag++ ) { strcpy(fname,field_name(t4,p,(p->ntl>1)?tag:0)) ; if ( p->boundary && sw_new_bdys ) { { int bdy ; for ( bdy = 1 ; bdy <= 4 ; bdy++ ) { #ifdef USE_ALLOCATABLES fprintf(fp, "IF ( ALLOCATED( %s%s%s ) ) THEN \n", structname, fname, bdy_indicator(bdy) ) ; #else fprintf(fp, "IF ( ASSOCIATED( %s%s%s ) ) THEN \n", structname, fname, bdy_indicator(bdy) ) ; #endif fprintf(fp, " DEALLOCATE(%s%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n'frame/module_domain.f: Failed to deallocate %s%s%s. ')\n endif\n", structname, fname, bdy_indicator(bdy), structname, fname, bdy_indicator(bdy) ) ; #ifndef USE_ALLOCATABLES fprintf(fp, " NULLIFY(%s%s%s)\n",structname, fname, bdy_indicator(bdy) ) ; #endif fprintf(fp, "ENDIF\n" ) ; } } } else { #ifdef USE_ALLOCATABLES fprintf(fp, "IF ( ALLOCATED( %s%s ) ) THEN \n", structname, fname ) ; #else fprintf(fp, "IF ( ASSOCIATED( %s%s ) ) THEN \n", structname, fname ) ; #endif fprintf(fp, " DEALLOCATE(%s%s,STAT=ierr)\n if (ierr.ne.0) then\n CALL wrf_error_fatal ( &\n'frame/module_domain.f: Failed to deallocate %s%s. ')\n endif\n", structname, fname, structname, fname ) ; #ifdef USE_ALLOCATABLES fprintf(fp, " NULLIFY(%s%s)\n",structname, fname ) ; #endif fprintf(fp, "ENDIF\n" ) ; } } } if ( p->type != NULL ) { if ( p->type->type_type == SIMPLE && p->ndims == 0 && (!strcmp(p->type->name,"integer") || !strcmp(p->type->name,"real") || !strcmp(p->type->name,"doubleprecision")) ) { } else if ( p->type->type_type == DERIVED ) { sprintf(x,"%s%s%%",structname,p->name ) ; gen_dealloc2(fp,x, p->type) ; } } } return(0) ; } int nolistthese( char * name ) { return( !strncmp(name,"auxhist",7) || !strncmp(name,"auxinput",8) || !strncmp(name,"oid",3) ) ; }