| 1 | !WRF:MODEL_LAYER:PHYSICS |
|---|
| 2 | ! |
|---|
| 3 | MODULE module_sf_temfsfclay |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !------------------------------------------------------------------- |
|---|
| 8 | SUBROUTINE temfsfclay(u3d,v3d,th3d,qv3d,p3d,pi3d,rho,z,ht, & |
|---|
| 9 | cp,g,rovcp,r,xlv,psfc,chs,chs2,cqs2,cpm, & |
|---|
| 10 | znt,ust,mavail,xland, & |
|---|
| 11 | hfx,qfx,lh,tsk,flhc,flqc,qgh,qsfc, & |
|---|
| 12 | u10,v10,th2,t2,q2, & |
|---|
| 13 | svp1,svp2,svp3,svpt0,ep1,ep2, & |
|---|
| 14 | karman,fCor,te_temf, & |
|---|
| 15 | hd_temf,exch_temf,wm_temf, & |
|---|
| 16 | ids,ide, jds,jde, kds,kde, & |
|---|
| 17 | ims,ime, jms,jme, kms,kme, & |
|---|
| 18 | its,ite, jts,jte, kts,kte & |
|---|
| 19 | ) |
|---|
| 20 | !------------------------------------------------------------------- |
|---|
| 21 | IMPLICIT NONE |
|---|
| 22 | !------------------------------------------------------------------- |
|---|
| 23 | ! |
|---|
| 24 | ! This is the Total Energy - Mass Flux (TEMF) surface layer scheme. |
|---|
| 25 | ! Initial implementation 2010 by Wayne Angevine, CIRES/NOAA ESRL. |
|---|
| 26 | ! References: |
|---|
| 27 | ! Angevine et al., 2010, MWR |
|---|
| 28 | ! Angevine, 2005, JAM |
|---|
| 29 | ! Mauritsen et al., 2007, JAS |
|---|
| 30 | ! |
|---|
| 31 | !------------------------------------------------------------------- |
|---|
| 32 | !------------------------------------------------------------------- |
|---|
| 33 | !-- u3d 3D u-velocity interpolated to theta points (m/s) |
|---|
| 34 | !-- v3d 3D v-velocity interpolated to theta points (m/s) |
|---|
| 35 | !-- th3d potential temperature (K) |
|---|
| 36 | !-- qv3d 3D water vapor mixing ratio (Kg/Kg) |
|---|
| 37 | !-- p3d 3D pressure (Pa) |
|---|
| 38 | !-- cp heat capacity at constant pressure for dry air (J/kg/K) |
|---|
| 39 | !-- g acceleration due to gravity (m/s^2) |
|---|
| 40 | !-- rovcp R/CP |
|---|
| 41 | !-- r gas constant for dry air (J/kg/K) |
|---|
| 42 | !-- xlv latent heat of vaporization for water (J/kg) |
|---|
| 43 | !-- psfc surface pressure (Pa) |
|---|
| 44 | !-- chs heat/moisture exchange coefficient for LSM (m/s) |
|---|
| 45 | !-- chs2 |
|---|
| 46 | !-- cqs2 |
|---|
| 47 | !-- cpm |
|---|
| 48 | !-- znt roughness length (m) |
|---|
| 49 | !-- ust u* in similarity theory (m/s) |
|---|
| 50 | !-- mavail surface moisture availability (between 0 and 1) |
|---|
| 51 | !-- xland land mask (1 for land, 2 for water) |
|---|
| 52 | !-- hfx upward heat flux at the surface (W/m^2) |
|---|
| 53 | !-- qfx upward moisture flux at the surface (kg/m^2/s) |
|---|
| 54 | !-- lh net upward latent heat flux at surface (W/m^2) |
|---|
| 55 | !-- tsk surface temperature (K) |
|---|
| 56 | !-- flhc exchange coefficient for heat (W/m^2/K) |
|---|
| 57 | !-- flqc exchange coefficient for moisture (kg/m^2/s) |
|---|
| 58 | !-- qgh lowest-level saturated mixing ratio |
|---|
| 59 | !-- qsfc ground saturated mixing ratio |
|---|
| 60 | !-- u10 diagnostic 10m u wind |
|---|
| 61 | !-- v10 diagnostic 10m v wind |
|---|
| 62 | !-- th2 diagnostic 2m theta (K) |
|---|
| 63 | !-- t2 diagnostic 2m temperature (K) |
|---|
| 64 | !-- q2 diagnostic 2m mixing ratio (kg/kg) |
|---|
| 65 | !-- svp1 constant for saturation vapor pressure (kPa) |
|---|
| 66 | !-- svp2 constant for saturation vapor pressure (dimensionless) |
|---|
| 67 | !-- svp3 constant for saturation vapor pressure (K) |
|---|
| 68 | !-- svpt0 constant for saturation vapor pressure (K) |
|---|
| 69 | !-- ep1 constant for virtual temperature (R_v/R_d - 1) (dimensionless) |
|---|
| 70 | !-- ep2 constant for specific humidity calculation |
|---|
| 71 | ! (R_d/R_v) (dimensionless) |
|---|
| 72 | !-- karman Von Karman constant |
|---|
| 73 | !-- fCor Coriolis parameter |
|---|
| 74 | !-- ids start index for i in domain |
|---|
| 75 | !-- ide end index for i in domain |
|---|
| 76 | !-- jds start index for j in domain |
|---|
| 77 | !-- jde end index for j in domain |
|---|
| 78 | !-- kds start index for k in domain |
|---|
| 79 | !-- kde end index for k in domain |
|---|
| 80 | !-- ims start index for i in memory |
|---|
| 81 | !-- ime end index for i in memory |
|---|
| 82 | !-- jms start index for j in memory |
|---|
| 83 | !-- jme end index for j in memory |
|---|
| 84 | !-- kms start index for k in memory |
|---|
| 85 | !-- kme end index for k in memory |
|---|
| 86 | !-- its start index for i in tile |
|---|
| 87 | !-- ite end index for i in tile |
|---|
| 88 | !-- jts start index for j in tile |
|---|
| 89 | !-- jte end index for j in tile |
|---|
| 90 | !-- kts start index for k in tile |
|---|
| 91 | !-- kte end index for k in tile |
|---|
| 92 | !------------------------------------------------------------------- |
|---|
| 93 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 94 | ims,ime, jms,jme, kms,kme, & |
|---|
| 95 | its,ite, jts,jte, kts,kte |
|---|
| 96 | ! |
|---|
| 97 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & |
|---|
| 98 | INTENT(IN ) :: u3d, v3d, th3d, qv3d, p3d, pi3d, rho, z |
|---|
| 99 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 100 | INTENT(IN ) :: mavail, xland, tsk, fCor, ht, psfc, znt |
|---|
| 101 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 102 | INTENT(INOUT) :: hfx, qfx, lh, flhc, flqc |
|---|
| 103 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 104 | INTENT(INOUT) :: ust, chs2, cqs2, chs, cpm, qgh, qsfc |
|---|
| 105 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 106 | INTENT(OUT ) :: u10, v10, th2, t2, q2 |
|---|
| 107 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 108 | INTENT(IN ) :: hd_temf |
|---|
| 109 | REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & |
|---|
| 110 | INTENT(INOUT) :: te_temf |
|---|
| 111 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 112 | INTENT( OUT) :: exch_temf |
|---|
| 113 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 114 | INTENT(INOUT) :: wm_temf |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | REAL, INTENT(IN ) :: cp,g,rovcp,r,xlv |
|---|
| 118 | REAL, INTENT(IN ) :: svp1,svp2,svp3,svpt0 |
|---|
| 119 | REAL, INTENT(IN ) :: ep1,ep2,karman |
|---|
| 120 | ! |
|---|
| 121 | ! LOCAL VARS |
|---|
| 122 | |
|---|
| 123 | INTEGER :: J |
|---|
| 124 | ! |
|---|
| 125 | |
|---|
| 126 | DO J=jts,jte |
|---|
| 127 | |
|---|
| 128 | CALL temfsfclay1d(j,u1d=u3d(ims,kms,j),v1d=v3d(ims,kms,j), & |
|---|
| 129 | th1d=th3d(ims,kms,j),qv1d=qv3d(ims,kms,j),p1d=p3d(ims,kms,j), & |
|---|
| 130 | pi1d=pi3d(ims,kms,j),rho=rho(ims,kms,j),z=z(ims,kms,j),& |
|---|
| 131 | zsrf=ht(ims,j), & |
|---|
| 132 | cp=cp,g=g,rovcp=rovcp,r=r,xlv=xlv,psfc=psfc(ims,j), & |
|---|
| 133 | chs=chs(ims,j),chs2=chs2(ims,j),cqs2=cqs2(ims,j), & |
|---|
| 134 | cpm=cpm(ims,j),znt=znt(ims,j),ust=ust(ims,j), & |
|---|
| 135 | mavail=mavail(ims,j),xland=xland(ims,j), & |
|---|
| 136 | hfx=hfx(ims,j),qfx=qfx(ims,j),lh=lh(ims,j),tsk=tsk(ims,j), & |
|---|
| 137 | flhc=flhc(ims,j),flqc=flqc(ims,j),qgh=qgh(ims,j), & |
|---|
| 138 | qsfc=qsfc(ims,j),u10=u10(ims,j),v10=v10(ims,j), & |
|---|
| 139 | th2=th2(ims,j),t2=t2(ims,j),q2=q2(ims,j), & |
|---|
| 140 | svp1=svp1,svp2=svp2,svp3=svp3,svpt0=svpt0, & |
|---|
| 141 | ep1=ep1,ep2=ep2,karman=karman,fCor=fCor(ims,j), & |
|---|
| 142 | te_temfx=te_temf(ims,kms,j),hd_temfx=hd_temf(ims,j), & |
|---|
| 143 | exch_temfx=exch_temf(ims,j),wm_temfx=wm_temf(ims,j), & |
|---|
| 144 | ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde, & |
|---|
| 145 | ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme, & |
|---|
| 146 | its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte & |
|---|
| 147 | ) |
|---|
| 148 | ENDDO |
|---|
| 149 | |
|---|
| 150 | END SUBROUTINE temfsfclay |
|---|
| 151 | |
|---|
| 152 | |
|---|
| 153 | !------------------------------------------------------------------- |
|---|
| 154 | SUBROUTINE temfsfclay1d(j,u1d,v1d,th1d,qv1d,p1d, & |
|---|
| 155 | pi1d,rho,z,zsrf,cp,g,rovcp,r,xlv,psfc, & |
|---|
| 156 | chs,chs2,cqs2,cpm,znt,ust, & |
|---|
| 157 | mavail,xland,hfx,qfx,lh,tsk, & |
|---|
| 158 | flhc,flqc,qgh,qsfc,u10,v10, & |
|---|
| 159 | th2,t2,q2,svp1,svp2,svp3,svpt0, & |
|---|
| 160 | ep1,ep2,karman,fCor, & |
|---|
| 161 | te_temfx,hd_temfx,exch_temfx,wm_temfx, & |
|---|
| 162 | ids,ide, jds,jde, kds,kde, & |
|---|
| 163 | ims,ime, jms,jme, kms,kme, & |
|---|
| 164 | its,ite, jts,jte, kts,kte & |
|---|
| 165 | ) |
|---|
| 166 | !!------------------------------------------------------------------- |
|---|
| 167 | IMPLICIT NONE |
|---|
| 168 | !!------------------------------------------------------------------- |
|---|
| 169 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 170 | ims,ime, jms,jme, kms,kme, & |
|---|
| 171 | its,ite, jts,jte, kts,kte, & |
|---|
| 172 | j |
|---|
| 173 | |
|---|
| 174 | REAL, DIMENSION( ims:ime ), INTENT(IN ) :: & |
|---|
| 175 | u1d,v1d,qv1d,p1d,th1d,pi1d,rho,z,zsrf |
|---|
| 176 | REAL, INTENT(IN ) :: cp,g,rovcp,r,xlv |
|---|
| 177 | REAL, DIMENSION( ims:ime ), INTENT(IN ) :: psfc,znt |
|---|
| 178 | REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & |
|---|
| 179 | chs,chs2,cqs2,cpm,ust |
|---|
| 180 | REAL, DIMENSION( ims:ime ), INTENT(IN ) :: mavail,xland |
|---|
| 181 | REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & |
|---|
| 182 | hfx,qfx,lh |
|---|
| 183 | REAL, DIMENSION( ims:ime ), INTENT(IN ) :: tsk |
|---|
| 184 | REAL, DIMENSION( ims:ime ), INTENT( OUT) :: & |
|---|
| 185 | flhc,flqc |
|---|
| 186 | REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: & |
|---|
| 187 | qgh,qsfc |
|---|
| 188 | REAL, DIMENSION( ims:ime ), INTENT( OUT) :: & |
|---|
| 189 | u10,v10,th2,t2,q2 |
|---|
| 190 | REAL, INTENT(IN ) :: svp1,svp2,svp3,svpt0 |
|---|
| 191 | REAL, INTENT(IN ) :: ep1,ep2,karman |
|---|
| 192 | REAL, DIMENSION( ims:ime ), INTENT(IN ) :: fCor,hd_temfx |
|---|
| 193 | REAL, DIMENSION( ims:ime ), INTENT(INOUT) :: te_temfx |
|---|
| 194 | REAL, DIMENSION( ims:ime ), INTENT( OUT) :: exch_temfx, wm_temfx |
|---|
| 195 | ! |
|---|
| 196 | !! LOCAL VARS |
|---|
| 197 | ! TE model constants |
|---|
| 198 | real, parameter :: visc_temf = 1.57e-5 |
|---|
| 199 | real, parameter :: conduc_temf = 1.57e-5 / 0.733 |
|---|
| 200 | logical, parameter :: MFopt = .true. ! Use mass flux or not |
|---|
| 201 | real, parameter :: TEmin = 1e-3 |
|---|
| 202 | real, parameter :: ftau0 = 0.17 |
|---|
| 203 | real, parameter :: fth0 = 0.145 |
|---|
| 204 | ! real, parameter :: fth0 = 0.12 ! WA 10/13/10 to make PrT0 ~= 1 |
|---|
| 205 | real, parameter :: Cf = 0.185 |
|---|
| 206 | real, parameter :: CN = 2.0 |
|---|
| 207 | ! real, parameter :: Ceps = ftau0**1.5 |
|---|
| 208 | real, parameter :: Ceps = 0.070 |
|---|
| 209 | real, parameter :: Cgamma = Ceps |
|---|
| 210 | real, parameter :: Cphi = Ceps |
|---|
| 211 | ! real, parameter :: PrT0 = Cphi/Ceps * ftau0**2. / 2 / fth0**2. |
|---|
| 212 | real, parameter :: PrT0 = Cphi/Ceps * ftau0**2 / 2. / fth0**2 |
|---|
| 213 | ! |
|---|
| 214 | integer :: i |
|---|
| 215 | real :: e1 |
|---|
| 216 | real, dimension( its:ite) :: wstr, ang, wm |
|---|
| 217 | real, dimension( its:ite) :: z0t |
|---|
| 218 | real, dimension( its:ite) :: dthdz, dqtdz, dudz, dvdz |
|---|
| 219 | real, dimension( its:ite) :: lepsmin |
|---|
| 220 | real, dimension( its:ite) :: thetav |
|---|
| 221 | real, dimension( its:ite) :: zt,zm |
|---|
| 222 | real, dimension( its:ite) :: N2, S, Ri, beta, ftau, fth, ratio |
|---|
| 223 | real, dimension( its:ite) :: TKE, TE2 |
|---|
| 224 | real, dimension( its:ite) :: ustrtilde, linv, leps |
|---|
| 225 | real, dimension( its:ite) :: km, kh |
|---|
| 226 | real, dimension( its:ite) :: qsfc_air |
|---|
| 227 | !!------------------------------------------------------------------- |
|---|
| 228 | |
|---|
| 229 | !!!!!!! ****** |
|---|
| 230 | ! WA Known outages: None |
|---|
| 231 | |
|---|
| 232 | do i = its,ite ! Main loop |
|---|
| 233 | |
|---|
| 234 | ! Calculate surface saturated q and q in air at surface |
|---|
| 235 | e1=svp1*exp(svp2*(tsk(i)-svpt0)/(tsk(i)-svp3)) |
|---|
| 236 | qsfc(i)=ep2*e1/((psfc(i)/1000.)-e1) |
|---|
| 237 | qsfc_air(i) = qsfc(i) * mavail(i) |
|---|
| 238 | thetav(i) = (tsk(i)/pi1d(i)) * (1. + 0.608*qsfc_air(i)) ! WA Assumes ql(env)=0, what if it isn't? |
|---|
| 239 | ! WA TEST (R5) set z0t = z0 |
|---|
| 240 | ! z0t(i) = znt(i) / 10.0 ! WA this is hard coded in Matlab version |
|---|
| 241 | z0t(i) = znt(i) |
|---|
| 242 | |
|---|
| 243 | ! Get height and delta at turbulence levels and mass levels |
|---|
| 244 | zt(i) = (z(i) - zsrf(i) - znt(i)) / 2. |
|---|
| 245 | zm(i) = z(i) - zsrf(i) |
|---|
| 246 | |
|---|
| 247 | ! Gradients at first level |
|---|
| 248 | dthdz(i) = (th1d(i)-(tsk(i)/pi1d(i))) / (zt(i) * log10(zm(i)/z0t(i))) |
|---|
| 249 | dqtdz(i) = (qv1d(i)-qsfc_air(i)) / (zt(i) * log10(zm(i)/z0t(i))) |
|---|
| 250 | dudz(i) = u1d(i) / (zt(i) * log10(zm(i)/znt(i))) |
|---|
| 251 | dvdz(i) = v1d(i) / (zt(i) * log10(zm(i)/znt(i))) |
|---|
| 252 | |
|---|
| 253 | ! WA doing this because te_temf may not be initialized, |
|---|
| 254 | ! would be better to do it in initialization routine but it's |
|---|
| 255 | ! not available in module_physics_init. |
|---|
| 256 | if (te_temfx(i) < TEmin) te_temfx(i) = TEmin |
|---|
| 257 | |
|---|
| 258 | if ( hfx(i) > 0.) then |
|---|
| 259 | wstr(i) = (g * hd_temfx(i) / thetav(i) * (hfx(i)/(rho(i)*cp))) ** (1./3.) |
|---|
| 260 | else |
|---|
| 261 | wstr(i) = 0. |
|---|
| 262 | end if |
|---|
| 263 | |
|---|
| 264 | ! Find stability parameters and length scale |
|---|
| 265 | ! WA Calculation of N should really use d(thetaV)/dz not dthdz |
|---|
| 266 | ! WA 7/1/09 allow N to be negative |
|---|
| 267 | ! if ( dthdz(i) >= 0.) then |
|---|
| 268 | ! N(i) = csqrt(g / thetav(i) * dthdz(i)) |
|---|
| 269 | ! else |
|---|
| 270 | ! N(i) = 0. |
|---|
| 271 | ! end if |
|---|
| 272 | N2(i) = g / thetav(i) * dthdz(i) |
|---|
| 273 | S(i) = sqrt(dudz(i)**2. + dvdz(i)**2.) |
|---|
| 274 | ! Ri(i) = N(i)**2. / S(i)**2. |
|---|
| 275 | Ri(i) = N2(i) / S(i)**2. |
|---|
| 276 | ! if (S(i) < 1e-15) Ri(i) = 1./1e-15 |
|---|
| 277 | if (S(i) < 1e-15) then |
|---|
| 278 | print *,'In TEMF SFC Limiting Ri,S,N2,Ri,u,v = ',S(i),N2(i),Ri(i),u1d(i),v1d(i) |
|---|
| 279 | if (N2(i) >= 0) then |
|---|
| 280 | Ri(i) = 0.2 |
|---|
| 281 | else |
|---|
| 282 | Ri(i) = -1. |
|---|
| 283 | end if |
|---|
| 284 | end if |
|---|
| 285 | if (Ri(i) > 0.2) then ! WA TEST to prevent runaway |
|---|
| 286 | Ri(i) = 0.2 |
|---|
| 287 | end if |
|---|
| 288 | beta(i) = g / thetav(i) |
|---|
| 289 | ! WA 7/1/09 adjust ratio, ftau, fth for Ri>0 |
|---|
| 290 | if (Ri(i) > 0) then |
|---|
| 291 | ratio(i) = Ri(i)/(Cphi**2.*ftau0**2./(2.*Ceps**2.*fth0**2.)+3.*Ri(i)) |
|---|
| 292 | ftau(i) = ftau0 * ((3./4.) / (1.+4.*Ri(i)) + 1./4.) |
|---|
| 293 | fth(i) = fth0 / (1.+4.*Ri(i)) |
|---|
| 294 | ! TE2(i) = 2. * te_temfx(i) * ratio(i) * N(i)**2. / beta(i)**2. |
|---|
| 295 | TE2(i) = 2. * te_temfx(i) * ratio(i) * N2(i) / beta(i)**2. |
|---|
| 296 | else |
|---|
| 297 | ratio(i) = Ri(i)/(Cphi**2.*ftau0**2./(-2.*Ceps**2.*fth0**2.)+2.*Ri(i)) |
|---|
| 298 | ftau(i) = ftau0 |
|---|
| 299 | fth(i) = fth0 |
|---|
| 300 | TE2(i) = 0. |
|---|
| 301 | end if |
|---|
| 302 | TKE(i) = te_temfx(i) * (1. - ratio(i)) |
|---|
| 303 | ustrtilde(i) = sqrt(ftau(i) * TKE(i)) |
|---|
| 304 | ! linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) + N(i)/(CN*ustrtilde(i)) |
|---|
| 305 | if (N2(i) > 0.) then |
|---|
| 306 | linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) + sqrt(N2(i))/(CN*ustrtilde(i)) |
|---|
| 307 | else |
|---|
| 308 | linv(i) = 1./karman / zt(i) + abs(fCor(i)) / (Cf*ustrtilde(i)) |
|---|
| 309 | end if |
|---|
| 310 | leps(i) = 1./linv(i) |
|---|
| 311 | ! WA TEST (R4) remove lower limit on leps |
|---|
| 312 | ! lepsmin(i) = min(0.4*zt(i), 5.) |
|---|
| 313 | lepsmin(i) = 0. |
|---|
| 314 | leps(i) = max(leps(i),lepsmin(i)) |
|---|
| 315 | |
|---|
| 316 | |
|---|
| 317 | ! Find diffusion coefficients |
|---|
| 318 | ! First use basic formulae for stable and neutral cases, |
|---|
| 319 | ! then for convective conditions, and finally choose the larger |
|---|
| 320 | km(i) = TKE(i)**1.5 * ftau(i)**2. / (-beta(i) * fth(i) * sqrt(TE2(i)) + Ceps * sqrt(TKE(i)*te_temfx(i)) / leps(i)) |
|---|
| 321 | kh(i) = 2. * leps(i) * fth(i)**2. * TKE(i) / sqrt(te_temfx(i)) / Cphi |
|---|
| 322 | km(i) = max(km(i),visc_temf) |
|---|
| 323 | kh(i) = max(kh(i),conduc_temf) |
|---|
| 324 | |
|---|
| 325 | ! Surface fluxes |
|---|
| 326 | ust(i) = sqrt(ftau(i)/ftau0) * sqrt(u1d(i)**2. + v1d(i)**2.) * leps(i) / log(zm(i)/znt(i)) / zt(i) |
|---|
| 327 | ang(i) = atan2(v1d(i),u1d(i)) |
|---|
| 328 | |
|---|
| 329 | ! Calculate mixed scaling velocity (Moeng & Sullivan 1994 JAS p.1021) |
|---|
| 330 | ! Replaces ust everywhere (WA need to reconsider?) |
|---|
| 331 | ! WA wm is too large, makes surface flux too big and cools sfc too much |
|---|
| 332 | ! wm(i) = (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) |
|---|
| 333 | ! WA TEST (R2,R11) 7/23/10 reduce velocity scale to fix excessive fluxes |
|---|
| 334 | wm(i) = 0.5 * (1./5. * (wstr(i)**3. + 5. * ust(i)**3.)) ** (1./3.) |
|---|
| 335 | ! WA TEST 2/14/11 limit contribution of w* |
|---|
| 336 | ! wm(i) = 0.5 * (1./5. * (min(0.8,wstr(i))**3. + 5. * ust(i)**3.)) ** (1./3.) |
|---|
| 337 | ! WA TEST 2/22/11 average with previous value to reduce instability |
|---|
| 338 | wm(i) = (wm(i) + wm_temfx(i)) / 2.0 |
|---|
| 339 | wm_temfx(i) = wm(i) |
|---|
| 340 | ! WA TEST (R3-R10) 7/23/10 wm = u* |
|---|
| 341 | ! wm(i) = ust(i) |
|---|
| 342 | |
|---|
| 343 | ! Populate surface exchange coefficient variables to go back out |
|---|
| 344 | ! for next time step of surface scheme |
|---|
| 345 | ! Unit specifications in SLAB and sfclay are conflicting and probably |
|---|
| 346 | ! incorrect. This will give a dynamic heat flux (W/m^2) or moisture |
|---|
| 347 | ! flux (kg(water)/(m^2*s)) when multiplied by a difference. |
|---|
| 348 | ! These formulae are the same as what's used above to get surface |
|---|
| 349 | ! flux from surface temperature and specific humidity. |
|---|
| 350 | flhc(i) = rho(i) * cp * fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(zm(i)/z0t(i)) / zt(i) |
|---|
| 351 | flqc(i) = rho(i) * fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(zm(i)/z0t(i)) / zt(i) * mavail(i) |
|---|
| 352 | exch_temfx(i) = flqc(i) / mavail(i) |
|---|
| 353 | chs(i) = flqc(i) / rho(i) / mavail(i) |
|---|
| 354 | ! WA Must exchange coeffs be limited to avoid runaway in some |
|---|
| 355 | ! (convective?) conditions? Something like this is done in sfclay. |
|---|
| 356 | ! Doing nothing for now. |
|---|
| 357 | |
|---|
| 358 | ! Populate surface heat and moisture fluxes |
|---|
| 359 | hfx(i) = flhc(i) * (tsk(i) - th1d(i)*pi1d(i)) |
|---|
| 360 | ! qfx(i) = flqc(i) * (qsfc_air(i) - qv1d(i)) ! WA 2/16/11 |
|---|
| 361 | qfx(i) = flqc(i) * (qsfc(i) - qv1d(i)) |
|---|
| 362 | qfx(i) = max(qfx(i),0.) ! WA this is done in sfclay, is it right? |
|---|
| 363 | lh(i)=xlv*qfx(i) |
|---|
| 364 | |
|---|
| 365 | |
|---|
| 366 | ! Populate 10 m winds and 2 m temp and 2 m exchange coeffs |
|---|
| 367 | ! WA Note this only works if first mass level is above 10 m |
|---|
| 368 | u10(i) = u1d(i) * log(10.0/znt(i)) / log(zm(i)/znt(i)) |
|---|
| 369 | v10(i) = v1d(i) * log(10.0/znt(i)) / log(zm(i)/znt(i)) |
|---|
| 370 | t2(i) = (tsk(i)/pi1d(i) + (th1d(i) - tsk(i)/pi1d(i)) * log(2.0/z0t(i)) / log(zm(i)/z0t(i))) * pi1d(i) ! WA this should also use pi at z0 |
|---|
| 371 | th2(i) = t2(i) / pi1d(i) |
|---|
| 372 | q2(i) = (qsfc_air(i) + (qv1d(i) - qsfc_air(i)) * log(2.0/znt(i)) / log(zm(i)/znt(i))) |
|---|
| 373 | ! WA are these correct? Difference between chs2 and cqs2 is unclear |
|---|
| 374 | ! At the moment the only difference is z0t vs. znt |
|---|
| 375 | chs2(i) = fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(2.0/z0t(i)) / zt(i) |
|---|
| 376 | cqs2(i) = fth(i)/fth0 * wm(i) * leps(i) / PrT0 / log(2.0/znt(i)) / zt(i) |
|---|
| 377 | |
|---|
| 378 | ! Calculate qgh (saturated at first-level temp) and cpm |
|---|
| 379 | e1=svp1*exp(svp2*((th1d(i)*pi1d(i))-svpt0)/((th1d(i)*pi1d(i))-svp3)) |
|---|
| 380 | qgh(i)=ep2*e1/((p1d(i)/1000.)-e1) |
|---|
| 381 | cpm(i)=cp*(1.+0.8*qv1d(i)) |
|---|
| 382 | |
|---|
| 383 | end do ! Main loop |
|---|
| 384 | |
|---|
| 385 | END SUBROUTINE temfsfclay1d |
|---|
| 386 | |
|---|
| 387 | !==================================================================== |
|---|
| 388 | SUBROUTINE temfsfclayinit( restart, allowed_to_read, & |
|---|
| 389 | wm_temf, & |
|---|
| 390 | ids, ide, jds, jde, kds, kde, & |
|---|
| 391 | ims, ime, jms, jme, kms, kme, & |
|---|
| 392 | its, ite, jts, jte, kts, kte ) |
|---|
| 393 | |
|---|
| 394 | logical , intent(in) :: restart, allowed_to_read |
|---|
| 395 | REAL, DIMENSION( ims:ime, jms:jme ) , & |
|---|
| 396 | INTENT( OUT) :: wm_temf |
|---|
| 397 | integer , intent(in) :: ids, ide, jds, jde, kds, kde, & |
|---|
| 398 | ims, ime, jms, jme, kms, kme, & |
|---|
| 399 | its, ite, jts, jte, kts, kte |
|---|
| 400 | |
|---|
| 401 | ! Local variables |
|---|
| 402 | integer :: i, j, itf, jtf |
|---|
| 403 | ! |
|---|
| 404 | CALL wrf_debug( 100, 'in temfsfclayinit' ) |
|---|
| 405 | jtf = min0(jte,jde-1) |
|---|
| 406 | itf = min0(ite,ide-1) |
|---|
| 407 | ! |
|---|
| 408 | if(.not.restart)then |
|---|
| 409 | do j = jts,jtf |
|---|
| 410 | do i = its,itf |
|---|
| 411 | ! do j = jms,jme |
|---|
| 412 | ! do i = ims,ime |
|---|
| 413 | wm_temf(i,j) = 0.0 |
|---|
| 414 | enddo |
|---|
| 415 | enddo |
|---|
| 416 | endif |
|---|
| 417 | |
|---|
| 418 | END SUBROUTINE temfsfclayinit |
|---|
| 419 | |
|---|
| 420 | !------------------------------------------------------------------- |
|---|
| 421 | |
|---|
| 422 | END MODULE module_sf_temfsfclay |
|---|