| 1 | #if ( RWORDSIZE == 4 ) |
|---|
| 2 | # define VREC vsrec |
|---|
| 3 | # define VSQRT vssqrt |
|---|
| 4 | #else |
|---|
| 5 | # define VREC vrec |
|---|
| 6 | # define VSQRT vsqrt |
|---|
| 7 | #endif |
|---|
| 8 | |
|---|
| 9 | MODULE module_mp_wsm6 |
|---|
| 10 | ! |
|---|
| 11 | ! |
|---|
| 12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
|---|
| 13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
|---|
| 14 | REAL, PARAMETER, PRIVATE :: n0g = 4.e6 ! intercept parameter graupel |
|---|
| 15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
|---|
| 16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
|---|
| 17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
|---|
| 18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
|---|
| 19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
|---|
| 20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
|---|
| 21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
|---|
| 22 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
|---|
| 23 | REAL, PARAMETER, PRIVATE :: avtg = 330. ! a constant for terminal velocity of graupel |
|---|
| 24 | REAL, PARAMETER, PRIVATE :: bvtg = 0.8 ! a constant for terminal velocity of graupel |
|---|
| 25 | REAL, PARAMETER, PRIVATE :: deng = 500. ! density of graupel |
|---|
| 26 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
|---|
| 27 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
|---|
| 28 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
|---|
| 31 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
|---|
| 32 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
|---|
| 33 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
|---|
| 34 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
|---|
| 35 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
|---|
| 36 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
|---|
| 37 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
|---|
| 38 | REAL, PARAMETER, PRIVATE :: dens = 100.0 ! Density of snow |
|---|
| 39 | REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! threshold amount for aggretion to occur |
|---|
| 40 | REAL, SAVE :: & |
|---|
| 41 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
|---|
| 42 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
|---|
| 43 | bvtr6,g6pbr, & |
|---|
| 44 | precr1,precr2,roqimax,bvts1, & |
|---|
| 45 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
|---|
| 46 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
|---|
| 47 | pidn0s,xlv1,pacrc,pi, & |
|---|
| 48 | bvtg1,bvtg2,bvtg3,bvtg4,g1pbg, & |
|---|
| 49 | g3pbg,g4pbg,g5pbgo2,pvtg,pacrg, & |
|---|
| 50 | precg1,precg2,pidn0g, & |
|---|
| 51 | rslopermax,rslopesmax,rslopegmax, & |
|---|
| 52 | rsloperbmax,rslopesbmax,rslopegbmax, & |
|---|
| 53 | rsloper2max,rslopes2max,rslopeg2max, & |
|---|
| 54 | rsloper3max,rslopes3max,rslopeg3max |
|---|
| 55 | CONTAINS |
|---|
| 56 | !=================================================================== |
|---|
| 57 | ! |
|---|
| 58 | SUBROUTINE wsm6(th, q, qc, qr, qi, qs, qg & |
|---|
| 59 | ,den, pii, p, delz & |
|---|
| 60 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 61 | ,ep1, ep2, qmin & |
|---|
| 62 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 63 | ,cliq,cice,psat & |
|---|
| 64 | ,rain, rainncv & |
|---|
| 65 | ,snow, snowncv & |
|---|
| 66 | ,sr & |
|---|
| 67 | ,graupel, graupelncv & |
|---|
| 68 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 69 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 70 | ,its,ite, jts,jte, kts,kte & |
|---|
| 71 | ) |
|---|
| 72 | !------------------------------------------------------------------- |
|---|
| 73 | IMPLICIT NONE |
|---|
| 74 | !------------------------------------------------------------------- |
|---|
| 75 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 76 | ims,ime, jms,jme, kms,kme , & |
|---|
| 77 | its,ite, jts,jte, kts,kte |
|---|
| 78 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 79 | INTENT(INOUT) :: & |
|---|
| 80 | th, & |
|---|
| 81 | q, & |
|---|
| 82 | qc, & |
|---|
| 83 | qi, & |
|---|
| 84 | qr, & |
|---|
| 85 | qs, & |
|---|
| 86 | qg |
|---|
| 87 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 88 | INTENT(IN ) :: & |
|---|
| 89 | den, & |
|---|
| 90 | pii, & |
|---|
| 91 | p, & |
|---|
| 92 | delz |
|---|
| 93 | REAL, INTENT(IN ) :: delt, & |
|---|
| 94 | g, & |
|---|
| 95 | rd, & |
|---|
| 96 | rv, & |
|---|
| 97 | t0c, & |
|---|
| 98 | den0, & |
|---|
| 99 | cpd, & |
|---|
| 100 | cpv, & |
|---|
| 101 | ep1, & |
|---|
| 102 | ep2, & |
|---|
| 103 | qmin, & |
|---|
| 104 | XLS, & |
|---|
| 105 | XLV0, & |
|---|
| 106 | XLF0, & |
|---|
| 107 | cliq, & |
|---|
| 108 | cice, & |
|---|
| 109 | psat, & |
|---|
| 110 | denr |
|---|
| 111 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 112 | INTENT(INOUT) :: rain, & |
|---|
| 113 | rainncv, & |
|---|
| 114 | sr |
|---|
| 115 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 116 | INTENT(INOUT) :: snow, & |
|---|
| 117 | snowncv |
|---|
| 118 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 119 | INTENT(INOUT) :: graupel, & |
|---|
| 120 | graupelncv |
|---|
| 121 | ! LOCAL VAR |
|---|
| 122 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
|---|
| 123 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci |
|---|
| 124 | REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs |
|---|
| 125 | INTEGER :: i,j,k |
|---|
| 126 | !------------------------------------------------------------------- |
|---|
| 127 | DO j=jts,jte |
|---|
| 128 | DO k=kts,kte |
|---|
| 129 | DO i=its,ite |
|---|
| 130 | t(i,k)=th(i,k,j)*pii(i,k,j) |
|---|
| 131 | qci(i,k,1) = qc(i,k,j) |
|---|
| 132 | qci(i,k,2) = qi(i,k,j) |
|---|
| 133 | qrs(i,k,1) = qr(i,k,j) |
|---|
| 134 | qrs(i,k,2) = qs(i,k,j) |
|---|
| 135 | qrs(i,k,3) = qg(i,k,j) |
|---|
| 136 | ENDDO |
|---|
| 137 | ENDDO |
|---|
| 138 | ! Sending array starting locations of optional variables may cause |
|---|
| 139 | ! troubles, so we explicitly change the call. |
|---|
| 140 | CALL wsm62D(t, q(ims,kms,j), qci, qrs & |
|---|
| 141 | ,den(ims,kms,j) & |
|---|
| 142 | ,p(ims,kms,j), delz(ims,kms,j) & |
|---|
| 143 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 144 | ,ep1, ep2, qmin & |
|---|
| 145 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 146 | ,cliq,cice,psat & |
|---|
| 147 | ,j & |
|---|
| 148 | ,rain(ims,j),rainncv(ims,j) & |
|---|
| 149 | ,sr(ims,j) & |
|---|
| 150 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 151 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 152 | ,its,ite, jts,jte, kts,kte & |
|---|
| 153 | ,snow,snowncv & |
|---|
| 154 | ,graupel,graupelncv & |
|---|
| 155 | ) |
|---|
| 156 | DO K=kts,kte |
|---|
| 157 | DO I=its,ite |
|---|
| 158 | th(i,k,j)=t(i,k)/pii(i,k,j) |
|---|
| 159 | qc(i,k,j) = qci(i,k,1) |
|---|
| 160 | qi(i,k,j) = qci(i,k,2) |
|---|
| 161 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 162 | qs(i,k,j) = qrs(i,k,2) |
|---|
| 163 | qg(i,k,j) = qrs(i,k,3) |
|---|
| 164 | ENDDO |
|---|
| 165 | ENDDO |
|---|
| 166 | ENDDO |
|---|
| 167 | END SUBROUTINE wsm6 |
|---|
| 168 | !=================================================================== |
|---|
| 169 | ! |
|---|
| 170 | SUBROUTINE wsm62D(t, q & |
|---|
| 171 | ,qci, qrs, den, p, delz & |
|---|
| 172 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 173 | ,ep1, ep2, qmin & |
|---|
| 174 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 175 | ,cliq,cice,psat & |
|---|
| 176 | ,lat & |
|---|
| 177 | ,rain,rainncv & |
|---|
| 178 | ,sr & |
|---|
| 179 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 180 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 181 | ,its,ite, jts,jte, kts,kte & |
|---|
| 182 | ,snow,snowncv & |
|---|
| 183 | ,graupel,graupelncv & |
|---|
| 184 | ) |
|---|
| 185 | !------------------------------------------------------------------- |
|---|
| 186 | IMPLICIT NONE |
|---|
| 187 | !------------------------------------------------------------------- |
|---|
| 188 | ! |
|---|
| 189 | ! This code is a 6-class GRAUPEL phase microphyiscs scheme (WSM6) of the |
|---|
| 190 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
|---|
| 191 | ! number concentration is a function of temperature, and seperate assumption |
|---|
| 192 | ! is developed, in which ice crystal number concentration is a function |
|---|
| 193 | ! of ice amount. A theoretical background of the ice-microphysics and related |
|---|
| 194 | ! processes in the WSMMPs are described in Hong et al. (2004). |
|---|
| 195 | ! All production terms in the WSM6 scheme are described in Hong and Lim (2006). |
|---|
| 196 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
|---|
| 197 | ! |
|---|
| 198 | ! WSM6 cloud scheme |
|---|
| 199 | ! |
|---|
| 200 | ! Coded by Song-You Hong and Jeong-Ock Jade Lim (Yonsei Univ.) |
|---|
| 201 | ! Summer 2003 |
|---|
| 202 | ! |
|---|
| 203 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
|---|
| 204 | ! Summer 2004 |
|---|
| 205 | ! |
|---|
| 206 | ! History : semi-lagrangian scheme sedimentation(JH), and clean up |
|---|
| 207 | ! Hong, August 2009 |
|---|
| 208 | ! |
|---|
| 209 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
|---|
| 210 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
|---|
| 211 | ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan |
|---|
| 212 | ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. |
|---|
| 213 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
|---|
| 214 | ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. |
|---|
| 215 | ! Juang and Hong (JH, 2010) Mon. Wea. Rev. |
|---|
| 216 | ! |
|---|
| 217 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 218 | ims,ime, jms,jme, kms,kme , & |
|---|
| 219 | its,ite, jts,jte, kts,kte, & |
|---|
| 220 | lat |
|---|
| 221 | REAL, DIMENSION( its:ite , kts:kte ), & |
|---|
| 222 | INTENT(INOUT) :: & |
|---|
| 223 | t |
|---|
| 224 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
|---|
| 225 | INTENT(INOUT) :: & |
|---|
| 226 | qci |
|---|
| 227 | REAL, DIMENSION( its:ite , kts:kte, 3 ), & |
|---|
| 228 | INTENT(INOUT) :: & |
|---|
| 229 | qrs |
|---|
| 230 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 231 | INTENT(INOUT) :: & |
|---|
| 232 | q |
|---|
| 233 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 234 | INTENT(IN ) :: & |
|---|
| 235 | den, & |
|---|
| 236 | p, & |
|---|
| 237 | delz |
|---|
| 238 | REAL, INTENT(IN ) :: delt, & |
|---|
| 239 | g, & |
|---|
| 240 | cpd, & |
|---|
| 241 | cpv, & |
|---|
| 242 | t0c, & |
|---|
| 243 | den0, & |
|---|
| 244 | rd, & |
|---|
| 245 | rv, & |
|---|
| 246 | ep1, & |
|---|
| 247 | ep2, & |
|---|
| 248 | qmin, & |
|---|
| 249 | XLS, & |
|---|
| 250 | XLV0, & |
|---|
| 251 | XLF0, & |
|---|
| 252 | cliq, & |
|---|
| 253 | cice, & |
|---|
| 254 | psat, & |
|---|
| 255 | denr |
|---|
| 256 | REAL, DIMENSION( ims:ime ), & |
|---|
| 257 | INTENT(INOUT) :: rain, & |
|---|
| 258 | rainncv, & |
|---|
| 259 | sr |
|---|
| 260 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
|---|
| 261 | INTENT(INOUT) :: snow, & |
|---|
| 262 | snowncv |
|---|
| 263 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
|---|
| 264 | INTENT(INOUT) :: graupel, & |
|---|
| 265 | graupelncv |
|---|
| 266 | ! LOCAL VAR |
|---|
| 267 | REAL, DIMENSION( its:ite , kts:kte , 3) :: & |
|---|
| 268 | rh, & |
|---|
| 269 | qs, & |
|---|
| 270 | rslope, & |
|---|
| 271 | rslope2, & |
|---|
| 272 | rslope3, & |
|---|
| 273 | rslopeb, & |
|---|
| 274 | qrs_tmp, & |
|---|
| 275 | falk, & |
|---|
| 276 | fall, & |
|---|
| 277 | work1 |
|---|
| 278 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 279 | fallc, & |
|---|
| 280 | falkc, & |
|---|
| 281 | work1c, & |
|---|
| 282 | work2c, & |
|---|
| 283 | workr, & |
|---|
| 284 | worka |
|---|
| 285 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 286 | den_tmp, & |
|---|
| 287 | delz_tmp |
|---|
| 288 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 289 | pigen, & |
|---|
| 290 | pidep, & |
|---|
| 291 | pcond, & |
|---|
| 292 | prevp, & |
|---|
| 293 | psevp, & |
|---|
| 294 | pgevp, & |
|---|
| 295 | psdep, & |
|---|
| 296 | pgdep, & |
|---|
| 297 | praut, & |
|---|
| 298 | psaut, & |
|---|
| 299 | pgaut, & |
|---|
| 300 | piacr, & |
|---|
| 301 | pracw, & |
|---|
| 302 | praci, & |
|---|
| 303 | pracs, & |
|---|
| 304 | psacw, & |
|---|
| 305 | psaci, & |
|---|
| 306 | psacr, & |
|---|
| 307 | pgacw, & |
|---|
| 308 | pgaci, & |
|---|
| 309 | pgacr, & |
|---|
| 310 | pgacs, & |
|---|
| 311 | paacw, & |
|---|
| 312 | psmlt, & |
|---|
| 313 | pgmlt, & |
|---|
| 314 | pseml, & |
|---|
| 315 | pgeml |
|---|
| 316 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 317 | qsum, & |
|---|
| 318 | xl, & |
|---|
| 319 | cpm, & |
|---|
| 320 | work2, & |
|---|
| 321 | denfac, & |
|---|
| 322 | xni, & |
|---|
| 323 | denqrs1, & |
|---|
| 324 | denqrs2, & |
|---|
| 325 | denqrs3, & |
|---|
| 326 | denqci, & |
|---|
| 327 | n0sfac |
|---|
| 328 | REAL, DIMENSION( its:ite ) :: delqrs1, & |
|---|
| 329 | delqrs2, & |
|---|
| 330 | delqrs3, & |
|---|
| 331 | delqi |
|---|
| 332 | REAL, DIMENSION( its:ite ) :: tstepsnow, & |
|---|
| 333 | tstepgraup |
|---|
| 334 | INTEGER, DIMENSION( its:ite ) :: mstep, & |
|---|
| 335 | numdt |
|---|
| 336 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 337 | REAL :: & |
|---|
| 338 | cpmcal, xlcal, diffus, & |
|---|
| 339 | viscos, xka, venfac, conden, diffac, & |
|---|
| 340 | x, y, z, a, b, c, d, e, & |
|---|
| 341 | qdt, holdrr, holdrs, holdrg, supcol, supcolt, pvt, & |
|---|
| 342 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
|---|
| 343 | qimax, diameter, xni0, roqi0, & |
|---|
| 344 | fallsum, fallsum_qsi, fallsum_qg, & |
|---|
| 345 | vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, & |
|---|
| 346 | xlwork2, factor, source, value, & |
|---|
| 347 | xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3 |
|---|
| 348 | REAL :: vt2ave |
|---|
| 349 | REAL :: holdc, holdci |
|---|
| 350 | INTEGER :: i, j, k, mstepmax, & |
|---|
| 351 | iprt, latd, lond, loop, loops, ifsat, n, idim, kdim |
|---|
| 352 | ! Temporaries used for inlining fpvs function |
|---|
| 353 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 354 | ! variables for optimization |
|---|
| 355 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 356 | REAL :: temp |
|---|
| 357 | ! |
|---|
| 358 | !================================================================= |
|---|
| 359 | ! compute internal functions |
|---|
| 360 | ! |
|---|
| 361 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 362 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 363 | !---------------------------------------------------------------- |
|---|
| 364 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 365 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 366 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 367 | ! |
|---|
| 368 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
|---|
| 369 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 370 | xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 371 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 372 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 373 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 374 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 375 | ! |
|---|
| 376 | ! |
|---|
| 377 | idim = ite-its+1 |
|---|
| 378 | kdim = kte-kts+1 |
|---|
| 379 | ! |
|---|
| 380 | !---------------------------------------------------------------- |
|---|
| 381 | ! paddint 0 for negative values generated by dynamics |
|---|
| 382 | ! |
|---|
| 383 | do k = kts, kte |
|---|
| 384 | do i = its, ite |
|---|
| 385 | qci(i,k,1) = max(qci(i,k,1),0.0) |
|---|
| 386 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
|---|
| 387 | qci(i,k,2) = max(qci(i,k,2),0.0) |
|---|
| 388 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
|---|
| 389 | qrs(i,k,3) = max(qrs(i,k,3),0.0) |
|---|
| 390 | enddo |
|---|
| 391 | enddo |
|---|
| 392 | ! |
|---|
| 393 | !---------------------------------------------------------------- |
|---|
| 394 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 395 | ! changes during microphysical process calculation |
|---|
| 396 | ! emanuel(1994) |
|---|
| 397 | ! |
|---|
| 398 | do k = kts, kte |
|---|
| 399 | do i = its, ite |
|---|
| 400 | cpm(i,k) = cpmcal(q(i,k)) |
|---|
| 401 | xl(i,k) = xlcal(t(i,k)) |
|---|
| 402 | enddo |
|---|
| 403 | enddo |
|---|
| 404 | do k = kts, kte |
|---|
| 405 | do i = its, ite |
|---|
| 406 | delz_tmp(i,k) = delz(i,k) |
|---|
| 407 | den_tmp(i,k) = den(i,k) |
|---|
| 408 | enddo |
|---|
| 409 | enddo |
|---|
| 410 | ! |
|---|
| 411 | !---------------------------------------------------------------- |
|---|
| 412 | ! initialize the surface rain, snow, graupel |
|---|
| 413 | ! |
|---|
| 414 | do i = its, ite |
|---|
| 415 | rainncv(i) = 0. |
|---|
| 416 | if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i,lat) = 0. |
|---|
| 417 | if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i,lat) = 0. |
|---|
| 418 | sr(i) = 0. |
|---|
| 419 | ! new local array to catch step snow and graupel |
|---|
| 420 | tstepsnow(i) = 0. |
|---|
| 421 | tstepgraup(i) = 0. |
|---|
| 422 | enddo |
|---|
| 423 | ! |
|---|
| 424 | !---------------------------------------------------------------- |
|---|
| 425 | ! compute the minor time steps. |
|---|
| 426 | ! |
|---|
| 427 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 428 | dtcld = delt/loops |
|---|
| 429 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 430 | ! |
|---|
| 431 | do loop = 1,loops |
|---|
| 432 | ! |
|---|
| 433 | !---------------------------------------------------------------- |
|---|
| 434 | ! initialize the large scale variables |
|---|
| 435 | ! |
|---|
| 436 | do i = its, ite |
|---|
| 437 | mstep(i) = 1 |
|---|
| 438 | flgcld(i) = .true. |
|---|
| 439 | enddo |
|---|
| 440 | ! |
|---|
| 441 | ! do k = kts, kte |
|---|
| 442 | ! do i = its, ite |
|---|
| 443 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 444 | ! enddo |
|---|
| 445 | ! enddo |
|---|
| 446 | do k = kts, kte |
|---|
| 447 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
|---|
| 448 | do i = its, ite |
|---|
| 449 | tvec1(i) = tvec1(i)*den0 |
|---|
| 450 | enddo |
|---|
| 451 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 452 | enddo |
|---|
| 453 | ! |
|---|
| 454 | ! Inline expansion for fpvs |
|---|
| 455 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 456 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 457 | hsub = xls |
|---|
| 458 | hvap = xlv0 |
|---|
| 459 | cvap = cpv |
|---|
| 460 | ttp=t0c+0.01 |
|---|
| 461 | dldt=cvap-cliq |
|---|
| 462 | xa=-dldt/rv |
|---|
| 463 | xb=xa+hvap/(rv*ttp) |
|---|
| 464 | dldti=cvap-cice |
|---|
| 465 | xai=-dldti/rv |
|---|
| 466 | xbi=xai+hsub/(rv*ttp) |
|---|
| 467 | do k = kts, kte |
|---|
| 468 | do i = its, ite |
|---|
| 469 | tr=ttp/t(i,k) |
|---|
| 470 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 471 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 472 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 473 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 474 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 475 | tr=ttp/t(i,k) |
|---|
| 476 | if(t(i,k).lt.ttp) then |
|---|
| 477 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 478 | else |
|---|
| 479 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 480 | endif |
|---|
| 481 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
|---|
| 482 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 483 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 484 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 485 | enddo |
|---|
| 486 | enddo |
|---|
| 487 | ! |
|---|
| 488 | !---------------------------------------------------------------- |
|---|
| 489 | ! initialize the variables for microphysical physics |
|---|
| 490 | ! |
|---|
| 491 | ! |
|---|
| 492 | do k = kts, kte |
|---|
| 493 | do i = its, ite |
|---|
| 494 | prevp(i,k) = 0. |
|---|
| 495 | psdep(i,k) = 0. |
|---|
| 496 | pgdep(i,k) = 0. |
|---|
| 497 | praut(i,k) = 0. |
|---|
| 498 | psaut(i,k) = 0. |
|---|
| 499 | pgaut(i,k) = 0. |
|---|
| 500 | pracw(i,k) = 0. |
|---|
| 501 | praci(i,k) = 0. |
|---|
| 502 | piacr(i,k) = 0. |
|---|
| 503 | psaci(i,k) = 0. |
|---|
| 504 | psacw(i,k) = 0. |
|---|
| 505 | pracs(i,k) = 0. |
|---|
| 506 | psacr(i,k) = 0. |
|---|
| 507 | pgacw(i,k) = 0. |
|---|
| 508 | paacw(i,k) = 0. |
|---|
| 509 | pgaci(i,k) = 0. |
|---|
| 510 | pgacr(i,k) = 0. |
|---|
| 511 | pgacs(i,k) = 0. |
|---|
| 512 | pigen(i,k) = 0. |
|---|
| 513 | pidep(i,k) = 0. |
|---|
| 514 | pcond(i,k) = 0. |
|---|
| 515 | psmlt(i,k) = 0. |
|---|
| 516 | pgmlt(i,k) = 0. |
|---|
| 517 | pseml(i,k) = 0. |
|---|
| 518 | pgeml(i,k) = 0. |
|---|
| 519 | psevp(i,k) = 0. |
|---|
| 520 | pgevp(i,k) = 0. |
|---|
| 521 | falk(i,k,1) = 0. |
|---|
| 522 | falk(i,k,2) = 0. |
|---|
| 523 | falk(i,k,3) = 0. |
|---|
| 524 | fall(i,k,1) = 0. |
|---|
| 525 | fall(i,k,2) = 0. |
|---|
| 526 | fall(i,k,3) = 0. |
|---|
| 527 | fallc(i,k) = 0. |
|---|
| 528 | falkc(i,k) = 0. |
|---|
| 529 | xni(i,k) = 1.e3 |
|---|
| 530 | enddo |
|---|
| 531 | enddo |
|---|
| 532 | !------------------------------------------------------------- |
|---|
| 533 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 534 | !------------------------------------------------------------- |
|---|
| 535 | do k = kts, kte |
|---|
| 536 | do i = its, ite |
|---|
| 537 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 538 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 539 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 540 | enddo |
|---|
| 541 | enddo |
|---|
| 542 | ! |
|---|
| 543 | !---------------------------------------------------------------- |
|---|
| 544 | ! compute the fallout term: |
|---|
| 545 | ! first, vertical terminal velosity for minor loops |
|---|
| 546 | !---------------------------------------------------------------- |
|---|
| 547 | do k = kts, kte |
|---|
| 548 | do i = its, ite |
|---|
| 549 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 550 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 551 | qrs_tmp(i,k,3) = qrs(i,k,3) |
|---|
| 552 | enddo |
|---|
| 553 | enddo |
|---|
| 554 | call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 555 | work1,its,ite,kts,kte) |
|---|
| 556 | ! |
|---|
| 557 | do k = kte, kts, -1 |
|---|
| 558 | do i = its, ite |
|---|
| 559 | workr(i,k) = work1(i,k,1) |
|---|
| 560 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
|---|
| 561 | IF ( qsum(i,k) .gt. 1.e-15 ) THEN |
|---|
| 562 | worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) & |
|---|
| 563 | /qsum(i,k) |
|---|
| 564 | ELSE |
|---|
| 565 | worka(i,k) = 0. |
|---|
| 566 | ENDIF |
|---|
| 567 | denqrs1(i,k) = den(i,k)*qrs(i,k,1) |
|---|
| 568 | denqrs2(i,k) = den(i,k)*qrs(i,k,2) |
|---|
| 569 | denqrs3(i,k) = den(i,k)*qrs(i,k,3) |
|---|
| 570 | if(qrs(i,k,1).le.0.0) workr(i,k) = 0.0 |
|---|
| 571 | enddo |
|---|
| 572 | enddo |
|---|
| 573 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,workr,denqrs1, & |
|---|
| 574 | delqrs1,dtcld,1,1) |
|---|
| 575 | call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka, & |
|---|
| 576 | denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1) |
|---|
| 577 | do k = kts, kte |
|---|
| 578 | do i = its, ite |
|---|
| 579 | qrs(i,k,1) = max(denqrs1(i,k)/den(i,k),0.) |
|---|
| 580 | qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.) |
|---|
| 581 | qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.) |
|---|
| 582 | fall(i,k,1) = denqrs1(i,k)*workr(i,k)/delz(i,k) |
|---|
| 583 | fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k) |
|---|
| 584 | fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k) |
|---|
| 585 | enddo |
|---|
| 586 | enddo |
|---|
| 587 | do i = its, ite |
|---|
| 588 | fall(i,1,1) = delqrs1(i)/delz(i,1)/dtcld |
|---|
| 589 | fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld |
|---|
| 590 | fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld |
|---|
| 591 | enddo |
|---|
| 592 | do k = kts, kte |
|---|
| 593 | do i = its, ite |
|---|
| 594 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 595 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 596 | qrs_tmp(i,k,3) = qrs(i,k,3) |
|---|
| 597 | enddo |
|---|
| 598 | enddo |
|---|
| 599 | call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 600 | work1,its,ite,kts,kte) |
|---|
| 601 | ! |
|---|
| 602 | do k = kte, kts, -1 |
|---|
| 603 | do i = its, ite |
|---|
| 604 | supcol = t0c-t(i,k) |
|---|
| 605 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 606 | if(t(i,k).gt.t0c) then |
|---|
| 607 | !--------------------------------------------------------------- |
|---|
| 608 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 609 | ! (T>T0: S->R) |
|---|
| 610 | !--------------------------------------------------------------- |
|---|
| 611 | xlf = xlf0 |
|---|
| 612 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 613 | if(qrs(i,k,2).gt.0.) then |
|---|
| 614 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 615 | psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 616 | *n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
|---|
| 617 | +precs2*work2(i,k)*coeres) |
|---|
| 618 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
|---|
| 619 | -qrs(i,k,2)/mstep(i)),0.) |
|---|
| 620 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 621 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 622 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 623 | endif |
|---|
| 624 | !--------------------------------------------------------------- |
|---|
| 625 | ! pgmlt: melting of graupel [HL A23] [LFO 47] |
|---|
| 626 | ! (T>T0: G->R) |
|---|
| 627 | !--------------------------------------------------------------- |
|---|
| 628 | if(qrs(i,k,3).gt.0.) then |
|---|
| 629 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
|---|
| 630 | pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf & |
|---|
| 631 | *(t0c-t(i,k))*(precg1*rslope2(i,k,3) & |
|---|
| 632 | +precg2*work2(i,k)*coeres) |
|---|
| 633 | pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), & |
|---|
| 634 | -qrs(i,k,3)/mstep(i)),0.) |
|---|
| 635 | qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k) |
|---|
| 636 | qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k) |
|---|
| 637 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k) |
|---|
| 638 | endif |
|---|
| 639 | endif |
|---|
| 640 | enddo |
|---|
| 641 | enddo |
|---|
| 642 | !--------------------------------------------------------------- |
|---|
| 643 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 644 | !--------------------------------------------------------------- |
|---|
| 645 | do k = kte, kts, -1 |
|---|
| 646 | do i = its, ite |
|---|
| 647 | if(qci(i,k,2).le.0.) then |
|---|
| 648 | work1c(i,k) = 0. |
|---|
| 649 | else |
|---|
| 650 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 651 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 652 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 653 | endif |
|---|
| 654 | enddo |
|---|
| 655 | enddo |
|---|
| 656 | ! |
|---|
| 657 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
|---|
| 658 | ! |
|---|
| 659 | do k = kte, kts, -1 |
|---|
| 660 | do i = its, ite |
|---|
| 661 | denqci(i,k) = den(i,k)*qci(i,k,2) |
|---|
| 662 | enddo |
|---|
| 663 | enddo |
|---|
| 664 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci, & |
|---|
| 665 | delqi,dtcld,1,0) |
|---|
| 666 | do k = kts, kte |
|---|
| 667 | do i = its, ite |
|---|
| 668 | qci(i,k,2) = max(denqci(i,k)/den(i,k),0.) |
|---|
| 669 | enddo |
|---|
| 670 | enddo |
|---|
| 671 | do i = its, ite |
|---|
| 672 | fallc(i,1) = delqi(i)/delz(i,1)/dtcld |
|---|
| 673 | enddo |
|---|
| 674 | ! |
|---|
| 675 | !---------------------------------------------------------------- |
|---|
| 676 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 677 | ! |
|---|
| 678 | do i = its, ite |
|---|
| 679 | fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts) |
|---|
| 680 | fallsum_qsi = fall(i,kts,2)+fallc(i,kts) |
|---|
| 681 | fallsum_qg = fall(i,kts,3) |
|---|
| 682 | if(fallsum.gt.0.) then |
|---|
| 683 | rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i) |
|---|
| 684 | rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i) |
|---|
| 685 | endif |
|---|
| 686 | if(fallsum_qsi.gt.0.) then |
|---|
| 687 | tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 688 | +tstepsnow(i) |
|---|
| 689 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
|---|
| 690 | snowncv(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 691 | +snowncv(i,lat) |
|---|
| 692 | snow(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i,lat) |
|---|
| 693 | ENDIF |
|---|
| 694 | endif |
|---|
| 695 | if(fallsum_qg.gt.0.) then |
|---|
| 696 | tstepgraup(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 697 | +tstepgraup(i) |
|---|
| 698 | IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN |
|---|
| 699 | graupelncv(i,lat) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 700 | + graupelncv(i,lat) |
|---|
| 701 | graupel(i,lat) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i,lat) |
|---|
| 702 | ENDIF |
|---|
| 703 | endif |
|---|
| 704 | ! if(fallsum.gt.0.)sr(i)=(snowncv(i,lat) + graupelncv(i,lat))/(rainncv(i)+1.e-12) |
|---|
| 705 | if(fallsum.gt.0.)sr(i)=(tstepsnow(i) + tstepgraup(i))/(rainncv(i)+1.e-12) |
|---|
| 706 | enddo |
|---|
| 707 | ! |
|---|
| 708 | !--------------------------------------------------------------- |
|---|
| 709 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 710 | ! (T>T0: I->C) |
|---|
| 711 | !--------------------------------------------------------------- |
|---|
| 712 | do k = kts, kte |
|---|
| 713 | do i = its, ite |
|---|
| 714 | supcol = t0c-t(i,k) |
|---|
| 715 | xlf = xls-xl(i,k) |
|---|
| 716 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 717 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
|---|
| 718 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
|---|
| 719 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 720 | qci(i,k,2) = 0. |
|---|
| 721 | endif |
|---|
| 722 | !--------------------------------------------------------------- |
|---|
| 723 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 724 | ! (T<-40C: C->I) |
|---|
| 725 | !--------------------------------------------------------------- |
|---|
| 726 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
|---|
| 727 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 728 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 729 | qci(i,k,1) = 0. |
|---|
| 730 | endif |
|---|
| 731 | !--------------------------------------------------------------- |
|---|
| 732 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 733 | ! (T0>T>-40C: C->I) |
|---|
| 734 | !--------------------------------------------------------------- |
|---|
| 735 | if(supcol.gt.0..and.qci(i,k,1).gt.qmin) then |
|---|
| 736 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 737 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
|---|
| 738 | supcolt=min(supcol,50.) |
|---|
| 739 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
|---|
| 740 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
|---|
| 741 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 742 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 743 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 744 | endif |
|---|
| 745 | !--------------------------------------------------------------- |
|---|
| 746 | ! pgfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 747 | ! (T<T0, R->G) |
|---|
| 748 | !--------------------------------------------------------------- |
|---|
| 749 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
|---|
| 750 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
|---|
| 751 | ! *(exp(pfrz2*supcol)-1.)*rslope3(i,k,1)**2 & |
|---|
| 752 | ! *rslope(i,k,1)*dtcld,qrs(i,k,1)) |
|---|
| 753 | temp = rslope3(i,k,1) |
|---|
| 754 | temp = temp*temp*rslope(i,k,1) |
|---|
| 755 | supcolt=min(supcol,50.) |
|---|
| 756 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
|---|
| 757 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
|---|
| 758 | qrs(i,k,1)) |
|---|
| 759 | qrs(i,k,3) = qrs(i,k,3) + pfrzdtr |
|---|
| 760 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 761 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 762 | endif |
|---|
| 763 | enddo |
|---|
| 764 | enddo |
|---|
| 765 | ! |
|---|
| 766 | ! |
|---|
| 767 | !---------------------------------------------------------------- |
|---|
| 768 | ! update the slope parameters for microphysics computation |
|---|
| 769 | ! |
|---|
| 770 | do k = kts, kte |
|---|
| 771 | do i = its, ite |
|---|
| 772 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 773 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 774 | qrs_tmp(i,k,3) = qrs(i,k,3) |
|---|
| 775 | enddo |
|---|
| 776 | enddo |
|---|
| 777 | call slope_wsm6(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 778 | work1,its,ite,kts,kte) |
|---|
| 779 | !------------------------------------------------------------------ |
|---|
| 780 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 781 | ! heat conduction and vapor diffusion |
|---|
| 782 | ! (ry88, y93, h85) |
|---|
| 783 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 784 | ! |
|---|
| 785 | do k = kts, kte |
|---|
| 786 | do i = its, ite |
|---|
| 787 | work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
|---|
| 788 | work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
|---|
| 789 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 790 | enddo |
|---|
| 791 | enddo |
|---|
| 792 | ! |
|---|
| 793 | !=============================================================== |
|---|
| 794 | ! |
|---|
| 795 | ! warm rain processes |
|---|
| 796 | ! |
|---|
| 797 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 798 | ! |
|---|
| 799 | !=============================================================== |
|---|
| 800 | ! |
|---|
| 801 | do k = kts, kte |
|---|
| 802 | do i = its, ite |
|---|
| 803 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
|---|
| 804 | satdt = supsat/dtcld |
|---|
| 805 | !--------------------------------------------------------------- |
|---|
| 806 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 807 | ! (C->R) |
|---|
| 808 | !--------------------------------------------------------------- |
|---|
| 809 | if(qci(i,k,1).gt.qc0) then |
|---|
| 810 | praut(i,k) = qck1*qci(i,k,1)**(7./3.) |
|---|
| 811 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
|---|
| 812 | endif |
|---|
| 813 | !--------------------------------------------------------------- |
|---|
| 814 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
|---|
| 815 | ! (C->R) |
|---|
| 816 | !--------------------------------------------------------------- |
|---|
| 817 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 818 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
|---|
| 819 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 820 | endif |
|---|
| 821 | !--------------------------------------------------------------- |
|---|
| 822 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 823 | ! (V->R or R->V) |
|---|
| 824 | !--------------------------------------------------------------- |
|---|
| 825 | if(qrs(i,k,1).gt.0.) then |
|---|
| 826 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 827 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
|---|
| 828 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 829 | if(prevp(i,k).lt.0.) then |
|---|
| 830 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 831 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 832 | else |
|---|
| 833 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 834 | endif |
|---|
| 835 | endif |
|---|
| 836 | enddo |
|---|
| 837 | enddo |
|---|
| 838 | ! |
|---|
| 839 | !=============================================================== |
|---|
| 840 | ! |
|---|
| 841 | ! cold rain processes |
|---|
| 842 | ! |
|---|
| 843 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 844 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 845 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 846 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 847 | ! concentration (ni), ice nuclei number concentration |
|---|
| 848 | ! (n0i), ice diameter (d) |
|---|
| 849 | ! |
|---|
| 850 | !=============================================================== |
|---|
| 851 | ! |
|---|
| 852 | do k = kts, kte |
|---|
| 853 | do i = its, ite |
|---|
| 854 | supcol = t0c-t(i,k) |
|---|
| 855 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 856 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
|---|
| 857 | satdt = supsat/dtcld |
|---|
| 858 | ifsat = 0 |
|---|
| 859 | !------------------------------------------------------------- |
|---|
| 860 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 861 | !------------------------------------------------------------- |
|---|
| 862 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 863 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 864 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 865 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 866 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 867 | eacrs = exp(0.07*(-supcol)) |
|---|
| 868 | ! |
|---|
| 869 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 870 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 871 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 872 | vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k) |
|---|
| 873 | vt2s=pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 874 | vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k) |
|---|
| 875 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
|---|
| 876 | if(qsum(i,k) .gt. 1.e-15) then |
|---|
| 877 | vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k)) |
|---|
| 878 | else |
|---|
| 879 | vt2ave=0. |
|---|
| 880 | endif |
|---|
| 881 | if(supcol.gt.0.and.qci(i,k,2).gt.qmin) then |
|---|
| 882 | if(qrs(i,k,1).gt.qcrmin) then |
|---|
| 883 | !------------------------------------------------------------- |
|---|
| 884 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
|---|
| 885 | ! (T<T0: I->R) |
|---|
| 886 | !------------------------------------------------------------- |
|---|
| 887 | acrfac = 2.*rslope3(i,k,1)+2.*diameter*rslope2(i,k,1) & |
|---|
| 888 | +diameter**2*rslope(i,k,1) |
|---|
| 889 | praci(i,k) = pi*qci(i,k,2)*n0r*abs(vt2r-vt2i)*acrfac/4. |
|---|
| 890 | praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld) |
|---|
| 891 | !------------------------------------------------------------- |
|---|
| 892 | ! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26] |
|---|
| 893 | ! (T<T0: R->S or R->G) |
|---|
| 894 | !------------------------------------------------------------- |
|---|
| 895 | piacr(i,k) = pi**2*avtr*n0r*denr*xni(i,k)*denfac(i,k) & |
|---|
| 896 | *g6pbr*rslope3(i,k,1)*rslope3(i,k,1) & |
|---|
| 897 | *rslopeb(i,k,1)/24./den(i,k) |
|---|
| 898 | piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld) |
|---|
| 899 | endif |
|---|
| 900 | !------------------------------------------------------------- |
|---|
| 901 | ! psaci: Accretion of cloud ice by snow [HDC 10] |
|---|
| 902 | ! (T<T0: I->S) |
|---|
| 903 | !------------------------------------------------------------- |
|---|
| 904 | if(qrs(i,k,2).gt.qcrmin) then |
|---|
| 905 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 906 | +diameter**2*rslope(i,k,2) |
|---|
| 907 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 908 | *abs(vt2ave-vt2i)*acrfac/4. |
|---|
| 909 | psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld) |
|---|
| 910 | endif |
|---|
| 911 | !------------------------------------------------------------- |
|---|
| 912 | ! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41] |
|---|
| 913 | ! (T<T0: I->G) |
|---|
| 914 | !------------------------------------------------------------- |
|---|
| 915 | if(qrs(i,k,3).gt.qcrmin) then |
|---|
| 916 | egi = exp(0.07*(-supcol)) |
|---|
| 917 | acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3) & |
|---|
| 918 | +diameter**2*rslope(i,k,3) |
|---|
| 919 | pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4. |
|---|
| 920 | pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld) |
|---|
| 921 | endif |
|---|
| 922 | endif |
|---|
| 923 | !------------------------------------------------------------- |
|---|
| 924 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 925 | ! (T<T0: C->S, and T>=T0: C->R) |
|---|
| 926 | !------------------------------------------------------------- |
|---|
| 927 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 928 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
|---|
| 929 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 930 | endif |
|---|
| 931 | !------------------------------------------------------------- |
|---|
| 932 | ! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40] |
|---|
| 933 | ! (T<T0: C->G, and T>=T0: C->R) |
|---|
| 934 | !------------------------------------------------------------- |
|---|
| 935 | if(qrs(i,k,3).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 936 | pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3) & |
|---|
| 937 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 938 | endif |
|---|
| 939 | !------------------------------------------------------------- |
|---|
| 940 | ! paacw: Accretion of cloud water by averaged snow/graupel |
|---|
| 941 | ! (T<T0: C->G or S, and T>=T0: C->R) |
|---|
| 942 | !------------------------------------------------------------- |
|---|
| 943 | if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,3).gt.qcrmin) then |
|---|
| 944 | paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k)) & |
|---|
| 945 | /(qsum(i,k)) |
|---|
| 946 | endif |
|---|
| 947 | !------------------------------------------------------------- |
|---|
| 948 | ! pracs: Accretion of snow by rain [HL A11] [LFO 27] |
|---|
| 949 | ! (T<T0: S->G) |
|---|
| 950 | !------------------------------------------------------------- |
|---|
| 951 | if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then |
|---|
| 952 | if(supcol.gt.0) then |
|---|
| 953 | acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,1) & |
|---|
| 954 | +2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) & |
|---|
| 955 | +.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,1) |
|---|
| 956 | pracs(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2r-vt2ave) & |
|---|
| 957 | *(dens/den(i,k))*acrfac |
|---|
| 958 | pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld) |
|---|
| 959 | endif |
|---|
| 960 | !------------------------------------------------------------- |
|---|
| 961 | ! psacr: Accretion of rain by snow [HL A10] [LFO 28] |
|---|
| 962 | ! (T<T0:R->S or R->G) (T>=T0: enhance melting of snow) |
|---|
| 963 | !------------------------------------------------------------- |
|---|
| 964 | acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,2) & |
|---|
| 965 | +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) & |
|---|
| 966 | +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,2) |
|---|
| 967 | psacr(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
|---|
| 968 | *(denr/den(i,k))*acrfac |
|---|
| 969 | psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld) |
|---|
| 970 | endif |
|---|
| 971 | !------------------------------------------------------------- |
|---|
| 972 | ! pgacr: Accretion of rain by graupel [HL A12] [LFO 42] |
|---|
| 973 | ! (T<T0: R->G) (T>=T0: enhance melting of graupel) |
|---|
| 974 | !------------------------------------------------------------- |
|---|
| 975 | if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then |
|---|
| 976 | acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,3) & |
|---|
| 977 | +2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) & |
|---|
| 978 | +.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,3) |
|---|
| 979 | pgacr(i,k) = pi**2*n0r*n0g*abs(vt2ave-vt2r)*(denr/den(i,k)) & |
|---|
| 980 | *acrfac |
|---|
| 981 | pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld) |
|---|
| 982 | endif |
|---|
| 983 | ! |
|---|
| 984 | !------------------------------------------------------------- |
|---|
| 985 | ! pgacs: Accretion of snow by graupel [HL A13] [LFO 29] |
|---|
| 986 | ! (S->G): This process is eliminated in V3.0 with the |
|---|
| 987 | ! new combined snow/graupel fall speeds |
|---|
| 988 | !------------------------------------------------------------- |
|---|
| 989 | if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,2).gt.qcrmin) then |
|---|
| 990 | pgacs(i,k) = 0. |
|---|
| 991 | endif |
|---|
| 992 | if(supcol.le.0) then |
|---|
| 993 | xlf = xlf0 |
|---|
| 994 | !------------------------------------------------------------- |
|---|
| 995 | ! pseml: Enhanced melting of snow by accretion of water [HL A34] |
|---|
| 996 | ! (T>=T0: S->R) |
|---|
| 997 | !------------------------------------------------------------- |
|---|
| 998 | if(qrs(i,k,2).gt.0.) & |
|---|
| 999 | pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k)) & |
|---|
| 1000 | /xlf,-qrs(i,k,2)/dtcld),0.) |
|---|
| 1001 | !------------------------------------------------------------- |
|---|
| 1002 | ! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22] |
|---|
| 1003 | ! (T>=T0: G->R) |
|---|
| 1004 | !------------------------------------------------------------- |
|---|
| 1005 | if(qrs(i,k,3).gt.0.) & |
|---|
| 1006 | pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k)) & |
|---|
| 1007 | /xlf,-qrs(i,k,3)/dtcld),0.) |
|---|
| 1008 | endif |
|---|
| 1009 | if(supcol.gt.0) then |
|---|
| 1010 | !------------------------------------------------------------- |
|---|
| 1011 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 1012 | ! (T<T0: V->I or I->V) |
|---|
| 1013 | !------------------------------------------------------------- |
|---|
| 1014 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
|---|
| 1015 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 1016 | supice = satdt-prevp(i,k) |
|---|
| 1017 | if(pidep(i,k).lt.0.) then |
|---|
| 1018 | pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 1019 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 1020 | else |
|---|
| 1021 | pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 1022 | endif |
|---|
| 1023 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1024 | endif |
|---|
| 1025 | !------------------------------------------------------------- |
|---|
| 1026 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 1027 | ! (T<T0: V->S or S->V) |
|---|
| 1028 | !------------------------------------------------------------- |
|---|
| 1029 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
|---|
| 1030 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 1031 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
|---|
| 1032 | + precs2*work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 1033 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 1034 | if(psdep(i,k).lt.0.) then |
|---|
| 1035 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 1036 | psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 1037 | else |
|---|
| 1038 | psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 1039 | endif |
|---|
| 1040 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
|---|
| 1041 | ifsat = 1 |
|---|
| 1042 | endif |
|---|
| 1043 | !------------------------------------------------------------- |
|---|
| 1044 | ! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46] |
|---|
| 1045 | ! (T<T0: V->G or G->V) |
|---|
| 1046 | !------------------------------------------------------------- |
|---|
| 1047 | if(qrs(i,k,3).gt.0..and.ifsat.ne.1) then |
|---|
| 1048 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
|---|
| 1049 | pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) & |
|---|
| 1050 | +precg2*work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 1051 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 1052 | if(pgdep(i,k).lt.0.) then |
|---|
| 1053 | pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld) |
|---|
| 1054 | pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice) |
|---|
| 1055 | else |
|---|
| 1056 | pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice) |
|---|
| 1057 | endif |
|---|
| 1058 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge. & |
|---|
| 1059 | abs(satdt)) ifsat = 1 |
|---|
| 1060 | endif |
|---|
| 1061 | !------------------------------------------------------------- |
|---|
| 1062 | ! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8] |
|---|
| 1063 | ! (T<T0: V->I) |
|---|
| 1064 | !------------------------------------------------------------- |
|---|
| 1065 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 1066 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k) |
|---|
| 1067 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 1068 | roqi0 = 4.92e-11*xni0**1.33 |
|---|
| 1069 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))/dtcld) |
|---|
| 1070 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 1071 | endif |
|---|
| 1072 | ! |
|---|
| 1073 | !------------------------------------------------------------- |
|---|
| 1074 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 1075 | ! (T<T0: I->S) |
|---|
| 1076 | !------------------------------------------------------------- |
|---|
| 1077 | if(qci(i,k,2).gt.0.) then |
|---|
| 1078 | qimax = roqimax/den(i,k) |
|---|
| 1079 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 1080 | endif |
|---|
| 1081 | ! |
|---|
| 1082 | !------------------------------------------------------------- |
|---|
| 1083 | ! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37] |
|---|
| 1084 | ! (T<T0: S->G) |
|---|
| 1085 | !------------------------------------------------------------- |
|---|
| 1086 | if(qrs(i,k,2).gt.0.) then |
|---|
| 1087 | alpha2 = 1.e-3*exp(0.09*(-supcol)) |
|---|
| 1088 | pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)),qrs(i,k,2)/dtcld) |
|---|
| 1089 | endif |
|---|
| 1090 | endif |
|---|
| 1091 | ! |
|---|
| 1092 | !------------------------------------------------------------- |
|---|
| 1093 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 1094 | ! (T>=T0: S->V) |
|---|
| 1095 | !------------------------------------------------------------- |
|---|
| 1096 | if(supcol.lt.0.) then |
|---|
| 1097 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) then |
|---|
| 1098 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 1099 | psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1 & |
|---|
| 1100 | *rslope2(i,k,2)+precs2*work2(i,k) & |
|---|
| 1101 | *coeres)/work1(i,k,1) |
|---|
| 1102 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 1103 | endif |
|---|
| 1104 | !------------------------------------------------------------- |
|---|
| 1105 | ! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19] |
|---|
| 1106 | ! (T>=T0: G->V) |
|---|
| 1107 | !------------------------------------------------------------- |
|---|
| 1108 | if(qrs(i,k,3).gt.0..and.rh(i,k,1).lt.1.) then |
|---|
| 1109 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
|---|
| 1110 | pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) & |
|---|
| 1111 | +precg2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 1112 | pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.) |
|---|
| 1113 | endif |
|---|
| 1114 | endif |
|---|
| 1115 | enddo |
|---|
| 1116 | enddo |
|---|
| 1117 | ! |
|---|
| 1118 | ! |
|---|
| 1119 | !---------------------------------------------------------------- |
|---|
| 1120 | ! check mass conservation of generation terms and feedback to the |
|---|
| 1121 | ! large scale |
|---|
| 1122 | ! |
|---|
| 1123 | do k = kts, kte |
|---|
| 1124 | do i = its, ite |
|---|
| 1125 | ! |
|---|
| 1126 | delta2=0. |
|---|
| 1127 | delta3=0. |
|---|
| 1128 | if(qrs(i,k,1).lt.1.e-4.and.qrs(i,k,2).lt.1.e-4) delta2=1. |
|---|
| 1129 | if(qrs(i,k,1).lt.1.e-4) delta3=1. |
|---|
| 1130 | if(t(i,k).le.t0c) then |
|---|
| 1131 | ! |
|---|
| 1132 | ! cloud water |
|---|
| 1133 | ! |
|---|
| 1134 | value = max(qmin,qci(i,k,1)) |
|---|
| 1135 | source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld |
|---|
| 1136 | if (source.gt.value) then |
|---|
| 1137 | factor = value/source |
|---|
| 1138 | praut(i,k) = praut(i,k)*factor |
|---|
| 1139 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1140 | paacw(i,k) = paacw(i,k)*factor |
|---|
| 1141 | endif |
|---|
| 1142 | ! |
|---|
| 1143 | ! cloud ice |
|---|
| 1144 | ! |
|---|
| 1145 | value = max(qmin,qci(i,k,2)) |
|---|
| 1146 | source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k)+psaci(i,k) & |
|---|
| 1147 | +pgaci(i,k))*dtcld |
|---|
| 1148 | if (source.gt.value) then |
|---|
| 1149 | factor = value/source |
|---|
| 1150 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1151 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 1152 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 1153 | praci(i,k) = praci(i,k)*factor |
|---|
| 1154 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1155 | pgaci(i,k) = pgaci(i,k)*factor |
|---|
| 1156 | endif |
|---|
| 1157 | ! |
|---|
| 1158 | ! rain |
|---|
| 1159 | ! |
|---|
| 1160 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1161 | source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k)+psacr(i,k) & |
|---|
| 1162 | +pgacr(i,k))*dtcld |
|---|
| 1163 | if (source.gt.value) then |
|---|
| 1164 | factor = value/source |
|---|
| 1165 | praut(i,k) = praut(i,k)*factor |
|---|
| 1166 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1167 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1168 | piacr(i,k) = piacr(i,k)*factor |
|---|
| 1169 | psacr(i,k) = psacr(i,k)*factor |
|---|
| 1170 | pgacr(i,k) = pgacr(i,k)*factor |
|---|
| 1171 | endif |
|---|
| 1172 | ! |
|---|
| 1173 | ! snow |
|---|
| 1174 | ! |
|---|
| 1175 | value = max(qmin,qrs(i,k,2)) |
|---|
| 1176 | source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k)+piacr(i,k) & |
|---|
| 1177 | *delta3+praci(i,k)*delta3-pracs(i,k)*(1.-delta2) & |
|---|
| 1178 | +psacr(i,k)*delta2+psaci(i,k)-pgacs(i,k) )*dtcld |
|---|
| 1179 | if (source.gt.value) then |
|---|
| 1180 | factor = value/source |
|---|
| 1181 | psdep(i,k) = psdep(i,k)*factor |
|---|
| 1182 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1183 | pgaut(i,k) = pgaut(i,k)*factor |
|---|
| 1184 | paacw(i,k) = paacw(i,k)*factor |
|---|
| 1185 | piacr(i,k) = piacr(i,k)*factor |
|---|
| 1186 | praci(i,k) = praci(i,k)*factor |
|---|
| 1187 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1188 | pracs(i,k) = pracs(i,k)*factor |
|---|
| 1189 | psacr(i,k) = psacr(i,k)*factor |
|---|
| 1190 | pgacs(i,k) = pgacs(i,k)*factor |
|---|
| 1191 | endif |
|---|
| 1192 | ! |
|---|
| 1193 | ! graupel |
|---|
| 1194 | ! |
|---|
| 1195 | value = max(qmin,qrs(i,k,3)) |
|---|
| 1196 | source = -(pgdep(i,k)+pgaut(i,k) & |
|---|
| 1197 | +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) & |
|---|
| 1198 | +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) & |
|---|
| 1199 | +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld |
|---|
| 1200 | if (source.gt.value) then |
|---|
| 1201 | factor = value/source |
|---|
| 1202 | pgdep(i,k) = pgdep(i,k)*factor |
|---|
| 1203 | pgaut(i,k) = pgaut(i,k)*factor |
|---|
| 1204 | piacr(i,k) = piacr(i,k)*factor |
|---|
| 1205 | praci(i,k) = praci(i,k)*factor |
|---|
| 1206 | psacr(i,k) = psacr(i,k)*factor |
|---|
| 1207 | pracs(i,k) = pracs(i,k)*factor |
|---|
| 1208 | paacw(i,k) = paacw(i,k)*factor |
|---|
| 1209 | pgaci(i,k) = pgaci(i,k)*factor |
|---|
| 1210 | pgacr(i,k) = pgacr(i,k)*factor |
|---|
| 1211 | pgacs(i,k) = pgacs(i,k)*factor |
|---|
| 1212 | endif |
|---|
| 1213 | ! |
|---|
| 1214 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 1215 | ! update |
|---|
| 1216 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1217 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1218 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
|---|
| 1219 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1220 | +prevp(i,k)-piacr(i,k)-pgacr(i,k) & |
|---|
| 1221 | -psacr(i,k))*dtcld,0.) |
|---|
| 1222 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k) & |
|---|
| 1223 | +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k)) & |
|---|
| 1224 | *dtcld,0.) |
|---|
| 1225 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k) & |
|---|
| 1226 | -pgaut(i,k)+piacr(i,k)*delta3 & |
|---|
| 1227 | +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) & |
|---|
| 1228 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) & |
|---|
| 1229 | *dtcld,0.) |
|---|
| 1230 | qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k) & |
|---|
| 1231 | +piacr(i,k)*(1.-delta3) & |
|---|
| 1232 | +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2) & |
|---|
| 1233 | +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k) & |
|---|
| 1234 | +pgacr(i,k)+pgacs(i,k))*dtcld,0.) |
|---|
| 1235 | xlf = xls-xl(i,k) |
|---|
| 1236 | xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 1237 | -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k) & |
|---|
| 1238 | +paacw(i,k)+pgacr(i,k)+psacr(i,k)) |
|---|
| 1239 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1240 | else |
|---|
| 1241 | ! |
|---|
| 1242 | ! cloud water |
|---|
| 1243 | ! |
|---|
| 1244 | value = max(qmin,qci(i,k,1)) |
|---|
| 1245 | source=(praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))*dtcld |
|---|
| 1246 | if (source.gt.value) then |
|---|
| 1247 | factor = value/source |
|---|
| 1248 | praut(i,k) = praut(i,k)*factor |
|---|
| 1249 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1250 | paacw(i,k) = paacw(i,k)*factor |
|---|
| 1251 | endif |
|---|
| 1252 | ! |
|---|
| 1253 | ! rain |
|---|
| 1254 | ! |
|---|
| 1255 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1256 | source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k)-pracw(i,k) & |
|---|
| 1257 | -paacw(i,k)-prevp(i,k))*dtcld |
|---|
| 1258 | if (source.gt.value) then |
|---|
| 1259 | factor = value/source |
|---|
| 1260 | praut(i,k) = praut(i,k)*factor |
|---|
| 1261 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1262 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1263 | paacw(i,k) = paacw(i,k)*factor |
|---|
| 1264 | pseml(i,k) = pseml(i,k)*factor |
|---|
| 1265 | pgeml(i,k) = pgeml(i,k)*factor |
|---|
| 1266 | endif |
|---|
| 1267 | ! |
|---|
| 1268 | ! snow |
|---|
| 1269 | ! |
|---|
| 1270 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 1271 | source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld |
|---|
| 1272 | if (source.gt.value) then |
|---|
| 1273 | factor = value/source |
|---|
| 1274 | pgacs(i,k) = pgacs(i,k)*factor |
|---|
| 1275 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 1276 | pseml(i,k) = pseml(i,k)*factor |
|---|
| 1277 | endif |
|---|
| 1278 | ! |
|---|
| 1279 | ! graupel |
|---|
| 1280 | ! |
|---|
| 1281 | value = max(qcrmin,qrs(i,k,3)) |
|---|
| 1282 | source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld |
|---|
| 1283 | if (source.gt.value) then |
|---|
| 1284 | factor = value/source |
|---|
| 1285 | pgacs(i,k) = pgacs(i,k)*factor |
|---|
| 1286 | pgevp(i,k) = pgevp(i,k)*factor |
|---|
| 1287 | pgeml(i,k) = pgeml(i,k)*factor |
|---|
| 1288 | endif |
|---|
| 1289 | work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k)) |
|---|
| 1290 | ! update |
|---|
| 1291 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1292 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1293 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
|---|
| 1294 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1295 | +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k) & |
|---|
| 1296 | -pgeml(i,k))*dtcld,0.) |
|---|
| 1297 | qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k) & |
|---|
| 1298 | +pseml(i,k))*dtcld,0.) |
|---|
| 1299 | qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k) & |
|---|
| 1300 | +pgeml(i,k))*dtcld,0.) |
|---|
| 1301 | xlf = xls-xl(i,k) |
|---|
| 1302 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k)) & |
|---|
| 1303 | -xlf*(pseml(i,k)+pgeml(i,k)) |
|---|
| 1304 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1305 | endif |
|---|
| 1306 | enddo |
|---|
| 1307 | enddo |
|---|
| 1308 | ! |
|---|
| 1309 | ! Inline expansion for fpvs |
|---|
| 1310 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1311 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1312 | hsub = xls |
|---|
| 1313 | hvap = xlv0 |
|---|
| 1314 | cvap = cpv |
|---|
| 1315 | ttp=t0c+0.01 |
|---|
| 1316 | dldt=cvap-cliq |
|---|
| 1317 | xa=-dldt/rv |
|---|
| 1318 | xb=xa+hvap/(rv*ttp) |
|---|
| 1319 | dldti=cvap-cice |
|---|
| 1320 | xai=-dldti/rv |
|---|
| 1321 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1322 | do k = kts, kte |
|---|
| 1323 | do i = its, ite |
|---|
| 1324 | tr=ttp/t(i,k) |
|---|
| 1325 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1326 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 1327 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 1328 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1329 | tr=ttp/t(i,k) |
|---|
| 1330 | if(t(i,k).lt.ttp) then |
|---|
| 1331 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 1332 | else |
|---|
| 1333 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1334 | endif |
|---|
| 1335 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
|---|
| 1336 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 1337 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 1338 | enddo |
|---|
| 1339 | enddo |
|---|
| 1340 | ! |
|---|
| 1341 | !---------------------------------------------------------------- |
|---|
| 1342 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1343 | ! if there exists additional water vapor condensated/if |
|---|
| 1344 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1345 | ! |
|---|
| 1346 | do k = kts, kte |
|---|
| 1347 | do i = its, ite |
|---|
| 1348 | work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
|---|
| 1349 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 1350 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
|---|
| 1351 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
|---|
| 1352 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 1353 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
|---|
| 1354 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 1355 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1356 | enddo |
|---|
| 1357 | enddo |
|---|
| 1358 | ! |
|---|
| 1359 | ! |
|---|
| 1360 | !---------------------------------------------------------------- |
|---|
| 1361 | ! padding for small values |
|---|
| 1362 | ! |
|---|
| 1363 | do k = kts, kte |
|---|
| 1364 | do i = its, ite |
|---|
| 1365 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 1366 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 1367 | enddo |
|---|
| 1368 | enddo |
|---|
| 1369 | enddo ! big loops |
|---|
| 1370 | END SUBROUTINE wsm62d |
|---|
| 1371 | ! ................................................................... |
|---|
| 1372 | REAL FUNCTION rgmma(x) |
|---|
| 1373 | !------------------------------------------------------------------- |
|---|
| 1374 | IMPLICIT NONE |
|---|
| 1375 | !------------------------------------------------------------------- |
|---|
| 1376 | ! rgmma function: use infinite product form |
|---|
| 1377 | REAL :: euler |
|---|
| 1378 | PARAMETER (euler=0.577215664901532) |
|---|
| 1379 | REAL :: x, y |
|---|
| 1380 | INTEGER :: i |
|---|
| 1381 | if(x.eq.1.)then |
|---|
| 1382 | rgmma=0. |
|---|
| 1383 | else |
|---|
| 1384 | rgmma=x*exp(euler*x) |
|---|
| 1385 | do i=1,10000 |
|---|
| 1386 | y=float(i) |
|---|
| 1387 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
|---|
| 1388 | enddo |
|---|
| 1389 | rgmma=1./rgmma |
|---|
| 1390 | endif |
|---|
| 1391 | END FUNCTION rgmma |
|---|
| 1392 | ! |
|---|
| 1393 | !-------------------------------------------------------------------------- |
|---|
| 1394 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
|---|
| 1395 | !-------------------------------------------------------------------------- |
|---|
| 1396 | IMPLICIT NONE |
|---|
| 1397 | !-------------------------------------------------------------------------- |
|---|
| 1398 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
|---|
| 1399 | xai,xbi,ttp,tr |
|---|
| 1400 | INTEGER ice |
|---|
| 1401 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1402 | ttp=t0c+0.01 |
|---|
| 1403 | dldt=cvap-cliq |
|---|
| 1404 | xa=-dldt/rv |
|---|
| 1405 | xb=xa+hvap/(rv*ttp) |
|---|
| 1406 | dldti=cvap-cice |
|---|
| 1407 | xai=-dldti/rv |
|---|
| 1408 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1409 | tr=ttp/t |
|---|
| 1410 | if(t.lt.ttp.and.ice.eq.1) then |
|---|
| 1411 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
|---|
| 1412 | else |
|---|
| 1413 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 1414 | endif |
|---|
| 1415 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1416 | END FUNCTION fpvs |
|---|
| 1417 | !------------------------------------------------------------------- |
|---|
| 1418 | SUBROUTINE wsm6init(den0,denr,dens,cl,cpv,allowed_to_read) |
|---|
| 1419 | !------------------------------------------------------------------- |
|---|
| 1420 | IMPLICIT NONE |
|---|
| 1421 | !------------------------------------------------------------------- |
|---|
| 1422 | !.... constants which may not be tunable |
|---|
| 1423 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
|---|
| 1424 | LOGICAL, INTENT(IN) :: allowed_to_read |
|---|
| 1425 | ! |
|---|
| 1426 | pi = 4.*atan(1.) |
|---|
| 1427 | xlv1 = cl-cpv |
|---|
| 1428 | ! |
|---|
| 1429 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
|---|
| 1430 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
|---|
| 1431 | ! |
|---|
| 1432 | bvtr1 = 1.+bvtr |
|---|
| 1433 | bvtr2 = 2.5+.5*bvtr |
|---|
| 1434 | bvtr3 = 3.+bvtr |
|---|
| 1435 | bvtr4 = 4.+bvtr |
|---|
| 1436 | bvtr6 = 6.+bvtr |
|---|
| 1437 | g1pbr = rgmma(bvtr1) |
|---|
| 1438 | g3pbr = rgmma(bvtr3) |
|---|
| 1439 | g4pbr = rgmma(bvtr4) ! 17.837825 |
|---|
| 1440 | g6pbr = rgmma(bvtr6) |
|---|
| 1441 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
|---|
| 1442 | pvtr = avtr*g4pbr/6. |
|---|
| 1443 | eacrr = 1.0 |
|---|
| 1444 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
|---|
| 1445 | precr1 = 2.*pi*n0r*.78 |
|---|
| 1446 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
|---|
| 1447 | roqimax = 2.08e22*dimax**8 |
|---|
| 1448 | ! |
|---|
| 1449 | bvts1 = 1.+bvts |
|---|
| 1450 | bvts2 = 2.5+.5*bvts |
|---|
| 1451 | bvts3 = 3.+bvts |
|---|
| 1452 | bvts4 = 4.+bvts |
|---|
| 1453 | g1pbs = rgmma(bvts1) !.8875 |
|---|
| 1454 | g3pbs = rgmma(bvts3) |
|---|
| 1455 | g4pbs = rgmma(bvts4) ! 12.0786 |
|---|
| 1456 | g5pbso2 = rgmma(bvts2) |
|---|
| 1457 | pvts = avts*g4pbs/6. |
|---|
| 1458 | pacrs = pi*n0s*avts*g3pbs*.25 |
|---|
| 1459 | precs1 = 4.*n0s*.65 |
|---|
| 1460 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
|---|
| 1461 | pidn0r = pi*denr*n0r |
|---|
| 1462 | pidn0s = pi*dens*n0s |
|---|
| 1463 | ! |
|---|
| 1464 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
|---|
| 1465 | ! |
|---|
| 1466 | bvtg1 = 1.+bvtg |
|---|
| 1467 | bvtg2 = 2.5+.5*bvtg |
|---|
| 1468 | bvtg3 = 3.+bvtg |
|---|
| 1469 | bvtg4 = 4.+bvtg |
|---|
| 1470 | g1pbg = rgmma(bvtg1) |
|---|
| 1471 | g3pbg = rgmma(bvtg3) |
|---|
| 1472 | g4pbg = rgmma(bvtg4) |
|---|
| 1473 | pacrg = pi*n0g*avtg*g3pbg*.25 |
|---|
| 1474 | g5pbgo2 = rgmma(bvtg2) |
|---|
| 1475 | pvtg = avtg*g4pbg/6. |
|---|
| 1476 | precg1 = 2.*pi*n0g*.78 |
|---|
| 1477 | precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2 |
|---|
| 1478 | pidn0g = pi*deng*n0g |
|---|
| 1479 | ! |
|---|
| 1480 | rslopermax = 1./lamdarmax |
|---|
| 1481 | rslopesmax = 1./lamdasmax |
|---|
| 1482 | rslopegmax = 1./lamdagmax |
|---|
| 1483 | rsloperbmax = rslopermax ** bvtr |
|---|
| 1484 | rslopesbmax = rslopesmax ** bvts |
|---|
| 1485 | rslopegbmax = rslopegmax ** bvtg |
|---|
| 1486 | rsloper2max = rslopermax * rslopermax |
|---|
| 1487 | rslopes2max = rslopesmax * rslopesmax |
|---|
| 1488 | rslopeg2max = rslopegmax * rslopegmax |
|---|
| 1489 | rsloper3max = rsloper2max * rslopermax |
|---|
| 1490 | rslopes3max = rslopes2max * rslopesmax |
|---|
| 1491 | rslopeg3max = rslopeg2max * rslopegmax |
|---|
| 1492 | ! |
|---|
| 1493 | END SUBROUTINE wsm6init |
|---|
| 1494 | !------------------------------------------------------------------------------ |
|---|
| 1495 | subroutine slope_wsm6(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1496 | vt,its,ite,kts,kte) |
|---|
| 1497 | IMPLICIT NONE |
|---|
| 1498 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1499 | REAL, DIMENSION( its:ite , kts:kte,3) :: & |
|---|
| 1500 | qrs, & |
|---|
| 1501 | rslope, & |
|---|
| 1502 | rslopeb, & |
|---|
| 1503 | rslope2, & |
|---|
| 1504 | rslope3, & |
|---|
| 1505 | vt |
|---|
| 1506 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1507 | den, & |
|---|
| 1508 | denfac, & |
|---|
| 1509 | t |
|---|
| 1510 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1511 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1512 | n0sfac |
|---|
| 1513 | REAL :: lamdar, lamdas, lamdag, x, y, z, supcol |
|---|
| 1514 | integer :: i, j, k |
|---|
| 1515 | !---------------------------------------------------------------- |
|---|
| 1516 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1517 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1518 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 1519 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 1520 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
|---|
| 1521 | ! |
|---|
| 1522 | do k = kts, kte |
|---|
| 1523 | do i = its, ite |
|---|
| 1524 | supcol = t0c-t(i,k) |
|---|
| 1525 | !--------------------------------------------------------------- |
|---|
| 1526 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1527 | !--------------------------------------------------------------- |
|---|
| 1528 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1529 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 1530 | rslope(i,k,1) = rslopermax |
|---|
| 1531 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 1532 | rslope2(i,k,1) = rsloper2max |
|---|
| 1533 | rslope3(i,k,1) = rsloper3max |
|---|
| 1534 | else |
|---|
| 1535 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
|---|
| 1536 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
|---|
| 1537 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 1538 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 1539 | endif |
|---|
| 1540 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 1541 | rslope(i,k,2) = rslopesmax |
|---|
| 1542 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 1543 | rslope2(i,k,2) = rslopes2max |
|---|
| 1544 | rslope3(i,k,2) = rslopes3max |
|---|
| 1545 | else |
|---|
| 1546 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 1547 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
|---|
| 1548 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 1549 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 1550 | endif |
|---|
| 1551 | if(qrs(i,k,3).le.qcrmin)then |
|---|
| 1552 | rslope(i,k,3) = rslopegmax |
|---|
| 1553 | rslopeb(i,k,3) = rslopegbmax |
|---|
| 1554 | rslope2(i,k,3) = rslopeg2max |
|---|
| 1555 | rslope3(i,k,3) = rslopeg3max |
|---|
| 1556 | else |
|---|
| 1557 | rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) |
|---|
| 1558 | rslopeb(i,k,3) = rslope(i,k,3)**bvtg |
|---|
| 1559 | rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) |
|---|
| 1560 | rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) |
|---|
| 1561 | endif |
|---|
| 1562 | vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k) |
|---|
| 1563 | vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 1564 | vt(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k) |
|---|
| 1565 | if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0 |
|---|
| 1566 | if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0 |
|---|
| 1567 | if(qrs(i,k,3).le.0.0) vt(i,k,3) = 0.0 |
|---|
| 1568 | enddo |
|---|
| 1569 | enddo |
|---|
| 1570 | END subroutine slope_wsm6 |
|---|
| 1571 | !----------------------------------------------------------------------------- |
|---|
| 1572 | subroutine slope_rain(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1573 | vt,its,ite,kts,kte) |
|---|
| 1574 | IMPLICIT NONE |
|---|
| 1575 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1576 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1577 | qrs, & |
|---|
| 1578 | rslope, & |
|---|
| 1579 | rslopeb, & |
|---|
| 1580 | rslope2, & |
|---|
| 1581 | rslope3, & |
|---|
| 1582 | vt, & |
|---|
| 1583 | den, & |
|---|
| 1584 | denfac, & |
|---|
| 1585 | t |
|---|
| 1586 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1587 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1588 | n0sfac |
|---|
| 1589 | REAL :: lamdar, x, y, z, supcol |
|---|
| 1590 | integer :: i, j, k |
|---|
| 1591 | !---------------------------------------------------------------- |
|---|
| 1592 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1593 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1594 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 1595 | ! |
|---|
| 1596 | do k = kts, kte |
|---|
| 1597 | do i = its, ite |
|---|
| 1598 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1599 | rslope(i,k) = rslopermax |
|---|
| 1600 | rslopeb(i,k) = rsloperbmax |
|---|
| 1601 | rslope2(i,k) = rsloper2max |
|---|
| 1602 | rslope3(i,k) = rsloper3max |
|---|
| 1603 | else |
|---|
| 1604 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
|---|
| 1605 | rslopeb(i,k) = rslope(i,k)**bvtr |
|---|
| 1606 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1607 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1608 | endif |
|---|
| 1609 | vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k) |
|---|
| 1610 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
|---|
| 1611 | enddo |
|---|
| 1612 | enddo |
|---|
| 1613 | END subroutine slope_rain |
|---|
| 1614 | !------------------------------------------------------------------------------ |
|---|
| 1615 | subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1616 | vt,its,ite,kts,kte) |
|---|
| 1617 | IMPLICIT NONE |
|---|
| 1618 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1619 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1620 | qrs, & |
|---|
| 1621 | rslope, & |
|---|
| 1622 | rslopeb, & |
|---|
| 1623 | rslope2, & |
|---|
| 1624 | rslope3, & |
|---|
| 1625 | vt, & |
|---|
| 1626 | den, & |
|---|
| 1627 | denfac, & |
|---|
| 1628 | t |
|---|
| 1629 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1630 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1631 | n0sfac |
|---|
| 1632 | REAL :: lamdas, x, y, z, supcol |
|---|
| 1633 | integer :: i, j, k |
|---|
| 1634 | !---------------------------------------------------------------- |
|---|
| 1635 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1636 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1637 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 1638 | ! |
|---|
| 1639 | do k = kts, kte |
|---|
| 1640 | do i = its, ite |
|---|
| 1641 | supcol = t0c-t(i,k) |
|---|
| 1642 | !--------------------------------------------------------------- |
|---|
| 1643 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1644 | !--------------------------------------------------------------- |
|---|
| 1645 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1646 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1647 | rslope(i,k) = rslopesmax |
|---|
| 1648 | rslopeb(i,k) = rslopesbmax |
|---|
| 1649 | rslope2(i,k) = rslopes2max |
|---|
| 1650 | rslope3(i,k) = rslopes3max |
|---|
| 1651 | else |
|---|
| 1652 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
|---|
| 1653 | rslopeb(i,k) = rslope(i,k)**bvts |
|---|
| 1654 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1655 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1656 | endif |
|---|
| 1657 | vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k) |
|---|
| 1658 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
|---|
| 1659 | enddo |
|---|
| 1660 | enddo |
|---|
| 1661 | END subroutine slope_snow |
|---|
| 1662 | !---------------------------------------------------------------------------------- |
|---|
| 1663 | subroutine slope_graup(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1664 | vt,its,ite,kts,kte) |
|---|
| 1665 | IMPLICIT NONE |
|---|
| 1666 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1667 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1668 | qrs, & |
|---|
| 1669 | rslope, & |
|---|
| 1670 | rslopeb, & |
|---|
| 1671 | rslope2, & |
|---|
| 1672 | rslope3, & |
|---|
| 1673 | vt, & |
|---|
| 1674 | den, & |
|---|
| 1675 | denfac, & |
|---|
| 1676 | t |
|---|
| 1677 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1678 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1679 | n0sfac |
|---|
| 1680 | REAL :: lamdag, x, y, z, supcol |
|---|
| 1681 | integer :: i, j, k |
|---|
| 1682 | !---------------------------------------------------------------- |
|---|
| 1683 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1684 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1685 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
|---|
| 1686 | ! |
|---|
| 1687 | do k = kts, kte |
|---|
| 1688 | do i = its, ite |
|---|
| 1689 | !--------------------------------------------------------------- |
|---|
| 1690 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1691 | !--------------------------------------------------------------- |
|---|
| 1692 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1693 | rslope(i,k) = rslopegmax |
|---|
| 1694 | rslopeb(i,k) = rslopegbmax |
|---|
| 1695 | rslope2(i,k) = rslopeg2max |
|---|
| 1696 | rslope3(i,k) = rslopeg3max |
|---|
| 1697 | else |
|---|
| 1698 | rslope(i,k) = 1./lamdag(qrs(i,k),den(i,k)) |
|---|
| 1699 | rslopeb(i,k) = rslope(i,k)**bvtg |
|---|
| 1700 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1701 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1702 | endif |
|---|
| 1703 | vt(i,k) = pvtg*rslopeb(i,k)*denfac(i,k) |
|---|
| 1704 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
|---|
| 1705 | enddo |
|---|
| 1706 | enddo |
|---|
| 1707 | END subroutine slope_graup |
|---|
| 1708 | !--------------------------------------------------------------------------------- |
|---|
| 1709 | !------------------------------------------------------------------- |
|---|
| 1710 | SUBROUTINE nislfv_rain_plm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) |
|---|
| 1711 | !------------------------------------------------------------------- |
|---|
| 1712 | ! |
|---|
| 1713 | ! for non-iteration semi-Lagrangain forward advection for cloud |
|---|
| 1714 | ! with mass conservation and positive definite advection |
|---|
| 1715 | ! 2nd order interpolation with monotonic piecewise linear method |
|---|
| 1716 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
|---|
| 1717 | ! |
|---|
| 1718 | ! dzl depth of model layer in meter |
|---|
| 1719 | ! wwl terminal velocity at model layer m/s |
|---|
| 1720 | ! rql cloud density*mixing ration |
|---|
| 1721 | ! precip precipitation |
|---|
| 1722 | ! dt time step |
|---|
| 1723 | ! id kind of precip: 0 test case; 1 raindrop |
|---|
| 1724 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
|---|
| 1725 | ! 0 : use departure wind for advection |
|---|
| 1726 | ! 1 : use mean wind for advection |
|---|
| 1727 | ! > 1 : use mean wind after iter-1 iterations |
|---|
| 1728 | ! |
|---|
| 1729 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
|---|
| 1730 | ! implemented by song-you hong |
|---|
| 1731 | ! |
|---|
| 1732 | implicit none |
|---|
| 1733 | integer im,km,id |
|---|
| 1734 | real dt |
|---|
| 1735 | real dzl(im,km),wwl(im,km),rql(im,km),precip(im) |
|---|
| 1736 | real denl(im,km),denfacl(im,km),tkl(im,km) |
|---|
| 1737 | ! |
|---|
| 1738 | integer i,k,n,m,kk,kb,kt,iter |
|---|
| 1739 | real tl,tl2,qql,dql,qqd |
|---|
| 1740 | real th,th2,qqh,dqh |
|---|
| 1741 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
|---|
| 1742 | real allold, allnew, zz, dzamin, cflmax, decfl |
|---|
| 1743 | real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) |
|---|
| 1744 | real den(km), denfac(km), tk(km) |
|---|
| 1745 | real wi(km+1), zi(km+1), za(km+1) |
|---|
| 1746 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
|---|
| 1747 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
|---|
| 1748 | ! |
|---|
| 1749 | precip(:) = 0.0 |
|---|
| 1750 | ! |
|---|
| 1751 | i_loop : do i=1,im |
|---|
| 1752 | ! ----------------------------------- |
|---|
| 1753 | dz(:) = dzl(i,:) |
|---|
| 1754 | qq(:) = rql(i,:) |
|---|
| 1755 | ww(:) = wwl(i,:) |
|---|
| 1756 | den(:) = denl(i,:) |
|---|
| 1757 | denfac(:) = denfacl(i,:) |
|---|
| 1758 | tk(:) = tkl(i,:) |
|---|
| 1759 | ! skip for no precipitation for all layers |
|---|
| 1760 | allold = 0.0 |
|---|
| 1761 | do k=1,km |
|---|
| 1762 | allold = allold + qq(k) |
|---|
| 1763 | enddo |
|---|
| 1764 | if(allold.le.0.0) then |
|---|
| 1765 | cycle i_loop |
|---|
| 1766 | endif |
|---|
| 1767 | ! |
|---|
| 1768 | ! compute interface values |
|---|
| 1769 | zi(1)=0.0 |
|---|
| 1770 | do k=1,km |
|---|
| 1771 | zi(k+1) = zi(k)+dz(k) |
|---|
| 1772 | enddo |
|---|
| 1773 | ! |
|---|
| 1774 | ! save departure wind |
|---|
| 1775 | wd(:) = ww(:) |
|---|
| 1776 | n=1 |
|---|
| 1777 | 100 continue |
|---|
| 1778 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
|---|
| 1779 | ! 2nd order interpolation to get wi |
|---|
| 1780 | wi(1) = ww(1) |
|---|
| 1781 | wi(km+1) = ww(km) |
|---|
| 1782 | do k=2,km |
|---|
| 1783 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
|---|
| 1784 | enddo |
|---|
| 1785 | ! 3rd order interpolation to get wi |
|---|
| 1786 | fa1 = 9./16. |
|---|
| 1787 | fa2 = 1./16. |
|---|
| 1788 | wi(1) = ww(1) |
|---|
| 1789 | wi(2) = 0.5*(ww(2)+ww(1)) |
|---|
| 1790 | do k=3,km-1 |
|---|
| 1791 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
|---|
| 1792 | enddo |
|---|
| 1793 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
|---|
| 1794 | wi(km+1) = ww(km) |
|---|
| 1795 | ! |
|---|
| 1796 | ! terminate of top of raingroup |
|---|
| 1797 | do k=2,km |
|---|
| 1798 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
|---|
| 1799 | enddo |
|---|
| 1800 | ! |
|---|
| 1801 | ! diffusivity of wi |
|---|
| 1802 | con1 = 0.05 |
|---|
| 1803 | do k=km,1,-1 |
|---|
| 1804 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
|---|
| 1805 | if( decfl .gt. con1 ) then |
|---|
| 1806 | wi(k) = wi(k+1) - con1*dz(k)/dt |
|---|
| 1807 | endif |
|---|
| 1808 | enddo |
|---|
| 1809 | ! compute arrival point |
|---|
| 1810 | do k=1,km+1 |
|---|
| 1811 | za(k) = zi(k) - wi(k)*dt |
|---|
| 1812 | enddo |
|---|
| 1813 | ! |
|---|
| 1814 | do k=1,km |
|---|
| 1815 | dza(k) = za(k+1)-za(k) |
|---|
| 1816 | enddo |
|---|
| 1817 | dza(km+1) = zi(km+1) - za(km+1) |
|---|
| 1818 | ! |
|---|
| 1819 | ! computer deformation at arrival point |
|---|
| 1820 | do k=1,km |
|---|
| 1821 | qa(k) = qq(k)*dz(k)/dza(k) |
|---|
| 1822 | qr(k) = qa(k)/den(k) |
|---|
| 1823 | enddo |
|---|
| 1824 | qa(km+1) = 0.0 |
|---|
| 1825 | ! call maxmin(km,1,qa,' arrival points ') |
|---|
| 1826 | ! |
|---|
| 1827 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
|---|
| 1828 | ! then back to use mean terminal velocity |
|---|
| 1829 | if( n.le.iter ) then |
|---|
| 1830 | call slope_rain(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
|---|
| 1831 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
|---|
| 1832 | do k=1,km |
|---|
| 1833 | !#ifdef DEBUG |
|---|
| 1834 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
|---|
| 1835 | !#endif |
|---|
| 1836 | ! mean wind is average of departure and new arrival winds |
|---|
| 1837 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
|---|
| 1838 | enddo |
|---|
| 1839 | was(:) = wa(:) |
|---|
| 1840 | n=n+1 |
|---|
| 1841 | go to 100 |
|---|
| 1842 | endif |
|---|
| 1843 | ! |
|---|
| 1844 | ! estimate values at arrival cell interface with monotone |
|---|
| 1845 | do k=2,km |
|---|
| 1846 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
|---|
| 1847 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
|---|
| 1848 | if( dip*dim.le.0.0 ) then |
|---|
| 1849 | qmi(k)=qa(k) |
|---|
| 1850 | qpi(k)=qa(k) |
|---|
| 1851 | else |
|---|
| 1852 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
|---|
| 1853 | qmi(k)=2.0*qa(k)-qpi(k) |
|---|
| 1854 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
|---|
| 1855 | qpi(k) = qa(k) |
|---|
| 1856 | qmi(k) = qa(k) |
|---|
| 1857 | endif |
|---|
| 1858 | endif |
|---|
| 1859 | enddo |
|---|
| 1860 | qpi(1)=qa(1) |
|---|
| 1861 | qmi(1)=qa(1) |
|---|
| 1862 | qmi(km+1)=qa(km+1) |
|---|
| 1863 | qpi(km+1)=qa(km+1) |
|---|
| 1864 | ! |
|---|
| 1865 | ! interpolation to regular point |
|---|
| 1866 | qn = 0.0 |
|---|
| 1867 | kb=1 |
|---|
| 1868 | kt=1 |
|---|
| 1869 | intp : do k=1,km |
|---|
| 1870 | kb=max(kb-1,1) |
|---|
| 1871 | kt=max(kt-1,1) |
|---|
| 1872 | ! find kb and kt |
|---|
| 1873 | if( zi(k).ge.za(km+1) ) then |
|---|
| 1874 | exit intp |
|---|
| 1875 | else |
|---|
| 1876 | find_kb : do kk=kb,km |
|---|
| 1877 | if( zi(k).le.za(kk+1) ) then |
|---|
| 1878 | kb = kk |
|---|
| 1879 | exit find_kb |
|---|
| 1880 | else |
|---|
| 1881 | cycle find_kb |
|---|
| 1882 | endif |
|---|
| 1883 | enddo find_kb |
|---|
| 1884 | find_kt : do kk=kt,km |
|---|
| 1885 | if( zi(k+1).le.za(kk) ) then |
|---|
| 1886 | kt = kk |
|---|
| 1887 | exit find_kt |
|---|
| 1888 | else |
|---|
| 1889 | cycle find_kt |
|---|
| 1890 | endif |
|---|
| 1891 | enddo find_kt |
|---|
| 1892 | kt = kt - 1 |
|---|
| 1893 | ! compute q with piecewise constant method |
|---|
| 1894 | if( kt.eq.kb ) then |
|---|
| 1895 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 1896 | th=(zi(k+1)-za(kb))/dza(kb) |
|---|
| 1897 | tl2=tl*tl |
|---|
| 1898 | th2=th*th |
|---|
| 1899 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 1900 | qqh=qqd*th2+qmi(kb)*th |
|---|
| 1901 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 1902 | qn(k) = (qqh-qql)/(th-tl) |
|---|
| 1903 | else if( kt.gt.kb ) then |
|---|
| 1904 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 1905 | tl2=tl*tl |
|---|
| 1906 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 1907 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 1908 | dql = qa(kb)-qql |
|---|
| 1909 | zsum = (1.-tl)*dza(kb) |
|---|
| 1910 | qsum = dql*dza(kb) |
|---|
| 1911 | if( kt-kb.gt.1 ) then |
|---|
| 1912 | do m=kb+1,kt-1 |
|---|
| 1913 | zsum = zsum + dza(m) |
|---|
| 1914 | qsum = qsum + qa(m) * dza(m) |
|---|
| 1915 | enddo |
|---|
| 1916 | endif |
|---|
| 1917 | th=(zi(k+1)-za(kt))/dza(kt) |
|---|
| 1918 | th2=th*th |
|---|
| 1919 | qqd=0.5*(qpi(kt)-qmi(kt)) |
|---|
| 1920 | dqh=qqd*th2+qmi(kt)*th |
|---|
| 1921 | zsum = zsum + th*dza(kt) |
|---|
| 1922 | qsum = qsum + dqh*dza(kt) |
|---|
| 1923 | qn(k) = qsum/zsum |
|---|
| 1924 | endif |
|---|
| 1925 | cycle intp |
|---|
| 1926 | endif |
|---|
| 1927 | ! |
|---|
| 1928 | enddo intp |
|---|
| 1929 | ! |
|---|
| 1930 | ! rain out |
|---|
| 1931 | sum_precip: do k=1,km |
|---|
| 1932 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
|---|
| 1933 | precip(i) = precip(i) + qa(k)*dza(k) |
|---|
| 1934 | cycle sum_precip |
|---|
| 1935 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
|---|
| 1936 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
|---|
| 1937 | exit sum_precip |
|---|
| 1938 | endif |
|---|
| 1939 | exit sum_precip |
|---|
| 1940 | enddo sum_precip |
|---|
| 1941 | ! |
|---|
| 1942 | ! replace the new values |
|---|
| 1943 | rql(i,:) = qn(:) |
|---|
| 1944 | ! |
|---|
| 1945 | ! ---------------------------------- |
|---|
| 1946 | enddo i_loop |
|---|
| 1947 | ! |
|---|
| 1948 | END SUBROUTINE nislfv_rain_plm |
|---|
| 1949 | !------------------------------------------------------------------- |
|---|
| 1950 | SUBROUTINE nislfv_rain_plm6(im,km,denl,denfacl,tkl,dzl,wwl,rql,rql2, precip1, precip2,dt,id,iter) |
|---|
| 1951 | !------------------------------------------------------------------- |
|---|
| 1952 | ! |
|---|
| 1953 | ! for non-iteration semi-Lagrangain forward advection for cloud |
|---|
| 1954 | ! with mass conservation and positive definite advection |
|---|
| 1955 | ! 2nd order interpolation with monotonic piecewise linear method |
|---|
| 1956 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
|---|
| 1957 | ! |
|---|
| 1958 | ! dzl depth of model layer in meter |
|---|
| 1959 | ! wwl terminal velocity at model layer m/s |
|---|
| 1960 | ! rql cloud density*mixing ration |
|---|
| 1961 | ! precip precipitation |
|---|
| 1962 | ! dt time step |
|---|
| 1963 | ! id kind of precip: 0 test case; 1 raindrop |
|---|
| 1964 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
|---|
| 1965 | ! 0 : use departure wind for advection |
|---|
| 1966 | ! 1 : use mean wind for advection |
|---|
| 1967 | ! > 1 : use mean wind after iter-1 iterations |
|---|
| 1968 | ! |
|---|
| 1969 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
|---|
| 1970 | ! implemented by song-you hong |
|---|
| 1971 | ! |
|---|
| 1972 | implicit none |
|---|
| 1973 | integer im,km,id |
|---|
| 1974 | real dt |
|---|
| 1975 | real dzl(im,km),wwl(im,km),rql(im,km),rql2(im,km),precip(im),precip1(im),precip2(im) |
|---|
| 1976 | real denl(im,km),denfacl(im,km),tkl(im,km) |
|---|
| 1977 | ! |
|---|
| 1978 | integer i,k,n,m,kk,kb,kt,iter,ist |
|---|
| 1979 | real tl,tl2,qql,dql,qqd |
|---|
| 1980 | real th,th2,qqh,dqh |
|---|
| 1981 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
|---|
| 1982 | real allold, allnew, zz, dzamin, cflmax, decfl |
|---|
| 1983 | real dz(km), ww(km), qq(km), qq2(km), wd(km), wa(km), wa2(km), was(km) |
|---|
| 1984 | real den(km), denfac(km), tk(km) |
|---|
| 1985 | real wi(km+1), zi(km+1), za(km+1) |
|---|
| 1986 | real qn(km), qr(km),qr2(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
|---|
| 1987 | real dza(km+1), qa(km+1), qa2(km+1),qmi(km+1), qpi(km+1) |
|---|
| 1988 | ! |
|---|
| 1989 | precip(:) = 0.0 |
|---|
| 1990 | precip1(:) = 0.0 |
|---|
| 1991 | precip2(:) = 0.0 |
|---|
| 1992 | ! |
|---|
| 1993 | i_loop : do i=1,im |
|---|
| 1994 | ! ----------------------------------- |
|---|
| 1995 | dz(:) = dzl(i,:) |
|---|
| 1996 | qq(:) = rql(i,:) |
|---|
| 1997 | qq2(:) = rql2(i,:) |
|---|
| 1998 | ww(:) = wwl(i,:) |
|---|
| 1999 | den(:) = denl(i,:) |
|---|
| 2000 | denfac(:) = denfacl(i,:) |
|---|
| 2001 | tk(:) = tkl(i,:) |
|---|
| 2002 | ! skip for no precipitation for all layers |
|---|
| 2003 | allold = 0.0 |
|---|
| 2004 | do k=1,km |
|---|
| 2005 | allold = allold + qq(k) |
|---|
| 2006 | enddo |
|---|
| 2007 | if(allold.le.0.0) then |
|---|
| 2008 | cycle i_loop |
|---|
| 2009 | endif |
|---|
| 2010 | ! |
|---|
| 2011 | ! compute interface values |
|---|
| 2012 | zi(1)=0.0 |
|---|
| 2013 | do k=1,km |
|---|
| 2014 | zi(k+1) = zi(k)+dz(k) |
|---|
| 2015 | enddo |
|---|
| 2016 | ! |
|---|
| 2017 | ! save departure wind |
|---|
| 2018 | wd(:) = ww(:) |
|---|
| 2019 | n=1 |
|---|
| 2020 | 100 continue |
|---|
| 2021 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
|---|
| 2022 | ! 2nd order interpolation to get wi |
|---|
| 2023 | wi(1) = ww(1) |
|---|
| 2024 | wi(km+1) = ww(km) |
|---|
| 2025 | do k=2,km |
|---|
| 2026 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
|---|
| 2027 | enddo |
|---|
| 2028 | ! 3rd order interpolation to get wi |
|---|
| 2029 | fa1 = 9./16. |
|---|
| 2030 | fa2 = 1./16. |
|---|
| 2031 | wi(1) = ww(1) |
|---|
| 2032 | wi(2) = 0.5*(ww(2)+ww(1)) |
|---|
| 2033 | do k=3,km-1 |
|---|
| 2034 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
|---|
| 2035 | enddo |
|---|
| 2036 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
|---|
| 2037 | wi(km+1) = ww(km) |
|---|
| 2038 | ! |
|---|
| 2039 | ! terminate of top of raingroup |
|---|
| 2040 | do k=2,km |
|---|
| 2041 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
|---|
| 2042 | enddo |
|---|
| 2043 | ! |
|---|
| 2044 | ! diffusivity of wi |
|---|
| 2045 | con1 = 0.05 |
|---|
| 2046 | do k=km,1,-1 |
|---|
| 2047 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
|---|
| 2048 | if( decfl .gt. con1 ) then |
|---|
| 2049 | wi(k) = wi(k+1) - con1*dz(k)/dt |
|---|
| 2050 | endif |
|---|
| 2051 | enddo |
|---|
| 2052 | ! compute arrival point |
|---|
| 2053 | do k=1,km+1 |
|---|
| 2054 | za(k) = zi(k) - wi(k)*dt |
|---|
| 2055 | enddo |
|---|
| 2056 | ! |
|---|
| 2057 | do k=1,km |
|---|
| 2058 | dza(k) = za(k+1)-za(k) |
|---|
| 2059 | enddo |
|---|
| 2060 | dza(km+1) = zi(km+1) - za(km+1) |
|---|
| 2061 | ! |
|---|
| 2062 | ! computer deformation at arrival point |
|---|
| 2063 | do k=1,km |
|---|
| 2064 | qa(k) = qq(k)*dz(k)/dza(k) |
|---|
| 2065 | qa2(k) = qq2(k)*dz(k)/dza(k) |
|---|
| 2066 | qr(k) = qa(k)/den(k) |
|---|
| 2067 | qr2(k) = qa2(k)/den(k) |
|---|
| 2068 | enddo |
|---|
| 2069 | qa(km+1) = 0.0 |
|---|
| 2070 | qa2(km+1) = 0.0 |
|---|
| 2071 | ! call maxmin(km,1,qa,' arrival points ') |
|---|
| 2072 | ! |
|---|
| 2073 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
|---|
| 2074 | ! then back to use mean terminal velocity |
|---|
| 2075 | if( n.le.iter ) then |
|---|
| 2076 | call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
|---|
| 2077 | call slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1,km) |
|---|
| 2078 | do k = 1, km |
|---|
| 2079 | tmp(k) = max((qr(k)+qr2(k)), 1.E-15) |
|---|
| 2080 | IF ( tmp(k) .gt. 1.e-15 ) THEN |
|---|
| 2081 | wa(k) = (wa(k)*qr(k) + wa2(k)*qr2(k))/tmp(k) |
|---|
| 2082 | ELSE |
|---|
| 2083 | wa(k) = 0. |
|---|
| 2084 | ENDIF |
|---|
| 2085 | enddo |
|---|
| 2086 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
|---|
| 2087 | do k=1,km |
|---|
| 2088 | !#ifdef DEBUG |
|---|
| 2089 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k), & |
|---|
| 2090 | ! ww(k),wa(k) |
|---|
| 2091 | !#endif |
|---|
| 2092 | ! mean wind is average of departure and new arrival winds |
|---|
| 2093 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
|---|
| 2094 | enddo |
|---|
| 2095 | was(:) = wa(:) |
|---|
| 2096 | n=n+1 |
|---|
| 2097 | go to 100 |
|---|
| 2098 | endif |
|---|
| 2099 | ist_loop : do ist = 1, 2 |
|---|
| 2100 | if (ist.eq.2) then |
|---|
| 2101 | qa(:) = qa2(:) |
|---|
| 2102 | endif |
|---|
| 2103 | ! |
|---|
| 2104 | precip(i) = 0. |
|---|
| 2105 | ! |
|---|
| 2106 | ! estimate values at arrival cell interface with monotone |
|---|
| 2107 | do k=2,km |
|---|
| 2108 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
|---|
| 2109 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
|---|
| 2110 | if( dip*dim.le.0.0 ) then |
|---|
| 2111 | qmi(k)=qa(k) |
|---|
| 2112 | qpi(k)=qa(k) |
|---|
| 2113 | else |
|---|
| 2114 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
|---|
| 2115 | qmi(k)=2.0*qa(k)-qpi(k) |
|---|
| 2116 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
|---|
| 2117 | qpi(k) = qa(k) |
|---|
| 2118 | qmi(k) = qa(k) |
|---|
| 2119 | endif |
|---|
| 2120 | endif |
|---|
| 2121 | enddo |
|---|
| 2122 | qpi(1)=qa(1) |
|---|
| 2123 | qmi(1)=qa(1) |
|---|
| 2124 | qmi(km+1)=qa(km+1) |
|---|
| 2125 | qpi(km+1)=qa(km+1) |
|---|
| 2126 | ! |
|---|
| 2127 | ! interpolation to regular point |
|---|
| 2128 | qn = 0.0 |
|---|
| 2129 | kb=1 |
|---|
| 2130 | kt=1 |
|---|
| 2131 | intp : do k=1,km |
|---|
| 2132 | kb=max(kb-1,1) |
|---|
| 2133 | kt=max(kt-1,1) |
|---|
| 2134 | ! find kb and kt |
|---|
| 2135 | if( zi(k).ge.za(km+1) ) then |
|---|
| 2136 | exit intp |
|---|
| 2137 | else |
|---|
| 2138 | find_kb : do kk=kb,km |
|---|
| 2139 | if( zi(k).le.za(kk+1) ) then |
|---|
| 2140 | kb = kk |
|---|
| 2141 | exit find_kb |
|---|
| 2142 | else |
|---|
| 2143 | cycle find_kb |
|---|
| 2144 | endif |
|---|
| 2145 | enddo find_kb |
|---|
| 2146 | find_kt : do kk=kt,km |
|---|
| 2147 | if( zi(k+1).le.za(kk) ) then |
|---|
| 2148 | kt = kk |
|---|
| 2149 | exit find_kt |
|---|
| 2150 | else |
|---|
| 2151 | cycle find_kt |
|---|
| 2152 | endif |
|---|
| 2153 | enddo find_kt |
|---|
| 2154 | kt = kt - 1 |
|---|
| 2155 | ! compute q with piecewise constant method |
|---|
| 2156 | if( kt.eq.kb ) then |
|---|
| 2157 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 2158 | th=(zi(k+1)-za(kb))/dza(kb) |
|---|
| 2159 | tl2=tl*tl |
|---|
| 2160 | th2=th*th |
|---|
| 2161 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 2162 | qqh=qqd*th2+qmi(kb)*th |
|---|
| 2163 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 2164 | qn(k) = (qqh-qql)/(th-tl) |
|---|
| 2165 | else if( kt.gt.kb ) then |
|---|
| 2166 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 2167 | tl2=tl*tl |
|---|
| 2168 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 2169 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 2170 | dql = qa(kb)-qql |
|---|
| 2171 | zsum = (1.-tl)*dza(kb) |
|---|
| 2172 | qsum = dql*dza(kb) |
|---|
| 2173 | if( kt-kb.gt.1 ) then |
|---|
| 2174 | do m=kb+1,kt-1 |
|---|
| 2175 | zsum = zsum + dza(m) |
|---|
| 2176 | qsum = qsum + qa(m) * dza(m) |
|---|
| 2177 | enddo |
|---|
| 2178 | endif |
|---|
| 2179 | th=(zi(k+1)-za(kt))/dza(kt) |
|---|
| 2180 | th2=th*th |
|---|
| 2181 | qqd=0.5*(qpi(kt)-qmi(kt)) |
|---|
| 2182 | dqh=qqd*th2+qmi(kt)*th |
|---|
| 2183 | zsum = zsum + th*dza(kt) |
|---|
| 2184 | qsum = qsum + dqh*dza(kt) |
|---|
| 2185 | qn(k) = qsum/zsum |
|---|
| 2186 | endif |
|---|
| 2187 | cycle intp |
|---|
| 2188 | endif |
|---|
| 2189 | ! |
|---|
| 2190 | enddo intp |
|---|
| 2191 | ! |
|---|
| 2192 | ! rain out |
|---|
| 2193 | sum_precip: do k=1,km |
|---|
| 2194 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
|---|
| 2195 | precip(i) = precip(i) + qa(k)*dza(k) |
|---|
| 2196 | cycle sum_precip |
|---|
| 2197 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
|---|
| 2198 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
|---|
| 2199 | exit sum_precip |
|---|
| 2200 | endif |
|---|
| 2201 | exit sum_precip |
|---|
| 2202 | enddo sum_precip |
|---|
| 2203 | ! |
|---|
| 2204 | ! replace the new values |
|---|
| 2205 | if(ist.eq.1) then |
|---|
| 2206 | rql(i,:) = qn(:) |
|---|
| 2207 | precip1(i) = precip(i) |
|---|
| 2208 | else |
|---|
| 2209 | rql2(i,:) = qn(:) |
|---|
| 2210 | precip2(i) = precip(i) |
|---|
| 2211 | endif |
|---|
| 2212 | enddo ist_loop |
|---|
| 2213 | ! |
|---|
| 2214 | ! ---------------------------------- |
|---|
| 2215 | enddo i_loop |
|---|
| 2216 | ! |
|---|
| 2217 | END SUBROUTINE nislfv_rain_plm6 |
|---|
| 2218 | END MODULE module_mp_wsm6 |
|---|