| 1 | #if ( RWORDSIZE == 4 ) |
|---|
| 2 | # define VREC vsrec |
|---|
| 3 | # define VSQRT vssqrt |
|---|
| 4 | #else |
|---|
| 5 | # define VREC vrec |
|---|
| 6 | # define VSQRT vsqrt |
|---|
| 7 | #endif |
|---|
| 8 | |
|---|
| 9 | !Including inline expansion statistical function |
|---|
| 10 | MODULE module_mp_wsm5 |
|---|
| 11 | ! |
|---|
| 12 | ! |
|---|
| 13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
|---|
| 14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
|---|
| 15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
|---|
| 16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
|---|
| 17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
|---|
| 18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
|---|
| 19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
|---|
| 20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
|---|
| 21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
|---|
| 22 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
|---|
| 23 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
|---|
| 24 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
|---|
| 25 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
|---|
| 26 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
|---|
| 27 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
|---|
| 28 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
|---|
| 31 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
|---|
| 32 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
|---|
| 33 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
|---|
| 34 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
|---|
| 35 | REAL, SAVE :: & |
|---|
| 36 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
|---|
| 37 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
|---|
| 38 | precr1,precr2,xmmax,roqimax,bvts1, & |
|---|
| 39 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
|---|
| 40 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
|---|
| 41 | pidn0s,xlv1,pacrc, & |
|---|
| 42 | rslopermax,rslopesmax,rslopegmax, & |
|---|
| 43 | rsloperbmax,rslopesbmax,rslopegbmax, & |
|---|
| 44 | rsloper2max,rslopes2max,rslopeg2max, & |
|---|
| 45 | rsloper3max,rslopes3max,rslopeg3max |
|---|
| 46 | ! |
|---|
| 47 | ! Specifies code-inlining of fpvs function in WSM52D below. JM 20040507 |
|---|
| 48 | ! |
|---|
| 49 | CONTAINS |
|---|
| 50 | !=================================================================== |
|---|
| 51 | ! |
|---|
| 52 | SUBROUTINE wsm5(th, q, qc, qr, qi, qs & |
|---|
| 53 | ,den, pii, p, delz & |
|---|
| 54 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 55 | ,ep1, ep2, qmin & |
|---|
| 56 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 57 | ,cliq,cice,psat & |
|---|
| 58 | ,rain, rainncv & |
|---|
| 59 | ,snow, snowncv & |
|---|
| 60 | ,sr & |
|---|
| 61 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 62 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 63 | ,its,ite, jts,jte, kts,kte & |
|---|
| 64 | ) |
|---|
| 65 | #ifdef _OPENMP |
|---|
| 66 | use omp_lib |
|---|
| 67 | #endif |
|---|
| 68 | !------------------------------------------------------------------- |
|---|
| 69 | IMPLICIT NONE |
|---|
| 70 | !------------------------------------------------------------------- |
|---|
| 71 | ! |
|---|
| 72 | ! This code is a 5-class mixed ice microphyiscs scheme (WSM5) of the WRF |
|---|
| 73 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
|---|
| 74 | ! number concentration is a function of temperature, and seperate assumption |
|---|
| 75 | ! is developed, in which ice crystal number concentration is a function |
|---|
| 76 | ! of ice amount. A theoretical background of the ice-microphysics and related |
|---|
| 77 | ! processes in the WSMMPs are described in Hong et al. (2004). |
|---|
| 78 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
|---|
| 79 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
|---|
| 80 | ! |
|---|
| 81 | ! WSM5 cloud scheme |
|---|
| 82 | ! |
|---|
| 83 | ! Coded by Song-You Hong (Yonsei Univ.) |
|---|
| 84 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
|---|
| 85 | ! Summer 2002 |
|---|
| 86 | ! |
|---|
| 87 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
|---|
| 88 | ! Summer 2003 |
|---|
| 89 | ! |
|---|
| 90 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
|---|
| 91 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
|---|
| 92 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
|---|
| 93 | ! |
|---|
| 94 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 95 | ims,ime, jms,jme, kms,kme , & |
|---|
| 96 | its,ite, jts,jte, kts,kte |
|---|
| 97 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 98 | INTENT(INOUT) :: & |
|---|
| 99 | th, & |
|---|
| 100 | q, & |
|---|
| 101 | qc, & |
|---|
| 102 | qi, & |
|---|
| 103 | qr, & |
|---|
| 104 | qs |
|---|
| 105 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 106 | INTENT(IN ) :: & |
|---|
| 107 | den, & |
|---|
| 108 | pii, & |
|---|
| 109 | p, & |
|---|
| 110 | delz |
|---|
| 111 | REAL, INTENT(IN ) :: delt, & |
|---|
| 112 | g, & |
|---|
| 113 | rd, & |
|---|
| 114 | rv, & |
|---|
| 115 | t0c, & |
|---|
| 116 | den0, & |
|---|
| 117 | cpd, & |
|---|
| 118 | cpv, & |
|---|
| 119 | ep1, & |
|---|
| 120 | ep2, & |
|---|
| 121 | qmin, & |
|---|
| 122 | XLS, & |
|---|
| 123 | XLV0, & |
|---|
| 124 | XLF0, & |
|---|
| 125 | cliq, & |
|---|
| 126 | cice, & |
|---|
| 127 | psat, & |
|---|
| 128 | denr |
|---|
| 129 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 130 | INTENT(INOUT) :: rain, & |
|---|
| 131 | rainncv, & |
|---|
| 132 | sr |
|---|
| 133 | |
|---|
| 134 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 135 | INTENT(INOUT) :: snow, & |
|---|
| 136 | snowncv |
|---|
| 137 | |
|---|
| 138 | ! LOCAL VAR |
|---|
| 139 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
|---|
| 140 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs |
|---|
| 141 | CHARACTER*256 :: emess |
|---|
| 142 | INTEGER :: mkx_test |
|---|
| 143 | INTEGER :: i,j,k |
|---|
| 144 | |
|---|
| 145 | #ifdef _ACCEL_PROF |
|---|
| 146 | INTEGER :: l |
|---|
| 147 | real*8 wsm3_t(8,256), wsm5_t(8,256), t1, t2 |
|---|
| 148 | common /wsm_times/ wsm3_t(8,256), wsm5_t(8,256) |
|---|
| 149 | #endif |
|---|
| 150 | |
|---|
| 151 | |
|---|
| 152 | !------------------------------------------------------------------- |
|---|
| 153 | |
|---|
| 154 | #ifdef _ACCEL_PROF |
|---|
| 155 | call cpu_time(t1) |
|---|
| 156 | #endif |
|---|
| 157 | |
|---|
| 158 | #ifndef RUN_ON_GPU |
|---|
| 159 | |
|---|
| 160 | #ifdef _ACCEL |
|---|
| 161 | |
|---|
| 162 | ! Need to send th, pii, qc, qi, qr, qs |
|---|
| 163 | ! Don't send t |
|---|
| 164 | |
|---|
| 165 | CALL wsm52D(th, pii, q, qc, qr, qi, qs & |
|---|
| 166 | ,den & |
|---|
| 167 | ,p, delz & |
|---|
| 168 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 169 | ,ep1, ep2, qmin & |
|---|
| 170 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 171 | ,cliq,cice,psat & |
|---|
| 172 | ,rain,rainncv & |
|---|
| 173 | ,sr & |
|---|
| 174 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 175 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 176 | ,its,ite, jts,jte, kts,kte & |
|---|
| 177 | ,snow,snowncv & |
|---|
| 178 | ) |
|---|
| 179 | |
|---|
| 180 | #else |
|---|
| 181 | |
|---|
| 182 | DO j=jts,jte |
|---|
| 183 | DO k=kts,kte |
|---|
| 184 | DO i=its,ite |
|---|
| 185 | t(i,k)=th(i,k,j)*pii(i,k,j) |
|---|
| 186 | qci(i,k,1) = qc(i,k,j) |
|---|
| 187 | qci(i,k,2) = qi(i,k,j) |
|---|
| 188 | qrs(i,k,1) = qr(i,k,j) |
|---|
| 189 | qrs(i,k,2) = qs(i,k,j) |
|---|
| 190 | ENDDO |
|---|
| 191 | ENDDO |
|---|
| 192 | |
|---|
| 193 | ! Sending array starting locations of optional variables may cause |
|---|
| 194 | ! troubles, so we explicitly change the call. |
|---|
| 195 | |
|---|
| 196 | CALL wsm52D(t, q(ims,kms,j), qci, qrs & |
|---|
| 197 | ,den(ims,kms,j) & |
|---|
| 198 | ,p(ims,kms,j), delz(ims,kms,j) & |
|---|
| 199 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 200 | ,ep1, ep2, qmin & |
|---|
| 201 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 202 | ,cliq,cice,psat & |
|---|
| 203 | ,j & |
|---|
| 204 | ,rain(ims,j),rainncv(ims,j) & |
|---|
| 205 | ,sr(ims,j) & |
|---|
| 206 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 207 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 208 | ,its,ite, jts,jte, kts,kte & |
|---|
| 209 | ,snow,snowncv & |
|---|
| 210 | ) |
|---|
| 211 | |
|---|
| 212 | DO K=kts,kte |
|---|
| 213 | DO I=its,ite |
|---|
| 214 | th(i,k,j)=t(i,k)/pii(i,k,j) |
|---|
| 215 | qc(i,k,j) = qci(i,k,1) |
|---|
| 216 | qi(i,k,j) = qci(i,k,2) |
|---|
| 217 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 218 | qs(i,k,j) = qrs(i,k,2) |
|---|
| 219 | ENDDO |
|---|
| 220 | ENDDO |
|---|
| 221 | ENDDO |
|---|
| 222 | #endif |
|---|
| 223 | #else |
|---|
| 224 | CALL get_wsm5_gpu_levels ( mkx_test ) |
|---|
| 225 | IF ( mkx_test .LT. kte ) THEN |
|---|
| 226 | WRITE(emess,*)'Number of levels compiled for GPU WSM5 too small. ', & |
|---|
| 227 | mkx_test,' < ',kte |
|---|
| 228 | CALL wrf_error_fatal(emess) |
|---|
| 229 | ENDIF |
|---|
| 230 | CALL wsm5_host ( & |
|---|
| 231 | th(its:ite,kts:kte,jts:jte), pii(its:ite,kts:kte,jts:jte) & |
|---|
| 232 | ,q(its:ite,kts:kte,jts:jte), qc(its:ite,kts:kte,jts:jte) & |
|---|
| 233 | ,qi(its:ite,kts:kte,jts:jte), qr(its:ite,kts:kte,jts:jte) & |
|---|
| 234 | ,qs(its:ite,kts:kte,jts:jte), den(its:ite,kts:kte,jts:jte) & |
|---|
| 235 | ,p(its:ite,kts:kte,jts:jte), delz(its:ite,kts:kte,jts:jte) & |
|---|
| 236 | ,delt & |
|---|
| 237 | ,rain(its:ite,jts:jte),rainncv(its:ite,jts:jte) & |
|---|
| 238 | ,snow(its:ite,jts:jte),snowncv(its:ite,jts:jte) & |
|---|
| 239 | ,sr(its:ite,jts:jte) & |
|---|
| 240 | ,its, ite, jts, jte, kts, kte & |
|---|
| 241 | ,its, ite, jts, jte, kts, kte & |
|---|
| 242 | ,its, ite, jts, jte, kts, kte & |
|---|
| 243 | ) |
|---|
| 244 | #endif |
|---|
| 245 | |
|---|
| 246 | |
|---|
| 247 | #ifdef _ACCEL_PROF |
|---|
| 248 | call cpu_time(t2) |
|---|
| 249 | #ifdef _OPENMP |
|---|
| 250 | l = omp_get_thread_num() + 1 |
|---|
| 251 | #else |
|---|
| 252 | l = 1 |
|---|
| 253 | #endif |
|---|
| 254 | wsm5_t(1,l) = wsm5_t(1,l) + (t2 - t1) |
|---|
| 255 | #endif |
|---|
| 256 | |
|---|
| 257 | END SUBROUTINE wsm5 |
|---|
| 258 | |
|---|
| 259 | |
|---|
| 260 | #ifdef _ACCEL |
|---|
| 261 | |
|---|
| 262 | !=================================================================== |
|---|
| 263 | ! |
|---|
| 264 | SUBROUTINE wsm52D(th, pii, q, qc, qr, qi, qqs, den, p, delz & |
|---|
| 265 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 266 | ,ep1, ep2, qmin & |
|---|
| 267 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 268 | ,cliq,cice,psat & |
|---|
| 269 | ,rain,rainncv & |
|---|
| 270 | ,sr & |
|---|
| 271 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 272 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 273 | ,its,ite, jts,jte, kts,kte & |
|---|
| 274 | ,snow,snowncv & |
|---|
| 275 | ) |
|---|
| 276 | !------------------------------------------------------------------- |
|---|
| 277 | IMPLICIT NONE |
|---|
| 278 | !------------------------------------------------------------------- |
|---|
| 279 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 280 | ims,ime, jms,jme, kms,kme , & |
|---|
| 281 | its,ite, jts,jte, kts,kte |
|---|
| 282 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 283 | INTENT(INOUT) :: & |
|---|
| 284 | th |
|---|
| 285 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 286 | INTENT(IN) :: & |
|---|
| 287 | pii |
|---|
| 288 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 289 | INTENT(INOUT) :: & |
|---|
| 290 | qc, & |
|---|
| 291 | qr, & |
|---|
| 292 | qi, & |
|---|
| 293 | qqs |
|---|
| 294 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 295 | INTENT(INOUT) :: & |
|---|
| 296 | q |
|---|
| 297 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 298 | INTENT(IN ) :: & |
|---|
| 299 | den, & |
|---|
| 300 | p, & |
|---|
| 301 | delz |
|---|
| 302 | REAL, INTENT(IN ) :: delt, & |
|---|
| 303 | g, & |
|---|
| 304 | cpd, & |
|---|
| 305 | cpv, & |
|---|
| 306 | t0c, & |
|---|
| 307 | den0, & |
|---|
| 308 | rd, & |
|---|
| 309 | rv, & |
|---|
| 310 | ep1, & |
|---|
| 311 | ep2, & |
|---|
| 312 | qmin, & |
|---|
| 313 | XLS, & |
|---|
| 314 | XLV0, & |
|---|
| 315 | XLF0, & |
|---|
| 316 | cliq, & |
|---|
| 317 | cice, & |
|---|
| 318 | psat, & |
|---|
| 319 | denr |
|---|
| 320 | REAL, DIMENSION( ims:ime, jms:jme ), & |
|---|
| 321 | INTENT(INOUT) :: rain, & |
|---|
| 322 | rainncv, & |
|---|
| 323 | sr |
|---|
| 324 | |
|---|
| 325 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
|---|
| 326 | INTENT(INOUT) :: snow, & |
|---|
| 327 | snowncv |
|---|
| 328 | |
|---|
| 329 | ! LOCAL VAR |
|---|
| 330 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
|---|
| 331 | rh, & |
|---|
| 332 | qs, & |
|---|
| 333 | rslope, & |
|---|
| 334 | rslope2, & |
|---|
| 335 | rslope3, & |
|---|
| 336 | rslopeb, & |
|---|
| 337 | falk, & |
|---|
| 338 | fall, & |
|---|
| 339 | work1 |
|---|
| 340 | REAL, DIMENSION( its:ite , kts:kte, jts:jte ) :: & |
|---|
| 341 | t |
|---|
| 342 | REAL, DIMENSION( its:ite , kts:kte , 2 ) :: & |
|---|
| 343 | qci, & |
|---|
| 344 | qrs |
|---|
| 345 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 346 | falkc, & |
|---|
| 347 | fallc, & |
|---|
| 348 | xl, & |
|---|
| 349 | cpm, & |
|---|
| 350 | denfac, & |
|---|
| 351 | xni, & |
|---|
| 352 | n0sfac, & |
|---|
| 353 | work2, & |
|---|
| 354 | work1c, & |
|---|
| 355 | work2c |
|---|
| 356 | |
|---|
| 357 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 358 | pigen, & |
|---|
| 359 | pidep, & |
|---|
| 360 | psdep, & |
|---|
| 361 | praut, & |
|---|
| 362 | psaut, & |
|---|
| 363 | prevp, & |
|---|
| 364 | psevp, & |
|---|
| 365 | pracw, & |
|---|
| 366 | psacw, & |
|---|
| 367 | psaci, & |
|---|
| 368 | pcond, & |
|---|
| 369 | psmlt |
|---|
| 370 | INTEGER :: & |
|---|
| 371 | mstep, & |
|---|
| 372 | numdt |
|---|
| 373 | REAL :: rmstep |
|---|
| 374 | REAL dtcldden, rdelz, rdtcld |
|---|
| 375 | LOGICAL :: flgcld |
|---|
| 376 | |
|---|
| 377 | #define WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 378 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 379 | REAL :: xal, xbl |
|---|
| 380 | #endif |
|---|
| 381 | |
|---|
| 382 | REAL :: pi, & |
|---|
| 383 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
|---|
| 384 | viscos, xka, venfac, conden, diffac, & |
|---|
| 385 | x, y, z, a, b, c, d, e, & |
|---|
| 386 | qdt, holdrr, holdrs, supcol, supcolt, pvt, & |
|---|
| 387 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
|---|
| 388 | vt2i,vt2s,acrfac, & |
|---|
| 389 | qimax, diameter, xni0, roqi0, & |
|---|
| 390 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
|---|
| 391 | value, xlf, pfrzdtc, pfrzdtr, supice, holdc, holdci |
|---|
| 392 | ! variables for optimization |
|---|
| 393 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 394 | REAL :: temp |
|---|
| 395 | INTEGER :: i, j, k, & |
|---|
| 396 | iprt, latd, lond, loop, loops, ifsat, n |
|---|
| 397 | ! Temporaries used for inlining fpvs function |
|---|
| 398 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 399 | REAL :: logtr |
|---|
| 400 | ! |
|---|
| 401 | !================================================================= |
|---|
| 402 | ! compute internal functions |
|---|
| 403 | ! |
|---|
| 404 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 405 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 406 | !---------------------------------------------------------------- |
|---|
| 407 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 408 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 409 | ! |
|---|
| 410 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 411 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 412 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 413 | ! |
|---|
| 414 | !---------------------------------------------------------------- |
|---|
| 415 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 416 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 417 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
|---|
| 418 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 419 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 420 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 421 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 422 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 423 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 424 | ! |
|---|
| 425 | ! |
|---|
| 426 | pi = 4. * atan(1.) |
|---|
| 427 | ! |
|---|
| 428 | !---------------------------------------------------------------- |
|---|
| 429 | ! paddint 0 for negative values generated by dynamics |
|---|
| 430 | ! |
|---|
| 431 | |
|---|
| 432 | ! |
|---|
| 433 | ! Moved outside of accelerator region |
|---|
| 434 | ! |
|---|
| 435 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 436 | dtcld = delt/loops |
|---|
| 437 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 438 | ! |
|---|
| 439 | |
|---|
| 440 | !....!$acc local(t) & |
|---|
| 441 | |
|---|
| 442 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
|---|
| 443 | |
|---|
| 444 | !$acc region & |
|---|
| 445 | !$acc local(t) & |
|---|
| 446 | !$acc copyin(delz(:,:,:),p(:,:,:),den(:,:,:),pii(:,:,:)) & |
|---|
| 447 | !$acc copyout(snowncv(:,:),rainncv(:,:),sr(:,:)) & |
|---|
| 448 | !$acc copy(qqs(:,:,:),qr(:,:,:),qi(:,:,:),qc(:,:,:)) & |
|---|
| 449 | !$acc copy(th(:,:,:),q(:,:,:),snow(:,:),rain(:,:)) |
|---|
| 450 | !$acc do & |
|---|
| 451 | !$acc private(rh,qs,rslope,rslope2,rslope3,rslopeb,falk,fall) & |
|---|
| 452 | !$acc private(work1,qci,qrs,falkc,fallc,xl,cpm,denfac,xni) & |
|---|
| 453 | !$acc private(n0sfac,work2,work1c,work2c,pigen,pidep,psdep) & |
|---|
| 454 | !$acc private(praut,psaut,prevp,psevp) & |
|---|
| 455 | !$acc private(pracw,psacw,psaci,pcond,psmlt) & |
|---|
| 456 | !$acc parallel |
|---|
| 457 | do j = jts, jte |
|---|
| 458 | !$acc do & |
|---|
| 459 | !$acc private(numdt,mstep) & |
|---|
| 460 | !$acc kernel vector |
|---|
| 461 | do i = its, ite |
|---|
| 462 | do k = kts, kte |
|---|
| 463 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
|---|
| 464 | qci(i,k,1) = max(qc(i,k,j),0.0) |
|---|
| 465 | qci(i,k,2) = max(qi(i,k,j),0.0) |
|---|
| 466 | qrs(i,k,1) = max(qr(i,k,j),0.0) |
|---|
| 467 | qrs(i,k,2) = max(qqs(i,k,j),0.0) |
|---|
| 468 | enddo |
|---|
| 469 | ! |
|---|
| 470 | !---------------------------------------------------------------- |
|---|
| 471 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 472 | ! changes during microphysical process calculation |
|---|
| 473 | ! emanuel(1994) |
|---|
| 474 | ! |
|---|
| 475 | do k = kts, kte |
|---|
| 476 | cpm(i,k) = cpmcal(q(i,k,j)) |
|---|
| 477 | xl(i,k) = xlcal(t(i,k,j)) |
|---|
| 478 | enddo |
|---|
| 479 | ! |
|---|
| 480 | !---------------------------------------------------------------- |
|---|
| 481 | ! compute the minor time steps. |
|---|
| 482 | ! |
|---|
| 483 | ! loops = max(nint(delt/dtcldcr),1) |
|---|
| 484 | ! dtcld = delt/loops |
|---|
| 485 | ! if(delt.le.dtcldcr) dtcld = delt |
|---|
| 486 | ! |
|---|
| 487 | do loop = 1,loops |
|---|
| 488 | ! |
|---|
| 489 | !---------------------------------------------------------------- |
|---|
| 490 | ! initialize the large scale variables |
|---|
| 491 | ! |
|---|
| 492 | mstep = 1 |
|---|
| 493 | flgcld = .true. |
|---|
| 494 | ! |
|---|
| 495 | do k = kts, kte |
|---|
| 496 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
|---|
| 497 | enddo |
|---|
| 498 | ! do k = kts, kte |
|---|
| 499 | ! CALL VREC( tvec1(its), den(its,k,j), ite-its+1) |
|---|
| 500 | ! do i = its, ite |
|---|
| 501 | ! tvec1(i) = tvec1(i)*den0 |
|---|
| 502 | ! enddo |
|---|
| 503 | ! CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 504 | ! enddo |
|---|
| 505 | ! |
|---|
| 506 | ! Inline expansion for fpvs |
|---|
| 507 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 508 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 509 | hsub = xls |
|---|
| 510 | hvap = xlv0 |
|---|
| 511 | cvap = cpv |
|---|
| 512 | ttp=t0c+0.01 |
|---|
| 513 | dldt=cvap-cliq |
|---|
| 514 | xa=-dldt/rv |
|---|
| 515 | xb=xa+hvap/(rv*ttp) |
|---|
| 516 | dldti=cvap-cice |
|---|
| 517 | xai=-dldti/rv |
|---|
| 518 | xbi=xai+hsub/(rv*ttp) |
|---|
| 519 | |
|---|
| 520 | ! this is for compilers where the conditional inhibits vectorization |
|---|
| 521 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 522 | do k = kts, kte |
|---|
| 523 | if(t(i,k,j).lt.ttp) then |
|---|
| 524 | xal = xai |
|---|
| 525 | xbl = xbi |
|---|
| 526 | else |
|---|
| 527 | xal = xa |
|---|
| 528 | xbl = xb |
|---|
| 529 | endif |
|---|
| 530 | tr=ttp/t(i,k,j) |
|---|
| 531 | logtr=log(tr) |
|---|
| 532 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 533 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 534 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 535 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
|---|
| 536 | qs(i,k,2)=psat*exp(logtr*(xal)+xbl*(1.-tr)) |
|---|
| 537 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
|---|
| 538 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 539 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
|---|
| 540 | enddo |
|---|
| 541 | #else |
|---|
| 542 | do k = kts, kte |
|---|
| 543 | tr=ttp/t(i,k,j) |
|---|
| 544 | logtr=log(tr) |
|---|
| 545 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 546 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 547 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 548 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
|---|
| 549 | if(t(i,k,j).lt.ttp) then |
|---|
| 550 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
|---|
| 551 | else |
|---|
| 552 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 553 | endif |
|---|
| 554 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
|---|
| 555 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 556 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
|---|
| 557 | enddo |
|---|
| 558 | #endif |
|---|
| 559 | |
|---|
| 560 | ! |
|---|
| 561 | !---------------------------------------------------------------- |
|---|
| 562 | ! initialize the variables for microphysical physics |
|---|
| 563 | ! |
|---|
| 564 | ! |
|---|
| 565 | do k = kts, kte |
|---|
| 566 | prevp(i,k) = 0. |
|---|
| 567 | psdep(i,k) = 0. |
|---|
| 568 | praut(i,k) = 0. |
|---|
| 569 | psaut(i,k) = 0. |
|---|
| 570 | pracw(i,k) = 0. |
|---|
| 571 | psaci(i,k) = 0. |
|---|
| 572 | psacw(i,k) = 0. |
|---|
| 573 | pigen(i,k) = 0. |
|---|
| 574 | pidep(i,k) = 0. |
|---|
| 575 | pcond(i,k) = 0. |
|---|
| 576 | psmlt(i,k) = 0. |
|---|
| 577 | psevp(i,k) = 0. |
|---|
| 578 | falk(i,k,1) = 0. |
|---|
| 579 | falk(i,k,2) = 0. |
|---|
| 580 | fall(i,k,1) = 0. |
|---|
| 581 | fall(i,k,2) = 0. |
|---|
| 582 | fallc(i,k) = 0. |
|---|
| 583 | falkc(i,k) = 0. |
|---|
| 584 | xni(i,k) = 1.e3 |
|---|
| 585 | enddo |
|---|
| 586 | ! |
|---|
| 587 | !---------------------------------------------------------------- |
|---|
| 588 | ! compute the fallout term: |
|---|
| 589 | ! first, vertical terminal velosity for minor loops |
|---|
| 590 | ! |
|---|
| 591 | do k = kts, kte |
|---|
| 592 | supcol = t0c-t(i,k,j) |
|---|
| 593 | !--------------------------------------------------------------- |
|---|
| 594 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 595 | !--------------------------------------------------------------- |
|---|
| 596 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 597 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 598 | rslope(i,k,1) = rslopermax |
|---|
| 599 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 600 | rslope2(i,k,1) = rsloper2max |
|---|
| 601 | rslope3(i,k,1) = rsloper3max |
|---|
| 602 | else |
|---|
| 603 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
|---|
| 604 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 605 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 606 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 607 | endif |
|---|
| 608 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 609 | rslope(i,k,2) = rslopesmax |
|---|
| 610 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 611 | rslope2(i,k,2) = rslopes2max |
|---|
| 612 | rslope3(i,k,2) = rslopes3max |
|---|
| 613 | else |
|---|
| 614 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
|---|
| 615 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 616 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 617 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 618 | endif |
|---|
| 619 | !------------------------------------------------------------- |
|---|
| 620 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 621 | !------------------------------------------------------------- |
|---|
| 622 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 623 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 624 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
|---|
| 625 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 626 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 627 | enddo |
|---|
| 628 | ! |
|---|
| 629 | numdt = 1 |
|---|
| 630 | do k = kte, kts, -1 |
|---|
| 631 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k,j) |
|---|
| 632 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k,j) |
|---|
| 633 | numdt = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
|---|
| 634 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 635 | enddo |
|---|
| 636 | rmstep = 1./mstep |
|---|
| 637 | ! |
|---|
| 638 | do n = 1, mstep |
|---|
| 639 | k = kte |
|---|
| 640 | ! falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 641 | ! falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
|---|
| 642 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
|---|
| 643 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
|---|
| 644 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 645 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 646 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k,j),0.) |
|---|
| 647 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k,j),0.) |
|---|
| 648 | dtcldden = dtcld/den(i,k,j) |
|---|
| 649 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
|---|
| 650 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
|---|
| 651 | ! endif |
|---|
| 652 | do k = kte-1, kts, -1 |
|---|
| 653 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
|---|
| 654 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
|---|
| 655 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 656 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 657 | dtcldden = dtcld/den(i,k,j) |
|---|
| 658 | rdelz = 1./delz(i,k,j) |
|---|
| 659 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 660 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
|---|
| 661 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
|---|
| 662 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
|---|
| 663 | enddo |
|---|
| 664 | do k = kte, kts, -1 |
|---|
| 665 | if(t(i,k,j).gt.t0c.and.qrs(i,k,2).gt.0.) then |
|---|
| 666 | !---------------------------------------------------------------- |
|---|
| 667 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 668 | ! (T>T0: S->R) |
|---|
| 669 | !---------------------------------------------------------------- |
|---|
| 670 | xlf = xlf0 |
|---|
| 671 | ! work2(i,k)= venfac(p(i,k),t(i,k,j),den(i,k,j)) |
|---|
| 672 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
|---|
| 673 | /((t(i,k,j))+120.)/(den(i,k,j)))/(8.794e-5 & |
|---|
| 674 | *exp(log(t(i,k,j))*(1.81))/p(i,k,j)))) & |
|---|
| 675 | *((.3333333)))/sqrt((1.496e-6*((t(i,k,j)) & |
|---|
| 676 | *sqrt(t(i,k,j)))/((t(i,k,j))+120.)/(den(i,k,j)))) & |
|---|
| 677 | *sqrt(sqrt(den0/(den(i,k,j))))) |
|---|
| 678 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 679 | ! psmlt(i,k) = xka(t(i,k,j),den(i,k,j))/xlf*(t0c-t(i,k,j))*pi/2. & |
|---|
| 680 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 681 | ! *work2(i,k)*coeres) |
|---|
| 682 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
|---|
| 683 | /((t(i,k,j))+120.)/(den(i,k,j)) )*(den(i,k,j))) & |
|---|
| 684 | /xlf*(t0c-t(i,k,j))*pi/2. & |
|---|
| 685 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 686 | *work2(i,k)*coeres) |
|---|
| 687 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep, & |
|---|
| 688 | -qrs(i,k,2)/mstep),0.) |
|---|
| 689 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 690 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 691 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 692 | endif |
|---|
| 693 | enddo |
|---|
| 694 | enddo |
|---|
| 695 | |
|---|
| 696 | |
|---|
| 697 | !--------------------------------------------------------------- |
|---|
| 698 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 699 | !--------------------------------------------------------------- |
|---|
| 700 | mstep = 1 |
|---|
| 701 | numdt = 1 |
|---|
| 702 | do k = kte, kts, -1 |
|---|
| 703 | if(qci(i,k,2).le.0.) then |
|---|
| 704 | work2c(i,k) = 0. |
|---|
| 705 | else |
|---|
| 706 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 707 | ! diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 708 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 709 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 710 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
|---|
| 711 | endif |
|---|
| 712 | numdt = max(nint(work2c(i,k)*dtcld+.5),1) |
|---|
| 713 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 714 | enddo |
|---|
| 715 | ! |
|---|
| 716 | do n = 1, mstep |
|---|
| 717 | k = kte |
|---|
| 718 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
|---|
| 719 | holdc = falkc(i,k) |
|---|
| 720 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 721 | holdci = qci(i,k,2) |
|---|
| 722 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k,j),0.) |
|---|
| 723 | ! endif |
|---|
| 724 | do k = kte-1, kts, -1 |
|---|
| 725 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
|---|
| 726 | holdc = falkc(i,k) |
|---|
| 727 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 728 | holdci = qci(i,k,2) |
|---|
| 729 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
|---|
| 730 | *delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
|---|
| 731 | ! endif |
|---|
| 732 | enddo |
|---|
| 733 | enddo |
|---|
| 734 | ! |
|---|
| 735 | ! |
|---|
| 736 | !---------------------------------------------------------------- |
|---|
| 737 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 738 | ! |
|---|
| 739 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
|---|
| 740 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
|---|
| 741 | rainncv(i,j) = 0. |
|---|
| 742 | if(fallsum.gt.0.) then |
|---|
| 743 | rainncv(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. |
|---|
| 744 | rain(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. + rain(i,j) |
|---|
| 745 | endif |
|---|
| 746 | snowncv(i,j) = 0. |
|---|
| 747 | if(fallsum_qsi.gt.0.) then |
|---|
| 748 | snowncv(i,j) = fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. |
|---|
| 749 | snow(i,j) = fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. + snow(i,j) |
|---|
| 750 | endif |
|---|
| 751 | sr(i,j) = 0. |
|---|
| 752 | if(fallsum.gt.0.)sr(i,j)=fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. & |
|---|
| 753 | /(rainncv(i,j)+1.e-12) |
|---|
| 754 | ! |
|---|
| 755 | !--------------------------------------------------------------- |
|---|
| 756 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 757 | ! (T>T0: I->C) |
|---|
| 758 | !--------------------------------------------------------------- |
|---|
| 759 | do k = kts, kte |
|---|
| 760 | supcol = t0c-t(i,k,j) |
|---|
| 761 | xlf = xls-xl(i,k) |
|---|
| 762 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 763 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
|---|
| 764 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
|---|
| 765 | t(i,k,j) = t(i,k,j) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 766 | qci(i,k,2) = 0. |
|---|
| 767 | endif |
|---|
| 768 | !--------------------------------------------------------------- |
|---|
| 769 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 770 | ! (T<-40C: C->I) |
|---|
| 771 | !--------------------------------------------------------------- |
|---|
| 772 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
|---|
| 773 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 774 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 775 | qci(i,k,1) = 0. |
|---|
| 776 | endif |
|---|
| 777 | !--------------------------------------------------------------- |
|---|
| 778 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 779 | ! (T0>T>-40C: C->I) |
|---|
| 780 | !--------------------------------------------------------------- |
|---|
| 781 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
|---|
| 782 | supcolt=min(supcol,50.) |
|---|
| 783 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 784 | ! *den(i,k,j)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
|---|
| 785 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
|---|
| 786 | *den(i,k,j)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
|---|
| 787 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 788 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 789 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 790 | endif |
|---|
| 791 | !--------------------------------------------------------------- |
|---|
| 792 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 793 | ! (T<T0, R->S) |
|---|
| 794 | !--------------------------------------------------------------- |
|---|
| 795 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
|---|
| 796 | supcolt=min(supcol,50.) |
|---|
| 797 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k,j) & |
|---|
| 798 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
|---|
| 799 | ! qrs(i,k,1)) |
|---|
| 800 | temp = rslope(i,k,1) |
|---|
| 801 | temp = temp*temp*temp*temp*temp*temp*temp |
|---|
| 802 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k,j) & |
|---|
| 803 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
|---|
| 804 | qrs(i,k,1)) |
|---|
| 805 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
|---|
| 806 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 807 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 808 | endif |
|---|
| 809 | enddo |
|---|
| 810 | ! |
|---|
| 811 | !---------------------------------------------------------------- |
|---|
| 812 | ! rsloper: reverse of the slope parameter of the rain(m) |
|---|
| 813 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 814 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 815 | ! heat conduction and vapor diffusion |
|---|
| 816 | ! (ry88, y93, h85) |
|---|
| 817 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 818 | ! |
|---|
| 819 | do k = kts, kte |
|---|
| 820 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 821 | rslope(i,k,1) = rslopermax |
|---|
| 822 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 823 | rslope2(i,k,1) = rsloper2max |
|---|
| 824 | rslope3(i,k,1) = rsloper3max |
|---|
| 825 | else |
|---|
| 826 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
|---|
| 827 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k,j)))))) |
|---|
| 828 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 829 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 830 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 831 | endif |
|---|
| 832 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 833 | rslope(i,k,2) = rslopesmax |
|---|
| 834 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 835 | rslope2(i,k,2) = rslopes2max |
|---|
| 836 | rslope3(i,k,2) = rslopes3max |
|---|
| 837 | else |
|---|
| 838 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
|---|
| 839 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
|---|
| 840 | *(den(i,k,j)))))) |
|---|
| 841 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 842 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 843 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 844 | endif |
|---|
| 845 | enddo |
|---|
| 846 | ! |
|---|
| 847 | do k = kts, kte |
|---|
| 848 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,1)) |
|---|
| 849 | work1(i,k,1) = ((((den(i,k,j))*(xl(i,k))*(xl(i,k)))*((t(i,k,j))+120.) & |
|---|
| 850 | *(den(i,k,j)))/(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))& |
|---|
| 851 | *(den(i,k,j))*(rv*(t(i,k,j))*(t(i,k,j))))) & |
|---|
| 852 | + p(i,k,j)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k,j))*(1.81)))) |
|---|
| 853 | ! work1(i,k,2) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,2)) |
|---|
| 854 | work1(i,k,2) = ((((den(i,k,j))*(xls)*(xls))*((t(i,k,j))+120.)*(den(i,k,j)))& |
|---|
| 855 | /(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))*(den(i,k,j)) & |
|---|
| 856 | *(rv*(t(i,k,j))*(t(i,k,j)))) & |
|---|
| 857 | + p(i,k,j)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k,j))*(1.81))))) |
|---|
| 858 | ! work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
|---|
| 859 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k,j))*sqrt(t(i,k,j)))) & |
|---|
| 860 | *p(i,k,j))/(((t(i,k,j))+120.)*den(i,k,j)*(8.794e-5 & |
|---|
| 861 | *exp(log(t(i,k,j))*(1.81))))))*sqrt(sqrt(den0/(den(i,k,j))))) & |
|---|
| 862 | /sqrt((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j)))) & |
|---|
| 863 | /(((t(i,k,j))+120.)*den(i,k,j))) |
|---|
| 864 | enddo |
|---|
| 865 | ! |
|---|
| 866 | !=============================================================== |
|---|
| 867 | ! |
|---|
| 868 | ! warm rain processes |
|---|
| 869 | ! |
|---|
| 870 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 871 | ! |
|---|
| 872 | !=============================================================== |
|---|
| 873 | ! |
|---|
| 874 | do k = kts, kte |
|---|
| 875 | supsat = max(q(i,k,j),qmin)-qs(i,k,1) |
|---|
| 876 | satdt = supsat/dtcld |
|---|
| 877 | !--------------------------------------------------------------- |
|---|
| 878 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 879 | ! (C->R) |
|---|
| 880 | !--------------------------------------------------------------- |
|---|
| 881 | if(qci(i,k,1).gt.qc0) then |
|---|
| 882 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
|---|
| 883 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
|---|
| 884 | endif |
|---|
| 885 | !--------------------------------------------------------------- |
|---|
| 886 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
|---|
| 887 | ! (C->R) |
|---|
| 888 | !--------------------------------------------------------------- |
|---|
| 889 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 890 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
|---|
| 891 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 892 | endif |
|---|
| 893 | !--------------------------------------------------------------- |
|---|
| 894 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 895 | ! (V->R or R->V) |
|---|
| 896 | !--------------------------------------------------------------- |
|---|
| 897 | if(qrs(i,k,1).gt.0.) then |
|---|
| 898 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 899 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
|---|
| 900 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 901 | if(prevp(i,k).lt.0.) then |
|---|
| 902 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 903 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 904 | else |
|---|
| 905 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 906 | endif |
|---|
| 907 | endif |
|---|
| 908 | enddo |
|---|
| 909 | ! |
|---|
| 910 | !=============================================================== |
|---|
| 911 | ! |
|---|
| 912 | ! cold rain processes |
|---|
| 913 | ! |
|---|
| 914 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 915 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 916 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 917 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 918 | ! concentration (ni), ice nuclei number concentration |
|---|
| 919 | ! (n0i), ice diameter (d) |
|---|
| 920 | ! |
|---|
| 921 | !=============================================================== |
|---|
| 922 | ! |
|---|
| 923 | rdtcld = 1./dtcld |
|---|
| 924 | do k = kts, kte |
|---|
| 925 | supcol = t0c-t(i,k,j) |
|---|
| 926 | supsat = max(q(i,k,j),qmin)-qs(i,k,2) |
|---|
| 927 | satdt = supsat/dtcld |
|---|
| 928 | ifsat = 0 |
|---|
| 929 | !------------------------------------------------------------- |
|---|
| 930 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 931 | !------------------------------------------------------------- |
|---|
| 932 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 933 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 934 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
|---|
| 935 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 936 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 937 | eacrs = exp(0.07*(-supcol)) |
|---|
| 938 | ! |
|---|
| 939 | if(supcol.gt.0) then |
|---|
| 940 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
|---|
| 941 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 942 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 943 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 944 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 945 | !------------------------------------------------------------- |
|---|
| 946 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
|---|
| 947 | ! (T<T0: I->S) |
|---|
| 948 | !------------------------------------------------------------- |
|---|
| 949 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 950 | +diameter**2*rslope(i,k,2) |
|---|
| 951 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 952 | *abs(vt2s-vt2i)*acrfac/4. |
|---|
| 953 | endif |
|---|
| 954 | endif |
|---|
| 955 | !------------------------------------------------------------- |
|---|
| 956 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 957 | ! (T<T0: C->S, and T>=T0: C->R) |
|---|
| 958 | !------------------------------------------------------------- |
|---|
| 959 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 960 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
|---|
| 961 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
|---|
| 962 | ! ,qci(i,k,1)/dtcld) |
|---|
| 963 | ,qci(i,k,1)*rdtcld) |
|---|
| 964 | endif |
|---|
| 965 | if(supcol .gt. 0) then |
|---|
| 966 | !------------------------------------------------------------- |
|---|
| 967 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 968 | ! (T<T0: V->I or I->V) |
|---|
| 969 | !------------------------------------------------------------- |
|---|
| 970 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
|---|
| 971 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 972 | diameter = dicon * sqrt(xmi) |
|---|
| 973 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 974 | supice = satdt-prevp(i,k) |
|---|
| 975 | if(pidep(i,k).lt.0.) then |
|---|
| 976 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 977 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 978 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
|---|
| 979 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
|---|
| 980 | else |
|---|
| 981 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 982 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
|---|
| 983 | endif |
|---|
| 984 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 985 | endif |
|---|
| 986 | !------------------------------------------------------------- |
|---|
| 987 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 988 | ! (V->S or S->V) |
|---|
| 989 | !------------------------------------------------------------- |
|---|
| 990 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
|---|
| 991 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 992 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
|---|
| 993 | *(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 994 | *work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 995 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 996 | if(psdep(i,k).lt.0.) then |
|---|
| 997 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 998 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 999 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
|---|
| 1000 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
|---|
| 1001 | else |
|---|
| 1002 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 1003 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
|---|
| 1004 | endif |
|---|
| 1005 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
|---|
| 1006 | ifsat = 1 |
|---|
| 1007 | endif |
|---|
| 1008 | !------------------------------------------------------------- |
|---|
| 1009 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
|---|
| 1010 | ! (T<T0: V->I) |
|---|
| 1011 | !------------------------------------------------------------- |
|---|
| 1012 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 1013 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 1014 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 1015 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 1016 | pigen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,2),0.)) & |
|---|
| 1017 | ! /dtcld) |
|---|
| 1018 | *rdtcld) |
|---|
| 1019 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 1020 | endif |
|---|
| 1021 | ! |
|---|
| 1022 | !------------------------------------------------------------- |
|---|
| 1023 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 1024 | ! (T<T0: I->S) |
|---|
| 1025 | !------------------------------------------------------------- |
|---|
| 1026 | if(qci(i,k,2).gt.0.) then |
|---|
| 1027 | qimax = roqimax/den(i,k,j) |
|---|
| 1028 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 1029 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
|---|
| 1030 | endif |
|---|
| 1031 | endif |
|---|
| 1032 | !------------------------------------------------------------- |
|---|
| 1033 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 1034 | ! (T>T0: S->V) |
|---|
| 1035 | !------------------------------------------------------------- |
|---|
| 1036 | if(supcol.lt.0.) then |
|---|
| 1037 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
|---|
| 1038 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
|---|
| 1039 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 1040 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
|---|
| 1041 | endif |
|---|
| 1042 | enddo |
|---|
| 1043 | ! |
|---|
| 1044 | ! |
|---|
| 1045 | !---------------------------------------------------------------- |
|---|
| 1046 | ! check mass conservation of generation terms and feedback to the |
|---|
| 1047 | ! large scale |
|---|
| 1048 | ! |
|---|
| 1049 | do k = kts, kte |
|---|
| 1050 | if(t(i,k,j).le.t0c) then |
|---|
| 1051 | ! |
|---|
| 1052 | ! cloud water |
|---|
| 1053 | ! |
|---|
| 1054 | value = max(qmin,qci(i,k,1)) |
|---|
| 1055 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1056 | if (source.gt.value) then |
|---|
| 1057 | factor = value/source |
|---|
| 1058 | praut(i,k) = praut(i,k)*factor |
|---|
| 1059 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1060 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1061 | endif |
|---|
| 1062 | ! |
|---|
| 1063 | ! cloud ice |
|---|
| 1064 | ! |
|---|
| 1065 | value = max(qmin,qci(i,k,2)) |
|---|
| 1066 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
|---|
| 1067 | if (source.gt.value) then |
|---|
| 1068 | factor = value/source |
|---|
| 1069 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1070 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1071 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 1072 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 1073 | endif |
|---|
| 1074 | ! |
|---|
| 1075 | ! rain |
|---|
| 1076 | ! |
|---|
| 1077 | ! |
|---|
| 1078 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1079 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
|---|
| 1080 | if (source.gt.value) then |
|---|
| 1081 | factor = value/source |
|---|
| 1082 | praut(i,k) = praut(i,k)*factor |
|---|
| 1083 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1084 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1085 | endif |
|---|
| 1086 | ! |
|---|
| 1087 | ! snow |
|---|
| 1088 | ! |
|---|
| 1089 | value = max(qmin,qrs(i,k,2)) |
|---|
| 1090 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
|---|
| 1091 | if (source.gt.value) then |
|---|
| 1092 | factor = value/source |
|---|
| 1093 | psdep(i,k) = psdep(i,k)*factor |
|---|
| 1094 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1095 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1096 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1097 | endif |
|---|
| 1098 | ! |
|---|
| 1099 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 1100 | ! update |
|---|
| 1101 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
|---|
| 1102 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1103 | +psacw(i,k))*dtcld,0.) |
|---|
| 1104 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1105 | +prevp(i,k))*dtcld,0.) |
|---|
| 1106 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
|---|
| 1107 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
|---|
| 1108 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
|---|
| 1109 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
|---|
| 1110 | xlf = xls-xl(i,k) |
|---|
| 1111 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 1112 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
|---|
| 1113 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1114 | else |
|---|
| 1115 | ! |
|---|
| 1116 | ! cloud water |
|---|
| 1117 | ! |
|---|
| 1118 | value = max(qmin,qci(i,k,1)) |
|---|
| 1119 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1120 | if (source.gt.value) then |
|---|
| 1121 | factor = value/source |
|---|
| 1122 | praut(i,k) = praut(i,k)*factor |
|---|
| 1123 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1124 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1125 | endif |
|---|
| 1126 | ! |
|---|
| 1127 | ! rain |
|---|
| 1128 | ! |
|---|
| 1129 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1130 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
|---|
| 1131 | if (source.gt.value) then |
|---|
| 1132 | factor = value/source |
|---|
| 1133 | praut(i,k) = praut(i,k)*factor |
|---|
| 1134 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1135 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1136 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1137 | endif |
|---|
| 1138 | ! |
|---|
| 1139 | ! snow |
|---|
| 1140 | ! |
|---|
| 1141 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 1142 | source=(-psevp(i,k))*dtcld |
|---|
| 1143 | if (source.gt.value) then |
|---|
| 1144 | factor = value/source |
|---|
| 1145 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 1146 | endif |
|---|
| 1147 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
|---|
| 1148 | ! update |
|---|
| 1149 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
|---|
| 1150 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1151 | +psacw(i,k))*dtcld,0.) |
|---|
| 1152 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1153 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
|---|
| 1154 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
|---|
| 1155 | xlf = xls-xl(i,k) |
|---|
| 1156 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
|---|
| 1157 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1158 | endif |
|---|
| 1159 | enddo |
|---|
| 1160 | ! |
|---|
| 1161 | ! Inline expansion for fpvs |
|---|
| 1162 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1163 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1164 | hsub = xls |
|---|
| 1165 | hvap = xlv0 |
|---|
| 1166 | cvap = cpv |
|---|
| 1167 | ttp=t0c+0.01 |
|---|
| 1168 | dldt=cvap-cliq |
|---|
| 1169 | xa=-dldt/rv |
|---|
| 1170 | xb=xa+hvap/(rv*ttp) |
|---|
| 1171 | dldti=cvap-cice |
|---|
| 1172 | xai=-dldti/rv |
|---|
| 1173 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1174 | do k = kts, kte |
|---|
| 1175 | tr=ttp/t(i,k,j) |
|---|
| 1176 | logtr = log(tr) |
|---|
| 1177 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1178 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 1179 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1180 | enddo |
|---|
| 1181 | ! |
|---|
| 1182 | !---------------------------------------------------------------- |
|---|
| 1183 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1184 | ! if there exists additional water vapor condensated/if |
|---|
| 1185 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1186 | ! |
|---|
| 1187 | do k = kts, kte |
|---|
| 1188 | ! work1(i,k,1) = conden(t(i,k,j),q(i,k,j),qs(i,k,1),xl(i,k),cpm(i,k)) |
|---|
| 1189 | work1(i,k,1) = ((max(q(i,k,j),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
|---|
| 1190 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
|---|
| 1191 | /((t(i,k,j))*(t(i,k,j))))) |
|---|
| 1192 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 1193 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k,j),0.)/dtcld) |
|---|
| 1194 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
|---|
| 1195 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 1196 | q(i,k,j) = q(i,k,j)-pcond(i,k)*dtcld |
|---|
| 1197 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 1198 | t(i,k,j) = t(i,k,j)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1199 | enddo |
|---|
| 1200 | ! |
|---|
| 1201 | ! |
|---|
| 1202 | !---------------------------------------------------------------- |
|---|
| 1203 | ! padding for small values |
|---|
| 1204 | ! |
|---|
| 1205 | do k = kts, kte |
|---|
| 1206 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 1207 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 1208 | enddo |
|---|
| 1209 | enddo ! big loops |
|---|
| 1210 | |
|---|
| 1211 | DO K=kts,kte |
|---|
| 1212 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
|---|
| 1213 | qc(i,k,j) = qci(i,k,1) |
|---|
| 1214 | qi(i,k,j) = qci(i,k,2) |
|---|
| 1215 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 1216 | qqs(i,k,j) = qrs(i,k,2) |
|---|
| 1217 | ENDDO |
|---|
| 1218 | |
|---|
| 1219 | |
|---|
| 1220 | |
|---|
| 1221 | ENDDO ! i loop |
|---|
| 1222 | enddo ! j loop |
|---|
| 1223 | !$acc end region |
|---|
| 1224 | |
|---|
| 1225 | ELSE |
|---|
| 1226 | |
|---|
| 1227 | ! |
|---|
| 1228 | ! Moved outside of accelerator region |
|---|
| 1229 | ! |
|---|
| 1230 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 1231 | dtcld = delt/loops |
|---|
| 1232 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 1233 | |
|---|
| 1234 | !$acc region & |
|---|
| 1235 | !$acc local(t) & |
|---|
| 1236 | !$acc copyin(delz(:,:,:),p(:,:,:),den(:,:,:),pii(:,:,:)) & |
|---|
| 1237 | !$acc copyout(rainncv(:,:),sr(:,:)) & |
|---|
| 1238 | !$acc copy(qqs(:,:,:),qr(:,:,:),qi(:,:,:),qc(:,:,:)) & |
|---|
| 1239 | !$acc copy(th(:,:,:),q(:,:,:),rain(:,:)) |
|---|
| 1240 | !$acc do & |
|---|
| 1241 | !$acc private(rh,qs,rslope,rslope2,rslope3,rslopeb,falk,fall) & |
|---|
| 1242 | !$acc private(work1,qci,qrs,falkc,fallc,xl,cpm,denfac,xni) & |
|---|
| 1243 | !$acc private(n0sfac,work2,work1c,work2c,pigen,pidep,psdep) & |
|---|
| 1244 | !$acc private(praut,psaut,prevp,psevp) & |
|---|
| 1245 | !$acc private(pracw,psacw,psaci,pcond,psmlt) & |
|---|
| 1246 | !$acc parallel |
|---|
| 1247 | do j = jts, jte |
|---|
| 1248 | !$acc do & |
|---|
| 1249 | !$acc private(numdt,mstep) & |
|---|
| 1250 | !$acc kernel vector |
|---|
| 1251 | do i = its, ite |
|---|
| 1252 | do k = kts, kte |
|---|
| 1253 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
|---|
| 1254 | qci(i,k,1) = max(qc(i,k,j),0.0) |
|---|
| 1255 | qci(i,k,2) = max(qi(i,k,j),0.0) |
|---|
| 1256 | qrs(i,k,1) = max(qr(i,k,j),0.0) |
|---|
| 1257 | qrs(i,k,2) = max(qqs(i,k,j),0.0) |
|---|
| 1258 | enddo |
|---|
| 1259 | ! |
|---|
| 1260 | !---------------------------------------------------------------- |
|---|
| 1261 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 1262 | ! changes during microphysical process calculation |
|---|
| 1263 | ! emanuel(1994) |
|---|
| 1264 | ! |
|---|
| 1265 | do k = kts, kte |
|---|
| 1266 | cpm(i,k) = cpmcal(q(i,k,j)) |
|---|
| 1267 | xl(i,k) = xlcal(t(i,k,j)) |
|---|
| 1268 | enddo |
|---|
| 1269 | ! |
|---|
| 1270 | !---------------------------------------------------------------- |
|---|
| 1271 | ! compute the minor time steps. |
|---|
| 1272 | ! |
|---|
| 1273 | ! loops = max(nint(delt/dtcldcr),1) |
|---|
| 1274 | ! dtcld = delt/loops |
|---|
| 1275 | ! if(delt.le.dtcldcr) dtcld = delt |
|---|
| 1276 | ! |
|---|
| 1277 | do loop = 1,loops |
|---|
| 1278 | ! |
|---|
| 1279 | !---------------------------------------------------------------- |
|---|
| 1280 | ! initialize the large scale variables |
|---|
| 1281 | ! |
|---|
| 1282 | mstep = 1 |
|---|
| 1283 | flgcld = .true. |
|---|
| 1284 | ! |
|---|
| 1285 | do k = kts, kte |
|---|
| 1286 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
|---|
| 1287 | enddo |
|---|
| 1288 | ! do k = kts, kte |
|---|
| 1289 | ! CALL VREC( tvec1(its), den(its,k,j), ite-its+1) |
|---|
| 1290 | ! do i = its, ite |
|---|
| 1291 | ! tvec1(i) = tvec1(i)*den0 |
|---|
| 1292 | ! enddo |
|---|
| 1293 | ! CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 1294 | ! enddo |
|---|
| 1295 | ! |
|---|
| 1296 | ! Inline expansion for fpvs |
|---|
| 1297 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1298 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1299 | hsub = xls |
|---|
| 1300 | hvap = xlv0 |
|---|
| 1301 | cvap = cpv |
|---|
| 1302 | ttp=t0c+0.01 |
|---|
| 1303 | dldt=cvap-cliq |
|---|
| 1304 | xa=-dldt/rv |
|---|
| 1305 | xb=xa+hvap/(rv*ttp) |
|---|
| 1306 | dldti=cvap-cice |
|---|
| 1307 | xai=-dldti/rv |
|---|
| 1308 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1309 | |
|---|
| 1310 | ! this is for compilers where the conditional inhibits vectorization |
|---|
| 1311 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 1312 | do k = kts, kte |
|---|
| 1313 | if(t(i,k,j).lt.ttp) then |
|---|
| 1314 | xal = xai |
|---|
| 1315 | xbl = xbi |
|---|
| 1316 | else |
|---|
| 1317 | xal = xa |
|---|
| 1318 | xbl = xb |
|---|
| 1319 | endif |
|---|
| 1320 | tr=ttp/t(i,k,j) |
|---|
| 1321 | logtr=log(tr) |
|---|
| 1322 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1323 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 1324 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1325 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
|---|
| 1326 | qs(i,k,2)=psat*exp(logtr*(xal)+xbl*(1.-tr)) |
|---|
| 1327 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
|---|
| 1328 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 1329 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
|---|
| 1330 | enddo |
|---|
| 1331 | #else |
|---|
| 1332 | do k = kts, kte |
|---|
| 1333 | tr=ttp/t(i,k,j) |
|---|
| 1334 | logtr=log(tr) |
|---|
| 1335 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1336 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 1337 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1338 | rh(i,k,1) = max(q(i,k,j) / qs(i,k,1),qmin) |
|---|
| 1339 | if(t(i,k,j).lt.ttp) then |
|---|
| 1340 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
|---|
| 1341 | else |
|---|
| 1342 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1343 | endif |
|---|
| 1344 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k,j) - qs(i,k,2)) |
|---|
| 1345 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 1346 | rh(i,k,2) = max(q(i,k,j) / qs(i,k,2),qmin) |
|---|
| 1347 | enddo |
|---|
| 1348 | #endif |
|---|
| 1349 | ! |
|---|
| 1350 | !---------------------------------------------------------------- |
|---|
| 1351 | ! initialize the variables for microphysical physics |
|---|
| 1352 | ! |
|---|
| 1353 | ! |
|---|
| 1354 | do k = kts, kte |
|---|
| 1355 | prevp(i,k) = 0. |
|---|
| 1356 | psdep(i,k) = 0. |
|---|
| 1357 | praut(i,k) = 0. |
|---|
| 1358 | psaut(i,k) = 0. |
|---|
| 1359 | pracw(i,k) = 0. |
|---|
| 1360 | psaci(i,k) = 0. |
|---|
| 1361 | psacw(i,k) = 0. |
|---|
| 1362 | pigen(i,k) = 0. |
|---|
| 1363 | pidep(i,k) = 0. |
|---|
| 1364 | pcond(i,k) = 0. |
|---|
| 1365 | psmlt(i,k) = 0. |
|---|
| 1366 | psevp(i,k) = 0. |
|---|
| 1367 | falk(i,k,1) = 0. |
|---|
| 1368 | falk(i,k,2) = 0. |
|---|
| 1369 | fall(i,k,1) = 0. |
|---|
| 1370 | fall(i,k,2) = 0. |
|---|
| 1371 | fallc(i,k) = 0. |
|---|
| 1372 | falkc(i,k) = 0. |
|---|
| 1373 | xni(i,k) = 1.e3 |
|---|
| 1374 | enddo |
|---|
| 1375 | ! |
|---|
| 1376 | !---------------------------------------------------------------- |
|---|
| 1377 | ! compute the fallout term: |
|---|
| 1378 | ! first, vertical terminal velosity for minor loops |
|---|
| 1379 | ! |
|---|
| 1380 | do k = kts, kte |
|---|
| 1381 | supcol = t0c-t(i,k,j) |
|---|
| 1382 | !--------------------------------------------------------------- |
|---|
| 1383 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1384 | !--------------------------------------------------------------- |
|---|
| 1385 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1386 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 1387 | rslope(i,k,1) = rslopermax |
|---|
| 1388 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 1389 | rslope2(i,k,1) = rsloper2max |
|---|
| 1390 | rslope3(i,k,1) = rsloper3max |
|---|
| 1391 | else |
|---|
| 1392 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
|---|
| 1393 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 1394 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 1395 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 1396 | endif |
|---|
| 1397 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 1398 | rslope(i,k,2) = rslopesmax |
|---|
| 1399 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 1400 | rslope2(i,k,2) = rslopes2max |
|---|
| 1401 | rslope3(i,k,2) = rslopes3max |
|---|
| 1402 | else |
|---|
| 1403 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
|---|
| 1404 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 1405 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 1406 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 1407 | endif |
|---|
| 1408 | !------------------------------------------------------------- |
|---|
| 1409 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 1410 | !------------------------------------------------------------- |
|---|
| 1411 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 1412 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 1413 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
|---|
| 1414 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 1415 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 1416 | enddo |
|---|
| 1417 | ! |
|---|
| 1418 | numdt = 1 |
|---|
| 1419 | do k = kte, kts, -1 |
|---|
| 1420 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k,j) |
|---|
| 1421 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k,j) |
|---|
| 1422 | numdt = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
|---|
| 1423 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 1424 | enddo |
|---|
| 1425 | rmstep = 1./mstep |
|---|
| 1426 | ! |
|---|
| 1427 | do n = 1, mstep |
|---|
| 1428 | k = kte |
|---|
| 1429 | ! falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 1430 | ! falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
|---|
| 1431 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
|---|
| 1432 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
|---|
| 1433 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 1434 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 1435 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k,j),0.) |
|---|
| 1436 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k,j),0.) |
|---|
| 1437 | dtcldden = dtcld/den(i,k,j) |
|---|
| 1438 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
|---|
| 1439 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
|---|
| 1440 | ! endif |
|---|
| 1441 | do k = kte-1, kts, -1 |
|---|
| 1442 | falk(i,k,1) = den(i,k,j)*qrs(i,k,1)*work1(i,k,1)*rmstep |
|---|
| 1443 | falk(i,k,2) = den(i,k,j)*qrs(i,k,2)*work1(i,k,2)*rmstep |
|---|
| 1444 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 1445 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 1446 | dtcldden = dtcld/den(i,k,j) |
|---|
| 1447 | rdelz = 1./delz(i,k,j) |
|---|
| 1448 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 1449 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
|---|
| 1450 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
|---|
| 1451 | *delz(i,k+1,j)*rdelz)*dtcldden,0.) |
|---|
| 1452 | enddo |
|---|
| 1453 | do k = kte, kts, -1 |
|---|
| 1454 | if(t(i,k,j).gt.t0c.and.qrs(i,k,2).gt.0.) then |
|---|
| 1455 | !---------------------------------------------------------------- |
|---|
| 1456 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 1457 | ! (T>T0: S->R) |
|---|
| 1458 | !---------------------------------------------------------------- |
|---|
| 1459 | xlf = xlf0 |
|---|
| 1460 | ! work2(i,k)= venfac(p(i,k),t(i,k,j),den(i,k,j)) |
|---|
| 1461 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
|---|
| 1462 | /((t(i,k,j))+120.)/(den(i,k,j)))/(8.794e-5 & |
|---|
| 1463 | *exp(log(t(i,k,j))*(1.81))/p(i,k,j)))) & |
|---|
| 1464 | *((.3333333)))/sqrt((1.496e-6*((t(i,k,j)) & |
|---|
| 1465 | *sqrt(t(i,k,j)))/((t(i,k,j))+120.)/(den(i,k,j)))) & |
|---|
| 1466 | *sqrt(sqrt(den0/(den(i,k,j))))) |
|---|
| 1467 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 1468 | ! psmlt(i,k) = xka(t(i,k,j),den(i,k,j))/xlf*(t0c-t(i,k,j))*pi/2. & |
|---|
| 1469 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 1470 | ! *work2(i,k)*coeres) |
|---|
| 1471 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))) & |
|---|
| 1472 | /((t(i,k,j))+120.)/(den(i,k,j)) )*(den(i,k,j))) & |
|---|
| 1473 | /xlf*(t0c-t(i,k,j))*pi/2. & |
|---|
| 1474 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 1475 | *work2(i,k)*coeres) |
|---|
| 1476 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep, & |
|---|
| 1477 | -qrs(i,k,2)/mstep),0.) |
|---|
| 1478 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 1479 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 1480 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 1481 | endif |
|---|
| 1482 | enddo |
|---|
| 1483 | enddo |
|---|
| 1484 | !--------------------------------------------------------------- |
|---|
| 1485 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 1486 | !--------------------------------------------------------------- |
|---|
| 1487 | mstep = 1 |
|---|
| 1488 | numdt = 1 |
|---|
| 1489 | do k = kte, kts, -1 |
|---|
| 1490 | if(qci(i,k,2).le.0.) then |
|---|
| 1491 | work2c(i,k) = 0. |
|---|
| 1492 | else |
|---|
| 1493 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 1494 | ! diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 1495 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 1496 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 1497 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
|---|
| 1498 | endif |
|---|
| 1499 | numdt = max(nint(work2c(i,k)*dtcld+.5),1) |
|---|
| 1500 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 1501 | enddo |
|---|
| 1502 | ! |
|---|
| 1503 | do n = 1, mstep |
|---|
| 1504 | k = kte |
|---|
| 1505 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
|---|
| 1506 | holdc = falkc(i,k) |
|---|
| 1507 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 1508 | holdci = qci(i,k,2) |
|---|
| 1509 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k,j),0.) |
|---|
| 1510 | do k = kte-1, kts, -1 |
|---|
| 1511 | falkc(i,k) = den(i,k,j)*qci(i,k,2)*work2c(i,k)/mstep |
|---|
| 1512 | holdc = falkc(i,k) |
|---|
| 1513 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 1514 | holdci = qci(i,k,2) |
|---|
| 1515 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
|---|
| 1516 | *delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
|---|
| 1517 | enddo |
|---|
| 1518 | enddo |
|---|
| 1519 | ! |
|---|
| 1520 | ! |
|---|
| 1521 | !---------------------------------------------------------------- |
|---|
| 1522 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 1523 | ! |
|---|
| 1524 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
|---|
| 1525 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
|---|
| 1526 | rainncv(i,j) = 0. |
|---|
| 1527 | if(fallsum.gt.0.) then |
|---|
| 1528 | rainncv(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. |
|---|
| 1529 | rain(i,j) = fallsum*delz(i,1,j)/denr*dtcld*1000. + rain(i,j) |
|---|
| 1530 | endif |
|---|
| 1531 | sr(i,j) = 0. |
|---|
| 1532 | if(fallsum.gt.0.)sr(i,j)=fallsum_qsi*delz(i,kts,j)/denr*dtcld*1000. & |
|---|
| 1533 | /(rainncv(i,j)+1.e-12) |
|---|
| 1534 | ! |
|---|
| 1535 | !--------------------------------------------------------------- |
|---|
| 1536 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 1537 | ! (T>T0: I->C) |
|---|
| 1538 | !--------------------------------------------------------------- |
|---|
| 1539 | do k = kts, kte |
|---|
| 1540 | supcol = t0c-t(i,k,j) |
|---|
| 1541 | xlf = xls-xl(i,k) |
|---|
| 1542 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 1543 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
|---|
| 1544 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
|---|
| 1545 | t(i,k,j) = t(i,k,j) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 1546 | qci(i,k,2) = 0. |
|---|
| 1547 | endif |
|---|
| 1548 | !--------------------------------------------------------------- |
|---|
| 1549 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 1550 | ! (T<-40C: C->I) |
|---|
| 1551 | !--------------------------------------------------------------- |
|---|
| 1552 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
|---|
| 1553 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 1554 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 1555 | qci(i,k,1) = 0. |
|---|
| 1556 | endif |
|---|
| 1557 | !--------------------------------------------------------------- |
|---|
| 1558 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 1559 | ! (T0>T>-40C: C->I) |
|---|
| 1560 | !--------------------------------------------------------------- |
|---|
| 1561 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
|---|
| 1562 | supcolt=min(supcol,50.) |
|---|
| 1563 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 1564 | ! *den(i,k,j)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
|---|
| 1565 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
|---|
| 1566 | *den(i,k,j)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
|---|
| 1567 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 1568 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 1569 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 1570 | endif |
|---|
| 1571 | !--------------------------------------------------------------- |
|---|
| 1572 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 1573 | ! (T<T0, R->S) |
|---|
| 1574 | !--------------------------------------------------------------- |
|---|
| 1575 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
|---|
| 1576 | supcolt=min(supcol,50.) |
|---|
| 1577 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k,j) & |
|---|
| 1578 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
|---|
| 1579 | ! qrs(i,k,1)) |
|---|
| 1580 | temp = rslope(i,k,1) |
|---|
| 1581 | temp = temp*temp*temp*temp*temp*temp*temp |
|---|
| 1582 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k,j) & |
|---|
| 1583 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
|---|
| 1584 | qrs(i,k,1)) |
|---|
| 1585 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
|---|
| 1586 | t(i,k,j) = t(i,k,j) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 1587 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 1588 | endif |
|---|
| 1589 | enddo |
|---|
| 1590 | ! |
|---|
| 1591 | !---------------------------------------------------------------- |
|---|
| 1592 | ! rsloper: reverse of the slope parameter of the rain(m) |
|---|
| 1593 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 1594 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 1595 | ! heat conduction and vapor diffusion |
|---|
| 1596 | ! (ry88, y93, h85) |
|---|
| 1597 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 1598 | ! |
|---|
| 1599 | do k = kts, kte |
|---|
| 1600 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 1601 | rslope(i,k,1) = rslopermax |
|---|
| 1602 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 1603 | rslope2(i,k,1) = rsloper2max |
|---|
| 1604 | rslope3(i,k,1) = rsloper3max |
|---|
| 1605 | else |
|---|
| 1606 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k,j)) |
|---|
| 1607 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k,j)))))) |
|---|
| 1608 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 1609 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 1610 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 1611 | endif |
|---|
| 1612 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 1613 | rslope(i,k,2) = rslopesmax |
|---|
| 1614 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 1615 | rslope2(i,k,2) = rslopes2max |
|---|
| 1616 | rslope3(i,k,2) = rslopes3max |
|---|
| 1617 | else |
|---|
| 1618 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k,j),n0sfac(i,k)) |
|---|
| 1619 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
|---|
| 1620 | *(den(i,k,j)))))) |
|---|
| 1621 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 1622 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 1623 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 1624 | endif |
|---|
| 1625 | enddo |
|---|
| 1626 | ! |
|---|
| 1627 | do k = kts, kte |
|---|
| 1628 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,1)) |
|---|
| 1629 | work1(i,k,1) = ((((den(i,k,j))*(xl(i,k))*(xl(i,k)))*((t(i,k,j))+120.) & |
|---|
| 1630 | *(den(i,k,j)))/(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))& |
|---|
| 1631 | *(den(i,k,j))*(rv*(t(i,k,j))*(t(i,k,j))))) & |
|---|
| 1632 | + p(i,k,j)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k,j))*(1.81)))) |
|---|
| 1633 | ! work1(i,k,2) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k,2)) |
|---|
| 1634 | work1(i,k,2) = ((((den(i,k,j))*(xls)*(xls))*((t(i,k,j))+120.)*(den(i,k,j)))& |
|---|
| 1635 | /(1.414e3*(1.496e-6*((t(i,k,j))*sqrt(t(i,k,j))))*(den(i,k,j)) & |
|---|
| 1636 | *(rv*(t(i,k,j))*(t(i,k,j)))) & |
|---|
| 1637 | + p(i,k,j)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k,j))*(1.81))))) |
|---|
| 1638 | ! work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
|---|
| 1639 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k,j))*sqrt(t(i,k,j)))) & |
|---|
| 1640 | *p(i,k,j))/(((t(i,k,j))+120.)*den(i,k,j)*(8.794e-5 & |
|---|
| 1641 | *exp(log(t(i,k,j))*(1.81))))))*sqrt(sqrt(den0/(den(i,k,j))))) & |
|---|
| 1642 | /sqrt((1.496e-6*((t(i,k,j))*sqrt(t(i,k,j)))) & |
|---|
| 1643 | /(((t(i,k,j))+120.)*den(i,k,j))) |
|---|
| 1644 | enddo |
|---|
| 1645 | ! |
|---|
| 1646 | !=============================================================== |
|---|
| 1647 | ! |
|---|
| 1648 | ! warm rain processes |
|---|
| 1649 | ! |
|---|
| 1650 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 1651 | ! |
|---|
| 1652 | !=============================================================== |
|---|
| 1653 | ! |
|---|
| 1654 | do k = kts, kte |
|---|
| 1655 | supsat = max(q(i,k,j),qmin)-qs(i,k,1) |
|---|
| 1656 | satdt = supsat/dtcld |
|---|
| 1657 | !--------------------------------------------------------------- |
|---|
| 1658 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 1659 | ! (C->R) |
|---|
| 1660 | !--------------------------------------------------------------- |
|---|
| 1661 | if(qci(i,k,1).gt.qc0) then |
|---|
| 1662 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
|---|
| 1663 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
|---|
| 1664 | endif |
|---|
| 1665 | !--------------------------------------------------------------- |
|---|
| 1666 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
|---|
| 1667 | ! (C->R) |
|---|
| 1668 | !--------------------------------------------------------------- |
|---|
| 1669 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 1670 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
|---|
| 1671 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 1672 | endif |
|---|
| 1673 | !--------------------------------------------------------------- |
|---|
| 1674 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 1675 | ! (V->R or R->V) |
|---|
| 1676 | !--------------------------------------------------------------- |
|---|
| 1677 | if(qrs(i,k,1).gt.0.) then |
|---|
| 1678 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 1679 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
|---|
| 1680 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 1681 | if(prevp(i,k).lt.0.) then |
|---|
| 1682 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 1683 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 1684 | else |
|---|
| 1685 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 1686 | endif |
|---|
| 1687 | endif |
|---|
| 1688 | enddo |
|---|
| 1689 | ! |
|---|
| 1690 | !=============================================================== |
|---|
| 1691 | ! |
|---|
| 1692 | ! cold rain processes |
|---|
| 1693 | ! |
|---|
| 1694 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 1695 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 1696 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 1697 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 1698 | ! concentration (ni), ice nuclei number concentration |
|---|
| 1699 | ! (n0i), ice diameter (d) |
|---|
| 1700 | ! |
|---|
| 1701 | !=============================================================== |
|---|
| 1702 | ! |
|---|
| 1703 | rdtcld = 1./dtcld |
|---|
| 1704 | do k = kts, kte |
|---|
| 1705 | supcol = t0c-t(i,k,j) |
|---|
| 1706 | supsat = max(q(i,k,j),qmin)-qs(i,k,2) |
|---|
| 1707 | satdt = supsat/dtcld |
|---|
| 1708 | ifsat = 0 |
|---|
| 1709 | !------------------------------------------------------------- |
|---|
| 1710 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 1711 | !------------------------------------------------------------- |
|---|
| 1712 | ! xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 1713 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 1714 | temp = (den(i,k,j)*max(qci(i,k,2),qmin)) |
|---|
| 1715 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 1716 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 1717 | eacrs = exp(0.07*(-supcol)) |
|---|
| 1718 | ! |
|---|
| 1719 | if(supcol.gt.0) then |
|---|
| 1720 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
|---|
| 1721 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 1722 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 1723 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 1724 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 1725 | !------------------------------------------------------------- |
|---|
| 1726 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
|---|
| 1727 | ! (T<T0: I->S) |
|---|
| 1728 | !------------------------------------------------------------- |
|---|
| 1729 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 1730 | +diameter**2*rslope(i,k,2) |
|---|
| 1731 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 1732 | *abs(vt2s-vt2i)*acrfac/4. |
|---|
| 1733 | endif |
|---|
| 1734 | endif |
|---|
| 1735 | !------------------------------------------------------------- |
|---|
| 1736 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 1737 | ! (T<T0: C->S, and T>=T0: C->R) |
|---|
| 1738 | !------------------------------------------------------------- |
|---|
| 1739 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 1740 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
|---|
| 1741 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
|---|
| 1742 | ! ,qci(i,k,1)/dtcld) |
|---|
| 1743 | ,qci(i,k,1)*rdtcld) |
|---|
| 1744 | endif |
|---|
| 1745 | if(supcol .gt. 0) then |
|---|
| 1746 | !------------------------------------------------------------- |
|---|
| 1747 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 1748 | ! (T<T0: V->I or I->V) |
|---|
| 1749 | !------------------------------------------------------------- |
|---|
| 1750 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
|---|
| 1751 | xmi = den(i,k,j)*qci(i,k,2)/xni(i,k) |
|---|
| 1752 | diameter = dicon * sqrt(xmi) |
|---|
| 1753 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 1754 | supice = satdt-prevp(i,k) |
|---|
| 1755 | if(pidep(i,k).lt.0.) then |
|---|
| 1756 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 1757 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 1758 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
|---|
| 1759 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
|---|
| 1760 | else |
|---|
| 1761 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 1762 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
|---|
| 1763 | endif |
|---|
| 1764 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1765 | endif |
|---|
| 1766 | !------------------------------------------------------------- |
|---|
| 1767 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 1768 | ! (V->S or S->V) |
|---|
| 1769 | !------------------------------------------------------------- |
|---|
| 1770 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
|---|
| 1771 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 1772 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
|---|
| 1773 | *(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 1774 | *work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 1775 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 1776 | if(psdep(i,k).lt.0.) then |
|---|
| 1777 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 1778 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 1779 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
|---|
| 1780 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
|---|
| 1781 | else |
|---|
| 1782 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 1783 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
|---|
| 1784 | endif |
|---|
| 1785 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
|---|
| 1786 | ifsat = 1 |
|---|
| 1787 | endif |
|---|
| 1788 | !------------------------------------------------------------- |
|---|
| 1789 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
|---|
| 1790 | ! (T<T0: V->I) |
|---|
| 1791 | !------------------------------------------------------------- |
|---|
| 1792 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 1793 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 1794 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 1795 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 1796 | pigen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,2),0.)) & |
|---|
| 1797 | ! /dtcld) |
|---|
| 1798 | *rdtcld) |
|---|
| 1799 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 1800 | endif |
|---|
| 1801 | ! |
|---|
| 1802 | !------------------------------------------------------------- |
|---|
| 1803 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 1804 | ! (T<T0: I->S) |
|---|
| 1805 | !------------------------------------------------------------- |
|---|
| 1806 | if(qci(i,k,2).gt.0.) then |
|---|
| 1807 | qimax = roqimax/den(i,k,j) |
|---|
| 1808 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 1809 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
|---|
| 1810 | endif |
|---|
| 1811 | endif |
|---|
| 1812 | !------------------------------------------------------------- |
|---|
| 1813 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 1814 | ! (T>T0: S->V) |
|---|
| 1815 | !------------------------------------------------------------- |
|---|
| 1816 | if(supcol.lt.0.) then |
|---|
| 1817 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
|---|
| 1818 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
|---|
| 1819 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 1820 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
|---|
| 1821 | endif |
|---|
| 1822 | enddo |
|---|
| 1823 | ! |
|---|
| 1824 | ! |
|---|
| 1825 | !---------------------------------------------------------------- |
|---|
| 1826 | ! check mass conservation of generation terms and feedback to the |
|---|
| 1827 | ! large scale |
|---|
| 1828 | ! |
|---|
| 1829 | do k = kts, kte |
|---|
| 1830 | if(t(i,k,j).le.t0c) then |
|---|
| 1831 | ! |
|---|
| 1832 | ! cloud water |
|---|
| 1833 | ! |
|---|
| 1834 | value = max(qmin,qci(i,k,1)) |
|---|
| 1835 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1836 | if (source.gt.value) then |
|---|
| 1837 | factor = value/source |
|---|
| 1838 | praut(i,k) = praut(i,k)*factor |
|---|
| 1839 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1840 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1841 | endif |
|---|
| 1842 | ! |
|---|
| 1843 | ! cloud ice |
|---|
| 1844 | ! |
|---|
| 1845 | value = max(qmin,qci(i,k,2)) |
|---|
| 1846 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
|---|
| 1847 | if (source.gt.value) then |
|---|
| 1848 | factor = value/source |
|---|
| 1849 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1850 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1851 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 1852 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 1853 | endif |
|---|
| 1854 | ! |
|---|
| 1855 | ! rain |
|---|
| 1856 | ! |
|---|
| 1857 | ! |
|---|
| 1858 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1859 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
|---|
| 1860 | if (source.gt.value) then |
|---|
| 1861 | factor = value/source |
|---|
| 1862 | praut(i,k) = praut(i,k)*factor |
|---|
| 1863 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1864 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1865 | endif |
|---|
| 1866 | ! |
|---|
| 1867 | ! snow |
|---|
| 1868 | ! |
|---|
| 1869 | value = max(qmin,qrs(i,k,2)) |
|---|
| 1870 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
|---|
| 1871 | if (source.gt.value) then |
|---|
| 1872 | factor = value/source |
|---|
| 1873 | psdep(i,k) = psdep(i,k)*factor |
|---|
| 1874 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1875 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1876 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1877 | endif |
|---|
| 1878 | ! |
|---|
| 1879 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 1880 | ! update |
|---|
| 1881 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
|---|
| 1882 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1883 | +psacw(i,k))*dtcld,0.) |
|---|
| 1884 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1885 | +prevp(i,k))*dtcld,0.) |
|---|
| 1886 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
|---|
| 1887 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
|---|
| 1888 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
|---|
| 1889 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
|---|
| 1890 | xlf = xls-xl(i,k) |
|---|
| 1891 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 1892 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
|---|
| 1893 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1894 | else |
|---|
| 1895 | ! |
|---|
| 1896 | ! cloud water |
|---|
| 1897 | ! |
|---|
| 1898 | value = max(qmin,qci(i,k,1)) |
|---|
| 1899 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1900 | if (source.gt.value) then |
|---|
| 1901 | factor = value/source |
|---|
| 1902 | praut(i,k) = praut(i,k)*factor |
|---|
| 1903 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1904 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1905 | endif |
|---|
| 1906 | ! |
|---|
| 1907 | ! rain |
|---|
| 1908 | ! |
|---|
| 1909 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1910 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
|---|
| 1911 | if (source.gt.value) then |
|---|
| 1912 | factor = value/source |
|---|
| 1913 | praut(i,k) = praut(i,k)*factor |
|---|
| 1914 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1915 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1916 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1917 | endif |
|---|
| 1918 | ! |
|---|
| 1919 | ! snow |
|---|
| 1920 | ! |
|---|
| 1921 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 1922 | source=(-psevp(i,k))*dtcld |
|---|
| 1923 | if (source.gt.value) then |
|---|
| 1924 | factor = value/source |
|---|
| 1925 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 1926 | endif |
|---|
| 1927 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
|---|
| 1928 | ! update |
|---|
| 1929 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
|---|
| 1930 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 1931 | +psacw(i,k))*dtcld,0.) |
|---|
| 1932 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 1933 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
|---|
| 1934 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
|---|
| 1935 | xlf = xls-xl(i,k) |
|---|
| 1936 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
|---|
| 1937 | t(i,k,j) = t(i,k,j)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1938 | endif |
|---|
| 1939 | enddo |
|---|
| 1940 | ! |
|---|
| 1941 | ! Inline expansion for fpvs |
|---|
| 1942 | ! qs(i,k,1) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1943 | ! qs(i,k,2) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1944 | hsub = xls |
|---|
| 1945 | hvap = xlv0 |
|---|
| 1946 | cvap = cpv |
|---|
| 1947 | ttp=t0c+0.01 |
|---|
| 1948 | dldt=cvap-cliq |
|---|
| 1949 | xa=-dldt/rv |
|---|
| 1950 | xb=xa+hvap/(rv*ttp) |
|---|
| 1951 | dldti=cvap-cice |
|---|
| 1952 | xai=-dldti/rv |
|---|
| 1953 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1954 | do k = kts, kte |
|---|
| 1955 | tr=ttp/t(i,k,j) |
|---|
| 1956 | logtr = log(tr) |
|---|
| 1957 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1958 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k,j) - qs(i,k,1)) |
|---|
| 1959 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1960 | enddo |
|---|
| 1961 | ! |
|---|
| 1962 | !---------------------------------------------------------------- |
|---|
| 1963 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1964 | ! if there exists additional water vapor condensated/if |
|---|
| 1965 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1966 | ! |
|---|
| 1967 | do k = kts, kte |
|---|
| 1968 | ! work1(i,k,1) = conden(t(i,k,j),q(i,k,j),qs(i,k,1),xl(i,k),cpm(i,k)) |
|---|
| 1969 | work1(i,k,1) = ((max(q(i,k,j),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
|---|
| 1970 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
|---|
| 1971 | /((t(i,k,j))*(t(i,k,j))))) |
|---|
| 1972 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 1973 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k,j),0.)/dtcld) |
|---|
| 1974 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
|---|
| 1975 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 1976 | q(i,k,j) = q(i,k,j)-pcond(i,k)*dtcld |
|---|
| 1977 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 1978 | t(i,k,j) = t(i,k,j)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1979 | enddo |
|---|
| 1980 | ! |
|---|
| 1981 | ! |
|---|
| 1982 | !---------------------------------------------------------------- |
|---|
| 1983 | ! padding for small values |
|---|
| 1984 | ! |
|---|
| 1985 | do k = kts, kte |
|---|
| 1986 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 1987 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 1988 | enddo |
|---|
| 1989 | enddo ! big loops |
|---|
| 1990 | |
|---|
| 1991 | DO K=kts,kte |
|---|
| 1992 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
|---|
| 1993 | qc(i,k,j) = qci(i,k,1) |
|---|
| 1994 | qi(i,k,j) = qci(i,k,2) |
|---|
| 1995 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 1996 | qqs(i,k,j) = qrs(i,k,2) |
|---|
| 1997 | ENDDO |
|---|
| 1998 | |
|---|
| 1999 | ENDDO ! i loop |
|---|
| 2000 | enddo ! j loop |
|---|
| 2001 | !$acc end region |
|---|
| 2002 | |
|---|
| 2003 | ENDIF |
|---|
| 2004 | |
|---|
| 2005 | END SUBROUTINE wsm52d |
|---|
| 2006 | |
|---|
| 2007 | |
|---|
| 2008 | #else |
|---|
| 2009 | |
|---|
| 2010 | !=================================================================== |
|---|
| 2011 | ! |
|---|
| 2012 | SUBROUTINE wsm52D(t, q, qci, qrs, den, p, delz & |
|---|
| 2013 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 2014 | ,ep1, ep2, qmin & |
|---|
| 2015 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 2016 | ,cliq,cice,psat & |
|---|
| 2017 | ,lat & |
|---|
| 2018 | ,rain,rainncv & |
|---|
| 2019 | ,sr & |
|---|
| 2020 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 2021 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 2022 | ,its,ite, jts,jte, kts,kte & |
|---|
| 2023 | ,snow,snowncv & |
|---|
| 2024 | ) |
|---|
| 2025 | !------------------------------------------------------------------- |
|---|
| 2026 | IMPLICIT NONE |
|---|
| 2027 | !------------------------------------------------------------------- |
|---|
| 2028 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 2029 | ims,ime, jms,jme, kms,kme , & |
|---|
| 2030 | its,ite, jts,jte, kts,kte, & |
|---|
| 2031 | lat |
|---|
| 2032 | REAL, DIMENSION( its:ite , kts:kte ), & |
|---|
| 2033 | INTENT(INOUT) :: & |
|---|
| 2034 | t |
|---|
| 2035 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
|---|
| 2036 | INTENT(INOUT) :: & |
|---|
| 2037 | qci, & |
|---|
| 2038 | qrs |
|---|
| 2039 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 2040 | INTENT(INOUT) :: & |
|---|
| 2041 | q |
|---|
| 2042 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 2043 | INTENT(IN ) :: & |
|---|
| 2044 | den, & |
|---|
| 2045 | p, & |
|---|
| 2046 | delz |
|---|
| 2047 | REAL, INTENT(IN ) :: delt, & |
|---|
| 2048 | g, & |
|---|
| 2049 | cpd, & |
|---|
| 2050 | cpv, & |
|---|
| 2051 | t0c, & |
|---|
| 2052 | den0, & |
|---|
| 2053 | rd, & |
|---|
| 2054 | rv, & |
|---|
| 2055 | ep1, & |
|---|
| 2056 | ep2, & |
|---|
| 2057 | qmin, & |
|---|
| 2058 | XLS, & |
|---|
| 2059 | XLV0, & |
|---|
| 2060 | XLF0, & |
|---|
| 2061 | cliq, & |
|---|
| 2062 | cice, & |
|---|
| 2063 | psat, & |
|---|
| 2064 | denr |
|---|
| 2065 | REAL, DIMENSION( ims:ime ), & |
|---|
| 2066 | INTENT(INOUT) :: rain, & |
|---|
| 2067 | rainncv, & |
|---|
| 2068 | sr |
|---|
| 2069 | |
|---|
| 2070 | REAL, DIMENSION( ims:ime, jms:jme ), OPTIONAL, & |
|---|
| 2071 | INTENT(INOUT) :: snow, & |
|---|
| 2072 | snowncv |
|---|
| 2073 | |
|---|
| 2074 | ! LOCAL VAR |
|---|
| 2075 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
|---|
| 2076 | rh, & |
|---|
| 2077 | qs, & |
|---|
| 2078 | rslope, & |
|---|
| 2079 | rslope2, & |
|---|
| 2080 | rslope3, & |
|---|
| 2081 | rslopeb, & |
|---|
| 2082 | falk, & |
|---|
| 2083 | fall, & |
|---|
| 2084 | work1 |
|---|
| 2085 | |
|---|
| 2086 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 2087 | falkc, & |
|---|
| 2088 | fallc, & |
|---|
| 2089 | xl, & |
|---|
| 2090 | cpm, & |
|---|
| 2091 | denfac, & |
|---|
| 2092 | xni, & |
|---|
| 2093 | n0sfac, & |
|---|
| 2094 | work2, & |
|---|
| 2095 | work1c, & |
|---|
| 2096 | work2c |
|---|
| 2097 | |
|---|
| 2098 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 2099 | pigen, & |
|---|
| 2100 | pidep, & |
|---|
| 2101 | psdep, & |
|---|
| 2102 | praut, & |
|---|
| 2103 | psaut, & |
|---|
| 2104 | prevp, & |
|---|
| 2105 | psevp, & |
|---|
| 2106 | pracw, & |
|---|
| 2107 | psacw, & |
|---|
| 2108 | psaci, & |
|---|
| 2109 | pcond, & |
|---|
| 2110 | psmlt |
|---|
| 2111 | INTEGER, DIMENSION( its:ite ) :: & |
|---|
| 2112 | mstep, & |
|---|
| 2113 | numdt |
|---|
| 2114 | REAL, DIMENSION(its:ite) :: rmstep |
|---|
| 2115 | REAL dtcldden, rdelz, rdtcld |
|---|
| 2116 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 2117 | |
|---|
| 2118 | #define WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 2119 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 2120 | REAL, DIMENSION(its:ite) :: xal, xbl |
|---|
| 2121 | #endif |
|---|
| 2122 | |
|---|
| 2123 | REAL :: pi, & |
|---|
| 2124 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
|---|
| 2125 | viscos, xka, venfac, conden, diffac, & |
|---|
| 2126 | x, y, z, a, b, c, d, e, & |
|---|
| 2127 | qdt, holdrr, holdrs, supcol, supcolt, pvt, & |
|---|
| 2128 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
|---|
| 2129 | vt2i,vt2s,acrfac, & |
|---|
| 2130 | qimax, diameter, xni0, roqi0, & |
|---|
| 2131 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
|---|
| 2132 | value, xlf, pfrzdtc, pfrzdtr, supice, holdc, holdci |
|---|
| 2133 | ! variables for optimization |
|---|
| 2134 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 2135 | REAL :: temp |
|---|
| 2136 | INTEGER :: i, j, k, mstepmax, & |
|---|
| 2137 | iprt, latd, lond, loop, loops, ifsat, n |
|---|
| 2138 | ! Temporaries used for inlining fpvs function |
|---|
| 2139 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 2140 | REAL :: logtr |
|---|
| 2141 | ! |
|---|
| 2142 | !================================================================= |
|---|
| 2143 | ! compute internal functions |
|---|
| 2144 | ! |
|---|
| 2145 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 2146 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 2147 | !---------------------------------------------------------------- |
|---|
| 2148 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 2149 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 2150 | ! |
|---|
| 2151 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 2152 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 2153 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 2154 | ! |
|---|
| 2155 | !---------------------------------------------------------------- |
|---|
| 2156 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 2157 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 2158 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
|---|
| 2159 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 2160 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 2161 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 2162 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 2163 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 2164 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 2165 | ! |
|---|
| 2166 | ! |
|---|
| 2167 | pi = 4. * atan(1.) |
|---|
| 2168 | ! |
|---|
| 2169 | !---------------------------------------------------------------- |
|---|
| 2170 | ! paddint 0 for negative values generated by dynamics |
|---|
| 2171 | ! |
|---|
| 2172 | do k = kts, kte |
|---|
| 2173 | do i = its, ite |
|---|
| 2174 | qci(i,k,1) = max(qci(i,k,1),0.0) |
|---|
| 2175 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
|---|
| 2176 | qci(i,k,2) = max(qci(i,k,2),0.0) |
|---|
| 2177 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
|---|
| 2178 | enddo |
|---|
| 2179 | enddo |
|---|
| 2180 | ! |
|---|
| 2181 | !---------------------------------------------------------------- |
|---|
| 2182 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 2183 | ! changes during microphysical process calculation |
|---|
| 2184 | ! emanuel(1994) |
|---|
| 2185 | ! |
|---|
| 2186 | do k = kts, kte |
|---|
| 2187 | do i = its, ite |
|---|
| 2188 | cpm(i,k) = cpmcal(q(i,k)) |
|---|
| 2189 | xl(i,k) = xlcal(t(i,k)) |
|---|
| 2190 | enddo |
|---|
| 2191 | enddo |
|---|
| 2192 | ! |
|---|
| 2193 | !---------------------------------------------------------------- |
|---|
| 2194 | ! compute the minor time steps. |
|---|
| 2195 | ! |
|---|
| 2196 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 2197 | dtcld = delt/loops |
|---|
| 2198 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 2199 | ! |
|---|
| 2200 | do loop = 1,loops |
|---|
| 2201 | ! |
|---|
| 2202 | !---------------------------------------------------------------- |
|---|
| 2203 | ! initialize the large scale variables |
|---|
| 2204 | ! |
|---|
| 2205 | do i = its, ite |
|---|
| 2206 | mstep(i) = 1 |
|---|
| 2207 | flgcld(i) = .true. |
|---|
| 2208 | enddo |
|---|
| 2209 | ! |
|---|
| 2210 | ! do k = kts, kte |
|---|
| 2211 | ! do i = its, ite |
|---|
| 2212 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 2213 | ! enddo |
|---|
| 2214 | ! enddo |
|---|
| 2215 | do k = kts, kte |
|---|
| 2216 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
|---|
| 2217 | do i = its, ite |
|---|
| 2218 | tvec1(i) = tvec1(i)*den0 |
|---|
| 2219 | enddo |
|---|
| 2220 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 2221 | enddo |
|---|
| 2222 | ! |
|---|
| 2223 | ! Inline expansion for fpvs |
|---|
| 2224 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 2225 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 2226 | hsub = xls |
|---|
| 2227 | hvap = xlv0 |
|---|
| 2228 | cvap = cpv |
|---|
| 2229 | ttp=t0c+0.01 |
|---|
| 2230 | dldt=cvap-cliq |
|---|
| 2231 | xa=-dldt/rv |
|---|
| 2232 | xb=xa+hvap/(rv*ttp) |
|---|
| 2233 | dldti=cvap-cice |
|---|
| 2234 | xai=-dldti/rv |
|---|
| 2235 | xbi=xai+hsub/(rv*ttp) |
|---|
| 2236 | |
|---|
| 2237 | ! this is for compilers where the conditional inhibits vectorization |
|---|
| 2238 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 2239 | do k = kts, kte |
|---|
| 2240 | do i = its, ite |
|---|
| 2241 | if(t(i,k).lt.ttp) then |
|---|
| 2242 | xal(i) = xai |
|---|
| 2243 | xbl(i) = xbi |
|---|
| 2244 | else |
|---|
| 2245 | xal(i) = xa |
|---|
| 2246 | xbl(i) = xb |
|---|
| 2247 | endif |
|---|
| 2248 | enddo |
|---|
| 2249 | do i = its, ite |
|---|
| 2250 | tr=ttp/t(i,k) |
|---|
| 2251 | logtr=log(tr) |
|---|
| 2252 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 2253 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 2254 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 2255 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 2256 | qs(i,k,2)=psat*exp(logtr*(xal(i))+xbl(i)*(1.-tr)) |
|---|
| 2257 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 2258 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 2259 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 2260 | enddo |
|---|
| 2261 | enddo |
|---|
| 2262 | #else |
|---|
| 2263 | do k = kts, kte |
|---|
| 2264 | do i = its, ite |
|---|
| 2265 | tr=ttp/t(i,k) |
|---|
| 2266 | logtr=log(tr) |
|---|
| 2267 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 2268 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 2269 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 2270 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 2271 | if(t(i,k).lt.ttp) then |
|---|
| 2272 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
|---|
| 2273 | else |
|---|
| 2274 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 2275 | endif |
|---|
| 2276 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 2277 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 2278 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 2279 | enddo |
|---|
| 2280 | enddo |
|---|
| 2281 | #endif |
|---|
| 2282 | ! |
|---|
| 2283 | !---------------------------------------------------------------- |
|---|
| 2284 | ! initialize the variables for microphysical physics |
|---|
| 2285 | ! |
|---|
| 2286 | ! |
|---|
| 2287 | do k = kts, kte |
|---|
| 2288 | do i = its, ite |
|---|
| 2289 | prevp(i,k) = 0. |
|---|
| 2290 | psdep(i,k) = 0. |
|---|
| 2291 | praut(i,k) = 0. |
|---|
| 2292 | psaut(i,k) = 0. |
|---|
| 2293 | pracw(i,k) = 0. |
|---|
| 2294 | psaci(i,k) = 0. |
|---|
| 2295 | psacw(i,k) = 0. |
|---|
| 2296 | pigen(i,k) = 0. |
|---|
| 2297 | pidep(i,k) = 0. |
|---|
| 2298 | pcond(i,k) = 0. |
|---|
| 2299 | psmlt(i,k) = 0. |
|---|
| 2300 | psevp(i,k) = 0. |
|---|
| 2301 | falk(i,k,1) = 0. |
|---|
| 2302 | falk(i,k,2) = 0. |
|---|
| 2303 | fall(i,k,1) = 0. |
|---|
| 2304 | fall(i,k,2) = 0. |
|---|
| 2305 | fallc(i,k) = 0. |
|---|
| 2306 | falkc(i,k) = 0. |
|---|
| 2307 | xni(i,k) = 1.e3 |
|---|
| 2308 | enddo |
|---|
| 2309 | enddo |
|---|
| 2310 | ! |
|---|
| 2311 | !---------------------------------------------------------------- |
|---|
| 2312 | ! compute the fallout term: |
|---|
| 2313 | ! first, vertical terminal velosity for minor loops |
|---|
| 2314 | ! |
|---|
| 2315 | do k = kts, kte |
|---|
| 2316 | do i = its, ite |
|---|
| 2317 | supcol = t0c-t(i,k) |
|---|
| 2318 | !--------------------------------------------------------------- |
|---|
| 2319 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 2320 | !--------------------------------------------------------------- |
|---|
| 2321 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 2322 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 2323 | rslope(i,k,1) = rslopermax |
|---|
| 2324 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 2325 | rslope2(i,k,1) = rsloper2max |
|---|
| 2326 | rslope3(i,k,1) = rsloper3max |
|---|
| 2327 | else |
|---|
| 2328 | rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
|---|
| 2329 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 2330 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 2331 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 2332 | endif |
|---|
| 2333 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 2334 | rslope(i,k,2) = rslopesmax |
|---|
| 2335 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 2336 | rslope2(i,k,2) = rslopes2max |
|---|
| 2337 | rslope3(i,k,2) = rslopes3max |
|---|
| 2338 | else |
|---|
| 2339 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 2340 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 2341 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 2342 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 2343 | endif |
|---|
| 2344 | !------------------------------------------------------------- |
|---|
| 2345 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 2346 | !------------------------------------------------------------- |
|---|
| 2347 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 2348 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 2349 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 2350 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 2351 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 2352 | enddo |
|---|
| 2353 | enddo |
|---|
| 2354 | ! |
|---|
| 2355 | mstepmax = 1 |
|---|
| 2356 | numdt = 1 |
|---|
| 2357 | do k = kte, kts, -1 |
|---|
| 2358 | do i = its, ite |
|---|
| 2359 | work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k) |
|---|
| 2360 | work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k) |
|---|
| 2361 | numdt(i) = max(nint(max(work1(i,k,1),work1(i,k,2))*dtcld+.5),1) |
|---|
| 2362 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 2363 | enddo |
|---|
| 2364 | enddo |
|---|
| 2365 | do i = its, ite |
|---|
| 2366 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 2367 | rmstep(i) = 1./mstep(i) |
|---|
| 2368 | enddo |
|---|
| 2369 | ! |
|---|
| 2370 | do n = 1, mstepmax |
|---|
| 2371 | k = kte |
|---|
| 2372 | do i = its, ite |
|---|
| 2373 | if(n.le.mstep(i)) then |
|---|
| 2374 | ! falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 2375 | ! falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i) |
|---|
| 2376 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
|---|
| 2377 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
|---|
| 2378 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 2379 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 2380 | ! qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
|---|
| 2381 | ! qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.) |
|---|
| 2382 | dtcldden = dtcld/den(i,k) |
|---|
| 2383 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcldden,0.) |
|---|
| 2384 | qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcldden,0.) |
|---|
| 2385 | endif |
|---|
| 2386 | enddo |
|---|
| 2387 | do k = kte-1, kts, -1 |
|---|
| 2388 | do i = its, ite |
|---|
| 2389 | if(n.le.mstep(i)) then |
|---|
| 2390 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)*rmstep(i) |
|---|
| 2391 | falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)*rmstep(i) |
|---|
| 2392 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 2393 | fall(i,k,2) = fall(i,k,2)+falk(i,k,2) |
|---|
| 2394 | dtcldden = dtcld/den(i,k) |
|---|
| 2395 | rdelz = 1./delz(i,k) |
|---|
| 2396 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 2397 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
|---|
| 2398 | qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) & |
|---|
| 2399 | *delz(i,k+1)*rdelz)*dtcldden,0.) |
|---|
| 2400 | endif |
|---|
| 2401 | enddo |
|---|
| 2402 | enddo |
|---|
| 2403 | do k = kte, kts, -1 |
|---|
| 2404 | do i = its, ite |
|---|
| 2405 | if(n.le.mstep(i)) then |
|---|
| 2406 | if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then |
|---|
| 2407 | !---------------------------------------------------------------- |
|---|
| 2408 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 2409 | ! (T>T0: S->R) |
|---|
| 2410 | !---------------------------------------------------------------- |
|---|
| 2411 | xlf = xlf0 |
|---|
| 2412 | ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 2413 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
|---|
| 2414 | /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 & |
|---|
| 2415 | *exp(log(t(i,k))*(1.81))/p(i,k)))) & |
|---|
| 2416 | *((.3333333)))/sqrt((1.496e-6*((t(i,k)) & |
|---|
| 2417 | *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) & |
|---|
| 2418 | *sqrt(sqrt(den0/(den(i,k))))) |
|---|
| 2419 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 2420 | ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 2421 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 2422 | ! *work2(i,k)*coeres) |
|---|
| 2423 | psmlt(i,k) = (1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
|---|
| 2424 | /((t(i,k))+120.)/(den(i,k)) )*(den(i,k))) & |
|---|
| 2425 | /xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 2426 | *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 2427 | *work2(i,k)*coeres) |
|---|
| 2428 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i), & |
|---|
| 2429 | -qrs(i,k,2)/mstep(i)),0.) |
|---|
| 2430 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 2431 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 2432 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 2433 | endif |
|---|
| 2434 | endif |
|---|
| 2435 | enddo |
|---|
| 2436 | enddo |
|---|
| 2437 | enddo |
|---|
| 2438 | !--------------------------------------------------------------- |
|---|
| 2439 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 2440 | !--------------------------------------------------------------- |
|---|
| 2441 | mstepmax = 1 |
|---|
| 2442 | mstep = 1 |
|---|
| 2443 | numdt = 1 |
|---|
| 2444 | do k = kte, kts, -1 |
|---|
| 2445 | do i = its, ite |
|---|
| 2446 | if(qci(i,k,2).le.0.) then |
|---|
| 2447 | work2c(i,k) = 0. |
|---|
| 2448 | else |
|---|
| 2449 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 2450 | ! diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 2451 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 2452 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 2453 | work2c(i,k) = work1c(i,k)/delz(i,k) |
|---|
| 2454 | endif |
|---|
| 2455 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
|---|
| 2456 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 2457 | enddo |
|---|
| 2458 | enddo |
|---|
| 2459 | do i = its, ite |
|---|
| 2460 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 2461 | enddo |
|---|
| 2462 | ! |
|---|
| 2463 | do n = 1, mstepmax |
|---|
| 2464 | k = kte |
|---|
| 2465 | do i = its, ite |
|---|
| 2466 | if(n.le.mstep(i)) then |
|---|
| 2467 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
|---|
| 2468 | holdc = falkc(i,k) |
|---|
| 2469 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 2470 | holdci = qci(i,k,2) |
|---|
| 2471 | qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.) |
|---|
| 2472 | endif |
|---|
| 2473 | enddo |
|---|
| 2474 | do k = kte-1, kts, -1 |
|---|
| 2475 | do i = its, ite |
|---|
| 2476 | if(n.le.mstep(i)) then |
|---|
| 2477 | falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i) |
|---|
| 2478 | holdc = falkc(i,k) |
|---|
| 2479 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 2480 | holdci = qci(i,k,2) |
|---|
| 2481 | qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) & |
|---|
| 2482 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 2483 | endif |
|---|
| 2484 | enddo |
|---|
| 2485 | enddo |
|---|
| 2486 | enddo |
|---|
| 2487 | ! |
|---|
| 2488 | ! |
|---|
| 2489 | !---------------------------------------------------------------- |
|---|
| 2490 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 2491 | ! |
|---|
| 2492 | do i = its, ite |
|---|
| 2493 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
|---|
| 2494 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
|---|
| 2495 | rainncv(i) = 0. |
|---|
| 2496 | if(fallsum.gt.0.) then |
|---|
| 2497 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
|---|
| 2498 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
|---|
| 2499 | endif |
|---|
| 2500 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
|---|
| 2501 | snowncv(i,lat) = 0. |
|---|
| 2502 | if(fallsum_qsi.gt.0.) then |
|---|
| 2503 | snowncv(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
|---|
| 2504 | snow(i,lat) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i,lat) |
|---|
| 2505 | endif |
|---|
| 2506 | ENDIF |
|---|
| 2507 | sr(i) = 0. |
|---|
| 2508 | if(fallsum.gt.0.)sr(i)=fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 2509 | /(rainncv(i)+1.e-12) |
|---|
| 2510 | enddo |
|---|
| 2511 | ! |
|---|
| 2512 | !--------------------------------------------------------------- |
|---|
| 2513 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 2514 | ! (T>T0: I->C) |
|---|
| 2515 | !--------------------------------------------------------------- |
|---|
| 2516 | do k = kts, kte |
|---|
| 2517 | do i = its, ite |
|---|
| 2518 | supcol = t0c-t(i,k) |
|---|
| 2519 | xlf = xls-xl(i,k) |
|---|
| 2520 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 2521 | if(supcol.lt.0.and.qci(i,k,2).gt.0.) then |
|---|
| 2522 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
|---|
| 2523 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 2524 | qci(i,k,2) = 0. |
|---|
| 2525 | endif |
|---|
| 2526 | !--------------------------------------------------------------- |
|---|
| 2527 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 2528 | ! (T<-40C: C->I) |
|---|
| 2529 | !--------------------------------------------------------------- |
|---|
| 2530 | if(supcol.gt.40..and.qci(i,k,1).gt.0.) then |
|---|
| 2531 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 2532 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 2533 | qci(i,k,1) = 0. |
|---|
| 2534 | endif |
|---|
| 2535 | !--------------------------------------------------------------- |
|---|
| 2536 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 2537 | ! (T0>T>-40C: C->I) |
|---|
| 2538 | !--------------------------------------------------------------- |
|---|
| 2539 | if(supcol.gt.0..and.qci(i,k,1).gt.0.) then |
|---|
| 2540 | supcolt=min(supcol,50.) |
|---|
| 2541 | ! pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) & |
|---|
| 2542 | ! *den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1)) |
|---|
| 2543 | pfrzdtc = min(pfrz1*(exp(pfrz2*supcolt)-1.) & |
|---|
| 2544 | *den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1)) |
|---|
| 2545 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 2546 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 2547 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 2548 | endif |
|---|
| 2549 | !--------------------------------------------------------------- |
|---|
| 2550 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 2551 | ! (T<T0, R->S) |
|---|
| 2552 | !--------------------------------------------------------------- |
|---|
| 2553 | if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then |
|---|
| 2554 | supcolt=min(supcol,50.) |
|---|
| 2555 | ! pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) & |
|---|
| 2556 | ! *(exp(pfrz2*supcol)-1.)*rslope(i,k,1)**7*dtcld, & |
|---|
| 2557 | ! qrs(i,k,1)) |
|---|
| 2558 | temp = rslope(i,k,1) |
|---|
| 2559 | temp = temp*temp*temp*temp*temp*temp*temp |
|---|
| 2560 | pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k) & |
|---|
| 2561 | *(exp(pfrz2*supcolt)-1.)*temp*dtcld, & |
|---|
| 2562 | qrs(i,k,1)) |
|---|
| 2563 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
|---|
| 2564 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 2565 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 2566 | endif |
|---|
| 2567 | enddo |
|---|
| 2568 | enddo |
|---|
| 2569 | ! |
|---|
| 2570 | !---------------------------------------------------------------- |
|---|
| 2571 | ! rsloper: reverse of the slope parameter of the rain(m) |
|---|
| 2572 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 2573 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 2574 | ! heat conduction and vapor diffusion |
|---|
| 2575 | ! (ry88, y93, h85) |
|---|
| 2576 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 2577 | ! |
|---|
| 2578 | do k = kts, kte |
|---|
| 2579 | do i = its, ite |
|---|
| 2580 | if(qrs(i,k,1).le.qcrmin)then |
|---|
| 2581 | rslope(i,k,1) = rslopermax |
|---|
| 2582 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 2583 | rslope2(i,k,1) = rsloper2max |
|---|
| 2584 | rslope3(i,k,1) = rsloper3max |
|---|
| 2585 | else |
|---|
| 2586 | ! rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k)) |
|---|
| 2587 | rslope(i,k,1) = 1./(sqrt(sqrt(pidn0r/((qrs(i,k,1))*(den(i,k)))))) |
|---|
| 2588 | rslopeb(i,k,1) = exp(log(rslope(i,k,1))*(bvtr)) |
|---|
| 2589 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 2590 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 2591 | endif |
|---|
| 2592 | if(qrs(i,k,2).le.qcrmin)then |
|---|
| 2593 | rslope(i,k,2) = rslopesmax |
|---|
| 2594 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 2595 | rslope2(i,k,2) = rslopes2max |
|---|
| 2596 | rslope3(i,k,2) = rslopes3max |
|---|
| 2597 | else |
|---|
| 2598 | ! rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 2599 | rslope(i,k,2) = 1./(sqrt(sqrt(pidn0s*(n0sfac(i,k))/((qrs(i,k,2)) & |
|---|
| 2600 | *(den(i,k)))))) |
|---|
| 2601 | rslopeb(i,k,2) = exp(log(rslope(i,k,2))*(bvts)) |
|---|
| 2602 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 2603 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 2604 | endif |
|---|
| 2605 | enddo |
|---|
| 2606 | enddo |
|---|
| 2607 | ! |
|---|
| 2608 | do k = kts, kte |
|---|
| 2609 | do i = its, ite |
|---|
| 2610 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
|---|
| 2611 | work1(i,k,1) = ((((den(i,k))*(xl(i,k))*(xl(i,k)))*((t(i,k))+120.) & |
|---|
| 2612 | *(den(i,k)))/(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))& |
|---|
| 2613 | *(den(i,k))*(rv*(t(i,k))*(t(i,k))))) & |
|---|
| 2614 | + p(i,k)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k))*(1.81)))) |
|---|
| 2615 | ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
|---|
| 2616 | work1(i,k,2) = ((((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k)))& |
|---|
| 2617 | /(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))*(den(i,k)) & |
|---|
| 2618 | *(rv*(t(i,k))*(t(i,k)))) & |
|---|
| 2619 | + p(i,k)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k))*(1.81))))) |
|---|
| 2620 | ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 2621 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) & |
|---|
| 2622 | *p(i,k))/(((t(i,k))+120.)*den(i,k)*(8.794e-5 & |
|---|
| 2623 | *exp(log(t(i,k))*(1.81))))))*sqrt(sqrt(den0/(den(i,k))))) & |
|---|
| 2624 | /sqrt((1.496e-6*((t(i,k))*sqrt(t(i,k)))) & |
|---|
| 2625 | /(((t(i,k))+120.)*den(i,k))) |
|---|
| 2626 | enddo |
|---|
| 2627 | enddo |
|---|
| 2628 | ! |
|---|
| 2629 | !=============================================================== |
|---|
| 2630 | ! |
|---|
| 2631 | ! warm rain processes |
|---|
| 2632 | ! |
|---|
| 2633 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 2634 | ! |
|---|
| 2635 | !=============================================================== |
|---|
| 2636 | ! |
|---|
| 2637 | do k = kts, kte |
|---|
| 2638 | do i = its, ite |
|---|
| 2639 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
|---|
| 2640 | satdt = supsat/dtcld |
|---|
| 2641 | !--------------------------------------------------------------- |
|---|
| 2642 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 2643 | ! (C->R) |
|---|
| 2644 | !--------------------------------------------------------------- |
|---|
| 2645 | if(qci(i,k,1).gt.qc0) then |
|---|
| 2646 | praut(i,k) = qck1*exp(log(qci(i,k,1))*((7./3.))) |
|---|
| 2647 | praut(i,k) = min(praut(i,k),qci(i,k,1)/dtcld) |
|---|
| 2648 | endif |
|---|
| 2649 | !--------------------------------------------------------------- |
|---|
| 2650 | ! pracw: accretion of cloud water by rain [HL A40] [LFO 51] |
|---|
| 2651 | ! (C->R) |
|---|
| 2652 | !--------------------------------------------------------------- |
|---|
| 2653 | if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 2654 | pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) & |
|---|
| 2655 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
|---|
| 2656 | endif |
|---|
| 2657 | !--------------------------------------------------------------- |
|---|
| 2658 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 2659 | ! (V->R or R->V) |
|---|
| 2660 | !--------------------------------------------------------------- |
|---|
| 2661 | if(qrs(i,k,1).gt.0.) then |
|---|
| 2662 | coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 2663 | prevp(i,k) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) & |
|---|
| 2664 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 2665 | if(prevp(i,k).lt.0.) then |
|---|
| 2666 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 2667 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 2668 | else |
|---|
| 2669 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 2670 | endif |
|---|
| 2671 | endif |
|---|
| 2672 | enddo |
|---|
| 2673 | enddo |
|---|
| 2674 | ! |
|---|
| 2675 | !=============================================================== |
|---|
| 2676 | ! |
|---|
| 2677 | ! cold rain processes |
|---|
| 2678 | ! |
|---|
| 2679 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 2680 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 2681 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 2682 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 2683 | ! concentration (ni), ice nuclei number concentration |
|---|
| 2684 | ! (n0i), ice diameter (d) |
|---|
| 2685 | ! |
|---|
| 2686 | !=============================================================== |
|---|
| 2687 | ! |
|---|
| 2688 | rdtcld = 1./dtcld |
|---|
| 2689 | do k = kts, kte |
|---|
| 2690 | do i = its, ite |
|---|
| 2691 | supcol = t0c-t(i,k) |
|---|
| 2692 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
|---|
| 2693 | satdt = supsat/dtcld |
|---|
| 2694 | ifsat = 0 |
|---|
| 2695 | !------------------------------------------------------------- |
|---|
| 2696 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 2697 | !------------------------------------------------------------- |
|---|
| 2698 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 2699 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 2700 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 2701 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 2702 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 2703 | eacrs = exp(0.07*(-supcol)) |
|---|
| 2704 | ! |
|---|
| 2705 | if(supcol.gt.0) then |
|---|
| 2706 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,2).gt.qmin) then |
|---|
| 2707 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 2708 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 2709 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 2710 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 2711 | !------------------------------------------------------------- |
|---|
| 2712 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
|---|
| 2713 | ! (T<T0: I->S) |
|---|
| 2714 | !------------------------------------------------------------- |
|---|
| 2715 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 2716 | +diameter**2*rslope(i,k,2) |
|---|
| 2717 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 2718 | *abs(vt2s-vt2i)*acrfac/4. |
|---|
| 2719 | endif |
|---|
| 2720 | endif |
|---|
| 2721 | !------------------------------------------------------------- |
|---|
| 2722 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 2723 | ! (T<T0: C->S, and T>=T0: C->R) |
|---|
| 2724 | !------------------------------------------------------------- |
|---|
| 2725 | if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then |
|---|
| 2726 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) & |
|---|
| 2727 | *rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) & |
|---|
| 2728 | ! ,qci(i,k,1)/dtcld) |
|---|
| 2729 | ,qci(i,k,1)*rdtcld) |
|---|
| 2730 | endif |
|---|
| 2731 | if(supcol .gt. 0) then |
|---|
| 2732 | !------------------------------------------------------------- |
|---|
| 2733 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 2734 | ! (T<T0: V->I or I->V) |
|---|
| 2735 | !------------------------------------------------------------- |
|---|
| 2736 | if(qci(i,k,2).gt.0.and.ifsat.ne.1) then |
|---|
| 2737 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 2738 | diameter = dicon * sqrt(xmi) |
|---|
| 2739 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 2740 | supice = satdt-prevp(i,k) |
|---|
| 2741 | if(pidep(i,k).lt.0.) then |
|---|
| 2742 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 2743 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 2744 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
|---|
| 2745 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
|---|
| 2746 | else |
|---|
| 2747 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 2748 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
|---|
| 2749 | endif |
|---|
| 2750 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 2751 | endif |
|---|
| 2752 | !------------------------------------------------------------- |
|---|
| 2753 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 2754 | ! (V->S or S->V) |
|---|
| 2755 | !------------------------------------------------------------- |
|---|
| 2756 | if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then |
|---|
| 2757 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 2758 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k) & |
|---|
| 2759 | *(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 2760 | *work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 2761 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 2762 | if(psdep(i,k).lt.0.) then |
|---|
| 2763 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 2764 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 2765 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
|---|
| 2766 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
|---|
| 2767 | else |
|---|
| 2768 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 2769 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
|---|
| 2770 | endif |
|---|
| 2771 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) & |
|---|
| 2772 | ifsat = 1 |
|---|
| 2773 | endif |
|---|
| 2774 | !------------------------------------------------------------- |
|---|
| 2775 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
|---|
| 2776 | ! (T<T0: V->I) |
|---|
| 2777 | !------------------------------------------------------------- |
|---|
| 2778 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 2779 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 2780 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 2781 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 2782 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) & |
|---|
| 2783 | ! /dtcld) |
|---|
| 2784 | *rdtcld) |
|---|
| 2785 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 2786 | endif |
|---|
| 2787 | ! |
|---|
| 2788 | !------------------------------------------------------------- |
|---|
| 2789 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 2790 | ! (T<T0: I->S) |
|---|
| 2791 | !------------------------------------------------------------- |
|---|
| 2792 | if(qci(i,k,2).gt.0.) then |
|---|
| 2793 | qimax = roqimax/den(i,k) |
|---|
| 2794 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 2795 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
|---|
| 2796 | endif |
|---|
| 2797 | endif |
|---|
| 2798 | !------------------------------------------------------------- |
|---|
| 2799 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 2800 | ! (T>T0: S->V) |
|---|
| 2801 | !------------------------------------------------------------- |
|---|
| 2802 | if(supcol.lt.0.) then |
|---|
| 2803 | if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) & |
|---|
| 2804 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
|---|
| 2805 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 2806 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
|---|
| 2807 | endif |
|---|
| 2808 | enddo |
|---|
| 2809 | enddo |
|---|
| 2810 | ! |
|---|
| 2811 | ! |
|---|
| 2812 | !---------------------------------------------------------------- |
|---|
| 2813 | ! check mass conservation of generation terms and feedback to the |
|---|
| 2814 | ! large scale |
|---|
| 2815 | ! |
|---|
| 2816 | do k = kts, kte |
|---|
| 2817 | do i = its, ite |
|---|
| 2818 | if(t(i,k).le.t0c) then |
|---|
| 2819 | ! |
|---|
| 2820 | ! cloud water |
|---|
| 2821 | ! |
|---|
| 2822 | value = max(qmin,qci(i,k,1)) |
|---|
| 2823 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 2824 | if (source.gt.value) then |
|---|
| 2825 | factor = value/source |
|---|
| 2826 | praut(i,k) = praut(i,k)*factor |
|---|
| 2827 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 2828 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 2829 | endif |
|---|
| 2830 | ! |
|---|
| 2831 | ! cloud ice |
|---|
| 2832 | ! |
|---|
| 2833 | value = max(qmin,qci(i,k,2)) |
|---|
| 2834 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
|---|
| 2835 | if (source.gt.value) then |
|---|
| 2836 | factor = value/source |
|---|
| 2837 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 2838 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 2839 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 2840 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 2841 | endif |
|---|
| 2842 | ! |
|---|
| 2843 | ! rain |
|---|
| 2844 | ! |
|---|
| 2845 | ! |
|---|
| 2846 | value = max(qmin,qrs(i,k,1)) |
|---|
| 2847 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
|---|
| 2848 | if (source.gt.value) then |
|---|
| 2849 | factor = value/source |
|---|
| 2850 | praut(i,k) = praut(i,k)*factor |
|---|
| 2851 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 2852 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 2853 | endif |
|---|
| 2854 | ! |
|---|
| 2855 | ! snow |
|---|
| 2856 | ! |
|---|
| 2857 | value = max(qmin,qrs(i,k,2)) |
|---|
| 2858 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
|---|
| 2859 | if (source.gt.value) then |
|---|
| 2860 | factor = value/source |
|---|
| 2861 | psdep(i,k) = psdep(i,k)*factor |
|---|
| 2862 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 2863 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 2864 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 2865 | endif |
|---|
| 2866 | ! |
|---|
| 2867 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 2868 | ! update |
|---|
| 2869 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 2870 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 2871 | +psacw(i,k))*dtcld,0.) |
|---|
| 2872 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 2873 | +prevp(i,k))*dtcld,0.) |
|---|
| 2874 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k) & |
|---|
| 2875 | -pigen(i,k)-pidep(i,k))*dtcld,0.) |
|---|
| 2876 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k) & |
|---|
| 2877 | +psaci(i,k)+psacw(i,k))*dtcld,0.) |
|---|
| 2878 | xlf = xls-xl(i,k) |
|---|
| 2879 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 2880 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
|---|
| 2881 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 2882 | else |
|---|
| 2883 | ! |
|---|
| 2884 | ! cloud water |
|---|
| 2885 | ! |
|---|
| 2886 | value = max(qmin,qci(i,k,1)) |
|---|
| 2887 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 2888 | if (source.gt.value) then |
|---|
| 2889 | factor = value/source |
|---|
| 2890 | praut(i,k) = praut(i,k)*factor |
|---|
| 2891 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 2892 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 2893 | endif |
|---|
| 2894 | ! |
|---|
| 2895 | ! rain |
|---|
| 2896 | ! |
|---|
| 2897 | value = max(qmin,qrs(i,k,1)) |
|---|
| 2898 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k)-psacw(i,k))*dtcld |
|---|
| 2899 | if (source.gt.value) then |
|---|
| 2900 | factor = value/source |
|---|
| 2901 | praut(i,k) = praut(i,k)*factor |
|---|
| 2902 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 2903 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 2904 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 2905 | endif |
|---|
| 2906 | ! |
|---|
| 2907 | ! snow |
|---|
| 2908 | ! |
|---|
| 2909 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 2910 | source=(-psevp(i,k))*dtcld |
|---|
| 2911 | if (source.gt.value) then |
|---|
| 2912 | factor = value/source |
|---|
| 2913 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 2914 | endif |
|---|
| 2915 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
|---|
| 2916 | ! update |
|---|
| 2917 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 2918 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
|---|
| 2919 | +psacw(i,k))*dtcld,0.) |
|---|
| 2920 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
|---|
| 2921 | +prevp(i,k) +psacw(i,k))*dtcld,0.) |
|---|
| 2922 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
|---|
| 2923 | xlf = xls-xl(i,k) |
|---|
| 2924 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
|---|
| 2925 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 2926 | endif |
|---|
| 2927 | enddo |
|---|
| 2928 | enddo |
|---|
| 2929 | ! |
|---|
| 2930 | ! Inline expansion for fpvs |
|---|
| 2931 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 2932 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 2933 | hsub = xls |
|---|
| 2934 | hvap = xlv0 |
|---|
| 2935 | cvap = cpv |
|---|
| 2936 | ttp=t0c+0.01 |
|---|
| 2937 | dldt=cvap-cliq |
|---|
| 2938 | xa=-dldt/rv |
|---|
| 2939 | xb=xa+hvap/(rv*ttp) |
|---|
| 2940 | dldti=cvap-cice |
|---|
| 2941 | xai=-dldti/rv |
|---|
| 2942 | xbi=xai+hsub/(rv*ttp) |
|---|
| 2943 | do k = kts, kte |
|---|
| 2944 | do i = its, ite |
|---|
| 2945 | tr=ttp/t(i,k) |
|---|
| 2946 | logtr = log(tr) |
|---|
| 2947 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 2948 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 2949 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 2950 | enddo |
|---|
| 2951 | enddo |
|---|
| 2952 | ! |
|---|
| 2953 | !---------------------------------------------------------------- |
|---|
| 2954 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 2955 | ! if there exists additional water vapor condensated/if |
|---|
| 2956 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 2957 | ! |
|---|
| 2958 | do k = kts, kte |
|---|
| 2959 | do i = its, ite |
|---|
| 2960 | ! work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
|---|
| 2961 | work1(i,k,1) = ((max(q(i,k),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
|---|
| 2962 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1)) & |
|---|
| 2963 | /((t(i,k))*(t(i,k))))) |
|---|
| 2964 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 2965 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
|---|
| 2966 | if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) & |
|---|
| 2967 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 2968 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
|---|
| 2969 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 2970 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 2971 | enddo |
|---|
| 2972 | enddo |
|---|
| 2973 | ! |
|---|
| 2974 | ! |
|---|
| 2975 | !---------------------------------------------------------------- |
|---|
| 2976 | ! padding for small values |
|---|
| 2977 | ! |
|---|
| 2978 | do k = kts, kte |
|---|
| 2979 | do i = its, ite |
|---|
| 2980 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 2981 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 2982 | enddo |
|---|
| 2983 | enddo |
|---|
| 2984 | enddo ! big loops |
|---|
| 2985 | END SUBROUTINE wsm52d |
|---|
| 2986 | |
|---|
| 2987 | #endif |
|---|
| 2988 | |
|---|
| 2989 | ! ................................................................... |
|---|
| 2990 | REAL FUNCTION rgmma(x) |
|---|
| 2991 | !------------------------------------------------------------------- |
|---|
| 2992 | IMPLICIT NONE |
|---|
| 2993 | !------------------------------------------------------------------- |
|---|
| 2994 | ! rgmma function: use infinite product form |
|---|
| 2995 | REAL :: euler |
|---|
| 2996 | PARAMETER (euler=0.577215664901532) |
|---|
| 2997 | REAL :: x, y |
|---|
| 2998 | INTEGER :: i |
|---|
| 2999 | if(x.eq.1.)then |
|---|
| 3000 | rgmma=0. |
|---|
| 3001 | else |
|---|
| 3002 | rgmma=x*exp(euler*x) |
|---|
| 3003 | do i=1,10000 |
|---|
| 3004 | y=float(i) |
|---|
| 3005 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
|---|
| 3006 | enddo |
|---|
| 3007 | rgmma=1./rgmma |
|---|
| 3008 | endif |
|---|
| 3009 | END FUNCTION rgmma |
|---|
| 3010 | ! |
|---|
| 3011 | !-------------------------------------------------------------------------- |
|---|
| 3012 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
|---|
| 3013 | !-------------------------------------------------------------------------- |
|---|
| 3014 | IMPLICIT NONE |
|---|
| 3015 | !-------------------------------------------------------------------------- |
|---|
| 3016 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
|---|
| 3017 | xai,xbi,ttp,tr |
|---|
| 3018 | INTEGER ice |
|---|
| 3019 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 3020 | ttp=t0c+0.01 |
|---|
| 3021 | dldt=cvap-cliq |
|---|
| 3022 | xa=-dldt/rv |
|---|
| 3023 | xb=xa+hvap/(rv*ttp) |
|---|
| 3024 | dldti=cvap-cice |
|---|
| 3025 | xai=-dldti/rv |
|---|
| 3026 | xbi=xai+hsub/(rv*ttp) |
|---|
| 3027 | tr=ttp/t |
|---|
| 3028 | if(t.lt.ttp.and.ice.eq.1) then |
|---|
| 3029 | fpvs=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 3030 | else |
|---|
| 3031 | fpvs=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 3032 | endif |
|---|
| 3033 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 3034 | END FUNCTION fpvs |
|---|
| 3035 | !------------------------------------------------------------------- |
|---|
| 3036 | SUBROUTINE wsm5init(den0,denr,dens,cl,cpv,allowed_to_read) |
|---|
| 3037 | !------------------------------------------------------------------- |
|---|
| 3038 | IMPLICIT NONE |
|---|
| 3039 | !------------------------------------------------------------------- |
|---|
| 3040 | !.... constants which may not be tunable |
|---|
| 3041 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
|---|
| 3042 | LOGICAL, INTENT(IN) :: allowed_to_read |
|---|
| 3043 | REAL :: pi |
|---|
| 3044 | ! |
|---|
| 3045 | pi = 4.*atan(1.) |
|---|
| 3046 | xlv1 = cl-cpv |
|---|
| 3047 | ! |
|---|
| 3048 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
|---|
| 3049 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
|---|
| 3050 | ! |
|---|
| 3051 | bvtr1 = 1.+bvtr |
|---|
| 3052 | bvtr2 = 2.5+.5*bvtr |
|---|
| 3053 | bvtr3 = 3.+bvtr |
|---|
| 3054 | bvtr4 = 4.+bvtr |
|---|
| 3055 | g1pbr = rgmma(bvtr1) |
|---|
| 3056 | g3pbr = rgmma(bvtr3) |
|---|
| 3057 | g4pbr = rgmma(bvtr4) ! 17.837825 |
|---|
| 3058 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
|---|
| 3059 | pvtr = avtr*g4pbr/6. |
|---|
| 3060 | eacrr = 1.0 |
|---|
| 3061 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
|---|
| 3062 | precr1 = 2.*pi*n0r*.78 |
|---|
| 3063 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
|---|
| 3064 | xmmax = (dimax/dicon)**2 |
|---|
| 3065 | roqimax = 2.08e22*dimax**8 |
|---|
| 3066 | ! |
|---|
| 3067 | bvts1 = 1.+bvts |
|---|
| 3068 | bvts2 = 2.5+.5*bvts |
|---|
| 3069 | bvts3 = 3.+bvts |
|---|
| 3070 | bvts4 = 4.+bvts |
|---|
| 3071 | g1pbs = rgmma(bvts1) !.8875 |
|---|
| 3072 | g3pbs = rgmma(bvts3) |
|---|
| 3073 | g4pbs = rgmma(bvts4) ! 12.0786 |
|---|
| 3074 | g5pbso2 = rgmma(bvts2) |
|---|
| 3075 | pvts = avts*g4pbs/6. |
|---|
| 3076 | pacrs = pi*n0s*avts*g3pbs*.25 |
|---|
| 3077 | precs1 = 4.*n0s*.65 |
|---|
| 3078 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
|---|
| 3079 | pidn0r = pi*denr*n0r |
|---|
| 3080 | pidn0s = pi*dens*n0s |
|---|
| 3081 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
|---|
| 3082 | ! |
|---|
| 3083 | rslopermax = 1./lamdarmax |
|---|
| 3084 | rslopesmax = 1./lamdasmax |
|---|
| 3085 | rsloperbmax = rslopermax ** bvtr |
|---|
| 3086 | rslopesbmax = rslopesmax ** bvts |
|---|
| 3087 | rsloper2max = rslopermax * rslopermax |
|---|
| 3088 | rslopes2max = rslopesmax * rslopesmax |
|---|
| 3089 | rsloper3max = rsloper2max * rslopermax |
|---|
| 3090 | rslopes3max = rslopes2max * rslopesmax |
|---|
| 3091 | ! |
|---|
| 3092 | END SUBROUTINE wsm5init |
|---|
| 3093 | END MODULE module_mp_wsm5 |
|---|