1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | MODULE module_mp_wsm3 |
---|
10 | ! |
---|
11 | ! |
---|
12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
---|
13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
---|
14 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
---|
15 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
---|
16 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
17 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
18 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
19 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
20 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
---|
21 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
---|
22 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
---|
23 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
---|
24 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
---|
25 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
---|
26 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
---|
27 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
---|
28 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
---|
29 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
30 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
---|
31 | REAL, SAVE :: & |
---|
32 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
---|
33 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
---|
34 | precr1,precr2,xmmax,roqimax,bvts1, & |
---|
35 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
---|
36 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
---|
37 | pidn0s,xlv1, & |
---|
38 | rslopermax,rslopesmax,rslopegmax, & |
---|
39 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
40 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
41 | rsloper3max,rslopes3max,rslopeg3max |
---|
42 | ! |
---|
43 | ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 |
---|
44 | ! |
---|
45 | CONTAINS |
---|
46 | !=================================================================== |
---|
47 | ! |
---|
48 | SUBROUTINE wsm3(th, q, qci, qrs & |
---|
49 | , w, den, pii, p, delz & |
---|
50 | , delt,g, cpd, cpv, rd, rv, t0c & |
---|
51 | , ep1, ep2, qmin & |
---|
52 | , XLS, XLV0, XLF0, den0, denr & |
---|
53 | , cliq,cice,psat & |
---|
54 | , rain, rainncv & |
---|
55 | , snow, snowncv & |
---|
56 | , sr & |
---|
57 | , ids,ide, jds,jde, kds,kde & |
---|
58 | , ims,ime, jms,jme, kms,kme & |
---|
59 | , its,ite, jts,jte, kts,kte & |
---|
60 | ) |
---|
61 | !------------------------------------------------------------------- |
---|
62 | #ifdef _OPENMP |
---|
63 | use omp_lib |
---|
64 | #endif |
---|
65 | IMPLICIT NONE |
---|
66 | !------------------------------------------------------------------- |
---|
67 | ! |
---|
68 | ! |
---|
69 | ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the WRF |
---|
70 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
---|
71 | ! number concentration is a function of temperature, and seperate assumption |
---|
72 | ! is developed, in which ice crystal number concentration is a function |
---|
73 | ! of ice amount. A theoretical background of the ice-microphysics and related |
---|
74 | ! processes in the WSMMPs are described in Hong et al. (2004). |
---|
75 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
---|
76 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
77 | ! |
---|
78 | ! WSM3 cloud scheme |
---|
79 | ! |
---|
80 | ! Coded by Song-You Hong (Yonsei Univ.) |
---|
81 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
---|
82 | ! Summer 2002 |
---|
83 | ! |
---|
84 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
---|
85 | ! Summer 2003 |
---|
86 | ! |
---|
87 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
88 | ! Dudhia (D89, 1989) J. Atmos. Sci. |
---|
89 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
90 | ! |
---|
91 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
92 | ims,ime, jms,jme, kms,kme , & |
---|
93 | its,ite, jts,jte, kts,kte |
---|
94 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
95 | INTENT(INOUT) :: & |
---|
96 | th, & |
---|
97 | q, & |
---|
98 | qci, & |
---|
99 | qrs |
---|
100 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
101 | INTENT(IN ) :: w, & |
---|
102 | den, & |
---|
103 | pii, & |
---|
104 | p, & |
---|
105 | delz |
---|
106 | |
---|
107 | REAL, INTENT(IN ) :: delt, & |
---|
108 | g, & |
---|
109 | rd, & |
---|
110 | rv, & |
---|
111 | t0c, & |
---|
112 | den0, & |
---|
113 | cpd, & |
---|
114 | cpv, & |
---|
115 | ep1, & |
---|
116 | ep2, & |
---|
117 | qmin, & |
---|
118 | XLS, & |
---|
119 | XLV0, & |
---|
120 | XLF0, & |
---|
121 | cliq, & |
---|
122 | cice, & |
---|
123 | psat, & |
---|
124 | denr |
---|
125 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
126 | INTENT(INOUT) :: rain, & |
---|
127 | rainncv |
---|
128 | |
---|
129 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
130 | INTENT(INOUT) :: snow, & |
---|
131 | snowncv, & |
---|
132 | sr |
---|
133 | |
---|
134 | ! LOCAL VAR |
---|
135 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
136 | INTEGER :: i,j,k |
---|
137 | #ifdef _ACCEL_PROF |
---|
138 | integer :: l |
---|
139 | real*8 wsm3_t(8,256), wsm5_t(8,256), t1, t2 |
---|
140 | common /wsm_times/ wsm3_t(8,256), wsm5_t(8,256) |
---|
141 | #endif |
---|
142 | !------------------------------------------------------------------- |
---|
143 | #ifdef _ACCEL_PROF |
---|
144 | call cpu_time(t1) |
---|
145 | #endif |
---|
146 | |
---|
147 | #ifdef _ACCEL |
---|
148 | |
---|
149 | CALL wsm32D(th, q, qci, qrs, & |
---|
150 | w, den, pii, p, delz, rain, rainncv, & |
---|
151 | delt,g, cpd, cpv, rd, rv, t0c, & |
---|
152 | ep1, ep2, qmin, & |
---|
153 | XLS, XLV0, XLF0, den0, denr, & |
---|
154 | cliq,cice,psat, & |
---|
155 | ids,ide, jds,jde, kds,kde, & |
---|
156 | ims,ime, jms,jme, kms,kme, & |
---|
157 | its,ite, jts,jte, kts,kte ) |
---|
158 | |
---|
159 | #else |
---|
160 | |
---|
161 | DO j=jts,jte |
---|
162 | DO k=kts,kte |
---|
163 | DO i=its,ite |
---|
164 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
165 | ENDDO |
---|
166 | ENDDO |
---|
167 | CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & |
---|
168 | ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & |
---|
169 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
170 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
171 | ,ep1, ep2, qmin & |
---|
172 | ,XLS, XLV0, XLF0, den0, denr & |
---|
173 | ,cliq,cice,psat & |
---|
174 | ,j & |
---|
175 | ,rain(ims,j), rainncv(ims,j) & |
---|
176 | ,snow(ims,j),snowncv(ims,j) & |
---|
177 | ,sr(ims,j) & |
---|
178 | ,ids,ide, jds,jde, kds,kde & |
---|
179 | ,ims,ime, jms,jme, kms,kme & |
---|
180 | ,its,ite, jts,jte, kts,kte & |
---|
181 | ) |
---|
182 | DO K=kts,kte |
---|
183 | DO I=its,ite |
---|
184 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
185 | ENDDO |
---|
186 | ENDDO |
---|
187 | ENDDO |
---|
188 | #endif |
---|
189 | |
---|
190 | |
---|
191 | #ifdef _ACCEL_PROF |
---|
192 | call cpu_time(t2) |
---|
193 | #ifdef _OPENMP |
---|
194 | l = omp_get_thread_num() + 1 |
---|
195 | #else |
---|
196 | l = 1 |
---|
197 | #endif |
---|
198 | wsm3_t(1,l) = wsm3_t(1,l) + (t2 - t1) |
---|
199 | #endif |
---|
200 | |
---|
201 | END SUBROUTINE wsm3 |
---|
202 | |
---|
203 | |
---|
204 | #ifdef _ACCEL |
---|
205 | |
---|
206 | !=================================================================== |
---|
207 | !{ |
---|
208 | SUBROUTINE wsm32D(th, q, qci, qrs, & |
---|
209 | w, den, pii, p, delz, rain, rainncv, & |
---|
210 | delt,g, cpd, cpv, rd, rv, t0c, & |
---|
211 | ep1, ep2, qmin, & |
---|
212 | XLS, XLV0, XLF0, den0, denr, & |
---|
213 | cliq,cice,psat, & |
---|
214 | ids,ide, jds,jde, kds,kde, & |
---|
215 | ims,ime, jms,jme, kms,kme, & |
---|
216 | its,ite, jts,jte, kts,kte ) |
---|
217 | !------------------------------------------------------------------- |
---|
218 | IMPLICIT NONE |
---|
219 | !------------------------------------------------------------------- |
---|
220 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
221 | ims,ime, jms,jme, kms,kme , & |
---|
222 | its,ite, jts,jte, kts,kte |
---|
223 | REAL, DIMENSION( ims:ime , kms:kme, ims:ims ), & |
---|
224 | INTENT(INOUT) :: & |
---|
225 | th |
---|
226 | REAL, DIMENSION( ims:ime , kms:kme, ims:ims ), & |
---|
227 | INTENT(IN) :: & |
---|
228 | pii |
---|
229 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
---|
230 | INTENT(INOUT) :: & |
---|
231 | q, & |
---|
232 | qci, & |
---|
233 | qrs |
---|
234 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
---|
235 | INTENT(IN ) :: w, & |
---|
236 | den, & |
---|
237 | p, & |
---|
238 | delz |
---|
239 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
240 | INTENT(INOUT) :: rain, & |
---|
241 | rainncv |
---|
242 | REAL, INTENT(IN ) :: delt, & |
---|
243 | g, & |
---|
244 | cpd, & |
---|
245 | cpv, & |
---|
246 | t0c, & |
---|
247 | den0, & |
---|
248 | rd, & |
---|
249 | rv, & |
---|
250 | ep1, & |
---|
251 | ep2, & |
---|
252 | qmin, & |
---|
253 | XLS, & |
---|
254 | XLV0, & |
---|
255 | XLF0, & |
---|
256 | cliq, & |
---|
257 | cice, & |
---|
258 | psat, & |
---|
259 | denr |
---|
260 | ! LOCAL VAR |
---|
261 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
262 | rh, qs, denfac, rslope, rslope2, rslope3, rslopeb, & |
---|
263 | pgen, paut, pacr, pisd, pres, pcon, fall, falk, & |
---|
264 | xl, cpm, work1, work2, xni, qs0, n0sfac |
---|
265 | ! LOCAL VAR |
---|
266 | REAL, DIMENSION( its:ite , kts:kte, jts:jte ) :: t |
---|
267 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
268 | falkc, work1c, work2c, fallc |
---|
269 | INTEGER :: mstep, numdt |
---|
270 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
271 | REAL :: pi, & |
---|
272 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
273 | viscos, xka, venfac, conden, diffac, & |
---|
274 | x, y, z, a, b, c, d, e, & |
---|
275 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
---|
276 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
---|
277 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
---|
278 | qimax, diameter, xni0, roqi0 |
---|
279 | REAL :: holdc, holdci |
---|
280 | INTEGER :: i, k, j, & |
---|
281 | iprt, latd, lond, loop, loops, ifsat, kk, n |
---|
282 | ! |
---|
283 | |
---|
284 | #define INL |
---|
285 | #ifdef INL |
---|
286 | ! Temporaries used for inlining fpvs function |
---|
287 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
288 | #endif |
---|
289 | |
---|
290 | |
---|
291 | |
---|
292 | !================================================================= |
---|
293 | ! compute internal functions |
---|
294 | ! |
---|
295 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
296 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
297 | ! tvcal(x,y) = x+x*ep1*max(y,qmin) |
---|
298 | !---------------------------------------------------------------- |
---|
299 | ! size distributions: (x=mixing ratio, y=air density): |
---|
300 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
301 | ! |
---|
302 | lamdar(x,y)=(pidn0r/(x*y))**.25 |
---|
303 | lamdas(x,y,z)=(pidn0s*z/(x*y))**.25 |
---|
304 | ! |
---|
305 | !---------------------------------------------------------------- |
---|
306 | ! diffus: diffusion coefficient of the water vapor |
---|
307 | ! viscos: kinematic viscosity(m2s-1) |
---|
308 | ! |
---|
309 | diffus(x,y) = 8.794e-5*x**1.81/y |
---|
310 | viscos(x,y) = 1.496e-6*x**1.5/(x+120.)/y |
---|
311 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
312 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
313 | venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
---|
314 | /viscos(b,c)**(.5)*(den0/c)**0.25 |
---|
315 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
316 | ! |
---|
317 | pi = 4. * atan(1.) |
---|
318 | ! |
---|
319 | !---------------------------------------------------------------- |
---|
320 | ! compute the minor time steps. |
---|
321 | ! |
---|
322 | loops = max(int(delt/dtcldcr+0.5),1) |
---|
323 | dtcld = delt/loops |
---|
324 | if(delt.le.dtcldcr) dtcld = delt |
---|
325 | #ifdef INL |
---|
326 | cvap = cpv |
---|
327 | hvap=xlv0 |
---|
328 | hsub=xls |
---|
329 | ttp=t0c+0.1 |
---|
330 | dldt=cvap-cliq |
---|
331 | xa=-dldt/rv |
---|
332 | xb=xa+hvap/(rv*ttp) |
---|
333 | dldti=cvap-cice |
---|
334 | xai=-dldti/rv |
---|
335 | xbi=xai+hsub/(rv*ttp) |
---|
336 | #endif |
---|
337 | ! |
---|
338 | !---------------------------------------------------------------- |
---|
339 | ! paddint 0 for negative values generated by dynamics |
---|
340 | ! |
---|
341 | !$acc region & |
---|
342 | !$acc local(t) & |
---|
343 | !$acc copyin(delz(:,:,:),p(:,:,:)) & |
---|
344 | !$acc copyin(den(:,:,:),w(:,:,:)) & |
---|
345 | !$acc copy(q(:,:,:),qci(:,:,:),qrs(:,:,:)) |
---|
346 | !$acc do & |
---|
347 | !$acc private(rh,qs,denfac,rslope,rslope2,rslope3,rslopeb) & |
---|
348 | !$acc private(pgen,paut,pacr,pisd,pres,pcon,fall,falk) & |
---|
349 | !$acc private(xl,cpm,work1,work2,xni,qs0,n0sfac) & |
---|
350 | !$acc private(falkc,work1c,work2c,fallc) & |
---|
351 | !$acc parallel |
---|
352 | do j = jts, jte |
---|
353 | !$acc do & |
---|
354 | !$acc private(numdt,mstep) & |
---|
355 | !$acc kernel vector(96) |
---|
356 | do i = its, ite |
---|
357 | do k = kts, kte |
---|
358 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
---|
359 | qci(i,k,j) = max(qci(i,k,j),0.0) |
---|
360 | qrs(i,k,j) = max(qrs(i,k,j),0.0) |
---|
361 | enddo |
---|
362 | ! |
---|
363 | !---------------------------------------------------------------- |
---|
364 | ! latent heat for phase changes and heat capacity. neglect the |
---|
365 | ! changes during microphysical process calculation |
---|
366 | ! emanuel(1994) |
---|
367 | ! |
---|
368 | do k = kts, kte |
---|
369 | cpm(i,k) = cpmcal(q(i,k,j)) |
---|
370 | xl(i,k) = xlcal(t(i,k,j)) |
---|
371 | enddo |
---|
372 | ! |
---|
373 | do loop = 1,loops |
---|
374 | ! |
---|
375 | !---------------------------------------------------------------- |
---|
376 | ! initialize the large scale variables |
---|
377 | ! |
---|
378 | mstep = 1 |
---|
379 | flgcld(i) = .true. |
---|
380 | ! |
---|
381 | do k = kts, kte |
---|
382 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
---|
383 | enddo |
---|
384 | ! |
---|
385 | do k = kts, kte |
---|
386 | #ifndef INL |
---|
387 | qs(i,k) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
388 | qs0(i,k) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
389 | #else |
---|
390 | tr=ttp/t(i,k,j) |
---|
391 | if(t(i,k,j).lt.ttp) then |
---|
392 | qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
393 | else |
---|
394 | qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
395 | endif |
---|
396 | qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
397 | #endif |
---|
398 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
---|
399 | qs(i,k) = ep2 * qs(i,k) / (p(i,k,j) - qs(i,k)) |
---|
400 | qs(i,k) = max(qs(i,k),qmin) |
---|
401 | rh(i,k) = max(q(i,k,j) / qs(i,k),qmin) |
---|
402 | enddo |
---|
403 | ! |
---|
404 | !---------------------------------------------------------------- |
---|
405 | ! initialize the variables for microphysical physics |
---|
406 | ! |
---|
407 | ! |
---|
408 | do k = kts, kte |
---|
409 | pres(i,k) = 0. |
---|
410 | paut(i,k) = 0. |
---|
411 | pacr(i,k) = 0. |
---|
412 | pgen(i,k) = 0. |
---|
413 | pisd(i,k) = 0. |
---|
414 | pcon(i,k) = 0. |
---|
415 | fall(i,k) = 0. |
---|
416 | falk(i,k) = 0. |
---|
417 | fallc(i,k) = 0. |
---|
418 | falkc(i,k) = 0. |
---|
419 | xni(i,k) = 1.e3 |
---|
420 | enddo |
---|
421 | ! |
---|
422 | !---------------------------------------------------------------- |
---|
423 | ! compute the fallout term: |
---|
424 | ! first, vertical terminal velosity for minor loops |
---|
425 | !--------------------------------------------------------------- |
---|
426 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
427 | !--------------------------------------------------------------- |
---|
428 | do k = kts, kte |
---|
429 | supcol = t0c-t(i,k,j) |
---|
430 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
431 | if(t(i,k,j).ge.t0c) then |
---|
432 | if(qrs(i,k,j).le.qcrmin)then |
---|
433 | rslope(i,k) = rslopermax |
---|
434 | rslopeb(i,k) = rsloperbmax |
---|
435 | rslope2(i,k) = rsloper2max |
---|
436 | rslope3(i,k) = rsloper3max |
---|
437 | else |
---|
438 | rslope(i,k) = 1./lamdar(qrs(i,k,j),den(i,k,j)) |
---|
439 | rslopeb(i,k) = rslope(i,k)**bvtr |
---|
440 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
441 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
442 | endif |
---|
443 | else |
---|
444 | if(qrs(i,k,j).le.qcrmin)then |
---|
445 | rslope(i,k) = rslopesmax |
---|
446 | rslopeb(i,k) = rslopesbmax |
---|
447 | rslope2(i,k) = rslopes2max |
---|
448 | rslope3(i,k) = rslopes3max |
---|
449 | else |
---|
450 | rslope(i,k) = 1./lamdas(qrs(i,k,j),den(i,k,j),n0sfac(i,k)) |
---|
451 | rslopeb(i,k) = rslope(i,k)**bvts |
---|
452 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
453 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
454 | endif |
---|
455 | endif |
---|
456 | !------------------------------------------------------------- |
---|
457 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
458 | !------------------------------------------------------------- |
---|
459 | xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
460 | *max(qci(i,k,j),qmin))**0.75,1.e3),1.e6) |
---|
461 | enddo |
---|
462 | ! |
---|
463 | numdt = 1 |
---|
464 | do k = kte, kts, -1 |
---|
465 | if(t(i,k,j).lt.t0c) then |
---|
466 | pvt = pvts |
---|
467 | else |
---|
468 | pvt = pvtr |
---|
469 | endif |
---|
470 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
---|
471 | work2(i,k) = work1(i,k)/delz(i,k,j) |
---|
472 | numdt = max(int(work2(i,k)*dtcld+1.),1) |
---|
473 | if(numdt.ge.mstep) mstep = numdt |
---|
474 | enddo |
---|
475 | ! |
---|
476 | do n = 1, mstep |
---|
477 | k = kte |
---|
478 | falk(i,k) = den(i,k,j)*qrs(i,k,j)*work2(i,k)/mstep |
---|
479 | hold = falk(i,k) |
---|
480 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
481 | holdrs = qrs(i,k,j) |
---|
482 | qrs(i,k,j) = max(qrs(i,k,j)-falk(i,k)*dtcld/den(i,k,j),0.) |
---|
483 | do k = kte-1, kts, -1 |
---|
484 | falk(i,k) = den(i,k,j)*qrs(i,k,j)*work2(i,k)/mstep |
---|
485 | hold = falk(i,k) |
---|
486 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
487 | holdrs = qrs(i,k,j) |
---|
488 | qrs(i,k,j) = max(qrs(i,k,j)-(falk(i,k) & |
---|
489 | -falk(i,k+1)*delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
---|
490 | enddo |
---|
491 | enddo |
---|
492 | !--------------------------------------------------------------- |
---|
493 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
494 | !--------------------------------------------------------------- |
---|
495 | mstep = 1 |
---|
496 | numdt = 1 |
---|
497 | do k = kte, kts, -1 |
---|
498 | if(t(i,k,j).lt.t0c.and.qci(i,k,j).gt.0.) then |
---|
499 | xmi = den(i,k,j)*qci(i,k,j)/xni(i,k) |
---|
500 | diameter = dicon * sqrt(xmi) |
---|
501 | work1c(i,k) = 1.49e4*diameter**1.31 |
---|
502 | else |
---|
503 | work1c(i,k) = 0. |
---|
504 | endif |
---|
505 | if(qci(i,k,j).le.0.) then |
---|
506 | work2c(i,k) = 0. |
---|
507 | else |
---|
508 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
---|
509 | endif |
---|
510 | numdt = max(int(work2c(i,k)*dtcld+1.),1) |
---|
511 | if(numdt.ge.mstep) mstep = numdt |
---|
512 | enddo |
---|
513 | ! |
---|
514 | do n = 1, mstep |
---|
515 | k = kte |
---|
516 | falkc(i,k) = den(i,k,j)*qci(i,k,j)*work2c(i,k)/mstep |
---|
517 | holdc = falkc(i,k) |
---|
518 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
519 | holdci = qci(i,k,j) |
---|
520 | qci(i,k,j) = max(qci(i,k,j)-falkc(i,k)*dtcld/den(i,k,j),0.) |
---|
521 | do k = kte-1, kts, -1 |
---|
522 | falkc(i,k) = den(i,k,j)*qci(i,k,j)*work2c(i,k)/mstep |
---|
523 | holdc = falkc(i,k) |
---|
524 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
525 | holdci = qci(i,k,j) |
---|
526 | qci(i,k,j) = max(qci(i,k,j)-(falkc(i,k) & |
---|
527 | -falkc(i,k+1)*delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
---|
528 | enddo |
---|
529 | enddo |
---|
530 | ! |
---|
531 | !---------------------------------------------------------------- |
---|
532 | ! compute the freezing/melting term. [D89 B16-B17] |
---|
533 | ! freezing occurs one layer above the melting level |
---|
534 | ! |
---|
535 | mstep = 0 |
---|
536 | ! |
---|
537 | do k = kts, kte |
---|
538 | if(t(i,k,j).ge.t0c) then |
---|
539 | mstep = k |
---|
540 | endif |
---|
541 | enddo |
---|
542 | ! |
---|
543 | if(mstep.ne.0.and.w(i,mstep,j).gt.0.) then |
---|
544 | work1(i,1) = float(mstep + 1) |
---|
545 | work1(i,2) = float(mstep) |
---|
546 | else |
---|
547 | work1(i,1) = float(mstep) |
---|
548 | work1(i,2) = float(mstep) |
---|
549 | endif |
---|
550 | ! |
---|
551 | k = int(work1(i,1)+0.5) |
---|
552 | kk = int(work1(i,2)+0.5) |
---|
553 | if(k*kk.ge.1) then |
---|
554 | qrsci = qrs(i,k,j) + qci(i,k,j) |
---|
555 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
---|
556 | frzmlt = min(max(-w(i,k,j)*qrsci/delz(i,k,j),-qrsci/dtcld), & |
---|
557 | qrsci/dtcld) |
---|
558 | snomlt = min(max(fall(i,kk)/den(i,kk,j),-qrs(i,k,j)/dtcld), & |
---|
559 | qrs(i,k,j)/dtcld) |
---|
560 | if(k.eq.kk) then |
---|
561 | t(i,k,j) = t(i,k,j) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
---|
562 | else |
---|
563 | t(i,k,j) = t(i,k,j) - xlf0/cpm(i,k)*frzmlt*dtcld |
---|
564 | t(i,kk,j) = t(i,kk,j) - xlf0/cpm(i,kk)*snomlt*dtcld |
---|
565 | endif |
---|
566 | endif |
---|
567 | endif |
---|
568 | ! |
---|
569 | !---------------------------------------------------------------- |
---|
570 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
571 | ! |
---|
572 | if(fall(i,1).gt.0.) then |
---|
573 | rainncv(i,j) = fall(i,1)*delz(i,1,j)/denr*dtcld*1000. |
---|
574 | rain(i,j) = fall(i,1)*delz(i,1,j)/denr*dtcld*1000. & |
---|
575 | + rain(i,j) |
---|
576 | endif |
---|
577 | ! |
---|
578 | !---------------------------------------------------------------- |
---|
579 | ! rsloper: reverse of the slope parameter of the rain(m,j) |
---|
580 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
581 | ! work1: the thermodynamic term in the denominator associated with |
---|
582 | ! heat conduction and vapor diffusion |
---|
583 | ! (ry88, y93, h85) |
---|
584 | ! work2: parameter associated with the ventilation effects(y93) |
---|
585 | ! |
---|
586 | do k = kts, kte |
---|
587 | if(t(i,k,j).ge.t0c) then |
---|
588 | if(qrs(i,k,j).le.qcrmin)then |
---|
589 | rslope(i,k) = rslopermax |
---|
590 | rslopeb(i,k) = rsloperbmax |
---|
591 | rslope2(i,k) = rsloper2max |
---|
592 | rslope3(i,k) = rsloper3max |
---|
593 | else |
---|
594 | rslope(i,k) = 1./lamdar(qrs(i,k,j),den(i,k,j)) |
---|
595 | rslopeb(i,k) = rslope(i,k)**bvtr |
---|
596 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
597 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
598 | endif |
---|
599 | else |
---|
600 | if(qrs(i,k,j).le.qcrmin)then |
---|
601 | rslope(i,k) = rslopesmax |
---|
602 | rslopeb(i,k) = rslopesbmax |
---|
603 | rslope2(i,k) = rslopes2max |
---|
604 | rslope3(i,k) = rslopes3max |
---|
605 | else |
---|
606 | rslope(i,k) = 1./lamdas(qrs(i,k,j),den(i,k,j),n0sfac(i,k)) |
---|
607 | rslopeb(i,k) = rslope(i,k)**bvts |
---|
608 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
609 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
610 | endif |
---|
611 | endif |
---|
612 | enddo |
---|
613 | ! |
---|
614 | do k = kts, kte |
---|
615 | if(t(i,k,j).ge.t0c) then |
---|
616 | work1(i,k) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k)) |
---|
617 | else |
---|
618 | work1(i,k) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k)) |
---|
619 | endif |
---|
620 | work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
---|
621 | enddo |
---|
622 | ! |
---|
623 | do k = kts, kte |
---|
624 | supsat = max(q(i,k,j),qmin)-qs(i,k) |
---|
625 | satdt = supsat/dtcld |
---|
626 | if(t(i,k,j).ge.t0c) then |
---|
627 | ! |
---|
628 | !=============================================================== |
---|
629 | ! |
---|
630 | ! warm rain processes |
---|
631 | ! |
---|
632 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
633 | ! |
---|
634 | !=============================================================== |
---|
635 | !--------------------------------------------------------------- |
---|
636 | ! paut1: auto conversion rate from cloud to rain [HDC 16] |
---|
637 | ! (C->R) |
---|
638 | !--------------------------------------------------------------- |
---|
639 | if(qci(i,k,j).gt.qc0) then |
---|
640 | paut(i,k) = qck1*qci(i,k,j)**(7./3.) |
---|
641 | paut(i,k) = min(paut(i,k),qci(i,k,j)/dtcld) |
---|
642 | endif |
---|
643 | !--------------------------------------------------------------- |
---|
644 | ! pracw: accretion of cloud water by rain [D89 B15] |
---|
645 | ! (C->R) |
---|
646 | !--------------------------------------------------------------- |
---|
647 | if(qrs(i,k,j).gt.qcrmin.and.qci(i,k,j).gt.qmin) then |
---|
648 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
---|
649 | *qci(i,k,j)*denfac(i,k),qci(i,k,j)/dtcld) |
---|
650 | endif |
---|
651 | !--------------------------------------------------------------- |
---|
652 | ! pres1: evaporation/condensation rate of rain [HDC 14] |
---|
653 | ! (V->R or R->V) |
---|
654 | !--------------------------------------------------------------- |
---|
655 | if(qrs(i,k,j).gt.0.) then |
---|
656 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
657 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
---|
658 | +precr2*work2(i,k)*coeres)/work1(i,k) |
---|
659 | if(pres(i,k).lt.0.) then |
---|
660 | pres(i,k) = max(pres(i,k),-qrs(i,k,j)/dtcld) |
---|
661 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
662 | else |
---|
663 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
664 | endif |
---|
665 | endif |
---|
666 | else |
---|
667 | ! |
---|
668 | !=============================================================== |
---|
669 | ! |
---|
670 | ! cold rain processes |
---|
671 | ! |
---|
672 | ! - follows the revised ice microphysics processes in HDC |
---|
673 | ! - the processes same as in RH83 and LFO behave |
---|
674 | ! following ice crystal hapits defined in HDC, inclduing |
---|
675 | ! intercept parameter for snow (n0s), ice crystal number |
---|
676 | ! concentration (ni), ice nuclei number concentration |
---|
677 | ! (n0i), ice diameter (d) |
---|
678 | ! |
---|
679 | !=============================================================== |
---|
680 | ! |
---|
681 | supcol = t0c-t(i,k,j) |
---|
682 | ifsat = 0 |
---|
683 | !------------------------------------------------------------- |
---|
684 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
685 | !------------------------------------------------------------- |
---|
686 | xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
---|
687 | *max(qci(i,k,j),qmin))**0.75,1.e3),1.e6) |
---|
688 | eacrs = exp(0.05*(-supcol)) |
---|
689 | ! |
---|
690 | if(qrs(i,k,j).gt.qcrmin.and.qci(i,k,j).gt.qmin) then |
---|
691 | pacr(i,k) = min(pacrs*n0sfac(i,k)*eacrs*rslope3(i,k) & |
---|
692 | *rslopeb(i,k)*qci(i,k,j)*denfac(i,k),qci(i,k,j)/dtcld) |
---|
693 | endif |
---|
694 | !------------------------------------------------------------- |
---|
695 | ! pisd: Deposition/Sublimation rate of ice [HDC 9] |
---|
696 | ! (T<T0: V->I or I->V) |
---|
697 | !------------------------------------------------------------- |
---|
698 | if(qci(i,k,j).gt.0.) then |
---|
699 | xmi = den(i,k,j)*qci(i,k,j)/xni(i,k) |
---|
700 | diameter = dicon * sqrt(xmi) |
---|
701 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.) & |
---|
702 | /work1(i,k) |
---|
703 | if(pisd(i,k).lt.0.) then |
---|
704 | pisd(i,k) = max(pisd(i,k),satdt/2) |
---|
705 | pisd(i,k) = max(pisd(i,k),-qci(i,k,j)/dtcld) |
---|
706 | else |
---|
707 | pisd(i,k) = min(pisd(i,k),satdt/2) |
---|
708 | endif |
---|
709 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
710 | endif |
---|
711 | !------------------------------------------------------------- |
---|
712 | ! pres2: deposition/sublimation rate of snow [HDC 14] |
---|
713 | ! (V->S or S->V) |
---|
714 | !------------------------------------------------------------- |
---|
715 | if(qrs(i,k,j).gt.0..and.ifsat.ne.1) then |
---|
716 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
717 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
---|
718 | +precs2*work2(i,k)*coeres)/work1(i,k) |
---|
719 | if(pres(i,k).lt.0.) then |
---|
720 | pres(i,k) = max(pres(i,k),-qrs(i,k,j)/dtcld) |
---|
721 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
722 | else |
---|
723 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
724 | endif |
---|
725 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
726 | endif |
---|
727 | !------------------------------------------------------------- |
---|
728 | ! pgen: generation(nucleation) of ice from vapor [HDC 7-8] |
---|
729 | ! (T<T0: V->I) |
---|
730 | !------------------------------------------------------------- |
---|
731 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
732 | xni0 = 1.e3*exp(0.1*supcol) |
---|
733 | roqi0 = 4.92e-11*xni0**1.33 |
---|
734 | pgen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,j),0.))/dtcld) |
---|
735 | pgen(i,k) = min(pgen(i,k),satdt) |
---|
736 | endif |
---|
737 | !------------------------------------------------------------- |
---|
738 | ! paut2: conversion(aggregation) of ice to snow [HDC 12] |
---|
739 | ! (T<T0: I->S) |
---|
740 | !------------------------------------------------------------- |
---|
741 | if(qci(i,k,j).gt.0.) then |
---|
742 | qimax = roqimax/den(i,k,j) |
---|
743 | paut(i,k) = max(0.,(qci(i,k,j)-qimax)/dtcld) |
---|
744 | endif |
---|
745 | endif |
---|
746 | enddo |
---|
747 | ! |
---|
748 | !---------------------------------------------------------------- |
---|
749 | ! check mass conservation of generation terms and feedback to the |
---|
750 | ! large scale |
---|
751 | ! |
---|
752 | do k = kts, kte |
---|
753 | qciik = max(qmin,qci(i,k,j)) |
---|
754 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
---|
755 | if(delqci.ge.qciik) then |
---|
756 | facqci = qciik/delqci |
---|
757 | paut(i,k) = paut(i,k)*facqci |
---|
758 | pacr(i,k) = pacr(i,k)*facqci |
---|
759 | pgen(i,k) = pgen(i,k)*facqci |
---|
760 | pisd(i,k) = pisd(i,k)*facqci |
---|
761 | endif |
---|
762 | qik = max(qmin,q(i,k,j)) |
---|
763 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
---|
764 | if(delq.ge.qik) then |
---|
765 | facq = qik/delq |
---|
766 | pres(i,k) = pres(i,k)*facq |
---|
767 | pgen(i,k) = pgen(i,k)*facq |
---|
768 | pisd(i,k) = pisd(i,k)*facq |
---|
769 | endif |
---|
770 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
---|
771 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
---|
772 | qci(i,k,j) = max(qci(i,k,j)-(paut(i,k)+pacr(i,k)-pgen(i,k) & |
---|
773 | -pisd(i,k))*dtcld,0.) |
---|
774 | qrs(i,k,j) = max(qrs(i,k,j)+(paut(i,k)+pacr(i,k) & |
---|
775 | +pres(i,k))*dtcld,0.) |
---|
776 | if(t(i,k,j).lt.t0c) then |
---|
777 | t(i,k,j) = t(i,k,j)-xls*work2(i,k)/cpm(i,k)*dtcld |
---|
778 | else |
---|
779 | t(i,k,j) = t(i,k,j)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
---|
780 | endif |
---|
781 | enddo |
---|
782 | ! |
---|
783 | do k = kts, kte |
---|
784 | #ifndef INL |
---|
785 | qs(i,k) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
786 | #else |
---|
787 | tr=ttp/t(i,k,j) |
---|
788 | qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
789 | #endif |
---|
790 | qs(i,k) = ep2 * qs(i,k) / (p(i,k,j) - qs(i,k)) |
---|
791 | qs(i,k) = max(qs(i,k),qmin) |
---|
792 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
---|
793 | enddo |
---|
794 | ! |
---|
795 | !---------------------------------------------------------------- |
---|
796 | ! pcon: condensational/evaporational rate of cloud water [RH83 A6] |
---|
797 | ! if there exists additional water vapor condensated/if |
---|
798 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
799 | ! |
---|
800 | do k = kts, kte |
---|
801 | work1(i,k) = conden(t(i,k,j),q(i,k,j),qs(i,k),xl(i,k),cpm(i,k)) |
---|
802 | work2(i,k) = qci(i,k,j)+work1(i,k) |
---|
803 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k,j),0.))/dtcld |
---|
804 | if(qci(i,k,j).gt.0..and.work1(i,k).lt.0.and.t(i,k,j).gt.t0c) & |
---|
805 | pcon(i,k) = max(work1(i,k),-qci(i,k,j))/dtcld |
---|
806 | q(i,k,j) = q(i,k,j)-pcon(i,k)*dtcld |
---|
807 | qci(i,k,j) = max(qci(i,k,j)+pcon(i,k)*dtcld,0.) |
---|
808 | t(i,k,j) = t(i,k,j)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
809 | enddo |
---|
810 | ! |
---|
811 | !---------------------------------------------------------------- |
---|
812 | ! padding for small values |
---|
813 | ! |
---|
814 | do k = kts, kte |
---|
815 | if(qci(i,k,j).le.qmin) qci(i,k,j) = 0.0 |
---|
816 | enddo |
---|
817 | ! |
---|
818 | enddo ! big loops |
---|
819 | DO K=kts,kte |
---|
820 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
---|
821 | ENDDO |
---|
822 | enddo |
---|
823 | enddo |
---|
824 | !$acc end region |
---|
825 | END SUBROUTINE wsm32D !} |
---|
826 | |
---|
827 | #else |
---|
828 | |
---|
829 | |
---|
830 | !=================================================================== |
---|
831 | ! |
---|
832 | SUBROUTINE wsm32D(t, q, qci, qrs,w, den, p, delz & |
---|
833 | ,delt,g, cpd, cpv, rd, rv, t0c & |
---|
834 | ,ep1, ep2, qmin & |
---|
835 | ,XLS, XLV0, XLF0, den0, denr & |
---|
836 | ,cliq,cice,psat & |
---|
837 | ,lat & |
---|
838 | ,rain, rainncv & |
---|
839 | ,snow,snowncv & |
---|
840 | ,sr & |
---|
841 | ,ids,ide, jds,jde, kds,kde & |
---|
842 | ,ims,ime, jms,jme, kms,kme & |
---|
843 | ,its,ite, jts,jte, kts,kte & |
---|
844 | ) |
---|
845 | !------------------------------------------------------------------- |
---|
846 | IMPLICIT NONE |
---|
847 | !------------------------------------------------------------------- |
---|
848 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
---|
849 | ims,ime, jms,jme, kms,kme, & |
---|
850 | its,ite, jts,jte, kts,kte, & |
---|
851 | lat |
---|
852 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
853 | INTENT(INOUT) :: & |
---|
854 | t |
---|
855 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
856 | INTENT(INOUT) :: & |
---|
857 | q, & |
---|
858 | qci, & |
---|
859 | qrs |
---|
860 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
861 | INTENT(IN ) :: w, & |
---|
862 | den, & |
---|
863 | p, & |
---|
864 | delz |
---|
865 | REAL, INTENT(IN ) :: delt, & |
---|
866 | g, & |
---|
867 | cpd, & |
---|
868 | cpv, & |
---|
869 | t0c, & |
---|
870 | den0, & |
---|
871 | rd, & |
---|
872 | rv, & |
---|
873 | ep1, & |
---|
874 | ep2, & |
---|
875 | qmin, & |
---|
876 | XLS, & |
---|
877 | XLV0, & |
---|
878 | XLF0, & |
---|
879 | cliq, & |
---|
880 | cice, & |
---|
881 | psat, & |
---|
882 | denr |
---|
883 | REAL, DIMENSION( ims:ime ), & |
---|
884 | INTENT(INOUT) :: rain, & |
---|
885 | rainncv |
---|
886 | |
---|
887 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
888 | INTENT(INOUT) :: snow, & |
---|
889 | snowncv, & |
---|
890 | sr |
---|
891 | ! LOCAL VAR |
---|
892 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
893 | rh, & |
---|
894 | qs, & |
---|
895 | denfac, & |
---|
896 | rslope, & |
---|
897 | rslope2, & |
---|
898 | rslope3, & |
---|
899 | rslopeb |
---|
900 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
901 | pgen, & |
---|
902 | pisd, & |
---|
903 | paut, & |
---|
904 | pacr, & |
---|
905 | pres, & |
---|
906 | pcon |
---|
907 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
908 | fall, & |
---|
909 | falk, & |
---|
910 | xl, & |
---|
911 | cpm, & |
---|
912 | work1, & |
---|
913 | work2, & |
---|
914 | xni, & |
---|
915 | qs0, & |
---|
916 | n0sfac |
---|
917 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
918 | falkc, & |
---|
919 | work1c, & |
---|
920 | work2c, & |
---|
921 | fallc |
---|
922 | |
---|
923 | INTEGER, DIMENSION( its:ite ) :: kwork1,& |
---|
924 | kwork2 |
---|
925 | |
---|
926 | INTEGER, DIMENSION( its:ite ) :: mstep, & |
---|
927 | numdt |
---|
928 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
929 | REAL :: pi, & |
---|
930 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
---|
931 | viscos, xka, venfac, conden, diffac, & |
---|
932 | x, y, z, a, b, c, d, e, & |
---|
933 | fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & |
---|
934 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
---|
935 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
---|
936 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
---|
937 | qimax, diameter, xni0, roqi0, supice,holdc, holdci |
---|
938 | INTEGER :: i, j, k, mstepmax, & |
---|
939 | iprt, latd, lond, loop, loops, ifsat, kk, n |
---|
940 | ! Temporaries used for inlining fpvs function |
---|
941 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
942 | ! variables for optimization |
---|
943 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
944 | ! |
---|
945 | !================================================================= |
---|
946 | ! compute internal functions |
---|
947 | ! |
---|
948 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
949 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
950 | !---------------------------------------------------------------- |
---|
951 | ! size distributions: (x=mixing ratio, y=air density): |
---|
952 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
953 | ! |
---|
954 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
955 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
---|
956 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
957 | ! |
---|
958 | !---------------------------------------------------------------- |
---|
959 | ! diffus: diffusion coefficient of the water vapor |
---|
960 | ! viscos: kinematic viscosity(m2s-1) |
---|
961 | ! |
---|
962 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
963 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
964 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
965 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
966 | ! venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
---|
967 | ! /viscos(b,c)**(.5)*(den0/c)**0.25 |
---|
968 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
969 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
970 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
971 | ! |
---|
972 | pi = 4. * atan(1.) |
---|
973 | ! |
---|
974 | !---------------------------------------------------------------- |
---|
975 | ! paddint 0 for negative values generated by dynamics |
---|
976 | ! |
---|
977 | do k = kts, kte |
---|
978 | do i = its, ite |
---|
979 | qci(i,k) = max(qci(i,k),0.0) |
---|
980 | qrs(i,k) = max(qrs(i,k),0.0) |
---|
981 | enddo |
---|
982 | enddo |
---|
983 | ! |
---|
984 | !---------------------------------------------------------------- |
---|
985 | ! latent heat for phase changes and heat capacity. neglect the |
---|
986 | ! changes during microphysical process calculation |
---|
987 | ! emanuel(1994) |
---|
988 | ! |
---|
989 | do k = kts, kte |
---|
990 | do i = its, ite |
---|
991 | cpm(i,k) = cpmcal(q(i,k)) |
---|
992 | xl(i,k) = xlcal(t(i,k)) |
---|
993 | enddo |
---|
994 | enddo |
---|
995 | ! |
---|
996 | !---------------------------------------------------------------- |
---|
997 | ! compute the minor time steps. |
---|
998 | ! |
---|
999 | loops = max(nint(delt/dtcldcr),1) |
---|
1000 | dtcld = delt/loops |
---|
1001 | if(delt.le.dtcldcr) dtcld = delt |
---|
1002 | ! |
---|
1003 | do loop = 1,loops |
---|
1004 | ! |
---|
1005 | !---------------------------------------------------------------- |
---|
1006 | ! initialize the large scale variables |
---|
1007 | ! |
---|
1008 | do i = its, ite |
---|
1009 | mstep(i) = 1 |
---|
1010 | flgcld(i) = .true. |
---|
1011 | enddo |
---|
1012 | ! |
---|
1013 | ! do k = kts, kte |
---|
1014 | ! do i = its, ite |
---|
1015 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
---|
1016 | ! enddo |
---|
1017 | ! enddo |
---|
1018 | do k = kts, kte |
---|
1019 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
1020 | do i = its, ite |
---|
1021 | tvec1(i) = tvec1(i)*den0 |
---|
1022 | enddo |
---|
1023 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
1024 | enddo |
---|
1025 | ! |
---|
1026 | ! Inline expansion for fpvs |
---|
1027 | ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1028 | ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1029 | cvap = cpv |
---|
1030 | hvap=xlv0 |
---|
1031 | hsub=xls |
---|
1032 | ttp=t0c+0.01 |
---|
1033 | dldt=cvap-cliq |
---|
1034 | xa=-dldt/rv |
---|
1035 | xb=xa+hvap/(rv*ttp) |
---|
1036 | dldti=cvap-cice |
---|
1037 | xai=-dldti/rv |
---|
1038 | xbi=xai+hsub/(rv*ttp) |
---|
1039 | do k = kts, kte |
---|
1040 | do i = its, ite |
---|
1041 | ! tr=ttp/t(i,k) |
---|
1042 | ! if(t(i,k).lt.ttp) then |
---|
1043 | ! qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
1044 | ! else |
---|
1045 | ! qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1046 | ! endif |
---|
1047 | ! qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1048 | tr=ttp/t(i,k) |
---|
1049 | if(t(i,k).lt.ttp) then |
---|
1050 | qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) |
---|
1051 | else |
---|
1052 | qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
1053 | endif |
---|
1054 | qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
1055 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
---|
1056 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
1057 | qs(i,k) = max(qs(i,k),qmin) |
---|
1058 | rh(i,k) = max(q(i,k) / qs(i,k),qmin) |
---|
1059 | enddo |
---|
1060 | enddo |
---|
1061 | ! |
---|
1062 | !---------------------------------------------------------------- |
---|
1063 | ! initialize the variables for microphysical physics |
---|
1064 | ! |
---|
1065 | ! |
---|
1066 | do k = kts, kte |
---|
1067 | do i = its, ite |
---|
1068 | pres(i,k) = 0. |
---|
1069 | paut(i,k) = 0. |
---|
1070 | pacr(i,k) = 0. |
---|
1071 | pgen(i,k) = 0. |
---|
1072 | pisd(i,k) = 0. |
---|
1073 | pcon(i,k) = 0. |
---|
1074 | fall(i,k) = 0. |
---|
1075 | falk(i,k) = 0. |
---|
1076 | fallc(i,k) = 0. |
---|
1077 | falkc(i,k) = 0. |
---|
1078 | xni(i,k) = 1.e3 |
---|
1079 | enddo |
---|
1080 | enddo |
---|
1081 | ! |
---|
1082 | !---------------------------------------------------------------- |
---|
1083 | ! compute the fallout term: |
---|
1084 | ! first, vertical terminal velosity for minor loops |
---|
1085 | !--------------------------------------------------------------- |
---|
1086 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
1087 | !--------------------------------------------------------------- |
---|
1088 | do k = kts, kte |
---|
1089 | do i = its, ite |
---|
1090 | supcol = t0c-t(i,k) |
---|
1091 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
1092 | if(t(i,k).ge.t0c) then |
---|
1093 | if(qrs(i,k).le.qcrmin)then |
---|
1094 | rslope(i,k) = rslopermax |
---|
1095 | rslopeb(i,k) = rsloperbmax |
---|
1096 | rslope2(i,k) = rsloper2max |
---|
1097 | rslope3(i,k) = rsloper3max |
---|
1098 | else |
---|
1099 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
1100 | ! rslopeb(i,k) = rslope(i,k)**bvtr |
---|
1101 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
1102 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
1103 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
1104 | endif |
---|
1105 | else |
---|
1106 | if(qrs(i,k).le.qcrmin)then |
---|
1107 | rslope(i,k) = rslopesmax |
---|
1108 | rslopeb(i,k) = rslopesbmax |
---|
1109 | rslope2(i,k) = rslopes2max |
---|
1110 | rslope3(i,k) = rslopes3max |
---|
1111 | else |
---|
1112 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
1113 | ! rslopeb(i,k) = rslope(i,k)**bvts |
---|
1114 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
1115 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
1116 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
1117 | endif |
---|
1118 | endif |
---|
1119 | !------------------------------------------------------------- |
---|
1120 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
1121 | !------------------------------------------------------------- |
---|
1122 | ! xni(i,k) = min(max(5.38e7 & |
---|
1123 | ! *(den(i,k)*max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
1124 | xni(i,k) = min(max(5.38e7 & |
---|
1125 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
1126 | enddo |
---|
1127 | enddo |
---|
1128 | ! |
---|
1129 | mstepmax = 1 |
---|
1130 | numdt = 1 |
---|
1131 | do k = kte, kts, -1 |
---|
1132 | do i = its, ite |
---|
1133 | if(t(i,k).lt.t0c) then |
---|
1134 | pvt = pvts |
---|
1135 | else |
---|
1136 | pvt = pvtr |
---|
1137 | endif |
---|
1138 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
---|
1139 | work2(i,k) = work1(i,k)/delz(i,k) |
---|
1140 | numdt(i) = max(nint(work2(i,k)*dtcld+.5),1) |
---|
1141 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
1142 | enddo |
---|
1143 | enddo |
---|
1144 | do i = its, ite |
---|
1145 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
1146 | enddo |
---|
1147 | ! |
---|
1148 | do n = 1, mstepmax |
---|
1149 | k = kte |
---|
1150 | do i = its, ite |
---|
1151 | if(n.le.mstep(i)) then |
---|
1152 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
1153 | hold = falk(i,k) |
---|
1154 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
1155 | holdrs = qrs(i,k) |
---|
1156 | qrs(i,k) = max(qrs(i,k)-falk(i,k)*dtcld/den(i,k),0.) |
---|
1157 | endif |
---|
1158 | enddo |
---|
1159 | do k = kte-1, kts, -1 |
---|
1160 | do i = its, ite |
---|
1161 | if(n.le.mstep(i)) then |
---|
1162 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
---|
1163 | hold = falk(i,k) |
---|
1164 | fall(i,k) = fall(i,k)+falk(i,k) |
---|
1165 | holdrs = qrs(i,k) |
---|
1166 | qrs(i,k) = max(qrs(i,k)-(falk(i,k) & |
---|
1167 | -falk(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
1168 | endif |
---|
1169 | enddo |
---|
1170 | enddo |
---|
1171 | enddo |
---|
1172 | !--------------------------------------------------------------- |
---|
1173 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
1174 | !--------------------------------------------------------------- |
---|
1175 | mstepmax = 1 |
---|
1176 | mstep = 1 |
---|
1177 | numdt = 1 |
---|
1178 | do k = kte, kts, -1 |
---|
1179 | do i = its, ite |
---|
1180 | if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then |
---|
1181 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
1182 | ! diameter = dicon * sqrt(xmi) |
---|
1183 | ! work1c(i,k) = 1.49e4*diameter**1.31 |
---|
1184 | diameter = max(dicon * sqrt(xmi), 1.e-25) |
---|
1185 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
1186 | else |
---|
1187 | work1c(i,k) = 0. |
---|
1188 | endif |
---|
1189 | if(qci(i,k).le.0.) then |
---|
1190 | work2c(i,k) = 0. |
---|
1191 | else |
---|
1192 | work2c(i,k) = work1c(i,k)/delz(i,k) |
---|
1193 | endif |
---|
1194 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
---|
1195 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
1196 | enddo |
---|
1197 | enddo |
---|
1198 | do i = its, ite |
---|
1199 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
1200 | enddo |
---|
1201 | ! |
---|
1202 | do n = 1, mstepmax |
---|
1203 | k = kte |
---|
1204 | do i = its, ite |
---|
1205 | if (n.le.mstep(i)) then |
---|
1206 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
1207 | holdc = falkc(i,k) |
---|
1208 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
1209 | holdci = qci(i,k) |
---|
1210 | qci(i,k) = max(qci(i,k)-falkc(i,k)*dtcld/den(i,k),0.) |
---|
1211 | endif |
---|
1212 | enddo |
---|
1213 | do k = kte-1, kts, -1 |
---|
1214 | do i = its, ite |
---|
1215 | if (n.le.mstep(i)) then |
---|
1216 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
---|
1217 | holdc = falkc(i,k) |
---|
1218 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
---|
1219 | holdci = qci(i,k) |
---|
1220 | qci(i,k) = max(qci(i,k)-(falkc(i,k) & |
---|
1221 | -falkc(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
1222 | endif |
---|
1223 | enddo |
---|
1224 | enddo |
---|
1225 | enddo |
---|
1226 | ! |
---|
1227 | !---------------------------------------------------------------- |
---|
1228 | ! compute the freezing/melting term. [D89 B16-B17] |
---|
1229 | ! freezing occurs one layer above the melting level |
---|
1230 | ! |
---|
1231 | do i = its, ite |
---|
1232 | mstep(i) = 0 |
---|
1233 | enddo |
---|
1234 | do k = kts, kte |
---|
1235 | ! |
---|
1236 | do i = its, ite |
---|
1237 | if(t(i,k).ge.t0c) then |
---|
1238 | mstep(i) = k |
---|
1239 | endif |
---|
1240 | enddo |
---|
1241 | enddo |
---|
1242 | ! |
---|
1243 | do i = its, ite |
---|
1244 | kwork2(i) = mstep(i) |
---|
1245 | kwork1(i) = mstep(i) |
---|
1246 | if(mstep(i).ne.0) then |
---|
1247 | if (w(i,mstep(i)).gt.0.) then |
---|
1248 | kwork1(i) = mstep(i) + 1 |
---|
1249 | endif |
---|
1250 | endif |
---|
1251 | enddo |
---|
1252 | ! |
---|
1253 | do i = its, ite |
---|
1254 | k = kwork1(i) |
---|
1255 | kk = kwork2(i) |
---|
1256 | if(k*kk.ge.1) then |
---|
1257 | qrsci = qrs(i,k) + qci(i,k) |
---|
1258 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
---|
1259 | frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & |
---|
1260 | qrsci/dtcld) |
---|
1261 | snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & |
---|
1262 | qrs(i,k)/dtcld) |
---|
1263 | if(k.eq.kk) then |
---|
1264 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
---|
1265 | else |
---|
1266 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld |
---|
1267 | t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld |
---|
1268 | endif |
---|
1269 | endif |
---|
1270 | endif |
---|
1271 | enddo |
---|
1272 | ! |
---|
1273 | !---------------------------------------------------------------- |
---|
1274 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
1275 | ! |
---|
1276 | do i = its, ite |
---|
1277 | fallsum = fall(i,1) |
---|
1278 | fallsum_qsi = 0. |
---|
1279 | if((t0c-t(i,1)).gt.0) then |
---|
1280 | fallsum = fallsum+fallc(i,1) |
---|
1281 | fallsum_qsi = fall(i,1)+fallc(i,1) |
---|
1282 | endif |
---|
1283 | rainncv(i) = 0. |
---|
1284 | if(fallsum.gt.0.) then |
---|
1285 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
---|
1286 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
---|
1287 | endif |
---|
1288 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
1289 | snowncv(i) = 0. |
---|
1290 | if(fallsum_qsi.gt.0.) then |
---|
1291 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
---|
1292 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
1293 | endif |
---|
1294 | ENDIF |
---|
1295 | sr(i) = 0. |
---|
1296 | if(fallsum.gt.0.) sr(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
---|
1297 | /(rainncv(i)+1.e-12) |
---|
1298 | enddo |
---|
1299 | ! |
---|
1300 | !---------------------------------------------------------------- |
---|
1301 | ! rsloper: reverse of the slope parameter of the rain(m) |
---|
1302 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
---|
1303 | ! work1: the thermodynamic term in the denominator associated with |
---|
1304 | ! heat conduction and vapor diffusion |
---|
1305 | ! (ry88, y93, h85) |
---|
1306 | ! work2: parameter associated with the ventilation effects(y93) |
---|
1307 | ! |
---|
1308 | do k = kts, kte |
---|
1309 | do i = its, ite |
---|
1310 | if(t(i,k).ge.t0c) then |
---|
1311 | if(qrs(i,k).le.qcrmin)then |
---|
1312 | rslope(i,k) = rslopermax |
---|
1313 | rslopeb(i,k) = rsloperbmax |
---|
1314 | rslope2(i,k) = rsloper2max |
---|
1315 | rslope3(i,k) = rsloper3max |
---|
1316 | else |
---|
1317 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
---|
1318 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
---|
1319 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
1320 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
1321 | endif |
---|
1322 | else |
---|
1323 | if(qrs(i,k).le.qcrmin)then |
---|
1324 | rslope(i,k) = rslopesmax |
---|
1325 | rslopeb(i,k) = rslopesbmax |
---|
1326 | rslope2(i,k) = rslopes2max |
---|
1327 | rslope3(i,k) = rslopes3max |
---|
1328 | else |
---|
1329 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
1330 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
---|
1331 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
1332 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
1333 | endif |
---|
1334 | endif |
---|
1335 | enddo |
---|
1336 | enddo |
---|
1337 | ! |
---|
1338 | do k = kts, kte |
---|
1339 | do i = its, ite |
---|
1340 | if(t(i,k).ge.t0c) then |
---|
1341 | work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
1342 | else |
---|
1343 | work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) |
---|
1344 | endif |
---|
1345 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
1346 | enddo |
---|
1347 | enddo |
---|
1348 | ! |
---|
1349 | do k = kts, kte |
---|
1350 | do i = its, ite |
---|
1351 | supsat = max(q(i,k),qmin)-qs(i,k) |
---|
1352 | satdt = supsat/dtcld |
---|
1353 | if(t(i,k).ge.t0c) then |
---|
1354 | ! |
---|
1355 | !=============================================================== |
---|
1356 | ! |
---|
1357 | ! warm rain processes |
---|
1358 | ! |
---|
1359 | ! - follows the processes in RH83 and LFO except for autoconcersion |
---|
1360 | ! |
---|
1361 | !=============================================================== |
---|
1362 | !--------------------------------------------------------------- |
---|
1363 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
---|
1364 | ! (C->R) |
---|
1365 | !--------------------------------------------------------------- |
---|
1366 | if(qci(i,k).gt.qc0) then |
---|
1367 | ! paut(i,k) = qck1*qci(i,k)**(7./3.) |
---|
1368 | paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) |
---|
1369 | paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) |
---|
1370 | endif |
---|
1371 | !--------------------------------------------------------------- |
---|
1372 | ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] |
---|
1373 | ! (C->R) |
---|
1374 | !--------------------------------------------------------------- |
---|
1375 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
1376 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
---|
1377 | *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) |
---|
1378 | endif |
---|
1379 | !--------------------------------------------------------------- |
---|
1380 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
---|
1381 | ! (V->R or R->V) |
---|
1382 | !--------------------------------------------------------------- |
---|
1383 | if(qrs(i,k).gt.0.) then |
---|
1384 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
1385 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
---|
1386 | +precr2*work2(i,k)*coeres)/work1(i,k) |
---|
1387 | if(pres(i,k).lt.0.) then |
---|
1388 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
1389 | pres(i,k) = max(pres(i,k),satdt/2) |
---|
1390 | else |
---|
1391 | pres(i,k) = min(pres(i,k),satdt/2) |
---|
1392 | endif |
---|
1393 | endif |
---|
1394 | else |
---|
1395 | ! |
---|
1396 | !=============================================================== |
---|
1397 | ! |
---|
1398 | ! cold rain processes |
---|
1399 | ! |
---|
1400 | ! - follows the revised ice microphysics processes in HDC |
---|
1401 | ! - the processes same as in RH83 and LFO behave |
---|
1402 | ! following ice crystal hapits defined in HDC, inclduing |
---|
1403 | ! intercept parameter for snow (n0s), ice crystal number |
---|
1404 | ! concentration (ni), ice nuclei number concentration |
---|
1405 | ! (n0i), ice diameter (d) |
---|
1406 | ! |
---|
1407 | !=============================================================== |
---|
1408 | ! |
---|
1409 | supcol = t0c-t(i,k) |
---|
1410 | ifsat = 0 |
---|
1411 | !------------------------------------------------------------- |
---|
1412 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
1413 | !------------------------------------------------------------- |
---|
1414 | ! xni(i,k) = min(max(5.38e7 & |
---|
1415 | ! *(den(i,k)*max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
---|
1416 | xni(i,k) = min(max(5.38e7 & |
---|
1417 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
---|
1418 | eacrs = exp(0.07*(-supcol)) |
---|
1419 | ! |
---|
1420 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
---|
1421 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
1422 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
1423 | vt2i = 1.49e4*diameter**1.31 |
---|
1424 | ! vt2i = 1.49e4*exp((log(diameter))*(1.31)) |
---|
1425 | vt2s = pvts*rslopeb(i,k)*denfac(i,k) |
---|
1426 | !------------------------------------------------------------- |
---|
1427 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
1428 | ! (T<T0: I->R) |
---|
1429 | !------------------------------------------------------------- |
---|
1430 | acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & |
---|
1431 | +diameter**2*rslope(i,k) |
---|
1432 | pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & |
---|
1433 | *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) |
---|
1434 | endif |
---|
1435 | !------------------------------------------------------------- |
---|
1436 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
1437 | ! (T<T0: V->I or I->V) |
---|
1438 | !------------------------------------------------------------- |
---|
1439 | if(qci(i,k).gt.0.) then |
---|
1440 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
---|
1441 | diameter = dicon * sqrt(xmi) |
---|
1442 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) |
---|
1443 | if(pisd(i,k).lt.0.) then |
---|
1444 | pisd(i,k) = max(pisd(i,k),satdt/2) |
---|
1445 | pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) |
---|
1446 | else |
---|
1447 | pisd(i,k) = min(pisd(i,k),satdt/2) |
---|
1448 | endif |
---|
1449 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1450 | endif |
---|
1451 | !------------------------------------------------------------- |
---|
1452 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
1453 | ! (V->S or S->V) |
---|
1454 | !------------------------------------------------------------- |
---|
1455 | if(qrs(i,k).gt.0..and.ifsat.ne.1) then |
---|
1456 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
---|
1457 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
---|
1458 | +precs2*work2(i,k)*coeres)/work1(i,k) |
---|
1459 | supice = satdt-pisd(i,k) |
---|
1460 | if(pres(i,k).lt.0.) then |
---|
1461 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
---|
1462 | pres(i,k) = max(max(pres(i,k),satdt/2),supice) |
---|
1463 | else |
---|
1464 | pres(i,k) = min(min(pres(i,k),satdt/2),supice) |
---|
1465 | endif |
---|
1466 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1467 | endif |
---|
1468 | !------------------------------------------------------------- |
---|
1469 | ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] |
---|
1470 | ! (T<T0: V->I) |
---|
1471 | !------------------------------------------------------------- |
---|
1472 | if(supsat.gt.0.and.ifsat.ne.1) then |
---|
1473 | supice = satdt-pisd(i,k)-pres(i,k) |
---|
1474 | xni0 = 1.e3*exp(0.1*supcol) |
---|
1475 | ! roqi0 = 4.92e-11*xni0**1.33 |
---|
1476 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
---|
1477 | pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) |
---|
1478 | pgen(i,k) = min(min(pgen(i,k),satdt),supice) |
---|
1479 | endif |
---|
1480 | !------------------------------------------------------------- |
---|
1481 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
1482 | ! (T<T0: I->S) |
---|
1483 | !------------------------------------------------------------- |
---|
1484 | if(qci(i,k).gt.0.) then |
---|
1485 | qimax = roqimax/den(i,k) |
---|
1486 | paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) |
---|
1487 | endif |
---|
1488 | endif |
---|
1489 | enddo |
---|
1490 | enddo |
---|
1491 | ! |
---|
1492 | !---------------------------------------------------------------- |
---|
1493 | ! check mass conservation of generation terms and feedback to the |
---|
1494 | ! large scale |
---|
1495 | ! |
---|
1496 | do k = kts, kte |
---|
1497 | do i = its, ite |
---|
1498 | qciik = max(qmin,qci(i,k)) |
---|
1499 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
---|
1500 | if(delqci.ge.qciik) then |
---|
1501 | facqci = qciik/delqci |
---|
1502 | paut(i,k) = paut(i,k)*facqci |
---|
1503 | pacr(i,k) = pacr(i,k)*facqci |
---|
1504 | pgen(i,k) = pgen(i,k)*facqci |
---|
1505 | pisd(i,k) = pisd(i,k)*facqci |
---|
1506 | endif |
---|
1507 | qik = max(qmin,q(i,k)) |
---|
1508 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
---|
1509 | if(delq.ge.qik) then |
---|
1510 | facq = qik/delq |
---|
1511 | pres(i,k) = pres(i,k)*facq |
---|
1512 | pgen(i,k) = pgen(i,k)*facq |
---|
1513 | pisd(i,k) = pisd(i,k)*facq |
---|
1514 | endif |
---|
1515 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
---|
1516 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1517 | qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k)) & |
---|
1518 | *dtcld,0.) |
---|
1519 | qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k)+pres(i,k))*dtcld,0.) |
---|
1520 | if(t(i,k).lt.t0c) then |
---|
1521 | t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld |
---|
1522 | else |
---|
1523 | t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
---|
1524 | endif |
---|
1525 | enddo |
---|
1526 | enddo |
---|
1527 | ! |
---|
1528 | cvap = cpv |
---|
1529 | hvap = xlv0 |
---|
1530 | hsub = xls |
---|
1531 | ttp=t0c+0.01 |
---|
1532 | dldt=cvap-cliq |
---|
1533 | xa=-dldt/rv |
---|
1534 | xb=xa+hvap/(rv*ttp) |
---|
1535 | dldti=cvap-cice |
---|
1536 | xai=-dldti/rv |
---|
1537 | xbi=xai+hsub/(rv*ttp) |
---|
1538 | do k = kts, kte |
---|
1539 | do i = its, ite |
---|
1540 | tr=ttp/t(i,k) |
---|
1541 | ! qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1542 | qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
---|
1543 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
---|
1544 | qs(i,k) = max(qs(i,k),qmin) |
---|
1545 | denfac(i,k) = sqrt(den0/den(i,k)) |
---|
1546 | enddo |
---|
1547 | enddo |
---|
1548 | ! |
---|
1549 | !---------------------------------------------------------------- |
---|
1550 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1551 | ! if there exists additional water vapor condensated/if |
---|
1552 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1553 | ! |
---|
1554 | do k = kts, kte |
---|
1555 | do i = its, ite |
---|
1556 | work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) |
---|
1557 | work2(i,k) = qci(i,k)+work1(i,k) |
---|
1558 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld |
---|
1559 | if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & |
---|
1560 | pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld |
---|
1561 | q(i,k) = q(i,k)-pcon(i,k)*dtcld |
---|
1562 | qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) |
---|
1563 | t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1564 | enddo |
---|
1565 | enddo |
---|
1566 | ! |
---|
1567 | !---------------------------------------------------------------- |
---|
1568 | ! padding for small values |
---|
1569 | ! |
---|
1570 | do k = kts, kte |
---|
1571 | do i = its, ite |
---|
1572 | if(qci(i,k).le.qmin) qci(i,k) = 0.0 |
---|
1573 | enddo |
---|
1574 | enddo |
---|
1575 | ! |
---|
1576 | enddo ! big loops |
---|
1577 | END SUBROUTINE wsm32D |
---|
1578 | #endif |
---|
1579 | |
---|
1580 | ! ................................................................... |
---|
1581 | REAL FUNCTION rgmma(x) |
---|
1582 | !------------------------------------------------------------------- |
---|
1583 | IMPLICIT NONE |
---|
1584 | !------------------------------------------------------------------- |
---|
1585 | ! rgmma function: use infinite product form |
---|
1586 | REAL :: euler |
---|
1587 | PARAMETER (euler=0.577215664901532) |
---|
1588 | REAL :: x, y |
---|
1589 | INTEGER :: i |
---|
1590 | if(x.eq.1.)then |
---|
1591 | rgmma=0. |
---|
1592 | else |
---|
1593 | rgmma=x*exp(euler*x) |
---|
1594 | do i=1,10000 |
---|
1595 | y=float(i) |
---|
1596 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
1597 | enddo |
---|
1598 | rgmma=1./rgmma |
---|
1599 | endif |
---|
1600 | END FUNCTION rgmma |
---|
1601 | ! |
---|
1602 | !-------------------------------------------------------------------------- |
---|
1603 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
1604 | !-------------------------------------------------------------------------- |
---|
1605 | IMPLICIT NONE |
---|
1606 | !-------------------------------------------------------------------------- |
---|
1607 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
1608 | xai,xbi,ttp,tr |
---|
1609 | INTEGER ice |
---|
1610 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1611 | ttp=t0c+0.01 |
---|
1612 | dldt=cvap-cliq |
---|
1613 | xa=-dldt/rv |
---|
1614 | xb=xa+hvap/(rv*ttp) |
---|
1615 | dldti=cvap-cice |
---|
1616 | xai=-dldti/rv |
---|
1617 | xbi=xai+hsub/(rv*ttp) |
---|
1618 | tr=ttp/t |
---|
1619 | if(t.lt.ttp.and.ice.eq.1) then |
---|
1620 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
1621 | else |
---|
1622 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1623 | endif |
---|
1624 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1625 | END FUNCTION fpvs |
---|
1626 | !------------------------------------------------------------------- |
---|
1627 | SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) |
---|
1628 | !------------------------------------------------------------------- |
---|
1629 | IMPLICIT NONE |
---|
1630 | !------------------------------------------------------------------- |
---|
1631 | !.... constants which may not be tunable |
---|
1632 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
---|
1633 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
1634 | REAL :: pi |
---|
1635 | ! |
---|
1636 | pi = 4.*atan(1.) |
---|
1637 | xlv1 = cl-cpv |
---|
1638 | ! |
---|
1639 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
1640 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
1641 | ! |
---|
1642 | bvtr1 = 1.+bvtr |
---|
1643 | bvtr2 = 2.5+.5*bvtr |
---|
1644 | bvtr3 = 3.+bvtr |
---|
1645 | bvtr4 = 4.+bvtr |
---|
1646 | g1pbr = rgmma(bvtr1) |
---|
1647 | g3pbr = rgmma(bvtr3) |
---|
1648 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
1649 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
---|
1650 | pvtr = avtr*g4pbr/6. |
---|
1651 | eacrr = 1.0 |
---|
1652 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
1653 | precr1 = 2.*pi*n0r*.78 |
---|
1654 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
---|
1655 | xmmax = (dimax/dicon)**2 |
---|
1656 | roqimax = 2.08e22*dimax**8 |
---|
1657 | ! |
---|
1658 | bvts1 = 1.+bvts |
---|
1659 | bvts2 = 2.5+.5*bvts |
---|
1660 | bvts3 = 3.+bvts |
---|
1661 | bvts4 = 4.+bvts |
---|
1662 | g1pbs = rgmma(bvts1) !.8875 |
---|
1663 | g3pbs = rgmma(bvts3) |
---|
1664 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
1665 | g5pbso2 = rgmma(bvts2) |
---|
1666 | pvts = avts*g4pbs/6. |
---|
1667 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
1668 | precs1 = 4.*n0s*.65 |
---|
1669 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
1670 | pidn0r = pi*denr*n0r |
---|
1671 | pidn0s = pi*dens*n0s |
---|
1672 | ! |
---|
1673 | rslopermax = 1./lamdarmax |
---|
1674 | rslopesmax = 1./lamdasmax |
---|
1675 | rsloperbmax = rslopermax ** bvtr |
---|
1676 | rslopesbmax = rslopesmax ** bvts |
---|
1677 | rsloper2max = rslopermax * rslopermax |
---|
1678 | rslopes2max = rslopesmax * rslopesmax |
---|
1679 | rsloper3max = rsloper2max * rslopermax |
---|
1680 | rslopes3max = rslopes2max * rslopesmax |
---|
1681 | ! |
---|
1682 | END SUBROUTINE wsm3init |
---|
1683 | END MODULE module_mp_wsm3 |
---|