| 1 | #if ( RWORDSIZE == 4 ) |
|---|
| 2 | # define VREC vsrec |
|---|
| 3 | # define VSQRT vssqrt |
|---|
| 4 | #else |
|---|
| 5 | # define VREC vrec |
|---|
| 6 | # define VSQRT vsqrt |
|---|
| 7 | #endif |
|---|
| 8 | |
|---|
| 9 | MODULE module_mp_wsm3 |
|---|
| 10 | ! |
|---|
| 11 | ! |
|---|
| 12 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
|---|
| 13 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
|---|
| 14 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
|---|
| 15 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
|---|
| 16 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
|---|
| 17 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
|---|
| 18 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
|---|
| 19 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
|---|
| 20 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
|---|
| 21 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
|---|
| 22 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
|---|
| 23 | REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain |
|---|
| 24 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
|---|
| 25 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
|---|
| 26 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
|---|
| 27 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
|---|
| 28 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
|---|
| 31 | REAL, SAVE :: & |
|---|
| 32 | qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & |
|---|
| 33 | g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & |
|---|
| 34 | precr1,precr2,xmmax,roqimax,bvts1, & |
|---|
| 35 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
|---|
| 36 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
|---|
| 37 | pidn0s,xlv1, & |
|---|
| 38 | rslopermax,rslopesmax,rslopegmax, & |
|---|
| 39 | rsloperbmax,rslopesbmax,rslopegbmax, & |
|---|
| 40 | rsloper2max,rslopes2max,rslopeg2max, & |
|---|
| 41 | rsloper3max,rslopes3max,rslopeg3max |
|---|
| 42 | ! |
|---|
| 43 | ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 |
|---|
| 44 | ! |
|---|
| 45 | CONTAINS |
|---|
| 46 | !=================================================================== |
|---|
| 47 | ! |
|---|
| 48 | SUBROUTINE wsm3(th, q, qci, qrs & |
|---|
| 49 | , w, den, pii, p, delz & |
|---|
| 50 | , delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 51 | , ep1, ep2, qmin & |
|---|
| 52 | , XLS, XLV0, XLF0, den0, denr & |
|---|
| 53 | , cliq,cice,psat & |
|---|
| 54 | , rain, rainncv & |
|---|
| 55 | , snow, snowncv & |
|---|
| 56 | , sr & |
|---|
| 57 | , ids,ide, jds,jde, kds,kde & |
|---|
| 58 | , ims,ime, jms,jme, kms,kme & |
|---|
| 59 | , its,ite, jts,jte, kts,kte & |
|---|
| 60 | ) |
|---|
| 61 | !------------------------------------------------------------------- |
|---|
| 62 | #ifdef _OPENMP |
|---|
| 63 | use omp_lib |
|---|
| 64 | #endif |
|---|
| 65 | IMPLICIT NONE |
|---|
| 66 | !------------------------------------------------------------------- |
|---|
| 67 | ! |
|---|
| 68 | ! |
|---|
| 69 | ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the WRF |
|---|
| 70 | ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei |
|---|
| 71 | ! number concentration is a function of temperature, and seperate assumption |
|---|
| 72 | ! is developed, in which ice crystal number concentration is a function |
|---|
| 73 | ! of ice amount. A theoretical background of the ice-microphysics and related |
|---|
| 74 | ! processes in the WSMMPs are described in Hong et al. (2004). |
|---|
| 75 | ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). |
|---|
| 76 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
|---|
| 77 | ! |
|---|
| 78 | ! WSM3 cloud scheme |
|---|
| 79 | ! |
|---|
| 80 | ! Coded by Song-You Hong (Yonsei Univ.) |
|---|
| 81 | ! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis) |
|---|
| 82 | ! Summer 2002 |
|---|
| 83 | ! |
|---|
| 84 | ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) |
|---|
| 85 | ! Summer 2003 |
|---|
| 86 | ! |
|---|
| 87 | ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
|---|
| 88 | ! Dudhia (D89, 1989) J. Atmos. Sci. |
|---|
| 89 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
|---|
| 90 | ! |
|---|
| 91 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 92 | ims,ime, jms,jme, kms,kme , & |
|---|
| 93 | its,ite, jts,jte, kts,kte |
|---|
| 94 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 95 | INTENT(INOUT) :: & |
|---|
| 96 | th, & |
|---|
| 97 | q, & |
|---|
| 98 | qci, & |
|---|
| 99 | qrs |
|---|
| 100 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 101 | INTENT(IN ) :: w, & |
|---|
| 102 | den, & |
|---|
| 103 | pii, & |
|---|
| 104 | p, & |
|---|
| 105 | delz |
|---|
| 106 | |
|---|
| 107 | REAL, INTENT(IN ) :: delt, & |
|---|
| 108 | g, & |
|---|
| 109 | rd, & |
|---|
| 110 | rv, & |
|---|
| 111 | t0c, & |
|---|
| 112 | den0, & |
|---|
| 113 | cpd, & |
|---|
| 114 | cpv, & |
|---|
| 115 | ep1, & |
|---|
| 116 | ep2, & |
|---|
| 117 | qmin, & |
|---|
| 118 | XLS, & |
|---|
| 119 | XLV0, & |
|---|
| 120 | XLF0, & |
|---|
| 121 | cliq, & |
|---|
| 122 | cice, & |
|---|
| 123 | psat, & |
|---|
| 124 | denr |
|---|
| 125 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 126 | INTENT(INOUT) :: rain, & |
|---|
| 127 | rainncv |
|---|
| 128 | |
|---|
| 129 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 130 | INTENT(INOUT) :: snow, & |
|---|
| 131 | snowncv, & |
|---|
| 132 | sr |
|---|
| 133 | |
|---|
| 134 | ! LOCAL VAR |
|---|
| 135 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
|---|
| 136 | INTEGER :: i,j,k |
|---|
| 137 | #ifdef _ACCEL_PROF |
|---|
| 138 | integer :: l |
|---|
| 139 | real*8 wsm3_t(8,256), wsm5_t(8,256), t1, t2 |
|---|
| 140 | common /wsm_times/ wsm3_t(8,256), wsm5_t(8,256) |
|---|
| 141 | #endif |
|---|
| 142 | !------------------------------------------------------------------- |
|---|
| 143 | #ifdef _ACCEL_PROF |
|---|
| 144 | call cpu_time(t1) |
|---|
| 145 | #endif |
|---|
| 146 | |
|---|
| 147 | #ifdef _ACCEL |
|---|
| 148 | |
|---|
| 149 | CALL wsm32D(th, q, qci, qrs, & |
|---|
| 150 | w, den, pii, p, delz, rain, rainncv, & |
|---|
| 151 | delt,g, cpd, cpv, rd, rv, t0c, & |
|---|
| 152 | ep1, ep2, qmin, & |
|---|
| 153 | XLS, XLV0, XLF0, den0, denr, & |
|---|
| 154 | cliq,cice,psat, & |
|---|
| 155 | ids,ide, jds,jde, kds,kde, & |
|---|
| 156 | ims,ime, jms,jme, kms,kme, & |
|---|
| 157 | its,ite, jts,jte, kts,kte ) |
|---|
| 158 | |
|---|
| 159 | #else |
|---|
| 160 | |
|---|
| 161 | DO j=jts,jte |
|---|
| 162 | DO k=kts,kte |
|---|
| 163 | DO i=its,ite |
|---|
| 164 | t(i,k)=th(i,k,j)*pii(i,k,j) |
|---|
| 165 | ENDDO |
|---|
| 166 | ENDDO |
|---|
| 167 | CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & |
|---|
| 168 | ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & |
|---|
| 169 | ,p(ims,kms,j), delz(ims,kms,j) & |
|---|
| 170 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 171 | ,ep1, ep2, qmin & |
|---|
| 172 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 173 | ,cliq,cice,psat & |
|---|
| 174 | ,j & |
|---|
| 175 | ,rain(ims,j), rainncv(ims,j) & |
|---|
| 176 | ,snow(ims,j),snowncv(ims,j) & |
|---|
| 177 | ,sr(ims,j) & |
|---|
| 178 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 179 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 180 | ,its,ite, jts,jte, kts,kte & |
|---|
| 181 | ) |
|---|
| 182 | DO K=kts,kte |
|---|
| 183 | DO I=its,ite |
|---|
| 184 | th(i,k,j)=t(i,k)/pii(i,k,j) |
|---|
| 185 | ENDDO |
|---|
| 186 | ENDDO |
|---|
| 187 | ENDDO |
|---|
| 188 | #endif |
|---|
| 189 | |
|---|
| 190 | |
|---|
| 191 | #ifdef _ACCEL_PROF |
|---|
| 192 | call cpu_time(t2) |
|---|
| 193 | #ifdef _OPENMP |
|---|
| 194 | l = omp_get_thread_num() + 1 |
|---|
| 195 | #else |
|---|
| 196 | l = 1 |
|---|
| 197 | #endif |
|---|
| 198 | wsm3_t(1,l) = wsm3_t(1,l) + (t2 - t1) |
|---|
| 199 | #endif |
|---|
| 200 | |
|---|
| 201 | END SUBROUTINE wsm3 |
|---|
| 202 | |
|---|
| 203 | |
|---|
| 204 | #ifdef _ACCEL |
|---|
| 205 | |
|---|
| 206 | !=================================================================== |
|---|
| 207 | !{ |
|---|
| 208 | SUBROUTINE wsm32D(th, q, qci, qrs, & |
|---|
| 209 | w, den, pii, p, delz, rain, rainncv, & |
|---|
| 210 | delt,g, cpd, cpv, rd, rv, t0c, & |
|---|
| 211 | ep1, ep2, qmin, & |
|---|
| 212 | XLS, XLV0, XLF0, den0, denr, & |
|---|
| 213 | cliq,cice,psat, & |
|---|
| 214 | ids,ide, jds,jde, kds,kde, & |
|---|
| 215 | ims,ime, jms,jme, kms,kme, & |
|---|
| 216 | its,ite, jts,jte, kts,kte ) |
|---|
| 217 | !------------------------------------------------------------------- |
|---|
| 218 | IMPLICIT NONE |
|---|
| 219 | !------------------------------------------------------------------- |
|---|
| 220 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 221 | ims,ime, jms,jme, kms,kme , & |
|---|
| 222 | its,ite, jts,jte, kts,kte |
|---|
| 223 | REAL, DIMENSION( ims:ime , kms:kme, ims:ims ), & |
|---|
| 224 | INTENT(INOUT) :: & |
|---|
| 225 | th |
|---|
| 226 | REAL, DIMENSION( ims:ime , kms:kme, ims:ims ), & |
|---|
| 227 | INTENT(IN) :: & |
|---|
| 228 | pii |
|---|
| 229 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 230 | INTENT(INOUT) :: & |
|---|
| 231 | q, & |
|---|
| 232 | qci, & |
|---|
| 233 | qrs |
|---|
| 234 | REAL, DIMENSION( ims:ime , kms:kme, jms:jme ), & |
|---|
| 235 | INTENT(IN ) :: w, & |
|---|
| 236 | den, & |
|---|
| 237 | p, & |
|---|
| 238 | delz |
|---|
| 239 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 240 | INTENT(INOUT) :: rain, & |
|---|
| 241 | rainncv |
|---|
| 242 | REAL, INTENT(IN ) :: delt, & |
|---|
| 243 | g, & |
|---|
| 244 | cpd, & |
|---|
| 245 | cpv, & |
|---|
| 246 | t0c, & |
|---|
| 247 | den0, & |
|---|
| 248 | rd, & |
|---|
| 249 | rv, & |
|---|
| 250 | ep1, & |
|---|
| 251 | ep2, & |
|---|
| 252 | qmin, & |
|---|
| 253 | XLS, & |
|---|
| 254 | XLV0, & |
|---|
| 255 | XLF0, & |
|---|
| 256 | cliq, & |
|---|
| 257 | cice, & |
|---|
| 258 | psat, & |
|---|
| 259 | denr |
|---|
| 260 | ! LOCAL VAR |
|---|
| 261 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 262 | rh, qs, denfac, rslope, rslope2, rslope3, rslopeb, & |
|---|
| 263 | pgen, paut, pacr, pisd, pres, pcon, fall, falk, & |
|---|
| 264 | xl, cpm, work1, work2, xni, qs0, n0sfac |
|---|
| 265 | ! LOCAL VAR |
|---|
| 266 | REAL, DIMENSION( its:ite , kts:kte, jts:jte ) :: t |
|---|
| 267 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 268 | falkc, work1c, work2c, fallc |
|---|
| 269 | INTEGER :: mstep, numdt |
|---|
| 270 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 271 | REAL :: pi, & |
|---|
| 272 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
|---|
| 273 | viscos, xka, venfac, conden, diffac, & |
|---|
| 274 | x, y, z, a, b, c, d, e, & |
|---|
| 275 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
|---|
| 276 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
|---|
| 277 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
|---|
| 278 | qimax, diameter, xni0, roqi0 |
|---|
| 279 | REAL :: holdc, holdci |
|---|
| 280 | INTEGER :: i, k, j, & |
|---|
| 281 | iprt, latd, lond, loop, loops, ifsat, kk, n |
|---|
| 282 | ! |
|---|
| 283 | |
|---|
| 284 | #define INL |
|---|
| 285 | #ifdef INL |
|---|
| 286 | ! Temporaries used for inlining fpvs function |
|---|
| 287 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 288 | #endif |
|---|
| 289 | |
|---|
| 290 | |
|---|
| 291 | |
|---|
| 292 | !================================================================= |
|---|
| 293 | ! compute internal functions |
|---|
| 294 | ! |
|---|
| 295 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 296 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 297 | ! tvcal(x,y) = x+x*ep1*max(y,qmin) |
|---|
| 298 | !---------------------------------------------------------------- |
|---|
| 299 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 300 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 301 | ! |
|---|
| 302 | lamdar(x,y)=(pidn0r/(x*y))**.25 |
|---|
| 303 | lamdas(x,y,z)=(pidn0s*z/(x*y))**.25 |
|---|
| 304 | ! |
|---|
| 305 | !---------------------------------------------------------------- |
|---|
| 306 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 307 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 308 | ! |
|---|
| 309 | diffus(x,y) = 8.794e-5*x**1.81/y |
|---|
| 310 | viscos(x,y) = 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 311 | xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 312 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 313 | venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
|---|
| 314 | /viscos(b,c)**(.5)*(den0/c)**0.25 |
|---|
| 315 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 316 | ! |
|---|
| 317 | pi = 4. * atan(1.) |
|---|
| 318 | ! |
|---|
| 319 | !---------------------------------------------------------------- |
|---|
| 320 | ! compute the minor time steps. |
|---|
| 321 | ! |
|---|
| 322 | loops = max(int(delt/dtcldcr+0.5),1) |
|---|
| 323 | dtcld = delt/loops |
|---|
| 324 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 325 | #ifdef INL |
|---|
| 326 | cvap = cpv |
|---|
| 327 | hvap=xlv0 |
|---|
| 328 | hsub=xls |
|---|
| 329 | ttp=t0c+0.1 |
|---|
| 330 | dldt=cvap-cliq |
|---|
| 331 | xa=-dldt/rv |
|---|
| 332 | xb=xa+hvap/(rv*ttp) |
|---|
| 333 | dldti=cvap-cice |
|---|
| 334 | xai=-dldti/rv |
|---|
| 335 | xbi=xai+hsub/(rv*ttp) |
|---|
| 336 | #endif |
|---|
| 337 | ! |
|---|
| 338 | !---------------------------------------------------------------- |
|---|
| 339 | ! paddint 0 for negative values generated by dynamics |
|---|
| 340 | ! |
|---|
| 341 | !$acc region & |
|---|
| 342 | !$acc local(t) & |
|---|
| 343 | !$acc copyin(delz(:,:,:),p(:,:,:)) & |
|---|
| 344 | !$acc copyin(den(:,:,:),w(:,:,:)) & |
|---|
| 345 | !$acc copy(q(:,:,:),qci(:,:,:),qrs(:,:,:)) |
|---|
| 346 | !$acc do & |
|---|
| 347 | !$acc private(rh,qs,denfac,rslope,rslope2,rslope3,rslopeb) & |
|---|
| 348 | !$acc private(pgen,paut,pacr,pisd,pres,pcon,fall,falk) & |
|---|
| 349 | !$acc private(xl,cpm,work1,work2,xni,qs0,n0sfac) & |
|---|
| 350 | !$acc private(falkc,work1c,work2c,fallc) & |
|---|
| 351 | !$acc parallel |
|---|
| 352 | do j = jts, jte |
|---|
| 353 | !$acc do & |
|---|
| 354 | !$acc private(numdt,mstep) & |
|---|
| 355 | !$acc kernel vector(96) |
|---|
| 356 | do i = its, ite |
|---|
| 357 | do k = kts, kte |
|---|
| 358 | t(i,k,j)=th(i,k,j)*pii(i,k,j) |
|---|
| 359 | qci(i,k,j) = max(qci(i,k,j),0.0) |
|---|
| 360 | qrs(i,k,j) = max(qrs(i,k,j),0.0) |
|---|
| 361 | enddo |
|---|
| 362 | ! |
|---|
| 363 | !---------------------------------------------------------------- |
|---|
| 364 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 365 | ! changes during microphysical process calculation |
|---|
| 366 | ! emanuel(1994) |
|---|
| 367 | ! |
|---|
| 368 | do k = kts, kte |
|---|
| 369 | cpm(i,k) = cpmcal(q(i,k,j)) |
|---|
| 370 | xl(i,k) = xlcal(t(i,k,j)) |
|---|
| 371 | enddo |
|---|
| 372 | ! |
|---|
| 373 | do loop = 1,loops |
|---|
| 374 | ! |
|---|
| 375 | !---------------------------------------------------------------- |
|---|
| 376 | ! initialize the large scale variables |
|---|
| 377 | ! |
|---|
| 378 | mstep = 1 |
|---|
| 379 | flgcld(i) = .true. |
|---|
| 380 | ! |
|---|
| 381 | do k = kts, kte |
|---|
| 382 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
|---|
| 383 | enddo |
|---|
| 384 | ! |
|---|
| 385 | do k = kts, kte |
|---|
| 386 | #ifndef INL |
|---|
| 387 | qs(i,k) = fpvs(t(i,k,j),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 388 | qs0(i,k) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 389 | #else |
|---|
| 390 | tr=ttp/t(i,k,j) |
|---|
| 391 | if(t(i,k,j).lt.ttp) then |
|---|
| 392 | qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
|---|
| 393 | else |
|---|
| 394 | qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 395 | endif |
|---|
| 396 | qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 397 | #endif |
|---|
| 398 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
|---|
| 399 | qs(i,k) = ep2 * qs(i,k) / (p(i,k,j) - qs(i,k)) |
|---|
| 400 | qs(i,k) = max(qs(i,k),qmin) |
|---|
| 401 | rh(i,k) = max(q(i,k,j) / qs(i,k),qmin) |
|---|
| 402 | enddo |
|---|
| 403 | ! |
|---|
| 404 | !---------------------------------------------------------------- |
|---|
| 405 | ! initialize the variables for microphysical physics |
|---|
| 406 | ! |
|---|
| 407 | ! |
|---|
| 408 | do k = kts, kte |
|---|
| 409 | pres(i,k) = 0. |
|---|
| 410 | paut(i,k) = 0. |
|---|
| 411 | pacr(i,k) = 0. |
|---|
| 412 | pgen(i,k) = 0. |
|---|
| 413 | pisd(i,k) = 0. |
|---|
| 414 | pcon(i,k) = 0. |
|---|
| 415 | fall(i,k) = 0. |
|---|
| 416 | falk(i,k) = 0. |
|---|
| 417 | fallc(i,k) = 0. |
|---|
| 418 | falkc(i,k) = 0. |
|---|
| 419 | xni(i,k) = 1.e3 |
|---|
| 420 | enddo |
|---|
| 421 | ! |
|---|
| 422 | !---------------------------------------------------------------- |
|---|
| 423 | ! compute the fallout term: |
|---|
| 424 | ! first, vertical terminal velosity for minor loops |
|---|
| 425 | !--------------------------------------------------------------- |
|---|
| 426 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 427 | !--------------------------------------------------------------- |
|---|
| 428 | do k = kts, kte |
|---|
| 429 | supcol = t0c-t(i,k,j) |
|---|
| 430 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 431 | if(t(i,k,j).ge.t0c) then |
|---|
| 432 | if(qrs(i,k,j).le.qcrmin)then |
|---|
| 433 | rslope(i,k) = rslopermax |
|---|
| 434 | rslopeb(i,k) = rsloperbmax |
|---|
| 435 | rslope2(i,k) = rsloper2max |
|---|
| 436 | rslope3(i,k) = rsloper3max |
|---|
| 437 | else |
|---|
| 438 | rslope(i,k) = 1./lamdar(qrs(i,k,j),den(i,k,j)) |
|---|
| 439 | rslopeb(i,k) = rslope(i,k)**bvtr |
|---|
| 440 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 441 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 442 | endif |
|---|
| 443 | else |
|---|
| 444 | if(qrs(i,k,j).le.qcrmin)then |
|---|
| 445 | rslope(i,k) = rslopesmax |
|---|
| 446 | rslopeb(i,k) = rslopesbmax |
|---|
| 447 | rslope2(i,k) = rslopes2max |
|---|
| 448 | rslope3(i,k) = rslopes3max |
|---|
| 449 | else |
|---|
| 450 | rslope(i,k) = 1./lamdas(qrs(i,k,j),den(i,k,j),n0sfac(i,k)) |
|---|
| 451 | rslopeb(i,k) = rslope(i,k)**bvts |
|---|
| 452 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 453 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 454 | endif |
|---|
| 455 | endif |
|---|
| 456 | !------------------------------------------------------------- |
|---|
| 457 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 458 | !------------------------------------------------------------- |
|---|
| 459 | xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 460 | *max(qci(i,k,j),qmin))**0.75,1.e3),1.e6) |
|---|
| 461 | enddo |
|---|
| 462 | ! |
|---|
| 463 | numdt = 1 |
|---|
| 464 | do k = kte, kts, -1 |
|---|
| 465 | if(t(i,k,j).lt.t0c) then |
|---|
| 466 | pvt = pvts |
|---|
| 467 | else |
|---|
| 468 | pvt = pvtr |
|---|
| 469 | endif |
|---|
| 470 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
|---|
| 471 | work2(i,k) = work1(i,k)/delz(i,k,j) |
|---|
| 472 | numdt = max(int(work2(i,k)*dtcld+1.),1) |
|---|
| 473 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 474 | enddo |
|---|
| 475 | ! |
|---|
| 476 | do n = 1, mstep |
|---|
| 477 | k = kte |
|---|
| 478 | falk(i,k) = den(i,k,j)*qrs(i,k,j)*work2(i,k)/mstep |
|---|
| 479 | hold = falk(i,k) |
|---|
| 480 | fall(i,k) = fall(i,k)+falk(i,k) |
|---|
| 481 | holdrs = qrs(i,k,j) |
|---|
| 482 | qrs(i,k,j) = max(qrs(i,k,j)-falk(i,k)*dtcld/den(i,k,j),0.) |
|---|
| 483 | do k = kte-1, kts, -1 |
|---|
| 484 | falk(i,k) = den(i,k,j)*qrs(i,k,j)*work2(i,k)/mstep |
|---|
| 485 | hold = falk(i,k) |
|---|
| 486 | fall(i,k) = fall(i,k)+falk(i,k) |
|---|
| 487 | holdrs = qrs(i,k,j) |
|---|
| 488 | qrs(i,k,j) = max(qrs(i,k,j)-(falk(i,k) & |
|---|
| 489 | -falk(i,k+1)*delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
|---|
| 490 | enddo |
|---|
| 491 | enddo |
|---|
| 492 | !--------------------------------------------------------------- |
|---|
| 493 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 494 | !--------------------------------------------------------------- |
|---|
| 495 | mstep = 1 |
|---|
| 496 | numdt = 1 |
|---|
| 497 | do k = kte, kts, -1 |
|---|
| 498 | if(t(i,k,j).lt.t0c.and.qci(i,k,j).gt.0.) then |
|---|
| 499 | xmi = den(i,k,j)*qci(i,k,j)/xni(i,k) |
|---|
| 500 | diameter = dicon * sqrt(xmi) |
|---|
| 501 | work1c(i,k) = 1.49e4*diameter**1.31 |
|---|
| 502 | else |
|---|
| 503 | work1c(i,k) = 0. |
|---|
| 504 | endif |
|---|
| 505 | if(qci(i,k,j).le.0.) then |
|---|
| 506 | work2c(i,k) = 0. |
|---|
| 507 | else |
|---|
| 508 | work2c(i,k) = work1c(i,k)/delz(i,k,j) |
|---|
| 509 | endif |
|---|
| 510 | numdt = max(int(work2c(i,k)*dtcld+1.),1) |
|---|
| 511 | if(numdt.ge.mstep) mstep = numdt |
|---|
| 512 | enddo |
|---|
| 513 | ! |
|---|
| 514 | do n = 1, mstep |
|---|
| 515 | k = kte |
|---|
| 516 | falkc(i,k) = den(i,k,j)*qci(i,k,j)*work2c(i,k)/mstep |
|---|
| 517 | holdc = falkc(i,k) |
|---|
| 518 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 519 | holdci = qci(i,k,j) |
|---|
| 520 | qci(i,k,j) = max(qci(i,k,j)-falkc(i,k)*dtcld/den(i,k,j),0.) |
|---|
| 521 | do k = kte-1, kts, -1 |
|---|
| 522 | falkc(i,k) = den(i,k,j)*qci(i,k,j)*work2c(i,k)/mstep |
|---|
| 523 | holdc = falkc(i,k) |
|---|
| 524 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 525 | holdci = qci(i,k,j) |
|---|
| 526 | qci(i,k,j) = max(qci(i,k,j)-(falkc(i,k) & |
|---|
| 527 | -falkc(i,k+1)*delz(i,k+1,j)/delz(i,k,j))*dtcld/den(i,k,j),0.) |
|---|
| 528 | enddo |
|---|
| 529 | enddo |
|---|
| 530 | ! |
|---|
| 531 | !---------------------------------------------------------------- |
|---|
| 532 | ! compute the freezing/melting term. [D89 B16-B17] |
|---|
| 533 | ! freezing occurs one layer above the melting level |
|---|
| 534 | ! |
|---|
| 535 | mstep = 0 |
|---|
| 536 | ! |
|---|
| 537 | do k = kts, kte |
|---|
| 538 | if(t(i,k,j).ge.t0c) then |
|---|
| 539 | mstep = k |
|---|
| 540 | endif |
|---|
| 541 | enddo |
|---|
| 542 | ! |
|---|
| 543 | if(mstep.ne.0.and.w(i,mstep,j).gt.0.) then |
|---|
| 544 | work1(i,1) = float(mstep + 1) |
|---|
| 545 | work1(i,2) = float(mstep) |
|---|
| 546 | else |
|---|
| 547 | work1(i,1) = float(mstep) |
|---|
| 548 | work1(i,2) = float(mstep) |
|---|
| 549 | endif |
|---|
| 550 | ! |
|---|
| 551 | k = int(work1(i,1)+0.5) |
|---|
| 552 | kk = int(work1(i,2)+0.5) |
|---|
| 553 | if(k*kk.ge.1) then |
|---|
| 554 | qrsci = qrs(i,k,j) + qci(i,k,j) |
|---|
| 555 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
|---|
| 556 | frzmlt = min(max(-w(i,k,j)*qrsci/delz(i,k,j),-qrsci/dtcld), & |
|---|
| 557 | qrsci/dtcld) |
|---|
| 558 | snomlt = min(max(fall(i,kk)/den(i,kk,j),-qrs(i,k,j)/dtcld), & |
|---|
| 559 | qrs(i,k,j)/dtcld) |
|---|
| 560 | if(k.eq.kk) then |
|---|
| 561 | t(i,k,j) = t(i,k,j) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
|---|
| 562 | else |
|---|
| 563 | t(i,k,j) = t(i,k,j) - xlf0/cpm(i,k)*frzmlt*dtcld |
|---|
| 564 | t(i,kk,j) = t(i,kk,j) - xlf0/cpm(i,kk)*snomlt*dtcld |
|---|
| 565 | endif |
|---|
| 566 | endif |
|---|
| 567 | endif |
|---|
| 568 | ! |
|---|
| 569 | !---------------------------------------------------------------- |
|---|
| 570 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 571 | ! |
|---|
| 572 | if(fall(i,1).gt.0.) then |
|---|
| 573 | rainncv(i,j) = fall(i,1)*delz(i,1,j)/denr*dtcld*1000. |
|---|
| 574 | rain(i,j) = fall(i,1)*delz(i,1,j)/denr*dtcld*1000. & |
|---|
| 575 | + rain(i,j) |
|---|
| 576 | endif |
|---|
| 577 | ! |
|---|
| 578 | !---------------------------------------------------------------- |
|---|
| 579 | ! rsloper: reverse of the slope parameter of the rain(m,j) |
|---|
| 580 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 581 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 582 | ! heat conduction and vapor diffusion |
|---|
| 583 | ! (ry88, y93, h85) |
|---|
| 584 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 585 | ! |
|---|
| 586 | do k = kts, kte |
|---|
| 587 | if(t(i,k,j).ge.t0c) then |
|---|
| 588 | if(qrs(i,k,j).le.qcrmin)then |
|---|
| 589 | rslope(i,k) = rslopermax |
|---|
| 590 | rslopeb(i,k) = rsloperbmax |
|---|
| 591 | rslope2(i,k) = rsloper2max |
|---|
| 592 | rslope3(i,k) = rsloper3max |
|---|
| 593 | else |
|---|
| 594 | rslope(i,k) = 1./lamdar(qrs(i,k,j),den(i,k,j)) |
|---|
| 595 | rslopeb(i,k) = rslope(i,k)**bvtr |
|---|
| 596 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 597 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 598 | endif |
|---|
| 599 | else |
|---|
| 600 | if(qrs(i,k,j).le.qcrmin)then |
|---|
| 601 | rslope(i,k) = rslopesmax |
|---|
| 602 | rslopeb(i,k) = rslopesbmax |
|---|
| 603 | rslope2(i,k) = rslopes2max |
|---|
| 604 | rslope3(i,k) = rslopes3max |
|---|
| 605 | else |
|---|
| 606 | rslope(i,k) = 1./lamdas(qrs(i,k,j),den(i,k,j),n0sfac(i,k)) |
|---|
| 607 | rslopeb(i,k) = rslope(i,k)**bvts |
|---|
| 608 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 609 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 610 | endif |
|---|
| 611 | endif |
|---|
| 612 | enddo |
|---|
| 613 | ! |
|---|
| 614 | do k = kts, kte |
|---|
| 615 | if(t(i,k,j).ge.t0c) then |
|---|
| 616 | work1(i,k) = diffac(xl(i,k),p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k)) |
|---|
| 617 | else |
|---|
| 618 | work1(i,k) = diffac(xls,p(i,k,j),t(i,k,j),den(i,k,j),qs(i,k)) |
|---|
| 619 | endif |
|---|
| 620 | work2(i,k) = venfac(p(i,k,j),t(i,k,j),den(i,k,j)) |
|---|
| 621 | enddo |
|---|
| 622 | ! |
|---|
| 623 | do k = kts, kte |
|---|
| 624 | supsat = max(q(i,k,j),qmin)-qs(i,k) |
|---|
| 625 | satdt = supsat/dtcld |
|---|
| 626 | if(t(i,k,j).ge.t0c) then |
|---|
| 627 | ! |
|---|
| 628 | !=============================================================== |
|---|
| 629 | ! |
|---|
| 630 | ! warm rain processes |
|---|
| 631 | ! |
|---|
| 632 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 633 | ! |
|---|
| 634 | !=============================================================== |
|---|
| 635 | !--------------------------------------------------------------- |
|---|
| 636 | ! paut1: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 637 | ! (C->R) |
|---|
| 638 | !--------------------------------------------------------------- |
|---|
| 639 | if(qci(i,k,j).gt.qc0) then |
|---|
| 640 | paut(i,k) = qck1*qci(i,k,j)**(7./3.) |
|---|
| 641 | paut(i,k) = min(paut(i,k),qci(i,k,j)/dtcld) |
|---|
| 642 | endif |
|---|
| 643 | !--------------------------------------------------------------- |
|---|
| 644 | ! pracw: accretion of cloud water by rain [D89 B15] |
|---|
| 645 | ! (C->R) |
|---|
| 646 | !--------------------------------------------------------------- |
|---|
| 647 | if(qrs(i,k,j).gt.qcrmin.and.qci(i,k,j).gt.qmin) then |
|---|
| 648 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
|---|
| 649 | *qci(i,k,j)*denfac(i,k),qci(i,k,j)/dtcld) |
|---|
| 650 | endif |
|---|
| 651 | !--------------------------------------------------------------- |
|---|
| 652 | ! pres1: evaporation/condensation rate of rain [HDC 14] |
|---|
| 653 | ! (V->R or R->V) |
|---|
| 654 | !--------------------------------------------------------------- |
|---|
| 655 | if(qrs(i,k,j).gt.0.) then |
|---|
| 656 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
|---|
| 657 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
|---|
| 658 | +precr2*work2(i,k)*coeres)/work1(i,k) |
|---|
| 659 | if(pres(i,k).lt.0.) then |
|---|
| 660 | pres(i,k) = max(pres(i,k),-qrs(i,k,j)/dtcld) |
|---|
| 661 | pres(i,k) = max(pres(i,k),satdt/2) |
|---|
| 662 | else |
|---|
| 663 | pres(i,k) = min(pres(i,k),satdt/2) |
|---|
| 664 | endif |
|---|
| 665 | endif |
|---|
| 666 | else |
|---|
| 667 | ! |
|---|
| 668 | !=============================================================== |
|---|
| 669 | ! |
|---|
| 670 | ! cold rain processes |
|---|
| 671 | ! |
|---|
| 672 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 673 | ! - the processes same as in RH83 and LFO behave |
|---|
| 674 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 675 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 676 | ! concentration (ni), ice nuclei number concentration |
|---|
| 677 | ! (n0i), ice diameter (d) |
|---|
| 678 | ! |
|---|
| 679 | !=============================================================== |
|---|
| 680 | ! |
|---|
| 681 | supcol = t0c-t(i,k,j) |
|---|
| 682 | ifsat = 0 |
|---|
| 683 | !------------------------------------------------------------- |
|---|
| 684 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 685 | !------------------------------------------------------------- |
|---|
| 686 | xni(i,k) = min(max(5.38e7*(den(i,k,j) & |
|---|
| 687 | *max(qci(i,k,j),qmin))**0.75,1.e3),1.e6) |
|---|
| 688 | eacrs = exp(0.05*(-supcol)) |
|---|
| 689 | ! |
|---|
| 690 | if(qrs(i,k,j).gt.qcrmin.and.qci(i,k,j).gt.qmin) then |
|---|
| 691 | pacr(i,k) = min(pacrs*n0sfac(i,k)*eacrs*rslope3(i,k) & |
|---|
| 692 | *rslopeb(i,k)*qci(i,k,j)*denfac(i,k),qci(i,k,j)/dtcld) |
|---|
| 693 | endif |
|---|
| 694 | !------------------------------------------------------------- |
|---|
| 695 | ! pisd: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 696 | ! (T<T0: V->I or I->V) |
|---|
| 697 | !------------------------------------------------------------- |
|---|
| 698 | if(qci(i,k,j).gt.0.) then |
|---|
| 699 | xmi = den(i,k,j)*qci(i,k,j)/xni(i,k) |
|---|
| 700 | diameter = dicon * sqrt(xmi) |
|---|
| 701 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.) & |
|---|
| 702 | /work1(i,k) |
|---|
| 703 | if(pisd(i,k).lt.0.) then |
|---|
| 704 | pisd(i,k) = max(pisd(i,k),satdt/2) |
|---|
| 705 | pisd(i,k) = max(pisd(i,k),-qci(i,k,j)/dtcld) |
|---|
| 706 | else |
|---|
| 707 | pisd(i,k) = min(pisd(i,k),satdt/2) |
|---|
| 708 | endif |
|---|
| 709 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 710 | endif |
|---|
| 711 | !------------------------------------------------------------- |
|---|
| 712 | ! pres2: deposition/sublimation rate of snow [HDC 14] |
|---|
| 713 | ! (V->S or S->V) |
|---|
| 714 | !------------------------------------------------------------- |
|---|
| 715 | if(qrs(i,k,j).gt.0..and.ifsat.ne.1) then |
|---|
| 716 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
|---|
| 717 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
|---|
| 718 | +precs2*work2(i,k)*coeres)/work1(i,k) |
|---|
| 719 | if(pres(i,k).lt.0.) then |
|---|
| 720 | pres(i,k) = max(pres(i,k),-qrs(i,k,j)/dtcld) |
|---|
| 721 | pres(i,k) = max(pres(i,k),satdt/2) |
|---|
| 722 | else |
|---|
| 723 | pres(i,k) = min(pres(i,k),satdt/2) |
|---|
| 724 | endif |
|---|
| 725 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 726 | endif |
|---|
| 727 | !------------------------------------------------------------- |
|---|
| 728 | ! pgen: generation(nucleation) of ice from vapor [HDC 7-8] |
|---|
| 729 | ! (T<T0: V->I) |
|---|
| 730 | !------------------------------------------------------------- |
|---|
| 731 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 732 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 733 | roqi0 = 4.92e-11*xni0**1.33 |
|---|
| 734 | pgen(i,k) = max(0.,(roqi0/den(i,k,j)-max(qci(i,k,j),0.))/dtcld) |
|---|
| 735 | pgen(i,k) = min(pgen(i,k),satdt) |
|---|
| 736 | endif |
|---|
| 737 | !------------------------------------------------------------- |
|---|
| 738 | ! paut2: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 739 | ! (T<T0: I->S) |
|---|
| 740 | !------------------------------------------------------------- |
|---|
| 741 | if(qci(i,k,j).gt.0.) then |
|---|
| 742 | qimax = roqimax/den(i,k,j) |
|---|
| 743 | paut(i,k) = max(0.,(qci(i,k,j)-qimax)/dtcld) |
|---|
| 744 | endif |
|---|
| 745 | endif |
|---|
| 746 | enddo |
|---|
| 747 | ! |
|---|
| 748 | !---------------------------------------------------------------- |
|---|
| 749 | ! check mass conservation of generation terms and feedback to the |
|---|
| 750 | ! large scale |
|---|
| 751 | ! |
|---|
| 752 | do k = kts, kte |
|---|
| 753 | qciik = max(qmin,qci(i,k,j)) |
|---|
| 754 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
|---|
| 755 | if(delqci.ge.qciik) then |
|---|
| 756 | facqci = qciik/delqci |
|---|
| 757 | paut(i,k) = paut(i,k)*facqci |
|---|
| 758 | pacr(i,k) = pacr(i,k)*facqci |
|---|
| 759 | pgen(i,k) = pgen(i,k)*facqci |
|---|
| 760 | pisd(i,k) = pisd(i,k)*facqci |
|---|
| 761 | endif |
|---|
| 762 | qik = max(qmin,q(i,k,j)) |
|---|
| 763 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
|---|
| 764 | if(delq.ge.qik) then |
|---|
| 765 | facq = qik/delq |
|---|
| 766 | pres(i,k) = pres(i,k)*facq |
|---|
| 767 | pgen(i,k) = pgen(i,k)*facq |
|---|
| 768 | pisd(i,k) = pisd(i,k)*facq |
|---|
| 769 | endif |
|---|
| 770 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
|---|
| 771 | q(i,k,j) = q(i,k,j)+work2(i,k)*dtcld |
|---|
| 772 | qci(i,k,j) = max(qci(i,k,j)-(paut(i,k)+pacr(i,k)-pgen(i,k) & |
|---|
| 773 | -pisd(i,k))*dtcld,0.) |
|---|
| 774 | qrs(i,k,j) = max(qrs(i,k,j)+(paut(i,k)+pacr(i,k) & |
|---|
| 775 | +pres(i,k))*dtcld,0.) |
|---|
| 776 | if(t(i,k,j).lt.t0c) then |
|---|
| 777 | t(i,k,j) = t(i,k,j)-xls*work2(i,k)/cpm(i,k)*dtcld |
|---|
| 778 | else |
|---|
| 779 | t(i,k,j) = t(i,k,j)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
|---|
| 780 | endif |
|---|
| 781 | enddo |
|---|
| 782 | ! |
|---|
| 783 | do k = kts, kte |
|---|
| 784 | #ifndef INL |
|---|
| 785 | qs(i,k) = fpvs(t(i,k,j),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 786 | #else |
|---|
| 787 | tr=ttp/t(i,k,j) |
|---|
| 788 | qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 789 | #endif |
|---|
| 790 | qs(i,k) = ep2 * qs(i,k) / (p(i,k,j) - qs(i,k)) |
|---|
| 791 | qs(i,k) = max(qs(i,k),qmin) |
|---|
| 792 | denfac(i,k) = sqrt(den0/den(i,k,j)) |
|---|
| 793 | enddo |
|---|
| 794 | ! |
|---|
| 795 | !---------------------------------------------------------------- |
|---|
| 796 | ! pcon: condensational/evaporational rate of cloud water [RH83 A6] |
|---|
| 797 | ! if there exists additional water vapor condensated/if |
|---|
| 798 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 799 | ! |
|---|
| 800 | do k = kts, kte |
|---|
| 801 | work1(i,k) = conden(t(i,k,j),q(i,k,j),qs(i,k),xl(i,k),cpm(i,k)) |
|---|
| 802 | work2(i,k) = qci(i,k,j)+work1(i,k) |
|---|
| 803 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k,j),0.))/dtcld |
|---|
| 804 | if(qci(i,k,j).gt.0..and.work1(i,k).lt.0.and.t(i,k,j).gt.t0c) & |
|---|
| 805 | pcon(i,k) = max(work1(i,k),-qci(i,k,j))/dtcld |
|---|
| 806 | q(i,k,j) = q(i,k,j)-pcon(i,k)*dtcld |
|---|
| 807 | qci(i,k,j) = max(qci(i,k,j)+pcon(i,k)*dtcld,0.) |
|---|
| 808 | t(i,k,j) = t(i,k,j)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 809 | enddo |
|---|
| 810 | ! |
|---|
| 811 | !---------------------------------------------------------------- |
|---|
| 812 | ! padding for small values |
|---|
| 813 | ! |
|---|
| 814 | do k = kts, kte |
|---|
| 815 | if(qci(i,k,j).le.qmin) qci(i,k,j) = 0.0 |
|---|
| 816 | enddo |
|---|
| 817 | ! |
|---|
| 818 | enddo ! big loops |
|---|
| 819 | DO K=kts,kte |
|---|
| 820 | th(i,k,j)=t(i,k,j)/pii(i,k,j) |
|---|
| 821 | ENDDO |
|---|
| 822 | enddo |
|---|
| 823 | enddo |
|---|
| 824 | !$acc end region |
|---|
| 825 | END SUBROUTINE wsm32D !} |
|---|
| 826 | |
|---|
| 827 | #else |
|---|
| 828 | |
|---|
| 829 | |
|---|
| 830 | !=================================================================== |
|---|
| 831 | ! |
|---|
| 832 | SUBROUTINE wsm32D(t, q, qci, qrs,w, den, p, delz & |
|---|
| 833 | ,delt,g, cpd, cpv, rd, rv, t0c & |
|---|
| 834 | ,ep1, ep2, qmin & |
|---|
| 835 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 836 | ,cliq,cice,psat & |
|---|
| 837 | ,lat & |
|---|
| 838 | ,rain, rainncv & |
|---|
| 839 | ,snow,snowncv & |
|---|
| 840 | ,sr & |
|---|
| 841 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 842 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 843 | ,its,ite, jts,jte, kts,kte & |
|---|
| 844 | ) |
|---|
| 845 | !------------------------------------------------------------------- |
|---|
| 846 | IMPLICIT NONE |
|---|
| 847 | !------------------------------------------------------------------- |
|---|
| 848 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & |
|---|
| 849 | ims,ime, jms,jme, kms,kme, & |
|---|
| 850 | its,ite, jts,jte, kts,kte, & |
|---|
| 851 | lat |
|---|
| 852 | REAL, DIMENSION( its:ite , kts:kte ), & |
|---|
| 853 | INTENT(INOUT) :: & |
|---|
| 854 | t |
|---|
| 855 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 856 | INTENT(INOUT) :: & |
|---|
| 857 | q, & |
|---|
| 858 | qci, & |
|---|
| 859 | qrs |
|---|
| 860 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 861 | INTENT(IN ) :: w, & |
|---|
| 862 | den, & |
|---|
| 863 | p, & |
|---|
| 864 | delz |
|---|
| 865 | REAL, INTENT(IN ) :: delt, & |
|---|
| 866 | g, & |
|---|
| 867 | cpd, & |
|---|
| 868 | cpv, & |
|---|
| 869 | t0c, & |
|---|
| 870 | den0, & |
|---|
| 871 | rd, & |
|---|
| 872 | rv, & |
|---|
| 873 | ep1, & |
|---|
| 874 | ep2, & |
|---|
| 875 | qmin, & |
|---|
| 876 | XLS, & |
|---|
| 877 | XLV0, & |
|---|
| 878 | XLF0, & |
|---|
| 879 | cliq, & |
|---|
| 880 | cice, & |
|---|
| 881 | psat, & |
|---|
| 882 | denr |
|---|
| 883 | REAL, DIMENSION( ims:ime ), & |
|---|
| 884 | INTENT(INOUT) :: rain, & |
|---|
| 885 | rainncv |
|---|
| 886 | |
|---|
| 887 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
|---|
| 888 | INTENT(INOUT) :: snow, & |
|---|
| 889 | snowncv, & |
|---|
| 890 | sr |
|---|
| 891 | ! LOCAL VAR |
|---|
| 892 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 893 | rh, & |
|---|
| 894 | qs, & |
|---|
| 895 | denfac, & |
|---|
| 896 | rslope, & |
|---|
| 897 | rslope2, & |
|---|
| 898 | rslope3, & |
|---|
| 899 | rslopeb |
|---|
| 900 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 901 | pgen, & |
|---|
| 902 | pisd, & |
|---|
| 903 | paut, & |
|---|
| 904 | pacr, & |
|---|
| 905 | pres, & |
|---|
| 906 | pcon |
|---|
| 907 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 908 | fall, & |
|---|
| 909 | falk, & |
|---|
| 910 | xl, & |
|---|
| 911 | cpm, & |
|---|
| 912 | work1, & |
|---|
| 913 | work2, & |
|---|
| 914 | xni, & |
|---|
| 915 | qs0, & |
|---|
| 916 | n0sfac |
|---|
| 917 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 918 | falkc, & |
|---|
| 919 | work1c, & |
|---|
| 920 | work2c, & |
|---|
| 921 | fallc |
|---|
| 922 | |
|---|
| 923 | INTEGER, DIMENSION( its:ite ) :: kwork1,& |
|---|
| 924 | kwork2 |
|---|
| 925 | |
|---|
| 926 | INTEGER, DIMENSION( its:ite ) :: mstep, & |
|---|
| 927 | numdt |
|---|
| 928 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 929 | REAL :: pi, & |
|---|
| 930 | cpmcal, xlcal, lamdar, lamdas, diffus, & |
|---|
| 931 | viscos, xka, venfac, conden, diffac, & |
|---|
| 932 | x, y, z, a, b, c, d, e, & |
|---|
| 933 | fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & |
|---|
| 934 | qdt, pvt, qik, delq, facq, qrsci, frzmlt, & |
|---|
| 935 | snomlt, hold, holdrs, facqci, supcol, coeres, & |
|---|
| 936 | supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & |
|---|
| 937 | qimax, diameter, xni0, roqi0, supice,holdc, holdci |
|---|
| 938 | INTEGER :: i, j, k, mstepmax, & |
|---|
| 939 | iprt, latd, lond, loop, loops, ifsat, kk, n |
|---|
| 940 | ! Temporaries used for inlining fpvs function |
|---|
| 941 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 942 | ! variables for optimization |
|---|
| 943 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 944 | ! |
|---|
| 945 | !================================================================= |
|---|
| 946 | ! compute internal functions |
|---|
| 947 | ! |
|---|
| 948 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 949 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 950 | !---------------------------------------------------------------- |
|---|
| 951 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 952 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 953 | ! |
|---|
| 954 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 955 | lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 |
|---|
| 956 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 957 | ! |
|---|
| 958 | !---------------------------------------------------------------- |
|---|
| 959 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 960 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 961 | ! |
|---|
| 962 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
|---|
| 963 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
|---|
| 964 | xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 965 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 966 | ! venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) & |
|---|
| 967 | ! /viscos(b,c)**(.5)*(den0/c)**0.25 |
|---|
| 968 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 969 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 970 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 971 | ! |
|---|
| 972 | pi = 4. * atan(1.) |
|---|
| 973 | ! |
|---|
| 974 | !---------------------------------------------------------------- |
|---|
| 975 | ! paddint 0 for negative values generated by dynamics |
|---|
| 976 | ! |
|---|
| 977 | do k = kts, kte |
|---|
| 978 | do i = its, ite |
|---|
| 979 | qci(i,k) = max(qci(i,k),0.0) |
|---|
| 980 | qrs(i,k) = max(qrs(i,k),0.0) |
|---|
| 981 | enddo |
|---|
| 982 | enddo |
|---|
| 983 | ! |
|---|
| 984 | !---------------------------------------------------------------- |
|---|
| 985 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 986 | ! changes during microphysical process calculation |
|---|
| 987 | ! emanuel(1994) |
|---|
| 988 | ! |
|---|
| 989 | do k = kts, kte |
|---|
| 990 | do i = its, ite |
|---|
| 991 | cpm(i,k) = cpmcal(q(i,k)) |
|---|
| 992 | xl(i,k) = xlcal(t(i,k)) |
|---|
| 993 | enddo |
|---|
| 994 | enddo |
|---|
| 995 | ! |
|---|
| 996 | !---------------------------------------------------------------- |
|---|
| 997 | ! compute the minor time steps. |
|---|
| 998 | ! |
|---|
| 999 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 1000 | dtcld = delt/loops |
|---|
| 1001 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 1002 | ! |
|---|
| 1003 | do loop = 1,loops |
|---|
| 1004 | ! |
|---|
| 1005 | !---------------------------------------------------------------- |
|---|
| 1006 | ! initialize the large scale variables |
|---|
| 1007 | ! |
|---|
| 1008 | do i = its, ite |
|---|
| 1009 | mstep(i) = 1 |
|---|
| 1010 | flgcld(i) = .true. |
|---|
| 1011 | enddo |
|---|
| 1012 | ! |
|---|
| 1013 | ! do k = kts, kte |
|---|
| 1014 | ! do i = its, ite |
|---|
| 1015 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 1016 | ! enddo |
|---|
| 1017 | ! enddo |
|---|
| 1018 | do k = kts, kte |
|---|
| 1019 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
|---|
| 1020 | do i = its, ite |
|---|
| 1021 | tvec1(i) = tvec1(i)*den0 |
|---|
| 1022 | enddo |
|---|
| 1023 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 1024 | enddo |
|---|
| 1025 | ! |
|---|
| 1026 | ! Inline expansion for fpvs |
|---|
| 1027 | ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1028 | ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1029 | cvap = cpv |
|---|
| 1030 | hvap=xlv0 |
|---|
| 1031 | hsub=xls |
|---|
| 1032 | ttp=t0c+0.01 |
|---|
| 1033 | dldt=cvap-cliq |
|---|
| 1034 | xa=-dldt/rv |
|---|
| 1035 | xb=xa+hvap/(rv*ttp) |
|---|
| 1036 | dldti=cvap-cice |
|---|
| 1037 | xai=-dldti/rv |
|---|
| 1038 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1039 | do k = kts, kte |
|---|
| 1040 | do i = its, ite |
|---|
| 1041 | ! tr=ttp/t(i,k) |
|---|
| 1042 | ! if(t(i,k).lt.ttp) then |
|---|
| 1043 | ! qs(i,k) =psat*(tr**xai)*exp(xbi*(1.-tr)) |
|---|
| 1044 | ! else |
|---|
| 1045 | ! qs(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 1046 | ! endif |
|---|
| 1047 | ! qs0(i,k) =psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 1048 | tr=ttp/t(i,k) |
|---|
| 1049 | if(t(i,k).lt.ttp) then |
|---|
| 1050 | qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) |
|---|
| 1051 | else |
|---|
| 1052 | qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
|---|
| 1053 | endif |
|---|
| 1054 | qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
|---|
| 1055 | qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) |
|---|
| 1056 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
|---|
| 1057 | qs(i,k) = max(qs(i,k),qmin) |
|---|
| 1058 | rh(i,k) = max(q(i,k) / qs(i,k),qmin) |
|---|
| 1059 | enddo |
|---|
| 1060 | enddo |
|---|
| 1061 | ! |
|---|
| 1062 | !---------------------------------------------------------------- |
|---|
| 1063 | ! initialize the variables for microphysical physics |
|---|
| 1064 | ! |
|---|
| 1065 | ! |
|---|
| 1066 | do k = kts, kte |
|---|
| 1067 | do i = its, ite |
|---|
| 1068 | pres(i,k) = 0. |
|---|
| 1069 | paut(i,k) = 0. |
|---|
| 1070 | pacr(i,k) = 0. |
|---|
| 1071 | pgen(i,k) = 0. |
|---|
| 1072 | pisd(i,k) = 0. |
|---|
| 1073 | pcon(i,k) = 0. |
|---|
| 1074 | fall(i,k) = 0. |
|---|
| 1075 | falk(i,k) = 0. |
|---|
| 1076 | fallc(i,k) = 0. |
|---|
| 1077 | falkc(i,k) = 0. |
|---|
| 1078 | xni(i,k) = 1.e3 |
|---|
| 1079 | enddo |
|---|
| 1080 | enddo |
|---|
| 1081 | ! |
|---|
| 1082 | !---------------------------------------------------------------- |
|---|
| 1083 | ! compute the fallout term: |
|---|
| 1084 | ! first, vertical terminal velosity for minor loops |
|---|
| 1085 | !--------------------------------------------------------------- |
|---|
| 1086 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1087 | !--------------------------------------------------------------- |
|---|
| 1088 | do k = kts, kte |
|---|
| 1089 | do i = its, ite |
|---|
| 1090 | supcol = t0c-t(i,k) |
|---|
| 1091 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1092 | if(t(i,k).ge.t0c) then |
|---|
| 1093 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1094 | rslope(i,k) = rslopermax |
|---|
| 1095 | rslopeb(i,k) = rsloperbmax |
|---|
| 1096 | rslope2(i,k) = rsloper2max |
|---|
| 1097 | rslope3(i,k) = rsloper3max |
|---|
| 1098 | else |
|---|
| 1099 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
|---|
| 1100 | ! rslopeb(i,k) = rslope(i,k)**bvtr |
|---|
| 1101 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
|---|
| 1102 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1103 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1104 | endif |
|---|
| 1105 | else |
|---|
| 1106 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1107 | rslope(i,k) = rslopesmax |
|---|
| 1108 | rslopeb(i,k) = rslopesbmax |
|---|
| 1109 | rslope2(i,k) = rslopes2max |
|---|
| 1110 | rslope3(i,k) = rslopes3max |
|---|
| 1111 | else |
|---|
| 1112 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
|---|
| 1113 | ! rslopeb(i,k) = rslope(i,k)**bvts |
|---|
| 1114 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
|---|
| 1115 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1116 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1117 | endif |
|---|
| 1118 | endif |
|---|
| 1119 | !------------------------------------------------------------- |
|---|
| 1120 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 1121 | !------------------------------------------------------------- |
|---|
| 1122 | ! xni(i,k) = min(max(5.38e7 & |
|---|
| 1123 | ! *(den(i,k)*max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
|---|
| 1124 | xni(i,k) = min(max(5.38e7 & |
|---|
| 1125 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
|---|
| 1126 | enddo |
|---|
| 1127 | enddo |
|---|
| 1128 | ! |
|---|
| 1129 | mstepmax = 1 |
|---|
| 1130 | numdt = 1 |
|---|
| 1131 | do k = kte, kts, -1 |
|---|
| 1132 | do i = its, ite |
|---|
| 1133 | if(t(i,k).lt.t0c) then |
|---|
| 1134 | pvt = pvts |
|---|
| 1135 | else |
|---|
| 1136 | pvt = pvtr |
|---|
| 1137 | endif |
|---|
| 1138 | work1(i,k) = pvt*rslopeb(i,k)*denfac(i,k) |
|---|
| 1139 | work2(i,k) = work1(i,k)/delz(i,k) |
|---|
| 1140 | numdt(i) = max(nint(work2(i,k)*dtcld+.5),1) |
|---|
| 1141 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 1142 | enddo |
|---|
| 1143 | enddo |
|---|
| 1144 | do i = its, ite |
|---|
| 1145 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 1146 | enddo |
|---|
| 1147 | ! |
|---|
| 1148 | do n = 1, mstepmax |
|---|
| 1149 | k = kte |
|---|
| 1150 | do i = its, ite |
|---|
| 1151 | if(n.le.mstep(i)) then |
|---|
| 1152 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
|---|
| 1153 | hold = falk(i,k) |
|---|
| 1154 | fall(i,k) = fall(i,k)+falk(i,k) |
|---|
| 1155 | holdrs = qrs(i,k) |
|---|
| 1156 | qrs(i,k) = max(qrs(i,k)-falk(i,k)*dtcld/den(i,k),0.) |
|---|
| 1157 | endif |
|---|
| 1158 | enddo |
|---|
| 1159 | do k = kte-1, kts, -1 |
|---|
| 1160 | do i = its, ite |
|---|
| 1161 | if(n.le.mstep(i)) then |
|---|
| 1162 | falk(i,k) = den(i,k)*qrs(i,k)*work2(i,k)/mstep(i) |
|---|
| 1163 | hold = falk(i,k) |
|---|
| 1164 | fall(i,k) = fall(i,k)+falk(i,k) |
|---|
| 1165 | holdrs = qrs(i,k) |
|---|
| 1166 | qrs(i,k) = max(qrs(i,k)-(falk(i,k) & |
|---|
| 1167 | -falk(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 1168 | endif |
|---|
| 1169 | enddo |
|---|
| 1170 | enddo |
|---|
| 1171 | enddo |
|---|
| 1172 | !--------------------------------------------------------------- |
|---|
| 1173 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 1174 | !--------------------------------------------------------------- |
|---|
| 1175 | mstepmax = 1 |
|---|
| 1176 | mstep = 1 |
|---|
| 1177 | numdt = 1 |
|---|
| 1178 | do k = kte, kts, -1 |
|---|
| 1179 | do i = its, ite |
|---|
| 1180 | if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then |
|---|
| 1181 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
|---|
| 1182 | ! diameter = dicon * sqrt(xmi) |
|---|
| 1183 | ! work1c(i,k) = 1.49e4*diameter**1.31 |
|---|
| 1184 | diameter = max(dicon * sqrt(xmi), 1.e-25) |
|---|
| 1185 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 1186 | else |
|---|
| 1187 | work1c(i,k) = 0. |
|---|
| 1188 | endif |
|---|
| 1189 | if(qci(i,k).le.0.) then |
|---|
| 1190 | work2c(i,k) = 0. |
|---|
| 1191 | else |
|---|
| 1192 | work2c(i,k) = work1c(i,k)/delz(i,k) |
|---|
| 1193 | endif |
|---|
| 1194 | numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1) |
|---|
| 1195 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 1196 | enddo |
|---|
| 1197 | enddo |
|---|
| 1198 | do i = its, ite |
|---|
| 1199 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 1200 | enddo |
|---|
| 1201 | ! |
|---|
| 1202 | do n = 1, mstepmax |
|---|
| 1203 | k = kte |
|---|
| 1204 | do i = its, ite |
|---|
| 1205 | if (n.le.mstep(i)) then |
|---|
| 1206 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
|---|
| 1207 | holdc = falkc(i,k) |
|---|
| 1208 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 1209 | holdci = qci(i,k) |
|---|
| 1210 | qci(i,k) = max(qci(i,k)-falkc(i,k)*dtcld/den(i,k),0.) |
|---|
| 1211 | endif |
|---|
| 1212 | enddo |
|---|
| 1213 | do k = kte-1, kts, -1 |
|---|
| 1214 | do i = its, ite |
|---|
| 1215 | if (n.le.mstep(i)) then |
|---|
| 1216 | falkc(i,k) = den(i,k)*qci(i,k)*work2c(i,k)/mstep(i) |
|---|
| 1217 | holdc = falkc(i,k) |
|---|
| 1218 | fallc(i,k) = fallc(i,k)+falkc(i,k) |
|---|
| 1219 | holdci = qci(i,k) |
|---|
| 1220 | qci(i,k) = max(qci(i,k)-(falkc(i,k) & |
|---|
| 1221 | -falkc(i,k+1)*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 1222 | endif |
|---|
| 1223 | enddo |
|---|
| 1224 | enddo |
|---|
| 1225 | enddo |
|---|
| 1226 | ! |
|---|
| 1227 | !---------------------------------------------------------------- |
|---|
| 1228 | ! compute the freezing/melting term. [D89 B16-B17] |
|---|
| 1229 | ! freezing occurs one layer above the melting level |
|---|
| 1230 | ! |
|---|
| 1231 | do i = its, ite |
|---|
| 1232 | mstep(i) = 0 |
|---|
| 1233 | enddo |
|---|
| 1234 | do k = kts, kte |
|---|
| 1235 | ! |
|---|
| 1236 | do i = its, ite |
|---|
| 1237 | if(t(i,k).ge.t0c) then |
|---|
| 1238 | mstep(i) = k |
|---|
| 1239 | endif |
|---|
| 1240 | enddo |
|---|
| 1241 | enddo |
|---|
| 1242 | ! |
|---|
| 1243 | do i = its, ite |
|---|
| 1244 | kwork2(i) = mstep(i) |
|---|
| 1245 | kwork1(i) = mstep(i) |
|---|
| 1246 | if(mstep(i).ne.0) then |
|---|
| 1247 | if (w(i,mstep(i)).gt.0.) then |
|---|
| 1248 | kwork1(i) = mstep(i) + 1 |
|---|
| 1249 | endif |
|---|
| 1250 | endif |
|---|
| 1251 | enddo |
|---|
| 1252 | ! |
|---|
| 1253 | do i = its, ite |
|---|
| 1254 | k = kwork1(i) |
|---|
| 1255 | kk = kwork2(i) |
|---|
| 1256 | if(k*kk.ge.1) then |
|---|
| 1257 | qrsci = qrs(i,k) + qci(i,k) |
|---|
| 1258 | if(qrsci.gt.0..or.fall(i,kk).gt.0.) then |
|---|
| 1259 | frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & |
|---|
| 1260 | qrsci/dtcld) |
|---|
| 1261 | snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & |
|---|
| 1262 | qrs(i,k)/dtcld) |
|---|
| 1263 | if(k.eq.kk) then |
|---|
| 1264 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld |
|---|
| 1265 | else |
|---|
| 1266 | t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld |
|---|
| 1267 | t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld |
|---|
| 1268 | endif |
|---|
| 1269 | endif |
|---|
| 1270 | endif |
|---|
| 1271 | enddo |
|---|
| 1272 | ! |
|---|
| 1273 | !---------------------------------------------------------------- |
|---|
| 1274 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 1275 | ! |
|---|
| 1276 | do i = its, ite |
|---|
| 1277 | fallsum = fall(i,1) |
|---|
| 1278 | fallsum_qsi = 0. |
|---|
| 1279 | if((t0c-t(i,1)).gt.0) then |
|---|
| 1280 | fallsum = fallsum+fallc(i,1) |
|---|
| 1281 | fallsum_qsi = fall(i,1)+fallc(i,1) |
|---|
| 1282 | endif |
|---|
| 1283 | rainncv(i) = 0. |
|---|
| 1284 | if(fallsum.gt.0.) then |
|---|
| 1285 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. |
|---|
| 1286 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) |
|---|
| 1287 | endif |
|---|
| 1288 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
|---|
| 1289 | snowncv(i) = 0. |
|---|
| 1290 | if(fallsum_qsi.gt.0.) then |
|---|
| 1291 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. |
|---|
| 1292 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
|---|
| 1293 | endif |
|---|
| 1294 | ENDIF |
|---|
| 1295 | sr(i) = 0. |
|---|
| 1296 | if(fallsum.gt.0.) sr(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & |
|---|
| 1297 | /(rainncv(i)+1.e-12) |
|---|
| 1298 | enddo |
|---|
| 1299 | ! |
|---|
| 1300 | !---------------------------------------------------------------- |
|---|
| 1301 | ! rsloper: reverse of the slope parameter of the rain(m) |
|---|
| 1302 | ! xka: thermal conductivity of air(jm-1s-1k-1) |
|---|
| 1303 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 1304 | ! heat conduction and vapor diffusion |
|---|
| 1305 | ! (ry88, y93, h85) |
|---|
| 1306 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 1307 | ! |
|---|
| 1308 | do k = kts, kte |
|---|
| 1309 | do i = its, ite |
|---|
| 1310 | if(t(i,k).ge.t0c) then |
|---|
| 1311 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1312 | rslope(i,k) = rslopermax |
|---|
| 1313 | rslopeb(i,k) = rsloperbmax |
|---|
| 1314 | rslope2(i,k) = rsloper2max |
|---|
| 1315 | rslope3(i,k) = rsloper3max |
|---|
| 1316 | else |
|---|
| 1317 | rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) |
|---|
| 1318 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) |
|---|
| 1319 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1320 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1321 | endif |
|---|
| 1322 | else |
|---|
| 1323 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1324 | rslope(i,k) = rslopesmax |
|---|
| 1325 | rslopeb(i,k) = rslopesbmax |
|---|
| 1326 | rslope2(i,k) = rslopes2max |
|---|
| 1327 | rslope3(i,k) = rslopes3max |
|---|
| 1328 | else |
|---|
| 1329 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
|---|
| 1330 | rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) |
|---|
| 1331 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1332 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1333 | endif |
|---|
| 1334 | endif |
|---|
| 1335 | enddo |
|---|
| 1336 | enddo |
|---|
| 1337 | ! |
|---|
| 1338 | do k = kts, kte |
|---|
| 1339 | do i = its, ite |
|---|
| 1340 | if(t(i,k).ge.t0c) then |
|---|
| 1341 | work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) |
|---|
| 1342 | else |
|---|
| 1343 | work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) |
|---|
| 1344 | endif |
|---|
| 1345 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 1346 | enddo |
|---|
| 1347 | enddo |
|---|
| 1348 | ! |
|---|
| 1349 | do k = kts, kte |
|---|
| 1350 | do i = its, ite |
|---|
| 1351 | supsat = max(q(i,k),qmin)-qs(i,k) |
|---|
| 1352 | satdt = supsat/dtcld |
|---|
| 1353 | if(t(i,k).ge.t0c) then |
|---|
| 1354 | ! |
|---|
| 1355 | !=============================================================== |
|---|
| 1356 | ! |
|---|
| 1357 | ! warm rain processes |
|---|
| 1358 | ! |
|---|
| 1359 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 1360 | ! |
|---|
| 1361 | !=============================================================== |
|---|
| 1362 | !--------------------------------------------------------------- |
|---|
| 1363 | ! praut: auto conversion rate from cloud to rain [HDC 16] |
|---|
| 1364 | ! (C->R) |
|---|
| 1365 | !--------------------------------------------------------------- |
|---|
| 1366 | if(qci(i,k).gt.qc0) then |
|---|
| 1367 | ! paut(i,k) = qck1*qci(i,k)**(7./3.) |
|---|
| 1368 | paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) |
|---|
| 1369 | paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) |
|---|
| 1370 | endif |
|---|
| 1371 | !--------------------------------------------------------------- |
|---|
| 1372 | ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] |
|---|
| 1373 | ! (C->R) |
|---|
| 1374 | !--------------------------------------------------------------- |
|---|
| 1375 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
|---|
| 1376 | pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & |
|---|
| 1377 | *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) |
|---|
| 1378 | endif |
|---|
| 1379 | !--------------------------------------------------------------- |
|---|
| 1380 | ! prevp: evaporation/condensation rate of rain [HDC 14] |
|---|
| 1381 | ! (V->R or R->V) |
|---|
| 1382 | !--------------------------------------------------------------- |
|---|
| 1383 | if(qrs(i,k).gt.0.) then |
|---|
| 1384 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
|---|
| 1385 | pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & |
|---|
| 1386 | +precr2*work2(i,k)*coeres)/work1(i,k) |
|---|
| 1387 | if(pres(i,k).lt.0.) then |
|---|
| 1388 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
|---|
| 1389 | pres(i,k) = max(pres(i,k),satdt/2) |
|---|
| 1390 | else |
|---|
| 1391 | pres(i,k) = min(pres(i,k),satdt/2) |
|---|
| 1392 | endif |
|---|
| 1393 | endif |
|---|
| 1394 | else |
|---|
| 1395 | ! |
|---|
| 1396 | !=============================================================== |
|---|
| 1397 | ! |
|---|
| 1398 | ! cold rain processes |
|---|
| 1399 | ! |
|---|
| 1400 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 1401 | ! - the processes same as in RH83 and LFO behave |
|---|
| 1402 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 1403 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 1404 | ! concentration (ni), ice nuclei number concentration |
|---|
| 1405 | ! (n0i), ice diameter (d) |
|---|
| 1406 | ! |
|---|
| 1407 | !=============================================================== |
|---|
| 1408 | ! |
|---|
| 1409 | supcol = t0c-t(i,k) |
|---|
| 1410 | ifsat = 0 |
|---|
| 1411 | !------------------------------------------------------------- |
|---|
| 1412 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 1413 | !------------------------------------------------------------- |
|---|
| 1414 | ! xni(i,k) = min(max(5.38e7 & |
|---|
| 1415 | ! *(den(i,k)*max(qci(i,k),qmin))**0.75,1.e3),1.e6) |
|---|
| 1416 | xni(i,k) = min(max(5.38e7 & |
|---|
| 1417 | *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) |
|---|
| 1418 | eacrs = exp(0.07*(-supcol)) |
|---|
| 1419 | ! |
|---|
| 1420 | if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then |
|---|
| 1421 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
|---|
| 1422 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 1423 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 1424 | ! vt2i = 1.49e4*exp((log(diameter))*(1.31)) |
|---|
| 1425 | vt2s = pvts*rslopeb(i,k)*denfac(i,k) |
|---|
| 1426 | !------------------------------------------------------------- |
|---|
| 1427 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
|---|
| 1428 | ! (T<T0: I->R) |
|---|
| 1429 | !------------------------------------------------------------- |
|---|
| 1430 | acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & |
|---|
| 1431 | +diameter**2*rslope(i,k) |
|---|
| 1432 | pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & |
|---|
| 1433 | *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) |
|---|
| 1434 | endif |
|---|
| 1435 | !------------------------------------------------------------- |
|---|
| 1436 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 1437 | ! (T<T0: V->I or I->V) |
|---|
| 1438 | !------------------------------------------------------------- |
|---|
| 1439 | if(qci(i,k).gt.0.) then |
|---|
| 1440 | xmi = den(i,k)*qci(i,k)/xni(i,k) |
|---|
| 1441 | diameter = dicon * sqrt(xmi) |
|---|
| 1442 | pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) |
|---|
| 1443 | if(pisd(i,k).lt.0.) then |
|---|
| 1444 | pisd(i,k) = max(pisd(i,k),satdt/2) |
|---|
| 1445 | pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) |
|---|
| 1446 | else |
|---|
| 1447 | pisd(i,k) = min(pisd(i,k),satdt/2) |
|---|
| 1448 | endif |
|---|
| 1449 | if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1450 | endif |
|---|
| 1451 | !------------------------------------------------------------- |
|---|
| 1452 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 1453 | ! (V->S or S->V) |
|---|
| 1454 | !------------------------------------------------------------- |
|---|
| 1455 | if(qrs(i,k).gt.0..and.ifsat.ne.1) then |
|---|
| 1456 | coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) |
|---|
| 1457 | pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & |
|---|
| 1458 | +precs2*work2(i,k)*coeres)/work1(i,k) |
|---|
| 1459 | supice = satdt-pisd(i,k) |
|---|
| 1460 | if(pres(i,k).lt.0.) then |
|---|
| 1461 | pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) |
|---|
| 1462 | pres(i,k) = max(max(pres(i,k),satdt/2),supice) |
|---|
| 1463 | else |
|---|
| 1464 | pres(i,k) = min(min(pres(i,k),satdt/2),supice) |
|---|
| 1465 | endif |
|---|
| 1466 | if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1467 | endif |
|---|
| 1468 | !------------------------------------------------------------- |
|---|
| 1469 | ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] |
|---|
| 1470 | ! (T<T0: V->I) |
|---|
| 1471 | !------------------------------------------------------------- |
|---|
| 1472 | if(supsat.gt.0.and.ifsat.ne.1) then |
|---|
| 1473 | supice = satdt-pisd(i,k)-pres(i,k) |
|---|
| 1474 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 1475 | ! roqi0 = 4.92e-11*xni0**1.33 |
|---|
| 1476 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 1477 | pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) |
|---|
| 1478 | pgen(i,k) = min(min(pgen(i,k),satdt),supice) |
|---|
| 1479 | endif |
|---|
| 1480 | !------------------------------------------------------------- |
|---|
| 1481 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 1482 | ! (T<T0: I->S) |
|---|
| 1483 | !------------------------------------------------------------- |
|---|
| 1484 | if(qci(i,k).gt.0.) then |
|---|
| 1485 | qimax = roqimax/den(i,k) |
|---|
| 1486 | paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) |
|---|
| 1487 | endif |
|---|
| 1488 | endif |
|---|
| 1489 | enddo |
|---|
| 1490 | enddo |
|---|
| 1491 | ! |
|---|
| 1492 | !---------------------------------------------------------------- |
|---|
| 1493 | ! check mass conservation of generation terms and feedback to the |
|---|
| 1494 | ! large scale |
|---|
| 1495 | ! |
|---|
| 1496 | do k = kts, kte |
|---|
| 1497 | do i = its, ite |
|---|
| 1498 | qciik = max(qmin,qci(i,k)) |
|---|
| 1499 | delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld |
|---|
| 1500 | if(delqci.ge.qciik) then |
|---|
| 1501 | facqci = qciik/delqci |
|---|
| 1502 | paut(i,k) = paut(i,k)*facqci |
|---|
| 1503 | pacr(i,k) = pacr(i,k)*facqci |
|---|
| 1504 | pgen(i,k) = pgen(i,k)*facqci |
|---|
| 1505 | pisd(i,k) = pisd(i,k)*facqci |
|---|
| 1506 | endif |
|---|
| 1507 | qik = max(qmin,q(i,k)) |
|---|
| 1508 | delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld |
|---|
| 1509 | if(delq.ge.qik) then |
|---|
| 1510 | facq = qik/delq |
|---|
| 1511 | pres(i,k) = pres(i,k)*facq |
|---|
| 1512 | pgen(i,k) = pgen(i,k)*facq |
|---|
| 1513 | pisd(i,k) = pisd(i,k)*facq |
|---|
| 1514 | endif |
|---|
| 1515 | work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) |
|---|
| 1516 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1517 | qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k)) & |
|---|
| 1518 | *dtcld,0.) |
|---|
| 1519 | qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k)+pres(i,k))*dtcld,0.) |
|---|
| 1520 | if(t(i,k).lt.t0c) then |
|---|
| 1521 | t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld |
|---|
| 1522 | else |
|---|
| 1523 | t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld |
|---|
| 1524 | endif |
|---|
| 1525 | enddo |
|---|
| 1526 | enddo |
|---|
| 1527 | ! |
|---|
| 1528 | cvap = cpv |
|---|
| 1529 | hvap = xlv0 |
|---|
| 1530 | hsub = xls |
|---|
| 1531 | ttp=t0c+0.01 |
|---|
| 1532 | dldt=cvap-cliq |
|---|
| 1533 | xa=-dldt/rv |
|---|
| 1534 | xb=xa+hvap/(rv*ttp) |
|---|
| 1535 | dldti=cvap-cice |
|---|
| 1536 | xai=-dldti/rv |
|---|
| 1537 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1538 | do k = kts, kte |
|---|
| 1539 | do i = its, ite |
|---|
| 1540 | tr=ttp/t(i,k) |
|---|
| 1541 | ! qs(i,k)=psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 1542 | qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) |
|---|
| 1543 | qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) |
|---|
| 1544 | qs(i,k) = max(qs(i,k),qmin) |
|---|
| 1545 | denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 1546 | enddo |
|---|
| 1547 | enddo |
|---|
| 1548 | ! |
|---|
| 1549 | !---------------------------------------------------------------- |
|---|
| 1550 | ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1551 | ! if there exists additional water vapor condensated/if |
|---|
| 1552 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1553 | ! |
|---|
| 1554 | do k = kts, kte |
|---|
| 1555 | do i = its, ite |
|---|
| 1556 | work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) |
|---|
| 1557 | work2(i,k) = qci(i,k)+work1(i,k) |
|---|
| 1558 | pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld |
|---|
| 1559 | if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & |
|---|
| 1560 | pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld |
|---|
| 1561 | q(i,k) = q(i,k)-pcon(i,k)*dtcld |
|---|
| 1562 | qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) |
|---|
| 1563 | t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1564 | enddo |
|---|
| 1565 | enddo |
|---|
| 1566 | ! |
|---|
| 1567 | !---------------------------------------------------------------- |
|---|
| 1568 | ! padding for small values |
|---|
| 1569 | ! |
|---|
| 1570 | do k = kts, kte |
|---|
| 1571 | do i = its, ite |
|---|
| 1572 | if(qci(i,k).le.qmin) qci(i,k) = 0.0 |
|---|
| 1573 | enddo |
|---|
| 1574 | enddo |
|---|
| 1575 | ! |
|---|
| 1576 | enddo ! big loops |
|---|
| 1577 | END SUBROUTINE wsm32D |
|---|
| 1578 | #endif |
|---|
| 1579 | |
|---|
| 1580 | ! ................................................................... |
|---|
| 1581 | REAL FUNCTION rgmma(x) |
|---|
| 1582 | !------------------------------------------------------------------- |
|---|
| 1583 | IMPLICIT NONE |
|---|
| 1584 | !------------------------------------------------------------------- |
|---|
| 1585 | ! rgmma function: use infinite product form |
|---|
| 1586 | REAL :: euler |
|---|
| 1587 | PARAMETER (euler=0.577215664901532) |
|---|
| 1588 | REAL :: x, y |
|---|
| 1589 | INTEGER :: i |
|---|
| 1590 | if(x.eq.1.)then |
|---|
| 1591 | rgmma=0. |
|---|
| 1592 | else |
|---|
| 1593 | rgmma=x*exp(euler*x) |
|---|
| 1594 | do i=1,10000 |
|---|
| 1595 | y=float(i) |
|---|
| 1596 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
|---|
| 1597 | enddo |
|---|
| 1598 | rgmma=1./rgmma |
|---|
| 1599 | endif |
|---|
| 1600 | END FUNCTION rgmma |
|---|
| 1601 | ! |
|---|
| 1602 | !-------------------------------------------------------------------------- |
|---|
| 1603 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
|---|
| 1604 | !-------------------------------------------------------------------------- |
|---|
| 1605 | IMPLICIT NONE |
|---|
| 1606 | !-------------------------------------------------------------------------- |
|---|
| 1607 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
|---|
| 1608 | xai,xbi,ttp,tr |
|---|
| 1609 | INTEGER ice |
|---|
| 1610 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1611 | ttp=t0c+0.01 |
|---|
| 1612 | dldt=cvap-cliq |
|---|
| 1613 | xa=-dldt/rv |
|---|
| 1614 | xb=xa+hvap/(rv*ttp) |
|---|
| 1615 | dldti=cvap-cice |
|---|
| 1616 | xai=-dldti/rv |
|---|
| 1617 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1618 | tr=ttp/t |
|---|
| 1619 | if(t.lt.ttp.and.ice.eq.1) then |
|---|
| 1620 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
|---|
| 1621 | else |
|---|
| 1622 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
|---|
| 1623 | endif |
|---|
| 1624 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1625 | END FUNCTION fpvs |
|---|
| 1626 | !------------------------------------------------------------------- |
|---|
| 1627 | SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) |
|---|
| 1628 | !------------------------------------------------------------------- |
|---|
| 1629 | IMPLICIT NONE |
|---|
| 1630 | !------------------------------------------------------------------- |
|---|
| 1631 | !.... constants which may not be tunable |
|---|
| 1632 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv |
|---|
| 1633 | LOGICAL, INTENT(IN) :: allowed_to_read |
|---|
| 1634 | REAL :: pi |
|---|
| 1635 | ! |
|---|
| 1636 | pi = 4.*atan(1.) |
|---|
| 1637 | xlv1 = cl-cpv |
|---|
| 1638 | ! |
|---|
| 1639 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
|---|
| 1640 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
|---|
| 1641 | ! |
|---|
| 1642 | bvtr1 = 1.+bvtr |
|---|
| 1643 | bvtr2 = 2.5+.5*bvtr |
|---|
| 1644 | bvtr3 = 3.+bvtr |
|---|
| 1645 | bvtr4 = 4.+bvtr |
|---|
| 1646 | g1pbr = rgmma(bvtr1) |
|---|
| 1647 | g3pbr = rgmma(bvtr3) |
|---|
| 1648 | g4pbr = rgmma(bvtr4) ! 17.837825 |
|---|
| 1649 | g5pbro2 = rgmma(bvtr2) ! 1.8273 |
|---|
| 1650 | pvtr = avtr*g4pbr/6. |
|---|
| 1651 | eacrr = 1.0 |
|---|
| 1652 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
|---|
| 1653 | precr1 = 2.*pi*n0r*.78 |
|---|
| 1654 | precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 |
|---|
| 1655 | xmmax = (dimax/dicon)**2 |
|---|
| 1656 | roqimax = 2.08e22*dimax**8 |
|---|
| 1657 | ! |
|---|
| 1658 | bvts1 = 1.+bvts |
|---|
| 1659 | bvts2 = 2.5+.5*bvts |
|---|
| 1660 | bvts3 = 3.+bvts |
|---|
| 1661 | bvts4 = 4.+bvts |
|---|
| 1662 | g1pbs = rgmma(bvts1) !.8875 |
|---|
| 1663 | g3pbs = rgmma(bvts3) |
|---|
| 1664 | g4pbs = rgmma(bvts4) ! 12.0786 |
|---|
| 1665 | g5pbso2 = rgmma(bvts2) |
|---|
| 1666 | pvts = avts*g4pbs/6. |
|---|
| 1667 | pacrs = pi*n0s*avts*g3pbs*.25 |
|---|
| 1668 | precs1 = 4.*n0s*.65 |
|---|
| 1669 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
|---|
| 1670 | pidn0r = pi*denr*n0r |
|---|
| 1671 | pidn0s = pi*dens*n0s |
|---|
| 1672 | ! |
|---|
| 1673 | rslopermax = 1./lamdarmax |
|---|
| 1674 | rslopesmax = 1./lamdasmax |
|---|
| 1675 | rsloperbmax = rslopermax ** bvtr |
|---|
| 1676 | rslopesbmax = rslopesmax ** bvts |
|---|
| 1677 | rsloper2max = rslopermax * rslopermax |
|---|
| 1678 | rslopes2max = rslopesmax * rslopesmax |
|---|
| 1679 | rsloper3max = rsloper2max * rslopermax |
|---|
| 1680 | rslopes3max = rslopes2max * rslopesmax |
|---|
| 1681 | ! |
|---|
| 1682 | END SUBROUTINE wsm3init |
|---|
| 1683 | END MODULE module_mp_wsm3 |
|---|