| 1 | #if ( RWORDSIZE == 4 ) |
|---|
| 2 | # define VREC vsrec |
|---|
| 3 | # define VSQRT vssqrt |
|---|
| 4 | #else |
|---|
| 5 | # define VREC vrec |
|---|
| 6 | # define VSQRT vsqrt |
|---|
| 7 | #endif |
|---|
| 8 | ! |
|---|
| 9 | !Including inline expansion statistical function |
|---|
| 10 | MODULE module_mp_wdm5 |
|---|
| 11 | ! |
|---|
| 12 | ! |
|---|
| 13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
|---|
| 14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
|---|
| 15 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
|---|
| 16 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
|---|
| 17 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
|---|
| 18 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
|---|
| 19 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
|---|
| 20 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
|---|
| 21 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
|---|
| 22 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
|---|
| 23 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
|---|
| 24 | REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water |
|---|
| 25 | REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain |
|---|
| 26 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
|---|
| 27 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
|---|
| 28 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
|---|
| 29 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
|---|
| 30 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
|---|
| 31 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
|---|
| 32 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
|---|
| 33 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
|---|
| 34 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
|---|
| 35 | REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc |
|---|
| 36 | REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr |
|---|
| 37 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
|---|
| 38 | ! |
|---|
| 39 | REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation |
|---|
| 40 | ! 1.008 for maritime air mass /1.0048 for conti |
|---|
| 41 | REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation |
|---|
| 42 | REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops |
|---|
| 43 | REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient |
|---|
| 44 | REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient |
|---|
| 45 | REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops |
|---|
| 46 | REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops |
|---|
| 47 | REAL, PARAMETER, PRIVATE :: di2000 = 20.e-4 ! parameter related with accretion and collection of cloud drops |
|---|
| 48 | REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation |
|---|
| 49 | REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter |
|---|
| 50 | REAL, SAVE :: & |
|---|
| 51 | qc0, qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4, & |
|---|
| 52 | bvtr5,bvtr7,bvtr2o5,bvtr3o5,g1pbr,g2pbr, & |
|---|
| 53 | g3pbr,g4pbr,g5pbr,g7pbr,g5pbro2,g7pbro2, & |
|---|
| 54 | pvtr,pvtrn,eacrr,pacrr, pi, & |
|---|
| 55 | precr1,precr2,xmmax,roqimax,bvts1, & |
|---|
| 56 | bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & |
|---|
| 57 | g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & |
|---|
| 58 | pidn0s,pidnr,xlv1,pacrc, & |
|---|
| 59 | rslopecmax,rslopec2max,rslopec3max, & |
|---|
| 60 | rslopermax,rslopesmax,rslopegmax, & |
|---|
| 61 | rsloperbmax,rslopesbmax,rslopegbmax, & |
|---|
| 62 | rsloper2max,rslopes2max,rslopeg2max, & |
|---|
| 63 | rsloper3max,rslopes3max,rslopeg3max |
|---|
| 64 | ! |
|---|
| 65 | ! Specifies code-inlining of fpvs function in WDM52D below. JM 20040507 |
|---|
| 66 | ! |
|---|
| 67 | CONTAINS |
|---|
| 68 | !=================================================================== |
|---|
| 69 | ! |
|---|
| 70 | SUBROUTINE wdm5(th, q, qc, qr, qi, qs & |
|---|
| 71 | ,nn, nc, nr & |
|---|
| 72 | ,den, pii, p, delz & |
|---|
| 73 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
|---|
| 74 | ,ep1, ep2, qmin & |
|---|
| 75 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 76 | ,cliq,cice,psat & |
|---|
| 77 | ,rain, rainncv & |
|---|
| 78 | ,snow, snowncv & |
|---|
| 79 | ,sr & |
|---|
| 80 | ,itimestep & |
|---|
| 81 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 82 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 83 | ,its,ite, jts,jte, kts,kte & |
|---|
| 84 | ) |
|---|
| 85 | !------------------------------------------------------------------- |
|---|
| 86 | IMPLICIT NONE |
|---|
| 87 | !------------------------------------------------------------------- |
|---|
| 88 | ! |
|---|
| 89 | ! This code is a WRF double-moment 5-class mixed ice |
|---|
| 90 | ! microphyiscs scheme (WDM5). The WDM microphysics scheme predicts |
|---|
| 91 | ! number concentrations for warm rain species including clouds and |
|---|
| 92 | ! rain. cloud condensation nuclei (CCN) is also predicted. |
|---|
| 93 | ! The cold rain species including ice, snow, graupel follow the |
|---|
| 94 | ! WRF single-moment 5-class microphysics (WSM5) |
|---|
| 95 | ! in which theoretical background for WSM ice phase microphysics is |
|---|
| 96 | ! based on Hong et al. (2004). |
|---|
| 97 | ! The WDM scheme is described in Lim and Hong (2010). |
|---|
| 98 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
|---|
| 99 | ! |
|---|
| 100 | ! WDM5 cloud scheme |
|---|
| 101 | ! |
|---|
| 102 | ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008 |
|---|
| 103 | ! |
|---|
| 104 | ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008 |
|---|
| 105 | ! |
|---|
| 106 | ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev. |
|---|
| 107 | ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
|---|
| 108 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
|---|
| 109 | ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc. |
|---|
| 110 | ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev. |
|---|
| 111 | ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan |
|---|
| 112 | ! |
|---|
| 113 | ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. |
|---|
| 114 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
|---|
| 115 | ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. |
|---|
| 116 | ! |
|---|
| 117 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 118 | ims,ime, jms,jme, kms,kme , & |
|---|
| 119 | its,ite, jts,jte, kts,kte |
|---|
| 120 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 121 | INTENT(INOUT) :: & |
|---|
| 122 | th, & |
|---|
| 123 | q, & |
|---|
| 124 | qc, & |
|---|
| 125 | qi, & |
|---|
| 126 | qr, & |
|---|
| 127 | qs, & |
|---|
| 128 | nn, & |
|---|
| 129 | nc, & |
|---|
| 130 | nr |
|---|
| 131 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
|---|
| 132 | INTENT(IN ) :: & |
|---|
| 133 | den, & |
|---|
| 134 | pii, & |
|---|
| 135 | p, & |
|---|
| 136 | delz |
|---|
| 137 | REAL, INTENT(IN ) :: delt, & |
|---|
| 138 | g, & |
|---|
| 139 | rd, & |
|---|
| 140 | rv, & |
|---|
| 141 | t0c, & |
|---|
| 142 | den0, & |
|---|
| 143 | cpd, & |
|---|
| 144 | cpv, & |
|---|
| 145 | ccn0, & |
|---|
| 146 | ep1, & |
|---|
| 147 | ep2, & |
|---|
| 148 | qmin, & |
|---|
| 149 | XLS, & |
|---|
| 150 | XLV0, & |
|---|
| 151 | XLF0, & |
|---|
| 152 | cliq, & |
|---|
| 153 | cice, & |
|---|
| 154 | psat, & |
|---|
| 155 | denr |
|---|
| 156 | INTEGER, INTENT(IN ) :: itimestep |
|---|
| 157 | REAL, DIMENSION( ims:ime , jms:jme ), & |
|---|
| 158 | INTENT(INOUT) :: rain, & |
|---|
| 159 | rainncv, & |
|---|
| 160 | sr |
|---|
| 161 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
|---|
| 162 | INTENT(INOUT) :: snow, & |
|---|
| 163 | snowncv |
|---|
| 164 | ! LOCAL VAR |
|---|
| 165 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
|---|
| 166 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs |
|---|
| 167 | REAL, DIMENSION( its:ite , kts:kte, 3 ) :: ncr |
|---|
| 168 | CHARACTER*256 :: emess |
|---|
| 169 | INTEGER :: mkx_test |
|---|
| 170 | INTEGER :: i,j,k |
|---|
| 171 | !------------------------------------------------------------------- |
|---|
| 172 | #ifndef RUN_ON_GPU |
|---|
| 173 | IF (itimestep .eq. 1) THEN |
|---|
| 174 | DO j=jms,jme |
|---|
| 175 | DO k=kms,kme |
|---|
| 176 | DO i=ims,ime |
|---|
| 177 | nn(i,k,j) = ccn0 |
|---|
| 178 | ENDDO |
|---|
| 179 | ENDDO |
|---|
| 180 | ENDDO |
|---|
| 181 | ENDIF |
|---|
| 182 | ! |
|---|
| 183 | DO j=jts,jte |
|---|
| 184 | DO k=kts,kte |
|---|
| 185 | DO i=its,ite |
|---|
| 186 | t(i,k)=th(i,k,j)*pii(i,k,j) |
|---|
| 187 | qci(i,k,1) = qc(i,k,j) |
|---|
| 188 | qci(i,k,2) = qi(i,k,j) |
|---|
| 189 | qrs(i,k,1) = qr(i,k,j) |
|---|
| 190 | qrs(i,k,2) = qs(i,k,j) |
|---|
| 191 | ncr(i,k,1) = nn(i,k,j) |
|---|
| 192 | ncr(i,k,2) = nc(i,k,j) |
|---|
| 193 | ncr(i,k,3) = nr(i,k,j) |
|---|
| 194 | ENDDO |
|---|
| 195 | ENDDO |
|---|
| 196 | ! Sending array starting locations of optional variables may cause |
|---|
| 197 | ! troubles, so we explicitly change the call. |
|---|
| 198 | CALL wdm52D(t, q(ims,kms,j), qci, qrs, ncr & |
|---|
| 199 | ,den(ims,kms,j) & |
|---|
| 200 | ,p(ims,kms,j), delz(ims,kms,j) & |
|---|
| 201 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
|---|
| 202 | ,ep1, ep2, qmin & |
|---|
| 203 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 204 | ,cliq,cice,psat & |
|---|
| 205 | ,j & |
|---|
| 206 | ,rain(ims,j),rainncv(ims,j) & |
|---|
| 207 | ,sr(ims,j) & |
|---|
| 208 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 209 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 210 | ,its,ite, jts,jte, kts,kte & |
|---|
| 211 | ,snow(ims,j),snowncv(ims,j) & |
|---|
| 212 | ) |
|---|
| 213 | DO K=kts,kte |
|---|
| 214 | DO I=its,ite |
|---|
| 215 | th(i,k,j)=t(i,k)/pii(i,k,j) |
|---|
| 216 | qc(i,k,j) = qci(i,k,1) |
|---|
| 217 | qi(i,k,j) = qci(i,k,2) |
|---|
| 218 | qr(i,k,j) = qrs(i,k,1) |
|---|
| 219 | qs(i,k,j) = qrs(i,k,2) |
|---|
| 220 | nn(i,k,j) = ncr(i,k,1) |
|---|
| 221 | nc(i,k,j) = ncr(i,k,2) |
|---|
| 222 | nr(i,k,j) = ncr(i,k,3) |
|---|
| 223 | ENDDO |
|---|
| 224 | ENDDO |
|---|
| 225 | ENDDO |
|---|
| 226 | #else |
|---|
| 227 | CALL get_wsm5_gpu_levels ( mkx_test ) |
|---|
| 228 | IF ( mkx_test .LT. kte ) THEN |
|---|
| 229 | WRITE(emess,*)'Number of levels compiled for GPU WSM5 too small. ', & |
|---|
| 230 | mkx_test,' < ',kte |
|---|
| 231 | CALL wrf_error_fatal(emess) |
|---|
| 232 | ENDIF |
|---|
| 233 | CALL wsm5_host ( & |
|---|
| 234 | th(its:ite,kts:kte,jts:jte), pii(its:ite,kts:kte,jts:jte) & |
|---|
| 235 | ,q(its:ite,kts:kte,jts:jte), qc(its:ite,kts:kte,jts:jte) & |
|---|
| 236 | ,qi(its:ite,kts:kte,jts:jte), qr(its:ite,kts:kte,jts:jte) & |
|---|
| 237 | ,qs(its:ite,kts:kte,jts:jte), den(its:ite,kts:kte,jts:jte) & |
|---|
| 238 | ,p(its:ite,kts:kte,jts:jte), delz(its:ite,kts:kte,jts:jte) & |
|---|
| 239 | ,delt & |
|---|
| 240 | ,rain(its:ite,jts:jte),rainncv(its:ite,jts:jte) & |
|---|
| 241 | ,snow(its:ite,jts:jte),snowncv(its:ite,jts:jte) & |
|---|
| 242 | ,sr(its:ite,jts:jte) & |
|---|
| 243 | ,its, ite, jts, jte, kts, kte & |
|---|
| 244 | ,its, ite, jts, jte, kts, kte & |
|---|
| 245 | ,its, ite, jts, jte, kts, kte & |
|---|
| 246 | ) |
|---|
| 247 | #endif |
|---|
| 248 | END SUBROUTINE wdm5 |
|---|
| 249 | !=================================================================== |
|---|
| 250 | ! |
|---|
| 251 | SUBROUTINE wdm52D(t, q, qci, qrs, ncr, den, p, delz & |
|---|
| 252 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
|---|
| 253 | ,ep1, ep2, qmin & |
|---|
| 254 | ,XLS, XLV0, XLF0, den0, denr & |
|---|
| 255 | ,cliq,cice,psat & |
|---|
| 256 | ,lat & |
|---|
| 257 | ,rain,rainncv & |
|---|
| 258 | ,sr & |
|---|
| 259 | ,ids,ide, jds,jde, kds,kde & |
|---|
| 260 | ,ims,ime, jms,jme, kms,kme & |
|---|
| 261 | ,its,ite, jts,jte, kts,kte & |
|---|
| 262 | ,snow,snowncv & |
|---|
| 263 | ) |
|---|
| 264 | !------------------------------------------------------------------- |
|---|
| 265 | IMPLICIT NONE |
|---|
| 266 | !------------------------------------------------------------------- |
|---|
| 267 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
|---|
| 268 | ims,ime, jms,jme, kms,kme , & |
|---|
| 269 | its,ite, jts,jte, kts,kte, & |
|---|
| 270 | lat |
|---|
| 271 | REAL, DIMENSION( its:ite , kts:kte ), & |
|---|
| 272 | INTENT(INOUT) :: & |
|---|
| 273 | t |
|---|
| 274 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
|---|
| 275 | INTENT(INOUT) :: & |
|---|
| 276 | qci, & |
|---|
| 277 | qrs |
|---|
| 278 | REAL, DIMENSION( its:ite , kts:kte, 3 ), & |
|---|
| 279 | INTENT(INOUT) :: & |
|---|
| 280 | ncr |
|---|
| 281 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 282 | INTENT(INOUT) :: & |
|---|
| 283 | q |
|---|
| 284 | REAL, DIMENSION( ims:ime , kms:kme ), & |
|---|
| 285 | INTENT(IN ) :: & |
|---|
| 286 | den, & |
|---|
| 287 | p, & |
|---|
| 288 | delz |
|---|
| 289 | REAL, INTENT(IN ) :: delt, & |
|---|
| 290 | g, & |
|---|
| 291 | cpd, & |
|---|
| 292 | cpv, & |
|---|
| 293 | ccn0, & |
|---|
| 294 | t0c, & |
|---|
| 295 | den0, & |
|---|
| 296 | rd, & |
|---|
| 297 | rv, & |
|---|
| 298 | ep1, & |
|---|
| 299 | ep2, & |
|---|
| 300 | qmin, & |
|---|
| 301 | XLS, & |
|---|
| 302 | XLV0, & |
|---|
| 303 | XLF0, & |
|---|
| 304 | cliq, & |
|---|
| 305 | cice, & |
|---|
| 306 | psat, & |
|---|
| 307 | denr |
|---|
| 308 | REAL, DIMENSION( ims:ime ), & |
|---|
| 309 | INTENT(INOUT) :: rain, & |
|---|
| 310 | rainncv, & |
|---|
| 311 | sr |
|---|
| 312 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
|---|
| 313 | INTENT(INOUT) :: snow, & |
|---|
| 314 | snowncv |
|---|
| 315 | ! LOCAL VAR |
|---|
| 316 | REAL, DIMENSION( its:ite , kts:kte , 2) :: & |
|---|
| 317 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
|---|
| 318 | falk, fall, work1, qrs_tmp |
|---|
| 319 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 320 | rslopec, rslopec2,rslopec3 |
|---|
| 321 | REAL, DIMENSION( its:ite , kts:kte, 2) :: & |
|---|
| 322 | avedia |
|---|
| 323 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 324 | workn,falln,falkn |
|---|
| 325 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 326 | works |
|---|
| 327 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 328 | den_tmp, delz_tmp, ncr_tmp |
|---|
| 329 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 330 | falkc, work1c, work2c, fallc |
|---|
| 331 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 332 | pcact, praut, psaut, prevp, psdep, pracw, psaci, psacw, & |
|---|
| 333 | pigen, pidep, pcond, & |
|---|
| 334 | xl, cpm, work2, psmlt, psevp, denfac, xni, & |
|---|
| 335 | n0sfac, denqrs2, denqci |
|---|
| 336 | REAL, DIMENSION( its:ite ) :: & |
|---|
| 337 | delqrs2, delqi |
|---|
| 338 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 339 | nraut, nracw, ncevp, nccol, nrcol, & |
|---|
| 340 | nsacw, nseml, ncact |
|---|
| 341 | REAL :: ifac, sfac |
|---|
| 342 | REAL, DIMENSION(its:ite) :: tstepsnow |
|---|
| 343 | ! |
|---|
| 344 | #define WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 345 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 346 | REAL, DIMENSION(its:ite) :: xal, xbl |
|---|
| 347 | #endif |
|---|
| 348 | ! variables for optimization |
|---|
| 349 | REAL, DIMENSION( its:ite ) :: tvec1 |
|---|
| 350 | INTEGER, DIMENSION( its:ite ) :: mnstep, numndt |
|---|
| 351 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
|---|
| 352 | REAL, DIMENSION(its:ite) :: rmstep |
|---|
| 353 | REAL dtcldden, rdelz, rdtcld |
|---|
| 354 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
|---|
| 355 | REAL :: & |
|---|
| 356 | cpmcal, xlcal, lamdac, diffus, & |
|---|
| 357 | viscos, xka, venfac, conden, diffac, & |
|---|
| 358 | x, y, z, a, b, c, d, e, & |
|---|
| 359 | ndt, qdt, holdrr, holdrs, supcol, supcolt, pvt, & |
|---|
| 360 | coeres, supsat, dtcld, xmi, eacrs, satdt, & |
|---|
| 361 | vt2i,vt2s,acrfac, coecol, & |
|---|
| 362 | nfrzdtr, nfrzdtc, & |
|---|
| 363 | taucon, lencon, lenconcr, & |
|---|
| 364 | qimax, diameter, xni0, roqi0, & |
|---|
| 365 | fallsum, fallsum_qsi, xlwork2, factor, source, & |
|---|
| 366 | value, xlf, pfrzdtc, pfrzdtr, supice |
|---|
| 367 | REAL :: temp |
|---|
| 368 | REAL :: holdc, holdci |
|---|
| 369 | INTEGER :: i, j, k, mstepmax, & |
|---|
| 370 | iprt, latd, lond, loop, loops, ifsat, n, idim, kdim |
|---|
| 371 | ! Temporaries used for inlining fpvs function |
|---|
| 372 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
|---|
| 373 | REAL :: logtr |
|---|
| 374 | ! |
|---|
| 375 | !================================================================= |
|---|
| 376 | ! compute internal functions |
|---|
| 377 | ! |
|---|
| 378 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
|---|
| 379 | xlcal(x) = xlv0-xlv1*(x-t0c) |
|---|
| 380 | !---------------------------------------------------------------- |
|---|
| 381 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 382 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 383 | ! |
|---|
| 384 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 385 | lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333))) |
|---|
| 386 | ! |
|---|
| 387 | !---------------------------------------------------------------- |
|---|
| 388 | ! diffus: diffusion coefficient of the water vapor |
|---|
| 389 | ! viscos: kinematic viscosity(m2s-1) |
|---|
| 390 | ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y |
|---|
| 391 | ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y |
|---|
| 392 | ! xka(x,y) = 1.414e3*viscos(x,y)*y |
|---|
| 393 | ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
|---|
| 394 | ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
|---|
| 395 | ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
|---|
| 396 | ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
|---|
| 397 | ! |
|---|
| 398 | ! |
|---|
| 399 | idim = ite-its+1 |
|---|
| 400 | kdim = kte-kts+1 |
|---|
| 401 | ! |
|---|
| 402 | !---------------------------------------------------------------- |
|---|
| 403 | ! paddint 0 for negative values generated by dynamics |
|---|
| 404 | ! |
|---|
| 405 | do k = kts, kte |
|---|
| 406 | do i = its, ite |
|---|
| 407 | qci(i,k,1) = max(qci(i,k,1),0.0) |
|---|
| 408 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
|---|
| 409 | qci(i,k,2) = max(qci(i,k,2),0.0) |
|---|
| 410 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
|---|
| 411 | ncr(i,k,1) = max(ncr(i,k,1),0.) |
|---|
| 412 | ncr(i,k,2) = max(ncr(i,k,2),0.) |
|---|
| 413 | ncr(i,k,3) = max(ncr(i,k,3),0.) |
|---|
| 414 | enddo |
|---|
| 415 | enddo |
|---|
| 416 | ! |
|---|
| 417 | ! latent heat for phase changes and heat capacity. neglect the |
|---|
| 418 | ! changes during microphysical process calculation |
|---|
| 419 | ! emanuel(1994) |
|---|
| 420 | ! |
|---|
| 421 | do k = kts, kte |
|---|
| 422 | do i = its, ite |
|---|
| 423 | cpm(i,k) = cpmcal(q(i,k)) |
|---|
| 424 | xl(i,k) = xlcal(t(i,k)) |
|---|
| 425 | delz_tmp(i,k) = delz(i,k) |
|---|
| 426 | den_tmp(i,k) = den(i,k) |
|---|
| 427 | enddo |
|---|
| 428 | enddo |
|---|
| 429 | ! |
|---|
| 430 | !---------------------------------------------------------------- |
|---|
| 431 | ! initialize the surface rain, snow |
|---|
| 432 | ! |
|---|
| 433 | do i = its, ite |
|---|
| 434 | rainncv(i) = 0. |
|---|
| 435 | if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. |
|---|
| 436 | sr(i) = 0. |
|---|
| 437 | ! new local array to catch step snow |
|---|
| 438 | tstepsnow(i) = 0. |
|---|
| 439 | enddo |
|---|
| 440 | ! |
|---|
| 441 | !---------------------------------------------------------------- |
|---|
| 442 | ! compute the minor time steps. |
|---|
| 443 | ! |
|---|
| 444 | loops = max(nint(delt/dtcldcr),1) |
|---|
| 445 | dtcld = delt/loops |
|---|
| 446 | if(delt.le.dtcldcr) dtcld = delt |
|---|
| 447 | ! |
|---|
| 448 | do loop = 1,loops |
|---|
| 449 | ! |
|---|
| 450 | !---------------------------------------------------------------- |
|---|
| 451 | ! initialize the large scale variables |
|---|
| 452 | ! |
|---|
| 453 | do i = its, ite |
|---|
| 454 | mstep(i) = 1 |
|---|
| 455 | mnstep(i) = 1 |
|---|
| 456 | flgcld(i) = .true. |
|---|
| 457 | enddo |
|---|
| 458 | ! |
|---|
| 459 | ! do k = kts, kte |
|---|
| 460 | ! do i = its, ite |
|---|
| 461 | ! denfac(i,k) = sqrt(den0/den(i,k)) |
|---|
| 462 | ! enddo |
|---|
| 463 | ! enddo |
|---|
| 464 | do k = kts, kte |
|---|
| 465 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
|---|
| 466 | do i = its, ite |
|---|
| 467 | tvec1(i) = tvec1(i)*den0 |
|---|
| 468 | enddo |
|---|
| 469 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
|---|
| 470 | enddo |
|---|
| 471 | ! |
|---|
| 472 | ! Inline expansion for fpvs |
|---|
| 473 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 474 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 475 | hsub = xls |
|---|
| 476 | hvap = xlv0 |
|---|
| 477 | cvap = cpv |
|---|
| 478 | ttp=t0c+0.01 |
|---|
| 479 | dldt=cvap-cliq |
|---|
| 480 | xa=-dldt/rv |
|---|
| 481 | xb=xa+hvap/(rv*ttp) |
|---|
| 482 | dldti=cvap-cice |
|---|
| 483 | xai=-dldti/rv |
|---|
| 484 | xbi=xai+hsub/(rv*ttp) |
|---|
| 485 | ! this is for compilers where the conditional inhibits vectorization |
|---|
| 486 | #ifdef WSM_NO_CONDITIONAL_IN_VECTOR |
|---|
| 487 | do k = kts, kte |
|---|
| 488 | do i = its, ite |
|---|
| 489 | if(t(i,k).lt.ttp) then |
|---|
| 490 | xal(i) = xai |
|---|
| 491 | xbl(i) = xbi |
|---|
| 492 | else |
|---|
| 493 | xal(i) = xa |
|---|
| 494 | xbl(i) = xb |
|---|
| 495 | endif |
|---|
| 496 | enddo |
|---|
| 497 | do i = its, ite |
|---|
| 498 | tr=ttp/t(i,k) |
|---|
| 499 | logtr=log(tr) |
|---|
| 500 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 501 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 502 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 503 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 504 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 505 | qs(i,k,2)=psat*exp(logtr*(xal(i))+xbl(i)*(1.-tr)) |
|---|
| 506 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
|---|
| 507 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 508 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 509 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 510 | enddo |
|---|
| 511 | enddo |
|---|
| 512 | #else |
|---|
| 513 | do k = kts, kte |
|---|
| 514 | do i = its, ite |
|---|
| 515 | tr=ttp/t(i,k) |
|---|
| 516 | logtr=log(tr) |
|---|
| 517 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 518 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 519 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 520 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 521 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 522 | if(t(i,k).lt.ttp) then |
|---|
| 523 | qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr)) |
|---|
| 524 | else |
|---|
| 525 | qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 526 | endif |
|---|
| 527 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
|---|
| 528 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
|---|
| 529 | qs(i,k,2) = max(qs(i,k,2),qmin) |
|---|
| 530 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
|---|
| 531 | enddo |
|---|
| 532 | enddo |
|---|
| 533 | #endif |
|---|
| 534 | ! |
|---|
| 535 | !---------------------------------------------------------------- |
|---|
| 536 | ! initialize the variables for microphysical physics |
|---|
| 537 | ! |
|---|
| 538 | ! |
|---|
| 539 | do k = kts, kte |
|---|
| 540 | do i = its, ite |
|---|
| 541 | prevp(i,k) = 0. |
|---|
| 542 | psdep(i,k) = 0. |
|---|
| 543 | praut(i,k) = 0. |
|---|
| 544 | psaut(i,k) = 0. |
|---|
| 545 | pracw(i,k) = 0. |
|---|
| 546 | psaci(i,k) = 0. |
|---|
| 547 | psacw(i,k) = 0. |
|---|
| 548 | pigen(i,k) = 0. |
|---|
| 549 | pidep(i,k) = 0. |
|---|
| 550 | pcond(i,k) = 0. |
|---|
| 551 | psmlt(i,k) = 0. |
|---|
| 552 | psevp(i,k) = 0. |
|---|
| 553 | pcact(i,k) = 0. |
|---|
| 554 | falk(i,k,1) = 0. |
|---|
| 555 | falk(i,k,2) = 0. |
|---|
| 556 | fall(i,k,1) = 0. |
|---|
| 557 | fall(i,k,2) = 0. |
|---|
| 558 | fallc(i,k) = 0. |
|---|
| 559 | falkc(i,k) = 0. |
|---|
| 560 | falln(i,k) = 0. |
|---|
| 561 | falkn(i,k) = 0. |
|---|
| 562 | xni(i,k) = 1.e3 |
|---|
| 563 | nsacw(i,k) = 0. |
|---|
| 564 | nseml(i,k) = 0. |
|---|
| 565 | nracw(i,k) = 0. |
|---|
| 566 | nccol(i,k) = 0. |
|---|
| 567 | nrcol(i,k) = 0. |
|---|
| 568 | ncact(i,k) = 0. |
|---|
| 569 | nraut(i,k) = 0. |
|---|
| 570 | ncevp(i,k) = 0. |
|---|
| 571 | enddo |
|---|
| 572 | enddo |
|---|
| 573 | ! |
|---|
| 574 | !---------------------------------------------------------------- |
|---|
| 575 | ! compute the fallout term: |
|---|
| 576 | ! first, vertical terminal velosity for minor loops |
|---|
| 577 | ! |
|---|
| 578 | do k = kts, kte |
|---|
| 579 | do i = its, ite |
|---|
| 580 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin)then |
|---|
| 581 | rslopec(i,k) = rslopecmax |
|---|
| 582 | rslopec2(i,k) = rslopec2max |
|---|
| 583 | rslopec3(i,k) = rslopec3max |
|---|
| 584 | else |
|---|
| 585 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
|---|
| 586 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
|---|
| 587 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
|---|
| 588 | endif |
|---|
| 589 | !------------------------------------------------------------- |
|---|
| 590 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 591 | !------------------------------------------------------------- |
|---|
| 592 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 593 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 594 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 595 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 596 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 597 | enddo |
|---|
| 598 | enddo |
|---|
| 599 | do k = kts, kte |
|---|
| 600 | do i = its, ite |
|---|
| 601 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 602 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 603 | ncr_tmp(i,k) = ncr(i,k,3) |
|---|
| 604 | enddo |
|---|
| 605 | enddo |
|---|
| 606 | call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
|---|
| 607 | rslope3,work1,workn,its,ite,kts,kte) |
|---|
| 608 | !---------------------------------------------------------------- |
|---|
| 609 | ! compute the fallout term: |
|---|
| 610 | ! first, vertical terminal velosity for minor loops |
|---|
| 611 | !---------------------------------------------------------------- |
|---|
| 612 | ! |
|---|
| 613 | ! vt update for qr and nr |
|---|
| 614 | mstepmax = 1 |
|---|
| 615 | numdt = 1 |
|---|
| 616 | do k = kte, kts, -1 |
|---|
| 617 | do i = its, ite |
|---|
| 618 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
|---|
| 619 | workn(i,k) = workn(i,k)/delz(i,k) |
|---|
| 620 | numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1) |
|---|
| 621 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
|---|
| 622 | enddo |
|---|
| 623 | enddo |
|---|
| 624 | do i = its, ite |
|---|
| 625 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
|---|
| 626 | enddo |
|---|
| 627 | ! |
|---|
| 628 | do n = 1, mstepmax |
|---|
| 629 | k = kte |
|---|
| 630 | do i = its, ite |
|---|
| 631 | if(n.le.mstep(i)) then |
|---|
| 632 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 633 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
|---|
| 634 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 635 | falln(i,k) = falln(i,k)+falkn(i,k) |
|---|
| 636 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
|---|
| 637 | ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.) |
|---|
| 638 | endif |
|---|
| 639 | enddo |
|---|
| 640 | do k = kte-1, kts, -1 |
|---|
| 641 | do i = its, ite |
|---|
| 642 | if(n.le.mstep(i)) then |
|---|
| 643 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
|---|
| 644 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
|---|
| 645 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
|---|
| 646 | falln(i,k) = falln(i,k)+falkn(i,k) |
|---|
| 647 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
|---|
| 648 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
|---|
| 649 | ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) & |
|---|
| 650 | /delz(i,k))*dtcld,0.) |
|---|
| 651 | endif |
|---|
| 652 | enddo |
|---|
| 653 | enddo |
|---|
| 654 | do k = kts, kte |
|---|
| 655 | do i = its, ite |
|---|
| 656 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 657 | ncr_tmp(i,k) = ncr(i,k,3) |
|---|
| 658 | enddo |
|---|
| 659 | enddo |
|---|
| 660 | call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
|---|
| 661 | rslope3,work1,workn,its,ite,kts,kte) |
|---|
| 662 | do k = kte, kts, -1 |
|---|
| 663 | do i = its, ite |
|---|
| 664 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
|---|
| 665 | workn(i,k) = workn(i,k)/delz(i,k) |
|---|
| 666 | enddo |
|---|
| 667 | enddo |
|---|
| 668 | enddo |
|---|
| 669 | ! for semi |
|---|
| 670 | do k = kte, kts, -1 |
|---|
| 671 | do i = its, ite |
|---|
| 672 | works(i,k) = work1(i,k,2) |
|---|
| 673 | denqrs2(i,k) = den(i,k)*qrs(i,k,2) |
|---|
| 674 | if(qrs(i,k,2).le.0.0) works(i,k) = 0.0 |
|---|
| 675 | enddo |
|---|
| 676 | enddo |
|---|
| 677 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,works,denqrs2, & |
|---|
| 678 | delqrs2,dtcld,2,1) |
|---|
| 679 | do k = kts, kte |
|---|
| 680 | do i = its, ite |
|---|
| 681 | qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.) |
|---|
| 682 | fall(i,k,2) = denqrs2(i,k)*works(i,k)/delz(i,k) |
|---|
| 683 | enddo |
|---|
| 684 | enddo |
|---|
| 685 | do i = its, ite |
|---|
| 686 | fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld |
|---|
| 687 | enddo |
|---|
| 688 | do k = kts, kte |
|---|
| 689 | do i = its, ite |
|---|
| 690 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 691 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 692 | ncr_tmp(i,k) = ncr(i,k,3) |
|---|
| 693 | enddo |
|---|
| 694 | enddo |
|---|
| 695 | call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
|---|
| 696 | rslope3,work1,workn,its,ite,kts,kte) |
|---|
| 697 | ! |
|---|
| 698 | do k = kte, kts, -1 |
|---|
| 699 | do i = its, ite |
|---|
| 700 | supcol = t0c-t(i,k) |
|---|
| 701 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 702 | if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then |
|---|
| 703 | !---------------------------------------------------------------- |
|---|
| 704 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
|---|
| 705 | ! (T>T0: QS->QR) |
|---|
| 706 | !---------------------------------------------------------------- |
|---|
| 707 | xlf = xlf0 |
|---|
| 708 | ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 709 | work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) & |
|---|
| 710 | /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 & |
|---|
| 711 | *exp(log(t(i,k))*(1.81))/p(i,k)))) & |
|---|
| 712 | *((.3333333)))/sqrt((1.496e-6*((t(i,k)) & |
|---|
| 713 | *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) & |
|---|
| 714 | *sqrt(sqrt(den0/(den(i,k))))) |
|---|
| 715 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 716 | ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
|---|
| 717 | ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 & |
|---|
| 718 | ! *work2(i,k)*coeres) |
|---|
| 719 | psmlt(i,k) = (1.414e3*(1.496e-6 * ((t(i,k))*sqrt(t(i,k))) & |
|---|
| 720 | /((t(i,k))+120.)/(den(i,k)))*(den(i,k)))/xlf & |
|---|
| 721 | *(t0c-t(i,k))*pi/2.*n0sfac(i,k) & |
|---|
| 722 | *(precs1*rslope2(i,k,2)+precs2*work2(i,k)*coeres) |
|---|
| 723 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) & |
|---|
| 724 | /mstep(i)),0.) |
|---|
| 725 | !------------------------------------------------------------------- |
|---|
| 726 | ! nsmlt: melgin of snow [LH A27] |
|---|
| 727 | ! (T>T0: ->NR) |
|---|
| 728 | !------------------------------------------------------------------- |
|---|
| 729 | if(qrs(i,k,2).gt.qcrmin) then |
|---|
| 730 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)*mstep(i)/qrs(i,k,2) |
|---|
| 731 | ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k) |
|---|
| 732 | endif |
|---|
| 733 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
|---|
| 734 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
|---|
| 735 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
|---|
| 736 | endif |
|---|
| 737 | enddo |
|---|
| 738 | enddo |
|---|
| 739 | !--------------------------------------------------------------- |
|---|
| 740 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
|---|
| 741 | !--------------------------------------------------------------- |
|---|
| 742 | do k = kte, kts, -1 |
|---|
| 743 | do i = its, ite |
|---|
| 744 | if(qci(i,k,2).le.0.) then |
|---|
| 745 | work1c(i,k) = 0. |
|---|
| 746 | else |
|---|
| 747 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 748 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
|---|
| 749 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
|---|
| 750 | endif |
|---|
| 751 | enddo |
|---|
| 752 | enddo |
|---|
| 753 | ! |
|---|
| 754 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
|---|
| 755 | ! |
|---|
| 756 | do k = kte, kts, -1 |
|---|
| 757 | do i = its, ite |
|---|
| 758 | denqci(i,k) = den(i,k)*qci(i,k,2) |
|---|
| 759 | enddo |
|---|
| 760 | enddo |
|---|
| 761 | call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci, & |
|---|
| 762 | delqi,dtcld,1,0) |
|---|
| 763 | do k = kts, kte |
|---|
| 764 | do i = its, ite |
|---|
| 765 | qci(i,k,2) = max(denqci(i,k)/den(i,k),0.) |
|---|
| 766 | enddo |
|---|
| 767 | enddo |
|---|
| 768 | do i = its, ite |
|---|
| 769 | fallc(i,1) = delqi(i)/delz(i,1)/dtcld |
|---|
| 770 | enddo |
|---|
| 771 | ! |
|---|
| 772 | !---------------------------------------------------------------- |
|---|
| 773 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
|---|
| 774 | ! |
|---|
| 775 | do i = its, ite |
|---|
| 776 | fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1) |
|---|
| 777 | fallsum_qsi = fall(i,1,2)+fallc(i,1) |
|---|
| 778 | if(fallsum.gt.0.) then |
|---|
| 779 | rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rainncv(i) |
|---|
| 780 | rain(i) = fallsum*delz(i,1)/denr*dtcld*1000.+rain(i) |
|---|
| 781 | endif |
|---|
| 782 | if(fallsum_qsi.gt.0.) then |
|---|
| 783 | tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i) |
|---|
| 784 | if (PRESENT (snowncv) .and. PRESENT (snow)) then |
|---|
| 785 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) |
|---|
| 786 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000.+snow(i) |
|---|
| 787 | endif |
|---|
| 788 | endif |
|---|
| 789 | ! if(fallsum.gt.0.)sr(i)= snowncv(i)/(rainncv(i)+1.e-12) |
|---|
| 790 | if(fallsum.gt.0.)sr(i)= tstepsnow(i)/(rainncv(i)+1.e-12) |
|---|
| 791 | enddo |
|---|
| 792 | ! |
|---|
| 793 | !--------------------------------------------------------------- |
|---|
| 794 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
|---|
| 795 | ! (T>T0: QI->QC) |
|---|
| 796 | !--------------------------------------------------------------- |
|---|
| 797 | do k = kts, kte |
|---|
| 798 | do i = its, ite |
|---|
| 799 | supcol = t0c-t(i,k) |
|---|
| 800 | xlf = xls-xl(i,k) |
|---|
| 801 | if(supcol.lt.0.) xlf = xlf0 |
|---|
| 802 | if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then |
|---|
| 803 | qci(i,k,1) = qci(i,k,1)+qci(i,k,2) |
|---|
| 804 | !--------------------------------------------------------------- |
|---|
| 805 | ! nimlt: instantaneous melting of cloud ice [LH A18] |
|---|
| 806 | ! (T>T0: ->NC) |
|---|
| 807 | !-------------------------------------------------------------- |
|---|
| 808 | ncr(i,k,2) = ncr(i,k,2) + xni(i,k) |
|---|
| 809 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
|---|
| 810 | qci(i,k,2) = 0. |
|---|
| 811 | endif |
|---|
| 812 | !--------------------------------------------------------------- |
|---|
| 813 | ! pihmf: homogeneous freezing of cloud water below -40c [HL A45] |
|---|
| 814 | ! (T<-40C: QC->QI) |
|---|
| 815 | !--------------------------------------------------------------- |
|---|
| 816 | if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then |
|---|
| 817 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
|---|
| 818 | !--------------------------------------------------------------- |
|---|
| 819 | ! nihmf: homogeneous of cloud water below -40c [LH A17] |
|---|
| 820 | ! (T<-40C: NC->) |
|---|
| 821 | !--------------------------------------------------------------- |
|---|
| 822 | if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0. |
|---|
| 823 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
|---|
| 824 | qci(i,k,1) = 0. |
|---|
| 825 | endif |
|---|
| 826 | !--------------------------------------------------------------- |
|---|
| 827 | ! pihtf: heterogeneous freezing of cloud water [HL A44] |
|---|
| 828 | ! (T0>T>-40C: QC->QI) |
|---|
| 829 | !--------------------------------------------------------------- |
|---|
| 830 | if(supcol.gt.0. .and. qci(i,k,1).gt.0.) then |
|---|
| 831 | supcolt=min(supcol,70.) |
|---|
| 832 | pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) & |
|---|
| 833 | *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld,qci(i,k,1)) |
|---|
| 834 | !--------------------------------------------------------------- |
|---|
| 835 | ! nihtf: heterogeneous of cloud water [LH A16] |
|---|
| 836 | ! (T0>T>-40C: NC->) |
|---|
| 837 | !--------------------------------------------------------------- |
|---|
| 838 | if(ncr(i,k,2).gt.ncmin) then |
|---|
| 839 | nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) & |
|---|
| 840 | *rslopec3(i,k)/6.*dtcld,ncr(i,k,2)) |
|---|
| 841 | ncr(i,k,2) = ncr(i,k,2) - nfrzdtc |
|---|
| 842 | endif |
|---|
| 843 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
|---|
| 844 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
|---|
| 845 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
|---|
| 846 | endif |
|---|
| 847 | !--------------------------------------------------------------- |
|---|
| 848 | ! psfrz: freezing of rain water [HL A20] [LFO 45] |
|---|
| 849 | ! (T<T0, QR->QS) |
|---|
| 850 | !--------------------------------------------------------------- |
|---|
| 851 | if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then |
|---|
| 852 | supcolt=min(supcol,70.) |
|---|
| 853 | pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) & |
|---|
| 854 | *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) & |
|---|
| 855 | *dtcld,qrs(i,k,1)) |
|---|
| 856 | !--------------------------------------------------------------- |
|---|
| 857 | ! nsfrz: freezing of rain water [LH A26] |
|---|
| 858 | ! (T<T0, NR-> ) |
|---|
| 859 | !--------------------------------------------------------------- |
|---|
| 860 | if(ncr(i,k,3).gt.nrmin) then |
|---|
| 861 | nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) & |
|---|
| 862 | *rslope3(i,k,1)*dtcld,ncr(i,k,3)) |
|---|
| 863 | ncr(i,k,3) = ncr(i,k,3)-nfrzdtr |
|---|
| 864 | endif |
|---|
| 865 | qrs(i,k,2) = qrs(i,k,2) + pfrzdtr |
|---|
| 866 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
|---|
| 867 | qrs(i,k,1) = qrs(i,k,1)-pfrzdtr |
|---|
| 868 | endif |
|---|
| 869 | enddo |
|---|
| 870 | enddo |
|---|
| 871 | ! |
|---|
| 872 | do k = kts, kte |
|---|
| 873 | do i = its, ite |
|---|
| 874 | ncr(i,k,2) = max(ncr(i,k,2),0.0) |
|---|
| 875 | ncr(i,k,3) = max(ncr(i,k,3),0.0) |
|---|
| 876 | enddo |
|---|
| 877 | enddo |
|---|
| 878 | !---------------------------------------------------------------- |
|---|
| 879 | ! update the slope parameters for microphysics computation |
|---|
| 880 | ! |
|---|
| 881 | do k = kts, kte |
|---|
| 882 | do i = its, ite |
|---|
| 883 | qrs_tmp(i,k,1) = qrs(i,k,1) |
|---|
| 884 | qrs_tmp(i,k,2) = qrs(i,k,2) |
|---|
| 885 | ncr_tmp(i,k) = ncr(i,k,3) |
|---|
| 886 | enddo |
|---|
| 887 | enddo |
|---|
| 888 | call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
|---|
| 889 | rslope3,work1,workn,its,ite,kts,kte) |
|---|
| 890 | do k = kts, kte |
|---|
| 891 | do i = its, ite |
|---|
| 892 | !----------------------------------------------------------------- |
|---|
| 893 | ! compute the mean-volume drop diameter [LH A10] |
|---|
| 894 | ! for raindrop distribution |
|---|
| 895 | !----------------------------------------------------------------- |
|---|
| 896 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
|---|
| 897 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then |
|---|
| 898 | rslopec(i,k) = rslopecmax |
|---|
| 899 | rslopec2(i,k) = rslopec2max |
|---|
| 900 | rslopec3(i,k) = rslopec3max |
|---|
| 901 | else |
|---|
| 902 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
|---|
| 903 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
|---|
| 904 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
|---|
| 905 | endif |
|---|
| 906 | !-------------------------------------------------------------------- |
|---|
| 907 | ! compute the mean-volume drop diameter [LH A7] |
|---|
| 908 | ! for cloud-droplet distribution |
|---|
| 909 | !-------------------------------------------------------------------- |
|---|
| 910 | avedia(i,k,1) = rslopec(i,k) |
|---|
| 911 | enddo |
|---|
| 912 | enddo |
|---|
| 913 | !---------------------------------------------------------------- |
|---|
| 914 | ! work1: the thermodynamic term in the denominator associated with |
|---|
| 915 | ! heat conduction and vapor diffusion |
|---|
| 916 | ! (ry88, y93, h85) |
|---|
| 917 | ! work2: parameter associated with the ventilation effects(y93) |
|---|
| 918 | ! |
|---|
| 919 | do k = kts, kte |
|---|
| 920 | do i = its, ite |
|---|
| 921 | ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
|---|
| 922 | work1(i,k,1) = ((((den(i,k))*(xl(i,k))*(xl(i,k)))*((t(i,k))+120.) & |
|---|
| 923 | *(den(i,k)))/(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))& |
|---|
| 924 | *(den(i,k))*(rv*(t(i,k))*(t(i,k))))) & |
|---|
| 925 | + p(i,k)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k))*(1.81)))) |
|---|
| 926 | ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
|---|
| 927 | work1(i,k,2) = ((((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k)))& |
|---|
| 928 | /(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))*(den(i,k)) & |
|---|
| 929 | *(rv*(t(i,k))*(t(i,k)))) & |
|---|
| 930 | + p(i,k)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k))*(1.81))))) |
|---|
| 931 | ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
|---|
| 932 | work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) & |
|---|
| 933 | *p(i,k))/(((t(i,k))+120.)*den(i,k)*(8.794e-5 & |
|---|
| 934 | *exp(log(t(i,k))*(1.81))))))*sqrt(sqrt(den0/(den(i,k))))) & |
|---|
| 935 | /sqrt((1.496e-6*((t(i,k))*sqrt(t(i,k)))) & |
|---|
| 936 | /(((t(i,k))+120.)*den(i,k))) |
|---|
| 937 | enddo |
|---|
| 938 | enddo |
|---|
| 939 | ! |
|---|
| 940 | !=============================================================== |
|---|
| 941 | ! |
|---|
| 942 | ! warm rain processes |
|---|
| 943 | ! |
|---|
| 944 | ! - follows the processes in RH83 and LFO except for autoconcersion |
|---|
| 945 | ! |
|---|
| 946 | !=============================================================== |
|---|
| 947 | ! |
|---|
| 948 | do k = kts, kte |
|---|
| 949 | do i = its, ite |
|---|
| 950 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
|---|
| 951 | satdt = supsat/dtcld |
|---|
| 952 | !--------------------------------------------------------------- |
|---|
| 953 | ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17] |
|---|
| 954 | ! (QC->QR) |
|---|
| 955 | !--------------------------------------------------------------- |
|---|
| 956 | lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) & |
|---|
| 957 | *rslopec2(i,k)-0.4) |
|---|
| 958 | lenconcr = max(1.2*lencon,qcrmin) |
|---|
| 959 | if(avedia(i,k,1).gt.di15) then |
|---|
| 960 | taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5) |
|---|
| 961 | praut(i,k) = lencon/taucon |
|---|
| 962 | praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld) |
|---|
| 963 | !--------------------------------------------------------------- |
|---|
| 964 | ! nraut: auto conversion rate from cloud to rain [LH A6][CP 18 & 19] |
|---|
| 965 | ! (NC->NR) |
|---|
| 966 | !--------------------------------------------------------------- |
|---|
| 967 | nraut(i,k) = 3.5e9*den(i,k)*praut(i,k) |
|---|
| 968 | if(qrs(i,k,1).gt.lenconcr) & |
|---|
| 969 | nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k) |
|---|
| 970 | nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld) |
|---|
| 971 | endif |
|---|
| 972 | !--------------------------------------------------------------- |
|---|
| 973 | ! pracw: accretion of cloud water by rain [LH 10][CP 22 & 23] |
|---|
| 974 | ! (QC->QR) |
|---|
| 975 | ! nracw: accretion of cloud water by rain [LH A9] |
|---|
| 976 | ! (NC->) |
|---|
| 977 | !--------------------------------------------------------------- |
|---|
| 978 | if(qrs(i,k,1).ge.lenconcr) then |
|---|
| 979 | if(avedia(i,k,2).ge.di100) then |
|---|
| 980 | nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) & |
|---|
| 981 | + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
|---|
| 982 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) & |
|---|
| 983 | *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) & |
|---|
| 984 | + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld) |
|---|
| 985 | else |
|---|
| 986 | nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) & |
|---|
| 987 | *rslopec3(i,k)+5040.*rslope3(i,k,1) & |
|---|
| 988 | *rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
|---|
| 989 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) & |
|---|
| 990 | *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) & |
|---|
| 991 | *rslopec3(i,k)+5040.*rslope3(i,k,1) & |
|---|
| 992 | *rslope3(i,k,1)),qci(i,k,1)/dtcld) |
|---|
| 993 | endif |
|---|
| 994 | endif |
|---|
| 995 | !---------------------------------------------------------------- |
|---|
| 996 | ! nccol: self collection of cloud water [LH A8][CP 24 & 25] |
|---|
| 997 | ! (NC->) |
|---|
| 998 | !---------------------------------------------------------------- |
|---|
| 999 | if(avedia(i,k,1).ge.di100) then |
|---|
| 1000 | nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) |
|---|
| 1001 | else |
|---|
| 1002 | nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) & |
|---|
| 1003 | *rslopec3(i,k) |
|---|
| 1004 | endif |
|---|
| 1005 | !---------------------------------------------------------------- |
|---|
| 1006 | ! nrcol: self collection of rain-drops and break-up [LH A21][CP 24 & 25] |
|---|
| 1007 | ! (NR->) |
|---|
| 1008 | !---------------------------------------------------------------- |
|---|
| 1009 | if(qrs(i,k,1).ge.lenconcr) then |
|---|
| 1010 | if(avedia(i,k,2).lt.di100) then |
|---|
| 1011 | nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) & |
|---|
| 1012 | *rslope3(i,k,1) |
|---|
| 1013 | elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then |
|---|
| 1014 | nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) |
|---|
| 1015 | elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then |
|---|
| 1016 | coecol = -2.5e3*(avedia(i,k,2)-di600) |
|---|
| 1017 | nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) & |
|---|
| 1018 | *rslope3(i,k,1) |
|---|
| 1019 | else |
|---|
| 1020 | nrcol(i,k) = 0. |
|---|
| 1021 | endif |
|---|
| 1022 | endif |
|---|
| 1023 | !--------------------------------------------------------------- |
|---|
| 1024 | ! prevp: evaporation/condensation rate of rain [HL A41] |
|---|
| 1025 | ! (QV->QR or QR->QV) |
|---|
| 1026 | !--------------------------------------------------------------- |
|---|
| 1027 | if(qrs(i,k,1).gt.0.) then |
|---|
| 1028 | coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
|---|
| 1029 | prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) & |
|---|
| 1030 | +precr2*work2(i,k)*coeres)/work1(i,k,1) |
|---|
| 1031 | if(prevp(i,k).lt.0.) then |
|---|
| 1032 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
|---|
| 1033 | prevp(i,k) = max(prevp(i,k),satdt/2) |
|---|
| 1034 | !---------------------------------------------------------------- |
|---|
| 1035 | ! Nrevp: evaporation/condensation rate of rain [LH A14] |
|---|
| 1036 | ! (NR->NCCN) |
|---|
| 1037 | !---------------------------------------------------------------- |
|---|
| 1038 | if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then |
|---|
| 1039 | ncr(i,k,1) = ncr(i,k,1) + ncr(i,k,3) |
|---|
| 1040 | ncr(i,k,3) = 0. |
|---|
| 1041 | endif |
|---|
| 1042 | else |
|---|
| 1043 | ! |
|---|
| 1044 | prevp(i,k) = min(prevp(i,k),satdt/2) |
|---|
| 1045 | endif |
|---|
| 1046 | endif |
|---|
| 1047 | enddo |
|---|
| 1048 | enddo |
|---|
| 1049 | ! |
|---|
| 1050 | !=============================================================== |
|---|
| 1051 | ! |
|---|
| 1052 | ! cold rain processes |
|---|
| 1053 | ! |
|---|
| 1054 | ! - follows the revised ice microphysics processes in HDC |
|---|
| 1055 | ! - the processes same as in RH83 and RH84 and LFO behave |
|---|
| 1056 | ! following ice crystal hapits defined in HDC, inclduing |
|---|
| 1057 | ! intercept parameter for snow (n0s), ice crystal number |
|---|
| 1058 | ! concentration (ni), ice nuclei number concentration |
|---|
| 1059 | ! (n0i), ice diameter (d) |
|---|
| 1060 | ! |
|---|
| 1061 | !=============================================================== |
|---|
| 1062 | ! |
|---|
| 1063 | rdtcld = 1./dtcld |
|---|
| 1064 | do k = kts, kte |
|---|
| 1065 | do i = its, ite |
|---|
| 1066 | supcol = t0c-t(i,k) |
|---|
| 1067 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1068 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
|---|
| 1069 | satdt = supsat/dtcld |
|---|
| 1070 | ifsat = 0 |
|---|
| 1071 | !------------------------------------------------------------- |
|---|
| 1072 | ! Ni: ice crystal number concentraiton [HDC 5c] |
|---|
| 1073 | !------------------------------------------------------------- |
|---|
| 1074 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
|---|
| 1075 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
|---|
| 1076 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
|---|
| 1077 | temp = sqrt(sqrt(temp*temp*temp)) |
|---|
| 1078 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
|---|
| 1079 | eacrs = exp(0.07*(-supcol)) |
|---|
| 1080 | ! |
|---|
| 1081 | if(supcol.gt.0) then |
|---|
| 1082 | if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,2).gt.qmin) then |
|---|
| 1083 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 1084 | diameter = min(dicon * sqrt(xmi),dimax) |
|---|
| 1085 | vt2i = 1.49e4*diameter**1.31 |
|---|
| 1086 | vt2s = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 1087 | !------------------------------------------------------------- |
|---|
| 1088 | ! psaci: Accretion of cloud ice by rain [HDC 10] |
|---|
| 1089 | ! (T<T0: QI->QS) |
|---|
| 1090 | !------------------------------------------------------------- |
|---|
| 1091 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
|---|
| 1092 | + diameter**2*rslope(i,k,2) |
|---|
| 1093 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k)*abs(vt2s-vt2i) & |
|---|
| 1094 | *acrfac/4. |
|---|
| 1095 | endif |
|---|
| 1096 | endif |
|---|
| 1097 | !------------------------------------------------------------- |
|---|
| 1098 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
|---|
| 1099 | ! (T<T0: QC->QS, and T>=T0: QC->QR) |
|---|
| 1100 | !------------------------------------------------------------- |
|---|
| 1101 | if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,1).gt.qmin) then |
|---|
| 1102 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
|---|
| 1103 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)*rdtcld) |
|---|
| 1104 | endif |
|---|
| 1105 | !------------------------------------------------------------- |
|---|
| 1106 | ! nsacw: Accretion of cloud water by snow [LH A12] |
|---|
| 1107 | ! (NC ->) |
|---|
| 1108 | !------------------------------------------------------------- |
|---|
| 1109 | if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then |
|---|
| 1110 | nsacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
|---|
| 1111 | *ncr(i,k,2)*denfac(i,k),ncr(i,k,2)/dtcld) |
|---|
| 1112 | endif |
|---|
| 1113 | if(supcol.le.0) then |
|---|
| 1114 | xlf = xlf0 |
|---|
| 1115 | !-------------------------------------------------------------- |
|---|
| 1116 | ! nseml: Enhanced melting of snow by accretion of water [LH A29] |
|---|
| 1117 | ! (T>=T0: ->NR) |
|---|
| 1118 | !-------------------------------------------------------------- |
|---|
| 1119 | if (qrs(i,k,2).gt.qcrmin) then |
|---|
| 1120 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) |
|---|
| 1121 | nseml(i,k) = -sfac*min(max(cliq*supcol*(psacw(i,k))/xlf & |
|---|
| 1122 | ,-qrs(i,k,2)/dtcld),0.) |
|---|
| 1123 | endif |
|---|
| 1124 | endif |
|---|
| 1125 | if(supcol.gt.0) then |
|---|
| 1126 | !------------------------------------------------------------- |
|---|
| 1127 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
|---|
| 1128 | ! (T<T0: QV->QI or QI->QV) |
|---|
| 1129 | !------------------------------------------------------------- |
|---|
| 1130 | if(qci(i,k,2).gt.0 .and. ifsat.ne.1) then |
|---|
| 1131 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
|---|
| 1132 | diameter = dicon * sqrt(xmi) |
|---|
| 1133 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
|---|
| 1134 | supice = satdt-prevp(i,k) |
|---|
| 1135 | if(pidep(i,k).lt.0.) then |
|---|
| 1136 | ! pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
|---|
| 1137 | ! pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
|---|
| 1138 | pidep(i,k) = max(max(pidep(i,k),satdt*.5),supice) |
|---|
| 1139 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)*rdtcld) |
|---|
| 1140 | else |
|---|
| 1141 | ! pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
|---|
| 1142 | pidep(i,k) = min(min(pidep(i,k),satdt*.5),supice) |
|---|
| 1143 | endif |
|---|
| 1144 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1145 | endif |
|---|
| 1146 | !------------------------------------------------------------- |
|---|
| 1147 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
|---|
| 1148 | ! (QV->QS or QS->QV) |
|---|
| 1149 | !------------------------------------------------------------- |
|---|
| 1150 | if(qrs(i,k,2).gt.0. .and. ifsat.ne.1) then |
|---|
| 1151 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
|---|
| 1152 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
|---|
| 1153 | + precs2*work2(i,k)*coeres)/work1(i,k,2) |
|---|
| 1154 | supice = satdt-prevp(i,k)-pidep(i,k) |
|---|
| 1155 | if(psdep(i,k).lt.0.) then |
|---|
| 1156 | ! psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
|---|
| 1157 | ! psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
|---|
| 1158 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)*rdtcld) |
|---|
| 1159 | psdep(i,k) = max(max(psdep(i,k),satdt*.5),supice) |
|---|
| 1160 | else |
|---|
| 1161 | ! psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
|---|
| 1162 | psdep(i,k) = min(min(psdep(i,k),satdt*.5),supice) |
|---|
| 1163 | endif |
|---|
| 1164 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) ifsat = 1 |
|---|
| 1165 | endif |
|---|
| 1166 | !------------------------------------------------------------- |
|---|
| 1167 | ! pigen: generation(nucleation) of ice from vapor [HL A50] [HDC 7-8] |
|---|
| 1168 | ! (T<T0: QV->QI) |
|---|
| 1169 | !------------------------------------------------------------- |
|---|
| 1170 | if(supsat.gt.0 .and. ifsat.ne.1) then |
|---|
| 1171 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
|---|
| 1172 | xni0 = 1.e3*exp(0.1*supcol) |
|---|
| 1173 | roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) |
|---|
| 1174 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))*rdtcld) |
|---|
| 1175 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
|---|
| 1176 | endif |
|---|
| 1177 | ! |
|---|
| 1178 | !------------------------------------------------------------- |
|---|
| 1179 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
|---|
| 1180 | ! (T<T0: QI->QS) |
|---|
| 1181 | !------------------------------------------------------------- |
|---|
| 1182 | if(qci(i,k,2).gt.0.) then |
|---|
| 1183 | qimax = roqimax/den(i,k) |
|---|
| 1184 | ! psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
|---|
| 1185 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)*rdtcld) |
|---|
| 1186 | endif |
|---|
| 1187 | endif |
|---|
| 1188 | !------------------------------------------------------------- |
|---|
| 1189 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
|---|
| 1190 | ! (T>T0: QS->QV) |
|---|
| 1191 | !------------------------------------------------------------- |
|---|
| 1192 | if(supcol.lt.0.) then |
|---|
| 1193 | if(qrs(i,k,2).gt.0. .and. rh(i,k,1).lt.1.) & |
|---|
| 1194 | psevp(i,k) = psdep(i,k)*work1(i,k,2)/work1(i,k,1) |
|---|
| 1195 | ! psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
|---|
| 1196 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)*rdtcld),0.) |
|---|
| 1197 | endif |
|---|
| 1198 | enddo |
|---|
| 1199 | enddo |
|---|
| 1200 | ! |
|---|
| 1201 | ! |
|---|
| 1202 | !---------------------------------------------------------------- |
|---|
| 1203 | ! check mass conservation of generation terms and feedback to the |
|---|
| 1204 | ! large scale |
|---|
| 1205 | ! |
|---|
| 1206 | do k = kts, kte |
|---|
| 1207 | do i = its, ite |
|---|
| 1208 | if(t(i,k).le.t0c) then |
|---|
| 1209 | ! |
|---|
| 1210 | ! Q_cloud water |
|---|
| 1211 | ! |
|---|
| 1212 | value = max(qmin,qci(i,k,1)) |
|---|
| 1213 | source = (praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1214 | if (source.gt.value) then |
|---|
| 1215 | factor = value/source |
|---|
| 1216 | praut(i,k) = praut(i,k)*factor |
|---|
| 1217 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1218 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1219 | endif |
|---|
| 1220 | ! |
|---|
| 1221 | ! Q_cloud ice |
|---|
| 1222 | ! |
|---|
| 1223 | value = max(qmin,qci(i,k,2)) |
|---|
| 1224 | source = (psaut(i,k)+psaci(i,k)-pigen(i,k)-pidep(i,k))*dtcld |
|---|
| 1225 | if (source.gt.value) then |
|---|
| 1226 | factor = value/source |
|---|
| 1227 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1228 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1229 | pigen(i,k) = pigen(i,k)*factor |
|---|
| 1230 | pidep(i,k) = pidep(i,k)*factor |
|---|
| 1231 | endif |
|---|
| 1232 | ! |
|---|
| 1233 | ! Q_rain |
|---|
| 1234 | ! |
|---|
| 1235 | ! |
|---|
| 1236 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1237 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k))*dtcld |
|---|
| 1238 | if (source.gt.value) then |
|---|
| 1239 | factor = value/source |
|---|
| 1240 | praut(i,k) = praut(i,k)*factor |
|---|
| 1241 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1242 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1243 | endif |
|---|
| 1244 | ! |
|---|
| 1245 | ! Q_snow |
|---|
| 1246 | ! |
|---|
| 1247 | value = max(qmin,qrs(i,k,2)) |
|---|
| 1248 | source = (-psdep(i,k)-psaut(i,k)-psaci(i,k)-psacw(i,k))*dtcld |
|---|
| 1249 | if (source.gt.value) then |
|---|
| 1250 | factor = value/source |
|---|
| 1251 | psdep(i,k) = psdep(i,k)*factor |
|---|
| 1252 | psaut(i,k) = psaut(i,k)*factor |
|---|
| 1253 | psaci(i,k) = psaci(i,k)*factor |
|---|
| 1254 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1255 | endif |
|---|
| 1256 | ! |
|---|
| 1257 | ! N_cloud |
|---|
| 1258 | ! |
|---|
| 1259 | value = max(ncmin,ncr(i,k,2)) |
|---|
| 1260 | source = (+nraut(i,k)+nccol(i,k)+nracw(i,k)+nsacw(i,k))*dtcld |
|---|
| 1261 | if (source.gt.value) then |
|---|
| 1262 | factor = value/source |
|---|
| 1263 | nraut(i,k) = nraut(i,k)*factor |
|---|
| 1264 | nccol(i,k) = nccol(i,k)*factor |
|---|
| 1265 | nracw(i,k) = nracw(i,k)*factor |
|---|
| 1266 | nsacw(i,k) = nsacw(i,k)*factor |
|---|
| 1267 | endif |
|---|
| 1268 | ! |
|---|
| 1269 | ! N_rain |
|---|
| 1270 | ! |
|---|
| 1271 | value = max(nrmin,ncr(i,k,3)) |
|---|
| 1272 | source = (-nraut(i,k)+nrcol(i,k))*dtcld |
|---|
| 1273 | if (source.gt.value) then |
|---|
| 1274 | factor = value/source |
|---|
| 1275 | nraut(i,k) = nraut(i,k)*factor |
|---|
| 1276 | nrcol(i,k) = nrcol(i,k)*factor |
|---|
| 1277 | endif |
|---|
| 1278 | ! |
|---|
| 1279 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pigen(i,k)+pidep(i,k)) |
|---|
| 1280 | ! update |
|---|
| 1281 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1282 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k)+psacw(i,k) & |
|---|
| 1283 | )*dtcld,0.) |
|---|
| 1284 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k)+prevp(i,k) & |
|---|
| 1285 | )*dtcld,0.) |
|---|
| 1286 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+psaci(i,k)-pigen(i,k) & |
|---|
| 1287 | -pidep(i,k))*dtcld,0.) |
|---|
| 1288 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+psaci(i,k) & |
|---|
| 1289 | +psacw(i,k))*dtcld,0.) |
|---|
| 1290 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
|---|
| 1291 | -nsacw(i,k))*dtcld,0.) |
|---|
| 1292 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)) & |
|---|
| 1293 | *dtcld,0.) |
|---|
| 1294 | xlf = xls-xl(i,k) |
|---|
| 1295 | xlwork2 = -xls*(psdep(i,k)+pidep(i,k)+pigen(i,k)) & |
|---|
| 1296 | -xl(i,k)*prevp(i,k)-xlf*psacw(i,k) |
|---|
| 1297 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1298 | else |
|---|
| 1299 | ! |
|---|
| 1300 | ! Q_cloud water |
|---|
| 1301 | ! |
|---|
| 1302 | value = max(qmin,qci(i,k,1)) |
|---|
| 1303 | source=(praut(i,k)+pracw(i,k)+psacw(i,k))*dtcld |
|---|
| 1304 | if (source.gt.value) then |
|---|
| 1305 | factor = value/source |
|---|
| 1306 | praut(i,k) = praut(i,k)*factor |
|---|
| 1307 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1308 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1309 | endif |
|---|
| 1310 | ! |
|---|
| 1311 | ! Q_rain |
|---|
| 1312 | ! |
|---|
| 1313 | value = max(qmin,qrs(i,k,1)) |
|---|
| 1314 | source = (-praut(i,k)-pracw(i,k)-prevp(i,k) & |
|---|
| 1315 | -psacw(i,k))*dtcld |
|---|
| 1316 | if (source.gt.value) then |
|---|
| 1317 | factor = value/source |
|---|
| 1318 | praut(i,k) = praut(i,k)*factor |
|---|
| 1319 | pracw(i,k) = pracw(i,k)*factor |
|---|
| 1320 | prevp(i,k) = prevp(i,k)*factor |
|---|
| 1321 | psacw(i,k) = psacw(i,k)*factor |
|---|
| 1322 | endif |
|---|
| 1323 | ! |
|---|
| 1324 | ! Q_snow |
|---|
| 1325 | ! |
|---|
| 1326 | value = max(qcrmin,qrs(i,k,2)) |
|---|
| 1327 | source=(-psevp(i,k))*dtcld |
|---|
| 1328 | if (source.gt.value) then |
|---|
| 1329 | factor = value/source |
|---|
| 1330 | psevp(i,k) = psevp(i,k)*factor |
|---|
| 1331 | endif |
|---|
| 1332 | ! |
|---|
| 1333 | ! N_cloud |
|---|
| 1334 | ! |
|---|
| 1335 | value = max(ncmin,ncr(i,k,2)) |
|---|
| 1336 | source = (+nraut(i,k)+nccol(i,k)+nracw(i,k)+nsacw(i,k))*dtcld |
|---|
| 1337 | if (source.gt.value) then |
|---|
| 1338 | factor = value/source |
|---|
| 1339 | nraut(i,k) = nraut(i,k)*factor |
|---|
| 1340 | nccol(i,k) = nccol(i,k)*factor |
|---|
| 1341 | nracw(i,k) = nracw(i,k)*factor |
|---|
| 1342 | nsacw(i,k) = nsacw(i,k)*factor |
|---|
| 1343 | endif |
|---|
| 1344 | ! |
|---|
| 1345 | ! N_rain |
|---|
| 1346 | ! |
|---|
| 1347 | value = max(nrmin,ncr(i,k,3)) |
|---|
| 1348 | source = (-nraut(i,k)-nseml(i,k)+nrcol(i,k))*dtcld |
|---|
| 1349 | if (source.gt.value) then |
|---|
| 1350 | factor = value/source |
|---|
| 1351 | nraut(i,k) = nraut(i,k)*factor |
|---|
| 1352 | nseml(i,k) = nseml(i,k)*factor |
|---|
| 1353 | nrcol(i,k) = nrcol(i,k)*factor |
|---|
| 1354 | endif |
|---|
| 1355 | work2(i,k)=-(prevp(i,k)+psevp(i,k)) |
|---|
| 1356 | ! update |
|---|
| 1357 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
|---|
| 1358 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k)+psacw(i,k) & |
|---|
| 1359 | )*dtcld,0.) |
|---|
| 1360 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k)+prevp(i,k) & |
|---|
| 1361 | +psacw(i,k))*dtcld,0.) |
|---|
| 1362 | qrs(i,k,2) = max(qrs(i,k,2)+psevp(i,k)*dtcld,0.) |
|---|
| 1363 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
|---|
| 1364 | -nsacw(i,k))*dtcld,0.) |
|---|
| 1365 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)+nseml(i,k)-nrcol(i,k) & |
|---|
| 1366 | )*dtcld,0.) |
|---|
| 1367 | xlf = xls-xl(i,k) |
|---|
| 1368 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)) |
|---|
| 1369 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
|---|
| 1370 | endif |
|---|
| 1371 | enddo |
|---|
| 1372 | enddo |
|---|
| 1373 | ! |
|---|
| 1374 | ! Inline expansion for fpvs |
|---|
| 1375 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1376 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
|---|
| 1377 | hsub = xls |
|---|
| 1378 | hvap = xlv0 |
|---|
| 1379 | cvap = cpv |
|---|
| 1380 | ttp=t0c+0.01 |
|---|
| 1381 | dldt=cvap-cliq |
|---|
| 1382 | xa=-dldt/rv |
|---|
| 1383 | xb=xa+hvap/(rv*ttp) |
|---|
| 1384 | dldti=cvap-cice |
|---|
| 1385 | xai=-dldti/rv |
|---|
| 1386 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1387 | do k = kts, kte |
|---|
| 1388 | do i = its, ite |
|---|
| 1389 | tr=ttp/t(i,k) |
|---|
| 1390 | logtr = log(tr) |
|---|
| 1391 | qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr)) |
|---|
| 1392 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 1393 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 1394 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1395 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
|---|
| 1396 | enddo |
|---|
| 1397 | enddo |
|---|
| 1398 | ! |
|---|
| 1399 | call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
|---|
| 1400 | rslope3,work1,workn,its,ite,kts,kte) |
|---|
| 1401 | do k = kts, kte |
|---|
| 1402 | do i = its, ite |
|---|
| 1403 | !----------------------------------------------------------------- |
|---|
| 1404 | ! re-compute the mean-volume drop diameter [LH A10] |
|---|
| 1405 | ! for raindrop distribution |
|---|
| 1406 | !----------------------------------------------------------------- |
|---|
| 1407 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
|---|
| 1408 | !---------------------------------------------------------------- |
|---|
| 1409 | ! Nrevp_s: evaporation/condensation rate of rain [LH A14] |
|---|
| 1410 | ! (NR->NC) |
|---|
| 1411 | !---------------------------------------------------------------- |
|---|
| 1412 | if(avedia(i,k,2).le.di82) then |
|---|
| 1413 | ncr(i,k,2) = ncr(i,k,2)+ncr(i,k,3) |
|---|
| 1414 | ncr(i,k,3) = 0. |
|---|
| 1415 | !---------------------------------------------------------------- |
|---|
| 1416 | ! Prevp_s: evaporation/condensation rate of rain [LH A15] [KK 23] |
|---|
| 1417 | ! (QR->QC) |
|---|
| 1418 | !---------------------------------------------------------------- |
|---|
| 1419 | qci(i,k,1) = qci(i,k,1)+qrs(i,k,1) |
|---|
| 1420 | qrs(i,k,1) = 0. |
|---|
| 1421 | endif |
|---|
| 1422 | enddo |
|---|
| 1423 | enddo |
|---|
| 1424 | ! |
|---|
| 1425 | do k = kts, kte |
|---|
| 1426 | do i = its, ite |
|---|
| 1427 | !------------------------------------------------------------------- |
|---|
| 1428 | ! rate of change of cloud drop concentration due to CCN activation |
|---|
| 1429 | ! pcact: QV -> QC [LH 8] [KK 14] |
|---|
| 1430 | ! ncact: NCCN -> NC [LH A2] [KK 12] |
|---|
| 1431 | !------------------------------------------------------------------- |
|---|
| 1432 | if(rh(i,k,1).gt.1.) then |
|---|
| 1433 | ncact(i,k) = max(0.,((ncr(i,k,1)+ncr(i,k,2)) & |
|---|
| 1434 | *min(1.,(rh(i,k,1)/satmax)**actk) - ncr(i,k,2)))/dtcld |
|---|
| 1435 | ncact(i,k) =min(ncact(i,k),max(ncr(i,k,1),0.)/dtcld) |
|---|
| 1436 | pcact(i,k) = min(4.*pi*denr*(actr*1.E-6)**3*ncact(i,k)/ & |
|---|
| 1437 | (3.*den(i,k)),max(q(i,k),0.)/dtcld) |
|---|
| 1438 | q(i,k) = max(q(i,k)-pcact(i,k)*dtcld,0.) |
|---|
| 1439 | qci(i,k,1) = max(qci(i,k,1)+pcact(i,k)*dtcld,0.) |
|---|
| 1440 | ncr(i,k,1) = max(ncr(i,k,1)-ncact(i,k)*dtcld,0.) |
|---|
| 1441 | ncr(i,k,2) = max(ncr(i,k,2)+ncact(i,k)*dtcld,0.) |
|---|
| 1442 | t(i,k) = t(i,k)+pcact(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1443 | endif |
|---|
| 1444 | !--------------------------------------------------------------------- |
|---|
| 1445 | ! pcond:condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
|---|
| 1446 | ! if there exists additional water vapor condensated/if |
|---|
| 1447 | ! evaporation of cloud water is not enough to remove subsaturation |
|---|
| 1448 | ! (QV->QC or QC->QV) |
|---|
| 1449 | !--------------------------------------------------------------------- |
|---|
| 1450 | tr=ttp/t(i,k) |
|---|
| 1451 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1452 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
|---|
| 1453 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
|---|
| 1454 | qs(i,k,1) = max(qs(i,k,1),qmin) |
|---|
| 1455 | work1(i,k,1) = ((max(q(i,k),qmin)-(qs(i,k,1)))/(1.+(xl(i,k)) & |
|---|
| 1456 | *(xl(i,k))/(rv*(cpm(i,k)))*(qs(i,k,1))/((t(i,k)) & |
|---|
| 1457 | *(t(i,k))))) |
|---|
| 1458 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
|---|
| 1459 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
|---|
| 1460 | if(qci(i,k,1).gt.0. .and. work1(i,k,1).lt.0.) & |
|---|
| 1461 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
|---|
| 1462 | !---------------------------------------------------------------------- |
|---|
| 1463 | ! ncevp: evpration of Cloud number concentration [LH A3] |
|---|
| 1464 | ! (NC->NCCN) |
|---|
| 1465 | !---------------------------------------------------------------------- |
|---|
| 1466 | if(pcond(i,k).eq.-qci(i,k,1)/dtcld) then |
|---|
| 1467 | ncr(i,k,2) = 0. |
|---|
| 1468 | ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,2) |
|---|
| 1469 | endif |
|---|
| 1470 | ! |
|---|
| 1471 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
|---|
| 1472 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
|---|
| 1473 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
|---|
| 1474 | enddo |
|---|
| 1475 | enddo |
|---|
| 1476 | ! |
|---|
| 1477 | !---------------------------------------------------------------- |
|---|
| 1478 | ! padding for small values |
|---|
| 1479 | ! |
|---|
| 1480 | do k = kts, kte |
|---|
| 1481 | do i = its, ite |
|---|
| 1482 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
|---|
| 1483 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
|---|
| 1484 | enddo |
|---|
| 1485 | enddo |
|---|
| 1486 | enddo ! big loops |
|---|
| 1487 | END SUBROUTINE wdm52d |
|---|
| 1488 | ! ................................................................... |
|---|
| 1489 | REAL FUNCTION rgmma(x) |
|---|
| 1490 | !------------------------------------------------------------------- |
|---|
| 1491 | IMPLICIT NONE |
|---|
| 1492 | !------------------------------------------------------------------- |
|---|
| 1493 | ! rgmma function: use infinite product form |
|---|
| 1494 | REAL :: euler |
|---|
| 1495 | PARAMETER (euler=0.577215664901532) |
|---|
| 1496 | REAL :: x, y |
|---|
| 1497 | INTEGER :: i |
|---|
| 1498 | if(x.eq.1.)then |
|---|
| 1499 | rgmma=0. |
|---|
| 1500 | else |
|---|
| 1501 | rgmma=x*exp(euler*x) |
|---|
| 1502 | do i=1,10000 |
|---|
| 1503 | y=float(i) |
|---|
| 1504 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
|---|
| 1505 | enddo |
|---|
| 1506 | rgmma=1./rgmma |
|---|
| 1507 | endif |
|---|
| 1508 | END FUNCTION rgmma |
|---|
| 1509 | ! |
|---|
| 1510 | !-------------------------------------------------------------------------- |
|---|
| 1511 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
|---|
| 1512 | !-------------------------------------------------------------------------- |
|---|
| 1513 | IMPLICIT NONE |
|---|
| 1514 | !-------------------------------------------------------------------------- |
|---|
| 1515 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
|---|
| 1516 | xai,xbi,ttp,tr |
|---|
| 1517 | INTEGER ice |
|---|
| 1518 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1519 | ttp=t0c+0.01 |
|---|
| 1520 | dldt=cvap-cliq |
|---|
| 1521 | xa=-dldt/rv |
|---|
| 1522 | xb=xa+hvap/(rv*ttp) |
|---|
| 1523 | dldti=cvap-cice |
|---|
| 1524 | xai=-dldti/rv |
|---|
| 1525 | xbi=xai+hsub/(rv*ttp) |
|---|
| 1526 | tr=ttp/t |
|---|
| 1527 | if(t.lt.ttp .and. ice.eq.1) then |
|---|
| 1528 | fpvs=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
|---|
| 1529 | else |
|---|
| 1530 | fpvs=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
|---|
| 1531 | endif |
|---|
| 1532 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
|---|
| 1533 | END FUNCTION fpvs |
|---|
| 1534 | !------------------------------------------------------------------- |
|---|
| 1535 | SUBROUTINE wdm5init(den0,denr,dens,cl,cpv,ccn0,allowed_to_read) |
|---|
| 1536 | !------------------------------------------------------------------- |
|---|
| 1537 | IMPLICIT NONE |
|---|
| 1538 | !------------------------------------------------------------------- |
|---|
| 1539 | !.... constants which may not be tunable |
|---|
| 1540 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv,ccn0 |
|---|
| 1541 | LOGICAL, INTENT(IN) :: allowed_to_read |
|---|
| 1542 | ! |
|---|
| 1543 | pi = 4.*atan(1.) |
|---|
| 1544 | xlv1 = cl-cpv |
|---|
| 1545 | ! |
|---|
| 1546 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
|---|
| 1547 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
|---|
| 1548 | pidnc = pi*denr/6. |
|---|
| 1549 | ! |
|---|
| 1550 | bvtr1 = 1.+bvtr |
|---|
| 1551 | bvtr2 = 2.+bvtr |
|---|
| 1552 | bvtr3 = 3.+bvtr |
|---|
| 1553 | bvtr4 = 4.+bvtr |
|---|
| 1554 | bvtr5 = 5.+bvtr |
|---|
| 1555 | bvtr7 = 7.+bvtr |
|---|
| 1556 | bvtr2o5 = 2.5+.5*bvtr |
|---|
| 1557 | bvtr3o5 = 3.5+.5*bvtr |
|---|
| 1558 | g1pbr = rgmma(bvtr1) |
|---|
| 1559 | g2pbr = rgmma(bvtr2) |
|---|
| 1560 | g3pbr = rgmma(bvtr3) |
|---|
| 1561 | g4pbr = rgmma(bvtr4) ! 17.837825 |
|---|
| 1562 | g5pbr = rgmma(bvtr5) |
|---|
| 1563 | g7pbr = rgmma(bvtr7) |
|---|
| 1564 | g5pbro2 = rgmma(bvtr2o5) |
|---|
| 1565 | g7pbro2 = rgmma(bvtr3o5) |
|---|
| 1566 | pvtr = avtr*g5pbr/24. |
|---|
| 1567 | pvtrn = avtr*g2pbr |
|---|
| 1568 | eacrr = 1.0 |
|---|
| 1569 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
|---|
| 1570 | precr1 = 2.*pi*1.56 |
|---|
| 1571 | precr2 = 2.*pi*.31*avtr**.5*g7pbro2 |
|---|
| 1572 | pidn0r = pi*denr*n0r |
|---|
| 1573 | pidnr = 4.*pi*denr |
|---|
| 1574 | xmmax = (dimax/dicon)**2 |
|---|
| 1575 | roqimax = 2.08e22*dimax**8 |
|---|
| 1576 | ! |
|---|
| 1577 | bvts1 = 1.+bvts |
|---|
| 1578 | bvts2 = 2.5+.5*bvts |
|---|
| 1579 | bvts3 = 3.+bvts |
|---|
| 1580 | bvts4 = 4.+bvts |
|---|
| 1581 | g1pbs = rgmma(bvts1) !.8875 |
|---|
| 1582 | g3pbs = rgmma(bvts3) |
|---|
| 1583 | g4pbs = rgmma(bvts4) ! 12.0786 |
|---|
| 1584 | g5pbso2 = rgmma(bvts2) |
|---|
| 1585 | pvts = avts*g4pbs/6. |
|---|
| 1586 | pacrs = pi*n0s*avts*g3pbs*.25 |
|---|
| 1587 | precs1 = 4.*n0s*.65 |
|---|
| 1588 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
|---|
| 1589 | pidn0s = pi*dens*n0s |
|---|
| 1590 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
|---|
| 1591 | ! |
|---|
| 1592 | rslopecmax = 1./lamdacmax |
|---|
| 1593 | rslopermax = 1./lamdarmax |
|---|
| 1594 | rslopesmax = 1./lamdasmax |
|---|
| 1595 | rsloperbmax = rslopermax ** bvtr |
|---|
| 1596 | rslopesbmax = rslopesmax ** bvts |
|---|
| 1597 | rslopec2max = rslopecmax * rslopecmax |
|---|
| 1598 | rsloper2max = rslopermax * rslopermax |
|---|
| 1599 | rslopes2max = rslopesmax * rslopesmax |
|---|
| 1600 | rslopec3max = rslopec2max * rslopecmax |
|---|
| 1601 | rsloper3max = rsloper2max * rslopermax |
|---|
| 1602 | rslopes3max = rslopes2max * rslopesmax |
|---|
| 1603 | ! |
|---|
| 1604 | END SUBROUTINE wdm5init |
|---|
| 1605 | !------------------------------------------------------------------------------ |
|---|
| 1606 | subroutine slope_wdm5(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1607 | vt,vtn,its,ite,kts,kte) |
|---|
| 1608 | IMPLICIT NONE |
|---|
| 1609 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1610 | REAL, DIMENSION( its:ite , kts:kte,2) :: & |
|---|
| 1611 | qrs, & |
|---|
| 1612 | rslope, & |
|---|
| 1613 | rslopeb, & |
|---|
| 1614 | rslope2, & |
|---|
| 1615 | rslope3, & |
|---|
| 1616 | vt |
|---|
| 1617 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1618 | ncr, & |
|---|
| 1619 | vtn, & |
|---|
| 1620 | den, & |
|---|
| 1621 | denfac, & |
|---|
| 1622 | t |
|---|
| 1623 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1624 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1625 | n0sfac |
|---|
| 1626 | REAL :: lamdar, lamdas, x, y, z, supcol |
|---|
| 1627 | integer :: i, j, k |
|---|
| 1628 | !---------------------------------------------------------------- |
|---|
| 1629 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1630 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1631 | ! |
|---|
| 1632 | ! Optimizatin : A**B => exp(log(A)*(B)) |
|---|
| 1633 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
|---|
| 1634 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 1635 | ! |
|---|
| 1636 | do k = kts, kte |
|---|
| 1637 | do i = its, ite |
|---|
| 1638 | supcol = t0c-t(i,k) |
|---|
| 1639 | !--------------------------------------------------------------- |
|---|
| 1640 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1641 | !--------------------------------------------------------------- |
|---|
| 1642 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1643 | if(qrs(i,k,1).le.qcrmin .or. ncr(i,k).le.nrmin ) then |
|---|
| 1644 | rslope(i,k,1) = rslopermax |
|---|
| 1645 | rslopeb(i,k,1) = rsloperbmax |
|---|
| 1646 | rslope2(i,k,1) = rsloper2max |
|---|
| 1647 | rslope3(i,k,1) = rsloper3max |
|---|
| 1648 | else |
|---|
| 1649 | rslope(i,k,1) = min(1./lamdar(qrs(i,k,1),den(i,k),ncr(i,k)),1.e-3) |
|---|
| 1650 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
|---|
| 1651 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
|---|
| 1652 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
|---|
| 1653 | endif |
|---|
| 1654 | if(qrs(i,k,2).le.qcrmin) then |
|---|
| 1655 | rslope(i,k,2) = rslopesmax |
|---|
| 1656 | rslopeb(i,k,2) = rslopesbmax |
|---|
| 1657 | rslope2(i,k,2) = rslopes2max |
|---|
| 1658 | rslope3(i,k,2) = rslopes3max |
|---|
| 1659 | else |
|---|
| 1660 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
|---|
| 1661 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
|---|
| 1662 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
|---|
| 1663 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
|---|
| 1664 | endif |
|---|
| 1665 | vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k) |
|---|
| 1666 | vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k) |
|---|
| 1667 | vtn(i,k) = pvtrn*rslopeb(i,k,1)*denfac(i,k) |
|---|
| 1668 | if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0 |
|---|
| 1669 | if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0 |
|---|
| 1670 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
|---|
| 1671 | enddo |
|---|
| 1672 | enddo |
|---|
| 1673 | END subroutine slope_wdm5 |
|---|
| 1674 | !----------------------------------------------------------------------------- |
|---|
| 1675 | subroutine slope_rain(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1676 | vt,vtn,its,ite,kts,kte) |
|---|
| 1677 | IMPLICIT NONE |
|---|
| 1678 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1679 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1680 | qrs, & |
|---|
| 1681 | ncr, & |
|---|
| 1682 | rslope, & |
|---|
| 1683 | rslopeb, & |
|---|
| 1684 | rslope2, & |
|---|
| 1685 | rslope3, & |
|---|
| 1686 | vt, & |
|---|
| 1687 | vtn, & |
|---|
| 1688 | den, & |
|---|
| 1689 | denfac, & |
|---|
| 1690 | t |
|---|
| 1691 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1692 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1693 | n0sfac |
|---|
| 1694 | REAL :: lamdar, x, y, z, supcol |
|---|
| 1695 | integer :: i, j, k |
|---|
| 1696 | !---------------------------------------------------------------- |
|---|
| 1697 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1698 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1699 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
|---|
| 1700 | ! |
|---|
| 1701 | do k = kts, kte |
|---|
| 1702 | do i = its, ite |
|---|
| 1703 | if(qrs(i,k).le.qcrmin .or. ncr(i,k).le.nrmin) then |
|---|
| 1704 | rslope(i,k) = rslopermax |
|---|
| 1705 | rslopeb(i,k) = rsloperbmax |
|---|
| 1706 | rslope2(i,k) = rsloper2max |
|---|
| 1707 | rslope3(i,k) = rsloper3max |
|---|
| 1708 | else |
|---|
| 1709 | rslope(i,k) = min(1./lamdar(qrs(i,k),den(i,k),ncr(i,k)),1.e-3) |
|---|
| 1710 | rslopeb(i,k) = rslope(i,k)**bvtr |
|---|
| 1711 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1712 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1713 | endif |
|---|
| 1714 | vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k) |
|---|
| 1715 | vtn(i,k) = pvtrn*rslopeb(i,k)*denfac(i,k) |
|---|
| 1716 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
|---|
| 1717 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
|---|
| 1718 | enddo |
|---|
| 1719 | enddo |
|---|
| 1720 | END subroutine slope_rain |
|---|
| 1721 | !------------------------------------------------------------------------------ |
|---|
| 1722 | subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
|---|
| 1723 | vt,its,ite,kts,kte) |
|---|
| 1724 | IMPLICIT NONE |
|---|
| 1725 | INTEGER :: its,ite, jts,jte, kts,kte |
|---|
| 1726 | REAL, DIMENSION( its:ite , kts:kte) :: & |
|---|
| 1727 | qrs, & |
|---|
| 1728 | rslope, & |
|---|
| 1729 | rslopeb, & |
|---|
| 1730 | rslope2, & |
|---|
| 1731 | rslope3, & |
|---|
| 1732 | vt, & |
|---|
| 1733 | den, & |
|---|
| 1734 | denfac, & |
|---|
| 1735 | t |
|---|
| 1736 | REAL, PARAMETER :: t0c = 273.15 |
|---|
| 1737 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
|---|
| 1738 | n0sfac |
|---|
| 1739 | REAL :: lamdas, x, y, z, supcol |
|---|
| 1740 | integer :: i, j, k |
|---|
| 1741 | !---------------------------------------------------------------- |
|---|
| 1742 | ! size distributions: (x=mixing ratio, y=air density): |
|---|
| 1743 | ! valid for mixing ratio > 1.e-9 kg/kg. |
|---|
| 1744 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
|---|
| 1745 | ! |
|---|
| 1746 | do k = kts, kte |
|---|
| 1747 | do i = its, ite |
|---|
| 1748 | supcol = t0c-t(i,k) |
|---|
| 1749 | !--------------------------------------------------------------- |
|---|
| 1750 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
|---|
| 1751 | !--------------------------------------------------------------- |
|---|
| 1752 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
|---|
| 1753 | if(qrs(i,k).le.qcrmin)then |
|---|
| 1754 | rslope(i,k) = rslopesmax |
|---|
| 1755 | rslopeb(i,k) = rslopesbmax |
|---|
| 1756 | rslope2(i,k) = rslopes2max |
|---|
| 1757 | rslope3(i,k) = rslopes3max |
|---|
| 1758 | else |
|---|
| 1759 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
|---|
| 1760 | rslopeb(i,k) = rslope(i,k)**bvts |
|---|
| 1761 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
|---|
| 1762 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
|---|
| 1763 | endif |
|---|
| 1764 | vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k) |
|---|
| 1765 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
|---|
| 1766 | enddo |
|---|
| 1767 | enddo |
|---|
| 1768 | END subroutine slope_snow |
|---|
| 1769 | !------------------------------------------------------------------- |
|---|
| 1770 | SUBROUTINE nislfv_rain_plm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) |
|---|
| 1771 | !------------------------------------------------------------------- |
|---|
| 1772 | ! |
|---|
| 1773 | ! for non-iteration semi-Lagrangain forward advection for cloud |
|---|
| 1774 | ! with mass conservation and positive definite advection |
|---|
| 1775 | ! 2nd order interpolation with monotonic piecewise linear method |
|---|
| 1776 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
|---|
| 1777 | ! |
|---|
| 1778 | ! dzl depth of model layer in meter |
|---|
| 1779 | ! wwl terminal velocity at model layer m/s |
|---|
| 1780 | ! rql cloud density*mixing ration |
|---|
| 1781 | ! precip precipitation |
|---|
| 1782 | ! dt time step |
|---|
| 1783 | ! id kind of precip: 0 test case; 1 raindrop 2: snow |
|---|
| 1784 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
|---|
| 1785 | ! 0 : use departure wind for advection |
|---|
| 1786 | ! 1 : use mean wind for advection |
|---|
| 1787 | ! > 1 : use mean wind after iter-1 iterations |
|---|
| 1788 | ! |
|---|
| 1789 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
|---|
| 1790 | ! implemented by song-you hong |
|---|
| 1791 | ! |
|---|
| 1792 | implicit none |
|---|
| 1793 | integer im,km,id |
|---|
| 1794 | real dt |
|---|
| 1795 | real dzl(im,km),wwl(im,km),rql(im,km),precip(im) |
|---|
| 1796 | real denl(im,km),denfacl(im,km),tkl(im,km) |
|---|
| 1797 | ! |
|---|
| 1798 | integer i,k,n,m,kk,kb,kt,iter |
|---|
| 1799 | real tl,tl2,qql,dql,qqd |
|---|
| 1800 | real th,th2,qqh,dqh |
|---|
| 1801 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
|---|
| 1802 | real allold, allnew, zz, dzamin, cflmax, decfl |
|---|
| 1803 | real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) |
|---|
| 1804 | real den(km), denfac(km), tk(km) |
|---|
| 1805 | real wi(km+1), zi(km+1), za(km+1) |
|---|
| 1806 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
|---|
| 1807 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
|---|
| 1808 | ! |
|---|
| 1809 | precip(:) = 0.0 |
|---|
| 1810 | ! |
|---|
| 1811 | i_loop : do i=1,im |
|---|
| 1812 | ! ----------------------------------- |
|---|
| 1813 | dz(:) = dzl(i,:) |
|---|
| 1814 | qq(:) = rql(i,:) |
|---|
| 1815 | ww(:) = wwl(i,:) |
|---|
| 1816 | den(:) = denl(i,:) |
|---|
| 1817 | denfac(:) = denfacl(i,:) |
|---|
| 1818 | tk(:) = tkl(i,:) |
|---|
| 1819 | ! skip for no precipitation for all layers |
|---|
| 1820 | allold = 0.0 |
|---|
| 1821 | do k=1,km |
|---|
| 1822 | allold = allold + qq(k) |
|---|
| 1823 | enddo |
|---|
| 1824 | if(allold.le.0.0) then |
|---|
| 1825 | cycle i_loop |
|---|
| 1826 | endif |
|---|
| 1827 | ! |
|---|
| 1828 | ! compute interface values |
|---|
| 1829 | zi(1)=0.0 |
|---|
| 1830 | do k=1,km |
|---|
| 1831 | zi(k+1) = zi(k)+dz(k) |
|---|
| 1832 | enddo |
|---|
| 1833 | ! |
|---|
| 1834 | ! save departure wind |
|---|
| 1835 | wd(:) = ww(:) |
|---|
| 1836 | n=1 |
|---|
| 1837 | 100 continue |
|---|
| 1838 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
|---|
| 1839 | ! 2nd order interpolation to get wi |
|---|
| 1840 | wi(1) = ww(1) |
|---|
| 1841 | wi(km+1) = ww(km) |
|---|
| 1842 | do k=2,km |
|---|
| 1843 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
|---|
| 1844 | enddo |
|---|
| 1845 | ! 3rd order interpolation to get wi |
|---|
| 1846 | fa1 = 9./16. |
|---|
| 1847 | fa2 = 1./16. |
|---|
| 1848 | wi(1) = ww(1) |
|---|
| 1849 | wi(2) = 0.5*(ww(2)+ww(1)) |
|---|
| 1850 | do k=3,km-1 |
|---|
| 1851 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
|---|
| 1852 | enddo |
|---|
| 1853 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
|---|
| 1854 | wi(km+1) = ww(km) |
|---|
| 1855 | ! |
|---|
| 1856 | ! terminate of top of raingroup |
|---|
| 1857 | do k=2,km |
|---|
| 1858 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
|---|
| 1859 | enddo |
|---|
| 1860 | ! |
|---|
| 1861 | ! diffusivity of wi |
|---|
| 1862 | con1 = 0.05 |
|---|
| 1863 | do k=km,1,-1 |
|---|
| 1864 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
|---|
| 1865 | if( decfl .gt. con1 ) then |
|---|
| 1866 | wi(k) = wi(k+1) - con1*dz(k)/dt |
|---|
| 1867 | endif |
|---|
| 1868 | enddo |
|---|
| 1869 | ! compute arrival point |
|---|
| 1870 | do k=1,km+1 |
|---|
| 1871 | za(k) = zi(k) - wi(k)*dt |
|---|
| 1872 | enddo |
|---|
| 1873 | ! |
|---|
| 1874 | do k=1,km |
|---|
| 1875 | dza(k) = za(k+1)-za(k) |
|---|
| 1876 | enddo |
|---|
| 1877 | dza(km+1) = zi(km+1) - za(km+1) |
|---|
| 1878 | ! |
|---|
| 1879 | ! computer deformation at arrival point |
|---|
| 1880 | do k=1,km |
|---|
| 1881 | qa(k) = qq(k)*dz(k)/dza(k) |
|---|
| 1882 | qr(k) = qa(k)/den(k) |
|---|
| 1883 | enddo |
|---|
| 1884 | qa(km+1) = 0.0 |
|---|
| 1885 | ! call maxmin(km,1,qa,' arrival points ') |
|---|
| 1886 | ! |
|---|
| 1887 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
|---|
| 1888 | ! then back to use mean terminal velocity |
|---|
| 1889 | if( n.le.iter ) then |
|---|
| 1890 | ! if (id.eq.1) then |
|---|
| 1891 | ! |
|---|
| 1892 | ! call slope_rain(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
|---|
| 1893 | ! else |
|---|
| 1894 | call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
|---|
| 1895 | ! endif |
|---|
| 1896 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
|---|
| 1897 | do k=1,km |
|---|
| 1898 | !#ifdef DEBUG |
|---|
| 1899 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
|---|
| 1900 | !#endif |
|---|
| 1901 | ! mean wind is average of departure and new arrival winds |
|---|
| 1902 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
|---|
| 1903 | enddo |
|---|
| 1904 | was(:) = wa(:) |
|---|
| 1905 | n=n+1 |
|---|
| 1906 | go to 100 |
|---|
| 1907 | endif |
|---|
| 1908 | ! |
|---|
| 1909 | ! estimate values at arrival cell interface with monotone |
|---|
| 1910 | do k=2,km |
|---|
| 1911 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
|---|
| 1912 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
|---|
| 1913 | if( dip*dim.le.0.0 ) then |
|---|
| 1914 | qmi(k)=qa(k) |
|---|
| 1915 | qpi(k)=qa(k) |
|---|
| 1916 | else |
|---|
| 1917 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
|---|
| 1918 | qmi(k)=2.0*qa(k)-qpi(k) |
|---|
| 1919 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
|---|
| 1920 | qpi(k) = qa(k) |
|---|
| 1921 | qmi(k) = qa(k) |
|---|
| 1922 | endif |
|---|
| 1923 | endif |
|---|
| 1924 | enddo |
|---|
| 1925 | qpi(1)=qa(1) |
|---|
| 1926 | qmi(1)=qa(1) |
|---|
| 1927 | qmi(km+1)=qa(km+1) |
|---|
| 1928 | qpi(km+1)=qa(km+1) |
|---|
| 1929 | ! |
|---|
| 1930 | ! interpolation to regular point |
|---|
| 1931 | qn = 0.0 |
|---|
| 1932 | kb=1 |
|---|
| 1933 | kt=1 |
|---|
| 1934 | intp : do k=1,km |
|---|
| 1935 | kb=max(kb-1,1) |
|---|
| 1936 | kt=max(kt-1,1) |
|---|
| 1937 | ! find kb and kt |
|---|
| 1938 | if( zi(k).ge.za(km+1) ) then |
|---|
| 1939 | exit intp |
|---|
| 1940 | else |
|---|
| 1941 | find_kb : do kk=kb,km |
|---|
| 1942 | if( zi(k).le.za(kk+1) ) then |
|---|
| 1943 | kb = kk |
|---|
| 1944 | exit find_kb |
|---|
| 1945 | else |
|---|
| 1946 | cycle find_kb |
|---|
| 1947 | endif |
|---|
| 1948 | enddo find_kb |
|---|
| 1949 | find_kt : do kk=kt,km |
|---|
| 1950 | if( zi(k+1).le.za(kk) ) then |
|---|
| 1951 | kt = kk |
|---|
| 1952 | exit find_kt |
|---|
| 1953 | else |
|---|
| 1954 | cycle find_kt |
|---|
| 1955 | endif |
|---|
| 1956 | enddo find_kt |
|---|
| 1957 | kt = kt - 1 |
|---|
| 1958 | ! compute q with piecewise constant method |
|---|
| 1959 | if( kt.eq.kb ) then |
|---|
| 1960 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 1961 | th=(zi(k+1)-za(kb))/dza(kb) |
|---|
| 1962 | tl2=tl*tl |
|---|
| 1963 | th2=th*th |
|---|
| 1964 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 1965 | qqh=qqd*th2+qmi(kb)*th |
|---|
| 1966 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 1967 | qn(k) = (qqh-qql)/(th-tl) |
|---|
| 1968 | else if( kt.gt.kb ) then |
|---|
| 1969 | tl=(zi(k)-za(kb))/dza(kb) |
|---|
| 1970 | tl2=tl*tl |
|---|
| 1971 | qqd=0.5*(qpi(kb)-qmi(kb)) |
|---|
| 1972 | qql=qqd*tl2+qmi(kb)*tl |
|---|
| 1973 | dql = qa(kb)-qql |
|---|
| 1974 | zsum = (1.-tl)*dza(kb) |
|---|
| 1975 | qsum = dql*dza(kb) |
|---|
| 1976 | if( kt-kb.gt.1 ) then |
|---|
| 1977 | do m=kb+1,kt-1 |
|---|
| 1978 | zsum = zsum + dza(m) |
|---|
| 1979 | qsum = qsum + qa(m) * dza(m) |
|---|
| 1980 | enddo |
|---|
| 1981 | endif |
|---|
| 1982 | th=(zi(k+1)-za(kt))/dza(kt) |
|---|
| 1983 | th2=th*th |
|---|
| 1984 | qqd=0.5*(qpi(kt)-qmi(kt)) |
|---|
| 1985 | dqh=qqd*th2+qmi(kt)*th |
|---|
| 1986 | zsum = zsum + th*dza(kt) |
|---|
| 1987 | qsum = qsum + dqh*dza(kt) |
|---|
| 1988 | qn(k) = qsum/zsum |
|---|
| 1989 | endif |
|---|
| 1990 | cycle intp |
|---|
| 1991 | endif |
|---|
| 1992 | ! |
|---|
| 1993 | enddo intp |
|---|
| 1994 | ! |
|---|
| 1995 | ! rain out |
|---|
| 1996 | sum_precip: do k=1,km |
|---|
| 1997 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
|---|
| 1998 | precip(i) = precip(i) + qa(k)*dza(k) |
|---|
| 1999 | cycle sum_precip |
|---|
| 2000 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
|---|
| 2001 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
|---|
| 2002 | exit sum_precip |
|---|
| 2003 | endif |
|---|
| 2004 | exit sum_precip |
|---|
| 2005 | enddo sum_precip |
|---|
| 2006 | ! |
|---|
| 2007 | ! replace the new values |
|---|
| 2008 | rql(i,:) = qn(:) |
|---|
| 2009 | ! |
|---|
| 2010 | ! ---------------------------------- |
|---|
| 2011 | enddo i_loop |
|---|
| 2012 | ! |
|---|
| 2013 | END SUBROUTINE nislfv_rain_plm |
|---|
| 2014 | END MODULE module_mp_wdm5 |
|---|